GNU Linux-libre 4.14.324-gnu1
[releases.git] / mm / kasan / kasan.c
1 /*
2  * This file contains shadow memory manipulation code.
3  *
4  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
6  *
7  * Some code borrowed from https://github.com/xairy/kasan-prototype by
8  *        Andrey Konovalov <adech.fo@gmail.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #define DISABLE_BRANCH_PROFILING
18
19 #include <linux/export.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/kasan.h>
23 #include <linux/kernel.h>
24 #include <linux/kmemleak.h>
25 #include <linux/linkage.h>
26 #include <linux/memblock.h>
27 #include <linux/memory.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/printk.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/slab.h>
34 #include <linux/stacktrace.h>
35 #include <linux/string.h>
36 #include <linux/types.h>
37 #include <linux/vmalloc.h>
38 #include <linux/bug.h>
39
40 #include "kasan.h"
41 #include "../slab.h"
42
43 void kasan_enable_current(void)
44 {
45         current->kasan_depth++;
46 }
47
48 void kasan_disable_current(void)
49 {
50         current->kasan_depth--;
51 }
52
53 /*
54  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
55  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
56  */
57 static void kasan_poison_shadow(const void *address, size_t size, u8 value)
58 {
59         void *shadow_start, *shadow_end;
60
61         shadow_start = kasan_mem_to_shadow(address);
62         shadow_end = kasan_mem_to_shadow(address + size);
63
64         memset(shadow_start, value, shadow_end - shadow_start);
65 }
66
67 void kasan_unpoison_shadow(const void *address, size_t size)
68 {
69         kasan_poison_shadow(address, size, 0);
70
71         if (size & KASAN_SHADOW_MASK) {
72                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
73                 *shadow = size & KASAN_SHADOW_MASK;
74         }
75 }
76
77 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
78 {
79         void *base = task_stack_page(task);
80         size_t size = sp - base;
81
82         kasan_unpoison_shadow(base, size);
83 }
84
85 /* Unpoison the entire stack for a task. */
86 void kasan_unpoison_task_stack(struct task_struct *task)
87 {
88         __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
89 }
90
91 /* Unpoison the stack for the current task beyond a watermark sp value. */
92 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
93 {
94         /*
95          * Calculate the task stack base address.  Avoid using 'current'
96          * because this function is called by early resume code which hasn't
97          * yet set up the percpu register (%gs).
98          */
99         void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
100
101         kasan_unpoison_shadow(base, watermark - base);
102 }
103
104 /*
105  * Clear all poison for the region between the current SP and a provided
106  * watermark value, as is sometimes required prior to hand-crafted asm function
107  * returns in the middle of functions.
108  */
109 void kasan_unpoison_stack_above_sp_to(const void *watermark)
110 {
111         const void *sp = __builtin_frame_address(0);
112         size_t size = watermark - sp;
113
114         if (WARN_ON(sp > watermark))
115                 return;
116         kasan_unpoison_shadow(sp, size);
117 }
118
119 /*
120  * All functions below always inlined so compiler could
121  * perform better optimizations in each of __asan_loadX/__assn_storeX
122  * depending on memory access size X.
123  */
124
125 static __always_inline bool memory_is_poisoned_1(unsigned long addr)
126 {
127         s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
128
129         if (unlikely(shadow_value)) {
130                 s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
131                 return unlikely(last_accessible_byte >= shadow_value);
132         }
133
134         return false;
135 }
136
137 static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
138                                                 unsigned long size)
139 {
140         u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
141
142         /*
143          * Access crosses 8(shadow size)-byte boundary. Such access maps
144          * into 2 shadow bytes, so we need to check them both.
