Mention branches and keyring.
[releases.git] / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/parisc/mm/init.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright 1999 SuSE GmbH
7  *    changed by Philipp Rumpf
8  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9  *  Copyright 2004 Randolph Chung (tausq@debian.org)
10  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
11  *
12  */
13
14
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/memblock.h>
18 #include <linux/gfp.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>     /* for node_online_map */
25 #include <linux/pagemap.h>      /* for release_pages */
26 #include <linux/compat.h>
27
28 #include <asm/pgalloc.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33 #include <asm/msgbuf.h>
34 #include <asm/sparsemem.h>
35 #include <asm/asm-offsets.h>
36
37 extern int  data_start;
38 extern void parisc_kernel_start(void);  /* Kernel entry point in head.S */
39
40 #if CONFIG_PGTABLE_LEVELS == 3
41 pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
42 #endif
43
44 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
45 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));
46
47 static struct resource data_resource = {
48         .name   = "Kernel data",
49         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
50 };
51
52 static struct resource code_resource = {
53         .name   = "Kernel code",
54         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
55 };
56
57 static struct resource pdcdata_resource = {
58         .name   = "PDC data (Page Zero)",
59         .start  = 0,
60         .end    = 0x9ff,
61         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
62 };
63
64 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
65
66 /* The following array is initialized from the firmware specific
67  * information retrieved in kernel/inventory.c.
68  */
69
70 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
71 int npmem_ranges __initdata;
72
73 #ifdef CONFIG_64BIT
74 #define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
75 #else /* !CONFIG_64BIT */
76 #define MAX_MEM         (3584U*1024U*1024U)
77 #endif /* !CONFIG_64BIT */
78
79 static unsigned long mem_limit __read_mostly = MAX_MEM;
80
81 static void __init mem_limit_func(void)
82 {
83         char *cp, *end;
84         unsigned long limit;
85
86         /* We need this before __setup() functions are called */
87
88         limit = MAX_MEM;
89         for (cp = boot_command_line; *cp; ) {
90                 if (memcmp(cp, "mem=", 4) == 0) {
91                         cp += 4;
92                         limit = memparse(cp, &end);
93                         if (end != cp)
94                                 break;
95                         cp = end;
96                 } else {
97                         while (*cp != ' ' && *cp)
98                                 ++cp;
99                         while (*cp == ' ')
100                                 ++cp;
101                 }
102         }
103
104         if (limit < mem_limit)
105                 mem_limit = limit;
106 }
107
108 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
109
110 static void __init setup_bootmem(void)
111 {
112         unsigned long mem_max;
113 #ifndef CONFIG_SPARSEMEM
114         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
115         int npmem_holes;
116 #endif
117         int i, sysram_resource_count;
118
119         disable_sr_hashing(); /* Turn off space register hashing */
120
121         /*
122          * Sort the ranges. Since the number of ranges is typically
123          * small, and performance is not an issue here, just do
124          * a simple insertion sort.
125          */
126
127         for (i = 1; i < npmem_ranges; i++) {
128                 int j;
129
130                 for (j = i; j > 0; j--) {
131                         if (pmem_ranges[j-1].start_pfn <
132                             pmem_ranges[j].start_pfn) {
133
134                                 break;
135                         }
136                         swap(pmem_ranges[j-1], pmem_ranges[j]);
137                 }
138         }
139
140 #ifndef CONFIG_SPARSEMEM
141         /*
142          * Throw out ranges that are too far apart (controlled by
143          * MAX_GAP).
144          */
145
146         for (i = 1; i < npmem_ranges; i++) {
147                 if (pmem_ranges[i].start_pfn -
148                         (pmem_ranges[i-1].start_pfn +
149                          pmem_ranges[i-1].pages) > MAX_GAP) {
150                         npmem_ranges = i;
151                         printk("Large gap in memory detected (%ld pages). "
152                                "Consider turning on CONFIG_SPARSEMEM\n",
153                                pmem_ranges[i].start_pfn -
154                                (pmem_ranges[i-1].start_pfn +
155                                 pmem_ranges[i-1].pages));
156                         break;
157                 }
158         }
159 #endif
160
161         /* Print the memory ranges */
162         pr_info("Memory Ranges:\n");
163
164         for (i = 0; i < npmem_ranges; i++) {
165                 struct resource *res = &sysram_resources[i];
166                 unsigned long start;
167                 unsigned long size;
168
169                 size = (pmem_ranges[i].pages << PAGE_SHIFT);
170                 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
171                 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
172                         i, start, start + (size - 1), size >> 20);
173
174                 /* request memory resource */
175                 res->name = "System RAM";
176                 res->start = start;
177                 res->end = start + size - 1;
178                 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
179                 request_resource(&iomem_resource, res);
180         }
181
182         sysram_resource_count = npmem_ranges;
183
184         /*
185          * For 32 bit kernels we limit the amount of memory we can
186          * support, in order to preserve enough kernel address space
187          * for other purposes. For 64 bit kernels we don't normally
188          * limit the memory, but this mechanism can be used to
189          * artificially limit the amount of memory (and it is written
190          * to work with multiple memory ranges).
