GNU Linux-libre 5.15.137-gnu
[releases.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27         SCAN_FAIL,
28         SCAN_SUCCEED,
29         SCAN_PMD_NULL,
30         SCAN_EXCEED_NONE_PTE,
31         SCAN_EXCEED_SWAP_PTE,
32         SCAN_EXCEED_SHARED_PTE,
33         SCAN_PTE_NON_PRESENT,
34         SCAN_PTE_UFFD_WP,
35         SCAN_PAGE_RO,
36         SCAN_LACK_REFERENCED_PAGE,
37         SCAN_PAGE_NULL,
38         SCAN_SCAN_ABORT,
39         SCAN_PAGE_COUNT,
40         SCAN_PAGE_LRU,
41         SCAN_PAGE_LOCK,
42         SCAN_PAGE_ANON,
43         SCAN_PAGE_COMPOUND,
44         SCAN_ANY_PROCESS,
45         SCAN_VMA_NULL,
46         SCAN_VMA_CHECK,
47         SCAN_ADDRESS_RANGE,
48         SCAN_SWAP_CACHE_PAGE,
49         SCAN_DEL_PAGE_LRU,
50         SCAN_ALLOC_HUGE_PAGE_FAIL,
51         SCAN_CGROUP_CHARGE_FAIL,
52         SCAN_TRUNCATED,
53         SCAN_PAGE_HAS_PRIVATE,
54 };
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73  * default collapse hugepages if there is at least one pte mapped like
74  * it would have happened if the vma was large enough during page
75  * fault.
76  */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85
86 #define MAX_PTE_MAPPED_THP 8
87
88 /**
89  * struct mm_slot - hash lookup from mm to mm_slot
90  * @hash: hash collision list
91  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92  * @mm: the mm that this information is valid for
93  * @nr_pte_mapped_thp: number of pte mapped THP
94  * @pte_mapped_thp: address array corresponding pte mapped THP
95  */
96 struct mm_slot {
97         struct hlist_node hash;
98         struct list_head mm_node;
99         struct mm_struct *mm;
100
101         /* pte-mapped THP in this mm */
102         int nr_pte_mapped_thp;
103         unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
104 };
105
106 /**
107  * struct khugepaged_scan - cursor for scanning
108  * @mm_head: the head of the mm list to scan
109  * @mm_slot: the current mm_slot we are scanning
110  * @address: the next address inside that to be scanned
111  *
112  * There is only the one khugepaged_scan instance of this cursor structure.
113  */
114 struct khugepaged_scan {
115         struct list_head mm_head;
116         struct mm_slot *mm_slot;
117         unsigned long address;
118 };
119
120 static struct khugepaged_scan khugepaged_scan = {
121         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123
124 #ifdef CONFIG_SYSFS
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126                                          struct kobj_attribute *attr,
127                                          char *buf)
128 {
129         return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133                                           struct kobj_attribute *attr,
134                                           const char *buf, size_t count)
135 {
136         unsigned int msecs;
137         int err;
138
139         err = kstrtouint(buf, 10, &msecs);
140         if (err)
141                 return -EINVAL;
142
143         khugepaged_scan_sleep_millisecs = msecs;
144         khugepaged_sleep_expire = 0;
145         wake_up_interruptible(&khugepaged_wait);
146
147         return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151                scan_sleep_millisecs_store);
152
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154                                           struct kobj_attribute *attr,
155                                           char *buf)
156 {
157         return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
158 }
159
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161                                            struct kobj_attribute *attr,
162                                            const char *buf, size_t count)
163 {
164         unsigned int msecs;
165         int err;
166
167         err = kstrtouint(buf, 10, &msecs);
168         if (err)
169                 return -EINVAL;
170
171         khugepaged_alloc_sleep_millisecs = msecs;
172         khugepaged_sleep_expire = 0;
173         wake_up_interruptible(&khugepaged_wait);
174
175         return count;
176 }
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179                alloc_sleep_millisecs_store);
180
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182                                   struct kobj_attribute *attr,
183                                   char *buf)
184 {
185         return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
186 }
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188                                    struct kobj_attribute *attr,
189                                    const char *buf, size_t count)
190 {
191         unsigned int pages;
192         int err;
193
194         err = kstrtouint(buf, 10, &pages);
195         if (err || !pages)
196                 return -EINVAL;
197
198         khugepaged_pages_to_scan = pages;
199
200         return count;
201 }
202 static struct kobj_attribute pages_to_scan_attr =
203         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
204                pages_to_scan_store);
205
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207                                     struct kobj_attribute *attr,
208                                     char *buf)
209 {
210         return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
211 }
212 static struct kobj_attribute pages_collapsed_attr =
213         __ATTR_RO(pages_collapsed);
214
215 static ssize_t full_scans_show(struct kobject *kobj,
216                                struct kobj_attribute *attr,
217                                char *buf)
218 {
219         return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
220 }
221 static struct kobj_attribute full_scans_attr =
222         __ATTR_RO(full_scans);
223
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225                                       struct kobj_attribute *attr, char *buf)
226 {
227         return single_hugepage_flag_show(kobj, attr, buf,
228                                          TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231                                        struct kobj_attribute *attr,
232                                        const char *buf, size_t count)
233 {
234         return single_hugepage_flag_store(kobj, attr, buf, count,
235                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
236 }
237 static struct kobj_attribute khugepaged_defrag_attr =
238         __ATTR(defrag, 0644, khugepaged_defrag_show,
239                khugepaged_defrag_store);
240
241 /*
242  * max_ptes_none controls if khugepaged should collapse hugepages over
243  * any unmapped ptes in turn potentially increasing the memory
244  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245  * reduce the available free memory in the system as it
246  * runs. Increasing max_ptes_none will instead potentially reduce the
247  * free memory in the system during the khugepaged scan.
248  */
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250                                              struct kobj_attribute *attr,
251                                              char *buf)
252 {
253         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
254 }
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256                                               struct kobj_attribute *attr,
257                                               const char *buf, size_t count)
258 {
259         int err;
260         unsigned long max_ptes_none;
261
262         err = kstrtoul(buf, 10, &max_ptes_none);
263         if (err || max_ptes_none > HPAGE_PMD_NR-1)
264                 return -EINVAL;
265
266         khugepaged_max_ptes_none = max_ptes_none;
267
268         return count;
269 }
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272                khugepaged_max_ptes_none_store);
273
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275                                              struct kobj_attribute *attr,
276                                              char *buf)
277 {
278         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
279 }
280
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282                                               struct kobj_attribute *attr,
283                                               const char *buf, size_t count)
284 {
285         int err;
286         unsigned long max_ptes_swap;
287
288         err  = kstrtoul(buf, 10, &max_ptes_swap);
289         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
290                 return -EINVAL;
291
292         khugepaged_max_ptes_swap = max_ptes_swap;
293
294         return count;
295 }
296
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299                khugepaged_max_ptes_swap_store);
300
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302                                                struct kobj_attribute *attr,
303                                                char *buf)
304 {
305         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
306 }
307
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309                                               struct kobj_attribute *attr,
310                                               const char *buf, size_t count)
311 {
312         int err;
313         unsigned long max_ptes_shared;
314
315         err  = kstrtoul(buf, 10, &max_ptes_shared);
316         if (err || max_ptes_shared > HPAGE_PMD_NR-1)
317                 return -EINVAL;
318
319         khugepaged_max_ptes_shared = max_ptes_shared;
320
321         return count;
322 }
323
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325         __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326                khugepaged_max_ptes_shared_store);
327
328 static struct attribute *khugepaged_attr[] = {
329         &khugepaged_defrag_attr.attr,
330         &khugepaged_max_ptes_none_attr.attr,
331         &khugepaged_max_ptes_swap_attr.attr,
332         &khugepaged_max_ptes_shared_attr.attr,
333         &pages_to_scan_attr.attr,
334         &pages_collapsed_attr.attr,
335         &full_scans_attr.attr,
336         &scan_sleep_millisecs_attr.attr,
337         &alloc_sleep_millisecs_attr.attr,
338         NULL,
339 };
340
341 struct attribute_group khugepaged_attr_group = {
342         .attrs = khugepaged_attr,
343         .name = "khugepaged",
344 };
345 #endif /* CONFIG_SYSFS */
346
347 int hugepage_madvise(struct vm_area_struct *vma,
348                      unsigned long *vm_flags, int advice)
349 {
350         switch (advice) {
351         case MADV_HUGEPAGE:
352 #ifdef CONFIG_S390
353                 /*
354                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355                  * can't handle this properly after s390_enable_sie, so we simply
356                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
357                  */
358                 if (mm_has_pgste(vma->vm_mm))
359                         return 0;
360 #endif
361                 *vm_flags &= ~VM_NOHUGEPAGE;
362                 *vm_flags |= VM_HUGEPAGE;
363                 /*
364                  * If the vma become good for khugepaged to scan,
365                  * register it here without waiting a page fault that
366                  * may not happen any time soon.
367                  */
368                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
369                                 khugepaged_enter_vma_merge(vma, *vm_flags))
370                         return -ENOMEM;
371                 break;
372         case MADV_NOHUGEPAGE:
373                 *vm_flags &= ~VM_HUGEPAGE;
374                 *vm_flags |= VM_NOHUGEPAGE;
375                 /*
376                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377                  * this vma even if we leave the mm registered in khugepaged if
378                  * it got registered before VM_NOHUGEPAGE was set.
