GNU Linux-libre 6.9-gnu
[releases.git] / mm / kasan / shadow.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26
27 #include "kasan.h"
28
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31         return kasan_check_range((void *)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37         return kasan_check_range((void *)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40
41 #if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
42 /*
43  * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
44  * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
45  * for the sites they want to instrument.
46  *
47  * If we have a compiler that can instrument meminstrinsics, never override
48  * these, so that non-instrumented files can safely consider them as builtins.
49  */
50 #undef memset
51 void *memset(void *addr, int c, size_t len)
52 {
53         if (!kasan_check_range(addr, len, true, _RET_IP_))
54                 return NULL;
55
56         return __memset(addr, c, len);
57 }
58
59 #ifdef __HAVE_ARCH_MEMMOVE
60 #undef memmove
61 void *memmove(void *dest, const void *src, size_t len)
62 {
63         if (!kasan_check_range(src, len, false, _RET_IP_) ||
64             !kasan_check_range(dest, len, true, _RET_IP_))
65                 return NULL;
66
67         return __memmove(dest, src, len);
68 }
69 #endif
70
71 #undef memcpy
72 void *memcpy(void *dest, const void *src, size_t len)
73 {
74         if (!kasan_check_range(src, len, false, _RET_IP_) ||
75             !kasan_check_range(dest, len, true, _RET_IP_))
76                 return NULL;
77
78         return __memcpy(dest, src, len);
79 }
80 #endif
81
82 void *__asan_memset(void *addr, int c, ssize_t len)
83 {
84         if (!kasan_check_range(addr, len, true, _RET_IP_))
85                 return NULL;
86
87         return __memset(addr, c, len);
88 }
89 EXPORT_SYMBOL(__asan_memset);
90
91 #ifdef __HAVE_ARCH_MEMMOVE
92 void *__asan_memmove(void *dest, const void *src, ssize_t len)
93 {
94         if (!kasan_check_range(src, len, false, _RET_IP_) ||
95             !kasan_check_range(dest, len, true, _RET_IP_))
96                 return NULL;
97
98         return __memmove(dest, src, len);
99 }
100 EXPORT_SYMBOL(__asan_memmove);
101 #endif
102
103 void *__asan_memcpy(void *dest, const void *src, ssize_t len)
104 {
105         if (!kasan_check_range(src, len, false, _RET_IP_) ||
106             !kasan_check_range(dest, len, true, _RET_IP_))
107                 return NULL;
108
109         return __memcpy(dest, src, len);
110 }
111 EXPORT_SYMBOL(__asan_memcpy);
112
113 #ifdef CONFIG_KASAN_SW_TAGS
114 void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
115 EXPORT_SYMBOL(__hwasan_memset);
116 #ifdef __HAVE_ARCH_MEMMOVE
117 void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
118 EXPORT_SYMBOL(__hwasan_memmove);
119 #endif
120 void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
121 EXPORT_SYMBOL(__hwasan_memcpy);
122 #endif
123
124 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
125 {
126         void *shadow_start, *shadow_end;
127
128         if (!kasan_arch_is_ready())
129                 return;
130
131         /*
132          * Perform shadow offset calculation based on untagged address, as
133          * some of the callers (e.g. kasan_poison_new_object) pass tagged
134          * addresses to this function.
135          */
136         addr = kasan_reset_tag(addr);
137
138         if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
139                 return;
140         if (WARN_ON(size & KASAN_GRANULE_MASK))
141                 return;
142
143         shadow_start = kasan_mem_to_shadow(addr);
144         shadow_end = kasan_mem_to_shadow(addr + size);
145
146         __memset(shadow_start, value, shadow_end - shadow_start);
147 }
148 EXPORT_SYMBOL_GPL(kasan_poison);
149
150 #ifdef CONFIG_KASAN_GENERIC
151 void kasan_poison_last_granule(const void *addr, size_t size)
152 {
153         if (!kasan_arch_is_ready())
154                 return;
155
156         if (size & KASAN_GRANULE_MASK) {
157                 u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
158                 *shadow = size & KASAN_GRANULE_MASK;
159         }
160 }
161 #endif
162
163 void kasan_unpoison(const void *addr, size_t size, bool init)
164 {
165         u8 tag = get_tag(addr);
166
167         /*
168          * Perform shadow offset calculation based on untagged address, as
169          * some of the callers (e.g. kasan_unpoison_new_object) pass tagged
170          * addresses to this function.