191          */
192
193         mem_limit_func();       /* check for "mem=" argument */
194
195         mem_max = 0;
196         for (i = 0; i < npmem_ranges; i++) {
197                 unsigned long rsize;
198
199                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
200                 if ((mem_max + rsize) > mem_limit) {
201                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
202                         if (mem_max == mem_limit)
203                                 npmem_ranges = i;
204                         else {
205                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
206                                                        - (mem_max >> PAGE_SHIFT);
207                                 npmem_ranges = i + 1;
208                                 mem_max = mem_limit;
209                         }
210                         break;
211                 }
212                 mem_max += rsize;
213         }
214
215         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
216
217 #ifndef CONFIG_SPARSEMEM
218         /* Merge the ranges, keeping track of the holes */
219         {
220                 unsigned long end_pfn;
221                 unsigned long hole_pages;
222
223                 npmem_holes = 0;
224                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
225                 for (i = 1; i < npmem_ranges; i++) {
226
227                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
228                         if (hole_pages) {
229                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
230                                 pmem_holes[npmem_holes++].pages = hole_pages;
231                                 end_pfn += hole_pages;
232                         }
233                         end_pfn += pmem_ranges[i].pages;
234                 }
235
236                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
237                 npmem_ranges = 1;
238         }
239 #endif
240
241         /*
242          * Initialize and free the full range of memory in each range.
243          */
244
245         max_pfn = 0;
246         for (i = 0; i < npmem_ranges; i++) {
247                 unsigned long start_pfn;
248                 unsigned long npages;
249                 unsigned long start;
250                 unsigned long size;
251
252                 start_pfn = pmem_ranges[i].start_pfn;
253                 npages = pmem_ranges[i].pages;
254
255                 start = start_pfn << PAGE_SHIFT;
256                 size = npages << PAGE_SHIFT;
257
258                 /* add system RAM memblock */
259                 memblock_add(start, size);
260
261                 if ((start_pfn + npages) > max_pfn)
262                         max_pfn = start_pfn + npages;
263         }
264
265         /*
266          * We can't use memblock top-down allocations because we only
267          * created the initial mapping up to KERNEL_INITIAL_SIZE in
268          * the assembly bootup code.
269          */
270         memblock_set_bottom_up(true);
271
272         /* IOMMU is always used to access "high mem" on those boxes
273          * that can support enough mem that a PCI device couldn't
274          * directly DMA to any physical addresses.
275          * ISA DMA support will need to revisit this.
276          */
277         max_low_pfn = max_pfn;
278
279         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
280
281 #define PDC_CONSOLE_IO_IODC_SIZE 32768
282
283         memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
284                                 PDC_CONSOLE_IO_IODC_SIZE));
285         memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
286                         (unsigned long)(_end - KERNEL_BINARY_TEXT_START));
287
288 #ifndef CONFIG_SPARSEMEM
289
290         /* reserve the holes */
291
292         for (i = 0; i < npmem_holes; i++) {
293                 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
294                                 (pmem_holes[i].pages << PAGE_SHIFT));
295         }
296 #endif
297
298 #ifdef CONFIG_BLK_DEV_INITRD
299         if (initrd_start) {
300                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
301                 if (__pa(initrd_start) < mem_max) {
302                         unsigned long initrd_reserve;
303
304                         if (__pa(initrd_end) > mem_max) {
305                                 initrd_reserve = mem_max - __pa(initrd_start);
306                         } else {
307                                 initrd_reserve = initrd_end - initrd_start;
308                         }
309                         initrd_below_start_ok = 1;
310                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
311
312                         memblock_reserve(__pa(initrd_start), initrd_reserve);
313                 }
314         }
315 #endif
316
317         data_resource.start =  virt_to_phys(&data_start);
318         data_resource.end = virt_to_phys(_end) - 1;
319         code_resource.start = virt_to_phys(_text);
320         code_resource.end = virt_to_phys(&data_start)-1;
321
322         /* We don't know which region the kernel will be in, so try
323          * all of them.