145          */
146         if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1))
147                 return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
148
149         return memory_is_poisoned_1(addr + size - 1);
150 }
151
152 static __always_inline bool memory_is_poisoned_16(unsigned long addr)
153 {
154         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
155
156         /* Unaligned 16-bytes access maps into 3 shadow bytes. */
157         if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
158                 return *shadow_addr || memory_is_poisoned_1(addr + 15);
159
160         return *shadow_addr;
161 }
162
163 static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
164                                         size_t size)
165 {
166         while (size) {
167                 if (unlikely(*start))
168                         return (unsigned long)start;
169                 start++;
170                 size--;
171         }
172
173         return 0;
174 }
175
176 static __always_inline unsigned long memory_is_nonzero(const void *start,
177                                                 const void *end)
178 {
179         unsigned int words;
180         unsigned long ret;
181         unsigned int prefix = (unsigned long)start % 8;
182
183         if (end - start <= 16)
184                 return bytes_is_nonzero(start, end - start);
185
186         if (prefix) {
187                 prefix = 8 - prefix;
188                 ret = bytes_is_nonzero(start, prefix);
189                 if (unlikely(ret))
190                         return ret;
191                 start += prefix;
192         }
193
194         words = (end - start) / 8;
195         while (words) {
196                 if (unlikely(*(u64 *)start))
197                         return bytes_is_nonzero(start, 8);
198                 start += 8;
199                 words--;
200         }
201
202         return bytes_is_nonzero(start, (end - start) % 8);
203 }
204
205 static __always_inline bool memory_is_poisoned_n(unsigned long addr,
206                                                 size_t size)
207 {
208         unsigned long ret;
209
210         ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
211                         kasan_mem_to_shadow((void *)addr + size - 1) + 1);
212
213         if (unlikely(ret)) {
214                 unsigned long last_byte = addr + size - 1;
215                 s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
216
217                 if (unlikely(ret != (unsigned long)last_shadow ||
218                         ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
219                         return true;
220         }
221         return false;
222 }
223
224 static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
225 {
226         if (__builtin_constant_p(size)) {
227                 switch (size) {
228                 case 1:
229                         return memory_is_poisoned_1(addr);
230                 case 2:
231                 case 4:
232                 case 8:
233                         return memory_is_poisoned_2_4_8(addr, size);
234                 case 16:
235                         return memory_is_poisoned_16(addr);
236                 default:
237                         BUILD_BUG();
238                 }
239         }
240
241         return memory_is_poisoned_n(addr, size);
242 }
243
244 static __always_inline void check_memory_region_inline(unsigned long addr,
245                                                 size_t size, bool write,
246                                                 unsigned long ret_ip)
247 {
248         if (unlikely(size == 0))
249                 return;
250
251         if (unlikely((void *)addr <
252                 kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
253                 kasan_report(addr, size, write, ret_ip);
254                 return;
255         }
256
257         if (likely(!memory_is_poisoned(addr, size)))
258                 return;
259
260         kasan_report(addr, size, write, ret_ip);
261 }
262
263 static void check_memory_region(unsigned long addr,
264                                 size_t size, bool write,
265                                 unsigned long ret_ip)
266 {
267         check_memory_region_inline(addr, size, write, ret_ip);
268 }
269
270 void kasan_check_read(const volatile void *p, unsigned int size)
271 {
272         check_memory_region((unsigned long)p, size, false, _RET_IP_);
273 }
274 EXPORT_SYMBOL(kasan_check_read);
275
276 void kasan_check_write(const volatile void *p, unsigned int size)
277 {
278         check_memory_region((unsigned long)p, size, true, _RET_IP_);
279 }
280 EXPORT_SYMBOL(kasan_check_write);
281
282 #undef memset
283 void *memset(void *addr, int c, size_t len)
284 {
285         check_memory_region((unsigned long)addr, len, true, _RET_IP_);
286
287         return __memset(addr, c, len);
288 }
289
290 #undef memmove
291 void *memmove(void *dest, const void *src, size_t len)
292 {
293         check_memory_region((unsigned long)src, len, false, _RET_IP_);
294         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
295
296         return __memmove(dest, src, len);
297 }
298
299 #undef memcpy
300 void *memcpy(void *dest, const void *src, size_t len)
301 {
302         check_memory_region((unsigned long)src, len, false, _RET_IP_);
303         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
304
305         return __memcpy(dest, src, len);
306 }
307
308 void kasan_alloc_pages(struct page *page, unsigned int order)
309 {
310         if (likely(!PageHighMem(page)))
311                 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
312 }
313
314 void kasan_free_pages(struct page *page, unsigned int order)
315 {
316         if (likely(!PageHighMem(page)))
317                 kasan_poison_shadow(page_address(page),
318                                 PAGE_SIZE << order,
319                                 KASAN_FREE_PAGE);
320 }
321
322 /*
323  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
324  * For larger allocations larger redzones are used.
