GNU Linux-libre 4.14.324-gnu1
[releases.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
32
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include "internal.h"
39
40 int hugepages_treat_as_movable;
41
42 int hugetlb_max_hstate __read_mostly;
43 unsigned int default_hstate_idx;
44 struct hstate hstates[HUGE_MAX_HSTATE];
45 /*
46  * Minimum page order among possible hugepage sizes, set to a proper value
47  * at boot time.
48  */
49 static unsigned int minimum_order __read_mostly = UINT_MAX;
50
51 __initdata LIST_HEAD(huge_boot_pages);
52
53 /* for command line parsing */
54 static struct hstate * __initdata parsed_hstate;
55 static unsigned long __initdata default_hstate_max_huge_pages;
56 static unsigned long __initdata default_hstate_size;
57 static bool __initdata parsed_valid_hugepagesz = true;
58
59 /*
60  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61  * free_huge_pages, and surplus_huge_pages.
62  */
63 DEFINE_SPINLOCK(hugetlb_lock);
64
65 /*
66  * Serializes faults on the same logical page.  This is used to
67  * prevent spurious OOMs when the hugepage pool is fully utilized.
68  */
69 static int num_fault_mutexes;
70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71
72 static inline bool PageHugeFreed(struct page *head)
73 {
74         return page_private(head + 4) == -1UL;
75 }
76
77 static inline void SetPageHugeFreed(struct page *head)
78 {
79         set_page_private(head + 4, -1UL);
80 }
81
82 static inline void ClearPageHugeFreed(struct page *head)
83 {
84         set_page_private(head + 4, 0);
85 }
86
87 /* Forward declaration */
88 static int hugetlb_acct_memory(struct hstate *h, long delta);
89
90 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
91 {
92         bool free = (spool->count == 0) && (spool->used_hpages == 0);
93
94         spin_unlock(&spool->lock);
95
96         /* If no pages are used, and no other handles to the subpool
97          * remain, give up any reservations mased on minimum size and
98          * free the subpool */
99         if (free) {
100                 if (spool->min_hpages != -1)
101                         hugetlb_acct_memory(spool->hstate,
102                                                 -spool->min_hpages);
103                 kfree(spool);
104         }
105 }
106
107 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
108                                                 long min_hpages)
109 {
110         struct hugepage_subpool *spool;
111
112         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
113         if (!spool)
114                 return NULL;
115
116         spin_lock_init(&spool->lock);
117         spool->count = 1;
118         spool->max_hpages = max_hpages;
119         spool->hstate = h;
120         spool->min_hpages = min_hpages;
121
122         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
123                 kfree(spool);
124                 return NULL;
125         }
126         spool->rsv_hpages = min_hpages;
127
128         return spool;
129 }
130
131 void hugepage_put_subpool(struct hugepage_subpool *spool)
132 {
133         spin_lock(&spool->lock);
134         BUG_ON(!spool->count);
135         spool->count--;
136         unlock_or_release_subpool(spool);
137 }
138
139 /*
140  * Subpool accounting for allocating and reserving pages.
141  * Return -ENOMEM if there are not enough resources to satisfy the
142  * the request.  Otherwise, return the number of pages by which the
143  * global pools must be adjusted (upward).  The returned value may
144  * only be different than the passed value (delta) in the case where
145  * a subpool minimum size must be manitained.
146  */
147 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
148                                       long delta)
149 {
150         long ret = delta;
151
152         if (!spool)
153                 return ret;
154
155         spin_lock(&spool->lock);
156
157         if (spool->max_hpages != -1) {          /* maximum size accounting */
158                 if ((spool->used_hpages + delta) <= spool->max_hpages)
159                         spool->used_hpages += delta;
160                 else {
161                         ret = -ENOMEM;
162                         goto unlock_ret;
163                 }
164         }
165
166         /* minimum size accounting */
167         if (spool->min_hpages != -1 && spool->rsv_hpages) {
168                 if (delta > spool->rsv_hpages) {
169                         /*
170                          * Asking for more reserves than those already taken on
171                          * behalf of subpool.  Return difference.
172                          */
173                         ret = delta - spool->rsv_hpages;
174                         spool->rsv_hpages = 0;
175                 } else {
176                         ret = 0;        /* reserves already accounted for */
177                         spool->rsv_hpages -= delta;
178                 }
179         }
180
181 unlock_ret:
182         spin_unlock(&spool->lock);
183         return ret;
184 }
185
186 /*
187  * Subpool accounting for freeing and unreserving pages.
188  * Return the number of global page reservations that must be dropped.
189  * The return value may only be different than the passed value (delta)
190  * in the case where a subpool minimum size must be maintained.
191  */
192 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
193                                        long delta)
194 {
195         long ret = delta;
196
197         if (!spool)
198                 return delta;
199
200         spin_lock(&spool->lock);
201
202         if (spool->max_hpages != -1)            /* maximum size accounting */
203                 spool->used_hpages -= delta;
204
205          /* minimum size accounting */
206         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
207                 if (spool->rsv_hpages + delta <= spool->min_hpages)
208                         ret = 0;
209                 else
210                         ret = spool->rsv_hpages + delta - spool->min_hpages;
211
212                 spool->rsv_hpages += delta;
213                 if (spool->rsv_hpages > spool->min_hpages)
214                         spool->rsv_hpages = spool->min_hpages;
215         }
216
217         /*
218          * If hugetlbfs_put_super couldn't free spool due to an outstanding
219          * quota reference, free it now.
220          */
221         unlock_or_release_subpool(spool);
222
223         return ret;
224 }
225
226 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
227 {
228         return HUGETLBFS_SB(inode->i_sb)->spool;
229 }
230
231 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
232 {
233         return subpool_inode(file_inode(vma->vm_file));
234 }
235
236 /*
237  * Region tracking -- allows tracking of reservations and instantiated pages
238  *                    across the pages in a mapping.
239  *
240  * The region data structures are embedded into a resv_map and protected
241  * by a resv_map's lock.  The set of regions within the resv_map represent
242  * reservations for huge pages, or huge pages that have already been
243  * instantiated within the map.  The from and to elements are huge page
244  * indicies into the associated mapping.  from indicates the starting index
245  * of the region.  to represents the first index past the end of  the region.
246  *
247  * For example, a file region structure with from == 0 and to == 4 represents
248  * four huge pages in a mapping.  It is important to note that the to element
249  * represents the first element past the end of the region. This is used in
250  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
251  *
252  * Interval notation of the form [from, to) will be used to indicate that
253  * the endpoint from is inclusive and to is exclusive.
254  */
255 struct file_region {
256         struct list_head link;
257         long from;
258         long to;
259 };
260
261 /*
262  * Add the huge page range represented by [f, t) to the reserve
263  * map.  In the normal case, existing regions will be expanded
264  * to accommodate the specified range.  Sufficient regions should
265  * exist for expansion due to the previous call to region_chg
266  * with the same range.  However, it is possible that region_del
267  * could have been called after region_chg and modifed the map
268  * in such a way that no region exists to be expanded.  In this
269  * case, pull a region descriptor from the cache associated with
270  * the map and use that for the new range.
271  *
272  * Return the number of new huge pages added to the map.  This
273  * number is greater than or equal to zero.
274  */
275 static long region_add(struct resv_map *resv, long f, long t)
276 {
277         struct list_head *head = &resv->regions;
278         struct file_region *rg, *nrg, *trg;
279         long add = 0;
280
281         spin_lock(&resv->lock);
282         /* Locate the region we are either in or before. */
283         list_for_each_entry(rg, head, link)
284                 if (f <= rg->to)
285                         break;
286
287         /*
288          * If no region exists which can be expanded to include the
289          * specified range, the list must have been modified by an
290          * interleving call to region_del().  Pull a region descriptor
291          * from the cache and use it for this range.
292          */
293         if (&rg->link == head || t < rg->from) {
294                 VM_BUG_ON(resv->region_cache_count <= 0);
295
296                 resv->region_cache_count--;
297                 nrg = list_first_entry(&resv->region_cache, struct file_region,
298                                         link);
299                 list_del(&nrg->link);
300
301                 nrg->from = f;
302                 nrg->to = t;
303                 list_add(&nrg->link, rg->link.prev);
304
305                 add += t - f;
306                 goto out_locked;
307         }
308
309         /* Round our left edge to the current segment if it encloses us. */
310         if (f > rg->from)
311                 f = rg->from;
312
313         /* Check for and consume any regions we now overlap with. */
314         nrg = rg;
315         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
316                 if (&rg->link == head)
317                         break;
318                 if (rg->from > t)
319                         break;
320
321                 /* If this area reaches higher then extend our area to
322                  * include it completely.  If this is not the first area
323                  * which we intend to reuse, free it. */
324                 if (rg->to > t)
325                         t = rg->to;
326                 if (rg != nrg) {
327                         /* Decrement return value by the deleted range.
328                          * Another range will span this area so that by
329                          * end of routine add will be >= zero
330                          */
331                         add -= (rg->to - rg->from);
332                         list_del(&rg->link);
333                         kfree(rg);
334                 }
335         }
336
337         add += (nrg->from - f);         /* Added to beginning of region */
338         nrg->from = f;
339         add += t - nrg->to;             /* Added to end of region */
340         nrg->to = t;
341
342 out_locked:
343         resv->adds_in_progress--;
344         spin_unlock(&resv->lock);
345         VM_BUG_ON(add < 0);
346         return add;
347 }
348
349 /*
350  * Examine the existing reserve map and determine how many
351  * huge pages in the specified range [f, t) are NOT currently
352  * represented.  This routine is called before a subsequent
353  * call to region_add that will actually modify the reserve
354  * map to add the specified range [f, t).  region_chg does
355  * not change the number of huge pages represented by the
356  * map.  However, if the existing regions in the map can not
357  * be expanded to represent the new range, a new file_region
358  * structure is added to the map as a placeholder.  This is
359  * so that the subsequent region_add call will have all the
360  * regions it needs and will not fail.
361  *
362  * Upon entry, region_chg will also examine the cache of region descriptors
363  * associated with the map.  If there are not enough descriptors cached, one
364  * will be allocated for the in progress add operation.
365  *
366  * Returns the number of huge pages that need to be added to the existing
367  * reservation map for the range [f, t).  This number is greater or equal to
368  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
369  * is needed and can not be allocated.
370  */
371 static long region_chg(struct resv_map *resv, long f, long t)
372 {
373         struct list_head *head = &resv->regions;
374         struct file_region *rg, *nrg = NULL;
375         long chg = 0;
376
377 retry:
378         spin_lock(&resv->lock);
379 retry_locked:
380         resv->adds_in_progress++;
381
382         /*
383          * Check for sufficient descriptors in the cache to accommodate
384          * the number of in progress add operations.
385          */
386         if (resv->adds_in_progress > resv->region_cache_count) {
387                 struct file_region *trg;
388
389                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
390                 /* Must drop lock to allocate a new descriptor. */
391                 resv->adds_in_progress--;
392                 spin_unlock(&resv->lock);
393
394                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
395                 if (!trg) {
396                         kfree(nrg);
397                         return -ENOMEM;
398                 }
399
400                 spin_lock(&resv->lock);
401                 list_add(&trg->link, &resv->region_cache);
402                 resv->region_cache_count++;
403                 goto retry_locked;
404         }
405
406         /* Locate the region we are before or in. */
407         list_for_each_entry(rg, head, link)
408                 if (f <= rg->to)
409                         break;
410
411         /* If we are below the current region then a new region is required.
412          * Subtle, allocate a new region at the position but make it zero
413          * size such that we can guarantee to record the reservation. */
414         if (&rg->link == head || t < rg->from) {
415                 if (!nrg) {
416                         resv->adds_in_progress--;
417                         spin_unlock(&resv->lock);
418                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
419                         if (!nrg)
420                                 return -ENOMEM;
421
422                         nrg->from = f;
423                         nrg->to   = f;
424                         INIT_LIST_HEAD(&nrg->link);
425                         goto retry;
426                 }
427
428                 list_add(&nrg->link, rg->link.prev);
429                 chg = t - f;
430                 goto out_nrg;
431         }
432
433         /* Round our left edge to the current segment if it encloses us. */
434         if (f > rg->from)
435                 f = rg->from;
436         chg = t - f;
437
438         /* Check for and consume any regions we now overlap with. */
439         list_for_each_entry(rg, rg->link.prev, link) {
440                 if (&rg->link == head)
441                         break;
442                 if (rg->from > t)
443                         goto out;
444
445                 /* We overlap with this area, if it extends further than
446                  * us then we must extend ourselves.  Account for its
447                  * existing reservation. */
448                 if (rg->to > t) {
449                         chg += rg->to - t;
450                         t = rg->to;
451                 }
452                 chg -= rg->to - rg->from;
453         }
454
455 out:
456         spin_unlock(&resv->lock);
457         /*  We already know we raced and no longer need the new region */
458         kfree(nrg);
459         return chg;
460 out_nrg:
461         spin_unlock(&resv->lock);
462         return chg;
463 }
464
465 /*
466  * Abort the in progress add operation.  The adds_in_progress field
467  * of the resv_map keeps track of the operations in progress between
468  * calls to region_chg and region_add.  Operations are sometimes
469  * aborted after the call to region_chg.  In such cases, region_abort
470  * is called to decrement the adds_in_progress counter.
471  *
472  * NOTE: The range arguments [f, t) are not needed or used in this
473  * routine.  They are kept to make reading the calling code easier as
474  * arguments will match the associated region_chg call.
475  */
476 static void region_abort(struct resv_map *resv, long f, long t)
477 {
478         spin_lock(&resv->lock);
479         VM_BUG_ON(!resv->region_cache_count);
480         resv->adds_in_progress--;
481         spin_unlock(&resv->lock);
482 }
483
484 /*
485  * Delete the specified range [f, t) from the reserve map.  If the
486  * t parameter is LONG_MAX, this indicates that ALL regions after f
487  * should be deleted.  Locate the regions which intersect [f, t)
488  * and either trim, delete or split the existing regions.
489  *
490  * Returns the number of huge pages deleted from the reserve map.
491  * In the normal case, the return value is zero or more.  In the
492  * case where a region must be split, a new region descriptor must
493  * be allocated.  If the allocation fails, -ENOMEM will be returned.
494  * NOTE: If the parameter t == LONG_MAX, then we will never split
495  * a region and possibly return -ENOMEM.  Callers specifying
496  * t == LONG_MAX do not need to check for -ENOMEM error.
497  */
498 static long region_del(struct resv_map *resv, long f, long t)
499 {
500         struct list_head *head = &resv->regions;
501         struct file_region *rg, *trg;
502         struct file_region *nrg = NULL;
503         long del = 0;
504
505 retry:
506         spin_lock(&resv->lock);
507         list_for_each_entry_safe(rg, trg, head, link) {
508                 /*
509                  * Skip regions before the range to be deleted.  file_region
510                  * ranges are normally of the form [from, to).  However, there
511                  * may be a "placeholder" entry in the map which is of the form
512                  * (from, to) with from == to.  Check for placeholder entries
513                  * at the beginning of the range to be deleted.
514                  */
515                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
516                         continue;
517
518                 if (rg->from >= t)
519                         break;
520
521                 if (f > rg->from && t < rg->to) { /* Must split region */
522                         /*
523                          * Check for an entry in the cache before dropping
524                          * lock and attempting allocation.