171          */
172         addr = kasan_reset_tag(addr);
173
174         if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
175                 return;
176
177         /* Unpoison all granules that cover the object. */
178         kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
179
180         /* Partially poison the last granule for the generic mode. */
181         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
182                 kasan_poison_last_granule(addr, size);
183 }
184
185 #ifdef CONFIG_MEMORY_HOTPLUG
186 static bool shadow_mapped(unsigned long addr)
187 {
188         pgd_t *pgd = pgd_offset_k(addr);
189         p4d_t *p4d;
190         pud_t *pud;
191         pmd_t *pmd;
192         pte_t *pte;
193
194         if (pgd_none(*pgd))
195                 return false;
196         p4d = p4d_offset(pgd, addr);
197         if (p4d_none(*p4d))
198                 return false;
199         pud = pud_offset(p4d, addr);
200         if (pud_none(*pud))
201                 return false;
202         if (pud_leaf(*pud))
203                 return true;
204         pmd = pmd_offset(pud, addr);
205         if (pmd_none(*pmd))
206                 return false;
207         if (pmd_leaf(*pmd))
208                 return true;
209         pte = pte_offset_kernel(pmd, addr);
210         return !pte_none(ptep_get(pte));
211 }
212
213 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
214                         unsigned long action, void *data)
215 {
216         struct memory_notify *mem_data = data;
217         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
218         unsigned long shadow_end, shadow_size;
219
220         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
221         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
222         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
223         shadow_size = nr_shadow_pages << PAGE_SHIFT;
224         shadow_end = shadow_start + shadow_size;
225
226         if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
227                 WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
228                 return NOTIFY_BAD;
229
230         switch (action) {
231         case MEM_GOING_ONLINE: {
232                 void *ret;
233
234                 /*
235                  * If shadow is mapped already than it must have been mapped
236                  * during the boot. This could happen if we onlining previously
237                  * offlined memory.
238                  */
239                 if (shadow_mapped(shadow_start))
240                         return NOTIFY_OK;
241
242                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
243                                         shadow_end, GFP_KERNEL,
244                                         PAGE_KERNEL, VM_NO_GUARD,
245                                         pfn_to_nid(mem_data->start_pfn),
246                                         __builtin_return_address(0));
247                 if (!ret)
248                         return NOTIFY_BAD;
249
250                 kmemleak_ignore(ret);
251                 return NOTIFY_OK;
252         }
253         case MEM_CANCEL_ONLINE:
254         case MEM_OFFLINE: {
255                 struct vm_struct *vm;
256
257                 /*
258                  * shadow_start was either mapped during boot by kasan_init()
259                  * or during memory online by __vmalloc_node_range().
260                  * In the latter case we can use vfree() to free shadow.
261                  * Non-NULL result of the find_vm_area() will tell us if
262                  * that was the second case.
263                  *
264                  * Currently it's not possible to free shadow mapped
265                  * during boot by kasan_init(). It's because the code
266                  * to do that hasn't been written yet. So we'll just
267                  * leak the memory.
268                  */
269                 vm = find_vm_area((void *)shadow_start);
270                 if (vm)
271                         vfree((void *)shadow_start);
272         }
273         }
274
275         return NOTIFY_OK;
276 }
277
278 static int __init kasan_memhotplug_init(void)
279 {
280         hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
281
282         return 0;
283 }
284
285 core_initcall(kasan_memhotplug_init);
286 #endif
287
288 #ifdef CONFIG_KASAN_VMALLOC
289
290 void __init __weak kasan_populate_early_vm_area_shadow(void *start,
291                                                        unsigned long size)
292 {
293 }
294
295 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
296                                       void *unused)
297 {
298         unsigned long page;
299         pte_t pte;
300
301         if (likely(!pte_none(ptep_get(ptep))))
302                 return 0;
303
304         page = __get_free_page(GFP_KERNEL);
305         if (!page)
306                 return -ENOMEM;
307
308         __memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
309         pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
310
311         spin_lock(&init_mm.page_table_lock);
312         if (likely(pte_none(ptep_get(ptep)))) {
313                 set_pte_at(&init_mm, addr, ptep, pte);
314                 page = 0;
315         }
316         spin_unlock(&init_mm.page_table_lock);
317         if (page)
318                 free_page(page);
319         return 0;
320 }
321
322 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
323 {
324         unsigned long shadow_start, shadow_end;
325         int ret;
326
327         if (!kasan_arch_is_ready())
328                 return 0;
329
330         if (!is_vmalloc_or_module_addr((void *)addr))
331                 return 0;
332
333         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
334         shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
335
336         /*
337          * User Mode Linux maps enough shadow memory for all of virtual memory
338          * at boot, so doesn't need to allocate more on vmalloc, just clear it.
