GNU Linux-libre 6.9-gnu
[releases.git] / mm / kasan / common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/slab.h>
26 #include <linux/stackdepot.h>
27 #include <linux/stacktrace.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/bug.h>
31
32 #include "kasan.h"
33 #include "../slab.h"
34
35 struct slab *kasan_addr_to_slab(const void *addr)
36 {
37         if (virt_addr_valid(addr))
38                 return virt_to_slab(addr);
39         return NULL;
40 }
41
42 depot_stack_handle_t kasan_save_stack(gfp_t flags, depot_flags_t depot_flags)
43 {
44         unsigned long entries[KASAN_STACK_DEPTH];
45         unsigned int nr_entries;
46
47         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
48         return stack_depot_save_flags(entries, nr_entries, flags, depot_flags);
49 }
50
51 void kasan_set_track(struct kasan_track *track, depot_stack_handle_t stack)
52 {
53 #ifdef CONFIG_KASAN_EXTRA_INFO
54         u32 cpu = raw_smp_processor_id();
55         u64 ts_nsec = local_clock();
56
57         track->cpu = cpu;
58         track->timestamp = ts_nsec >> 9;
59 #endif /* CONFIG_KASAN_EXTRA_INFO */
60         track->pid = current->pid;
61         track->stack = stack;
62 }
63
64 void kasan_save_track(struct kasan_track *track, gfp_t flags)
65 {
66         depot_stack_handle_t stack;
67
68         stack = kasan_save_stack(flags, STACK_DEPOT_FLAG_CAN_ALLOC);
69         kasan_set_track(track, stack);
70 }
71
72 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
73 void kasan_enable_current(void)
74 {
75         current->kasan_depth++;
76 }
77 EXPORT_SYMBOL(kasan_enable_current);
78
79 void kasan_disable_current(void)
80 {
81         current->kasan_depth--;
82 }
83 EXPORT_SYMBOL(kasan_disable_current);
84
85 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
86
87 void __kasan_unpoison_range(const void *address, size_t size)
88 {
89         if (is_kfence_address(address))
90                 return;
91
92         kasan_unpoison(address, size, false);
93 }
94
95 #ifdef CONFIG_KASAN_STACK
96 /* Unpoison the entire stack for a task. */
97 void kasan_unpoison_task_stack(struct task_struct *task)
98 {
99         void *base = task_stack_page(task);
100
101         kasan_unpoison(base, THREAD_SIZE, false);
102 }
103
104 /* Unpoison the stack for the current task beyond a watermark sp value. */
105 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
106 {
107         /*
108          * Calculate the task stack base address.  Avoid using 'current'
109          * because this function is called by early resume code which hasn't
110          * yet set up the percpu register (%gs).
111          */
112         void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
113
114         kasan_unpoison(base, watermark - base, false);
115 }
116 #endif /* CONFIG_KASAN_STACK */
117
118 bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
119 {
120         u8 tag;
121         unsigned long i;
122
123         if (unlikely(PageHighMem(page)))
124                 return false;
125
126         if (!kasan_sample_page_alloc(order))
127                 return false;
128
129         tag = kasan_random_tag();
130         kasan_unpoison(set_tag(page_address(page), tag),
131                        PAGE_SIZE << order, init);
132         for (i = 0; i < (1 << order); i++)
133                 page_kasan_tag_set(page + i, tag);
134
135         return true;
136 }
137
138 void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
139 {
140         if (likely(!PageHighMem(page)))
141                 kasan_poison(page_address(page), PAGE_SIZE << order,
142                              KASAN_PAGE_FREE, init);
143 }
144
145 void __kasan_poison_slab(struct slab *slab)
146 {
147         struct page *page = slab_page(slab);
148         unsigned long i;
149
150         for (i = 0; i < compound_nr(page); i++)
151                 page_kasan_tag_reset(page + i);
152         kasan_poison(page_address(page), page_size(page),
153                      KASAN_SLAB_REDZONE, false);
154 }
155
156 void __kasan_unpoison_new_object(struct kmem_cache *cache, void *object)
157 {
158         kasan_unpoison(object, cache->object_size, false);
159 }
160
161 void __kasan_poison_new_object(struct kmem_cache *cache, void *object)
162 {
163         kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
164                         KASAN_SLAB_REDZONE, false);
165 }
166
167 /*
168  * This function assigns a tag to an object considering the following:
169  * 1. A cache might have a constructor, which might save a pointer to a slab
170  *    object somewhere (e.g. in the object itself). We preassign a tag for
171  *    each object in caches with constructors during slab creation and reuse
172  *    the same tag each time a particular object is allocated.
