GNU Linux-libre 5.15.99-gnu
[releases.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/random.h>
25 #include <linux/rcupdate.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/seq_file.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32
33 #include <asm/kfence.h>
34
35 #include "kfence.h"
36
37 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
38 #define KFENCE_WARN_ON(cond)                                                   \
39         ({                                                                     \
40                 const bool __cond = WARN_ON(cond);                             \
41                 if (unlikely(__cond))                                          \
42                         WRITE_ONCE(kfence_enabled, false);                     \
43                 __cond;                                                        \
44         })
45
46 /* === Data ================================================================= */
47
48 static bool kfence_enabled __read_mostly;
49
50 static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
51
52 #ifdef MODULE_PARAM_PREFIX
53 #undef MODULE_PARAM_PREFIX
54 #endif
55 #define MODULE_PARAM_PREFIX "kfence."
56
57 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
58 {
59         unsigned long num;
60         int ret = kstrtoul(val, 0, &num);
61
62         if (ret < 0)
63                 return ret;
64
65         if (!num) /* Using 0 to indicate KFENCE is disabled. */
66                 WRITE_ONCE(kfence_enabled, false);
67         else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
68                 return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
69
70         *((unsigned long *)kp->arg) = num;
71         return 0;
72 }
73
74 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
75 {
76         if (!READ_ONCE(kfence_enabled))
77                 return sprintf(buffer, "0\n");
78
79         return param_get_ulong(buffer, kp);
80 }
81
82 static const struct kernel_param_ops sample_interval_param_ops = {
83         .set = param_set_sample_interval,
84         .get = param_get_sample_interval,
85 };
86 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
87
88 /* Pool usage% threshold when currently covered allocations are skipped. */
89 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
90 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
91
92 /* The pool of pages used for guard pages and objects. */
93 char *__kfence_pool __ro_after_init;
94 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
95
96 /*
97  * Per-object metadata, with one-to-one mapping of object metadata to
98  * backing pages (in __kfence_pool).
99  */
100 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
101 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
102
103 /* Freelist with available objects. */
104 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
105 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
106
107 /*
108  * The static key to set up a KFENCE allocation; or if static keys are not used
109  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
110  */
111 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
112
113 /* Gates the allocation, ensuring only one succeeds in a given period. */
114 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
115
116 /*
117  * A Counting Bloom filter of allocation coverage: limits currently covered
118  * allocations of the same source filling up the pool.
119  *
120  * Assuming a range of 15%-85% unique allocations in the pool at any point in
121  * time, the below parameters provide a probablity of 0.02-0.33 for false
122  * positive hits respectively:
123  *
124  *      P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
125  */
126 #define ALLOC_COVERED_HNUM      2
127 #define ALLOC_COVERED_ORDER     (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
128 #define ALLOC_COVERED_SIZE      (1 << ALLOC_COVERED_ORDER)
129 #define ALLOC_COVERED_HNEXT(h)  hash_32(h, ALLOC_COVERED_ORDER)
130 #define ALLOC_COVERED_MASK      (ALLOC_COVERED_SIZE - 1)
131 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
132
133 /* Stack depth used to determine uniqueness of an allocation. */
134 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
135
136 /*
137  * Randomness for stack hashes, making the same collisions across reboots and
138  * different machines less likely.