324          */
325         for (i = 0; i < sysram_resource_count; i++) {
326                 struct resource *res = &sysram_resources[i];
327                 request_resource(res, &code_resource);
328                 request_resource(res, &data_resource);
329         }
330         request_resource(&sysram_resources[0], &pdcdata_resource);
331
332         /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
333         pdc_pdt_init();
334
335         memblock_allow_resize();
336         memblock_dump_all();
337 }
338
339 static bool kernel_set_to_readonly;
340
341 static void __ref map_pages(unsigned long start_vaddr,
342                             unsigned long start_paddr, unsigned long size,
343                             pgprot_t pgprot, int force)
344 {
345         pmd_t *pmd;
346         pte_t *pg_table;
347         unsigned long end_paddr;
348         unsigned long start_pmd;
349         unsigned long start_pte;
350         unsigned long tmp1;
351         unsigned long tmp2;
352         unsigned long address;
353         unsigned long vaddr;
354         unsigned long ro_start;
355         unsigned long ro_end;
356         unsigned long kernel_start, kernel_end;
357
358         ro_start = __pa((unsigned long)_text);
359         ro_end   = __pa((unsigned long)&data_start);
360         kernel_start = __pa((unsigned long)&__init_begin);
361         kernel_end  = __pa((unsigned long)&_end);
362
363         end_paddr = start_paddr + size;
364
365         /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
366         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
367         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
368
369         address = start_paddr;
370         vaddr = start_vaddr;
371         while (address < end_paddr) {
372                 pgd_t *pgd = pgd_offset_k(vaddr);
373                 p4d_t *p4d = p4d_offset(pgd, vaddr);
374                 pud_t *pud = pud_offset(p4d, vaddr);
375
376 #if CONFIG_PGTABLE_LEVELS == 3
377                 if (pud_none(*pud)) {
378                         pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
379                                              PAGE_SIZE << PMD_TABLE_ORDER);
380                         if (!pmd)
381                                 panic("pmd allocation failed.\n");
382                         pud_populate(NULL, pud, pmd);
383                 }
384 #endif
385
386                 pmd = pmd_offset(pud, vaddr);
387                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
388                         if (pmd_none(*pmd)) {
389                                 pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
390                                 if (!pg_table)
391                                         panic("page table allocation failed\n");
392                                 pmd_populate_kernel(NULL, pmd, pg_table);
393                         }
394
395                         pg_table = pte_offset_kernel(pmd, vaddr);
396                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
397                                 pte_t pte;
398                                 pgprot_t prot;
399                                 bool huge = false;
400
401                                 if (force) {
402                                         prot = pgprot;
403                                 } else if (address < kernel_start || address >= kernel_end) {
404                                         /* outside kernel memory */
405                                         prot = PAGE_KERNEL;
406                                 } else if (!kernel_set_to_readonly) {
407                                         /* still initializing, allow writing to RO memory */
408                                         prot = PAGE_KERNEL_RWX;
409                                         huge = true;
410                                 } else if (address >= ro_start) {
411                                         /* Code (ro) and Data areas */
412                                         prot = (address < ro_end) ?