379                  */
380                 break;
381         }
382
383         return 0;
384 }
385
386 int __init khugepaged_init(void)
387 {
388         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389                                           sizeof(struct mm_slot),
390                                           __alignof__(struct mm_slot), 0, NULL);
391         if (!mm_slot_cache)
392                 return -ENOMEM;
393
394         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397         khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398
399         return 0;
400 }
401
402 void __init khugepaged_destroy(void)
403 {
404         kmem_cache_destroy(mm_slot_cache);
405 }
406
407 static inline struct mm_slot *alloc_mm_slot(void)
408 {
409         if (!mm_slot_cache)     /* initialization failed */
410                 return NULL;
411         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
412 }
413
414 static inline void free_mm_slot(struct mm_slot *mm_slot)
415 {
416         kmem_cache_free(mm_slot_cache, mm_slot);
417 }
418
419 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
420 {
421         struct mm_slot *mm_slot;
422
423         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
424                 if (mm == mm_slot->mm)
425                         return mm_slot;
426
427         return NULL;
428 }
429
430 static void insert_to_mm_slots_hash(struct mm_struct *mm,
431                                     struct mm_slot *mm_slot)
432 {
433         mm_slot->mm = mm;
434         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
435 }
436
437 static inline int khugepaged_test_exit(struct mm_struct *mm)
438 {
439         return atomic_read(&mm->mm_users) == 0;
440 }
441
442 static bool hugepage_vma_check(struct vm_area_struct *vma,
443                                unsigned long vm_flags)
444 {
445         if (!transhuge_vma_enabled(vma, vm_flags))
446                 return false;
447
448         if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
449                                 vma->vm_pgoff, HPAGE_PMD_NR))
450                 return false;
451
452         /* Enabled via shmem mount options or sysfs settings. */
453         if (shmem_file(vma->vm_file))
454                 return shmem_huge_enabled(vma);
455
456         /* THP settings require madvise. */
457         if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
458                 return false;
459
460         /* Only regular file is valid */
461         if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
462             (vm_flags & VM_EXEC)) {
463                 struct inode *inode = vma->vm_file->f_inode;
464
465                 return !inode_is_open_for_write(inode) &&
466                         S_ISREG(inode->i_mode);
467         }
468
469         if (!vma->anon_vma || vma->vm_ops)
470                 return false;
471         if (vma_is_temporary_stack(vma))
472                 return false;
473         return !(vm_flags & VM_NO_KHUGEPAGED);
474 }
475
476 int __khugepaged_enter(struct mm_struct *mm)
477 {
478         struct mm_slot *mm_slot;
479         int wakeup;
480
481         mm_slot = alloc_mm_slot();
482         if (!mm_slot)
483                 return -ENOMEM;
484
485         /* __khugepaged_exit() must not run from under us */
486         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
487         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
488                 free_mm_slot(mm_slot);
489                 return 0;
490         }
491
492         spin_lock(&khugepaged_mm_lock);
493         insert_to_mm_slots_hash(mm, mm_slot);
494         /*
495          * Insert just behind the scanning cursor, to let the area settle
496          * down a little.
497          */
498         wakeup = list_empty(&khugepaged_scan.mm_head);
499         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
500         spin_unlock(&khugepaged_mm_lock);
501
502         mmgrab(mm);
503         if (wakeup)
504                 wake_up_interruptible(&khugepaged_wait);
505
506         return 0;
507 }
508
509 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
510                                unsigned long vm_flags)
511 {
512         unsigned long hstart, hend;
513
514         /*
515          * khugepaged only supports read-only files for non-shmem files.
516          * khugepaged does not yet work on special mappings. And
517          * file-private shmem THP is not supported.
518          */
519         if (!hugepage_vma_check(vma, vm_flags))
520                 return 0;
521
522         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
523         hend = vma->vm_end & HPAGE_PMD_MASK;
524         if (hstart < hend)
525                 return khugepaged_enter(vma, vm_flags);
526         return 0;
527 }
528
529 void __khugepaged_exit(struct mm_struct *mm)
530 {
531         struct mm_slot *mm_slot;
532         int free = 0;
533
534         spin_lock(&khugepaged_mm_lock);
535         mm_slot = get_mm_slot(mm);
536         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
537                 hash_del(&mm_slot->hash);
538                 list_del(&mm_slot->mm_node);
539                 free = 1;
540         }
541         spin_unlock(&khugepaged_mm_lock);
542
543         if (free) {
544                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
545                 free_mm_slot(mm_slot);
546                 mmdrop(mm);
547         } else if (mm_slot) {
548                 /*
549                  * This is required to serialize against
550                  * khugepaged_test_exit() (which is guaranteed to run
551                  * under mmap sem read mode). Stop here (after we
552                  * return all pagetables will be destroyed) until
553                  * khugepaged has finished working on the pagetables
554                  * under the mmap_lock.
555                  */
556                 mmap_write_lock(mm);
557                 mmap_write_unlock(mm);
558         }
559 }
560
561 static void release_pte_page(struct page *page)
562 {
563         mod_node_page_state(page_pgdat(page),
564                         NR_ISOLATED_ANON + page_is_file_lru(page),
565                         -compound_nr(page));
566         unlock_page(page);
567         putback_lru_page(page);
568 }
569
570 static void release_pte_pages(pte_t *pte, pte_t *_pte,
571                 struct list_head *compound_pagelist)
572 {
573         struct page *page, *tmp;
574
575         while (--_pte >= pte) {
576                 pte_t pteval = *_pte;
577
578                 page = pte_page(pteval);
579                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
580                                 !PageCompound(page))
581                         release_pte_page(page);
582         }
583
584         list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
585                 list_del(&page->lru);
586                 release_pte_page(page);
587         }
588 }
589
590 static bool is_refcount_suitable(struct page *page)
591 {
592         int expected_refcount;
593
594         expected_refcount = total_mapcount(page);
595         if (PageSwapCache(page))
596                 expected_refcount += compound_nr(page);
597
598         return page_count(page) == expected_refcount;
599 }
600
601 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
602                                         unsigned long address,
603                                         pte_t *pte,
604                                         struct list_head *compound_pagelist)
605 {
606         struct page *page = NULL;
607         pte_t *_pte;
608         int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
609         bool writable = false;
610
611         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
612              _pte++, address += PAGE_SIZE) {
613                 pte_t pteval = *_pte;
614                 if (pte_none(pteval) || (pte_present(pteval) &&
615                                 is_zero_pfn(pte_pfn(pteval)))) {
616                         if (!userfaultfd_armed(vma) &&
617                             ++none_or_zero <= khugepaged_max_ptes_none) {
618                                 continue;
619                         } else {
620                                 result = SCAN_EXCEED_NONE_PTE;
621                                 goto out;
622                         }
623                 }
624                 if (!pte_present(pteval)) {
625                         result = SCAN_PTE_NON_PRESENT;
626                         goto out;
627                 }
628                 if (pte_uffd_wp(pteval)) {
629                         result = SCAN_PTE_UFFD_WP;
630                         goto out;
631                 }
632                 page = vm_normal_page(vma, address, pteval);
633                 if (unlikely(!page)) {
634                         result = SCAN_PAGE_NULL;
635                         goto out;
636                 }
637
638                 VM_BUG_ON_PAGE(!PageAnon(page), page);
639
640                 if (page_mapcount(page) > 1 &&
641                                 ++shared > khugepaged_max_ptes_shared) {
642                         result = SCAN_EXCEED_SHARED_PTE;
643                         goto out;
644                 }
645
646                 if (PageCompound(page)) {
647                         struct page *p;
648                         page = compound_head(page);
649
650                         /*
651                          * Check if we have dealt with the compound page
652                          * already
653                          */
654                         list_for_each_entry(p, compound_pagelist, lru) {
655                                 if (page == p)
656                                         goto next;
657                         }
658                 }
659
660                 /*
661                  * We can do it before isolate_lru_page because the
662                  * page can't be freed from under us. NOTE: PG_lock
663                  * is needed to serialize against split_huge_page
664                  * when invoked from the VM.
665                  */
666                 if (!trylock_page(page)) {
667                         result = SCAN_PAGE_LOCK;
668                         goto out;
669                 }
670
671                 /*
672                  * Check if the page has any GUP (or other external) pins.
673                  *
674                  * The page table that maps the page has been already unlinked
675                  * from the page table tree and this process cannot get
676                  * an additional pin on the page.
677                  *
678                  * New pins can come later if the page is shared across fork,
679                  * but not from this process. The other process cannot write to
680                  * the page, only trigger CoW.
681                  */
682                 if (!is_refcount_suitable(page)) {
683                         unlock_page(page);
684                         result = SCAN_PAGE_COUNT;
685                         goto out;
686                 }
687                 if (!pte_write(pteval) && PageSwapCache(page) &&
688                                 !reuse_swap_page(page, NULL)) {
689                         /*
690                          * Page is in the swap cache and cannot be re-used.
691                          * It cannot be collapsed into a THP.
692                          */
693                         unlock_page(page);
694                         result = SCAN_SWAP_CACHE_PAGE;
695                         goto out;
696                 }
697
698                 /*
699                  * Isolate the page to avoid collapsing an hugepage
700                  * currently in use by the VM.