325  */
326 static size_t optimal_redzone(size_t object_size)
327 {
328         int rz =
329                 object_size <= 64        - 16   ? 16 :
330                 object_size <= 128       - 32   ? 32 :
331                 object_size <= 512       - 64   ? 64 :
332                 object_size <= 4096      - 128  ? 128 :
333                 object_size <= (1 << 14) - 256  ? 256 :
334                 object_size <= (1 << 15) - 512  ? 512 :
335                 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
336         return rz;
337 }
338
339 void kasan_cache_create(struct kmem_cache *cache, size_t *size,
340                         unsigned long *flags)
341 {
342         int redzone_adjust;
343         int orig_size = *size;
344
345         /* Add alloc meta. */
346         cache->kasan_info.alloc_meta_offset = *size;
347         *size += sizeof(struct kasan_alloc_meta);
348
349         /* Add free meta. */
350         if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
351             cache->object_size < sizeof(struct kasan_free_meta)) {
352                 cache->kasan_info.free_meta_offset = *size;
353                 *size += sizeof(struct kasan_free_meta);
354         }
355         redzone_adjust = optimal_redzone(cache->object_size) -
356                 (*size - cache->object_size);
357
358         if (redzone_adjust > 0)
359                 *size += redzone_adjust;
360
361         *size = min(KMALLOC_MAX_SIZE, max(*size, cache->object_size +
362                                         optimal_redzone(cache->object_size)));
363
364         /*
365          * If the metadata doesn't fit, don't enable KASAN at all.
366          */
367         if (*size <= cache->kasan_info.alloc_meta_offset ||
368                         *size <= cache->kasan_info.free_meta_offset) {
369                 cache->kasan_info.alloc_meta_offset = 0;
370                 cache->kasan_info.free_meta_offset = 0;
371                 *size = orig_size;
372                 return;
373         }
374
375         *flags |= SLAB_KASAN;
376 }
377
378 void kasan_cache_shrink(struct kmem_cache *cache)
379 {
380         quarantine_remove_cache(cache);
381 }
382
383 void kasan_cache_shutdown(struct kmem_cache *cache)
384 {
385         quarantine_remove_cache(cache);
386 }
387
388 size_t kasan_metadata_size(struct kmem_cache *cache)
389 {
390         return (cache->kasan_info.alloc_meta_offset ?
391                 sizeof(struct kasan_alloc_meta) : 0) +
392                 (cache->kasan_info.free_meta_offset ?
393                 sizeof(struct kasan_free_meta) : 0);
394 }
395
396 void kasan_poison_slab(struct page *page)
397 {
398         kasan_poison_shadow(page_address(page),
399                         PAGE_SIZE << compound_order(page),
400                         KASAN_KMALLOC_REDZONE);
401 }
402
403 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
404 {
405         kasan_unpoison_shadow(object, cache->object_size);
406 }
407
408 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
409 {
410         kasan_poison_shadow(object,
411                         round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
412                         KASAN_KMALLOC_REDZONE);
413 }
414
415 static inline int in_irqentry_text(unsigned long ptr)
416 {
417         return (ptr >= (unsigned long)&__irqentry_text_start &&
418                 ptr < (unsigned long)&__irqentry_text_end) ||
419                 (ptr >= (unsigned long)&__softirqentry_text_start &&
420                  ptr < (unsigned long)&__softirqentry_text_end);
421 }
422
423 static inline void filter_irq_stacks(struct stack_trace *trace)
424 {
425         int i;
426
427         if (!trace->nr_entries)
428                 return;
429         for (i = 0; i < trace->nr_entries; i++)
430                 if (in_irqentry_text(trace->entries[i])) {
431                         /* Include the irqentry function into the stack. */
432                         trace->nr_entries = i + 1;
433                         break;
434                 }
435 }
436
437 static inline depot_stack_handle_t save_stack(gfp_t flags)
438 {
439         unsigned long entries[KASAN_STACK_DEPTH];
440         struct stack_trace trace = {
441                 .nr_entries = 0,
442                 .entries = entries,
443                 .max_entries = KASAN_STACK_DEPTH,
444                 .skip = 0
445         };
446
447         save_stack_trace(&trace);
448         filter_irq_stacks(&trace);
449         if (trace.nr_entries != 0 &&
450             trace.entries[trace.nr_entries-1] == ULONG_MAX)
451                 trace.nr_entries--;
452
453         return depot_save_stack(&trace, flags);
454 }
455
456 static inline void set_track(struct kasan_track *track, gfp_t flags)
457 {
458         track->pid = current->pid;
459         track->stack = save_stack(flags);