173  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
174  *    accessed after being freed. We preassign tags for objects in these
175  *    caches as well.
176  */
177 static inline u8 assign_tag(struct kmem_cache *cache,
178                                         const void *object, bool init)
179 {
180         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
181                 return 0xff;
182
183         /*
184          * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
185          * set, assign a tag when the object is being allocated (init == false).
186          */
187         if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
188                 return init ? KASAN_TAG_KERNEL : kasan_random_tag();
189
190         /*
191          * For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU,
192          * assign a random tag during slab creation, otherwise reuse
193          * the already assigned tag.
194          */
195         return init ? kasan_random_tag() : get_tag(object);
196 }
197
198 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
199                                                 const void *object)
200 {
201         /* Initialize per-object metadata if it is present. */
202         if (kasan_requires_meta())
203                 kasan_init_object_meta(cache, object);
204
205         /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
206         object = set_tag(object, assign_tag(cache, object, true));
207
208         return (void *)object;
209 }
210
211 static inline bool poison_slab_object(struct kmem_cache *cache, void *object,
212                                       unsigned long ip, bool init)
213 {
214         void *tagged_object;
215
216         if (!kasan_arch_is_ready())
217                 return false;
218
219         tagged_object = object;
220         object = kasan_reset_tag(object);
221
222         if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) {
223                 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE);
224                 return true;
225         }
226
227         /* RCU slabs could be legally used after free within the RCU period. */
228         if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
229                 return false;
230
231         if (!kasan_byte_accessible(tagged_object)) {
232                 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE);
233                 return true;
234         }
235
236         kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
237                         KASAN_SLAB_FREE, init);
238
239         if (kasan_stack_collection_enabled())
240                 kasan_save_free_info(cache, tagged_object);
241
242         return false;
243 }
244
245 bool __kasan_slab_free(struct kmem_cache *cache, void *object,
246                                 unsigned long ip, bool init)
247 {
248         if (is_kfence_address(object))
249                 return false;
250
251         /*
252          * If the object is buggy, do not let slab put the object onto the
253          * freelist. The object will thus never be allocated again and its
254          * metadata will never get released.
255          */
256         if (poison_slab_object(cache, object, ip, init))
257                 return true;
258
259         /*
260          * If the object is put into quarantine, do not let slab put the object
261          * onto the freelist for now. The object's metadata is kept until the
262          * object gets evicted from quarantine.
263          */
264         if (kasan_quarantine_put(cache, object))
265                 return true;
266
267         /*
268          * Note: Keep per-object metadata to allow KASAN print stack traces for
269          * use-after-free-before-realloc bugs.
270          */
271
272         /* Let slab put the object onto the freelist. */
273         return false;
274 }
275
276 static inline bool check_page_allocation(void *ptr, unsigned long ip)
277 {
278         if (!kasan_arch_is_ready())
279                 return false;
280
281         if (ptr != page_address(virt_to_head_page(ptr))) {
282                 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE);
283                 return true;
284         }
285
286         if (!kasan_byte_accessible(ptr)) {
287                 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE);
288                 return true;
289         }
290
291         return false;
292 }
293
294 void __kasan_kfree_large(void *ptr, unsigned long ip)
295 {
296         check_page_allocation(ptr, ip);
297
298         /* The object will be poisoned by kasan_poison_pages(). */
299 }
300
301 static inline void unpoison_slab_object(struct kmem_cache *cache, void *object,
302                                         gfp_t flags, bool init)
303 {
304         /*
305          * Unpoison the whole object. For kmalloc() allocations,
306          * poison_kmalloc_redzone() will do precise poisoning.
