GNU Linux-libre 4.9.333-gnu1
[releases.git] / mm / kasan / kasan.c
1 /*
2  * This file contains shadow memory manipulation code.
3  *
4  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
6  *
7  * Some code borrowed from https://github.com/xairy/kasan-prototype by
8  *        Andrey Konovalov <adech.fo@gmail.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #define DISABLE_BRANCH_PROFILING
18
19 #include <linux/export.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/kasan.h>
23 #include <linux/kernel.h>
24 #include <linux/kmemleak.h>
25 #include <linux/linkage.h>
26 #include <linux/memblock.h>
27 #include <linux/memory.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/printk.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/stacktrace.h>
34 #include <linux/string.h>
35 #include <linux/types.h>
36 #include <linux/vmalloc.h>
37 #include <linux/bug.h>
38
39 #include "kasan.h"
40 #include "../slab.h"
41
42 /*
43  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
44  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
45  */
46 static void kasan_poison_shadow(const void *address, size_t size, u8 value)
47 {
48         void *shadow_start, *shadow_end;
49
50         shadow_start = kasan_mem_to_shadow(address);
51         shadow_end = kasan_mem_to_shadow(address + size);
52
53         memset(shadow_start, value, shadow_end - shadow_start);
54 }
55
56 void kasan_unpoison_shadow(const void *address, size_t size)
57 {
58         kasan_poison_shadow(address, size, 0);
59
60         if (size & KASAN_SHADOW_MASK) {
61                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
62                 *shadow = size & KASAN_SHADOW_MASK;
63         }
64 }
65
66 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
67 {
68         void *base = task_stack_page(task);
69         size_t size = sp - base;
70
71         kasan_unpoison_shadow(base, size);
72 }
73
74 /* Unpoison the entire stack for a task. */
75 void kasan_unpoison_task_stack(struct task_struct *task)
76 {
77         __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
78 }
79
80 /* Unpoison the stack for the current task beyond a watermark sp value. */
81 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
82 {
83         /*
84          * Calculate the task stack base address.  Avoid using 'current'
85          * because this function is called by early resume code which hasn't
86          * yet set up the percpu register (%gs).
87          */
88         void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
89
90         kasan_unpoison_shadow(base, watermark - base);
91 }
92
93 /*
94  * Clear all poison for the region between the current SP and a provided
95  * watermark value, as is sometimes required prior to hand-crafted asm function
96  * returns in the middle of functions.
97  */
98 void kasan_unpoison_stack_above_sp_to(const void *watermark)
99 {
100         const void *sp = __builtin_frame_address(0);
101         size_t size = watermark - sp;
102
103         if (WARN_ON(sp > watermark))
104                 return;
105         kasan_unpoison_shadow(sp, size);
106 }
107
108 /*
109  * All functions below always inlined so compiler could
110  * perform better optimizations in each of __asan_loadX/__assn_storeX
111  * depending on memory access size X.
112  */
113
114 static __always_inline bool memory_is_poisoned_1(unsigned long addr)
115 {
116         s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
117
118         if (unlikely(shadow_value)) {
119                 s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
120                 return unlikely(last_accessible_byte >= shadow_value);
121         }
122
123         return false;
124 }
125
126 static __always_inline bool memory_is_poisoned_2(unsigned long addr)
127 {
128         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
129
130         if (unlikely(*shadow_addr)) {
131                 if (memory_is_poisoned_1(addr + 1))
132                         return true;
133
134                 /*
135                  * If single shadow byte covers 2-byte access, we don't
136                  * need to do anything more. Otherwise, test the first
137                  * shadow byte.
138                  */
139                 if (likely(((addr + 1) & KASAN_SHADOW_MASK) != 0))
140                         return false;
141
142                 return unlikely(*(u8 *)shadow_addr);
143         }
144
145         return false;
146 }
147
148 static __always_inline bool memory_is_poisoned_4(unsigned long addr)
149 {
150         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
151
152         if (unlikely(*shadow_addr)) {
153                 if (memory_is_poisoned_1(addr + 3))
154                         return true;
155
156                 /*
157                  * If single shadow byte covers 4-byte access, we don't
158                  * need to do anything more. Otherwise, test the first
159                  * shadow byte.