701                  */
702                 if (isolate_lru_page(page)) {
703                         unlock_page(page);
704                         result = SCAN_DEL_PAGE_LRU;
705                         goto out;
706                 }
707                 mod_node_page_state(page_pgdat(page),
708                                 NR_ISOLATED_ANON + page_is_file_lru(page),
709                                 compound_nr(page));
710                 VM_BUG_ON_PAGE(!PageLocked(page), page);
711                 VM_BUG_ON_PAGE(PageLRU(page), page);
712
713                 if (PageCompound(page))
714                         list_add_tail(&page->lru, compound_pagelist);
715 next:
716                 /* There should be enough young pte to collapse the page */
717                 if (pte_young(pteval) ||
718                     page_is_young(page) || PageReferenced(page) ||
719                     mmu_notifier_test_young(vma->vm_mm, address))
720                         referenced++;
721
722                 if (pte_write(pteval))
723                         writable = true;
724         }
725
726         if (unlikely(!writable)) {
727                 result = SCAN_PAGE_RO;
728         } else if (unlikely(!referenced)) {
729                 result = SCAN_LACK_REFERENCED_PAGE;
730         } else {
731                 result = SCAN_SUCCEED;
732                 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
733                                                     referenced, writable, result);
734                 return 1;
735         }
736 out:
737         release_pte_pages(pte, _pte, compound_pagelist);
738         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
739                                             referenced, writable, result);
740         return 0;
741 }
742
743 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
744                                       struct vm_area_struct *vma,
745                                       unsigned long address,
746                                       spinlock_t *ptl,
747                                       struct list_head *compound_pagelist)
748 {
749         struct page *src_page, *tmp;
750         pte_t *_pte;
751         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
752                                 _pte++, page++, address += PAGE_SIZE) {
753                 pte_t pteval = *_pte;
754
755                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
756                         clear_user_highpage(page, address);
757                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
758                         if (is_zero_pfn(pte_pfn(pteval))) {
759                                 /*
760                                  * ptl mostly unnecessary.
761                                  */
762                                 spin_lock(ptl);
763                                 /*
764                                  * paravirt calls inside pte_clear here are
765                                  * superfluous.
766                                  */
767                                 pte_clear(vma->vm_mm, address, _pte);
768                                 spin_unlock(ptl);
769                         }
770                 } else {
771                         src_page = pte_page(pteval);
772                         copy_user_highpage(page, src_page, address, vma);
773                         if (!PageCompound(src_page))
774                                 release_pte_page(src_page);
775                         /*
776                          * ptl mostly unnecessary, but preempt has to
777                          * be disabled to update the per-cpu stats
778                          * inside page_remove_rmap().
779                          */
780                         spin_lock(ptl);
781                         /*
782                          * paravirt calls inside pte_clear here are
783                          * superfluous.
784                          */
785                         pte_clear(vma->vm_mm, address, _pte);
786                         page_remove_rmap(src_page, false);
787                         spin_unlock(ptl);
788                         free_page_and_swap_cache(src_page);
789                 }
790         }
791
792         list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
793                 list_del(&src_page->lru);
794                 release_pte_page(src_page);
795         }
796 }
797
798 static void khugepaged_alloc_sleep(void)
799 {
800         DEFINE_WAIT(wait);
801
802         add_wait_queue(&khugepaged_wait, &wait);
803         freezable_schedule_timeout_interruptible(
804                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
805         remove_wait_queue(&khugepaged_wait, &wait);
806 }
807
808 static int khugepaged_node_load[MAX_NUMNODES];
809
810 static bool khugepaged_scan_abort(int nid)
811 {
812         int i;
813
814         /*
815          * If node_reclaim_mode is disabled, then no extra effort is made to
816          * allocate memory locally.
817          */
818         if (!node_reclaim_enabled())
819                 return false;
820
821         /* If there is a count for this node already, it must be acceptable */
822         if (khugepaged_node_load[nid])
823                 return false;
824
825         for (i = 0; i < MAX_NUMNODES; i++) {
826                 if (!khugepaged_node_load[i])
827                         continue;
828                 if (node_distance(nid, i) > node_reclaim_distance)
829                         return true;
830         }
831         return false;
832 }
833
834 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
835 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
836 {
837         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
838 }
839
840 #ifdef CONFIG_NUMA
841 static int khugepaged_find_target_node(void)
842 {
843         static int last_khugepaged_target_node = NUMA_NO_NODE;
844         int nid, target_node = 0, max_value = 0;
845
846         /* find first node with max normal pages hit */
847         for (nid = 0; nid < MAX_NUMNODES; nid++)
848                 if (khugepaged_node_load[nid] > max_value) {
849                         max_value = khugepaged_node_load[nid];
850                         target_node = nid;
851                 }
852
853         /* do some balance if several nodes have the same hit record */
854         if (target_node <= last_khugepaged_target_node)
855                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
856                                 nid++)
857                         if (max_value == khugepaged_node_load[nid]) {
858                                 target_node = nid;
859                                 break;
860                         }
861
862         last_khugepaged_target_node = target_node;
863         return target_node;
864 }
865
866 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
867 {
868         if (IS_ERR(*hpage)) {
869                 if (!*wait)
870                         return false;
871
872                 *wait = false;
873                 *hpage = NULL;
874                 khugepaged_alloc_sleep();
875         } else if (*hpage) {
876                 put_page(*hpage);
877                 *hpage = NULL;
878         }
879
880         return true;
881 }
882
883 static struct page *
884 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
885 {
886         VM_BUG_ON_PAGE(*hpage, *hpage);
887
888         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
889         if (unlikely(!*hpage)) {
890                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
891                 *hpage = ERR_PTR(-ENOMEM);
892                 return NULL;
893         }
894
895         prep_transhuge_page(*hpage);
896         count_vm_event(THP_COLLAPSE_ALLOC);
897         return *hpage;
898 }
899 #else
900 static int khugepaged_find_target_node(void)
901 {
902         return 0;
903 }
904
905 static inline struct page *alloc_khugepaged_hugepage(void)
906 {
907         struct page *page;
908
909         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
910                            HPAGE_PMD_ORDER);
911         if (page)
912                 prep_transhuge_page(page);
913         return page;
914 }
915
916 static struct page *khugepaged_alloc_hugepage(bool *wait)
917 {
918         struct page *hpage;
919
920         do {
921                 hpage = alloc_khugepaged_hugepage();
922                 if (!hpage) {
923                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
924                         if (!*wait)
925                                 return NULL;
926
927                         *wait = false;
928                         khugepaged_alloc_sleep();
929                 } else
930                         count_vm_event(THP_COLLAPSE_ALLOC);
931         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
932
933         return hpage;
934 }
935
936 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
937 {
938         /*
939          * If the hpage allocated earlier was briefly exposed in page cache
940          * before collapse_file() failed, it is possible that racing lookups
941          * have not yet completed, and would then be unpleasantly surprised by
942          * finding the hpage reused for the same mapping at a different offset.
943          * Just release the previous allocation if there is any danger of that.
944          */
945         if (*hpage && page_count(*hpage) > 1) {
946                 put_page(*hpage);
947                 *hpage = NULL;
948         }
949
950         if (!*hpage)
951                 *hpage = khugepaged_alloc_hugepage(wait);
952
953         if (unlikely(!*hpage))
954                 return false;
955
956         return true;
957 }
958
959 static struct page *
960 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
961 {
962         VM_BUG_ON(!*hpage);
963
964         return  *hpage;
965 }
966 #endif
967
968 /*
969  * If mmap_lock temporarily dropped, revalidate vma
970  * before taking mmap_lock.
971  * Return 0 if succeeds, otherwise return none-zero
972  * value (scan code).
973  */
974
975 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
976                 struct vm_area_struct **vmap)
977 {
978         struct vm_area_struct *vma;
979         unsigned long hstart, hend;
980
981         if (unlikely(khugepaged_test_exit(mm)))
982                 return SCAN_ANY_PROCESS;
983
984         *vmap = vma = find_vma(mm, address);
985         if (!vma)
986                 return SCAN_VMA_NULL;
987
988         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
989         hend = vma->vm_end & HPAGE_PMD_MASK;
990         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
991                 return SCAN_ADDRESS_RANGE;
992         if (!hugepage_vma_check(vma, vma->vm_flags))
993                 return SCAN_VMA_CHECK;
994         /* Anon VMA expected */
995         if (!vma->anon_vma || vma->vm_ops)
996                 return SCAN_VMA_CHECK;
997         return 0;
998 }
999
1000 /*
1001  * Bring missing pages in from swap, to complete THP collapse.
1002  * Only done if khugepaged_scan_pmd believes it is worthwhile.
1003  *
1004  * Called and returns without pte mapped or spinlocks held,
1005  * but with mmap_lock held to protect against vma changes.
