GNU Linux-libre 4.19.268-gnu1
[releases.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27         SCAN_FAIL,
28         SCAN_SUCCEED,
29         SCAN_PMD_NULL,
30         SCAN_EXCEED_NONE_PTE,
31         SCAN_PTE_NON_PRESENT,
32         SCAN_PAGE_RO,
33         SCAN_LACK_REFERENCED_PAGE,
34         SCAN_PAGE_NULL,
35         SCAN_SCAN_ABORT,
36         SCAN_PAGE_COUNT,
37         SCAN_PAGE_LRU,
38         SCAN_PAGE_LOCK,
39         SCAN_PAGE_ANON,
40         SCAN_PAGE_COMPOUND,
41         SCAN_ANY_PROCESS,
42         SCAN_VMA_NULL,
43         SCAN_VMA_CHECK,
44         SCAN_ADDRESS_RANGE,
45         SCAN_SWAP_CACHE_PAGE,
46         SCAN_DEL_PAGE_LRU,
47         SCAN_ALLOC_HUGE_PAGE_FAIL,
48         SCAN_CGROUP_CHARGE_FAIL,
49         SCAN_EXCEED_SWAP_PTE,
50         SCAN_TRUNCATED,
51 };
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/huge_memory.h>
55
56 static struct task_struct *khugepaged_thread __read_mostly;
57 static DEFINE_MUTEX(khugepaged_mutex);
58
59 /* default scan 8*512 pte (or vmas) every 30 second */
60 static unsigned int khugepaged_pages_to_scan __read_mostly;
61 static unsigned int khugepaged_pages_collapsed;
62 static unsigned int khugepaged_full_scans;
63 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
64 /* during fragmentation poll the hugepage allocator once every minute */
65 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
66 static unsigned long khugepaged_sleep_expire;
67 static DEFINE_SPINLOCK(khugepaged_mm_lock);
68 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
69 /*
70  * default collapse hugepages if there is at least one pte mapped like
71  * it would have happened if the vma was large enough during page
72  * fault.
73  */
74 static unsigned int khugepaged_max_ptes_none __read_mostly;
75 static unsigned int khugepaged_max_ptes_swap __read_mostly;
76
77 #define MM_SLOTS_HASH_BITS 10
78 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
79
80 static struct kmem_cache *mm_slot_cache __read_mostly;
81
82 /**
83  * struct mm_slot - hash lookup from mm to mm_slot
84  * @hash: hash collision list
85  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
86  * @mm: the mm that this information is valid for
87  */
88 struct mm_slot {
89         struct hlist_node hash;
90         struct list_head mm_node;
91         struct mm_struct *mm;
92 };
93
94 /**
95  * struct khugepaged_scan - cursor for scanning
96  * @mm_head: the head of the mm list to scan
97  * @mm_slot: the current mm_slot we are scanning
98  * @address: the next address inside that to be scanned
99  *
100  * There is only the one khugepaged_scan instance of this cursor structure.
101  */
102 struct khugepaged_scan {
103         struct list_head mm_head;
104         struct mm_slot *mm_slot;
105         unsigned long address;
106 };
107
108 static struct khugepaged_scan khugepaged_scan = {
109         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
110 };
111
112 #ifdef CONFIG_SYSFS
113 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
114                                          struct kobj_attribute *attr,
115                                          char *buf)
116 {
117         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
118 }
119
120 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
121                                           struct kobj_attribute *attr,
122                                           const char *buf, size_t count)
123 {
124         unsigned long msecs;
125         int err;
126
127         err = kstrtoul(buf, 10, &msecs);
128         if (err || msecs > UINT_MAX)
129                 return -EINVAL;
130
131         khugepaged_scan_sleep_millisecs = msecs;
132         khugepaged_sleep_expire = 0;
133         wake_up_interruptible(&khugepaged_wait);
134
135         return count;
136 }
137 static struct kobj_attribute scan_sleep_millisecs_attr =
138         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
139                scan_sleep_millisecs_store);
140
141 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
142                                           struct kobj_attribute *attr,
143                                           char *buf)
144 {
145         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
146 }
147
148 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
149                                            struct kobj_attribute *attr,
150                                            const char *buf, size_t count)
151 {
152         unsigned long msecs;
153         int err;
154
155         err = kstrtoul(buf, 10, &msecs);
156         if (err || msecs > UINT_MAX)
157                 return -EINVAL;
158
159         khugepaged_alloc_sleep_millisecs = msecs;
160         khugepaged_sleep_expire = 0;
161         wake_up_interruptible(&khugepaged_wait);
162
163         return count;
164 }
165 static struct kobj_attribute alloc_sleep_millisecs_attr =
166         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
167                alloc_sleep_millisecs_store);
168
169 static ssize_t pages_to_scan_show(struct kobject *kobj,
170                                   struct kobj_attribute *attr,
171                                   char *buf)
172 {
173         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
174 }
175 static ssize_t pages_to_scan_store(struct kobject *kobj,
176                                    struct kobj_attribute *attr,
177                                    const char *buf, size_t count)
178 {
179         int err;
180         unsigned long pages;
181
182         err = kstrtoul(buf, 10, &pages);
183         if (err || !pages || pages > UINT_MAX)
184                 return -EINVAL;
185
186         khugepaged_pages_to_scan = pages;
187
188         return count;
189 }
190 static struct kobj_attribute pages_to_scan_attr =
191         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
192                pages_to_scan_store);
193
194 static ssize_t pages_collapsed_show(struct kobject *kobj,
195                                     struct kobj_attribute *attr,
196                                     char *buf)
197 {
198         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
199 }
200 static struct kobj_attribute pages_collapsed_attr =
201         __ATTR_RO(pages_collapsed);
202
203 static ssize_t full_scans_show(struct kobject *kobj,
204                                struct kobj_attribute *attr,
205                                char *buf)
206 {
207         return sprintf(buf, "%u\n", khugepaged_full_scans);
208 }
209 static struct kobj_attribute full_scans_attr =
210         __ATTR_RO(full_scans);
211
212 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
213                                       struct kobj_attribute *attr, char *buf)
214 {
215         return single_hugepage_flag_show(kobj, attr, buf,
216                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
217 }
218 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
219                                        struct kobj_attribute *attr,
220                                        const char *buf, size_t count)
221 {
222         return single_hugepage_flag_store(kobj, attr, buf, count,
223                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
224 }
225 static struct kobj_attribute khugepaged_defrag_attr =
226         __ATTR(defrag, 0644, khugepaged_defrag_show,
227                khugepaged_defrag_store);
228
229 /*
230  * max_ptes_none controls if khugepaged should collapse hugepages over
231  * any unmapped ptes in turn potentially increasing the memory
232  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
233  * reduce the available free memory in the system as it
234  * runs. Increasing max_ptes_none will instead potentially reduce the
235  * free memory in the system during the khugepaged scan.