460 }
461
462 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
463                                         const void *object)
464 {
465         BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
466         return (void *)object + cache->kasan_info.alloc_meta_offset;
467 }
468
469 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
470                                       const void *object)
471 {
472         BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
473         return (void *)object + cache->kasan_info.free_meta_offset;
474 }
475
476 void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
477 {
478         struct kasan_alloc_meta *alloc_info;
479
480         if (!(cache->flags & SLAB_KASAN))
481                 return;
482
483         alloc_info = get_alloc_info(cache, object);
484         __memset(alloc_info, 0, sizeof(*alloc_info));
485 }
486
487 void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
488 {
489         kasan_kmalloc(cache, object, cache->object_size, flags);
490 }
491
492 static void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
493 {
494         unsigned long size = cache->object_size;
495         unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
496
497         /* RCU slabs could be legally used after free within the RCU period */
498         if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
499                 return;
500
501         kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
502 }
503
504 bool kasan_slab_free(struct kmem_cache *cache, void *object)
505 {
506         s8 shadow_byte;
507
508         /* RCU slabs could be legally used after free within the RCU period */
509         if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
510                 return false;
511
512         shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
513         if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
514                 kasan_report_double_free(cache, object,
515                                 __builtin_return_address(1));
516                 return true;
517         }
518
519         kasan_poison_slab_free(cache, object);
520
521         if (unlikely(!(cache->flags & SLAB_KASAN)))
522                 return false;
523
524         set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
525         quarantine_put(get_free_info(cache, object), cache);
526         return true;
527 }
528
529 void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
530                    gfp_t flags)
531 {
532         unsigned long redzone_start;
533         unsigned long redzone_end;
534
535         if (gfpflags_allow_blocking(flags))
536                 quarantine_reduce();
537
538         if (unlikely(object == NULL))
539                 return;
540
541         redzone_start = round_up((unsigned long)(object + size),
542                                 KASAN_SHADOW_SCALE_SIZE);
543         redzone_end = round_up((unsigned long)object + cache->object_size,
544                                 KASAN_SHADOW_SCALE_SIZE);
545
546         kasan_unpoison_shadow(object, size);
547         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
548                 KASAN_KMALLOC_REDZONE);
549
550         if (cache->flags & SLAB_KASAN)
551                 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
552 }
553 EXPORT_SYMBOL(kasan_kmalloc);
554
555 void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
556 {
557         struct page *page;
558         unsigned long redzone_start;
559         unsigned long redzone_end;
560
561         if (gfpflags_allow_blocking(flags))
562                 quarantine_reduce();
563
564         if (unlikely(ptr == NULL))
565                 return;
566
567         page = virt_to_page(ptr);
568         redzone_start = round_up((unsigned long)(ptr + size),
569                                 KASAN_SHADOW_SCALE_SIZE);
570         redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
571
572         kasan_unpoison_shadow(ptr, size);
573         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
574                 KASAN_PAGE_REDZONE);
575 }
576
577 void kasan_krealloc(const void *object, size_t size, gfp_t flags)
578 {
579         struct page *page;
580
581         if (unlikely(object == ZERO_SIZE_PTR))
582                 return;
583
584         page = virt_to_head_page(object);
585
586         if (unlikely(!PageSlab(page)))
587                 kasan_kmalloc_large(object, size, flags);
588         else
589                 kasan_kmalloc(page->slab_cache, object, size, flags);
590 }
591
592 void kasan_poison_kfree(void *ptr)
593 {
594         struct page *page;
595
596         page = virt_to_head_page(ptr);
597
598         if (unlikely(!PageSlab(page)))
599                 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