160                  */
161                 if (likely(((addr + 3) & KASAN_SHADOW_MASK) >= 3))
162                         return false;
163
164                 return unlikely(*(u8 *)shadow_addr);
165         }
166
167         return false;
168 }
169
170 static __always_inline bool memory_is_poisoned_8(unsigned long addr)
171 {
172         u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
173
174         if (unlikely(*shadow_addr)) {
175                 if (memory_is_poisoned_1(addr + 7))
176                         return true;
177
178                 /*
179                  * If single shadow byte covers 8-byte access, we don't
180                  * need to do anything more. Otherwise, test the first
181                  * shadow byte.
182                  */
183                 if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
184                         return false;
185
186                 return unlikely(*(u8 *)shadow_addr);
187         }
188
189         return false;
190 }
191
192 static __always_inline bool memory_is_poisoned_16(unsigned long addr)
193 {
194         u32 *shadow_addr = (u32 *)kasan_mem_to_shadow((void *)addr);
195
196         if (unlikely(*shadow_addr)) {
197                 u16 shadow_first_bytes = *(u16 *)shadow_addr;
198
199                 if (unlikely(shadow_first_bytes))
200                         return true;
201
202                 /*
203                  * If two shadow bytes covers 16-byte access, we don't
204                  * need to do anything more. Otherwise, test the last
205                  * shadow byte.
206                  */
207                 if (likely(IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
208                         return false;
209
210                 return memory_is_poisoned_1(addr + 15);
211         }
212
213         return false;
214 }
215
216 static __always_inline unsigned long bytes_is_zero(const u8 *start,
217                                         size_t size)
218 {
219         while (size) {
220                 if (unlikely(*start))
221                         return (unsigned long)start;
222                 start++;
223                 size--;
224         }
225
226         return 0;
227 }
228
229 static __always_inline unsigned long memory_is_zero(const void *start,
230                                                 const void *end)
231 {
232         unsigned int words;
233         unsigned long ret;
234         unsigned int prefix = (unsigned long)start % 8;
235
236         if (end - start <= 16)
237                 return bytes_is_zero(start, end - start);
238
239         if (prefix) {
240                 prefix = 8 - prefix;
241                 ret = bytes_is_zero(start, prefix);
242                 if (unlikely(ret))
243                         return ret;
244                 start += prefix;
245         }
246
247         words = (end - start) / 8;
248         while (words) {
249                 if (unlikely(*(u64 *)start))
250                         return bytes_is_zero(start, 8);
251                 start += 8;
252                 words--;
253         }
254
255         return bytes_is_zero(start, (end - start) % 8);
256 }
257
258 static __always_inline bool memory_is_poisoned_n(unsigned long addr,
259                                                 size_t size)
260 {
261         unsigned long ret;
262
263         ret = memory_is_zero(kasan_mem_to_shadow((void *)addr),
264                         kasan_mem_to_shadow((void *)addr + size - 1) + 1);
265
266         if (unlikely(ret)) {
267                 unsigned long last_byte = addr + size - 1;
268                 s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
269
270                 if (unlikely(ret != (unsigned long)last_shadow ||
271                         ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
272                         return true;
273         }
274         return false;
275 }
276
277 static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
278 {
279         if (__builtin_constant_p(size)) {
280                 switch (size) {
281                 case 1:
282                         return memory_is_poisoned_1(addr);
283                 case 2:
284                         return memory_is_poisoned_2(addr);
285                 case 4:
286                         return memory_is_poisoned_4(addr);
287                 case 8:
288                         return memory_is_poisoned_8(addr);
289                 case 16:
290                         return memory_is_poisoned_16(addr);