525                          */
526                         if (!nrg &&
527                             resv->region_cache_count > resv->adds_in_progress) {
528                                 nrg = list_first_entry(&resv->region_cache,
529                                                         struct file_region,
530                                                         link);
531                                 list_del(&nrg->link);
532                                 resv->region_cache_count--;
533                         }
534
535                         if (!nrg) {
536                                 spin_unlock(&resv->lock);
537                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
538                                 if (!nrg)
539                                         return -ENOMEM;
540                                 goto retry;
541                         }
542
543                         del += t - f;
544
545                         /* New entry for end of split region */
546                         nrg->from = t;
547                         nrg->to = rg->to;
548                         INIT_LIST_HEAD(&nrg->link);
549
550                         /* Original entry is trimmed */
551                         rg->to = f;
552
553                         list_add(&nrg->link, &rg->link);
554                         nrg = NULL;
555                         break;
556                 }
557
558                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
559                         del += rg->to - rg->from;
560                         list_del(&rg->link);
561                         kfree(rg);
562                         continue;
563                 }
564
565                 if (f <= rg->from) {    /* Trim beginning of region */
566                         del += t - rg->from;
567                         rg->from = t;
568                 } else {                /* Trim end of region */
569                         del += rg->to - f;
570                         rg->to = f;
571                 }
572         }
573
574         spin_unlock(&resv->lock);
575         kfree(nrg);
576         return del;
577 }
578
579 /*
580  * A rare out of memory error was encountered which prevented removal of
581  * the reserve map region for a page.  The huge page itself was free'ed
582  * and removed from the page cache.  This routine will adjust the subpool
583  * usage count, and the global reserve count if needed.  By incrementing
584  * these counts, the reserve map entry which could not be deleted will
585  * appear as a "reserved" entry instead of simply dangling with incorrect
586  * counts.
587  */
588 void hugetlb_fix_reserve_counts(struct inode *inode)
589 {
590         struct hugepage_subpool *spool = subpool_inode(inode);
591         long rsv_adjust;
592         bool reserved = false;
593
594         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
595         if (rsv_adjust > 0) {
596                 struct hstate *h = hstate_inode(inode);
597
598                 if (!hugetlb_acct_memory(h, 1))
599                         reserved = true;
600         } else if (!rsv_adjust) {
601                 reserved = true;
602         }
603
604         if (!reserved)
605                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
606 }
607
608 /*
609  * Count and return the number of huge pages in the reserve map
610  * that intersect with the range [f, t).
611  */
612 static long region_count(struct resv_map *resv, long f, long t)
613 {
614         struct list_head *head = &resv->regions;
615         struct file_region *rg;
616         long chg = 0;
617
618         spin_lock(&resv->lock);
619         /* Locate each segment we overlap with, and count that overlap. */
620         list_for_each_entry(rg, head, link) {
621                 long seg_from;
622                 long seg_to;
623
624                 if (rg->to <= f)
625                         continue;
626                 if (rg->from >= t)
627                         break;
628
629                 seg_from = max(rg->from, f);
630                 seg_to = min(rg->to, t);
631
632                 chg += seg_to - seg_from;
633         }
634         spin_unlock(&resv->lock);
635
636         return chg;
637 }
638
639 /*
640  * Convert the address within this vma to the page offset within
641  * the mapping, in pagecache page units; huge pages here.
642  */
643 static pgoff_t vma_hugecache_offset(struct hstate *h,
644                         struct vm_area_struct *vma, unsigned long address)
645 {
646         return ((address - vma->vm_start) >> huge_page_shift(h)) +
647                         (vma->vm_pgoff >> huge_page_order(h));
648 }
649
650 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
651                                      unsigned long address)
652 {
653         return vma_hugecache_offset(hstate_vma(vma), vma, address);
654 }
655 EXPORT_SYMBOL_GPL(linear_hugepage_index);
656
657 /*
658  * Return the size of the pages allocated when backing a VMA. In the majority
659  * cases this will be same size as used by the page table entries.
660  */
661 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
662 {
663         struct hstate *hstate;
664
665         if (!is_vm_hugetlb_page(vma))
666                 return PAGE_SIZE;
667
668         hstate = hstate_vma(vma);
669
670         return 1UL << huge_page_shift(hstate);
671 }
672 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
673
674 /*
675  * Return the page size being used by the MMU to back a VMA. In the majority
676  * of cases, the page size used by the kernel matches the MMU size. On
677  * architectures where it differs, an architecture-specific version of this
678  * function is required.
679  */
680 #ifndef vma_mmu_pagesize
681 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
682 {
683         return vma_kernel_pagesize(vma);
684 }
685 #endif
686
687 /*
688  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
689  * bits of the reservation map pointer, which are always clear due to
690  * alignment.
691  */
692 #define HPAGE_RESV_OWNER    (1UL << 0)
693 #define HPAGE_RESV_UNMAPPED (1UL << 1)
694 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
695
696 /*
697  * These helpers are used to track how many pages are reserved for
698  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
699  * is guaranteed to have their future faults succeed.
700  *
701  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
702  * the reserve counters are updated with the hugetlb_lock held. It is safe
703  * to reset the VMA at fork() time as it is not in use yet and there is no
704  * chance of the global counters getting corrupted as a result of the values.
705  *
706  * The private mapping reservation is represented in a subtly different
707  * manner to a shared mapping.  A shared mapping has a region map associated
708  * with the underlying file, this region map represents the backing file
709  * pages which have ever had a reservation assigned which this persists even
710  * after the page is instantiated.  A private mapping has a region map
711  * associated with the original mmap which is attached to all VMAs which
712  * reference it, this region map represents those offsets which have consumed
713  * reservation ie. where pages have been instantiated.
714  */
715 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
716 {
717         return (unsigned long)vma->vm_private_data;
718 }
719
720 static void set_vma_private_data(struct vm_area_struct *vma,
721                                                         unsigned long value)
722 {
723         vma->vm_private_data = (void *)value;
724 }
725
726 struct resv_map *resv_map_alloc(void)
727 {
728         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
729         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
730
731         if (!resv_map || !rg) {
732                 kfree(resv_map);
733                 kfree(rg);
734                 return NULL;
735         }
736
737         kref_init(&resv_map->refs);
738         spin_lock_init(&resv_map->lock);
739         INIT_LIST_HEAD(&resv_map->regions);
740
741         resv_map->adds_in_progress = 0;
742
743         INIT_LIST_HEAD(&resv_map->region_cache);
744         list_add(&rg->link, &resv_map->region_cache);
745         resv_map->region_cache_count = 1;
746
747         return resv_map;
748 }
749
750 void resv_map_release(struct kref *ref)
751 {
752         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
753         struct list_head *head = &resv_map->region_cache;
754         struct file_region *rg, *trg;
755
756         /* Clear out any active regions before we release the map. */
757         region_del(resv_map, 0, LONG_MAX);
758
759         /* ... and any entries left in the cache */
760         list_for_each_entry_safe(rg, trg, head, link) {
761                 list_del(&rg->link);
762                 kfree(rg);
763         }
764
765         VM_BUG_ON(resv_map->adds_in_progress);
766
767         kfree(resv_map);
768 }
769
770 static inline struct resv_map *inode_resv_map(struct inode *inode)
771 {
772         return inode->i_mapping->private_data;
773 }
774
775 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
776 {
777         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778         if (vma->vm_flags & VM_MAYSHARE) {
779                 struct address_space *mapping = vma->vm_file->f_mapping;
780                 struct inode *inode = mapping->host;
781
782                 return inode_resv_map(inode);
783
784         } else {
785                 return (struct resv_map *)(get_vma_private_data(vma) &
786                                                         ~HPAGE_RESV_MASK);
787         }
788 }
789
790 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
791 {
792         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
794
795         set_vma_private_data(vma, (get_vma_private_data(vma) &
796                                 HPAGE_RESV_MASK) | (unsigned long)map);
797 }
798
799 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
800 {
801         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
802         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
803
804         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
805 }
806
807 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
808 {
809         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
810
811         return (get_vma_private_data(vma) & flag) != 0;
812 }
813
814 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
815 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
816 {
817         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
818         if (!(vma->vm_flags & VM_MAYSHARE))
819                 vma->vm_private_data = (void *)0;
820 }
821
822 /* Returns true if the VMA has associated reserve pages */
823 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
824 {
825         if (vma->vm_flags & VM_NORESERVE) {
826                 /*
827                  * This address is already reserved by other process(chg == 0),
828                  * so, we should decrement reserved count. Without decrementing,
829                  * reserve count remains after releasing inode, because this
830                  * allocated page will go into page cache and is regarded as
831                  * coming from reserved pool in releasing step.  Currently, we
832                  * don't have any other solution to deal with this situation
833                  * properly, so add work-around here.
834                  */
835                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
836                         return true;
837                 else
838                         return false;
839         }
840
841         /* Shared mappings always use reserves */
842         if (vma->vm_flags & VM_MAYSHARE) {
843                 /*
844                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
845                  * be a region map for all pages.  The only situation where
846                  * there is no region map is if a hole was punched via
847                  * fallocate.  In this case, there really are no reverves to
848                  * use.  This situation is indicated if chg != 0.
849                  */
850                 if (chg)
851                         return false;
852                 else
853                         return true;
854         }
855
856         /*
857          * Only the process that called mmap() has reserves for
858          * private mappings.
859          */
860         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
861                 /*
862                  * Like the shared case above, a hole punch or truncate
863                  * could have been performed on the private mapping.
864                  * Examine the value of chg to determine if reserves
865                  * actually exist or were previously consumed.
866                  * Very Subtle - The value of chg comes from a previous
867                  * call to vma_needs_reserves().  The reserve map for
868                  * private mappings has different (opposite) semantics
869                  * than that of shared mappings.  vma_needs_reserves()
870                  * has already taken this difference in semantics into
871                  * account.  Therefore, the meaning of chg is the same
872                  * as in the shared case above.  Code could easily be
873                  * combined, but keeping it separate draws attention to
874                  * subtle differences.
875                  */
876                 if (chg)
877                         return false;
878                 else
879                         return true;
880         }
881
882         return false;
883 }
884
885 static void enqueue_huge_page(struct hstate *h, struct page *page)
886 {
887         int nid = page_to_nid(page);
888         list_move(&page->lru, &h->hugepage_freelists[nid]);
889         h->free_huge_pages++;
890         h->free_huge_pages_node[nid]++;
891         SetPageHugeFreed(page);
892 }
893
894 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
895 {
896         struct page *page;
897
898         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
899                 if (!PageHWPoison(page))
900                         break;
901         /*
902          * if 'non-isolated free hugepage' not found on the list,
903          * the allocation fails.
904          */
905         if (&h->hugepage_freelists[nid] == &page->lru)
906                 return NULL;
907         list_move(&page->lru, &h->hugepage_activelist);
908         set_page_refcounted(page);
909         ClearPageHugeFreed(page);
910         h->free_huge_pages--;
911         h->free_huge_pages_node[nid]--;
912         return page;
913 }
914
915 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
916                 nodemask_t *nmask)
917 {
918         unsigned int cpuset_mems_cookie;
919         struct zonelist *zonelist;
920         struct zone *zone;
921         struct zoneref *z;
922         int node = -1;
923
924         zonelist = node_zonelist(nid, gfp_mask);
925
926 retry_cpuset:
927         cpuset_mems_cookie = read_mems_allowed_begin();
928         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
929                 struct page *page;
930
931                 if (!cpuset_zone_allowed(zone, gfp_mask))
932                         continue;
933                 /*
934                  * no need to ask again on the same node. Pool is node rather than
935                  * zone aware
936                  */
937                 if (zone_to_nid(zone) == node)
938                         continue;
939                 node = zone_to_nid(zone);
940
941                 page = dequeue_huge_page_node_exact(h, node);
942                 if (page)
943                         return page;
944         }
945         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
946                 goto retry_cpuset;
947
948         return NULL;
949 }
950
951 /* Movability of hugepages depends on migration support. */
952 static inline gfp_t htlb_alloc_mask(struct hstate *h)
953 {
954         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
955                 return GFP_HIGHUSER_MOVABLE;
956         else
957                 return GFP_HIGHUSER;
958 }
959
960 static struct page *dequeue_huge_page_vma(struct hstate *h,
961                                 struct vm_area_struct *vma,
962                                 unsigned long address, int avoid_reserve,
963                                 long chg)
964 {
965         struct page *page;
966         struct mempolicy *mpol;
967         gfp_t gfp_mask;
968         nodemask_t *nodemask;
969         int nid;
970
971         /*
972          * A child process with MAP_PRIVATE mappings created by their parent
973          * have no page reserves. This check ensures that reservations are
974          * not "stolen". The child may still get SIGKILLed
975          */
976         if (!vma_has_reserves(vma, chg) &&
977                         h->free_huge_pages - h->resv_huge_pages == 0)
978                 goto err;
979
980         /* If reserves cannot be used, ensure enough pages are in the pool */
981         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
982                 goto err;
983
984         gfp_mask = htlb_alloc_mask(h);
985         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
986         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
987         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
988                 SetPagePrivate(page);
989                 h->resv_huge_pages--;
990         }
991
992         mpol_cond_put(mpol);
993         return page;
994
995 err:
996         return NULL;
997 }
998
999 /*
1000  * common helper functions for hstate_next_node_to_{alloc|free}.
1001  * We may have allocated or freed a huge page based on a different
1002  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1003  * be outside of *nodes_allowed.  Ensure that we use an allowed
1004  * node for alloc or free.
1005  */
1006 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1007 {
1008         nid = next_node_in(nid, *nodes_allowed);
1009         VM_BUG_ON(nid >= MAX_NUMNODES);
1010
1011         return nid;
1012 }
1013
1014 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1015 {
1016         if (!node_isset(nid, *nodes_allowed))
1017                 nid = next_node_allowed(nid, nodes_allowed);
1018         return nid;
1019 }
1020
1021 /*
1022  * returns the previously saved node ["this node"] from which to
1023  * allocate a persistent huge page for the pool and advance the
1024  * next node from which to allocate, handling wrap at end of node
1025  * mask.
1026  */
1027 static int hstate_next_node_to_alloc(struct hstate *h,
1028                                         nodemask_t *nodes_allowed)
1029 {
1030         int nid;
1031
1032         VM_BUG_ON(!nodes_allowed);
1033
1034         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1035         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1036
1037         return nid;
1038 }
1039
1040 /*
1041  * helper for free_pool_huge_page() - return the previously saved
1042  * node ["this node"] from which to free a huge page.  Advance the
1043  * next node id whether or not we find a free huge page to free so
1044  * that the next attempt to free addresses the next node.