139  */
140 static u32 stack_hash_seed __ro_after_init;
141
142 /* Statistics counters for debugfs. */
143 enum kfence_counter_id {
144         KFENCE_COUNTER_ALLOCATED,
145         KFENCE_COUNTER_ALLOCS,
146         KFENCE_COUNTER_FREES,
147         KFENCE_COUNTER_ZOMBIES,
148         KFENCE_COUNTER_BUGS,
149         KFENCE_COUNTER_SKIP_INCOMPAT,
150         KFENCE_COUNTER_SKIP_CAPACITY,
151         KFENCE_COUNTER_SKIP_COVERED,
152         KFENCE_COUNTER_COUNT,
153 };
154 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
155 static const char *const counter_names[] = {
156         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
157         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
158         [KFENCE_COUNTER_FREES]          = "total frees",
159         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
160         [KFENCE_COUNTER_BUGS]           = "total bugs",
161         [KFENCE_COUNTER_SKIP_INCOMPAT]  = "skipped allocations (incompatible)",
162         [KFENCE_COUNTER_SKIP_CAPACITY]  = "skipped allocations (capacity)",
163         [KFENCE_COUNTER_SKIP_COVERED]   = "skipped allocations (covered)",
164 };
165 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
166
167 /* === Internals ============================================================ */
168
169 static inline bool should_skip_covered(void)
170 {
171         unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
172
173         return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
174 }
175
176 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
177 {
178         num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
179         num_entries = filter_irq_stacks(stack_entries, num_entries);
180         return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
181 }
182
183 /*
184  * Adds (or subtracts) count @val for allocation stack trace hash
185  * @alloc_stack_hash from Counting Bloom filter.
186  */
187 static void alloc_covered_add(u32 alloc_stack_hash, int val)
188 {
189         int i;
190
191         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
192                 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
193                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
194         }
195 }
196
197 /*
198  * Returns true if the allocation stack trace hash @alloc_stack_hash is
199  * currently contained (non-zero count) in Counting Bloom filter.
200  */
201 static bool alloc_covered_contains(u32 alloc_stack_hash)
202 {
203         int i;
204
205         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
206                 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
207                         return false;
208                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
209         }
210
211         return true;
212 }
213
214 static bool kfence_protect(unsigned long addr)
215 {
216         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
217 }
218
219 static bool kfence_unprotect(unsigned long addr)
220 {
221         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
222 }
223
224 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
225 {
226         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
227         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
228
229         /* The checks do not affect performance; only called from slow-paths. */
230
231         /* Only call with a pointer into kfence_metadata. */
232         if (KFENCE_WARN_ON(meta < kfence_metadata ||
233                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
234                 return 0;
235
236         /*
237          * This metadata object only ever maps to 1 page; verify that the stored
238          * address is in the expected range.
239          */
240         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
241                 return 0;
242
243         return pageaddr;
244 }
245
246 /*
247  * Update the object's metadata state, including updating the alloc/free stacks
248  * depending on the state transition.
249  */
250 static noinline void
251 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
252                       unsigned long *stack_entries, size_t num_stack_entries)
253 {
254         struct kfence_track *track =
255                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
256
257         lockdep_assert_held(&meta->lock);
258
259         if (stack_entries) {
260                 memcpy(track->stack_entries, stack_entries,
261                        num_stack_entries * sizeof(stack_entries[0]));
262         } else {
263                 /*
264                  * Skip over 1 (this) functions; noinline ensures we do not
265                  * accidentally skip over the caller by never inlining.
266                  */
267                 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
268         }
269         track->num_stack_entries = num_stack_entries;
270         track->pid = task_pid_nr(current);
271         track->cpu = raw_smp_processor_id();
272         track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
273
274         /*
275          * Pairs with READ_ONCE() in
276          *      kfence_shutdown_cache(),
277          *      kfence_handle_page_fault().
278          */
279         WRITE_ONCE(meta->state, next);
280 }
281
282 /* Write canary byte to @addr. */
283 static inline bool set_canary_byte(u8 *addr)
284 {
285         *addr = KFENCE_CANARY_PATTERN(addr);
286         return true;
287 }
288
289 /* Check canary byte at @addr. */
290 static inline bool check_canary_byte(u8 *addr)
291 {
292         if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
293                 return true;
294
295         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
296         kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr),
297                             KFENCE_ERROR_CORRUPTION);
298         return false;
299 }
300
301 /* __always_inline this to ensure we won't do an indirect call to fn. */
302 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
303 {
304         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
305         unsigned long addr;
306
307         lockdep_assert_held(&meta->lock);
308
309         /*
310          * We'll iterate over each canary byte per-side until fn() returns
311          * false. However, we'll still iterate over the canary bytes to the
312          * right of the object even if there was an error in the canary bytes to
313          * the left of the object. Specifically, if check_canary_byte()
314          * generates an error, showing both sides might give more clues as to
315          * what the error is about when displaying which bytes were corrupted.