600                                 KASAN_FREE_PAGE);
601         else
602                 kasan_poison_slab_free(page->slab_cache, ptr);
603 }
604
605 void kasan_kfree_large(const void *ptr)
606 {
607         struct page *page = virt_to_page(ptr);
608
609         kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
610                         KASAN_FREE_PAGE);
611 }
612
613 int kasan_module_alloc(void *addr, size_t size)
614 {
615         void *ret;
616         size_t scaled_size;
617         size_t shadow_size;
618         unsigned long shadow_start;
619
620         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
621         scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
622         shadow_size = round_up(scaled_size, PAGE_SIZE);
623
624         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
625                 return -EINVAL;
626
627         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
628                         shadow_start + shadow_size,
629                         GFP_KERNEL | __GFP_ZERO,
630                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
631                         __builtin_return_address(0));
632
633         if (ret) {
634                 find_vm_area(addr)->flags |= VM_KASAN;
635                 kmemleak_ignore(ret);
636                 return 0;
637         }
638
639         return -ENOMEM;
640 }
641
642 void kasan_free_shadow(const struct vm_struct *vm)
643 {
644         if (vm->flags & VM_KASAN)
645                 vfree(kasan_mem_to_shadow(vm->addr));
646 }
647
648 static void register_global(struct kasan_global *global)
649 {
650         size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
651
652         kasan_unpoison_shadow(global->beg, global->size);
653
654         kasan_poison_shadow(global->beg + aligned_size,
655                 global->size_with_redzone - aligned_size,
656                 KASAN_GLOBAL_REDZONE);
657 }
658
659 void __asan_register_globals(struct kasan_global *globals, size_t size)
660 {
661         int i;
662
663         for (i = 0; i < size; i++)
664                 register_global(&globals[i]);
665 }
666 EXPORT_SYMBOL(__asan_register_globals);
667
668 void __asan_unregister_globals(struct kasan_global *globals, size_t size)
669 {
670 }
671 EXPORT_SYMBOL(__asan_unregister_globals);
672
673 #define DEFINE_ASAN_LOAD_STORE(size)                                    \
674         void __asan_load##size(unsigned long addr)                      \
675         {                                                               \
676                 check_memory_region_inline(addr, size, false, _RET_IP_);\
677         }                                                               \
678         EXPORT_SYMBOL(__asan_load##size);                               \
679         __alias(__asan_load##size)                                      \
680         void __asan_load##size##_noabort(unsigned long);                \
681         EXPORT_SYMBOL(__asan_load##size##_noabort);                     \
682         void __asan_store##size(unsigned long addr)                     \
683         {                                                               \
684                 check_memory_region_inline(addr, size, true, _RET_IP_); \
685         }                                                               \
686         EXPORT_SYMBOL(__asan_store##size);                              \
687         __alias(__asan_store##size)                                     \
688         void __asan_store##size##_noabort(unsigned long);               \
689         EXPORT_SYMBOL(__asan_store##size##_noabort)
690
691 DEFINE_ASAN_LOAD_STORE(1);
692 DEFINE_ASAN_LOAD_STORE(2);
693 DEFINE_ASAN_LOAD_STORE(4);
694 DEFINE_ASAN_LOAD_STORE(8);
695 DEFINE_ASAN_LOAD_STORE(16);
696
697 void __asan_loadN(unsigned long addr, size_t size)
698 {
699         check_memory_region(addr, size, false, _RET_IP_);
700 }
701 EXPORT_SYMBOL(__asan_loadN);
702
703 __alias(__asan_loadN)
704 void __asan_loadN_noabort(unsigned long, size_t);
705 EXPORT_SYMBOL(__asan_loadN_noabort);
706
707 void __asan_storeN(unsigned long addr, size_t size)
708 {
709         check_memory_region(addr, size, true, _RET_IP_);
710 }
711 EXPORT_SYMBOL(__asan_storeN);
712
713 __alias(__asan_storeN)
714 void __asan_storeN_noabort(unsigned long, size_t);
715 EXPORT_SYMBOL(__asan_storeN_noabort);
716
717 /* to shut up compiler complaints */
718 void __asan_handle_no_return(void) {}
719 EXPORT_SYMBOL(__asan_handle_no_return);
720
721 /* Emitted by compiler to poison large objects when they go out of scope. */
722 void __asan_poison_stack_memory(const void *addr, size_t size)
723 {
724         /*
725          * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
726          * by redzones, so we simply round up size to simplify logic.