236  */
237 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
238                                              struct kobj_attribute *attr,
239                                              char *buf)
240 {
241         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
242 }
243 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
244                                               struct kobj_attribute *attr,
245                                               const char *buf, size_t count)
246 {
247         int err;
248         unsigned long max_ptes_none;
249
250         err = kstrtoul(buf, 10, &max_ptes_none);
251         if (err || max_ptes_none > HPAGE_PMD_NR-1)
252                 return -EINVAL;
253
254         khugepaged_max_ptes_none = max_ptes_none;
255
256         return count;
257 }
258 static struct kobj_attribute khugepaged_max_ptes_none_attr =
259         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
260                khugepaged_max_ptes_none_store);
261
262 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
263                                              struct kobj_attribute *attr,
264                                              char *buf)
265 {
266         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
267 }
268
269 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
270                                               struct kobj_attribute *attr,
271                                               const char *buf, size_t count)
272 {
273         int err;
274         unsigned long max_ptes_swap;
275
276         err  = kstrtoul(buf, 10, &max_ptes_swap);
277         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
278                 return -EINVAL;
279
280         khugepaged_max_ptes_swap = max_ptes_swap;
281
282         return count;
283 }
284
285 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
286         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
287                khugepaged_max_ptes_swap_store);
288
289 static struct attribute *khugepaged_attr[] = {
290         &khugepaged_defrag_attr.attr,
291         &khugepaged_max_ptes_none_attr.attr,
292         &pages_to_scan_attr.attr,
293         &pages_collapsed_attr.attr,
294         &full_scans_attr.attr,
295         &scan_sleep_millisecs_attr.attr,
296         &alloc_sleep_millisecs_attr.attr,
297         &khugepaged_max_ptes_swap_attr.attr,
298         NULL,
299 };
300
301 struct attribute_group khugepaged_attr_group = {
302         .attrs = khugepaged_attr,
303         .name = "khugepaged",
304 };
305 #endif /* CONFIG_SYSFS */
306
307 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
308
309 int hugepage_madvise(struct vm_area_struct *vma,
310                      unsigned long *vm_flags, int advice)
311 {
312         switch (advice) {
313         case MADV_HUGEPAGE:
314 #ifdef CONFIG_S390
315                 /*
316                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
317                  * can't handle this properly after s390_enable_sie, so we simply
318                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
319                  */
320                 if (mm_has_pgste(vma->vm_mm))
321                         return 0;
322 #endif
323                 *vm_flags &= ~VM_NOHUGEPAGE;
324                 *vm_flags |= VM_HUGEPAGE;
325                 /*
326                  * If the vma become good for khugepaged to scan,
327                  * register it here without waiting a page fault that
328                  * may not happen any time soon.
329                  */
330                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
331                                 khugepaged_enter_vma_merge(vma, *vm_flags))
332                         return -ENOMEM;
333                 break;
334         case MADV_NOHUGEPAGE:
335                 *vm_flags &= ~VM_HUGEPAGE;
336                 *vm_flags |= VM_NOHUGEPAGE;
337                 /*
338                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
339                  * this vma even if we leave the mm registered in khugepaged if
340                  * it got registered before VM_NOHUGEPAGE was set.
341                  */
342                 break;
343         }
344
345         return 0;
346 }
347
348 int __init khugepaged_init(void)
349 {
350         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
351                                           sizeof(struct mm_slot),
352                                           __alignof__(struct mm_slot), 0, NULL);
353         if (!mm_slot_cache)
354                 return -ENOMEM;
355
356         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
357         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
358         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
359
360         return 0;
361 }
362
363 void __init khugepaged_destroy(void)
364 {
365         kmem_cache_destroy(mm_slot_cache);
366 }
367
368 static inline struct mm_slot *alloc_mm_slot(void)
369 {
370         if (!mm_slot_cache)     /* initialization failed */
371                 return NULL;
372         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
373 }
374
375 static inline void free_mm_slot(struct mm_slot *mm_slot)
376 {
377         kmem_cache_free(mm_slot_cache, mm_slot);
378 }
379
380 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
381 {
382         struct mm_slot *mm_slot;
383
384         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
385                 if (mm == mm_slot->mm)
386                         return mm_slot;
387
388         return NULL;
389 }
390
391 static void insert_to_mm_slots_hash(struct mm_struct *mm,
392                                     struct mm_slot *mm_slot)
393 {
394         mm_slot->mm = mm;
395         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
396 }
397
398 static inline int khugepaged_test_exit(struct mm_struct *mm)
399 {
400         return atomic_read(&mm->mm_users) == 0 || !mmget_still_valid(mm);
401 }
402
403 static bool hugepage_vma_check(struct vm_area_struct *vma,
404                                unsigned long vm_flags)
405 {
406         if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
407             (vm_flags & VM_NOHUGEPAGE) ||
408             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
409                 return false;
410         if (shmem_file(vma->vm_file)) {
411                 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
412                         return false;
413                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
414                                 HPAGE_PMD_NR);
415         }
416         if (!vma->anon_vma || vma->vm_ops)
417                 return false;
418         if (is_vma_temporary_stack(vma))
419                 return false;
420         return !(vm_flags & VM_NO_KHUGEPAGED);
421 }
422
423 int __khugepaged_enter(struct mm_struct *mm)
424 {
425         struct mm_slot *mm_slot;
426         int wakeup;
427
428         mm_slot = alloc_mm_slot();
429         if (!mm_slot)
430                 return -ENOMEM;
431
432         /* __khugepaged_exit() must not run from under us */
433         VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
434         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
435                 free_mm_slot(mm_slot);
436                 return 0;
437         }
438
439         spin_lock(&khugepaged_mm_lock);
440         insert_to_mm_slots_hash(mm, mm_slot);
441         /*
442          * Insert just behind the scanning cursor, to let the area settle
443          * down a little.
444          */
445         wakeup = list_empty(&khugepaged_scan.mm_head);
446         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
447         spin_unlock(&khugepaged_mm_lock);
448
449         mmgrab(mm);
450         if (wakeup)
451                 wake_up_interruptible(&khugepaged_wait);
452
453         return 0;
454 }
455
456 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
457                                unsigned long vm_flags)
458 {
459         unsigned long hstart, hend;
460
461         /*
462          * khugepaged does not yet work on non-shmem files or special
463          * mappings. And file-private shmem THP is not supported.
464          */
465         if (!hugepage_vma_check(vma, vm_flags))
466                 return 0;
467
468         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
469         hend = vma->vm_end & HPAGE_PMD_MASK;
470         if (hstart < hend)
471                 return khugepaged_enter(vma, vm_flags);
472         return 0;
473 }
474
475 void __khugepaged_exit(struct mm_struct *mm)
476 {
477         struct mm_slot *mm_slot;
478         int free = 0;
479
480         spin_lock(&khugepaged_mm_lock);
481         mm_slot = get_mm_slot(mm);
482         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
483                 hash_del(&mm_slot->hash);
484                 list_del(&mm_slot->mm_node);
485                 free = 1;
486         }
487         spin_unlock(&khugepaged_mm_lock);
488
489         if (free) {
490                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
491                 free_mm_slot(mm_slot);
492                 mmdrop(mm);
493         } else if (mm_slot) {
494                 /*
495                  * This is required to serialize against
496                  * khugepaged_test_exit() (which is guaranteed to run
497                  * under mmap sem read mode). Stop here (after we
498                  * return all pagetables will be destroyed) until
499                  * khugepaged has finished working on the pagetables
500                  * under the mmap_sem.
501                  */
502                 down_write(&mm->mmap_sem);
503                 up_write(&mm->mmap_sem);
504         }
505 }
506
507 static void release_pte_page(struct page *page)
508 {
509         dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
510         unlock_page(page);
511         putback_lru_page(page);
512 }
513
514 static void release_pte_pages(pte_t *pte, pte_t *_pte)
515 {
516         while (--_pte >= pte) {
517                 pte_t pteval = *_pte;
518                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
519                         release_pte_page(pte_page(pteval));
520         }
521 }
522
523 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
524                                         unsigned long address,
525                                         pte_t *pte)
526 {
527         struct page *page = NULL;
528         pte_t *_pte;
529         int none_or_zero = 0, result = 0, referenced = 0;
530         bool writable = false;
531
532         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
533              _pte++, address += PAGE_SIZE) {
534                 pte_t pteval = *_pte;
535                 if (pte_none(pteval) || (pte_present(pteval) &&
536                                 is_zero_pfn(pte_pfn(pteval)))) {
537                         if (!userfaultfd_armed(vma) &&
538                             ++none_or_zero <= khugepaged_max_ptes_none) {
539                                 continue;
540                         } else {
541                                 result = SCAN_EXCEED_NONE_PTE;
542                                 goto out;
543                         }
544                 }
545                 if (!pte_present(pteval)) {
546                         result = SCAN_PTE_NON_PRESENT;
547                         goto out;
548                 }
549                 page = vm_normal_page(vma, address, pteval);
550                 if (unlikely(!page)) {
551                         result = SCAN_PAGE_NULL;
552                         goto out;
553                 }
554
555                 /* TODO: teach khugepaged to collapse THP mapped with pte */
556                 if (PageCompound(page)) {
557                         result = SCAN_PAGE_COMPOUND;
558                         goto out;
559                 }
560
561                 VM_BUG_ON_PAGE(!PageAnon(page), page);
562
563                 /*
564                  * We can do it before isolate_lru_page because the
565                  * page can't be freed from under us. NOTE: PG_lock
566                  * is needed to serialize against split_huge_page
567                  * when invoked from the VM.