413                                                 PAGE_KERNEL_EXEC : PAGE_KERNEL;
414                                         huge = true;
415                                 } else {
416                                         prot = PAGE_KERNEL;
417                                 }
418
419                                 pte = __mk_pte(address, prot);
420                                 if (huge)
421                                         pte = pte_mkhuge(pte);
422
423                                 if (address >= end_paddr)
424                                         break;
425
426                                 set_pte(pg_table, pte);
427
428                                 address += PAGE_SIZE;
429                                 vaddr += PAGE_SIZE;
430                         }
431                         start_pte = 0;
432
433                         if (address >= end_paddr)
434                             break;
435                 }
436                 start_pmd = 0;
437         }
438 }
439
440 void __init set_kernel_text_rw(int enable_read_write)
441 {
442         unsigned long start = (unsigned long) __init_begin;
443         unsigned long end   = (unsigned long) &data_start;
444
445         map_pages(start, __pa(start), end-start,
446                 PAGE_KERNEL_RWX, enable_read_write ? 1:0);
447
448         /* force the kernel to see the new page table entries */
449         flush_cache_all();
450         flush_tlb_all();
451 }
452
453 void free_initmem(void)
454 {
455         unsigned long init_begin = (unsigned long)__init_begin;
456         unsigned long init_end = (unsigned long)__init_end;
457         unsigned long kernel_end  = (unsigned long)&_end;
458
459         /* Remap kernel text and data, but do not touch init section yet. */
460         kernel_set_to_readonly = true;
461         map_pages(init_end, __pa(init_end), kernel_end - init_end,
462                   PAGE_KERNEL, 0);
463
464         /* The init text pages are marked R-X.  We have to
465          * flush the icache and mark them RW-
466          *
467          * Do a dummy remap of the data section first (the data
468          * section is already PAGE_KERNEL) to pull in the TLB entries
469          * for map_kernel */
470         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
471                   PAGE_KERNEL_RWX, 1);
472         /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
473          * map_pages */
474         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
475                   PAGE_KERNEL, 1);
476
477         /* force the kernel to see the new TLB entries */
478         __flush_tlb_range(0, init_begin, kernel_end);
479
480         /* finally dump all the instructions which were cached, since the
481          * pages are no-longer executable */
482         flush_icache_range(init_begin, init_end);
483         
484         free_initmem_default(POISON_FREE_INITMEM);
485
486         /* set up a new led state on systems shipped LED State panel */
487         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
488 }
489
490
491 #ifdef CONFIG_STRICT_KERNEL_RWX
492 void mark_rodata_ro(void)
493 {
494         /* rodata memory was already mapped with KERNEL_RO access rights by
495            pagetable_init() and map_pages(). No need to do additional stuff here */
496         unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
497
498         pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
499 }
500 #endif
501
502
503 /*
504  * Just an arbitrary offset to serve as a "hole" between mapping areas
505  * (between top of physical memory and a potential pcxl dma mapping
506  * area, and below the vmalloc mapping area).
507  *
508  * The current 32K value just means that there will be a 32K "hole"
509  * between mapping areas. That means that  any out-of-bounds memory
510  * accesses will hopefully be caught. The vmalloc() routines leaves
511  * a hole of 4kB between each vmalloced area for the same reason.
512  */
513
514  /* Leave room for gateway page expansion */
515 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
516 #error KERNEL_MAP_START is in gateway reserved region
517 #endif
518 #define MAP_START (KERNEL_MAP_START)
519
520 #define VM_MAP_OFFSET  (32*1024)
521 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
522                                      & ~(VM_MAP_OFFSET-1)))
523
524 void *parisc_vmalloc_start __ro_after_init;
525 EXPORT_SYMBOL(parisc_vmalloc_start);
526
527 void __init mem_init(void)
528 {
529         /* Do sanity checks on IPC (compat) structures */
530         BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
531 #ifndef CONFIG_64BIT
532         BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
533         BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
534         BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
535 #endif
536 #ifdef CONFIG_COMPAT
537         BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
538         BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
539         BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
540         BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
541 #endif
542
543         /* Do sanity checks on page table constants */
544         BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
545         BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
546         BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
547         BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
548                         > BITS_PER_LONG);
549 #if CONFIG_PGTABLE_LEVELS == 3
550         BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD);
551 #else
552         BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD);
553 #endif
554
555 #ifdef CONFIG_64BIT
556         /* avoid ldil_%L() asm statements to sign-extend into upper 32-bits */
557         BUILD_BUG_ON(__PAGE_OFFSET >= 0x80000000);
558         BUILD_BUG_ON(TMPALIAS_MAP_START >= 0x80000000);
559 #endif
560
561         high_memory = __va((max_pfn << PAGE_SHIFT));
562         set_max_mapnr(max_low_pfn);
563         memblock_free_all();
564
565 #ifdef CONFIG_PA11
566         if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
567                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
568                 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
569                                                 + PCXL_DMA_MAP_SIZE);
570         } else
571 #endif
572                 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
573
574 #if 0
575         /*
576          * Do not expose the virtual kernel memory layout to userspace.
577          * But keep code for debugging purposes.