1006  */
1007
1008 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
1009                                         struct vm_area_struct *vma,
1010                                         unsigned long haddr, pmd_t *pmd,
1011                                         int referenced)
1012 {
1013         int swapped_in = 0;
1014         vm_fault_t ret = 0;
1015         unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1016
1017         for (address = haddr; address < end; address += PAGE_SIZE) {
1018                 struct vm_fault vmf = {
1019                         .vma = vma,
1020                         .address = address,
1021                         .pgoff = linear_page_index(vma, haddr),
1022                         .flags = FAULT_FLAG_ALLOW_RETRY,
1023                         .pmd = pmd,
1024                 };
1025
1026                 vmf.pte = pte_offset_map(pmd, address);
1027                 vmf.orig_pte = *vmf.pte;
1028                 if (!is_swap_pte(vmf.orig_pte)) {
1029                         pte_unmap(vmf.pte);
1030                         continue;
1031                 }
1032                 swapped_in++;
1033                 ret = do_swap_page(&vmf);
1034
1035                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1036                 if (ret & VM_FAULT_RETRY) {
1037                         mmap_read_lock(mm);
1038                         if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1039                                 /* vma is no longer available, don't continue to swapin */
1040                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1041                                 return false;
1042                         }
1043                         /* check if the pmd is still valid */
1044                         if (mm_find_pmd(mm, haddr) != pmd) {
1045                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1046                                 return false;
1047                         }
1048                 }
1049                 if (ret & VM_FAULT_ERROR) {
1050                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1051                         return false;
1052                 }
1053         }
1054
1055         /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1056         if (swapped_in)
1057                 lru_add_drain();
1058
1059         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1060         return true;
1061 }
1062
1063 static void collapse_huge_page(struct mm_struct *mm,
1064                                    unsigned long address,
1065                                    struct page **hpage,
1066                                    int node, int referenced, int unmapped)
1067 {
1068         LIST_HEAD(compound_pagelist);
1069         pmd_t *pmd, _pmd;
1070         pte_t *pte;
1071         pgtable_t pgtable;
1072         struct page *new_page;
1073         spinlock_t *pmd_ptl, *pte_ptl;
1074         int isolated = 0, result = 0;
1075         struct vm_area_struct *vma;
1076         struct mmu_notifier_range range;
1077         gfp_t gfp;
1078
1079         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1080
1081         /* Only allocate from the target node */
1082         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1083
1084         /*
1085          * Before allocating the hugepage, release the mmap_lock read lock.
1086          * The allocation can take potentially a long time if it involves
1087          * sync compaction, and we do not need to hold the mmap_lock during
1088          * that. We will recheck the vma after taking it again in write mode.
1089          */
1090         mmap_read_unlock(mm);
1091         new_page = khugepaged_alloc_page(hpage, gfp, node);
1092         if (!new_page) {
1093                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1094                 goto out_nolock;
1095         }
1096
1097         if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1098                 result = SCAN_CGROUP_CHARGE_FAIL;
1099                 goto out_nolock;
1100         }
1101         count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1102
1103         mmap_read_lock(mm);
1104         result = hugepage_vma_revalidate(mm, address, &vma);
1105         if (result) {
1106                 mmap_read_unlock(mm);
1107                 goto out_nolock;
1108         }
1109
1110         pmd = mm_find_pmd(mm, address);
1111         if (!pmd) {
1112                 result = SCAN_PMD_NULL;
1113                 mmap_read_unlock(mm);
1114                 goto out_nolock;
1115         }
1116
1117         /*
1118          * __collapse_huge_page_swapin always returns with mmap_lock locked.
1119          * If it fails, we release mmap_lock and jump out_nolock.
1120          * Continuing to collapse causes inconsistency.
1121          */
1122         if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1123                                                      pmd, referenced)) {
1124                 mmap_read_unlock(mm);
1125                 goto out_nolock;
1126         }
1127
1128         mmap_read_unlock(mm);
1129         /*
1130          * Prevent all access to pagetables with the exception of
1131          * gup_fast later handled by the ptep_clear_flush and the VM
1132          * handled by the anon_vma lock + PG_lock.
1133          */
1134         mmap_write_lock(mm);
1135         result = hugepage_vma_revalidate(mm, address, &vma);
1136         if (result)
1137                 goto out_up_write;
1138         /* check if the pmd is still valid */
1139         if (mm_find_pmd(mm, address) != pmd)
1140                 goto out_up_write;
1141
1142         anon_vma_lock_write(vma->anon_vma);
1143
1144         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1145                                 address, address + HPAGE_PMD_SIZE);
1146         mmu_notifier_invalidate_range_start(&range);
1147
1148         pte = pte_offset_map(pmd, address);
1149         pte_ptl = pte_lockptr(mm, pmd);
1150
1151         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1152         /*
1153          * This removes any huge TLB entry from the CPU so we won't allow
1154          * huge and small TLB entries for the same virtual address to
1155          * avoid the risk of CPU bugs in that area.
1156          *
1157          * Parallel fast GUP is fine since fast GUP will back off when
1158          * it detects PMD is changed.
1159          */
1160         _pmd = pmdp_collapse_flush(vma, address, pmd);
1161         spin_unlock(pmd_ptl);
1162         mmu_notifier_invalidate_range_end(&range);
1163         tlb_remove_table_sync_one();
1164
1165         spin_lock(pte_ptl);
1166         isolated = __collapse_huge_page_isolate(vma, address, pte,
1167                         &compound_pagelist);
1168         spin_unlock(pte_ptl);
1169
1170         if (unlikely(!isolated)) {
1171                 pte_unmap(pte);
1172                 spin_lock(pmd_ptl);
1173                 BUG_ON(!pmd_none(*pmd));
1174                 /*
1175                  * We can only use set_pmd_at when establishing
1176                  * hugepmds and never for establishing regular pmds that
1177                  * points to regular pagetables. Use pmd_populate for that
1178                  */
1179                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1180                 spin_unlock(pmd_ptl);
1181                 anon_vma_unlock_write(vma->anon_vma);
1182                 result = SCAN_FAIL;
1183                 goto out_up_write;
1184         }
1185
1186         /*
1187          * All pages are isolated and locked so anon_vma rmap
1188          * can't run anymore.
1189          */
1190         anon_vma_unlock_write(vma->anon_vma);
1191
1192         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1193                         &compound_pagelist);
1194         pte_unmap(pte);
1195         /*
1196          * spin_lock() below is not the equivalent of smp_wmb(), but
1197          * the smp_wmb() inside __SetPageUptodate() can be reused to
1198          * avoid the copy_huge_page writes to become visible after
1199          * the set_pmd_at() write.
1200          */
1201         __SetPageUptodate(new_page);
1202         pgtable = pmd_pgtable(_pmd);
1203
1204         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1205         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1206
1207         spin_lock(pmd_ptl);
1208         BUG_ON(!pmd_none(*pmd));
1209         page_add_new_anon_rmap(new_page, vma, address, true);
1210         lru_cache_add_inactive_or_unevictable(new_page, vma);
1211         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1212         set_pmd_at(mm, address, pmd, _pmd);
1213         update_mmu_cache_pmd(vma, address, pmd);
1214         spin_unlock(pmd_ptl);
1215
1216         *hpage = NULL;
1217
1218         khugepaged_pages_collapsed++;
1219         result = SCAN_SUCCEED;
1220 out_up_write:
1221         mmap_write_unlock(mm);
1222 out_nolock:
1223         if (!IS_ERR_OR_NULL(*hpage))
1224                 mem_cgroup_uncharge(*hpage);
1225         trace_mm_collapse_huge_page(mm, isolated, result);
1226         return;
1227 }
1228
1229 static int khugepaged_scan_pmd(struct mm_struct *mm,
1230                                struct vm_area_struct *vma,
1231                                unsigned long address,
1232                                struct page **hpage)
1233 {
1234         pmd_t *pmd;
1235         pte_t *pte, *_pte;
1236         int ret = 0, result = 0, referenced = 0;
1237         int none_or_zero = 0, shared = 0;
1238         struct page *page = NULL;
1239         unsigned long _address;
1240         spinlock_t *ptl;
1241         int node = NUMA_NO_NODE, unmapped = 0;
1242         bool writable = false;
1243
1244         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1245
1246         pmd = mm_find_pmd(mm, address);
1247         if (!pmd) {
1248                 result = SCAN_PMD_NULL;
1249                 goto out;
1250         }
1251
1252         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1253         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1254         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1255              _pte++, _address += PAGE_SIZE) {
1256                 pte_t pteval = *_pte;
1257                 if (is_swap_pte(pteval)) {
1258                         if (++unmapped <= khugepaged_max_ptes_swap) {
1259                                 /*
1260                                  * Always be strict with uffd-wp
1261                                  * enabled swap entries.  Please see
1262                                  * comment below for pte_uffd_wp().
1263                                  */
1264                                 if (pte_swp_uffd_wp(pteval)) {
1265                                         result = SCAN_PTE_UFFD_WP;
1266                                         goto out_unmap;
1267                                 }
1268                                 continue;
1269                         } else {
1270                                 result = SCAN_EXCEED_SWAP_PTE;
1271                                 goto out_unmap;
1272                         }
1273                 }
1274                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1275                         if (!userfaultfd_armed(vma) &&
1276                             ++none_or_zero <= khugepaged_max_ptes_none) {
1277                                 continue;
1278                         } else {
1279                                 result = SCAN_EXCEED_NONE_PTE;
1280                                 goto out_unmap;
1281                         }
1282                 }
1283                 if (pte_uffd_wp(pteval)) {
1284                         /*
1285                          * Don't collapse the page if any of the small
1286                          * PTEs are armed with uffd write protection.
1287                          * Here we can also mark the new huge pmd as
1288                          * write protected if any of the small ones is
1289                          * marked but that could bring unknown
1290                          * userfault messages that falls outside of
1291                          * the registered range.  So, just be simple.