1045  */
1046 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1047 {
1048         int nid;
1049
1050         VM_BUG_ON(!nodes_allowed);
1051
1052         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1053         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1054
1055         return nid;
1056 }
1057
1058 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1059         for (nr_nodes = nodes_weight(*mask);                            \
1060                 nr_nodes > 0 &&                                         \
1061                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1062                 nr_nodes--)
1063
1064 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1065         for (nr_nodes = nodes_weight(*mask);                            \
1066                 nr_nodes > 0 &&                                         \
1067                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1068                 nr_nodes--)
1069
1070 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1071 static void destroy_compound_gigantic_page(struct page *page,
1072                                         unsigned int order)
1073 {
1074         int i;
1075         int nr_pages = 1 << order;
1076         struct page *p = page + 1;
1077
1078         atomic_set(compound_mapcount_ptr(page), 0);
1079         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1080                 clear_compound_head(p);
1081                 set_page_refcounted(p);
1082         }
1083
1084         set_compound_order(page, 0);
1085         __ClearPageHead(page);
1086 }
1087
1088 static void free_gigantic_page(struct page *page, unsigned int order)
1089 {
1090         free_contig_range(page_to_pfn(page), 1 << order);
1091 }
1092
1093 static int __alloc_gigantic_page(unsigned long start_pfn,
1094                                 unsigned long nr_pages, gfp_t gfp_mask)
1095 {
1096         unsigned long end_pfn = start_pfn + nr_pages;
1097         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1098                                   gfp_mask);
1099 }
1100
1101 static bool pfn_range_valid_gigantic(struct zone *z,
1102                         unsigned long start_pfn, unsigned long nr_pages)
1103 {
1104         unsigned long i, end_pfn = start_pfn + nr_pages;
1105         struct page *page;
1106
1107         for (i = start_pfn; i < end_pfn; i++) {
1108                 page = pfn_to_online_page(i);
1109                 if (!page)
1110                         return false;
1111
1112                 if (page_zone(page) != z)
1113                         return false;
1114
1115                 if (PageReserved(page))
1116                         return false;
1117
1118                 if (page_count(page) > 0)
1119                         return false;
1120
1121                 if (PageHuge(page))
1122                         return false;
1123         }
1124
1125         return true;
1126 }
1127
1128 static bool zone_spans_last_pfn(const struct zone *zone,
1129                         unsigned long start_pfn, unsigned long nr_pages)
1130 {
1131         unsigned long last_pfn = start_pfn + nr_pages - 1;
1132         return zone_spans_pfn(zone, last_pfn);
1133 }
1134
1135 static struct page *alloc_gigantic_page(int nid, struct hstate *h)
1136 {
1137         unsigned int order = huge_page_order(h);
1138         unsigned long nr_pages = 1 << order;
1139         unsigned long ret, pfn, flags;
1140         struct zonelist *zonelist;
1141         struct zone *zone;
1142         struct zoneref *z;
1143         gfp_t gfp_mask;
1144
1145         gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1146         zonelist = node_zonelist(nid, gfp_mask);
1147         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
1148                 spin_lock_irqsave(&zone->lock, flags);
1149
1150                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1151                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1152                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1153                                 /*
1154                                  * We release the zone lock here because
1155                                  * alloc_contig_range() will also lock the zone
1156                                  * at some point. If there's an allocation
1157                                  * spinning on this lock, it may win the race
1158                                  * and cause alloc_contig_range() to fail...
1159                                  */
1160                                 spin_unlock_irqrestore(&zone->lock, flags);
1161                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1162                                 if (!ret)
1163                                         return pfn_to_page(pfn);
1164                                 spin_lock_irqsave(&zone->lock, flags);
1165                         }
1166                         pfn += nr_pages;
1167                 }
1168
1169                 spin_unlock_irqrestore(&zone->lock, flags);
1170         }
1171
1172         return NULL;
1173 }
1174
1175 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1176 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1177
1178 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1179 {
1180         struct page *page;
1181
1182         page = alloc_gigantic_page(nid, h);
1183         if (page) {
1184                 prep_compound_gigantic_page(page, huge_page_order(h));
1185                 prep_new_huge_page(h, page, nid);
1186         }
1187
1188         return page;
1189 }
1190
1191 static int alloc_fresh_gigantic_page(struct hstate *h,
1192                                 nodemask_t *nodes_allowed)
1193 {
1194         struct page *page = NULL;
1195         int nr_nodes, node;
1196
1197         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1198                 page = alloc_fresh_gigantic_page_node(h, node);
1199                 if (page)
1200                         return 1;
1201         }
1202
1203         return 0;
1204 }
1205
1206 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1207 static inline bool gigantic_page_supported(void) { return false; }
1208 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1209 static inline void destroy_compound_gigantic_page(struct page *page,
1210                                                 unsigned int order) { }
1211 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1212                                         nodemask_t *nodes_allowed) { return 0; }
1213 #endif
1214
1215 static void update_and_free_page(struct hstate *h, struct page *page)
1216 {
1217         int i;
1218         struct page *subpage = page;
1219
1220         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1221                 return;
1222
1223         h->nr_huge_pages--;
1224         h->nr_huge_pages_node[page_to_nid(page)]--;
1225         for (i = 0; i < pages_per_huge_page(h);
1226              i++, subpage = mem_map_next(subpage, page, i)) {
1227                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1228                                 1 << PG_referenced | 1 << PG_dirty |
1229                                 1 << PG_active | 1 << PG_private |
1230                                 1 << PG_writeback);
1231         }
1232         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1233         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1234         set_page_refcounted(page);
1235         if (hstate_is_gigantic(h)) {
1236                 destroy_compound_gigantic_page(page, huge_page_order(h));
1237                 free_gigantic_page(page, huge_page_order(h));
1238         } else {
1239                 __free_pages(page, huge_page_order(h));
1240         }
1241 }
1242
1243 struct hstate *size_to_hstate(unsigned long size)
1244 {
1245         struct hstate *h;
1246
1247         for_each_hstate(h) {
1248                 if (huge_page_size(h) == size)
1249                         return h;
1250         }
1251         return NULL;
1252 }
1253
1254 /*
1255  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1256  * to hstate->hugepage_activelist.)
1257  *
1258  * This function can be called for tail pages, but never returns true for them.
1259  */
1260 bool page_huge_active(struct page *page)
1261 {
1262         return PageHeadHuge(page) && PagePrivate(&page[1]);
1263 }
1264
1265 /* never called for tail page */
1266 void set_page_huge_active(struct page *page)
1267 {
1268         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1269         SetPagePrivate(&page[1]);
1270 }
1271
1272 static void clear_page_huge_active(struct page *page)
1273 {
1274         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1275         ClearPagePrivate(&page[1]);
1276 }
1277
1278 void free_huge_page(struct page *page)
1279 {
1280         /*
1281          * Can't pass hstate in here because it is called from the
1282          * compound page destructor.
1283          */
1284         struct hstate *h = page_hstate(page);
1285         int nid = page_to_nid(page);
1286         struct hugepage_subpool *spool =
1287                 (struct hugepage_subpool *)page_private(page);
1288         bool restore_reserve;
1289
1290         set_page_private(page, 0);
1291         page->mapping = NULL;
1292         VM_BUG_ON_PAGE(page_count(page), page);
1293         VM_BUG_ON_PAGE(page_mapcount(page), page);
1294         restore_reserve = PagePrivate(page);
1295         ClearPagePrivate(page);
1296
1297         /*
1298          * If PagePrivate() was set on page, page allocation consumed a
1299          * reservation.  If the page was associated with a subpool, there
1300          * would have been a page reserved in the subpool before allocation
1301          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1302          * reservtion, do not call hugepage_subpool_put_pages() as this will
1303          * remove the reserved page from the subpool.
1304          */
1305         if (!restore_reserve) {
1306                 /*
1307                  * A return code of zero implies that the subpool will be
1308                  * under its minimum size if the reservation is not restored
1309                  * after page is free.  Therefore, force restore_reserve
1310                  * operation.
1311                  */
1312                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1313                         restore_reserve = true;
1314         }
1315
1316         spin_lock(&hugetlb_lock);
1317         clear_page_huge_active(page);
1318         hugetlb_cgroup_uncharge_page(hstate_index(h),
1319                                      pages_per_huge_page(h), page);
1320         if (restore_reserve)
1321                 h->resv_huge_pages++;
1322
1323         if (h->surplus_huge_pages_node[nid]) {
1324                 /* remove the page from active list */
1325                 list_del(&page->lru);
1326                 update_and_free_page(h, page);
1327                 h->surplus_huge_pages--;
1328                 h->surplus_huge_pages_node[nid]--;
1329         } else {
1330                 arch_clear_hugepage_flags(page);
1331                 enqueue_huge_page(h, page);
1332         }
1333         spin_unlock(&hugetlb_lock);
1334 }
1335
1336 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1337 {
1338         INIT_LIST_HEAD(&page->lru);
1339         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1340         spin_lock(&hugetlb_lock);
1341         set_hugetlb_cgroup(page, NULL);
1342         h->nr_huge_pages++;
1343         h->nr_huge_pages_node[nid]++;
1344         ClearPageHugeFreed(page);
1345         spin_unlock(&hugetlb_lock);
1346         put_page(page); /* free it into the hugepage allocator */
1347 }
1348
1349 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1350 {
1351         int i;
1352         int nr_pages = 1 << order;
1353         struct page *p = page + 1;
1354
1355         /* we rely on prep_new_huge_page to set the destructor */
1356         set_compound_order(page, order);
1357         __ClearPageReserved(page);
1358         __SetPageHead(page);
1359         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1360                 /*
1361                  * For gigantic hugepages allocated through bootmem at
1362                  * boot, it's safer to be consistent with the not-gigantic
1363                  * hugepages and clear the PG_reserved bit from all tail pages
1364                  * too.  Otherwse drivers using get_user_pages() to access tail
1365                  * pages may get the reference counting wrong if they see
1366                  * PG_reserved set on a tail page (despite the head page not
1367                  * having PG_reserved set).  Enforcing this consistency between
1368                  * head and tail pages allows drivers to optimize away a check
1369                  * on the head page when they need know if put_page() is needed
1370                  * after get_user_pages().
1371                  */
1372                 __ClearPageReserved(p);
1373                 set_page_count(p, 0);
1374                 set_compound_head(p, page);
1375         }
1376         atomic_set(compound_mapcount_ptr(page), -1);
1377 }
1378
1379 /*
1380  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1381  * transparent huge pages.  See the PageTransHuge() documentation for more
1382  * details.
1383  */
1384 int PageHuge(struct page *page)
1385 {
1386         if (!PageCompound(page))
1387                 return 0;
1388
1389         page = compound_head(page);
1390         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1391 }
1392 EXPORT_SYMBOL_GPL(PageHuge);
1393
1394 /*
1395  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1396  * normal or transparent huge pages.
1397  */
1398 int PageHeadHuge(struct page *page_head)
1399 {
1400         if (!PageHead(page_head))
1401                 return 0;
1402
1403         return get_compound_page_dtor(page_head) == free_huge_page;
1404 }
1405
1406 pgoff_t hugetlb_basepage_index(struct page *page)
1407 {
1408         struct page *page_head = compound_head(page);
1409         pgoff_t index = page_index(page_head);
1410         unsigned long compound_idx;
1411
1412         if (compound_order(page_head) >= MAX_ORDER)
1413                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1414         else
1415                 compound_idx = page - page_head;
1416
1417         return (index << compound_order(page_head)) + compound_idx;
1418 }
1419
1420 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1421 {
1422         struct page *page;
1423
1424         page = __alloc_pages_node(nid,
1425                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1426                                                 __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
1427                 huge_page_order(h));
1428         if (page) {
1429                 prep_new_huge_page(h, page, nid);
1430         }
1431
1432         return page;
1433 }
1434
1435 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1436 {
1437         struct page *page;
1438         int nr_nodes, node;
1439         int ret = 0;
1440
1441         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1442                 page = alloc_fresh_huge_page_node(h, node);
1443                 if (page) {
1444                         ret = 1;
1445                         break;
1446                 }
1447         }
1448
1449         if (ret)
1450                 count_vm_event(HTLB_BUDDY_PGALLOC);
1451         else
1452                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1453
1454         return ret;
1455 }
1456
1457 /*
1458  * Free huge page from pool from next node to free.
1459  * Attempt to keep persistent huge pages more or less
1460  * balanced over allowed nodes.
1461  * Called with hugetlb_lock locked.
1462  */
1463 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1464                                                          bool acct_surplus)
1465 {
1466         int nr_nodes, node;
1467         int ret = 0;
1468
1469         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1470                 /*
1471                  * If we're returning unused surplus pages, only examine
1472                  * nodes with surplus pages.
1473                  */
1474                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1475                     !list_empty(&h->hugepage_freelists[node])) {
1476                         struct page *page =
1477                                 list_entry(h->hugepage_freelists[node].next,
1478                                           struct page, lru);
1479                         list_del(&page->lru);
1480                         h->free_huge_pages--;
1481                         h->free_huge_pages_node[node]--;
1482                         if (acct_surplus) {
1483                                 h->surplus_huge_pages--;
1484                                 h->surplus_huge_pages_node[node]--;
1485                         }
1486                         update_and_free_page(h, page);
1487                         ret = 1;
1488                         break;
1489                 }
1490         }
1491
1492         return ret;
1493 }
1494
1495 /*
1496  * Dissolve a given free hugepage into free buddy pages. This function does
1497  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1498  * number of free hugepages would be reduced below the number of reserved
1499  * hugepages.
1500  */
1501 int dissolve_free_huge_page(struct page *page)
1502 {
1503         int rc = 0;
1504
1505 retry:
1506         spin_lock(&hugetlb_lock);
1507         if (PageHuge(page) && !page_count(page)) {
1508                 struct page *head = compound_head(page);
1509                 struct hstate *h = page_hstate(head);
1510                 int nid = page_to_nid(head);
1511                 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1512                         rc = -EBUSY;
1513                         goto out;
1514                 }
1515
1516                 /*
1517                  * We should make sure that the page is already on the free list
1518                  * when it is dissolved.
1519                  */
1520                 if (unlikely(!PageHugeFreed(head))) {
1521                         spin_unlock(&hugetlb_lock);
1522                         cond_resched();
1523
1524                         /*
1525                          * Theoretically, we should return -EBUSY when we
1526                          * encounter this race. In fact, we have a chance
1527                          * to successfully dissolve the page if we do a
1528                          * retry. Because the race window is quite small.
1529                          * If we seize this opportunity, it is an optimization
1530                          * for increasing the success rate of dissolving page.
1531                          */
1532                         goto retry;
1533                 }
1534
1535                 /*
1536                  * Move PageHWPoison flag from head page to the raw error page,
1537                  * which makes any subpages rather than the error page reusable.
1538                  */
1539                 if (PageHWPoison(head) && page != head) {
1540                         SetPageHWPoison(page);
1541                         ClearPageHWPoison(head);
1542                 }
1543                 list_del(&head->lru);
1544                 h->free_huge_pages--;
1545                 h->free_huge_pages_node[nid]--;
1546                 h->max_huge_pages--;
1547                 update_and_free_page(h, head);
1548         }
1549 out:
1550         spin_unlock(&hugetlb_lock);
1551         return rc;
1552 }
1553
1554 /*
1555  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1556  * make specified memory blocks removable from the system.
1557  * Note that this will dissolve a free gigantic hugepage completely, if any
1558  * part of it lies within the given range.
1559  * Also note that if dissolve_free_huge_page() returns with an error, all
1560  * free hugepages that were dissolved before that error are lost.
1561  */
1562 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1563 {
1564         unsigned long pfn;
1565         struct page *page;
1566         int rc = 0;
1567
1568         if (!hugepages_supported())
1569                 return rc;
1570
1571         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1572                 page = pfn_to_page(pfn);
1573                 if (PageHuge(page) && !page_count(page)) {
1574                         rc = dissolve_free_huge_page(page);
1575                         if (rc)
1576                                 break;
1577                 }
1578         }
1579
1580         return rc;
1581 }
1582
1583 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1584                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1585 {
1586         int order = huge_page_order(h);
1587
1588         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1589         if (nid == NUMA_NO_NODE)
1590                 nid = numa_mem_id();
1591         return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1592 }
1593
1594 static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1595                 int nid, nodemask_t *nmask)
1596 {
1597         struct page *page;
1598         unsigned int r_nid;
1599
1600         if (hstate_is_gigantic(h))
1601                 return NULL;
1602
1603         /*
1604          * Assume we will successfully allocate the surplus page to
1605          * prevent racing processes from causing the surplus to exceed
1606          * overcommit
1607          *
1608          * This however introduces a different race, where a process B
1609          * tries to grow the static hugepage pool while alloc_pages() is
1610          * called by process A. B will only examine the per-node
1611          * counters in determining if surplus huge pages can be
1612          * converted to normal huge pages in adjust_pool_surplus(). A
1613          * won't be able to increment the per-node counter, until the
1614          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1615          * no more huge pages can be converted from surplus to normal
1616          * state (and doesn't try to convert again). Thus, we have a
1617          * case where a surplus huge page exists, the pool is grown, and
1618          * the surplus huge page still exists after, even though it
1619          * should just have been converted to a normal huge page. This
1620          * does not leak memory, though, as the hugepage will be freed
1621          * once it is out of use. It also does not allow the counters to
1622          * go out of whack in adjust_pool_surplus() as we don't modify
1623          * the node values until we've gotten the hugepage and only the
1624          * per-node value is checked there.