339          *
340          * The remaining CONFIG_UML checks in this file exist for the same
341          * reason.
342          */
343         if (IS_ENABLED(CONFIG_UML)) {
344                 __memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
345                 return 0;
346         }
347
348         shadow_start = PAGE_ALIGN_DOWN(shadow_start);
349         shadow_end = PAGE_ALIGN(shadow_end);
350
351         ret = apply_to_page_range(&init_mm, shadow_start,
352                                   shadow_end - shadow_start,
353                                   kasan_populate_vmalloc_pte, NULL);
354         if (ret)
355                 return ret;
356
357         flush_cache_vmap(shadow_start, shadow_end);
358
359         /*
360          * We need to be careful about inter-cpu effects here. Consider:
361          *
362          *   CPU#0                                CPU#1
363          * WRITE_ONCE(p, vmalloc(100));         while (x = READ_ONCE(p)) ;
364          *                                      p[99] = 1;
365          *
366          * With compiler instrumentation, that ends up looking like this:
367          *
368          *   CPU#0                                CPU#1
369          * // vmalloc() allocates memory
370          * // let a = area->addr
371          * // we reach kasan_populate_vmalloc
372          * // and call kasan_unpoison:
373          * STORE shadow(a), unpoison_val
374          * ...
375          * STORE shadow(a+99), unpoison_val     x = LOAD p
376          * // rest of vmalloc process           <data dependency>
377          * STORE p, a                           LOAD shadow(x+99)
378          *
379          * If there is no barrier between the end of unpoisoning the shadow
380          * and the store of the result to p, the stores could be committed
381          * in a different order by CPU#0, and CPU#1 could erroneously observe
382          * poison in the shadow.
383          *
384          * We need some sort of barrier between the stores.
385          *
386          * In the vmalloc() case, this is provided by a smp_wmb() in
387          * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
388          * get_vm_area() and friends, the caller gets shadow allocated but
389          * doesn't have any pages mapped into the virtual address space that
390          * has been reserved. Mapping those pages in will involve taking and
391          * releasing a page-table lock, which will provide the barrier.
392          */
393
394         return 0;
395 }
396
397 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
398                                         void *unused)
399 {
400         unsigned long page;
401
402         page = (unsigned long)__va(pte_pfn(ptep_get(ptep)) << PAGE_SHIFT);
403
404         spin_lock(&init_mm.page_table_lock);
405
406         if (likely(!pte_none(ptep_get(ptep)))) {
407                 pte_clear(&init_mm, addr, ptep);
408                 free_page(page);
409         }
410         spin_unlock(&init_mm.page_table_lock);
411
412         return 0;
413 }
414
415 /*
416  * Release the backing for the vmalloc region [start, end), which
417  * lies within the free region [free_region_start, free_region_end).
418  *
419  * This can be run lazily, long after the region was freed. It runs
420  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
421  * infrastructure.
422  *
423  * How does this work?
424  * -------------------
425  *
426  * We have a region that is page aligned, labeled as A.
427  * That might not map onto the shadow in a way that is page-aligned:
428  *
429  *                    start                     end
430  *                    v                         v
431  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
432  *  -------- -------- --------          -------- --------
433  *      |        |       |                 |        |
434  *      |        |       |         /-------/        |
435  *      \-------\|/------/         |/---------------/
436  *              |||                ||
437  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
438  *                 (1)      (2)      (3)
439  *
440  * First we align the start upwards and the end downwards, so that the
441  * shadow of the region aligns with shadow page boundaries. In the
442  * example, this gives us the shadow page (2). This is the shadow entirely
443  * covered by this allocation.
444  *
445  * Then we have the tricky bits. We want to know if we can free the
446  * partially covered shadow pages - (1) and (3) in the example. For this,
447  * we are given the start and end of the free region that contains this
448  * allocation. Extending our previous example, we could have:
449  *
450  *  free_region_start                                    free_region_end
451  *  |                 start                     end      |
452  *  v                 v                         v        v
453  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
454  *  -------- -------- --------          -------- --------
455  *      |        |       |                 |        |
456  *      |        |       |         /-------/        |
457  *      \-------\|/------/         |/---------------/
458  *              |||                ||
459  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
460  *                 (1)      (2)      (3)
461  *
462  * Once again, we align the start of the free region up, and the end of
463  * the free region down so that the shadow is page aligned. So we can free
464  * page (1) - we know no allocation currently uses anything in that page,
465  * because all of it is in the vmalloc free region. But we cannot free
466  * page (3), because we can't be sure that the rest of it is unused.