1292                          */
1293                         result = SCAN_PTE_UFFD_WP;
1294                         goto out_unmap;
1295                 }
1296                 if (pte_write(pteval))
1297                         writable = true;
1298
1299                 page = vm_normal_page(vma, _address, pteval);
1300                 if (unlikely(!page)) {
1301                         result = SCAN_PAGE_NULL;
1302                         goto out_unmap;
1303                 }
1304
1305                 if (page_mapcount(page) > 1 &&
1306                                 ++shared > khugepaged_max_ptes_shared) {
1307                         result = SCAN_EXCEED_SHARED_PTE;
1308                         goto out_unmap;
1309                 }
1310
1311                 page = compound_head(page);
1312
1313                 /*
1314                  * Record which node the original page is from and save this
1315                  * information to khugepaged_node_load[].
1316                  * Khupaged will allocate hugepage from the node has the max
1317                  * hit record.
1318                  */
1319                 node = page_to_nid(page);
1320                 if (khugepaged_scan_abort(node)) {
1321                         result = SCAN_SCAN_ABORT;
1322                         goto out_unmap;
1323                 }
1324                 khugepaged_node_load[node]++;
1325                 if (!PageLRU(page)) {
1326                         result = SCAN_PAGE_LRU;
1327                         goto out_unmap;
1328                 }
1329                 if (PageLocked(page)) {
1330                         result = SCAN_PAGE_LOCK;
1331                         goto out_unmap;
1332                 }
1333                 if (!PageAnon(page)) {
1334                         result = SCAN_PAGE_ANON;
1335                         goto out_unmap;
1336                 }
1337
1338                 /*
1339                  * Check if the page has any GUP (or other external) pins.
1340                  *
1341                  * Here the check is racy it may see totmal_mapcount > refcount
1342                  * in some cases.
1343                  * For example, one process with one forked child process.
1344                  * The parent has the PMD split due to MADV_DONTNEED, then
1345                  * the child is trying unmap the whole PMD, but khugepaged
1346                  * may be scanning the parent between the child has
1347                  * PageDoubleMap flag cleared and dec the mapcount.  So
1348                  * khugepaged may see total_mapcount > refcount.
1349                  *
1350                  * But such case is ephemeral we could always retry collapse
1351                  * later.  However it may report false positive if the page
1352                  * has excessive GUP pins (i.e. 512).  Anyway the same check
1353                  * will be done again later the risk seems low.
1354                  */
1355                 if (!is_refcount_suitable(page)) {
1356                         result = SCAN_PAGE_COUNT;
1357                         goto out_unmap;
1358                 }
1359                 if (pte_young(pteval) ||
1360                     page_is_young(page) || PageReferenced(page) ||
1361                     mmu_notifier_test_young(vma->vm_mm, address))
1362                         referenced++;
1363         }
1364         if (!writable) {
1365                 result = SCAN_PAGE_RO;
1366         } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1367                 result = SCAN_LACK_REFERENCED_PAGE;
1368         } else {
1369                 result = SCAN_SUCCEED;
1370                 ret = 1;
1371         }
1372 out_unmap:
1373         pte_unmap_unlock(pte, ptl);
1374         if (ret) {
1375                 node = khugepaged_find_target_node();
1376                 /* collapse_huge_page will return with the mmap_lock released */
1377                 collapse_huge_page(mm, address, hpage, node,
1378                                 referenced, unmapped);
1379         }
1380 out:
1381         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1382                                      none_or_zero, result, unmapped);
1383         return ret;
1384 }
1385
1386 static void collect_mm_slot(struct mm_slot *mm_slot)
1387 {
1388         struct mm_struct *mm = mm_slot->mm;
1389
1390         lockdep_assert_held(&khugepaged_mm_lock);
1391
1392         if (khugepaged_test_exit(mm)) {
1393                 /* free mm_slot */
1394                 hash_del(&mm_slot->hash);
1395                 list_del(&mm_slot->mm_node);
1396
1397                 /*
1398                  * Not strictly needed because the mm exited already.
1399                  *
1400                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1401                  */
1402
1403                 /* khugepaged_mm_lock actually not necessary for the below */
1404                 free_mm_slot(mm_slot);
1405                 mmdrop(mm);
1406         }
1407 }
1408
1409 #ifdef CONFIG_SHMEM
1410 /*
1411  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1412  * khugepaged should try to collapse the page table.
1413  */
1414 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1415                                          unsigned long addr)
1416 {
1417         struct mm_slot *mm_slot;
1418
1419         VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1420
1421         spin_lock(&khugepaged_mm_lock);
1422         mm_slot = get_mm_slot(mm);
1423         if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1424                 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1425         spin_unlock(&khugepaged_mm_lock);
1426         return 0;
1427 }
1428
1429 /**
1430  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1431  * address haddr.
1432  *
1433  * @mm: process address space where collapse happens
1434  * @addr: THP collapse address
1435  *
1436  * This function checks whether all the PTEs in the PMD are pointing to the
1437  * right THP. If so, retract the page table so the THP can refault in with
1438  * as pmd-mapped.
1439  */
1440 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1441 {
1442         unsigned long haddr = addr & HPAGE_PMD_MASK;
1443         struct vm_area_struct *vma = find_vma(mm, haddr);
1444         struct page *hpage;
1445         pte_t *start_pte, *pte;
1446         pmd_t *pmd, _pmd;
1447         spinlock_t *ptl;
1448         int count = 0;
1449         int i;
1450         struct mmu_notifier_range range;
1451
1452         if (!vma || !vma->vm_file ||
1453             !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1454                 return;
1455
1456         /*
1457          * This vm_flags may not have VM_HUGEPAGE if the page was not
1458          * collapsed by this mm. But we can still collapse if the page is
1459          * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1460          * will not fail the vma for missing VM_HUGEPAGE
1461          */
1462         if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1463                 return;
1464
1465         hpage = find_lock_page(vma->vm_file->f_mapping,
1466                                linear_page_index(vma, haddr));
1467         if (!hpage)
1468                 return;
1469
1470         if (!PageHead(hpage))
1471                 goto drop_hpage;
1472
1473         pmd = mm_find_pmd(mm, haddr);
1474         if (!pmd)
1475                 goto drop_hpage;
1476
1477         /*
1478          * We need to lock the mapping so that from here on, only GUP-fast and
1479          * hardware page walks can access the parts of the page tables that
1480          * we're operating on.
1481          */
1482         i_mmap_lock_write(vma->vm_file->f_mapping);
1483
1484         /*
1485          * This spinlock should be unnecessary: Nobody else should be accessing
1486          * the page tables under spinlock protection here, only
1487          * lockless_pages_from_mm() and the hardware page walker can access page
1488          * tables while all the high-level locks are held in write mode.
1489          */
1490         start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1491
1492         /* step 1: check all mapped PTEs are to the right huge page */
1493         for (i = 0, addr = haddr, pte = start_pte;
1494              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1495                 struct page *page;
1496
1497                 /* empty pte, skip */
1498                 if (pte_none(*pte))
1499                         continue;
1500
1501                 /* page swapped out, abort */
1502                 if (!pte_present(*pte))
1503                         goto abort;
1504
1505                 page = vm_normal_page(vma, addr, *pte);
1506
1507                 /*
1508                  * Note that uprobe, debugger, or MAP_PRIVATE may change the
1509                  * page table, but the new page will not be a subpage of hpage.
1510                  */
1511                 if (hpage + i != page)
1512                         goto abort;
1513                 count++;
1514         }
1515
1516         /* step 2: adjust rmap */
1517         for (i = 0, addr = haddr, pte = start_pte;
1518              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1519                 struct page *page;
1520
1521                 if (pte_none(*pte))
1522                         continue;
1523                 page = vm_normal_page(vma, addr, *pte);
1524                 page_remove_rmap(page, false);
1525         }
1526
1527         pte_unmap_unlock(start_pte, ptl);
1528
1529         /* step 3: set proper refcount and mm_counters. */
1530         if (count) {
1531                 page_ref_sub(hpage, count);
1532                 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1533         }
1534
1535         /* step 4: collapse pmd */
1536         /* we make no change to anon, but protect concurrent anon page lookup */
1537         if (vma->anon_vma)
1538                 anon_vma_lock_write(vma->anon_vma);
1539
1540         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, haddr,
1541                                 haddr + HPAGE_PMD_SIZE);
1542         mmu_notifier_invalidate_range_start(&range);
1543         _pmd = pmdp_collapse_flush(vma, haddr, pmd);
1544         mm_dec_nr_ptes(mm);
1545         tlb_remove_table_sync_one();
1546         mmu_notifier_invalidate_range_end(&range);
1547         pte_free(mm, pmd_pgtable(_pmd));
1548
1549         if (vma->anon_vma)
1550                 anon_vma_unlock_write(vma->anon_vma);
1551         i_mmap_unlock_write(vma->vm_file->f_mapping);
1552
1553 drop_hpage:
1554         unlock_page(hpage);
1555         put_page(hpage);
1556         return;
1557
1558 abort:
1559         pte_unmap_unlock(start_pte, ptl);
1560         i_mmap_unlock_write(vma->vm_file->f_mapping);
1561         goto drop_hpage;
1562 }
1563
1564 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1565 {
1566         struct mm_struct *mm = mm_slot->mm;
1567         int i;
1568
1569         if (likely(mm_slot->nr_pte_mapped_thp == 0))
1570                 return;
1571
1572         if (!mmap_write_trylock(mm))
1573                 return;
1574
1575         if (unlikely(khugepaged_test_exit(mm)))
1576                 goto out;
1577
1578         for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1579                 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1580
1581 out:
1582         mm_slot->nr_pte_mapped_thp = 0;
1583         mmap_write_unlock(mm);
1584 }
1585
1586 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1587 {
1588         struct vm_area_struct *vma;
1589         struct mm_struct *mm;
1590         unsigned long addr;
1591         pmd_t *pmd, _pmd;
1592
1593         i_mmap_lock_write(mapping);
1594         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1595                 /*
1596                  * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1597                  * got written to. These VMAs are likely not worth investing
1598                  * mmap_write_lock(mm) as PMD-mapping is likely to be split
1599                  * later.