568                  */
569                 if (!trylock_page(page)) {
570                         result = SCAN_PAGE_LOCK;
571                         goto out;
572                 }
573
574                 /*
575                  * cannot use mapcount: can't collapse if there's a gup pin.
576                  * The page must only be referenced by the scanned process
577                  * and page swap cache.
578                  */
579                 if (page_count(page) != 1 + PageSwapCache(page)) {
580                         unlock_page(page);
581                         result = SCAN_PAGE_COUNT;
582                         goto out;
583                 }
584                 if (pte_write(pteval)) {
585                         writable = true;
586                 } else {
587                         if (PageSwapCache(page) &&
588                             !reuse_swap_page(page, NULL)) {
589                                 unlock_page(page);
590                                 result = SCAN_SWAP_CACHE_PAGE;
591                                 goto out;
592                         }
593                         /*
594                          * Page is not in the swap cache. It can be collapsed
595                          * into a THP.
596                          */
597                 }
598
599                 /*
600                  * Isolate the page to avoid collapsing an hugepage
601                  * currently in use by the VM.
602                  */
603                 if (isolate_lru_page(page)) {
604                         unlock_page(page);
605                         result = SCAN_DEL_PAGE_LRU;
606                         goto out;
607                 }
608                 inc_node_page_state(page,
609                                 NR_ISOLATED_ANON + page_is_file_cache(page));
610                 VM_BUG_ON_PAGE(!PageLocked(page), page);
611                 VM_BUG_ON_PAGE(PageLRU(page), page);
612
613                 /* There should be enough young pte to collapse the page */
614                 if (pte_young(pteval) ||
615                     page_is_young(page) || PageReferenced(page) ||
616                     mmu_notifier_test_young(vma->vm_mm, address))
617                         referenced++;
618         }
619
620         if (unlikely(!writable)) {
621                 result = SCAN_PAGE_RO;
622         } else if (unlikely(!referenced)) {
623                 result = SCAN_LACK_REFERENCED_PAGE;
624         } else {
625                 result = SCAN_SUCCEED;
626                 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
627                                                     referenced, writable, result);
628                 return 1;
629         }
630 out:
631         release_pte_pages(pte, _pte);
632         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
633                                             referenced, writable, result);
634         return 0;
635 }
636
637 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
638                                       struct vm_area_struct *vma,
639                                       unsigned long address,
640                                       spinlock_t *ptl)
641 {
642         pte_t *_pte;
643         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
644                                 _pte++, page++, address += PAGE_SIZE) {
645                 pte_t pteval = *_pte;
646                 struct page *src_page;
647
648                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
649                         clear_user_highpage(page, address);
650                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
651                         if (is_zero_pfn(pte_pfn(pteval))) {
652                                 /*
653                                  * ptl mostly unnecessary.
654                                  */
655                                 spin_lock(ptl);
656                                 /*
657                                  * paravirt calls inside pte_clear here are
658                                  * superfluous.
659                                  */
660                                 pte_clear(vma->vm_mm, address, _pte);
661                                 spin_unlock(ptl);
662                         }
663                 } else {
664                         src_page = pte_page(pteval);
665                         copy_user_highpage(page, src_page, address, vma);
666                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
667                         release_pte_page(src_page);
668                         /*
669                          * ptl mostly unnecessary, but preempt has to
670                          * be disabled to update the per-cpu stats
671                          * inside page_remove_rmap().
672                          */
673                         spin_lock(ptl);
674                         /*
675                          * paravirt calls inside pte_clear here are
676                          * superfluous.
677                          */
678                         pte_clear(vma->vm_mm, address, _pte);
679                         page_remove_rmap(src_page, false);
680                         spin_unlock(ptl);
681                         free_page_and_swap_cache(src_page);
682                 }
683         }
684 }
685
686 static void khugepaged_alloc_sleep(void)
687 {
688         DEFINE_WAIT(wait);
689
690         add_wait_queue(&khugepaged_wait, &wait);
691         freezable_schedule_timeout_interruptible(
692                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
693         remove_wait_queue(&khugepaged_wait, &wait);
694 }
695
696 static int khugepaged_node_load[MAX_NUMNODES];
697
698 static bool khugepaged_scan_abort(int nid)
699 {
700         int i;
701
702         /*
703          * If node_reclaim_mode is disabled, then no extra effort is made to
704          * allocate memory locally.
705          */
706         if (!node_reclaim_mode)
707                 return false;
708
709         /* If there is a count for this node already, it must be acceptable */
710         if (khugepaged_node_load[nid])
711                 return false;
712
713         for (i = 0; i < MAX_NUMNODES; i++) {
714                 if (!khugepaged_node_load[i])
715                         continue;
716                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
717                         return true;
718         }
719         return false;
720 }
721
722 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
723 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
724 {
725         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
726 }
727
728 #ifdef CONFIG_NUMA
729 static int khugepaged_find_target_node(void)
730 {
731         static int last_khugepaged_target_node = NUMA_NO_NODE;
732         int nid, target_node = 0, max_value = 0;
733
734         /* find first node with max normal pages hit */
735         for (nid = 0; nid < MAX_NUMNODES; nid++)
736                 if (khugepaged_node_load[nid] > max_value) {
737                         max_value = khugepaged_node_load[nid];
738                         target_node = nid;
739                 }
740
741         /* do some balance if several nodes have the same hit record */
742         if (target_node <= last_khugepaged_target_node)
743                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
744                                 nid++)
745                         if (max_value == khugepaged_node_load[nid]) {
746                                 target_node = nid;
747                                 break;
748                         }
749
750         last_khugepaged_target_node = target_node;
751         return target_node;
752 }
753
754 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
755 {
756         if (IS_ERR(*hpage)) {
757                 if (!*wait)
758                         return false;
759
760                 *wait = false;
761                 *hpage = NULL;
762                 khugepaged_alloc_sleep();
763         } else if (*hpage) {
764                 put_page(*hpage);
765                 *hpage = NULL;
766         }
767
768         return true;
769 }
770
771 static struct page *
772 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
773 {
774         VM_BUG_ON_PAGE(*hpage, *hpage);
775
776         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
777         if (unlikely(!*hpage)) {
778                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
779                 *hpage = ERR_PTR(-ENOMEM);
780                 return NULL;
781         }
782
783         prep_transhuge_page(*hpage);
784         count_vm_event(THP_COLLAPSE_ALLOC);
785         return *hpage;
786 }
787 #else
788 static int khugepaged_find_target_node(void)
789 {
790         return 0;
791 }
792
793 static inline struct page *alloc_khugepaged_hugepage(void)
794 {
795         struct page *page;
796
797         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
798                            HPAGE_PMD_ORDER);
799         if (page)
800                 prep_transhuge_page(page);
801         return page;
802 }
803
804 static struct page *khugepaged_alloc_hugepage(bool *wait)
805 {
806         struct page *hpage;
807
808         do {
809                 hpage = alloc_khugepaged_hugepage();
810                 if (!hpage) {
811                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
812                         if (!*wait)
813                                 return NULL;
814
815                         *wait = false;
816                         khugepaged_alloc_sleep();
817                 } else
818                         count_vm_event(THP_COLLAPSE_ALLOC);
819         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
820
821         return hpage;
822 }
823
824 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
825 {
826         /*
827          * If the hpage allocated earlier was briefly exposed in page cache
828          * before collapse_file() failed, it is possible that racing lookups
829          * have not yet completed, and would then be unpleasantly surprised by
830          * finding the hpage reused for the same mapping at a different offset.