1625          */
1626         spin_lock(&hugetlb_lock);
1627         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1628                 spin_unlock(&hugetlb_lock);
1629                 return NULL;
1630         } else {
1631                 h->nr_huge_pages++;
1632                 h->surplus_huge_pages++;
1633         }
1634         spin_unlock(&hugetlb_lock);
1635
1636         page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
1637
1638         spin_lock(&hugetlb_lock);
1639         if (page) {
1640                 INIT_LIST_HEAD(&page->lru);
1641                 r_nid = page_to_nid(page);
1642                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1643                 set_hugetlb_cgroup(page, NULL);
1644                 /*
1645                  * We incremented the global counters already
1646                  */
1647                 h->nr_huge_pages_node[r_nid]++;
1648                 h->surplus_huge_pages_node[r_nid]++;
1649                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1650         } else {
1651                 h->nr_huge_pages--;
1652                 h->surplus_huge_pages--;
1653                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1654         }
1655         spin_unlock(&hugetlb_lock);
1656
1657         return page;
1658 }
1659
1660 /*
1661  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1662  */
1663 static
1664 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1665                 struct vm_area_struct *vma, unsigned long addr)
1666 {
1667         struct page *page;
1668         struct mempolicy *mpol;
1669         gfp_t gfp_mask = htlb_alloc_mask(h);
1670         int nid;
1671         nodemask_t *nodemask;
1672
1673         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1674         page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1675         mpol_cond_put(mpol);
1676
1677         return page;
1678 }
1679
1680 /*
1681  * This allocation function is useful in the context where vma is irrelevant.
1682  * E.g. soft-offlining uses this function because it only cares physical
1683  * address of error page.
1684  */
1685 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1686 {
1687         gfp_t gfp_mask = htlb_alloc_mask(h);
1688         struct page *page = NULL;
1689
1690         if (nid != NUMA_NO_NODE)
1691                 gfp_mask |= __GFP_THISNODE;
1692
1693         spin_lock(&hugetlb_lock);
1694         if (h->free_huge_pages - h->resv_huge_pages > 0)
1695                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1696         spin_unlock(&hugetlb_lock);
1697
1698         if (!page)
1699                 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
1700
1701         return page;
1702 }
1703
1704
1705 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1706                 nodemask_t *nmask)
1707 {
1708         gfp_t gfp_mask = htlb_alloc_mask(h);
1709
1710         spin_lock(&hugetlb_lock);
1711         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1712                 struct page *page;
1713
1714                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1715                 if (page) {
1716                         spin_unlock(&hugetlb_lock);
1717                         return page;
1718                 }
1719         }
1720         spin_unlock(&hugetlb_lock);
1721
1722         /* No reservations, try to overcommit */
1723
1724         return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
1725 }
1726
1727 /*
1728  * Increase the hugetlb pool such that it can accommodate a reservation
1729  * of size 'delta'.
1730  */
1731 static int gather_surplus_pages(struct hstate *h, int delta)
1732 {
1733         struct list_head surplus_list;
1734         struct page *page, *tmp;
1735         int ret, i;
1736         int needed, allocated;
1737         bool alloc_ok = true;
1738
1739         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1740         if (needed <= 0) {
1741                 h->resv_huge_pages += delta;
1742                 return 0;
1743         }
1744
1745         allocated = 0;
1746         INIT_LIST_HEAD(&surplus_list);
1747
1748         ret = -ENOMEM;
1749 retry:
1750         spin_unlock(&hugetlb_lock);
1751         for (i = 0; i < needed; i++) {
1752                 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1753                                 NUMA_NO_NODE, NULL);
1754                 if (!page) {
1755                         alloc_ok = false;
1756                         break;
1757                 }
1758                 list_add(&page->lru, &surplus_list);
1759                 cond_resched();
1760         }
1761         allocated += i;
1762
1763         /*
1764          * After retaking hugetlb_lock, we need to recalculate 'needed'
1765          * because either resv_huge_pages or free_huge_pages may have changed.
1766          */
1767         spin_lock(&hugetlb_lock);
1768         needed = (h->resv_huge_pages + delta) -
1769                         (h->free_huge_pages + allocated);
1770         if (needed > 0) {
1771                 if (alloc_ok)
1772                         goto retry;
1773                 /*
1774                  * We were not able to allocate enough pages to
1775                  * satisfy the entire reservation so we free what
1776                  * we've allocated so far.
1777                  */
1778                 goto free;
1779         }
1780         /*
1781          * The surplus_list now contains _at_least_ the number of extra pages
1782          * needed to accommodate the reservation.  Add the appropriate number
1783          * of pages to the hugetlb pool and free the extras back to the buddy
1784          * allocator.  Commit the entire reservation here to prevent another
1785          * process from stealing the pages as they are added to the pool but
1786          * before they are reserved.
1787          */
1788         needed += allocated;
1789         h->resv_huge_pages += delta;
1790         ret = 0;
1791
1792         /* Free the needed pages to the hugetlb pool */
1793         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1794                 if ((--needed) < 0)
1795                         break;
1796                 /*
1797                  * This page is now managed by the hugetlb allocator and has
1798                  * no users -- drop the buddy allocator's reference.
1799                  */
1800                 put_page_testzero(page);
1801                 VM_BUG_ON_PAGE(page_count(page), page);
1802                 enqueue_huge_page(h, page);
1803         }
1804 free:
1805         spin_unlock(&hugetlb_lock);
1806
1807         /* Free unnecessary surplus pages to the buddy allocator */
1808         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1809                 put_page(page);
1810         spin_lock(&hugetlb_lock);
1811
1812         return ret;
1813 }
1814
1815 /*
1816  * This routine has two main purposes:
1817  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1818  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1819  *    to the associated reservation map.
1820  * 2) Free any unused surplus pages that may have been allocated to satisfy
1821  *    the reservation.  As many as unused_resv_pages may be freed.
1822  *
1823  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1824  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1825  * we must make sure nobody else can claim pages we are in the process of
1826  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1827  * number of huge pages we plan to free when dropping the lock.
1828  */
1829 static void return_unused_surplus_pages(struct hstate *h,
1830                                         unsigned long unused_resv_pages)
1831 {
1832         unsigned long nr_pages;
1833
1834         /* Cannot return gigantic pages currently */
1835         if (hstate_is_gigantic(h))
1836                 goto out;
1837
1838         /*
1839          * Part (or even all) of the reservation could have been backed
1840          * by pre-allocated pages. Only free surplus pages.
1841          */
1842         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1843
1844         /*
1845          * We want to release as many surplus pages as possible, spread
1846          * evenly across all nodes with memory. Iterate across these nodes
1847          * until we can no longer free unreserved surplus pages. This occurs
1848          * when the nodes with surplus pages have no free pages.
1849          * free_pool_huge_page() will balance the the freed pages across the
1850          * on-line nodes with memory and will handle the hstate accounting.
1851          *
1852          * Note that we decrement resv_huge_pages as we free the pages.  If
1853          * we drop the lock, resv_huge_pages will still be sufficiently large
1854          * to cover subsequent pages we may free.
1855          */
1856         while (nr_pages--) {
1857                 h->resv_huge_pages--;
1858                 unused_resv_pages--;
1859                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1860                         goto out;
1861                 cond_resched_lock(&hugetlb_lock);
1862         }
1863
1864 out:
1865         /* Fully uncommit the reservation */
1866         h->resv_huge_pages -= unused_resv_pages;
1867 }
1868
1869
1870 /*
1871  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1872  * are used by the huge page allocation routines to manage reservations.
1873  *
1874  * vma_needs_reservation is called to determine if the huge page at addr
1875  * within the vma has an associated reservation.  If a reservation is
1876  * needed, the value 1 is returned.  The caller is then responsible for
1877  * managing the global reservation and subpool usage counts.  After
1878  * the huge page has been allocated, vma_commit_reservation is called
1879  * to add the page to the reservation map.  If the page allocation fails,
1880  * the reservation must be ended instead of committed.  vma_end_reservation
1881  * is called in such cases.
1882  *
1883  * In the normal case, vma_commit_reservation returns the same value
1884  * as the preceding vma_needs_reservation call.  The only time this
1885  * is not the case is if a reserve map was changed between calls.  It
1886  * is the responsibility of the caller to notice the difference and
1887  * take appropriate action.
1888  *
1889  * vma_add_reservation is used in error paths where a reservation must
1890  * be restored when a newly allocated huge page must be freed.  It is
1891  * to be called after calling vma_needs_reservation to determine if a
1892  * reservation exists.
1893  */
1894 enum vma_resv_mode {
1895         VMA_NEEDS_RESV,
1896         VMA_COMMIT_RESV,
1897         VMA_END_RESV,
1898         VMA_ADD_RESV,
1899 };
1900 static long __vma_reservation_common(struct hstate *h,
1901                                 struct vm_area_struct *vma, unsigned long addr,
1902                                 enum vma_resv_mode mode)
1903 {
1904         struct resv_map *resv;
1905         pgoff_t idx;
1906         long ret;
1907
1908         resv = vma_resv_map(vma);
1909         if (!resv)
1910                 return 1;
1911
1912         idx = vma_hugecache_offset(h, vma, addr);
1913         switch (mode) {
1914         case VMA_NEEDS_RESV:
1915                 ret = region_chg(resv, idx, idx + 1);
1916                 break;
1917         case VMA_COMMIT_RESV:
1918                 ret = region_add(resv, idx, idx + 1);
1919                 break;
1920         case VMA_END_RESV:
1921                 region_abort(resv, idx, idx + 1);
1922                 ret = 0;
1923                 break;
1924         case VMA_ADD_RESV:
1925                 if (vma->vm_flags & VM_MAYSHARE)
1926                         ret = region_add(resv, idx, idx + 1);
1927                 else {
1928                         region_abort(resv, idx, idx + 1);
1929                         ret = region_del(resv, idx, idx + 1);
1930                 }
1931                 break;
1932         default:
1933                 BUG();
1934         }
1935
1936         if (vma->vm_flags & VM_MAYSHARE)
1937                 return ret;
1938         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1939                 /*
1940                  * In most cases, reserves always exist for private mappings.
1941                  * However, a file associated with mapping could have been
1942                  * hole punched or truncated after reserves were consumed.
1943                  * As subsequent fault on such a range will not use reserves.
1944                  * Subtle - The reserve map for private mappings has the
1945                  * opposite meaning than that of shared mappings.  If NO
1946                  * entry is in the reserve map, it means a reservation exists.
1947                  * If an entry exists in the reserve map, it means the
1948                  * reservation has already been consumed.  As a result, the
1949                  * return value of this routine is the opposite of the
1950                  * value returned from reserve map manipulation routines above.
1951                  */
1952                 if (ret)
1953                         return 0;
1954                 else
1955                         return 1;
1956         }
1957         else
1958                 return ret < 0 ? ret : 0;
1959 }
1960
1961 static long vma_needs_reservation(struct hstate *h,
1962                         struct vm_area_struct *vma, unsigned long addr)
1963 {
1964         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1965 }
1966
1967 static long vma_commit_reservation(struct hstate *h,
1968                         struct vm_area_struct *vma, unsigned long addr)
1969 {
1970         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1971 }
1972
1973 static void vma_end_reservation(struct hstate *h,
1974                         struct vm_area_struct *vma, unsigned long addr)
1975 {
1976         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1977 }
1978
1979 static long vma_add_reservation(struct hstate *h,
1980                         struct vm_area_struct *vma, unsigned long addr)
1981 {
1982         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1983 }
1984
1985 /*
1986  * This routine is called to restore a reservation on error paths.  In the
1987  * specific error paths, a huge page was allocated (via alloc_huge_page)
1988  * and is about to be freed.  If a reservation for the page existed,
1989  * alloc_huge_page would have consumed the reservation and set PagePrivate
1990  * in the newly allocated page.  When the page is freed via free_huge_page,
1991  * the global reservation count will be incremented if PagePrivate is set.
1992  * However, free_huge_page can not adjust the reserve map.  Adjust the
1993  * reserve map here to be consistent with global reserve count adjustments
1994  * to be made by free_huge_page.
1995  */
1996 static void restore_reserve_on_error(struct hstate *h,
1997                         struct vm_area_struct *vma, unsigned long address,
1998                         struct page *page)
1999 {
2000         if (unlikely(PagePrivate(page))) {
2001                 long rc = vma_needs_reservation(h, vma, address);
2002
2003                 if (unlikely(rc < 0)) {
2004                         /*
2005                          * Rare out of memory condition in reserve map
2006                          * manipulation.  Clear PagePrivate so that
2007                          * global reserve count will not be incremented
2008                          * by free_huge_page.  This will make it appear
2009                          * as though the reservation for this page was
2010                          * consumed.  This may prevent the task from
2011                          * faulting in the page at a later time.  This
2012                          * is better than inconsistent global huge page
2013                          * accounting of reserve counts.
2014                          */
2015                         ClearPagePrivate(page);
2016                 } else if (rc) {
2017                         rc = vma_add_reservation(h, vma, address);
2018                         if (unlikely(rc < 0))
2019                                 /*
2020                                  * See above comment about rare out of
2021                                  * memory condition.
2022                                  */
2023                                 ClearPagePrivate(page);
2024                 } else
2025                         vma_end_reservation(h, vma, address);
2026         }
2027 }
2028
2029 struct page *alloc_huge_page(struct vm_area_struct *vma,
2030                                     unsigned long addr, int avoid_reserve)
2031 {
2032         struct hugepage_subpool *spool = subpool_vma(vma);
2033         struct hstate *h = hstate_vma(vma);
2034         struct page *page;
2035         long map_chg, map_commit;
2036         long gbl_chg;
2037         int ret, idx;
2038         struct hugetlb_cgroup *h_cg;
2039
2040         idx = hstate_index(h);
2041         /*
2042          * Examine the region/reserve map to determine if the process
2043          * has a reservation for the page to be allocated.  A return
2044          * code of zero indicates a reservation exists (no change).
2045          */
2046         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2047         if (map_chg < 0)
2048                 return ERR_PTR(-ENOMEM);
2049
2050         /*
2051          * Processes that did not create the mapping will have no
2052          * reserves as indicated by the region/reserve map. Check
2053          * that the allocation will not exceed the subpool limit.
2054          * Allocations for MAP_NORESERVE mappings also need to be
2055          * checked against any subpool limit.
2056          */
2057         if (map_chg || avoid_reserve) {
2058                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2059                 if (gbl_chg < 0) {
2060                         vma_end_reservation(h, vma, addr);
2061                         return ERR_PTR(-ENOSPC);
2062                 }
2063
2064                 /*
2065                  * Even though there was no reservation in the region/reserve
2066                  * map, there could be reservations associated with the
2067                  * subpool that can be used.  This would be indicated if the
2068                  * return value of hugepage_subpool_get_pages() is zero.
2069                  * However, if avoid_reserve is specified we still avoid even
2070                  * the subpool reservations.
2071                  */
2072                 if (avoid_reserve)
2073                         gbl_chg = 1;
2074         }
2075
2076         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2077         if (ret)
2078                 goto out_subpool_put;
2079
2080         spin_lock(&hugetlb_lock);
2081         /*
2082          * glb_chg is passed to indicate whether or not a page must be taken
2083          * from the global free pool (global change).  gbl_chg == 0 indicates
2084          * a reservation exists for the allocation.