1600                  *
1601                  * Not that vma->anon_vma check is racy: it can be set up after
1602                  * the check but before we took mmap_lock by the fault path.
1603                  * But page lock would prevent establishing any new ptes of the
1604                  * page, so we are safe.
1605                  *
1606                  * An alternative would be drop the check, but check that page
1607                  * table is clear before calling pmdp_collapse_flush() under
1608                  * ptl. It has higher chance to recover THP for the VMA, but
1609                  * has higher cost too. It would also probably require locking
1610                  * the anon_vma.
1611                  */
1612                 if (vma->anon_vma)
1613                         continue;
1614                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1615                 if (addr & ~HPAGE_PMD_MASK)
1616                         continue;
1617                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1618                         continue;
1619                 mm = vma->vm_mm;
1620                 pmd = mm_find_pmd(mm, addr);
1621                 if (!pmd)
1622                         continue;
1623                 /*
1624                  * We need exclusive mmap_lock to retract page table.
1625                  *
1626                  * We use trylock due to lock inversion: we need to acquire
1627                  * mmap_lock while holding page lock. Fault path does it in
1628                  * reverse order. Trylock is a way to avoid deadlock.
1629                  */
1630                 if (mmap_write_trylock(mm)) {
1631                         if (!khugepaged_test_exit(mm)) {
1632                                 struct mmu_notifier_range range;
1633
1634                                 mmu_notifier_range_init(&range,
1635                                                         MMU_NOTIFY_CLEAR, 0,
1636                                                         NULL, mm, addr,
1637                                                         addr + HPAGE_PMD_SIZE);
1638                                 mmu_notifier_invalidate_range_start(&range);
1639                                 /* assume page table is clear */
1640                                 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1641                                 mm_dec_nr_ptes(mm);
1642                                 tlb_remove_table_sync_one();
1643                                 pte_free(mm, pmd_pgtable(_pmd));
1644                                 mmu_notifier_invalidate_range_end(&range);
1645                         }
1646                         mmap_write_unlock(mm);
1647                 } else {
1648                         /* Try again later */
1649                         khugepaged_add_pte_mapped_thp(mm, addr);
1650                 }
1651         }
1652         i_mmap_unlock_write(mapping);
1653 }
1654
1655 /**
1656  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1657  *
1658  * @mm: process address space where collapse happens
1659  * @file: file that collapse on
1660  * @start: collapse start address
1661  * @hpage: new allocated huge page for collapse
1662  * @node: appointed node the new huge page allocate from
1663  *
1664  * Basic scheme is simple, details are more complex:
1665  *  - allocate and lock a new huge page;
1666  *  - scan page cache replacing old pages with the new one
1667  *    + swap/gup in pages if necessary;
1668  *    + fill in gaps;
1669  *    + keep old pages around in case rollback is required;
1670  *  - if replacing succeeds:
1671  *    + copy data over;
1672  *    + free old pages;
1673  *    + unlock huge page;
1674  *  - if replacing failed;
1675  *    + put all pages back and unfreeze them;
1676  *    + restore gaps in the page cache;
1677  *    + unlock and free huge page;
1678  */
1679 static void collapse_file(struct mm_struct *mm,
1680                 struct file *file, pgoff_t start,
1681                 struct page **hpage, int node)
1682 {
1683         struct address_space *mapping = file->f_mapping;
1684         gfp_t gfp;
1685         struct page *new_page;
1686         pgoff_t index, end = start + HPAGE_PMD_NR;
1687         LIST_HEAD(pagelist);
1688         XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1689         int nr_none = 0, result = SCAN_SUCCEED;
1690         bool is_shmem = shmem_file(file);
1691         int nr;
1692
1693         VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1694         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1695
1696         /* Only allocate from the target node */
1697         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1698
1699         new_page = khugepaged_alloc_page(hpage, gfp, node);
1700         if (!new_page) {
1701                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1702                 goto out;
1703         }
1704
1705         if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1706                 result = SCAN_CGROUP_CHARGE_FAIL;
1707                 goto out;
1708         }
1709         count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1710
1711         /* This will be less messy when we use multi-index entries */
1712         do {
1713                 xas_lock_irq(&xas);
1714                 xas_create_range(&xas);
1715                 if (!xas_error(&xas))
1716                         break;
1717                 xas_unlock_irq(&xas);
1718                 if (!xas_nomem(&xas, GFP_KERNEL)) {
1719                         result = SCAN_FAIL;
1720                         goto out;
1721                 }
1722         } while (1);
1723
1724         __SetPageLocked(new_page);
1725         if (is_shmem)
1726                 __SetPageSwapBacked(new_page);
1727         new_page->index = start;
1728         new_page->mapping = mapping;
1729
1730         /*
1731          * At this point the new_page is locked and not up-to-date.
1732          * It's safe to insert it into the page cache, because nobody would
1733          * be able to map it or use it in another way until we unlock it.
1734          */
1735
1736         xas_set(&xas, start);
1737         for (index = start; index < end; index++) {
1738                 struct page *page = xas_next(&xas);
1739
1740                 VM_BUG_ON(index != xas.xa_index);
1741                 if (is_shmem) {
1742                         if (!page) {
1743                                 /*
1744                                  * Stop if extent has been truncated or
1745                                  * hole-punched, and is now completely
1746                                  * empty.
1747                                  */
1748                                 if (index == start) {
1749                                         if (!xas_next_entry(&xas, end - 1)) {
1750                                                 result = SCAN_TRUNCATED;
1751                                                 goto xa_locked;
1752                                         }
1753                                         xas_set(&xas, index);
1754                                 }
1755                                 if (!shmem_charge(mapping->host, 1)) {
1756                                         result = SCAN_FAIL;
1757                                         goto xa_locked;
1758                                 }
1759                                 xas_store(&xas, new_page);
1760                                 nr_none++;
1761                                 continue;
1762                         }
1763
1764                         if (xa_is_value(page) || !PageUptodate(page)) {
1765                                 xas_unlock_irq(&xas);
1766                                 /* swap in or instantiate fallocated page */
1767                                 if (shmem_getpage(mapping->host, index, &page,
1768                                                   SGP_NOALLOC)) {
1769                                         result = SCAN_FAIL;
1770                                         goto xa_unlocked;
1771                                 }
1772                         } else if (trylock_page(page)) {
1773                                 get_page(page);
1774                                 xas_unlock_irq(&xas);
1775                         } else {
1776                                 result = SCAN_PAGE_LOCK;
1777                                 goto xa_locked;
1778                         }
1779                 } else {        /* !is_shmem */
1780                         if (!page || xa_is_value(page)) {
1781                                 xas_unlock_irq(&xas);
1782                                 page_cache_sync_readahead(mapping, &file->f_ra,
1783                                                           file, index,
1784                                                           end - index);
1785                                 /* drain pagevecs to help isolate_lru_page() */
1786                                 lru_add_drain();
1787                                 page = find_lock_page(mapping, index);
1788                                 if (unlikely(page == NULL)) {
1789                                         result = SCAN_FAIL;
1790                                         goto xa_unlocked;
1791                                 }
1792                         } else if (PageDirty(page)) {
1793                                 /*
1794                                  * khugepaged only works on read-only fd,
1795                                  * so this page is dirty because it hasn't
1796                                  * been flushed since first write. There
1797                                  * won't be new dirty pages.
1798                                  *
1799                                  * Trigger async flush here and hope the
1800                                  * writeback is done when khugepaged
1801                                  * revisits this page.
1802                                  *
1803                                  * This is a one-off situation. We are not
1804                                  * forcing writeback in loop.
1805                                  */
1806                                 xas_unlock_irq(&xas);
1807                                 filemap_flush(mapping);
1808                                 result = SCAN_FAIL;
1809                                 goto xa_unlocked;
1810                         } else if (PageWriteback(page)) {
1811                                 xas_unlock_irq(&xas);
1812                                 result = SCAN_FAIL;
1813                                 goto xa_unlocked;
1814                         } else if (trylock_page(page)) {
1815                                 get_page(page);
1816                                 xas_unlock_irq(&xas);
1817                         } else {
1818                                 result = SCAN_PAGE_LOCK;
1819                                 goto xa_locked;
1820                         }
1821                 }
1822
1823                 /*
1824                  * The page must be locked, so we can drop the i_pages lock
1825                  * without racing with truncate.
1826                  */
1827                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1828
1829                 /* make sure the page is up to date */
1830                 if (unlikely(!PageUptodate(page))) {
1831                         result = SCAN_FAIL;
1832                         goto out_unlock;
1833                 }
1834
1835                 /*
1836                  * If file was truncated then extended, or hole-punched, before
1837                  * we locked the first page, then a THP might be there already.