316          */
317
318         /* Apply to left of object. */
319         for (addr = pageaddr; addr < meta->addr; addr++) {
320                 if (!fn((u8 *)addr))
321                         break;
322         }
323
324         /* Apply to right of object. */
325         for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
326                 if (!fn((u8 *)addr))
327                         break;
328         }
329 }
330
331 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
332                                   unsigned long *stack_entries, size_t num_stack_entries,
333                                   u32 alloc_stack_hash)
334 {
335         struct kfence_metadata *meta = NULL;
336         unsigned long flags;
337         struct page *page;
338         void *addr;
339
340         /* Try to obtain a free object. */
341         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
342         if (!list_empty(&kfence_freelist)) {
343                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
344                 list_del_init(&meta->list);
345         }
346         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
347         if (!meta) {
348                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
349                 return NULL;
350         }
351
352         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
353                 /*
354                  * This is extremely unlikely -- we are reporting on a
355                  * use-after-free, which locked meta->lock, and the reporting
356                  * code via printk calls kmalloc() which ends up in
357                  * kfence_alloc() and tries to grab the same object that we're
358                  * reporting on. While it has never been observed, lockdep does
359                  * report that there is a possibility of deadlock. Fix it by
360                  * using trylock and bailing out gracefully.
361                  */
362                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
363                 /* Put the object back on the freelist. */
364                 list_add_tail(&meta->list, &kfence_freelist);
365                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
366
367                 return NULL;
368         }
369
370         meta->addr = metadata_to_pageaddr(meta);
371         /* Unprotect if we're reusing this page. */
372         if (meta->state == KFENCE_OBJECT_FREED)
373                 kfence_unprotect(meta->addr);
374
375         /*
376          * Note: for allocations made before RNG initialization, will always
377          * return zero. We still benefit from enabling KFENCE as early as
378          * possible, even when the RNG is not yet available, as this will allow
379          * KFENCE to detect bugs due to earlier allocations. The only downside
380          * is that the out-of-bounds accesses detected are deterministic for
381          * such allocations.
382          */
383         if (prandom_u32_max(2)) {
384                 /* Allocate on the "right" side, re-calculate address. */
385                 meta->addr += PAGE_SIZE - size;
386                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
387         }
388
389         addr = (void *)meta->addr;
390
391         /* Update remaining metadata. */
392         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
393         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
394         WRITE_ONCE(meta->cache, cache);
395         meta->size = size;
396         meta->alloc_stack_hash = alloc_stack_hash;
397
398         for_each_canary(meta, set_canary_byte);
399
400         /* Set required struct page fields. */
401         page = virt_to_page(meta->addr);
402         page->slab_cache = cache;
403         if (IS_ENABLED(CONFIG_SLUB))
404                 page->objects = 1;
405         if (IS_ENABLED(CONFIG_SLAB))
406                 page->s_mem = addr;
407
408         raw_spin_unlock_irqrestore(&meta->lock, flags);
409
410         alloc_covered_add(alloc_stack_hash, 1);
411
412         /* Memory initialization. */
413
414         /*
415          * We check slab_want_init_on_alloc() ourselves, rather than letting
416          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
417          * redzone.
418          */
419         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
420                 memzero_explicit(addr, size);
421         if (cache->ctor)
422                 cache->ctor(addr);
423
424         if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
425                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
426
427         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
428         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
429
430         return addr;
431 }
432
433 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
434 {
435         struct kcsan_scoped_access assert_page_exclusive;
436         unsigned long flags;
437
438         raw_spin_lock_irqsave(&meta->lock, flags);
439
440         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
441                 /* Invalid or double-free, bail out. */
442                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
443                 kfence_report_error((unsigned long)addr, false, NULL, meta,
444                                     KFENCE_ERROR_INVALID_FREE);
445                 raw_spin_unlock_irqrestore(&meta->lock, flags);
446                 return;
447         }
448
449         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
450         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
451                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
452                                   &assert_page_exclusive);
453
454         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
455                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
456
457         /* Restore page protection if there was an OOB access. */
458         if (meta->unprotected_page) {
459                 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
460                 kfence_protect(meta->unprotected_page);
461                 meta->unprotected_page = 0;
462         }
463
464         /* Check canary bytes for memory corruption. */
465         for_each_canary(meta, check_canary_byte);
466
467         /*
468          * Clear memory if init-on-free is set. While we protect the page, the
469          * data is still there, and after a use-after-free is detected, we
470          * unprotect the page, so the data is still accessible.