307          */
308         kasan_unpoison(object, cache->object_size, init);
309
310         /* Save alloc info (if possible) for non-kmalloc() allocations. */
311         if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache))
312                 kasan_save_alloc_info(cache, object, flags);
313 }
314
315 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
316                                         void *object, gfp_t flags, bool init)
317 {
318         u8 tag;
319         void *tagged_object;
320
321         if (gfpflags_allow_blocking(flags))
322                 kasan_quarantine_reduce();
323
324         if (unlikely(object == NULL))
325                 return NULL;
326
327         if (is_kfence_address(object))
328                 return (void *)object;
329
330         /*
331          * Generate and assign random tag for tag-based modes.
332          * Tag is ignored in set_tag() for the generic mode.
333          */
334         tag = assign_tag(cache, object, false);
335         tagged_object = set_tag(object, tag);
336
337         /* Unpoison the object and save alloc info for non-kmalloc() allocations. */
338         unpoison_slab_object(cache, tagged_object, flags, init);
339
340         return tagged_object;
341 }
342
343 static inline void poison_kmalloc_redzone(struct kmem_cache *cache,
344                                 const void *object, size_t size, gfp_t flags)
345 {
346         unsigned long redzone_start;
347         unsigned long redzone_end;
348
349         /*
350          * The redzone has byte-level precision for the generic mode.
351          * Partially poison the last object granule to cover the unaligned
352          * part of the redzone.
353          */
354         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
355                 kasan_poison_last_granule((void *)object, size);
356
357         /* Poison the aligned part of the redzone. */
358         redzone_start = round_up((unsigned long)(object + size),
359                                 KASAN_GRANULE_SIZE);
360         redzone_end = round_up((unsigned long)(object + cache->object_size),
361                                 KASAN_GRANULE_SIZE);
362         kasan_poison((void *)redzone_start, redzone_end - redzone_start,
363                            KASAN_SLAB_REDZONE, false);
364
365         /*
366          * Save alloc info (if possible) for kmalloc() allocations.
367          * This also rewrites the alloc info when called from kasan_krealloc().
368          */
369         if (kasan_stack_collection_enabled() && is_kmalloc_cache(cache))
370                 kasan_save_alloc_info(cache, (void *)object, flags);
371
372 }
373
374 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
375                                         size_t size, gfp_t flags)
376 {
377         if (gfpflags_allow_blocking(flags))
378                 kasan_quarantine_reduce();
379
380         if (unlikely(object == NULL))
381                 return NULL;
382
383         if (is_kfence_address(object))
384                 return (void *)object;
385
386         /* The object has already been unpoisoned by kasan_slab_alloc(). */
387         poison_kmalloc_redzone(cache, object, size, flags);
388
389         /* Keep the tag that was set by kasan_slab_alloc(). */
390         return (void *)object;
391 }
392 EXPORT_SYMBOL(__kasan_kmalloc);
393
394 static inline void poison_kmalloc_large_redzone(const void *ptr, size_t size,
395                                                 gfp_t flags)
396 {
397         unsigned long redzone_start;
398         unsigned long redzone_end;
399
400         /*
401          * The redzone has byte-level precision for the generic mode.
402          * Partially poison the last object granule to cover the unaligned
403          * part of the redzone.