2085          */
2086         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2087         if (!page) {
2088                 spin_unlock(&hugetlb_lock);
2089                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2090                 if (!page)
2091                         goto out_uncharge_cgroup;
2092                 spin_lock(&hugetlb_lock);
2093                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2094                         SetPagePrivate(page);
2095                         h->resv_huge_pages--;
2096                 }
2097                 list_move(&page->lru, &h->hugepage_activelist);
2098                 /* Fall through */
2099         }
2100         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2101         spin_unlock(&hugetlb_lock);
2102
2103         set_page_private(page, (unsigned long)spool);
2104
2105         map_commit = vma_commit_reservation(h, vma, addr);
2106         if (unlikely(map_chg > map_commit)) {
2107                 /*
2108                  * The page was added to the reservation map between
2109                  * vma_needs_reservation and vma_commit_reservation.
2110                  * This indicates a race with hugetlb_reserve_pages.
2111                  * Adjust for the subpool count incremented above AND
2112                  * in hugetlb_reserve_pages for the same page.  Also,
2113                  * the reservation count added in hugetlb_reserve_pages
2114                  * no longer applies.
2115                  */
2116                 long rsv_adjust;
2117
2118                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2119                 hugetlb_acct_memory(h, -rsv_adjust);
2120         }
2121         return page;
2122
2123 out_uncharge_cgroup:
2124         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2125 out_subpool_put:
2126         if (map_chg || avoid_reserve)
2127                 hugepage_subpool_put_pages(spool, 1);
2128         vma_end_reservation(h, vma, addr);
2129         return ERR_PTR(-ENOSPC);
2130 }
2131
2132 /*
2133  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2134  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2135  * where no ERR_VALUE is expected to be returned.
2136  */
2137 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2138                                 unsigned long addr, int avoid_reserve)
2139 {
2140         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2141         if (IS_ERR(page))
2142                 page = NULL;
2143         return page;
2144 }
2145
2146 int alloc_bootmem_huge_page(struct hstate *h)
2147         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2148 int __alloc_bootmem_huge_page(struct hstate *h)
2149 {
2150         struct huge_bootmem_page *m;
2151         int nr_nodes, node;
2152
2153         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2154                 void *addr;
2155
2156                 addr = memblock_virt_alloc_try_nid_nopanic(
2157                                 huge_page_size(h), huge_page_size(h),
2158                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2159                 if (addr) {
2160                         /*
2161                          * Use the beginning of the huge page to store the
2162                          * huge_bootmem_page struct (until gather_bootmem
2163                          * puts them into the mem_map).
2164                          */
2165                         m = addr;
2166                         goto found;
2167                 }
2168         }
2169         return 0;
2170
2171 found:
2172         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2173         /* Put them into a private list first because mem_map is not up yet */
2174         list_add(&m->list, &huge_boot_pages);
2175         m->hstate = h;
2176         return 1;
2177 }
2178
2179 static void __init prep_compound_huge_page(struct page *page,
2180                 unsigned int order)
2181 {
2182         if (unlikely(order > (MAX_ORDER - 1)))
2183                 prep_compound_gigantic_page(page, order);
2184         else
2185                 prep_compound_page(page, order);
2186 }
2187
2188 /* Put bootmem huge pages into the standard lists after mem_map is up */
2189 static void __init gather_bootmem_prealloc(void)
2190 {
2191         struct huge_bootmem_page *m;
2192
2193         list_for_each_entry(m, &huge_boot_pages, list) {
2194                 struct hstate *h = m->hstate;
2195                 struct page *page;
2196
2197 #ifdef CONFIG_HIGHMEM
2198                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2199                 memblock_free_late(__pa(m),
2200                                    sizeof(struct huge_bootmem_page));
2201 #else
2202                 page = virt_to_page(m);
2203 #endif
2204                 WARN_ON(page_count(page) != 1);
2205                 prep_compound_huge_page(page, h->order);
2206                 WARN_ON(PageReserved(page));
2207                 prep_new_huge_page(h, page, page_to_nid(page));
2208                 /*
2209                  * If we had gigantic hugepages allocated at boot time, we need
2210                  * to restore the 'stolen' pages to totalram_pages in order to
2211                  * fix confusing memory reports from free(1) and another
2212                  * side-effects, like CommitLimit going negative.
2213                  */
2214                 if (hstate_is_gigantic(h))
2215                         adjust_managed_page_count(page, 1 << h->order);
2216                 cond_resched();
2217         }
2218 }
2219
2220 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2221 {
2222         unsigned long i;
2223
2224         for (i = 0; i < h->max_huge_pages; ++i) {
2225                 if (hstate_is_gigantic(h)) {
2226                         if (!alloc_bootmem_huge_page(h))
2227                                 break;
2228                 } else if (!alloc_fresh_huge_page(h,
2229                                          &node_states[N_MEMORY]))
2230                         break;
2231                 cond_resched();
2232         }
2233         if (i < h->max_huge_pages) {
2234                 char buf[32];
2235
2236                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2237                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2238                         h->max_huge_pages, buf, i);
2239                 h->max_huge_pages = i;
2240         }
2241 }
2242
2243 static void __init hugetlb_init_hstates(void)
2244 {
2245         struct hstate *h;
2246
2247         for_each_hstate(h) {
2248                 if (minimum_order > huge_page_order(h))
2249                         minimum_order = huge_page_order(h);
2250
2251                 /* oversize hugepages were init'ed in early boot */
2252                 if (!hstate_is_gigantic(h))
2253                         hugetlb_hstate_alloc_pages(h);
2254         }
2255         VM_BUG_ON(minimum_order == UINT_MAX);
2256 }
2257
2258 static void __init report_hugepages(void)
2259 {
2260         struct hstate *h;
2261
2262         for_each_hstate(h) {
2263                 char buf[32];
2264
2265                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2266                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2267                         buf, h->free_huge_pages);
2268         }
2269 }
2270
2271 #ifdef CONFIG_HIGHMEM
2272 static void try_to_free_low(struct hstate *h, unsigned long count,
2273                                                 nodemask_t *nodes_allowed)
2274 {
2275         int i;
2276
2277         if (hstate_is_gigantic(h))
2278                 return;
2279
2280         for_each_node_mask(i, *nodes_allowed) {
2281                 struct page *page, *next;
2282                 struct list_head *freel = &h->hugepage_freelists[i];
2283                 list_for_each_entry_safe(page, next, freel, lru) {
2284                         if (count >= h->nr_huge_pages)
2285                                 return;
2286                         if (PageHighMem(page))
2287                                 continue;
2288                         list_del(&page->lru);
2289                         update_and_free_page(h, page);
2290                         h->free_huge_pages--;
2291                         h->free_huge_pages_node[page_to_nid(page)]--;
2292                 }
2293         }
2294 }
2295 #else
2296 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2297                                                 nodemask_t *nodes_allowed)
2298 {
2299 }
2300 #endif
2301
2302 /*
2303  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2304  * balanced by operating on them in a round-robin fashion.
2305  * Returns 1 if an adjustment was made.
2306  */
2307 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2308                                 int delta)
2309 {
2310         int nr_nodes, node;
2311
2312         VM_BUG_ON(delta != -1 && delta != 1);
2313
2314         if (delta < 0) {
2315                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2316                         if (h->surplus_huge_pages_node[node])
2317                                 goto found;
2318                 }
2319         } else {
2320                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2321                         if (h->surplus_huge_pages_node[node] <
2322                                         h->nr_huge_pages_node[node])
2323                                 goto found;
2324                 }
2325         }
2326         return 0;
2327
2328 found:
2329         h->surplus_huge_pages += delta;
2330         h->surplus_huge_pages_node[node] += delta;
2331         return 1;
2332 }
2333
2334 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2335 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2336                                                 nodemask_t *nodes_allowed)
2337 {
2338         unsigned long min_count, ret;
2339
2340         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2341                 return h->max_huge_pages;
2342
2343         /*
2344          * Increase the pool size
2345          * First take pages out of surplus state.  Then make up the
2346          * remaining difference by allocating fresh huge pages.
2347          *
2348          * We might race with __alloc_buddy_huge_page() here and be unable
2349          * to convert a surplus huge page to a normal huge page. That is
2350          * not critical, though, it just means the overall size of the
2351          * pool might be one hugepage larger than it needs to be, but
2352          * within all the constraints specified by the sysctls.
2353          */
2354         spin_lock(&hugetlb_lock);
2355         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2356                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2357                         break;
2358         }
2359
2360         while (count > persistent_huge_pages(h)) {
2361                 /*
2362                  * If this allocation races such that we no longer need the
2363                  * page, free_huge_page will handle it by freeing the page
2364                  * and reducing the surplus.
2365                  */
2366                 spin_unlock(&hugetlb_lock);
2367
2368                 /* yield cpu to avoid soft lockup */
2369                 cond_resched();
2370
2371                 if (hstate_is_gigantic(h))
2372                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2373                 else
2374                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2375                 spin_lock(&hugetlb_lock);
2376                 if (!ret)
2377                         goto out;
2378
2379                 /* Bail for signals. Probably ctrl-c from user */
2380                 if (signal_pending(current))
2381                         goto out;
2382         }
2383
2384         /*
2385          * Decrease the pool size
2386          * First return free pages to the buddy allocator (being careful
2387          * to keep enough around to satisfy reservations).  Then place
2388          * pages into surplus state as needed so the pool will shrink
2389          * to the desired size as pages become free.
2390          *
2391          * By placing pages into the surplus state independent of the
2392          * overcommit value, we are allowing the surplus pool size to
2393          * exceed overcommit. There are few sane options here. Since
2394          * __alloc_buddy_huge_page() is checking the global counter,
2395          * though, we'll note that we're not allowed to exceed surplus
2396          * and won't grow the pool anywhere else. Not until one of the
2397          * sysctls are changed, or the surplus pages go out of use.
2398          */
2399         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2400         min_count = max(count, min_count);
2401         try_to_free_low(h, min_count, nodes_allowed);
2402         while (min_count < persistent_huge_pages(h)) {
2403                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2404                         break;
2405                 cond_resched_lock(&hugetlb_lock);
2406         }
2407         while (count < persistent_huge_pages(h)) {
2408                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2409                         break;
2410         }
2411 out:
2412         ret = persistent_huge_pages(h);
2413         spin_unlock(&hugetlb_lock);
2414         return ret;
2415 }
2416
2417 #define HSTATE_ATTR_RO(_name) \
2418         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2419
2420 #define HSTATE_ATTR(_name) \
2421         static struct kobj_attribute _name##_attr = \
2422                 __ATTR(_name, 0644, _name##_show, _name##_store)
2423
2424 static struct kobject *hugepages_kobj;
2425 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2426
2427 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2428
2429 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2430 {
2431         int i;
2432
2433         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2434                 if (hstate_kobjs[i] == kobj) {
2435                         if (nidp)
2436                                 *nidp = NUMA_NO_NODE;
2437                         return &hstates[i];
2438                 }
2439
2440         return kobj_to_node_hstate(kobj, nidp);
2441 }
2442
2443 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2444                                         struct kobj_attribute *attr, char *buf)
2445 {
2446         struct hstate *h;
2447         unsigned long nr_huge_pages;
2448         int nid;
2449
2450         h = kobj_to_hstate(kobj, &nid);
2451         if (nid == NUMA_NO_NODE)
2452                 nr_huge_pages = h->nr_huge_pages;
2453         else
2454                 nr_huge_pages = h->nr_huge_pages_node[nid];
2455
2456         return sprintf(buf, "%lu\n", nr_huge_pages);
2457 }
2458
2459 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2460                                            struct hstate *h, int nid,
2461                                            unsigned long count, size_t len)
2462 {
2463         int err;
2464         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2465
2466         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2467                 err = -EINVAL;
2468                 goto out;
2469         }
2470
2471         if (nid == NUMA_NO_NODE) {
2472                 /*
2473                  * global hstate attribute
2474                  */
2475                 if (!(obey_mempolicy &&
2476                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2477                         NODEMASK_FREE(nodes_allowed);
2478                         nodes_allowed = &node_states[N_MEMORY];
2479                 }
2480         } else if (nodes_allowed) {
2481                 /*
2482                  * per node hstate attribute: adjust count to global,
2483                  * but restrict alloc/free to the specified node.
2484                  */
2485                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2486                 init_nodemask_of_node(nodes_allowed, nid);
2487         } else
2488                 nodes_allowed = &node_states[N_MEMORY];
2489
2490         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2491
2492         if (nodes_allowed != &node_states[N_MEMORY])
2493                 NODEMASK_FREE(nodes_allowed);
2494
2495         return len;
2496 out:
2497         NODEMASK_FREE(nodes_allowed);
2498         return err;
2499 }
2500
2501 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2502                                          struct kobject *kobj, const char *buf,
2503                                          size_t len)
2504 {
2505         struct hstate *h;
2506         unsigned long count;
2507         int nid;
2508         int err;
2509
2510         err = kstrtoul(buf, 10, &count);
2511         if (err)
2512                 return err;
2513
2514         h = kobj_to_hstate(kobj, &nid);
2515         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2516 }
2517
2518 static ssize_t nr_hugepages_show(struct kobject *kobj,
2519                                        struct kobj_attribute *attr, char *buf)
2520 {
2521         return nr_hugepages_show_common(kobj, attr, buf);
2522 }
2523
2524 static ssize_t nr_hugepages_store(struct kobject *kobj,
2525                struct kobj_attribute *attr, const char *buf, size_t len)
2526 {
2527         return nr_hugepages_store_common(false, kobj, buf, len);
2528 }
2529 HSTATE_ATTR(nr_hugepages);
2530
2531 #ifdef CONFIG_NUMA
2532
2533 /*
2534  * hstate attribute for optionally mempolicy-based constraint on persistent
2535  * huge page alloc/free.