831          * Just release the previous allocation if there is any danger of that.
832          */
833         if (*hpage && page_count(*hpage) > 1) {
834                 put_page(*hpage);
835                 *hpage = NULL;
836         }
837
838         if (!*hpage)
839                 *hpage = khugepaged_alloc_hugepage(wait);
840
841         if (unlikely(!*hpage))
842                 return false;
843
844         return true;
845 }
846
847 static struct page *
848 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
849 {
850         VM_BUG_ON(!*hpage);
851
852         return  *hpage;
853 }
854 #endif
855
856 /*
857  * If mmap_sem temporarily dropped, revalidate vma
858  * before taking mmap_sem.
859  * Return 0 if succeeds, otherwise return none-zero
860  * value (scan code).
861  */
862
863 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
864                 struct vm_area_struct **vmap)
865 {
866         struct vm_area_struct *vma;
867         unsigned long hstart, hend;
868
869         if (unlikely(khugepaged_test_exit(mm)))
870                 return SCAN_ANY_PROCESS;
871
872         *vmap = vma = find_vma(mm, address);
873         if (!vma)
874                 return SCAN_VMA_NULL;
875
876         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
877         hend = vma->vm_end & HPAGE_PMD_MASK;
878         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
879                 return SCAN_ADDRESS_RANGE;
880         if (!hugepage_vma_check(vma, vma->vm_flags))
881                 return SCAN_VMA_CHECK;
882         return 0;
883 }
884
885 /*
886  * Bring missing pages in from swap, to complete THP collapse.
887  * Only done if khugepaged_scan_pmd believes it is worthwhile.
888  *
889  * Called and returns without pte mapped or spinlocks held,
890  * but with mmap_sem held to protect against vma changes.
891  */
892
893 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
894                                         struct vm_area_struct *vma,
895                                         unsigned long address, pmd_t *pmd,
896                                         int referenced)
897 {
898         int swapped_in = 0;
899         vm_fault_t ret = 0;
900         struct vm_fault vmf = {
901                 .vma = vma,
902                 .address = address,
903                 .flags = FAULT_FLAG_ALLOW_RETRY,
904                 .pmd = pmd,
905                 .pgoff = linear_page_index(vma, address),
906         };
907
908         /* we only decide to swapin, if there is enough young ptes */
909         if (referenced < HPAGE_PMD_NR/2) {
910                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
911                 return false;
912         }
913         vmf.pte = pte_offset_map(pmd, address);
914         for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
915                         vmf.pte++, vmf.address += PAGE_SIZE) {
916                 vmf.orig_pte = *vmf.pte;
917                 if (!is_swap_pte(vmf.orig_pte))
918                         continue;
919                 swapped_in++;
920                 ret = do_swap_page(&vmf);
921
922                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
923                 if (ret & VM_FAULT_RETRY) {
924                         down_read(&mm->mmap_sem);
925                         if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
926                                 /* vma is no longer available, don't continue to swapin */
927                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
928                                 return false;
929                         }
930                         /* check if the pmd is still valid */
931                         if (mm_find_pmd(mm, address) != pmd) {
932                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
933                                 return false;
934                         }
935                 }
936                 if (ret & VM_FAULT_ERROR) {
937                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
938                         return false;
939                 }
940                 /* pte is unmapped now, we need to map it */
941                 vmf.pte = pte_offset_map(pmd, vmf.address);
942         }
943         vmf.pte--;
944         pte_unmap(vmf.pte);
945         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
946         return true;
947 }
948
949 static void collapse_huge_page(struct mm_struct *mm,
950                                    unsigned long address,
951                                    struct page **hpage,
952                                    int node, int referenced)
953 {
954         pmd_t *pmd, _pmd;
955         pte_t *pte;
956         pgtable_t pgtable;
957         struct page *new_page;
958         spinlock_t *pmd_ptl, *pte_ptl;
959         int isolated = 0, result = 0;
960         struct mem_cgroup *memcg;
961         struct vm_area_struct *vma;
962         unsigned long mmun_start;       /* For mmu_notifiers */
963         unsigned long mmun_end;         /* For mmu_notifiers */
964         gfp_t gfp;
965
966         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
967
968         /* Only allocate from the target node */
969         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
970
971         /*
972          * Before allocating the hugepage, release the mmap_sem read lock.
973          * The allocation can take potentially a long time if it involves
974          * sync compaction, and we do not need to hold the mmap_sem during
975          * that. We will recheck the vma after taking it again in write mode.
976          */
977         up_read(&mm->mmap_sem);
978         new_page = khugepaged_alloc_page(hpage, gfp, node);
979         if (!new_page) {
980                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
981                 goto out_nolock;
982         }
983
984         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
985                 result = SCAN_CGROUP_CHARGE_FAIL;
986                 goto out_nolock;
987         }
988
989         down_read(&mm->mmap_sem);
990         result = hugepage_vma_revalidate(mm, address, &vma);
991         if (result) {
992                 mem_cgroup_cancel_charge(new_page, memcg, true);
993                 up_read(&mm->mmap_sem);
994                 goto out_nolock;
995         }
996
997         pmd = mm_find_pmd(mm, address);
998         if (!pmd) {
999                 result = SCAN_PMD_NULL;
1000                 mem_cgroup_cancel_charge(new_page, memcg, true);
1001                 up_read(&mm->mmap_sem);
1002                 goto out_nolock;
1003         }
1004
1005         /*
1006          * __collapse_huge_page_swapin always returns with mmap_sem locked.
1007          * If it fails, we release mmap_sem and jump out_nolock.
1008          * Continuing to collapse causes inconsistency.
1009          */
1010         if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1011                 mem_cgroup_cancel_charge(new_page, memcg, true);
1012                 up_read(&mm->mmap_sem);
1013                 goto out_nolock;
1014         }
1015
1016         up_read(&mm->mmap_sem);
1017         /*
1018          * Prevent all access to pagetables with the exception of
1019          * gup_fast later handled by the ptep_clear_flush and the VM
1020          * handled by the anon_vma lock + PG_lock.
1021          */
1022         down_write(&mm->mmap_sem);
1023         result = hugepage_vma_revalidate(mm, address, &vma);
1024         if (result)
1025                 goto out;
1026         /* check if the pmd is still valid */
1027         if (mm_find_pmd(mm, address) != pmd)
1028                 goto out;
1029
1030         anon_vma_lock_write(vma->anon_vma);
1031
1032         pte = pte_offset_map(pmd, address);
1033         pte_ptl = pte_lockptr(mm, pmd);
1034
1035         mmun_start = address;
1036         mmun_end   = address + HPAGE_PMD_SIZE;
1037         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1038         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1039         /*
1040          * After this gup_fast can't run anymore. This also removes
1041          * any huge TLB entry from the CPU so we won't allow
1042          * huge and small TLB entries for the same virtual address
1043          * to avoid the risk of CPU bugs in that area.
1044          */
1045         _pmd = pmdp_collapse_flush(vma, address, pmd);
1046         spin_unlock(pmd_ptl);
1047         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1048
1049         spin_lock(pte_ptl);
1050         isolated = __collapse_huge_page_isolate(vma, address, pte);
1051         spin_unlock(pte_ptl);
1052
1053         if (unlikely(!isolated)) {
1054                 pte_unmap(pte);
1055                 spin_lock(pmd_ptl);
1056                 BUG_ON(!pmd_none(*pmd));
1057                 /*
1058                  * We can only use set_pmd_at when establishing
1059                  * hugepmds and never for establishing regular pmds that
1060                  * points to regular pagetables. Use pmd_populate for that
1061                  */
1062                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1063                 spin_unlock(pmd_ptl);
1064                 anon_vma_unlock_write(vma->anon_vma);
1065                 result = SCAN_FAIL;
1066                 goto out;
1067         }
1068
1069         /*
1070          * All pages are isolated and locked so anon_vma rmap
1071          * can't run anymore.