467  *
468  * We only consider pages that contain part of the original region for
469  * freeing: we don't try to free other pages from the free region or we'd
470  * end up trying to free huge chunks of virtual address space.
471  *
472  * Concurrency
473  * -----------
474  *
475  * How do we know that we're not freeing a page that is simultaneously
476  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
477  *
478  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
479  * at the same time. While we run under free_vmap_area_lock, the population
480  * code does not.
481  *
482  * free_vmap_area_lock instead operates to ensure that the larger range
483  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
484  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
485  * no space identified as free will become used while we are running. This
486  * means that so long as we are careful with alignment and only free shadow
487  * pages entirely covered by the free region, we will not run in to any
488  * trouble - any simultaneous allocations will be for disjoint regions.
489  */
490 void kasan_release_vmalloc(unsigned long start, unsigned long end,
491                            unsigned long free_region_start,
492                            unsigned long free_region_end)
493 {
494         void *shadow_start, *shadow_end;
495         unsigned long region_start, region_end;
496         unsigned long size;
497
498         if (!kasan_arch_is_ready())
499                 return;
500
501         region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
502         region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
503
504         free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
505
506         if (start != region_start &&
507             free_region_start < region_start)
508                 region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
509
510         free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
511
512         if (end != region_end &&
513             free_region_end > region_end)
514                 region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
515
516         shadow_start = kasan_mem_to_shadow((void *)region_start);
517         shadow_end = kasan_mem_to_shadow((void *)region_end);
518
519         if (shadow_end > shadow_start) {
520                 size = shadow_end - shadow_start;
521                 if (IS_ENABLED(CONFIG_UML)) {
522                         __memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
523                         return;
524                 }
525                 apply_to_existing_page_range(&init_mm,
526                                              (unsigned long)shadow_start,
527                                              size, kasan_depopulate_vmalloc_pte,
528                                              NULL);
529                 flush_tlb_kernel_range((unsigned long)shadow_start,
530                                        (unsigned long)shadow_end);
531         }
532 }
533
534 void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
535                                kasan_vmalloc_flags_t flags)
536 {
537         /*
538          * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
539          * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
540          * Software KASAN modes can't optimize zeroing memory by combining it
541          * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
542          */
543
544         if (!kasan_arch_is_ready())
545                 return (void *)start;
546
547         if (!is_vmalloc_or_module_addr(start))
548                 return (void *)start;
549
550         /*
551          * Don't tag executable memory with the tag-based mode.
552          * The kernel doesn't tolerate having the PC register tagged.
553          */
554         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
555             !(flags & KASAN_VMALLOC_PROT_NORMAL))
556                 return (void *)start;
557
558         start = set_tag(start, kasan_random_tag());
559         kasan_unpoison(start, size, false);
560         return (void *)start;
561 }
562
563 /*
564  * Poison the shadow for a vmalloc region. Called as part of the
565  * freeing process at the time the region is freed.
566  */
567 void __kasan_poison_vmalloc(const void *start, unsigned long size)
568 {
569         if (!kasan_arch_is_ready())
570                 return;
571
572         if (!is_vmalloc_or_module_addr(start))
573                 return;
574
575         size = round_up(size, KASAN_GRANULE_SIZE);
576         kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
577 }
578
579 #else /* CONFIG_KASAN_VMALLOC */
580
581 int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
582 {
583         void *ret;
584         size_t scaled_size;
585         size_t shadow_size;
586         unsigned long shadow_start;
587
588         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
589         scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
590                                 KASAN_SHADOW_SCALE_SHIFT;
591         shadow_size = round_up(scaled_size, PAGE_SIZE);
592
593         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
594                 return -EINVAL;
595
596         if (IS_ENABLED(CONFIG_UML)) {
597                 __memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
598                 return 0;
599         }
600
601         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
602                         shadow_start + shadow_size,
603                         GFP_KERNEL,
604                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
605                         __builtin_return_address(0));
606
607         if (ret) {
608                 struct vm_struct *vm = find_vm_area(addr);
609                 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
610                 vm->flags |= VM_KASAN;
611                 kmemleak_ignore(ret);
612
613                 if (vm->flags & VM_DEFER_KMEMLEAK)
614                         kmemleak_vmalloc(vm, size, gfp_mask);
615
616                 return 0;
617         }
618
619         return -ENOMEM;
620 }
621
622 void kasan_free_module_shadow(const struct vm_struct *vm)
623 {
624         if (IS_ENABLED(CONFIG_UML))
625                 return;
626
627         if (vm->flags & VM_KASAN)
628                 vfree(kasan_mem_to_shadow(vm->addr));
629 }
630
631 #endif