2536  */
2537 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2538                                        struct kobj_attribute *attr, char *buf)
2539 {
2540         return nr_hugepages_show_common(kobj, attr, buf);
2541 }
2542
2543 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2544                struct kobj_attribute *attr, const char *buf, size_t len)
2545 {
2546         return nr_hugepages_store_common(true, kobj, buf, len);
2547 }
2548 HSTATE_ATTR(nr_hugepages_mempolicy);
2549 #endif
2550
2551
2552 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2553                                         struct kobj_attribute *attr, char *buf)
2554 {
2555         struct hstate *h = kobj_to_hstate(kobj, NULL);
2556         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2557 }
2558
2559 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2560                 struct kobj_attribute *attr, const char *buf, size_t count)
2561 {
2562         int err;
2563         unsigned long input;
2564         struct hstate *h = kobj_to_hstate(kobj, NULL);
2565
2566         if (hstate_is_gigantic(h))
2567                 return -EINVAL;
2568
2569         err = kstrtoul(buf, 10, &input);
2570         if (err)
2571                 return err;
2572
2573         spin_lock(&hugetlb_lock);
2574         h->nr_overcommit_huge_pages = input;
2575         spin_unlock(&hugetlb_lock);
2576
2577         return count;
2578 }
2579 HSTATE_ATTR(nr_overcommit_hugepages);
2580
2581 static ssize_t free_hugepages_show(struct kobject *kobj,
2582                                         struct kobj_attribute *attr, char *buf)
2583 {
2584         struct hstate *h;
2585         unsigned long free_huge_pages;
2586         int nid;
2587
2588         h = kobj_to_hstate(kobj, &nid);
2589         if (nid == NUMA_NO_NODE)
2590                 free_huge_pages = h->free_huge_pages;
2591         else
2592                 free_huge_pages = h->free_huge_pages_node[nid];
2593
2594         return sprintf(buf, "%lu\n", free_huge_pages);
2595 }
2596 HSTATE_ATTR_RO(free_hugepages);
2597
2598 static ssize_t resv_hugepages_show(struct kobject *kobj,
2599                                         struct kobj_attribute *attr, char *buf)
2600 {
2601         struct hstate *h = kobj_to_hstate(kobj, NULL);
2602         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2603 }
2604 HSTATE_ATTR_RO(resv_hugepages);
2605
2606 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2607                                         struct kobj_attribute *attr, char *buf)
2608 {
2609         struct hstate *h;
2610         unsigned long surplus_huge_pages;
2611         int nid;
2612
2613         h = kobj_to_hstate(kobj, &nid);
2614         if (nid == NUMA_NO_NODE)
2615                 surplus_huge_pages = h->surplus_huge_pages;
2616         else
2617                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2618
2619         return sprintf(buf, "%lu\n", surplus_huge_pages);
2620 }
2621 HSTATE_ATTR_RO(surplus_hugepages);
2622
2623 static struct attribute *hstate_attrs[] = {
2624         &nr_hugepages_attr.attr,
2625         &nr_overcommit_hugepages_attr.attr,
2626         &free_hugepages_attr.attr,
2627         &resv_hugepages_attr.attr,
2628         &surplus_hugepages_attr.attr,
2629 #ifdef CONFIG_NUMA
2630         &nr_hugepages_mempolicy_attr.attr,
2631 #endif
2632         NULL,
2633 };
2634
2635 static const struct attribute_group hstate_attr_group = {
2636         .attrs = hstate_attrs,
2637 };
2638
2639 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2640                                     struct kobject **hstate_kobjs,
2641                                     const struct attribute_group *hstate_attr_group)
2642 {
2643         int retval;
2644         int hi = hstate_index(h);
2645
2646         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2647         if (!hstate_kobjs[hi])
2648                 return -ENOMEM;
2649
2650         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2651         if (retval) {
2652                 kobject_put(hstate_kobjs[hi]);
2653                 hstate_kobjs[hi] = NULL;
2654         }
2655
2656         return retval;
2657 }
2658
2659 static void __init hugetlb_sysfs_init(void)
2660 {
2661         struct hstate *h;
2662         int err;
2663
2664         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2665         if (!hugepages_kobj)
2666                 return;
2667
2668         for_each_hstate(h) {
2669                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2670                                          hstate_kobjs, &hstate_attr_group);
2671                 if (err)
2672                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2673         }
2674 }
2675
2676 #ifdef CONFIG_NUMA
2677
2678 /*
2679  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2680  * with node devices in node_devices[] using a parallel array.  The array
2681  * index of a node device or _hstate == node id.
2682  * This is here to avoid any static dependency of the node device driver, in
2683  * the base kernel, on the hugetlb module.
2684  */
2685 struct node_hstate {
2686         struct kobject          *hugepages_kobj;
2687         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2688 };
2689 static struct node_hstate node_hstates[MAX_NUMNODES];
2690
2691 /*
2692  * A subset of global hstate attributes for node devices
2693  */
2694 static struct attribute *per_node_hstate_attrs[] = {
2695         &nr_hugepages_attr.attr,
2696         &free_hugepages_attr.attr,
2697         &surplus_hugepages_attr.attr,
2698         NULL,
2699 };
2700
2701 static const struct attribute_group per_node_hstate_attr_group = {
2702         .attrs = per_node_hstate_attrs,
2703 };
2704
2705 /*
2706  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2707  * Returns node id via non-NULL nidp.
2708  */
2709 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2710 {
2711         int nid;
2712
2713         for (nid = 0; nid < nr_node_ids; nid++) {
2714                 struct node_hstate *nhs = &node_hstates[nid];
2715                 int i;
2716                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2717                         if (nhs->hstate_kobjs[i] == kobj) {
2718                                 if (nidp)
2719                                         *nidp = nid;
2720                                 return &hstates[i];
2721                         }
2722         }
2723
2724         BUG();
2725         return NULL;
2726 }
2727
2728 /*
2729  * Unregister hstate attributes from a single node device.
2730  * No-op if no hstate attributes attached.
2731  */
2732 static void hugetlb_unregister_node(struct node *node)
2733 {
2734         struct hstate *h;
2735         struct node_hstate *nhs = &node_hstates[node->dev.id];
2736
2737         if (!nhs->hugepages_kobj)
2738                 return;         /* no hstate attributes */
2739
2740         for_each_hstate(h) {
2741                 int idx = hstate_index(h);
2742                 if (nhs->hstate_kobjs[idx]) {
2743                         kobject_put(nhs->hstate_kobjs[idx]);
2744                         nhs->hstate_kobjs[idx] = NULL;
2745                 }
2746         }
2747
2748         kobject_put(nhs->hugepages_kobj);
2749         nhs->hugepages_kobj = NULL;
2750 }
2751
2752
2753 /*
2754  * Register hstate attributes for a single node device.
2755  * No-op if attributes already registered.
2756  */
2757 static void hugetlb_register_node(struct node *node)
2758 {
2759         struct hstate *h;
2760         struct node_hstate *nhs = &node_hstates[node->dev.id];
2761         int err;
2762
2763         if (nhs->hugepages_kobj)
2764                 return;         /* already allocated */
2765
2766         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2767                                                         &node->dev.kobj);
2768         if (!nhs->hugepages_kobj)
2769                 return;
2770
2771         for_each_hstate(h) {
2772                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2773                                                 nhs->hstate_kobjs,
2774                                                 &per_node_hstate_attr_group);
2775                 if (err) {
2776                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2777                                 h->name, node->dev.id);
2778                         hugetlb_unregister_node(node);
2779                         break;
2780                 }
2781         }
2782 }
2783
2784 /*
2785  * hugetlb init time:  register hstate attributes for all registered node
2786  * devices of nodes that have memory.  All on-line nodes should have
2787  * registered their associated device by this time.
2788  */
2789 static void __init hugetlb_register_all_nodes(void)
2790 {
2791         int nid;
2792
2793         for_each_node_state(nid, N_MEMORY) {
2794                 struct node *node = node_devices[nid];
2795                 if (node->dev.id == nid)
2796                         hugetlb_register_node(node);
2797         }
2798
2799         /*
2800          * Let the node device driver know we're here so it can
2801          * [un]register hstate attributes on node hotplug.
2802          */
2803         register_hugetlbfs_with_node(hugetlb_register_node,
2804                                      hugetlb_unregister_node);
2805 }
2806 #else   /* !CONFIG_NUMA */
2807
2808 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2809 {
2810         BUG();
2811         if (nidp)
2812                 *nidp = -1;
2813         return NULL;
2814 }
2815
2816 static void hugetlb_register_all_nodes(void) { }
2817
2818 #endif
2819
2820 static int __init hugetlb_init(void)
2821 {
2822         int i;
2823
2824         if (!hugepages_supported())
2825                 return 0;
2826
2827         if (!size_to_hstate(default_hstate_size)) {
2828                 if (default_hstate_size != 0) {
2829                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2830                                default_hstate_size, HPAGE_SIZE);
2831                 }
2832
2833                 default_hstate_size = HPAGE_SIZE;
2834                 if (!size_to_hstate(default_hstate_size))
2835                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2836         }
2837         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2838         if (default_hstate_max_huge_pages) {
2839                 if (!default_hstate.max_huge_pages)
2840                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2841         }
2842
2843         hugetlb_init_hstates();
2844         gather_bootmem_prealloc();
2845         report_hugepages();
2846
2847         hugetlb_sysfs_init();
2848         hugetlb_register_all_nodes();
2849         hugetlb_cgroup_file_init();
2850
2851 #ifdef CONFIG_SMP
2852         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2853 #else
2854         num_fault_mutexes = 1;
2855 #endif
2856         hugetlb_fault_mutex_table =
2857                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2858         BUG_ON(!hugetlb_fault_mutex_table);
2859
2860         for (i = 0; i < num_fault_mutexes; i++)
2861                 mutex_init(&hugetlb_fault_mutex_table[i]);
2862         return 0;
2863 }
2864 subsys_initcall(hugetlb_init);
2865
2866 /* Should be called on processing a hugepagesz=... option */
2867 void __init hugetlb_bad_size(void)
2868 {
2869         parsed_valid_hugepagesz = false;
2870 }
2871
2872 void __init hugetlb_add_hstate(unsigned int order)
2873 {
2874         struct hstate *h;
2875         unsigned long i;
2876
2877         if (size_to_hstate(PAGE_SIZE << order)) {
2878                 pr_warn("hugepagesz= specified twice, ignoring\n");
2879                 return;
2880         }
2881         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2882         BUG_ON(order == 0);
2883         h = &hstates[hugetlb_max_hstate++];
2884         h->order = order;
2885         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2886         h->nr_huge_pages = 0;
2887         h->free_huge_pages = 0;
2888         for (i = 0; i < MAX_NUMNODES; ++i)
2889                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2890         INIT_LIST_HEAD(&h->hugepage_activelist);
2891         h->next_nid_to_alloc = first_memory_node;
2892         h->next_nid_to_free = first_memory_node;
2893         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2894                                         huge_page_size(h)/1024);
2895
2896         parsed_hstate = h;
2897 }
2898
2899 static int __init hugetlb_nrpages_setup(char *s)
2900 {
2901         unsigned long *mhp;
2902         static unsigned long *last_mhp;
2903
2904         if (!parsed_valid_hugepagesz) {
2905                 pr_warn("hugepages = %s preceded by "
2906                         "an unsupported hugepagesz, ignoring\n", s);
2907                 parsed_valid_hugepagesz = true;
2908                 return 1;
2909         }
2910         /*
2911          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2912          * so this hugepages= parameter goes to the "default hstate".
2913          */
2914         else if (!hugetlb_max_hstate)
2915                 mhp = &default_hstate_max_huge_pages;
2916         else
2917                 mhp = &parsed_hstate->max_huge_pages;
2918
2919         if (mhp == last_mhp) {
2920                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2921                 return 1;
2922         }
2923
2924         if (sscanf(s, "%lu", mhp) <= 0)
2925                 *mhp = 0;
2926
2927         /*
2928          * Global state is always initialized later in hugetlb_init.
2929          * But we need to allocate >= MAX_ORDER hstates here early to still
2930          * use the bootmem allocator.
2931          */
2932         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2933                 hugetlb_hstate_alloc_pages(parsed_hstate);
2934
2935         last_mhp = mhp;
2936
2937         return 1;
2938 }
2939 __setup("hugepages=", hugetlb_nrpages_setup);
2940
2941 static int __init hugetlb_default_setup(char *s)
2942 {
2943         default_hstate_size = memparse(s, &s);
2944         return 1;
2945 }
2946 __setup("default_hugepagesz=", hugetlb_default_setup);
2947
2948 static unsigned int cpuset_mems_nr(unsigned int *array)
2949 {
2950         int node;
2951         unsigned int nr = 0;
2952
2953         for_each_node_mask(node, cpuset_current_mems_allowed)
2954                 nr += array[node];
2955
2956         return nr;
2957 }
2958
2959 #ifdef CONFIG_SYSCTL
2960 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
2961                                           void *buffer, size_t *length,
2962                                           loff_t *ppos, unsigned long *out)
2963 {
2964         struct ctl_table dup_table;
2965
2966         /*
2967          * In order to avoid races with __do_proc_doulongvec_minmax(), we
2968          * can duplicate the @table and alter the duplicate of it.
2969          */
2970         dup_table = *table;
2971         dup_table.data = out;
2972
2973         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
2974 }
2975
2976 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2977                          struct ctl_table *table, int write,
2978                          void __user *buffer, size_t *length, loff_t *ppos)
2979 {
2980         struct hstate *h = &default_hstate;
2981         unsigned long tmp = h->max_huge_pages;
2982         int ret;
2983
2984         if (!hugepages_supported())
2985                 return -EOPNOTSUPP;
2986
2987         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
2988                                              &tmp);
2989         if (ret)
2990                 goto out;
2991
2992         if (write)
2993                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2994                                                   NUMA_NO_NODE, tmp, *length);
2995 out:
2996         return ret;
2997 }
2998
2999 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3000                           void __user *buffer, size_t *length, loff_t *ppos)
3001 {
3002
3003         return hugetlb_sysctl_handler_common(false, table, write,
3004                                                         buffer, length, ppos);
3005 }
3006
3007 #ifdef CONFIG_NUMA
3008 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3009                           void __user *buffer, size_t *length, loff_t *ppos)
3010 {
3011         return hugetlb_sysctl_handler_common(true, table, write,
3012                                                         buffer, length, ppos);
3013 }
3014 #endif /* CONFIG_NUMA */
3015
3016 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3017                         void __user *buffer,
3018                         size_t *length, loff_t *ppos)
3019 {
3020         struct hstate *h = &default_hstate;
3021         unsigned long tmp;
3022         int ret;
3023
3024         if (!hugepages_supported())
3025                 return -EOPNOTSUPP;
3026
3027         tmp = h->nr_overcommit_huge_pages;
3028
3029         if (write && hstate_is_gigantic(h))
3030                 return -EINVAL;
3031
3032         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3033                                              &tmp);
3034         if (ret)
3035                 goto out;
3036
3037         if (write) {
3038                 spin_lock(&hugetlb_lock);
3039                 h->nr_overcommit_huge_pages = tmp;
3040                 spin_unlock(&hugetlb_lock);
3041         }
3042 out:
3043         return ret;
3044 }
3045
3046 #endif /* CONFIG_SYSCTL */
3047
3048 void hugetlb_report_meminfo(struct seq_file *m)
3049 {
3050         struct hstate *h = &default_hstate;
3051         if (!hugepages_supported())
3052                 return;
3053         seq_printf(m,
3054                         "HugePages_Total:   %5lu\n"
3055                         "HugePages_Free:    %5lu\n"
3056                         "HugePages_Rsvd:    %5lu\n"
3057                         "HugePages_Surp:    %5lu\n"
3058                         "Hugepagesize:   %8lu kB\n",
3059                         h->nr_huge_pages,
3060                         h->free_huge_pages,
3061                         h->resv_huge_pages,
3062                         h->surplus_huge_pages,
3063                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3064 }
3065
3066 int hugetlb_report_node_meminfo(int nid, char *buf)
3067 {
3068         struct hstate *h = &default_hstate;
3069         if (!hugepages_supported())
3070                 return 0;
3071         return sprintf(buf,
3072                 "Node %d HugePages_Total: %5u\n"
3073                 "Node %d HugePages_Free:  %5u\n"
3074                 "Node %d HugePages_Surp:  %5u\n",
3075                 nid, h->nr_huge_pages_node[nid],
3076                 nid, h->free_huge_pages_node[nid],
3077                 nid, h->surplus_huge_pages_node[nid]);
3078 }
3079
3080 void hugetlb_show_meminfo(void)
3081 {
3082         struct hstate *h;
3083         int nid;
3084
3085         if (!hugepages_supported())
3086                 return;
3087
3088         for_each_node_state(nid, N_MEMORY)
3089                 for_each_hstate(h)
3090                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3091                                 nid,
3092                                 h->nr_huge_pages_node[nid],
3093                                 h->free_huge_pages_node[nid],
3094                                 h->surplus_huge_pages_node[nid],
3095                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3096 }
3097
3098 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3099 {
3100         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3101                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3102 }
3103
3104 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3105 unsigned long hugetlb_total_pages(void)
3106 {
3107         struct hstate *h;
3108         unsigned long nr_total_pages = 0;
3109
3110         for_each_hstate(h)
3111                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3112         return nr_total_pages;
3113 }
3114
3115 static int hugetlb_acct_memory(struct hstate *h, long delta)
3116 {
3117         int ret = -ENOMEM;
3118
3119         spin_lock(&hugetlb_lock);
3120         /*
3121          * When cpuset is configured, it breaks the strict hugetlb page
3122          * reservation as the accounting is done on a global variable. Such
3123          * reservation is completely rubbish in the presence of cpuset because
3124          * the reservation is not checked against page availability for the
3125          * current cpuset. Application can still potentially OOM'ed by kernel
3126          * with lack of free htlb page in cpuset that the task is in.