291                 default:
292                         BUILD_BUG();
293                 }
294         }
295
296         return memory_is_poisoned_n(addr, size);
297 }
298
299 static __always_inline void check_memory_region_inline(unsigned long addr,
300                                                 size_t size, bool write,
301                                                 unsigned long ret_ip)
302 {
303         if (unlikely(size == 0))
304                 return;
305
306         if (unlikely((void *)addr <
307                 kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
308                 kasan_report(addr, size, write, ret_ip);
309                 return;
310         }
311
312         if (likely(!memory_is_poisoned(addr, size)))
313                 return;
314
315         kasan_report(addr, size, write, ret_ip);
316 }
317
318 static void check_memory_region(unsigned long addr,
319                                 size_t size, bool write,
320                                 unsigned long ret_ip)
321 {
322         check_memory_region_inline(addr, size, write, ret_ip);
323 }
324
325 void kasan_check_read(const void *p, unsigned int size)
326 {
327         check_memory_region((unsigned long)p, size, false, _RET_IP_);
328 }
329 EXPORT_SYMBOL(kasan_check_read);
330
331 void kasan_check_write(const void *p, unsigned int size)
332 {
333         check_memory_region((unsigned long)p, size, true, _RET_IP_);
334 }
335 EXPORT_SYMBOL(kasan_check_write);
336
337 #undef memset
338 void *memset(void *addr, int c, size_t len)
339 {
340         check_memory_region((unsigned long)addr, len, true, _RET_IP_);
341
342         return __memset(addr, c, len);
343 }
344
345 #undef memmove
346 void *memmove(void *dest, const void *src, size_t len)
347 {
348         check_memory_region((unsigned long)src, len, false, _RET_IP_);
349         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
350
351         return __memmove(dest, src, len);
352 }
353
354 #undef memcpy
355 void *memcpy(void *dest, const void *src, size_t len)
356 {
357         check_memory_region((unsigned long)src, len, false, _RET_IP_);
358         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
359
360         return __memcpy(dest, src, len);
361 }
362
363 void kasan_alloc_pages(struct page *page, unsigned int order)
364 {
365         if (likely(!PageHighMem(page)))
366                 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
367 }
368
369 void kasan_free_pages(struct page *page, unsigned int order)
370 {
371         if (likely(!PageHighMem(page)))
372                 kasan_poison_shadow(page_address(page),
373                                 PAGE_SIZE << order,
374                                 KASAN_FREE_PAGE);
375 }
376
377 /*
378  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
379  * For larger allocations larger redzones are used.
380  */
381 static size_t optimal_redzone(size_t object_size)
382 {
383         int rz =
384                 object_size <= 64        - 16   ? 16 :
385                 object_size <= 128       - 32   ? 32 :
386                 object_size <= 512       - 64   ? 64 :
387                 object_size <= 4096      - 128  ? 128 :
388                 object_size <= (1 << 14) - 256  ? 256 :
389                 object_size <= (1 << 15) - 512  ? 512 :
390                 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
391         return rz;
392 }
393
394 void kasan_cache_create(struct kmem_cache *cache, size_t *size,
395                         unsigned long *flags)
396 {
397         int redzone_adjust;
398         int orig_size = *size;
399
400         /* Add alloc meta. */
401         cache->kasan_info.alloc_meta_offset = *size;
402         *size += sizeof(struct kasan_alloc_meta);
403
404         /* Add free meta. */
405         if (cache->flags & SLAB_DESTROY_BY_RCU || cache->ctor ||
406             cache->object_size < sizeof(struct kasan_free_meta)) {
407                 cache->kasan_info.free_meta_offset = *size;
408                 *size += sizeof(struct kasan_free_meta);
409         }
410         redzone_adjust = optimal_redzone(cache->object_size) -
411                 (*size - cache->object_size);
412
413         if (redzone_adjust > 0)
414                 *size += redzone_adjust;
415
416         *size = min(KMALLOC_MAX_SIZE, max(*size, cache->object_size +
417                                         optimal_redzone(cache->object_size)));
418
419         /*
420          * If the metadata doesn't fit, don't enable KASAN at all.