1072          */
1073         anon_vma_unlock_write(vma->anon_vma);
1074
1075         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1076         pte_unmap(pte);
1077         __SetPageUptodate(new_page);
1078         pgtable = pmd_pgtable(_pmd);
1079
1080         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1081         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1082
1083         /*
1084          * spin_lock() below is not the equivalent of smp_wmb(), so
1085          * this is needed to avoid the copy_huge_page writes to become
1086          * visible after the set_pmd_at() write.
1087          */
1088         smp_wmb();
1089
1090         spin_lock(pmd_ptl);
1091         BUG_ON(!pmd_none(*pmd));
1092         page_add_new_anon_rmap(new_page, vma, address, true);
1093         mem_cgroup_commit_charge(new_page, memcg, false, true);
1094         lru_cache_add_active_or_unevictable(new_page, vma);
1095         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1096         set_pmd_at(mm, address, pmd, _pmd);
1097         update_mmu_cache_pmd(vma, address, pmd);
1098         spin_unlock(pmd_ptl);
1099
1100         *hpage = NULL;
1101
1102         khugepaged_pages_collapsed++;
1103         result = SCAN_SUCCEED;
1104 out_up_write:
1105         up_write(&mm->mmap_sem);
1106 out_nolock:
1107         trace_mm_collapse_huge_page(mm, isolated, result);
1108         return;
1109 out:
1110         mem_cgroup_cancel_charge(new_page, memcg, true);
1111         goto out_up_write;
1112 }
1113
1114 static int khugepaged_scan_pmd(struct mm_struct *mm,
1115                                struct vm_area_struct *vma,
1116                                unsigned long address,
1117                                struct page **hpage)
1118 {
1119         pmd_t *pmd;
1120         pte_t *pte, *_pte;
1121         int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1122         struct page *page = NULL;
1123         unsigned long _address;
1124         spinlock_t *ptl;
1125         int node = NUMA_NO_NODE, unmapped = 0;
1126         bool writable = false;
1127
1128         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1129
1130         pmd = mm_find_pmd(mm, address);
1131         if (!pmd) {
1132                 result = SCAN_PMD_NULL;
1133                 goto out;
1134         }
1135
1136         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1137         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1138         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1139              _pte++, _address += PAGE_SIZE) {
1140                 pte_t pteval = *_pte;
1141                 if (is_swap_pte(pteval)) {
1142                         if (++unmapped <= khugepaged_max_ptes_swap) {
1143                                 continue;
1144                         } else {
1145                                 result = SCAN_EXCEED_SWAP_PTE;
1146                                 goto out_unmap;
1147                         }
1148                 }
1149                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1150                         if (!userfaultfd_armed(vma) &&
1151                             ++none_or_zero <= khugepaged_max_ptes_none) {
1152                                 continue;
1153                         } else {
1154                                 result = SCAN_EXCEED_NONE_PTE;
1155                                 goto out_unmap;
1156                         }
1157                 }
1158                 if (!pte_present(pteval)) {
1159                         result = SCAN_PTE_NON_PRESENT;
1160                         goto out_unmap;
1161                 }
1162                 if (pte_write(pteval))
1163                         writable = true;
1164
1165                 page = vm_normal_page(vma, _address, pteval);
1166                 if (unlikely(!page)) {
1167                         result = SCAN_PAGE_NULL;
1168                         goto out_unmap;
1169                 }
1170
1171                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1172                 if (PageCompound(page)) {
1173                         result = SCAN_PAGE_COMPOUND;
1174                         goto out_unmap;
1175                 }
1176
1177                 /*
1178                  * Record which node the original page is from and save this
1179                  * information to khugepaged_node_load[].
1180                  * Khupaged will allocate hugepage from the node has the max
1181                  * hit record.
1182                  */
1183                 node = page_to_nid(page);
1184                 if (khugepaged_scan_abort(node)) {
1185                         result = SCAN_SCAN_ABORT;
1186                         goto out_unmap;
1187                 }
1188                 khugepaged_node_load[node]++;
1189                 if (!PageLRU(page)) {
1190                         result = SCAN_PAGE_LRU;
1191                         goto out_unmap;
1192                 }
1193                 if (PageLocked(page)) {
1194                         result = SCAN_PAGE_LOCK;
1195                         goto out_unmap;
1196                 }
1197                 if (!PageAnon(page)) {
1198                         result = SCAN_PAGE_ANON;
1199                         goto out_unmap;
1200                 }
1201
1202                 /*
1203                  * cannot use mapcount: can't collapse if there's a gup pin.
1204                  * The page must only be referenced by the scanned process
1205                  * and page swap cache.
1206                  */
1207                 if (page_count(page) != 1 + PageSwapCache(page)) {
1208                         result = SCAN_PAGE_COUNT;
1209                         goto out_unmap;
1210                 }
1211                 if (pte_young(pteval) ||
1212                     page_is_young(page) || PageReferenced(page) ||
1213                     mmu_notifier_test_young(vma->vm_mm, address))
1214                         referenced++;
1215         }
1216         if (writable) {
1217                 if (referenced) {
1218                         result = SCAN_SUCCEED;
1219                         ret = 1;
1220                 } else {
1221                         result = SCAN_LACK_REFERENCED_PAGE;
1222                 }
1223         } else {
1224                 result = SCAN_PAGE_RO;
1225         }
1226 out_unmap:
1227         pte_unmap_unlock(pte, ptl);
1228         if (ret) {
1229                 node = khugepaged_find_target_node();
1230                 /* collapse_huge_page will return with the mmap_sem released */
1231                 collapse_huge_page(mm, address, hpage, node, referenced);
1232         }
1233 out:
1234         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1235                                      none_or_zero, result, unmapped);
1236         return ret;
1237 }
1238
1239 static void collect_mm_slot(struct mm_slot *mm_slot)
1240 {
1241         struct mm_struct *mm = mm_slot->mm;
1242
1243         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1244
1245         if (khugepaged_test_exit(mm)) {
1246                 /* free mm_slot */
1247                 hash_del(&mm_slot->hash);
1248                 list_del(&mm_slot->mm_node);
1249
1250                 /*
1251                  * Not strictly needed because the mm exited already.
1252                  *
1253                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1254                  */
1255
1256                 /* khugepaged_mm_lock actually not necessary for the below */
1257                 free_mm_slot(mm_slot);
1258                 mmdrop(mm);
1259         }
1260 }
1261
1262 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1263 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1264 {
1265         struct vm_area_struct *vma;
1266         struct mm_struct *mm;
1267         unsigned long addr;
1268         pmd_t *pmd, _pmd;
1269
1270         i_mmap_lock_write(mapping);
1271         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1272                 /* probably overkill */
1273                 if (vma->anon_vma)
1274                         continue;
1275                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1276                 if (addr & ~HPAGE_PMD_MASK)
1277                         continue;
1278                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1279                         continue;
1280                 mm = vma->vm_mm;
1281                 pmd = mm_find_pmd(mm, addr);
1282                 if (!pmd)
1283                         continue;
1284                 /*
1285                  * We need exclusive mmap_sem to retract page table.
1286                  * If trylock fails we would end up with pte-mapped THP after
1287                  * re-fault. Not ideal, but it's more important to not disturb
1288                  * the system too much.