727          */
728         kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
729                             KASAN_USE_AFTER_SCOPE);
730 }
731 EXPORT_SYMBOL(__asan_poison_stack_memory);
732
733 /* Emitted by compiler to unpoison large objects when they go into scope. */
734 void __asan_unpoison_stack_memory(const void *addr, size_t size)
735 {
736         kasan_unpoison_shadow(addr, size);
737 }
738 EXPORT_SYMBOL(__asan_unpoison_stack_memory);
739
740 #ifdef CONFIG_MEMORY_HOTPLUG
741 static bool shadow_mapped(unsigned long addr)
742 {
743         pgd_t *pgd = pgd_offset_k(addr);
744         p4d_t *p4d;
745         pud_t *pud;
746         pmd_t *pmd;
747         pte_t *pte;
748
749         if (pgd_none(*pgd))
750                 return false;
751         p4d = p4d_offset(pgd, addr);
752         if (p4d_none(*p4d))
753                 return false;
754         pud = pud_offset(p4d, addr);
755         if (pud_none(*pud))
756                 return false;
757
758         /*
759          * We can't use pud_large() or pud_huge(), the first one is
760          * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
761          * pud_bad(), if pud is bad then it's bad because it's huge.
762          */
763         if (pud_bad(*pud))
764                 return true;
765         pmd = pmd_offset(pud, addr);
766         if (pmd_none(*pmd))
767                 return false;
768
769         if (pmd_bad(*pmd))
770                 return true;
771         pte = pte_offset_kernel(pmd, addr);
772         return !pte_none(*pte);
773 }
774
775 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
776                         unsigned long action, void *data)
777 {
778         struct memory_notify *mem_data = data;
779         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
780         unsigned long shadow_end, shadow_size;
781
782         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
783         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
784         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
785         shadow_size = nr_shadow_pages << PAGE_SHIFT;
786         shadow_end = shadow_start + shadow_size;
787
788         if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
789                 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
790                 return NOTIFY_BAD;
791
792         switch (action) {
793         case MEM_GOING_ONLINE: {
794                 void *ret;
795
796                 /*
797                  * If shadow is mapped already than it must have been mapped
798                  * during the boot. This could happen if we onlining previously
799                  * offlined memory.
800                  */
801                 if (shadow_mapped(shadow_start))
802                         return NOTIFY_OK;
803
804                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
805                                         shadow_end, GFP_KERNEL,
806                                         PAGE_KERNEL, VM_NO_GUARD,
807                                         pfn_to_nid(mem_data->start_pfn),
808                                         __builtin_return_address(0));
809                 if (!ret)
810                         return NOTIFY_BAD;
811
812                 kmemleak_ignore(ret);
813                 return NOTIFY_OK;
814         }
815         case MEM_CANCEL_ONLINE:
816         case MEM_OFFLINE: {
817                 struct vm_struct *vm;
818
819                 /*
820                  * shadow_start was either mapped during boot by kasan_init()
821                  * or during memory online by __vmalloc_node_range().
822                  * In the latter case we can use vfree() to free shadow.
823                  * Non-NULL result of the find_vm_area() will tell us if
824                  * that was the second case.
825                  *
826                  * Currently it's not possible to free shadow mapped
827                  * during boot by kasan_init(). It's because the code
828                  * to do that hasn't been written yet. So we'll just
829                  * leak the memory.
830                  */
831                 vm = find_vm_area((void *)shadow_start);
832                 if (vm)
833                         vfree((void *)shadow_start);
834         }
835         }
836
837         return NOTIFY_OK;
838 }
839
840 static int __init kasan_memhotplug_init(void)
841 {
842         hotplug_memory_notifier(kasan_mem_notifier, 0);
843
844         return 0;
845 }
846
847 core_initcall(kasan_memhotplug_init);
848 #endif