421          */
422         if (*size <= cache->kasan_info.alloc_meta_offset ||
423                         *size <= cache->kasan_info.free_meta_offset) {
424                 cache->kasan_info.alloc_meta_offset = 0;
425                 cache->kasan_info.free_meta_offset = 0;
426                 *size = orig_size;
427                 return;
428         }
429
430         *flags |= SLAB_KASAN;
431 }
432
433 void kasan_cache_shrink(struct kmem_cache *cache)
434 {
435         quarantine_remove_cache(cache);
436 }
437
438 void kasan_cache_destroy(struct kmem_cache *cache)
439 {
440         quarantine_remove_cache(cache);
441 }
442
443 size_t kasan_metadata_size(struct kmem_cache *cache)
444 {
445         return (cache->kasan_info.alloc_meta_offset ?
446                 sizeof(struct kasan_alloc_meta) : 0) +
447                 (cache->kasan_info.free_meta_offset ?
448                 sizeof(struct kasan_free_meta) : 0);
449 }
450
451 void kasan_poison_slab(struct page *page)
452 {
453         kasan_poison_shadow(page_address(page),
454                         PAGE_SIZE << compound_order(page),
455                         KASAN_KMALLOC_REDZONE);
456 }
457
458 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
459 {
460         kasan_unpoison_shadow(object, cache->object_size);
461 }
462
463 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
464 {
465         kasan_poison_shadow(object,
466                         round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
467                         KASAN_KMALLOC_REDZONE);
468 }
469
470 static inline int in_irqentry_text(unsigned long ptr)
471 {
472         return (ptr >= (unsigned long)&__irqentry_text_start &&
473                 ptr < (unsigned long)&__irqentry_text_end) ||
474                 (ptr >= (unsigned long)&__softirqentry_text_start &&
475                  ptr < (unsigned long)&__softirqentry_text_end);
476 }
477
478 static inline void filter_irq_stacks(struct stack_trace *trace)
479 {
480         int i;
481
482         if (!trace->nr_entries)
483                 return;
484         for (i = 0; i < trace->nr_entries; i++)
485                 if (in_irqentry_text(trace->entries[i])) {
486                         /* Include the irqentry function into the stack. */
487                         trace->nr_entries = i + 1;
488                         break;
489                 }
490 }
491
492 static inline depot_stack_handle_t save_stack(gfp_t flags)
493 {
494         unsigned long entries[KASAN_STACK_DEPTH];
495         struct stack_trace trace = {
496                 .nr_entries = 0,
497                 .entries = entries,
498                 .max_entries = KASAN_STACK_DEPTH,
499                 .skip = 0
500         };
501
502         save_stack_trace(&trace);
503         filter_irq_stacks(&trace);
504         if (trace.nr_entries != 0 &&
505             trace.entries[trace.nr_entries-1] == ULONG_MAX)
506                 trace.nr_entries--;
507
508         return depot_save_stack(&trace, flags);
509 }
510
511 static inline void set_track(struct kasan_track *track, gfp_t flags)
512 {
513         track->pid = current->pid;
514         track->stack = save_stack(flags);
515 }
516
517 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
518                                         const void *object)
519 {
520         BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
521         return (void *)object + cache->kasan_info.alloc_meta_offset;
522 }
523
524 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
525                                       const void *object)
526 {
527         BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
528         return (void *)object + cache->kasan_info.free_meta_offset;
529 }
530
531 void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
532 {
533         struct kasan_alloc_meta *alloc_info;
534
535         if (!(cache->flags & SLAB_KASAN))
536                 return;
537
538         alloc_info = get_alloc_info(cache, object);
539         __memset(alloc_info, 0, sizeof(*alloc_info));
540 }
541
542 void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
543 {
544         kasan_kmalloc(cache, object, cache->object_size, flags);
545 }
546
547 static void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
548 {
549         unsigned long size = cache->object_size;
550         unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
551
552         /* RCU slabs could be legally used after free within the RCU period */
553         if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
554                 return;
555