3127          * Attempt to enforce strict accounting with cpuset is almost
3128          * impossible (or too ugly) because cpuset is too fluid that
3129          * task or memory node can be dynamically moved between cpusets.
3130          *
3131          * The change of semantics for shared hugetlb mapping with cpuset is
3132          * undesirable. However, in order to preserve some of the semantics,
3133          * we fall back to check against current free page availability as
3134          * a best attempt and hopefully to minimize the impact of changing
3135          * semantics that cpuset has.
3136          */
3137         if (delta > 0) {
3138                 if (gather_surplus_pages(h, delta) < 0)
3139                         goto out;
3140
3141                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3142                         return_unused_surplus_pages(h, delta);
3143                         goto out;
3144                 }
3145         }
3146
3147         ret = 0;
3148         if (delta < 0)
3149                 return_unused_surplus_pages(h, (unsigned long) -delta);
3150
3151 out:
3152         spin_unlock(&hugetlb_lock);
3153         return ret;
3154 }
3155
3156 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3157 {
3158         struct resv_map *resv = vma_resv_map(vma);
3159
3160         /*
3161          * This new VMA should share its siblings reservation map if present.
3162          * The VMA will only ever have a valid reservation map pointer where
3163          * it is being copied for another still existing VMA.  As that VMA
3164          * has a reference to the reservation map it cannot disappear until
3165          * after this open call completes.  It is therefore safe to take a
3166          * new reference here without additional locking.
3167          */
3168         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3169                 kref_get(&resv->refs);
3170 }
3171
3172 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3173 {
3174         struct hstate *h = hstate_vma(vma);
3175         struct resv_map *resv = vma_resv_map(vma);
3176         struct hugepage_subpool *spool = subpool_vma(vma);
3177         unsigned long reserve, start, end;
3178         long gbl_reserve;
3179
3180         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3181                 return;
3182
3183         start = vma_hugecache_offset(h, vma, vma->vm_start);
3184         end = vma_hugecache_offset(h, vma, vma->vm_end);
3185
3186         reserve = (end - start) - region_count(resv, start, end);
3187
3188         kref_put(&resv->refs, resv_map_release);
3189
3190         if (reserve) {
3191                 /*
3192                  * Decrement reserve counts.  The global reserve count may be
3193                  * adjusted if the subpool has a minimum size.
3194                  */
3195                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3196                 hugetlb_acct_memory(h, -gbl_reserve);
3197         }
3198 }
3199
3200 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3201 {
3202         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3203                 return -EINVAL;
3204         return 0;
3205 }
3206
3207 /*
3208  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3209  * handle_mm_fault() to try to instantiate regular-sized pages in the
3210  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3211  * this far.
3212  */
3213 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3214 {
3215         BUG();
3216         return 0;
3217 }
3218
3219 const struct vm_operations_struct hugetlb_vm_ops = {
3220         .fault = hugetlb_vm_op_fault,
3221         .open = hugetlb_vm_op_open,
3222         .close = hugetlb_vm_op_close,
3223         .split = hugetlb_vm_op_split,
3224 };
3225
3226 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3227                                 int writable)
3228 {
3229         pte_t entry;
3230
3231         if (writable) {
3232                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3233                                          vma->vm_page_prot)));
3234         } else {
3235                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3236                                            vma->vm_page_prot));
3237         }
3238         entry = pte_mkyoung(entry);
3239         entry = pte_mkhuge(entry);
3240         entry = arch_make_huge_pte(entry, vma, page, writable);
3241
3242         return entry;
3243 }
3244
3245 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3246                                    unsigned long address, pte_t *ptep)
3247 {
3248         pte_t entry;
3249
3250         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3251         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3252                 update_mmu_cache(vma, address, ptep);
3253 }
3254
3255 bool is_hugetlb_entry_migration(pte_t pte)
3256 {
3257         swp_entry_t swp;
3258
3259         if (huge_pte_none(pte) || pte_present(pte))
3260                 return false;
3261         swp = pte_to_swp_entry(pte);
3262         if (non_swap_entry(swp) && is_migration_entry(swp))
3263                 return true;
3264         else
3265                 return false;
3266 }
3267
3268 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3269 {
3270         swp_entry_t swp;
3271
3272         if (huge_pte_none(pte) || pte_present(pte))
3273                 return 0;
3274         swp = pte_to_swp_entry(pte);
3275         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3276                 return 1;
3277         else
3278                 return 0;
3279 }
3280
3281 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3282                             struct vm_area_struct *vma)
3283 {
3284         pte_t *src_pte, *dst_pte, entry, dst_entry;
3285         struct page *ptepage;
3286         unsigned long addr;
3287         int cow;
3288         struct hstate *h = hstate_vma(vma);
3289         unsigned long sz = huge_page_size(h);
3290         unsigned long mmun_start;       /* For mmu_notifiers */
3291         unsigned long mmun_end;         /* For mmu_notifiers */
3292         int ret = 0;
3293
3294         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3295
3296         mmun_start = vma->vm_start;
3297         mmun_end = vma->vm_end;
3298         if (cow)
3299                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3300
3301         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3302                 spinlock_t *src_ptl, *dst_ptl;
3303                 src_pte = huge_pte_offset(src, addr, sz);
3304                 if (!src_pte)
3305                         continue;
3306                 dst_pte = huge_pte_alloc(dst, addr, sz);
3307                 if (!dst_pte) {
3308                         ret = -ENOMEM;
3309                         break;
3310                 }
3311
3312                 /*
3313                  * If the pagetables are shared don't copy or take references.
3314                  * dst_pte == src_pte is the common case of src/dest sharing.
3315                  *
3316                  * However, src could have 'unshared' and dst shares with
3317                  * another vma.  If dst_pte !none, this implies sharing.
3318                  * Check here before taking page table lock, and once again
3319                  * after taking the lock below.
3320                  */
3321                 dst_entry = huge_ptep_get(dst_pte);
3322                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3323                         continue;
3324
3325                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3326                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3327                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3328                 entry = huge_ptep_get(src_pte);
3329                 dst_entry = huge_ptep_get(dst_pte);
3330                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3331                         /*
3332                          * Skip if src entry none.  Also, skip in the
3333                          * unlikely case dst entry !none as this implies
3334                          * sharing with another vma.
3335                          */
3336                         ;
3337                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3338                                     is_hugetlb_entry_hwpoisoned(entry))) {
3339                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3340
3341                         if (is_write_migration_entry(swp_entry) && cow) {
3342                                 /*
3343                                  * COW mappings require pages in both
3344                                  * parent and child to be set to read.
3345                                  */
3346                                 make_migration_entry_read(&swp_entry);
3347                                 entry = swp_entry_to_pte(swp_entry);
3348                                 set_huge_swap_pte_at(src, addr, src_pte,
3349                                                      entry, sz);
3350                         }
3351                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3352                 } else {
3353                         if (cow) {
3354                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3355                                 mmu_notifier_invalidate_range(src, mmun_start,
3356                                                                    mmun_end);
3357                         }
3358                         entry = huge_ptep_get(src_pte);
3359                         ptepage = pte_page(entry);
3360                         get_page(ptepage);
3361                         page_dup_rmap(ptepage, true);
3362                         set_huge_pte_at(dst, addr, dst_pte, entry);
3363                         hugetlb_count_add(pages_per_huge_page(h), dst);
3364                 }
3365                 spin_unlock(src_ptl);
3366                 spin_unlock(dst_ptl);
3367         }
3368
3369         if (cow)
3370                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3371
3372         return ret;
3373 }
3374
3375 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3376                             unsigned long start, unsigned long end,
3377                             struct page *ref_page)
3378 {
3379         struct mm_struct *mm = vma->vm_mm;
3380         unsigned long address;
3381         pte_t *ptep;
3382         pte_t pte;
3383         spinlock_t *ptl;
3384         struct page *page;
3385         struct hstate *h = hstate_vma(vma);
3386         unsigned long sz = huge_page_size(h);
3387         unsigned long mmun_start = start;       /* For mmu_notifiers */
3388         unsigned long mmun_end   = end;         /* For mmu_notifiers */
3389         bool force_flush = false;
3390
3391         WARN_ON(!is_vm_hugetlb_page(vma));
3392         BUG_ON(start & ~huge_page_mask(h));
3393         BUG_ON(end & ~huge_page_mask(h));
3394
3395         /*
3396          * This is a hugetlb vma, all the pte entries should point
3397          * to huge page.
3398          */
3399         tlb_remove_check_page_size_change(tlb, sz);
3400         tlb_start_vma(tlb, vma);
3401
3402         /*
3403          * If sharing possible, alert mmu notifiers of worst case.
3404          */
3405         adjust_range_if_pmd_sharing_possible(vma, &mmun_start, &mmun_end);
3406         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3407         address = start;
3408         for (; address < end; address += sz) {
3409                 ptep = huge_pte_offset(mm, address, sz);
3410                 if (!ptep)
3411                         continue;
3412
3413                 ptl = huge_pte_lock(h, mm, ptep);
3414                 if (huge_pmd_unshare(mm, &address, ptep)) {
3415                         spin_unlock(ptl);
3416                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
3417                         force_flush = true;
3418                         continue;
3419                 }
3420
3421                 pte = huge_ptep_get(ptep);
3422                 if (huge_pte_none(pte)) {
3423                         spin_unlock(ptl);
3424                         continue;
3425                 }
3426
3427                 /*
3428                  * Migrating hugepage or HWPoisoned hugepage is already
3429                  * unmapped and its refcount is dropped, so just clear pte here.
3430                  */
3431                 if (unlikely(!pte_present(pte))) {
3432                         huge_pte_clear(mm, address, ptep, sz);
3433                         spin_unlock(ptl);
3434                         continue;
3435                 }
3436
3437                 page = pte_page(pte);
3438                 /*
3439                  * If a reference page is supplied, it is because a specific
3440                  * page is being unmapped, not a range. Ensure the page we
3441                  * are about to unmap is the actual page of interest.
3442                  */
3443                 if (ref_page) {
3444                         if (page != ref_page) {
3445                                 spin_unlock(ptl);
3446                                 continue;
3447                         }
3448                         /*
3449                          * Mark the VMA as having unmapped its page so that
3450                          * future faults in this VMA will fail rather than
3451                          * looking like data was lost
3452                          */
3453                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3454                 }
3455
3456                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3457                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3458                 if (huge_pte_dirty(pte))
3459                         set_page_dirty(page);
3460
3461                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3462                 page_remove_rmap(page, true);
3463
3464                 spin_unlock(ptl);
3465                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3466                 /*
3467                  * Bail out after unmapping reference page if supplied
3468                  */
3469                 if (ref_page)
3470                         break;
3471         }
3472         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3473         tlb_end_vma(tlb, vma);
3474
3475         /*
3476          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
3477          * could defer the flush until now, since by holding i_mmap_rwsem we
3478          * guaranteed that the last refernece would not be dropped. But we must
3479          * do the flushing before we return, as otherwise i_mmap_rwsem will be
3480          * dropped and the last reference to the shared PMDs page might be
3481          * dropped as well.
3482          *
3483          * In theory we could defer the freeing of the PMD pages as well, but
3484          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
3485          * detect sharing, so we cannot defer the release of the page either.
3486          * Instead, do flush now.
3487          */
3488         if (force_flush)
3489                 tlb_flush_mmu(tlb);
3490 }
3491
3492 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3493                           struct vm_area_struct *vma, unsigned long start,
3494                           unsigned long end, struct page *ref_page)
3495 {
3496         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3497
3498         /*
3499          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3500          * test will fail on a vma being torn down, and not grab a page table
3501          * on its way out.  We're lucky that the flag has such an appropriate
3502          * name, and can in fact be safely cleared here. We could clear it
3503          * before the __unmap_hugepage_range above, but all that's necessary
3504          * is to clear it before releasing the i_mmap_rwsem. This works
3505          * because in the context this is called, the VMA is about to be
3506          * destroyed and the i_mmap_rwsem is held.
3507          */
3508         vma->vm_flags &= ~VM_MAYSHARE;
3509 }
3510
3511 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3512                           unsigned long end, struct page *ref_page)
3513 {
3514         struct mm_struct *mm;
3515         struct mmu_gather tlb;
3516         unsigned long tlb_start = start;
3517         unsigned long tlb_end = end;
3518
3519         /*
3520          * If shared PMDs were possibly used within this vma range, adjust
3521          * start/end for worst case tlb flushing.
3522          * Note that we can not be sure if PMDs are shared until we try to
3523          * unmap pages.  However, we want to make sure TLB flushing covers
3524          * the largest possible range.
3525          */
3526         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3527
3528         mm = vma->vm_mm;
3529
3530         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3531         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3532         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3533 }
3534
3535 /*
3536  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3537  * mappping it owns the reserve page for. The intention is to unmap the page
3538  * from other VMAs and let the children be SIGKILLed if they are faulting the
3539  * same region.
3540  */
3541 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3542                               struct page *page, unsigned long address)
3543 {
3544         struct hstate *h = hstate_vma(vma);
3545         struct vm_area_struct *iter_vma;
3546         struct address_space *mapping;
3547         pgoff_t pgoff;
3548
3549         /*
3550          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3551          * from page cache lookup which is in HPAGE_SIZE units.
3552          */
3553         address = address & huge_page_mask(h);
3554         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3555                         vma->vm_pgoff;
3556         mapping = vma->vm_file->f_mapping;
3557
3558         /*
3559          * Take the mapping lock for the duration of the table walk. As
3560          * this mapping should be shared between all the VMAs,
3561          * __unmap_hugepage_range() is called as the lock is already held
3562          */
3563         i_mmap_lock_write(mapping);
3564         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3565                 /* Do not unmap the current VMA */
3566                 if (iter_vma == vma)
3567                         continue;
3568
3569                 /*
3570                  * Shared VMAs have their own reserves and do not affect
3571                  * MAP_PRIVATE accounting but it is possible that a shared
3572                  * VMA is using the same page so check and skip such VMAs.
3573                  */
3574                 if (iter_vma->vm_flags & VM_MAYSHARE)
3575                         continue;
3576
3577                 /*
3578                  * Unmap the page from other VMAs without their own reserves.
3579                  * They get marked to be SIGKILLed if they fault in these
3580                  * areas. This is because a future no-page fault on this VMA
3581                  * could insert a zeroed page instead of the data existing
3582                  * from the time of fork. This would look like data corruption
3583                  */
3584                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3585                         unmap_hugepage_range(iter_vma, address,
3586                                              address + huge_page_size(h), page);
3587         }
3588         i_mmap_unlock_write(mapping);
3589 }
3590
3591 /*
3592  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3593  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3594  * cannot race with other handlers or page migration.
3595  * Keep the pte_same checks anyway to make transition from the mutex easier.
3596  */
3597 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3598                        unsigned long address, pte_t *ptep,
3599                        struct page *pagecache_page, spinlock_t *ptl)
3600 {
3601         pte_t pte;
3602         struct hstate *h = hstate_vma(vma);
3603         struct page *old_page, *new_page;
3604         int ret = 0, outside_reserve = 0;
3605         unsigned long mmun_start;       /* For mmu_notifiers */
3606         unsigned long mmun_end;         /* For mmu_notifiers */
3607
3608         pte = huge_ptep_get(ptep);
3609         old_page = pte_page(pte);
3610
3611 retry_avoidcopy:
3612         /* If no-one else is actually using this page, avoid the copy
3613          * and just make the page writable */
3614         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3615                 page_move_anon_rmap(old_page, vma);
3616                 set_huge_ptep_writable(vma, address, ptep);
3617                 return 0;
3618         }
3619
3620         /*
3621          * If the process that created a MAP_PRIVATE mapping is about to
3622          * perform a COW due to a shared page count, attempt to satisfy
3623          * the allocation without using the existing reserves. The pagecache
3624          * page is used to determine if the reserve at this address was
3625          * consumed or not. If reserves were used, a partial faulted mapping
3626          * at the time of fork() could consume its reserves on COW instead
3627          * of the full address range.