578          */
579         printk("virtual kernel memory layout:\n"
580                "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
581                "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
582                "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
583                "       .init : 0x%px - 0x%px   (%4ld kB)\n"
584                "       .data : 0x%px - 0x%px   (%4ld kB)\n"
585                "       .text : 0x%px - 0x%px   (%4ld kB)\n",
586
587                (void*)VMALLOC_START, (void*)VMALLOC_END,
588                (VMALLOC_END - VMALLOC_START) >> 20,
589
590                (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
591                (unsigned long)(FIXMAP_SIZE / 1024),
592
593                __va(0), high_memory,
594                ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
595
596                __init_begin, __init_end,
597                ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
598
599                _etext, _edata,
600                ((unsigned long)_edata - (unsigned long)_etext) >> 10,
601
602                _text, _etext,
603                ((unsigned long)_etext - (unsigned long)_text) >> 10);
604 #endif
605 }
606
607 unsigned long *empty_zero_page __ro_after_init;
608 EXPORT_SYMBOL(empty_zero_page);
609
610 /*
611  * pagetable_init() sets up the page tables
612  *
613  * Note that gateway_init() places the Linux gateway page at page 0.
614  * Since gateway pages cannot be dereferenced this has the desirable
615  * side effect of trapping those pesky NULL-reference errors in the
616  * kernel.
617  */
618 static void __init pagetable_init(void)
619 {
620         int range;
621
622         /* Map each physical memory range to its kernel vaddr */
623
624         for (range = 0; range < npmem_ranges; range++) {
625                 unsigned long start_paddr;
626                 unsigned long size;
627
628                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
629                 size = pmem_ranges[range].pages << PAGE_SHIFT;
630
631                 map_pages((unsigned long)__va(start_paddr), start_paddr,
632                           size, PAGE_KERNEL, 0);
633         }
634
635 #ifdef CONFIG_BLK_DEV_INITRD
636         if (initrd_end && initrd_end > mem_limit) {
637                 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
638                 map_pages(initrd_start, __pa(initrd_start),
639                           initrd_end - initrd_start, PAGE_KERNEL, 0);
640         }
641 #endif
642
643         empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
644         if (!empty_zero_page)
645                 panic("zero page allocation failed.\n");
646
647 }
648
649 static void __init gateway_init(void)
650 {
651         unsigned long linux_gateway_page_addr;
652         /* FIXME: This is 'const' in order to trick the compiler
653            into not treating it as DP-relative data. */
654         extern void * const linux_gateway_page;
655
656         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
657
658         /*
659          * Setup Linux Gateway page.
660          *
661          * The Linux gateway page will reside in kernel space (on virtual
662          * page 0), so it doesn't need to be aliased into user space.
663          */
664
665         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
666                   PAGE_SIZE, PAGE_GATEWAY, 1);
667 }
668
669 static void __init fixmap_init(void)
670 {
671         unsigned long addr = FIXMAP_START;
672         unsigned long end = FIXMAP_START + FIXMAP_SIZE;
673         pgd_t *pgd = pgd_offset_k(addr);
674         p4d_t *p4d = p4d_offset(pgd, addr);
675         pud_t *pud = pud_offset(p4d, addr);
676         pmd_t *pmd;
677
678         BUILD_BUG_ON(FIXMAP_SIZE > PMD_SIZE);
679
680 #if CONFIG_PGTABLE_LEVELS == 3
681         if (pud_none(*pud)) {
682                 pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
683                                      PAGE_SIZE << PMD_TABLE_ORDER);
684                 if (!pmd)
685                         panic("fixmap: pmd allocation failed.\n");
686                 pud_populate(NULL, pud, pmd);
687         }
688 #endif
689
690         pmd = pmd_offset(pud, addr);
691         do {