556         kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
557 }
558
559 bool kasan_slab_free(struct kmem_cache *cache, void *object)
560 {
561         s8 shadow_byte;
562
563         /* RCU slabs could be legally used after free within the RCU period */
564         if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
565                 return false;
566
567         shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
568         if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
569                 kasan_report_double_free(cache, object, shadow_byte);
570                 return true;
571         }
572
573         kasan_poison_slab_free(cache, object);
574
575         if (unlikely(!(cache->flags & SLAB_KASAN)))
576                 return false;
577
578         set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
579         quarantine_put(get_free_info(cache, object), cache);
580         return true;
581 }
582
583 void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
584                    gfp_t flags)
585 {
586         unsigned long redzone_start;
587         unsigned long redzone_end;
588
589         if (gfpflags_allow_blocking(flags))
590                 quarantine_reduce();
591
592         if (unlikely(object == NULL))
593                 return;
594
595         redzone_start = round_up((unsigned long)(object + size),
596                                 KASAN_SHADOW_SCALE_SIZE);
597         redzone_end = round_up((unsigned long)object + cache->object_size,
598                                 KASAN_SHADOW_SCALE_SIZE);
599
600         kasan_unpoison_shadow(object, size);
601         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
602                 KASAN_KMALLOC_REDZONE);
603
604         if (cache->flags & SLAB_KASAN)
605                 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
606 }
607 EXPORT_SYMBOL(kasan_kmalloc);
608
609 void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
610 {
611         struct page *page;
612         unsigned long redzone_start;
613         unsigned long redzone_end;
614
615         if (gfpflags_allow_blocking(flags))
616                 quarantine_reduce();
617
618         if (unlikely(ptr == NULL))
619                 return;
620
621         page = virt_to_page(ptr);
622         redzone_start = round_up((unsigned long)(ptr + size),
623                                 KASAN_SHADOW_SCALE_SIZE);
624         redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
625
626         kasan_unpoison_shadow(ptr, size);
627         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
628                 KASAN_PAGE_REDZONE);
629 }
630
631 void kasan_krealloc(const void *object, size_t size, gfp_t flags)
632 {
633         struct page *page;
634
635         if (unlikely(object == ZERO_SIZE_PTR))
636                 return;
637
638         page = virt_to_head_page(object);
639
640         if (unlikely(!PageSlab(page)))
641                 kasan_kmalloc_large(object, size, flags);
642         else
643                 kasan_kmalloc(page->slab_cache, object, size, flags);
644 }
645
646 void kasan_poison_kfree(void *ptr)
647 {
648         struct page *page;
649
650         page = virt_to_head_page(ptr);
651
652         if (unlikely(!PageSlab(page)))
653                 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
654                                 KASAN_FREE_PAGE);
655         else
656                 kasan_poison_slab_free(page->slab_cache, ptr);
657 }
658
659 void kasan_kfree_large(const void *ptr)
660 {
661         struct page *page = virt_to_page(ptr);
662
663         kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
664                         KASAN_FREE_PAGE);
665 }
666
667 int kasan_module_alloc(void *addr, size_t size)
668 {
669         void *ret;
670         size_t scaled_size;
671         size_t shadow_size;
672         unsigned long shadow_start;
673
674         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
675         scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
676         shadow_size = round_up(scaled_size, PAGE_SIZE);
677
678         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
679                 return -EINVAL;
680
681         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
682                         shadow_start + shadow_size,
683                         GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
684                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
685                         __builtin_return_address(0));
686
687         if (ret) {
688                 find_vm_area(addr)->flags |= VM_KASAN;