404          */
405         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
406                 kasan_poison_last_granule(ptr, size);
407
408         /* Poison the aligned part of the redzone. */
409         redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE);
410         redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
411         kasan_poison((void *)redzone_start, redzone_end - redzone_start,
412                      KASAN_PAGE_REDZONE, false);
413 }
414
415 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
416                                                 gfp_t flags)
417 {
418         if (gfpflags_allow_blocking(flags))
419                 kasan_quarantine_reduce();
420
421         if (unlikely(ptr == NULL))
422                 return NULL;
423
424         /* The object has already been unpoisoned by kasan_unpoison_pages(). */
425         poison_kmalloc_large_redzone(ptr, size, flags);
426
427         /* Keep the tag that was set by alloc_pages(). */
428         return (void *)ptr;
429 }
430
431 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
432 {
433         struct slab *slab;
434
435         if (gfpflags_allow_blocking(flags))
436                 kasan_quarantine_reduce();
437
438         if (unlikely(object == ZERO_SIZE_PTR))
439                 return (void *)object;
440
441         if (is_kfence_address(object))
442                 return (void *)object;
443
444         /*
445          * Unpoison the object's data.
446          * Part of it might already have been unpoisoned, but it's unknown
447          * how big that part is.
448          */
449         kasan_unpoison(object, size, false);
450
451         slab = virt_to_slab(object);
452
453         /* Piggy-back on kmalloc() instrumentation to poison the redzone. */
454         if (unlikely(!slab))
455                 poison_kmalloc_large_redzone(object, size, flags);
456         else
457                 poison_kmalloc_redzone(slab->slab_cache, object, size, flags);
458
459         return (void *)object;
460 }
461
462 bool __kasan_mempool_poison_pages(struct page *page, unsigned int order,
463                                   unsigned long ip)
464 {
465         unsigned long *ptr;
466
467         if (unlikely(PageHighMem(page)))
468                 return true;
469
470         /* Bail out if allocation was excluded due to sampling. */
471         if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
472             page_kasan_tag(page) == KASAN_TAG_KERNEL)
473                 return true;
474
475         ptr = page_address(page);
476
477         if (check_page_allocation(ptr, ip))
478                 return false;
479
480         kasan_poison(ptr, PAGE_SIZE << order, KASAN_PAGE_FREE, false);
481
482         return true;
483 }
484
485 void __kasan_mempool_unpoison_pages(struct page *page, unsigned int order,
486                                     unsigned long ip)
487 {
488         __kasan_unpoison_pages(page, order, false);
489 }
490
491 bool __kasan_mempool_poison_object(void *ptr, unsigned long ip)
492 {
493         struct folio *folio = virt_to_folio(ptr);
494         struct slab *slab;
495
496         /*
497          * This function can be called for large kmalloc allocation that get
498          * their memory from page_alloc. Thus, the folio might not be a slab.
499          */
500         if (unlikely(!folio_test_slab(folio))) {
501                 if (check_page_allocation(ptr, ip))
502                         return false;
503                 kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false);
504                 return true;
505         }
506
507         if (is_kfence_address(ptr))
508                 return false;
509
510         slab = folio_slab(folio);
511         return !poison_slab_object(slab->slab_cache, ptr, ip, false);
512 }
513
514 void __kasan_mempool_unpoison_object(void *ptr, size_t size, unsigned long ip)
515 {
516         struct slab *slab;
517         gfp_t flags = 0; /* Might be executing under a lock. */
518
519         slab = virt_to_slab(ptr);
520
521         /*
522          * This function can be called for large kmalloc allocation that get
523          * their memory from page_alloc.
524          */
525         if (unlikely(!slab)) {
526                 kasan_unpoison(ptr, size, false);
527                 poison_kmalloc_large_redzone(ptr, size, flags);
528                 return;
529         }
530
531         if (is_kfence_address(ptr))
532                 return;
533
534         /* Unpoison the object and save alloc info for non-kmalloc() allocations. */
535         unpoison_slab_object(slab->slab_cache, ptr, size, flags);
536
537         /* Poison the redzone and save alloc info for kmalloc() allocations. */
538         if (is_kmalloc_cache(slab->slab_cache))
539                 poison_kmalloc_redzone(slab->slab_cache, ptr, size, flags);
540 }
541
542 bool __kasan_check_byte(const void *address, unsigned long ip)
543 {
544         if (!kasan_byte_accessible(address)) {
545                 kasan_report(address, 1, false, ip);
546                 return false;
547         }
548         return true;
549 }