692                 pte_t *pte = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
693                 if (!pte)
694                         panic("fixmap: pte allocation failed.\n");
695
696                 pmd_populate_kernel(&init_mm, pmd, pte);
697
698                 addr += PAGE_SIZE;
699         } while (addr < end);
700 }
701
702 static void __init parisc_bootmem_free(void)
703 {
704         unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
705
706         max_zone_pfn[0] = memblock_end_of_DRAM();
707
708         free_area_init(max_zone_pfn);
709 }
710
711 void __init paging_init(void)
712 {
713         setup_bootmem();
714         pagetable_init();
715         gateway_init();
716         fixmap_init();
717         flush_cache_all_local(); /* start with known state */
718         flush_tlb_all_local(NULL);
719
720         sparse_init();
721         parisc_bootmem_free();
722 }
723
724 static void alloc_btlb(unsigned long start, unsigned long end, int *slot,
725                         unsigned long entry_info)
726 {
727         const int slot_max = btlb_info.fixed_range_info.num_comb;
728         int min_num_pages = btlb_info.min_size;
729         unsigned long size;
730
731         /* map at minimum 4 pages */
732         if (min_num_pages < 4)
733                 min_num_pages = 4;
734
735         size = HUGEPAGE_SIZE;
736         while (start < end && *slot < slot_max && size >= PAGE_SIZE) {
737                 /* starting address must have same alignment as size! */
738                 /* if correctly aligned and fits in double size, increase */
739                 if (((start & (2 * size - 1)) == 0) &&
740                     (end - start) >= (2 * size)) {
741                         size <<= 1;
742                         continue;
743                 }
744                 /* if current size alignment is too big, try smaller size */
745                 if ((start & (size - 1)) != 0) {
746                         size >>= 1;
747                         continue;
748                 }
749                 if ((end - start) >= size) {
750                         if ((size >> PAGE_SHIFT) >= min_num_pages)
751                                 pdc_btlb_insert(start >> PAGE_SHIFT, __pa(start) >> PAGE_SHIFT,
752                                         size >> PAGE_SHIFT, entry_info, *slot);
753                         (*slot)++;
754                         start += size;
755                         continue;
756                 }
757                 size /= 2;
758                 continue;
759         }
760 }
761
762 void btlb_init_per_cpu(void)
763 {
764         unsigned long s, t, e;
765         int slot;
766
767         /* BTLBs are not available on 64-bit CPUs */
768         if (IS_ENABLED(CONFIG_PA20))
769                 return;
770         else if (pdc_btlb_info(&btlb_info) < 0) {
771                 memset(&btlb_info, 0, sizeof btlb_info);
772         }
773
774         /* insert BLTLBs for code and data segments */
775         s = (uintptr_t) dereference_function_descriptor(&_stext);
776         e = (uintptr_t) dereference_function_descriptor(&_etext);
777         t = (uintptr_t) dereference_function_descriptor(&_sdata);
778         BUG_ON(t != e);
779
780         /* code segments */
781         slot = 0;
782         alloc_btlb(s, e, &slot, 0x13800000);
783
784         /* sanity check */
785         t = (uintptr_t) dereference_function_descriptor(&_edata);
786         e = (uintptr_t) dereference_function_descriptor(&__bss_start);
787         BUG_ON(t != e);
788
789         /* data segments */
790         s = (uintptr_t) dereference_function_descriptor(&_sdata);
791         e = (uintptr_t) dereference_function_descriptor(&__bss_stop);
792         alloc_btlb(s, e, &slot, 0x11800000);
793 }
794
795 #ifdef CONFIG_PA20
796
797 /*
798  * Currently, all PA20 chips have 18 bit protection IDs, which is the
799  * limiting factor (space ids are 32 bits).
800  */
801
802 #define NR_SPACE_IDS 262144
803
804 #else
805
806 /*
807  * Currently we have a one-to-one relationship between space IDs and
808  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
809  * support 15 bit protection IDs, so that is the limiting factor.
810  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
811  * probably not worth the effort for a special case here.