689                 kmemleak_ignore(ret);
690                 return 0;
691         }
692
693         return -ENOMEM;
694 }
695
696 void kasan_free_shadow(const struct vm_struct *vm)
697 {
698         if (vm->flags & VM_KASAN)
699                 vfree(kasan_mem_to_shadow(vm->addr));
700 }
701
702 static void register_global(struct kasan_global *global)
703 {
704         size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
705
706         kasan_unpoison_shadow(global->beg, global->size);
707
708         kasan_poison_shadow(global->beg + aligned_size,
709                 global->size_with_redzone - aligned_size,
710                 KASAN_GLOBAL_REDZONE);
711 }
712
713 void __asan_register_globals(struct kasan_global *globals, size_t size)
714 {
715         int i;
716
717         for (i = 0; i < size; i++)
718                 register_global(&globals[i]);
719 }
720 EXPORT_SYMBOL(__asan_register_globals);
721
722 void __asan_unregister_globals(struct kasan_global *globals, size_t size)
723 {
724 }
725 EXPORT_SYMBOL(__asan_unregister_globals);
726
727 #define DEFINE_ASAN_LOAD_STORE(size)                                    \
728         void __asan_load##size(unsigned long addr)                      \
729         {                                                               \
730                 check_memory_region_inline(addr, size, false, _RET_IP_);\
731         }                                                               \
732         EXPORT_SYMBOL(__asan_load##size);                               \
733         __alias(__asan_load##size)                                      \
734         void __asan_load##size##_noabort(unsigned long);                \
735         EXPORT_SYMBOL(__asan_load##size##_noabort);                     \
736         void __asan_store##size(unsigned long addr)                     \
737         {                                                               \
738                 check_memory_region_inline(addr, size, true, _RET_IP_); \
739         }                                                               \
740         EXPORT_SYMBOL(__asan_store##size);                              \
741         __alias(__asan_store##size)                                     \
742         void __asan_store##size##_noabort(unsigned long);               \
743         EXPORT_SYMBOL(__asan_store##size##_noabort)
744
745 DEFINE_ASAN_LOAD_STORE(1);
746 DEFINE_ASAN_LOAD_STORE(2);
747 DEFINE_ASAN_LOAD_STORE(4);
748 DEFINE_ASAN_LOAD_STORE(8);
749 DEFINE_ASAN_LOAD_STORE(16);
750
751 void __asan_loadN(unsigned long addr, size_t size)
752 {
753         check_memory_region(addr, size, false, _RET_IP_);
754 }
755 EXPORT_SYMBOL(__asan_loadN);
756
757 __alias(__asan_loadN)
758 void __asan_loadN_noabort(unsigned long, size_t);
759 EXPORT_SYMBOL(__asan_loadN_noabort);
760
761 void __asan_storeN(unsigned long addr, size_t size)
762 {
763         check_memory_region(addr, size, true, _RET_IP_);
764 }
765 EXPORT_SYMBOL(__asan_storeN);
766
767 __alias(__asan_storeN)
768 void __asan_storeN_noabort(unsigned long, size_t);
769 EXPORT_SYMBOL(__asan_storeN_noabort);
770
771 /* to shut up compiler complaints */
772 void __asan_handle_no_return(void) {}
773 EXPORT_SYMBOL(__asan_handle_no_return);
774
775 /* Emitted by compiler to poison large objects when they go out of scope. */
776 void __asan_poison_stack_memory(const void *addr, size_t size)
777 {
778         /*
779          * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
780          * by redzones, so we simply round up size to simplify logic.
781          */
782         kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
783                             KASAN_USE_AFTER_SCOPE);
784 }
785 EXPORT_SYMBOL(__asan_poison_stack_memory);
786
787 /* Emitted by compiler to unpoison large objects when they go into scope. */
788 void __asan_unpoison_stack_memory(const void *addr, size_t size)
789 {
790         kasan_unpoison_shadow(addr, size);
791 }
792 EXPORT_SYMBOL(__asan_unpoison_stack_memory);
793
794 #ifdef CONFIG_MEMORY_HOTPLUG
795 static int kasan_mem_notifier(struct notifier_block *nb,
796                         unsigned long action, void *data)
797 {
798         return (action == MEM_GOING_ONLINE) ? NOTIFY_BAD : NOTIFY_OK;
799 }
800
801 static int __init kasan_memhotplug_init(void)
802 {
803         pr_info("WARNING: KASAN doesn't support memory hot-add\n");
804         pr_info("Memory hot-add will be disabled\n");
805
806         hotplug_memory_notifier(kasan_mem_notifier, 0);
807
808         return 0;
809 }
810
811 core_initcall(kasan_memhotplug_init);
812 #endif