471          */
472         if (!zombie && unlikely(slab_want_init_on_free(meta->cache)))
473                 memzero_explicit(addr, meta->size);
474
475         /* Mark the object as freed. */
476         metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
477
478         raw_spin_unlock_irqrestore(&meta->lock, flags);
479
480         alloc_covered_add(meta->alloc_stack_hash, -1);
481
482         /* Protect to detect use-after-frees. */
483         kfence_protect((unsigned long)addr);
484
485         kcsan_end_scoped_access(&assert_page_exclusive);
486         if (!zombie) {
487                 /* Add it to the tail of the freelist for reuse. */
488                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
489                 KFENCE_WARN_ON(!list_empty(&meta->list));
490                 list_add_tail(&meta->list, &kfence_freelist);
491                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
492
493                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
494                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
495         } else {
496                 /* See kfence_shutdown_cache(). */
497                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
498         }
499 }
500
501 static void rcu_guarded_free(struct rcu_head *h)
502 {
503         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
504
505         kfence_guarded_free((void *)meta->addr, meta, false);
506 }
507
508 static bool __init kfence_init_pool(void)
509 {
510         unsigned long addr = (unsigned long)__kfence_pool;
511         struct page *pages;
512         int i;
513         char *p;
514
515         if (!__kfence_pool)
516                 return false;
517
518         if (!arch_kfence_init_pool())
519                 goto err;
520
521         pages = virt_to_page(addr);
522
523         /*
524          * Set up object pages: they must have PG_slab set, to avoid freeing
525          * these as real pages.
526          *
527          * We also want to avoid inserting kfence_free() in the kfree()
528          * fast-path in SLUB, and therefore need to ensure kfree() correctly
529          * enters __slab_free() slow-path.
530          */
531         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
532                 struct page *page = &pages[i];
533
534                 if (!i || (i % 2))
535                         continue;
536
537                 /* Verify we do not have a compound head page. */
538                 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
539                         goto err;
540
541                 __SetPageSlab(page);
542 #ifdef CONFIG_MEMCG
543                 page->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
544                                    MEMCG_DATA_OBJCGS;
545 #endif
546         }
547
548         /*
549          * Protect the first 2 pages. The first page is mostly unnecessary, and
550          * merely serves as an extended guard page. However, adding one
551          * additional page in the beginning gives us an even number of pages,
552          * which simplifies the mapping of address to metadata index.
553          */
554         for (i = 0; i < 2; i++) {
555                 if (unlikely(!kfence_protect(addr)))
556                         goto err;
557
558                 addr += PAGE_SIZE;
559         }
560
561         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
562                 struct kfence_metadata *meta = &kfence_metadata[i];
563
564                 /* Initialize metadata. */
565                 INIT_LIST_HEAD(&meta->list);
566                 raw_spin_lock_init(&meta->lock);
567                 meta->state = KFENCE_OBJECT_UNUSED;
568                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
569                 list_add_tail(&meta->list, &kfence_freelist);
570
571                 /* Protect the right redzone. */
572                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
573                         goto err;
574
575                 addr += 2 * PAGE_SIZE;
576         }
577
578         /*
579          * The pool is live and will never be deallocated from this point on.
580          * Remove the pool object from the kmemleak object tree, as it would
581          * otherwise overlap with allocations returned by kfence_alloc(), which
582          * are registered with kmemleak through the slab post-alloc hook.