812  */
813
814 #define NR_SPACE_IDS 32768
815
816 #endif  /* !CONFIG_PA20 */
817
818 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
819 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
820
821 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
822 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
823 static unsigned long space_id_index;
824 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
825 static unsigned long dirty_space_ids;
826
827 static DEFINE_SPINLOCK(sid_lock);
828
829 unsigned long alloc_sid(void)
830 {
831         unsigned long index;
832
833         spin_lock(&sid_lock);
834
835         if (free_space_ids == 0) {
836                 if (dirty_space_ids != 0) {
837                         spin_unlock(&sid_lock);
838                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
839                         spin_lock(&sid_lock);
840                 }
841                 BUG_ON(free_space_ids == 0);
842         }
843
844         free_space_ids--;
845
846         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
847         space_id[BIT_WORD(index)] |= BIT_MASK(index);
848         space_id_index = index;
849
850         spin_unlock(&sid_lock);
851
852         return index << SPACEID_SHIFT;
853 }
854
855 void free_sid(unsigned long spaceid)
856 {
857         unsigned long index = spaceid >> SPACEID_SHIFT;
858         unsigned long *dirty_space_offset, mask;
859
860         dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
861         mask = BIT_MASK(index);
862
863         spin_lock(&sid_lock);
864
865         BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
866
867         *dirty_space_offset |= mask;
868         dirty_space_ids++;
869
870         spin_unlock(&sid_lock);
871 }
872
873
874 #ifdef CONFIG_SMP
875 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
876 {
877         int i;
878
879         /* NOTE: sid_lock must be held upon entry */
880
881         *ndirtyptr = dirty_space_ids;
882         if (dirty_space_ids != 0) {
883             for (i = 0; i < SID_ARRAY_SIZE; i++) {
884                 dirty_array[i] = dirty_space_id[i];
885                 dirty_space_id[i] = 0;
886             }
887             dirty_space_ids = 0;
888         }
889
890         return;
891 }
892
893 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
894 {
895         int i;
896
897         /* NOTE: sid_lock must be held upon entry */
898
899         if (ndirty != 0) {
900                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
901                         space_id[i] ^= dirty_array[i];
902                 }
903
904                 free_space_ids += ndirty;
905                 space_id_index = 0;
906         }
907 }
908
909 #else /* CONFIG_SMP */
910
911 static void recycle_sids(void)
912 {
913         int i;
914
915         /* NOTE: sid_lock must be held upon entry */
916
917         if (dirty_space_ids != 0) {
918                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
919                         space_id[i] ^= dirty_space_id[i];
920                         dirty_space_id[i] = 0;
921                 }
922
923                 free_space_ids += dirty_space_ids;
924                 dirty_space_ids = 0;
925                 space_id_index = 0;
926         }
927 }
928 #endif
929
930 /*
931  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
932  * purged, we can safely reuse the space ids that were released but
933  * not flushed from the tlb.
934  */
935
936 #ifdef CONFIG_SMP
937
938 static unsigned long recycle_ndirty;
939 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
940 static unsigned int recycle_inuse;
941
942 void flush_tlb_all(void)
943 {
944         int do_recycle;
945
946         do_recycle = 0;
947         spin_lock(&sid_lock);
948         __inc_irq_stat(irq_tlb_count);
949         if (dirty_space_ids > RECYCLE_THRESHOLD) {
950             BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
951             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
952             recycle_inuse++;
953             do_recycle++;
954         }
955         spin_unlock(&sid_lock);
956         on_each_cpu(flush_tlb_all_local, NULL, 1);
957         if (do_recycle) {
958             spin_lock(&sid_lock);
959             recycle_sids(recycle_ndirty,recycle_dirty_array);
960             recycle_inuse = 0;
961             spin_unlock(&sid_lock);
962         }
963 }
964 #else
965 void flush_tlb_all(void)
966 {
967         spin_lock(&sid_lock);
968         __inc_irq_stat(irq_tlb_count);
969         flush_tlb_all_local(NULL);
970         recycle_sids();
971         spin_unlock(&sid_lock);
972 }
973 #endif
974
975 static const pgprot_t protection_map[16] = {
976         [VM_NONE]                                       = PAGE_NONE,
977         [VM_READ]                                       = PAGE_READONLY,
978         [VM_WRITE]                                      = PAGE_NONE,
979         [VM_WRITE | VM_READ]                            = PAGE_READONLY,
980         [VM_EXEC]                                       = PAGE_EXECREAD,
981         [VM_EXEC | VM_READ]                             = PAGE_EXECREAD,
982         [VM_EXEC | VM_WRITE]                            = PAGE_EXECREAD,
983         [VM_EXEC | VM_WRITE | VM_READ]                  = PAGE_EXECREAD,
984         [VM_SHARED]                                     = PAGE_NONE,
985         [VM_SHARED | VM_READ]                           = PAGE_READONLY,
986         [VM_SHARED | VM_WRITE]                          = PAGE_WRITEONLY,
987         [VM_SHARED | VM_WRITE | VM_READ]                = PAGE_SHARED,
988         [VM_SHARED | VM_EXEC]                           = PAGE_EXECREAD,
989         [VM_SHARED | VM_EXEC | VM_READ]                 = PAGE_EXECREAD,
990         [VM_SHARED | VM_EXEC | VM_WRITE]                = PAGE_RWX,
991         [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]      = PAGE_RWX
992 };
993 DECLARE_VM_GET_PAGE_PROT