1289                  */
1290                 if (down_write_trylock(&mm->mmap_sem)) {
1291                         if (!khugepaged_test_exit(mm)) {
1292                                 spinlock_t *ptl = pmd_lock(mm, pmd);
1293                                 /* assume page table is clear */
1294                                 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1295                                 spin_unlock(ptl);
1296                                 mm_dec_nr_ptes(mm);
1297                                 pte_free(mm, pmd_pgtable(_pmd));
1298                         }
1299                         up_write(&mm->mmap_sem);
1300                 }
1301         }
1302         i_mmap_unlock_write(mapping);
1303 }
1304
1305 /**
1306  * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1307  *
1308  * Basic scheme is simple, details are more complex:
1309  *  - allocate and lock a new huge page;
1310  *  - scan over radix tree replacing old pages the new one
1311  *    + swap in pages if necessary;
1312  *    + fill in gaps;
1313  *    + keep old pages around in case if rollback is required;
1314  *  - if replacing succeed:
1315  *    + copy data over;
1316  *    + free old pages;
1317  *    + unlock huge page;
1318  *  - if replacing failed;
1319  *    + put all pages back and unfreeze them;
1320  *    + restore gaps in the radix-tree;
1321  *    + unlock and free huge page;
1322  */
1323 static void collapse_shmem(struct mm_struct *mm,
1324                 struct address_space *mapping, pgoff_t start,
1325                 struct page **hpage, int node)
1326 {
1327         gfp_t gfp;
1328         struct page *page, *new_page, *tmp;
1329         struct mem_cgroup *memcg;
1330         pgoff_t index, end = start + HPAGE_PMD_NR;
1331         LIST_HEAD(pagelist);
1332         struct radix_tree_iter iter;
1333         void **slot;
1334         int nr_none = 0, result = SCAN_SUCCEED;
1335
1336         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1337
1338         /* Only allocate from the target node */
1339         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1340
1341         new_page = khugepaged_alloc_page(hpage, gfp, node);
1342         if (!new_page) {
1343                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1344                 goto out;
1345         }
1346
1347         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1348                 result = SCAN_CGROUP_CHARGE_FAIL;
1349                 goto out;
1350         }
1351
1352         __SetPageLocked(new_page);
1353         __SetPageSwapBacked(new_page);
1354         new_page->index = start;
1355         new_page->mapping = mapping;
1356
1357         /*
1358          * At this point the new_page is locked and not up-to-date.
1359          * It's safe to insert it into the page cache, because nobody would
1360          * be able to map it or use it in another way until we unlock it.
1361          */
1362
1363         index = start;
1364         xa_lock_irq(&mapping->i_pages);
1365         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1366                 int n = min(iter.index, end) - index;
1367
1368                 /*
1369                  * Stop if extent has been hole-punched, and is now completely
1370                  * empty (the more obvious i_size_read() check would take an
1371                  * irq-unsafe seqlock on 32-bit).
1372                  */
1373                 if (n >= HPAGE_PMD_NR) {
1374                         result = SCAN_TRUNCATED;
1375                         goto tree_locked;
1376                 }
1377
1378                 /*
1379                  * Handle holes in the radix tree: charge it from shmem and
1380                  * insert relevant subpage of new_page into the radix-tree.
1381                  */
1382                 if (n && !shmem_charge(mapping->host, n)) {
1383                         result = SCAN_FAIL;
1384                         goto tree_locked;
1385                 }
1386                 for (; index < min(iter.index, end); index++) {
1387                         radix_tree_insert(&mapping->i_pages, index,
1388                                         new_page + (index % HPAGE_PMD_NR));
1389                 }
1390                 nr_none += n;
1391
1392                 /* We are done. */
1393                 if (index >= end)
1394                         break;
1395
1396                 page = radix_tree_deref_slot_protected(slot,
1397                                 &mapping->i_pages.xa_lock);
1398                 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1399                         xa_unlock_irq(&mapping->i_pages);
1400                         /* swap in or instantiate fallocated page */
1401                         if (shmem_getpage(mapping->host, index, &page,
1402                                                 SGP_NOHUGE)) {
1403                                 result = SCAN_FAIL;
1404                                 goto tree_unlocked;
1405                         }
1406                 } else if (trylock_page(page)) {
1407                         get_page(page);
1408                         xa_unlock_irq(&mapping->i_pages);
1409                 } else {
1410                         result = SCAN_PAGE_LOCK;
1411                         goto tree_locked;
1412                 }
1413
1414                 /*
1415                  * The page must be locked, so we can drop the i_pages lock
1416                  * without racing with truncate.
1417                  */
1418                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1419                 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1420
1421                 /*
1422                  * If file was truncated then extended, or hole-punched, before
1423                  * we locked the first page, then a THP might be there already.
1424                  */
1425                 if (PageTransCompound(page)) {
1426                         result = SCAN_PAGE_COMPOUND;
1427                         goto out_unlock;
1428                 }
1429
1430                 if (page_mapping(page) != mapping) {
1431                         result = SCAN_TRUNCATED;
1432                         goto out_unlock;
1433                 }
1434
1435                 if (isolate_lru_page(page)) {
1436                         result = SCAN_DEL_PAGE_LRU;
1437                         goto out_unlock;
1438                 }
1439
1440                 if (page_mapped(page))
1441                         unmap_mapping_pages(mapping, index, 1, false);
1442
1443                 xa_lock_irq(&mapping->i_pages);
1444
1445                 slot = radix_tree_lookup_slot(&mapping->i_pages, index);
1446                 VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1447                                         &mapping->i_pages.xa_lock), page);
1448                 VM_BUG_ON_PAGE(page_mapped(page), page);
1449
1450                 /*
1451                  * The page is expected to have page_count() == 3:
1452                  *  - we hold a pin on it;
1453                  *  - one reference from radix tree;
1454                  *  - one from isolate_lru_page;
1455                  */
1456                 if (!page_ref_freeze(page, 3)) {
1457                         result = SCAN_PAGE_COUNT;
1458                         xa_unlock_irq(&mapping->i_pages);
1459                         putback_lru_page(page);
1460                         goto out_unlock;
1461                 }
1462
1463                 /*
1464                  * Add the page to the list to be able to undo the collapse if
1465                  * something go wrong.
1466                  */
1467                 list_add_tail(&page->lru, &pagelist);
1468
1469                 /* Finally, replace with the new page. */
1470                 radix_tree_replace_slot(&mapping->i_pages, slot,
1471                                 new_page + (index % HPAGE_PMD_NR));
1472
1473                 slot = radix_tree_iter_resume(slot, &iter);
1474                 index++;
1475                 continue;
1476 out_unlock:
1477                 unlock_page(page);
1478                 put_page(page);
1479                 goto tree_unlocked;
1480         }
1481
1482         /*
1483          * Handle hole in radix tree at the end of the range.
1484          * This code only triggers if there's nothing in radix tree
1485          * beyond 'end'.
1486          */
1487         if (index < end) {
1488                 int n = end - index;
1489
1490                 /* Stop if extent has been truncated, and is now empty */
1491                 if (n >= HPAGE_PMD_NR) {
1492                         result = SCAN_TRUNCATED;
1493                         goto tree_locked;
1494                 }
1495                 if (!shmem_charge(mapping->host, n)) {
1496                         result = SCAN_FAIL;
1497                         goto tree_locked;
1498                 }
1499                 for (; index < end; index++) {
1500                         radix_tree_insert(&mapping->i_pages, index,
1501                                         new_page + (index % HPAGE_PMD_NR));
1502                 }
1503                 nr_none += n;
1504         }
1505
1506         __inc_node_page_state(new_page, NR_SHMEM_THPS);
1507         if (nr_none) {
1508                 struct zone *zone = page_zone(new_page);
1509
1510                 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1511                 __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1512         }
1513
1514 tree_locked:
1515         xa_unlock_irq(&mapping->i_pages);
1516 tree_unlocked:
1517
1518         if (result == SCAN_SUCCEED) {
1519                 /*
1520                  * Replacing old pages with new one has succeed, now we need to
1521                  * copy the content and free old pages.