583          */
584         kmemleak_free(__kfence_pool);
585
586         return true;
587
588 err:
589         /*
590          * Only release unprotected pages, and do not try to go back and change
591          * page attributes due to risk of failing to do so as well. If changing
592          * page attributes for some pages fails, it is very likely that it also
593          * fails for the first page, and therefore expect addr==__kfence_pool in
594          * most failure cases.
595          */
596         for (p = (char *)addr; p < __kfence_pool + KFENCE_POOL_SIZE; p += PAGE_SIZE) {
597                 struct page *page = virt_to_page(p);
598
599                 if (!PageSlab(page))
600                         continue;
601 #ifdef CONFIG_MEMCG
602                 page->memcg_data = 0;
603 #endif
604                 __ClearPageSlab(page);
605         }
606         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
607         __kfence_pool = NULL;
608         return false;
609 }
610
611 /* === DebugFS Interface ==================================================== */
612
613 static int stats_show(struct seq_file *seq, void *v)
614 {
615         int i;
616
617         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
618         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
619                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
620
621         return 0;
622 }
623 DEFINE_SHOW_ATTRIBUTE(stats);
624
625 /*
626  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
627  * start_object() and next_object() return the object index + 1, because NULL is used
628  * to stop iteration.
629  */
630 static void *start_object(struct seq_file *seq, loff_t *pos)
631 {
632         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
633                 return (void *)((long)*pos + 1);
634         return NULL;
635 }
636
637 static void stop_object(struct seq_file *seq, void *v)
638 {
639 }
640
641 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
642 {
643         ++*pos;
644         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
645                 return (void *)((long)*pos + 1);
646         return NULL;
647 }
648
649 static int show_object(struct seq_file *seq, void *v)
650 {
651         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
652         unsigned long flags;
653
654         raw_spin_lock_irqsave(&meta->lock, flags);
655         kfence_print_object(seq, meta);
656         raw_spin_unlock_irqrestore(&meta->lock, flags);
657         seq_puts(seq, "---------------------------------\n");
658
659         return 0;
660 }
661
662 static const struct seq_operations object_seqops = {
663         .start = start_object,
664         .next = next_object,
665         .stop = stop_object,
666         .show = show_object,
667 };
668
669 static int open_objects(struct inode *inode, struct file *file)
670 {
671         return seq_open(file, &object_seqops);
672 }
673
674 static const struct file_operations objects_fops = {
675         .open = open_objects,
676         .read = seq_read,
677         .llseek = seq_lseek,
678         .release = seq_release,
679 };
680
681 static int __init kfence_debugfs_init(void)
682 {
683         struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
684
685         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
686         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
687         return 0;
688 }
689
690 late_initcall(kfence_debugfs_init);
691
692 /* === Allocation Gate Timer ================================================ */
693
694 #ifdef CONFIG_KFENCE_STATIC_KEYS
695 /* Wait queue to wake up allocation-gate timer task. */
696 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
697
698 static void wake_up_kfence_timer(struct irq_work *work)
699 {
700         wake_up(&allocation_wait);
701 }
702 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
703 #endif
704
705 /*
706  * Set up delayed work, which will enable and disable the static key. We need to
707  * use a work queue (rather than a simple timer), since enabling and disabling a
708  * static key cannot be done from an interrupt.
709  *
710  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
711  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
712  * more aggressive sampling intervals), we could get away with a variant that
713  * avoids IPIs, at the cost of not immediately capturing allocations if the
714  * instructions remain cached.
715  */
716 static struct delayed_work kfence_timer;
717 static void toggle_allocation_gate(struct work_struct *work)
718 {
719         if (!READ_ONCE(kfence_enabled))
720                 return;
721
722         atomic_set(&kfence_allocation_gate, 0);
723 #ifdef CONFIG_KFENCE_STATIC_KEYS
724         /* Enable static key, and await allocation to happen. */
725         static_branch_enable(&kfence_allocation_key);
726
727         if (sysctl_hung_task_timeout_secs) {
728                 /*
729                  * During low activity with no allocations we might wait a
730                  * while; let's avoid the hung task warning.