1838                  */
1839                 if (PageTransCompound(page)) {
1840                         result = SCAN_PAGE_COMPOUND;
1841                         goto out_unlock;
1842                 }
1843
1844                 if (page_mapping(page) != mapping) {
1845                         result = SCAN_TRUNCATED;
1846                         goto out_unlock;
1847                 }
1848
1849                 if (!is_shmem && (PageDirty(page) ||
1850                                   PageWriteback(page))) {
1851                         /*
1852                          * khugepaged only works on read-only fd, so this
1853                          * page is dirty because it hasn't been flushed
1854                          * since first write.
1855                          */
1856                         result = SCAN_FAIL;
1857                         goto out_unlock;
1858                 }
1859
1860                 if (isolate_lru_page(page)) {
1861                         result = SCAN_DEL_PAGE_LRU;
1862                         goto out_unlock;
1863                 }
1864
1865                 if (page_has_private(page) &&
1866                     !try_to_release_page(page, GFP_KERNEL)) {
1867                         result = SCAN_PAGE_HAS_PRIVATE;
1868                         putback_lru_page(page);
1869                         goto out_unlock;
1870                 }
1871
1872                 if (page_mapped(page))
1873                         unmap_mapping_pages(mapping, index, 1, false);
1874
1875                 xas_lock_irq(&xas);
1876                 xas_set(&xas, index);
1877
1878                 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1879                 VM_BUG_ON_PAGE(page_mapped(page), page);
1880
1881                 /*
1882                  * The page is expected to have page_count() == 3:
1883                  *  - we hold a pin on it;
1884                  *  - one reference from page cache;
1885                  *  - one from isolate_lru_page;
1886                  */
1887                 if (!page_ref_freeze(page, 3)) {
1888                         result = SCAN_PAGE_COUNT;
1889                         xas_unlock_irq(&xas);
1890                         putback_lru_page(page);
1891                         goto out_unlock;
1892                 }
1893
1894                 /*
1895                  * Add the page to the list to be able to undo the collapse if
1896                  * something go wrong.
1897                  */
1898                 list_add_tail(&page->lru, &pagelist);
1899
1900                 /* Finally, replace with the new page. */
1901                 xas_store(&xas, new_page);
1902                 continue;
1903 out_unlock:
1904                 unlock_page(page);
1905                 put_page(page);
1906                 goto xa_unlocked;
1907         }
1908         nr = thp_nr_pages(new_page);
1909
1910         if (is_shmem)
1911                 __mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1912         else {
1913                 __mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1914                 filemap_nr_thps_inc(mapping);
1915                 /*
1916                  * Paired with smp_mb() in do_dentry_open() to ensure
1917                  * i_writecount is up to date and the update to nr_thps is
1918                  * visible. Ensures the page cache will be truncated if the
1919                  * file is opened writable.
1920                  */
1921                 smp_mb();
1922                 if (inode_is_open_for_write(mapping->host)) {
1923                         result = SCAN_FAIL;
1924                         __mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1925                         filemap_nr_thps_dec(mapping);
1926                         goto xa_locked;
1927                 }
1928         }
1929
1930         if (nr_none) {
1931                 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1932                 if (is_shmem)
1933                         __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1934         }
1935
1936 xa_locked:
1937         xas_unlock_irq(&xas);
1938 xa_unlocked:
1939
1940         if (result == SCAN_SUCCEED) {
1941                 struct page *page, *tmp;
1942
1943                 /*
1944                  * Replacing old pages with new one has succeeded, now we
1945                  * need to copy the content and free the old pages.
1946                  */
1947                 index = start;
1948                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1949                         while (index < page->index) {
1950                                 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1951                                 index++;
1952                         }
1953                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1954                                         page);
1955                         list_del(&page->lru);
1956                         page->mapping = NULL;
1957                         page_ref_unfreeze(page, 1);
1958                         ClearPageActive(page);
1959                         ClearPageUnevictable(page);
1960                         unlock_page(page);
1961                         put_page(page);
1962                         index++;
1963                 }
1964                 while (index < end) {
1965                         clear_highpage(new_page + (index % HPAGE_PMD_NR));
1966                         index++;
1967                 }
1968
1969                 SetPageUptodate(new_page);
1970                 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1971                 if (is_shmem)
1972                         set_page_dirty(new_page);
1973                 lru_cache_add(new_page);
1974
1975                 /*
1976                  * Remove pte page tables, so we can re-fault the page as huge.
1977                  */
1978                 retract_page_tables(mapping, start);
1979                 *hpage = NULL;
1980
1981                 khugepaged_pages_collapsed++;
1982         } else {
1983                 struct page *page;
1984
1985                 /* Something went wrong: roll back page cache changes */
1986                 xas_lock_irq(&xas);
1987                 mapping->nrpages -= nr_none;
1988
1989                 if (is_shmem)
1990                         shmem_uncharge(mapping->host, nr_none);
1991
1992                 xas_set(&xas, start);
1993                 xas_for_each(&xas, page, end - 1) {
1994                         page = list_first_entry_or_null(&pagelist,
1995                                         struct page, lru);
1996                         if (!page || xas.xa_index < page->index) {
1997                                 if (!nr_none)
1998                                         break;
1999                                 nr_none--;
2000                                 /* Put holes back where they were */
2001                                 xas_store(&xas, NULL);
2002                                 continue;
2003                         }
2004
2005                         VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2006
2007                         /* Unfreeze the page. */
2008                         list_del(&page->lru);
2009                         page_ref_unfreeze(page, 2);
2010                         xas_store(&xas, page);
2011                         xas_pause(&xas);
2012                         xas_unlock_irq(&xas);
2013                         unlock_page(page);
2014                         putback_lru_page(page);
2015                         xas_lock_irq(&xas);
2016                 }
2017                 VM_BUG_ON(nr_none);
2018                 xas_unlock_irq(&xas);
2019
2020                 new_page->mapping = NULL;
2021         }
2022
2023         unlock_page(new_page);
2024 out:
2025         VM_BUG_ON(!list_empty(&pagelist));
2026         if (!IS_ERR_OR_NULL(*hpage))
2027                 mem_cgroup_uncharge(*hpage);
2028         /* TODO: tracepoints */
2029 }
2030
2031 static void khugepaged_scan_file(struct mm_struct *mm,
2032                 struct file *file, pgoff_t start, struct page **hpage)
2033 {
2034         struct page *page = NULL;
2035         struct address_space *mapping = file->f_mapping;
2036         XA_STATE(xas, &mapping->i_pages, start);
2037         int present, swap;
2038         int node = NUMA_NO_NODE;
2039         int result = SCAN_SUCCEED;
2040
2041         present = 0;
2042         swap = 0;
2043         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2044         rcu_read_lock();
2045         xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2046                 if (xas_retry(&xas, page))
2047                         continue;
2048
2049                 if (xa_is_value(page)) {
2050                         if (++swap > khugepaged_max_ptes_swap) {
2051                                 result = SCAN_EXCEED_SWAP_PTE;
2052                                 break;
2053                         }
2054                         continue;
2055                 }
2056
2057                 if (PageTransCompound(page)) {
2058                         result = SCAN_PAGE_COMPOUND;
2059                         break;
2060                 }
2061
2062                 node = page_to_nid(page);
2063                 if (khugepaged_scan_abort(node)) {
2064                         result = SCAN_SCAN_ABORT;
2065                         break;
2066                 }
2067                 khugepaged_node_load[node]++;
2068
2069                 if (!PageLRU(page)) {
2070                         result = SCAN_PAGE_LRU;
2071                         break;
2072                 }
2073
2074                 if (page_count(page) !=
2075                     1 + page_mapcount(page) + page_has_private(page)) {
2076                         result = SCAN_PAGE_COUNT;
2077                         break;
2078                 }
2079
2080                 /*
2081                  * We probably should check if the page is referenced here, but
2082                  * nobody would transfer pte_young() to PageReferenced() for us.
2083                  * And rmap walk here is just too costly...
2084                  */
2085
2086                 present++;
2087
2088                 if (need_resched()) {
2089                         xas_pause(&xas);
2090                         cond_resched_rcu();
2091                 }
2092         }
2093         rcu_read_unlock();
2094
2095         if (result == SCAN_SUCCEED) {
2096                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2097                         result = SCAN_EXCEED_NONE_PTE;
2098                 } else {
2099                         node = khugepaged_find_target_node();
2100                         collapse_file(mm, file, start, hpage, node);
2101                 }
2102         }
2103
2104         /* TODO: tracepoints */
2105 }
2106 #else
2107 static void khugepaged_scan_file(struct mm_struct *mm,
2108                 struct file *file, pgoff_t start, struct page **hpage)
2109 {
2110         BUILD_BUG();
2111 }
2112
2113 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2114 {
2115 }
2116 #endif
2117
2118 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2119                                             struct page **hpage)
2120         __releases(&khugepaged_mm_lock)
2121         __acquires(&khugepaged_mm_lock)
2122 {
2123         struct mm_slot *mm_slot;
2124         struct mm_struct *mm;
2125         struct vm_area_struct *vma;
2126         int progress = 0;
2127
2128         VM_BUG_ON(!pages);
2129         lockdep_assert_held(&khugepaged_mm_lock);
2130
2131         if (khugepaged_scan.mm_slot)
2132                 mm_slot = khugepaged_scan.mm_slot;
2133         else {
2134                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2135                                      struct mm_slot, mm_node);
2136                 khugepaged_scan.address = 0;
2137                 khugepaged_scan.mm_slot = mm_slot;
2138         }
2139         spin_unlock(&khugepaged_mm_lock);
2140         khugepaged_collapse_pte_mapped_thps(mm_slot);
2141
2142         mm = mm_slot->mm;
2143         /*
2144          * Don't wait for semaphore (to avoid long wait times).  Just move to
2145          * the next mm on the list.