1522                  */
1523                 index = start;
1524                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1525                         while (index < page->index) {
1526                                 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1527                                 index++;
1528                         }
1529                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1530                                         page);
1531                         list_del(&page->lru);
1532                         page->mapping = NULL;
1533                         page_ref_unfreeze(page, 1);
1534                         ClearPageActive(page);
1535                         ClearPageUnevictable(page);
1536                         unlock_page(page);
1537                         put_page(page);
1538                         index++;
1539                 }
1540                 while (index < end) {
1541                         clear_highpage(new_page + (index % HPAGE_PMD_NR));
1542                         index++;
1543                 }
1544
1545                 SetPageUptodate(new_page);
1546                 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1547                 set_page_dirty(new_page);
1548                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1549                 lru_cache_add_anon(new_page);
1550
1551                 /*
1552                  * Remove pte page tables, so we can re-fault the page as huge.
1553                  */
1554                 retract_page_tables(mapping, start);
1555                 *hpage = NULL;
1556
1557                 khugepaged_pages_collapsed++;
1558         } else {
1559                 /* Something went wrong: rollback changes to the radix-tree */
1560                 xa_lock_irq(&mapping->i_pages);
1561                 mapping->nrpages -= nr_none;
1562                 shmem_uncharge(mapping->host, nr_none);
1563
1564                 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1565                         if (iter.index >= end)
1566                                 break;
1567                         page = list_first_entry_or_null(&pagelist,
1568                                         struct page, lru);
1569                         if (!page || iter.index < page->index) {
1570                                 if (!nr_none)
1571                                         break;
1572                                 nr_none--;
1573                                 /* Put holes back where they were */
1574                                 radix_tree_delete(&mapping->i_pages, iter.index);
1575                                 continue;
1576                         }
1577
1578                         VM_BUG_ON_PAGE(page->index != iter.index, page);
1579
1580                         /* Unfreeze the page. */
1581                         list_del(&page->lru);
1582                         page_ref_unfreeze(page, 2);
1583                         radix_tree_replace_slot(&mapping->i_pages, slot, page);
1584                         slot = radix_tree_iter_resume(slot, &iter);
1585                         xa_unlock_irq(&mapping->i_pages);
1586                         unlock_page(page);
1587                         putback_lru_page(page);
1588                         xa_lock_irq(&mapping->i_pages);
1589                 }
1590                 VM_BUG_ON(nr_none);
1591                 xa_unlock_irq(&mapping->i_pages);
1592
1593                 mem_cgroup_cancel_charge(new_page, memcg, true);
1594                 new_page->mapping = NULL;
1595         }
1596
1597         unlock_page(new_page);
1598 out:
1599         VM_BUG_ON(!list_empty(&pagelist));
1600         /* TODO: tracepoints */
1601 }
1602
1603 static void khugepaged_scan_shmem(struct mm_struct *mm,
1604                 struct address_space *mapping,
1605                 pgoff_t start, struct page **hpage)
1606 {
1607         struct page *page = NULL;
1608         struct radix_tree_iter iter;
1609         void **slot;
1610         int present, swap;
1611         int node = NUMA_NO_NODE;
1612         int result = SCAN_SUCCEED;
1613
1614         present = 0;
1615         swap = 0;
1616         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1617         rcu_read_lock();
1618         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1619                 if (iter.index >= start + HPAGE_PMD_NR)
1620                         break;
1621
1622                 page = radix_tree_deref_slot(slot);
1623                 if (radix_tree_deref_retry(page)) {
1624                         slot = radix_tree_iter_retry(&iter);
1625                         continue;
1626                 }
1627
1628                 if (radix_tree_exception(page)) {
1629                         if (++swap > khugepaged_max_ptes_swap) {
1630                                 result = SCAN_EXCEED_SWAP_PTE;
1631                                 break;
1632                         }
1633                         continue;
1634                 }
1635
1636                 if (PageTransCompound(page)) {
1637                         result = SCAN_PAGE_COMPOUND;
1638                         break;
1639                 }
1640
1641                 node = page_to_nid(page);
1642                 if (khugepaged_scan_abort(node)) {
1643                         result = SCAN_SCAN_ABORT;
1644                         break;
1645                 }
1646                 khugepaged_node_load[node]++;
1647
1648                 if (!PageLRU(page)) {
1649                         result = SCAN_PAGE_LRU;
1650                         break;
1651                 }
1652
1653                 if (page_count(page) != 1 + page_mapcount(page)) {
1654                         result = SCAN_PAGE_COUNT;
1655                         break;
1656                 }
1657
1658                 /*
1659                  * We probably should check if the page is referenced here, but
1660                  * nobody would transfer pte_young() to PageReferenced() for us.
1661                  * And rmap walk here is just too costly...
1662                  */
1663
1664                 present++;
1665
1666                 if (need_resched()) {
1667                         slot = radix_tree_iter_resume(slot, &iter);
1668                         cond_resched_rcu();
1669                 }
1670         }
1671         rcu_read_unlock();
1672
1673         if (result == SCAN_SUCCEED) {
1674                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1675                         result = SCAN_EXCEED_NONE_PTE;
1676                 } else {
1677                         node = khugepaged_find_target_node();
1678                         collapse_shmem(mm, mapping, start, hpage, node);
1679                 }
1680         }
1681
1682         /* TODO: tracepoints */
1683 }
1684 #else
1685 static void khugepaged_scan_shmem(struct mm_struct *mm,
1686                 struct address_space *mapping,
1687                 pgoff_t start, struct page **hpage)
1688 {
1689         BUILD_BUG();
1690 }
1691 #endif
1692
1693 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1694                                             struct page **hpage)
1695         __releases(&khugepaged_mm_lock)
1696         __acquires(&khugepaged_mm_lock)
1697 {
1698         struct mm_slot *mm_slot;
1699         struct mm_struct *mm;
1700         struct vm_area_struct *vma;
1701         int progress = 0;
1702
1703         VM_BUG_ON(!pages);
1704         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1705
1706         if (khugepaged_scan.mm_slot)
1707                 mm_slot = khugepaged_scan.mm_slot;
1708         else {
1709                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1710                                      struct mm_slot, mm_node);
1711                 khugepaged_scan.address = 0;
1712                 khugepaged_scan.mm_slot = mm_slot;
1713         }
1714         spin_unlock(&khugepaged_mm_lock);
1715
1716         mm = mm_slot->mm;
1717         /*
1718          * Don't wait for semaphore (to avoid long wait times).  Just move to
1719          * the next mm on the list.
1720          */
1721         vma = NULL;
1722         if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1723                 goto breakouterloop_mmap_sem;
1724         if (likely(!khugepaged_test_exit(mm)))
1725                 vma = find_vma(mm, khugepaged_scan.address);
1726
1727         progress++;
1728         for (; vma; vma = vma->vm_next) {
1729                 unsigned long hstart, hend;
1730
1731                 cond_resched();
1732                 if (unlikely(khugepaged_test_exit(mm))) {
1733                         progress++;
1734                         break;
1735                 }
1736                 if (!hugepage_vma_check(vma, vma->vm_flags)) {
1737 skip:
1738                         progress++;
1739                         continue;
1740                 }
1741                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1742                 hend = vma->vm_end & HPAGE_PMD_MASK;
1743                 if (hstart >= hend)
1744                         goto skip;
1745                 if (khugepaged_scan.address > hend)
1746                         goto skip;
1747                 if (khugepaged_scan.address < hstart)
1748                         khugepaged_scan.address = hstart;
1749                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1750
1751                 while (khugepaged_scan.address < hend) {
1752                         int ret;
1753                         cond_resched();
1754                         if (unlikely(khugepaged_test_exit(mm)))
1755                                 goto breakouterloop;
1756
1757                         VM_BUG_ON(khugepaged_scan.address < hstart ||
1758                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
1759                                   hend);
1760                         if (shmem_file(vma->vm_file)) {
1761                                 struct file *file;
1762                                 pgoff_t pgoff = linear_page_index(vma,
1763                                                 khugepaged_scan.address);
1764                                 if (!shmem_huge_enabled(vma))
1765                                         goto skip;
1766                                 file = get_file(vma->vm_file);
1767                                 up_read(&mm->mmap_sem);
1768                                 ret = 1;
1769                                 khugepaged_scan_shmem(mm, file->f_mapping,
1770                                                 pgoff, hpage);
1771                                 fput(file);
1772                         } else {
1773                                 ret = khugepaged_scan_pmd(mm, vma,
1774                                                 khugepaged_scan.address,
1775                                                 hpage);
1776                         }
1777                         /* move to next address */
1778                         khugepaged_scan.address += HPAGE_PMD_SIZE;
1779                         progress += HPAGE_PMD_NR;
1780                         if (ret)
1781                                 /* we released mmap_sem so break loop */
1782                                 goto breakouterloop_mmap_sem;
1783                         if (progress >= pages)
1784                                 goto breakouterloop;
1785                 }
1786         }
1787 breakouterloop:
1788         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1789 breakouterloop_mmap_sem:
1790
1791         spin_lock(&khugepaged_mm_lock);
1792         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1793         /*
1794          * Release the current mm_slot if this mm is about to die, or
1795          * if we scanned all vmas of this mm.