731                  */
732                 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
733                                         sysctl_hung_task_timeout_secs * HZ / 2);
734         } else {
735                 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
736         }
737
738         /* Disable static key and reset timer. */
739         static_branch_disable(&kfence_allocation_key);
740 #endif
741         queue_delayed_work(system_unbound_wq, &kfence_timer,
742                            msecs_to_jiffies(kfence_sample_interval));
743 }
744 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
745
746 /* === Public interface ===================================================== */
747
748 void __init kfence_alloc_pool(void)
749 {
750         if (!kfence_sample_interval)
751                 return;
752
753         __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
754
755         if (!__kfence_pool)
756                 pr_err("failed to allocate pool\n");
757 }
758
759 void __init kfence_init(void)
760 {
761         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
762         if (!kfence_sample_interval)
763                 return;
764
765         stack_hash_seed = (u32)random_get_entropy();
766         if (!kfence_init_pool()) {
767                 pr_err("%s failed\n", __func__);
768                 return;
769         }
770
771         if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
772                 static_branch_enable(&kfence_allocation_key);
773         WRITE_ONCE(kfence_enabled, true);
774         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
775         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
776                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
777                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
778 }
779
780 void kfence_shutdown_cache(struct kmem_cache *s)
781 {
782         unsigned long flags;
783         struct kfence_metadata *meta;
784         int i;
785
786         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
787                 bool in_use;
788
789                 meta = &kfence_metadata[i];
790
791                 /*
792                  * If we observe some inconsistent cache and state pair where we
793                  * should have returned false here, cache destruction is racing
794                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
795                  * the lock will not help, as different critical section
796                  * serialization will have the same outcome.
797                  */
798                 if (READ_ONCE(meta->cache) != s ||
799                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
800                         continue;
801
802                 raw_spin_lock_irqsave(&meta->lock, flags);
803                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
804                 raw_spin_unlock_irqrestore(&meta->lock, flags);
805
806                 if (in_use) {
807                         /*
808                          * This cache still has allocations, and we should not
809                          * release them back into the freelist so they can still
810                          * safely be used and retain the kernel's default
811                          * behaviour of keeping the allocations alive (leak the
812                          * cache); however, they effectively become "zombie
813                          * allocations" as the KFENCE objects are the only ones
814                          * still in use and the owning cache is being destroyed.
815                          *
816                          * We mark them freed, so that any subsequent use shows
817                          * more useful error messages that will include stack
818                          * traces of the user of the object, the original
819                          * allocation, and caller to shutdown_cache().
820                          */
821                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
822                 }
823         }
824
825         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
826                 meta = &kfence_metadata[i];
827
828                 /* See above. */
829                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
830                         continue;
831
832                 raw_spin_lock_irqsave(&meta->lock, flags);
833                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
834                         meta->cache = NULL;
835                 raw_spin_unlock_irqrestore(&meta->lock, flags);
836         }
837 }
838
839 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
840 {
841         unsigned long stack_entries[KFENCE_STACK_DEPTH];
842         size_t num_stack_entries;
843         u32 alloc_stack_hash;
844
845         /*
846          * Perform size check before switching kfence_allocation_gate, so that
847          * we don't disable KFENCE without making an allocation.
848          */
849         if (size > PAGE_SIZE) {
850                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
851                 return NULL;
852         }
853
854         /*
855          * Skip allocations from non-default zones, including DMA. We cannot
856          * guarantee that pages in the KFENCE pool will have the requested
857          * properties (e.g. reside in DMAable memory).
858          */
859         if ((flags & GFP_ZONEMASK) ||
860             (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
861                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
862                 return NULL;
863         }
864
865         if (atomic_inc_return(&kfence_allocation_gate) > 1)
866                 return NULL;
867 #ifdef CONFIG_KFENCE_STATIC_KEYS
868         /*
869          * waitqueue_active() is fully ordered after the update of
870          * kfence_allocation_gate per atomic_inc_return().
871          */
872         if (waitqueue_active(&allocation_wait)) {
873                 /*
874                  * Calling wake_up() here may deadlock when allocations happen
875                  * from within timer code. Use an irq_work to defer it.