2146          */
2147         vma = NULL;
2148         if (unlikely(!mmap_read_trylock(mm)))
2149                 goto breakouterloop_mmap_lock;
2150         if (likely(!khugepaged_test_exit(mm)))
2151                 vma = find_vma(mm, khugepaged_scan.address);
2152
2153         progress++;
2154         for (; vma; vma = vma->vm_next) {
2155                 unsigned long hstart, hend;
2156
2157                 cond_resched();
2158                 if (unlikely(khugepaged_test_exit(mm))) {
2159                         progress++;
2160                         break;
2161                 }
2162                 if (!hugepage_vma_check(vma, vma->vm_flags)) {
2163 skip:
2164                         progress++;
2165                         continue;
2166                 }
2167                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2168                 hend = vma->vm_end & HPAGE_PMD_MASK;
2169                 if (hstart >= hend)
2170                         goto skip;
2171                 if (khugepaged_scan.address > hend)
2172                         goto skip;
2173                 if (khugepaged_scan.address < hstart)
2174                         khugepaged_scan.address = hstart;
2175                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2176                 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2177                         goto skip;
2178
2179                 while (khugepaged_scan.address < hend) {
2180                         int ret;
2181                         cond_resched();
2182                         if (unlikely(khugepaged_test_exit(mm)))
2183                                 goto breakouterloop;
2184
2185                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2186                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2187                                   hend);
2188                         if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2189                                 struct file *file = get_file(vma->vm_file);
2190                                 pgoff_t pgoff = linear_page_index(vma,
2191                                                 khugepaged_scan.address);
2192
2193                                 mmap_read_unlock(mm);
2194                                 ret = 1;
2195                                 khugepaged_scan_file(mm, file, pgoff, hpage);
2196                                 fput(file);
2197                         } else {
2198                                 ret = khugepaged_scan_pmd(mm, vma,
2199                                                 khugepaged_scan.address,
2200                                                 hpage);
2201                         }
2202                         /* move to next address */
2203                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2204                         progress += HPAGE_PMD_NR;
2205                         if (ret)
2206                                 /* we released mmap_lock so break loop */
2207                                 goto breakouterloop_mmap_lock;
2208                         if (progress >= pages)
2209                                 goto breakouterloop;
2210                 }
2211         }
2212 breakouterloop:
2213         mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2214 breakouterloop_mmap_lock:
2215
2216         spin_lock(&khugepaged_mm_lock);
2217         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2218         /*
2219          * Release the current mm_slot if this mm is about to die, or
2220          * if we scanned all vmas of this mm.
2221          */
2222         if (khugepaged_test_exit(mm) || !vma) {
2223                 /*
2224                  * Make sure that if mm_users is reaching zero while
2225                  * khugepaged runs here, khugepaged_exit will find
2226                  * mm_slot not pointing to the exiting mm.
2227                  */
2228                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2229                         khugepaged_scan.mm_slot = list_entry(
2230                                 mm_slot->mm_node.next,
2231                                 struct mm_slot, mm_node);
2232                         khugepaged_scan.address = 0;
2233                 } else {
2234                         khugepaged_scan.mm_slot = NULL;
2235                         khugepaged_full_scans++;
2236                 }
2237
2238                 collect_mm_slot(mm_slot);
2239         }
2240
2241         return progress;
2242 }
2243
2244 static int khugepaged_has_work(void)
2245 {
2246         return !list_empty(&khugepaged_scan.mm_head) &&
2247                 khugepaged_enabled();
2248 }
2249
2250 static int khugepaged_wait_event(void)
2251 {
2252         return !list_empty(&khugepaged_scan.mm_head) ||
2253                 kthread_should_stop();
2254 }
2255
2256 static void khugepaged_do_scan(void)
2257 {
2258         struct page *hpage = NULL;
2259         unsigned int progress = 0, pass_through_head = 0;
2260         unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2261         bool wait = true;
2262
2263         lru_add_drain_all();
2264
2265         while (progress < pages) {
2266                 if (!khugepaged_prealloc_page(&hpage, &wait))
2267                         break;
2268
2269                 cond_resched();
2270
2271                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2272                         break;
2273
2274                 spin_lock(&khugepaged_mm_lock);
2275                 if (!khugepaged_scan.mm_slot)
2276                         pass_through_head++;
2277                 if (khugepaged_has_work() &&
2278                     pass_through_head < 2)
2279                         progress += khugepaged_scan_mm_slot(pages - progress,
2280                                                             &hpage);
2281                 else
2282                         progress = pages;
2283                 spin_unlock(&khugepaged_mm_lock);
2284         }
2285
2286         if (!IS_ERR_OR_NULL(hpage))
2287                 put_page(hpage);
2288 }
2289
2290 static bool khugepaged_should_wakeup(void)
2291 {
2292         return kthread_should_stop() ||
2293                time_after_eq(jiffies, khugepaged_sleep_expire);
2294 }
2295
2296 static void khugepaged_wait_work(void)
2297 {
2298         if (khugepaged_has_work()) {
2299                 const unsigned long scan_sleep_jiffies =
2300                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2301
2302                 if (!scan_sleep_jiffies)
2303                         return;
2304
2305                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2306                 wait_event_freezable_timeout(khugepaged_wait,
2307                                              khugepaged_should_wakeup(),
2308                                              scan_sleep_jiffies);
2309                 return;
2310         }
2311
2312         if (khugepaged_enabled())
2313                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2314 }
2315
2316 static int khugepaged(void *none)
2317 {
2318         struct mm_slot *mm_slot;
2319
2320         set_freezable();
2321         set_user_nice(current, MAX_NICE);
2322
2323         while (!kthread_should_stop()) {
2324                 khugepaged_do_scan();
2325                 khugepaged_wait_work();
2326         }
2327
2328         spin_lock(&khugepaged_mm_lock);
2329         mm_slot = khugepaged_scan.mm_slot;
2330         khugepaged_scan.mm_slot = NULL;
2331         if (mm_slot)
2332                 collect_mm_slot(mm_slot);
2333         spin_unlock(&khugepaged_mm_lock);
2334         return 0;
2335 }
2336
2337 static void set_recommended_min_free_kbytes(void)
2338 {
2339         struct zone *zone;
2340         int nr_zones = 0;
2341         unsigned long recommended_min;
2342
2343         for_each_populated_zone(zone) {
2344                 /*
2345                  * We don't need to worry about fragmentation of
2346                  * ZONE_MOVABLE since it only has movable pages.
2347                  */
2348                 if (zone_idx(zone) > gfp_zone(GFP_USER))
2349                         continue;
2350
2351                 nr_zones++;
2352         }
2353
2354         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2355         recommended_min = pageblock_nr_pages * nr_zones * 2;
2356
2357         /*
2358          * Make sure that on average at least two pageblocks are almost free
2359          * of another type, one for a migratetype to fall back to and a
2360          * second to avoid subsequent fallbacks of other types There are 3
2361          * MIGRATE_TYPES we care about.
2362          */
2363         recommended_min += pageblock_nr_pages * nr_zones *
2364                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2365
2366         /* don't ever allow to reserve more than 5% of the lowmem */
2367         recommended_min = min(recommended_min,
2368                               (unsigned long) nr_free_buffer_pages() / 20);
2369         recommended_min <<= (PAGE_SHIFT-10);
2370
2371         if (recommended_min > min_free_kbytes) {
2372                 if (user_min_free_kbytes >= 0)
2373                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2374                                 min_free_kbytes, recommended_min);
2375
2376                 min_free_kbytes = recommended_min;
2377         }
2378         setup_per_zone_wmarks();
2379 }
2380
2381 int start_stop_khugepaged(void)
2382 {
2383         int err = 0;
2384
2385         mutex_lock(&khugepaged_mutex);
2386         if (khugepaged_enabled()) {
2387                 if (!khugepaged_thread)
2388                         khugepaged_thread = kthread_run(khugepaged, NULL,
2389                                                         "khugepaged");
2390                 if (IS_ERR(khugepaged_thread)) {
2391                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2392                         err = PTR_ERR(khugepaged_thread);
2393                         khugepaged_thread = NULL;
2394                         goto fail;
2395                 }
2396
2397                 if (!list_empty(&khugepaged_scan.mm_head))
2398                         wake_up_interruptible(&khugepaged_wait);
2399
2400                 set_recommended_min_free_kbytes();
2401         } else if (khugepaged_thread) {
2402                 kthread_stop(khugepaged_thread);
2403                 khugepaged_thread = NULL;
2404         }
2405 fail:
2406         mutex_unlock(&khugepaged_mutex);
2407         return err;
2408 }
2409
2410 void khugepaged_min_free_kbytes_update(void)
2411 {
2412         mutex_lock(&khugepaged_mutex);
2413         if (khugepaged_enabled() && khugepaged_thread)
2414                 set_recommended_min_free_kbytes();
2415         mutex_unlock(&khugepaged_mutex);
2416 }