1796          */
1797         if (khugepaged_test_exit(mm) || !vma) {
1798                 /*
1799                  * Make sure that if mm_users is reaching zero while
1800                  * khugepaged runs here, khugepaged_exit will find
1801                  * mm_slot not pointing to the exiting mm.
1802                  */
1803                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1804                         khugepaged_scan.mm_slot = list_entry(
1805                                 mm_slot->mm_node.next,
1806                                 struct mm_slot, mm_node);
1807                         khugepaged_scan.address = 0;
1808                 } else {
1809                         khugepaged_scan.mm_slot = NULL;
1810                         khugepaged_full_scans++;
1811                 }
1812
1813                 collect_mm_slot(mm_slot);
1814         }
1815
1816         return progress;
1817 }
1818
1819 static int khugepaged_has_work(void)
1820 {
1821         return !list_empty(&khugepaged_scan.mm_head) &&
1822                 khugepaged_enabled();
1823 }
1824
1825 static int khugepaged_wait_event(void)
1826 {
1827         return !list_empty(&khugepaged_scan.mm_head) ||
1828                 kthread_should_stop();
1829 }
1830
1831 static void khugepaged_do_scan(void)
1832 {
1833         struct page *hpage = NULL;
1834         unsigned int progress = 0, pass_through_head = 0;
1835         unsigned int pages = khugepaged_pages_to_scan;
1836         bool wait = true;
1837
1838         barrier(); /* write khugepaged_pages_to_scan to local stack */
1839
1840         while (progress < pages) {
1841                 if (!khugepaged_prealloc_page(&hpage, &wait))
1842                         break;
1843
1844                 cond_resched();
1845
1846                 if (unlikely(kthread_should_stop() || try_to_freeze()))
1847                         break;
1848
1849                 spin_lock(&khugepaged_mm_lock);
1850                 if (!khugepaged_scan.mm_slot)
1851                         pass_through_head++;
1852                 if (khugepaged_has_work() &&
1853                     pass_through_head < 2)
1854                         progress += khugepaged_scan_mm_slot(pages - progress,
1855                                                             &hpage);
1856                 else
1857                         progress = pages;
1858                 spin_unlock(&khugepaged_mm_lock);
1859         }
1860
1861         if (!IS_ERR_OR_NULL(hpage))
1862                 put_page(hpage);
1863 }
1864
1865 static bool khugepaged_should_wakeup(void)
1866 {
1867         return kthread_should_stop() ||
1868                time_after_eq(jiffies, khugepaged_sleep_expire);
1869 }
1870
1871 static void khugepaged_wait_work(void)
1872 {
1873         if (khugepaged_has_work()) {
1874                 const unsigned long scan_sleep_jiffies =
1875                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1876
1877                 if (!scan_sleep_jiffies)
1878                         return;
1879
1880                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1881                 wait_event_freezable_timeout(khugepaged_wait,
1882                                              khugepaged_should_wakeup(),
1883                                              scan_sleep_jiffies);
1884                 return;
1885         }
1886
1887         if (khugepaged_enabled())
1888                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1889 }
1890
1891 static int khugepaged(void *none)
1892 {
1893         struct mm_slot *mm_slot;
1894
1895         set_freezable();
1896         set_user_nice(current, MAX_NICE);
1897
1898         while (!kthread_should_stop()) {
1899                 khugepaged_do_scan();
1900                 khugepaged_wait_work();
1901         }
1902
1903         spin_lock(&khugepaged_mm_lock);
1904         mm_slot = khugepaged_scan.mm_slot;
1905         khugepaged_scan.mm_slot = NULL;
1906         if (mm_slot)
1907                 collect_mm_slot(mm_slot);
1908         spin_unlock(&khugepaged_mm_lock);
1909         return 0;
1910 }
1911
1912 static void set_recommended_min_free_kbytes(void)
1913 {
1914         struct zone *zone;
1915         int nr_zones = 0;
1916         unsigned long recommended_min;
1917
1918         for_each_populated_zone(zone) {
1919                 /*
1920                  * We don't need to worry about fragmentation of
1921                  * ZONE_MOVABLE since it only has movable pages.
1922                  */
1923                 if (zone_idx(zone) > gfp_zone(GFP_USER))
1924                         continue;
1925
1926                 nr_zones++;
1927         }
1928
1929         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1930         recommended_min = pageblock_nr_pages * nr_zones * 2;
1931
1932         /*
1933          * Make sure that on average at least two pageblocks are almost free
1934          * of another type, one for a migratetype to fall back to and a
1935          * second to avoid subsequent fallbacks of other types There are 3
1936          * MIGRATE_TYPES we care about.
1937          */
1938         recommended_min += pageblock_nr_pages * nr_zones *
1939                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1940
1941         /* don't ever allow to reserve more than 5% of the lowmem */
1942         recommended_min = min(recommended_min,
1943                               (unsigned long) nr_free_buffer_pages() / 20);
1944         recommended_min <<= (PAGE_SHIFT-10);
1945
1946         if (recommended_min > min_free_kbytes) {
1947                 if (user_min_free_kbytes >= 0)
1948                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1949                                 min_free_kbytes, recommended_min);
1950
1951                 min_free_kbytes = recommended_min;
1952         }
1953         setup_per_zone_wmarks();
1954 }
1955
1956 int start_stop_khugepaged(void)
1957 {
1958         int err = 0;
1959
1960         mutex_lock(&khugepaged_mutex);
1961         if (khugepaged_enabled()) {
1962                 if (!khugepaged_thread)
1963                         khugepaged_thread = kthread_run(khugepaged, NULL,
1964                                                         "khugepaged");
1965                 if (IS_ERR(khugepaged_thread)) {
1966                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1967                         err = PTR_ERR(khugepaged_thread);
1968                         khugepaged_thread = NULL;
1969                         goto fail;
1970                 }
1971
1972                 if (!list_empty(&khugepaged_scan.mm_head))
1973                         wake_up_interruptible(&khugepaged_wait);
1974
1975                 set_recommended_min_free_kbytes();
1976         } else if (khugepaged_thread) {
1977                 kthread_stop(khugepaged_thread);
1978                 khugepaged_thread = NULL;
1979         }
1980 fail:
1981         mutex_unlock(&khugepaged_mutex);
1982         return err;
1983 }
1984
1985 void khugepaged_min_free_kbytes_update(void)
1986 {
1987         mutex_lock(&khugepaged_mutex);
1988         if (khugepaged_enabled() && khugepaged_thread)
1989                 set_recommended_min_free_kbytes();
1990         mutex_unlock(&khugepaged_mutex);
1991 }