876                  */
877                 irq_work_queue(&wake_up_kfence_timer_work);
878         }
879 #endif
880
881         if (!READ_ONCE(kfence_enabled))
882                 return NULL;
883
884         num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
885
886         /*
887          * Do expensive check for coverage of allocation in slow-path after
888          * allocation_gate has already become non-zero, even though it might
889          * mean not making any allocation within a given sample interval.
890          *
891          * This ensures reasonable allocation coverage when the pool is almost
892          * full, including avoiding long-lived allocations of the same source
893          * filling up the pool (e.g. pagecache allocations).
894          */
895         alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
896         if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
897                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
898                 return NULL;
899         }
900
901         return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
902                                     alloc_stack_hash);
903 }
904
905 size_t kfence_ksize(const void *addr)
906 {
907         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
908
909         /*
910          * Read locklessly -- if there is a race with __kfence_alloc(), this is
911          * either a use-after-free or invalid access.
912          */
913         return meta ? meta->size : 0;
914 }
915
916 void *kfence_object_start(const void *addr)
917 {
918         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
919
920         /*
921          * Read locklessly -- if there is a race with __kfence_alloc(), this is
922          * either a use-after-free or invalid access.
923          */
924         return meta ? (void *)meta->addr : NULL;
925 }
926
927 void __kfence_free(void *addr)
928 {
929         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
930
931 #ifdef CONFIG_MEMCG
932         KFENCE_WARN_ON(meta->objcg);
933 #endif
934         /*
935          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
936          * the object, as the object page may be recycled for other-typed
937          * objects once it has been freed. meta->cache may be NULL if the cache
938          * was destroyed.
939          */
940         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
941                 call_rcu(&meta->rcu_head, rcu_guarded_free);
942         else
943                 kfence_guarded_free(addr, meta, false);
944 }
945
946 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
947 {
948         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
949         struct kfence_metadata *to_report = NULL;
950         enum kfence_error_type error_type;
951         unsigned long flags;
952
953         if (!is_kfence_address((void *)addr))
954                 return false;
955
956         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
957                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
958
959         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
960
961         if (page_index % 2) {
962                 /* This is a redzone, report a buffer overflow. */
963                 struct kfence_metadata *meta;
964                 int distance = 0;
965
966                 meta = addr_to_metadata(addr - PAGE_SIZE);
967                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
968                         to_report = meta;
969                         /* Data race ok; distance calculation approximate. */
970                         distance = addr - data_race(meta->addr + meta->size);
971                 }
972
973                 meta = addr_to_metadata(addr + PAGE_SIZE);
974                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
975                         /* Data race ok; distance calculation approximate. */
976                         if (!to_report || distance > data_race(meta->addr) - addr)
977                                 to_report = meta;
978                 }
979
980                 if (!to_report)
981                         goto out;
982
983                 raw_spin_lock_irqsave(&to_report->lock, flags);
984                 to_report->unprotected_page = addr;
985                 error_type = KFENCE_ERROR_OOB;
986
987                 /*
988                  * If the object was freed before we took the look we can still
989                  * report this as an OOB -- the report will simply show the
990                  * stacktrace of the free as well.
991                  */
992         } else {
993                 to_report = addr_to_metadata(addr);
994                 if (!to_report)
995                         goto out;
996
997                 raw_spin_lock_irqsave(&to_report->lock, flags);
998                 error_type = KFENCE_ERROR_UAF;
999                 /*
1000                  * We may race with __kfence_alloc(), and it is possible that a
1001                  * freed object may be reallocated. We simply report this as a
1002                  * use-after-free, with the stack trace showing the place where
1003                  * the object was re-allocated.
1004                  */
1005         }
1006
1007 out:
1008         if (to_report) {
1009                 kfence_report_error(addr, is_write, regs, to_report, error_type);
1010                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1011         } else {
1012                 /* This may be a UAF or OOB access, but we can't be sure. */
1013                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1014         }
1015
1016         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1017 }