3628          */
3629         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3630                         old_page != pagecache_page)
3631                 outside_reserve = 1;
3632
3633         get_page(old_page);
3634
3635         /*
3636          * Drop page table lock as buddy allocator may be called. It will
3637          * be acquired again before returning to the caller, as expected.
3638          */
3639         spin_unlock(ptl);
3640         new_page = alloc_huge_page(vma, address, outside_reserve);
3641
3642         if (IS_ERR(new_page)) {
3643                 /*
3644                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3645                  * it is due to references held by a child and an insufficient
3646                  * huge page pool. To guarantee the original mappers
3647                  * reliability, unmap the page from child processes. The child
3648                  * may get SIGKILLed if it later faults.
3649                  */
3650                 if (outside_reserve) {
3651                         put_page(old_page);
3652                         BUG_ON(huge_pte_none(pte));
3653                         unmap_ref_private(mm, vma, old_page, address);
3654                         BUG_ON(huge_pte_none(pte));
3655                         spin_lock(ptl);
3656                         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3657                                                huge_page_size(h));
3658                         if (likely(ptep &&
3659                                    pte_same(huge_ptep_get(ptep), pte)))
3660                                 goto retry_avoidcopy;
3661                         /*
3662                          * race occurs while re-acquiring page table
3663                          * lock, and our job is done.
3664                          */
3665                         return 0;
3666                 }
3667
3668                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3669                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3670                 goto out_release_old;
3671         }
3672
3673         /*
3674          * When the original hugepage is shared one, it does not have
3675          * anon_vma prepared.
3676          */
3677         if (unlikely(anon_vma_prepare(vma))) {
3678                 ret = VM_FAULT_OOM;
3679                 goto out_release_all;
3680         }
3681
3682         copy_user_huge_page(new_page, old_page, address, vma,
3683                             pages_per_huge_page(h));
3684         __SetPageUptodate(new_page);
3685
3686         mmun_start = address & huge_page_mask(h);
3687         mmun_end = mmun_start + huge_page_size(h);
3688         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3689
3690         /*
3691          * Retake the page table lock to check for racing updates
3692          * before the page tables are altered
3693          */
3694         spin_lock(ptl);
3695         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3696                                huge_page_size(h));
3697         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3698                 ClearPagePrivate(new_page);
3699
3700                 /* Break COW */
3701                 huge_ptep_clear_flush(vma, address, ptep);
3702                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3703                 set_huge_pte_at(mm, address, ptep,
3704                                 make_huge_pte(vma, new_page, 1));
3705                 page_remove_rmap(old_page, true);
3706                 hugepage_add_new_anon_rmap(new_page, vma, address);
3707                 set_page_huge_active(new_page);
3708                 /* Make the old page be freed below */
3709                 new_page = old_page;
3710         }
3711         spin_unlock(ptl);
3712         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3713 out_release_all:
3714         restore_reserve_on_error(h, vma, address, new_page);
3715         put_page(new_page);
3716 out_release_old:
3717         put_page(old_page);
3718
3719         spin_lock(ptl); /* Caller expects lock to be held */
3720         return ret;
3721 }
3722
3723 /* Return the pagecache page at a given address within a VMA */
3724 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3725                         struct vm_area_struct *vma, unsigned long address)
3726 {
3727         struct address_space *mapping;
3728         pgoff_t idx;
3729
3730         mapping = vma->vm_file->f_mapping;
3731         idx = vma_hugecache_offset(h, vma, address);
3732
3733         return find_lock_page(mapping, idx);
3734 }
3735
3736 /*
3737  * Return whether there is a pagecache page to back given address within VMA.
3738  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3739  */
3740 static bool hugetlbfs_pagecache_present(struct hstate *h,
3741                         struct vm_area_struct *vma, unsigned long address)
3742 {
3743         struct address_space *mapping;
3744         pgoff_t idx;
3745         struct page *page;
3746
3747         mapping = vma->vm_file->f_mapping;
3748         idx = vma_hugecache_offset(h, vma, address);
3749
3750         page = find_get_page(mapping, idx);
3751         if (page)
3752                 put_page(page);
3753         return page != NULL;
3754 }
3755
3756 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3757                            pgoff_t idx)
3758 {
3759         struct inode *inode = mapping->host;
3760         struct hstate *h = hstate_inode(inode);
3761         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3762
3763         if (err)
3764                 return err;
3765         ClearPagePrivate(page);
3766
3767         /*
3768          * set page dirty so that it will not be removed from cache/file
3769          * by non-hugetlbfs specific code paths.
3770          */
3771         set_page_dirty(page);
3772
3773         spin_lock(&inode->i_lock);
3774         inode->i_blocks += blocks_per_huge_page(h);
3775         spin_unlock(&inode->i_lock);
3776         return 0;
3777 }
3778
3779 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3780                            struct address_space *mapping, pgoff_t idx,
3781                            unsigned long address, pte_t *ptep, unsigned int flags)
3782 {
3783         struct hstate *h = hstate_vma(vma);
3784         int ret = VM_FAULT_SIGBUS;
3785         int anon_rmap = 0;
3786         unsigned long size;
3787         struct page *page;
3788         pte_t new_pte;
3789         spinlock_t *ptl;
3790         bool new_page = false;
3791
3792         /*
3793          * Currently, we are forced to kill the process in the event the
3794          * original mapper has unmapped pages from the child due to a failed
3795          * COW. Warn that such a situation has occurred as it may not be obvious
3796          */
3797         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3798                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3799                            current->pid);
3800                 return ret;
3801         }
3802
3803         /*
3804          * Use page lock to guard against racing truncation
3805          * before we get page_table_lock.
3806          */
3807 retry:
3808         page = find_lock_page(mapping, idx);
3809         if (!page) {
3810                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3811                 if (idx >= size)
3812                         goto out;
3813
3814                 /*
3815                  * Check for page in userfault range
3816                  */
3817                 if (userfaultfd_missing(vma)) {
3818                         u32 hash;
3819                         struct vm_fault vmf = {
3820                                 .vma = vma,
3821                                 .address = address,
3822                                 .flags = flags,
3823                                 /*
3824                                  * Hard to debug if it ends up being
3825                                  * used by a callee that assumes
3826                                  * something about the other
3827                                  * uninitialized fields... same as in
3828                                  * memory.c
3829                                  */
3830                         };
3831
3832                         /*
3833                          * hugetlb_fault_mutex must be dropped before
3834                          * handling userfault.  Reacquire after handling
3835                          * fault to make calling code simpler.
3836                          */
3837                         hash = hugetlb_fault_mutex_hash(h, mapping, idx);
3838                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3839                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3840                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3841                         goto out;
3842                 }
3843
3844                 page = alloc_huge_page(vma, address, 0);
3845                 if (IS_ERR(page)) {
3846                         ret = PTR_ERR(page);
3847                         if (ret == -ENOMEM)
3848                                 ret = VM_FAULT_OOM;
3849                         else
3850                                 ret = VM_FAULT_SIGBUS;
3851                         goto out;
3852                 }
3853                 clear_huge_page(page, address, pages_per_huge_page(h));
3854                 __SetPageUptodate(page);
3855                 new_page = true;
3856
3857                 if (vma->vm_flags & VM_MAYSHARE) {
3858                         int err = huge_add_to_page_cache(page, mapping, idx);
3859                         if (err) {
3860                                 put_page(page);
3861                                 if (err == -EEXIST)
3862                                         goto retry;
3863                                 goto out;
3864                         }
3865                 } else {
3866                         lock_page(page);
3867                         if (unlikely(anon_vma_prepare(vma))) {
3868                                 ret = VM_FAULT_OOM;
3869                                 goto backout_unlocked;
3870                         }
3871                         anon_rmap = 1;
3872                 }
3873         } else {
3874                 /*
3875                  * If memory error occurs between mmap() and fault, some process
3876                  * don't have hwpoisoned swap entry for errored virtual address.
3877                  * So we need to block hugepage fault by PG_hwpoison bit check.
3878                  */
3879                 if (unlikely(PageHWPoison(page))) {
3880                         ret = VM_FAULT_HWPOISON_LARGE |
3881                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3882                         goto backout_unlocked;
3883                 }
3884         }
3885
3886         /*
3887          * If we are going to COW a private mapping later, we examine the
3888          * pending reservations for this page now. This will ensure that
3889          * any allocations necessary to record that reservation occur outside
3890          * the spinlock.
3891          */
3892         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3893                 if (vma_needs_reservation(h, vma, address) < 0) {
3894                         ret = VM_FAULT_OOM;
3895                         goto backout_unlocked;
3896                 }
3897                 /* Just decrements count, does not deallocate */
3898                 vma_end_reservation(h, vma, address);
3899         }
3900
3901         ptl = huge_pte_lock(h, mm, ptep);
3902         size = i_size_read(mapping->host) >> huge_page_shift(h);
3903         if (idx >= size)
3904                 goto backout;
3905
3906         ret = 0;
3907         if (!huge_pte_none(huge_ptep_get(ptep)))
3908                 goto backout;
3909
3910         if (anon_rmap) {
3911                 ClearPagePrivate(page);
3912                 hugepage_add_new_anon_rmap(page, vma, address);
3913         } else
3914                 page_dup_rmap(page, true);
3915         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3916                                 && (vma->vm_flags & VM_SHARED)));
3917         set_huge_pte_at(mm, address, ptep, new_pte);
3918
3919         hugetlb_count_add(pages_per_huge_page(h), mm);
3920         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3921                 /* Optimization, do the COW without a second fault */
3922                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3923         }
3924
3925         spin_unlock(ptl);
3926
3927         /*
3928          * Only make newly allocated pages active.  Existing pages found
3929          * in the pagecache could be !page_huge_active() if they have been
3930          * isolated for migration.
3931          */
3932         if (new_page)
3933                 set_page_huge_active(page);
3934
3935         unlock_page(page);
3936 out:
3937         return ret;
3938
3939 backout:
3940         spin_unlock(ptl);
3941 backout_unlocked:
3942         unlock_page(page);
3943         restore_reserve_on_error(h, vma, address, page);
3944         put_page(page);
3945         goto out;
3946 }
3947
3948 #ifdef CONFIG_SMP
3949 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3950                             pgoff_t idx)
3951 {
3952         unsigned long key[2];
3953         u32 hash;
3954
3955         key[0] = (unsigned long) mapping;
3956         key[1] = idx;
3957
3958         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
3959
3960         return hash & (num_fault_mutexes - 1);
3961 }
3962 #else
3963 /*
3964  * For uniprocesor systems we always use a single mutex, so just
3965  * return 0 and avoid the hashing overhead.
3966  */
3967 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3968                             pgoff_t idx)
3969 {
3970         return 0;
3971 }
3972 #endif
3973
3974 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3975                         unsigned long address, unsigned int flags)
3976 {
3977         pte_t *ptep, entry;
3978         spinlock_t *ptl;
3979         int ret;
3980         u32 hash;
3981         pgoff_t idx;
3982         struct page *page = NULL;
3983         struct page *pagecache_page = NULL;
3984         struct hstate *h = hstate_vma(vma);
3985         struct address_space *mapping;
3986         int need_wait_lock = 0;
3987
3988         address &= huge_page_mask(h);
3989
3990         ptep = huge_pte_offset(mm, address, huge_page_size(h));
3991         if (ptep) {
3992                 entry = huge_ptep_get(ptep);
3993                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3994                         migration_entry_wait_huge(vma, mm, ptep);
3995                         return 0;
3996                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3997                         return VM_FAULT_HWPOISON_LARGE |
3998                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3999         } else {
4000                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
4001                 if (!ptep)
4002                         return VM_FAULT_OOM;
4003         }
4004
4005         mapping = vma->vm_file->f_mapping;
4006         idx = vma_hugecache_offset(h, vma, address);
4007
4008         /*
4009          * Serialize hugepage allocation and instantiation, so that we don't
4010          * get spurious allocation failures if two CPUs race to instantiate
4011          * the same page in the page cache.
4012          */
4013         hash = hugetlb_fault_mutex_hash(h, mapping, idx);
4014         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4015
4016         entry = huge_ptep_get(ptep);
4017         if (huge_pte_none(entry)) {
4018                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4019                 goto out_mutex;
4020         }
4021
4022         ret = 0;
4023
4024         /*
4025          * entry could be a migration/hwpoison entry at this point, so this
4026          * check prevents the kernel from going below assuming that we have
4027          * a active hugepage in pagecache. This goto expects the 2nd page fault,
4028          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4029          * handle it.
4030          */
4031         if (!pte_present(entry))
4032                 goto out_mutex;
4033
4034         /*
4035          * If we are going to COW the mapping later, we examine the pending
4036          * reservations for this page now. This will ensure that any
4037          * allocations necessary to record that reservation occur outside the
4038          * spinlock. For private mappings, we also lookup the pagecache
4039          * page now as it is used to determine if a reservation has been
4040          * consumed.
4041          */
4042         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4043                 if (vma_needs_reservation(h, vma, address) < 0) {
4044                         ret = VM_FAULT_OOM;
4045                         goto out_mutex;
4046                 }
4047                 /* Just decrements count, does not deallocate */
4048                 vma_end_reservation(h, vma, address);
4049
4050                 if (!(vma->vm_flags & VM_MAYSHARE))
4051                         pagecache_page = hugetlbfs_pagecache_page(h,
4052                                                                 vma, address);
4053         }
4054
4055         ptl = huge_pte_lock(h, mm, ptep);
4056
4057         /* Check for a racing update before calling hugetlb_cow */
4058         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4059                 goto out_ptl;
4060
4061         /*
4062          * hugetlb_cow() requires page locks of pte_page(entry) and
4063          * pagecache_page, so here we need take the former one
4064          * when page != pagecache_page or !pagecache_page.
4065          */
4066         page = pte_page(entry);
4067         if (page != pagecache_page)
4068                 if (!trylock_page(page)) {
4069                         need_wait_lock = 1;
4070                         goto out_ptl;
4071                 }
4072
4073         get_page(page);
4074
4075         if (flags & FAULT_FLAG_WRITE) {
4076                 if (!huge_pte_write(entry)) {
4077                         ret = hugetlb_cow(mm, vma, address, ptep,
4078                                           pagecache_page, ptl);
4079                         goto out_put_page;
4080                 }
4081                 entry = huge_pte_mkdirty(entry);
4082         }
4083         entry = pte_mkyoung(entry);
4084         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
4085                                                 flags & FAULT_FLAG_WRITE))
4086                 update_mmu_cache(vma, address, ptep);
4087 out_put_page:
4088         if (page != pagecache_page)
4089                 unlock_page(page);
4090         put_page(page);
4091 out_ptl:
4092         spin_unlock(ptl);
4093
4094         if (pagecache_page) {
4095                 unlock_page(pagecache_page);
4096                 put_page(pagecache_page);
4097         }
4098 out_mutex:
4099         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4100         /*
4101          * Generally it's safe to hold refcount during waiting page lock. But
4102          * here we just wait to defer the next page fault to avoid busy loop and
4103          * the page is not used after unlocked before returning from the current
4104          * page fault. So we are safe from accessing freed page, even if we wait
4105          * here without taking refcount.
4106          */
4107         if (need_wait_lock)
4108                 wait_on_page_locked(page);
4109         return ret;
4110 }
4111
4112 /*
4113  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4114  * modifications for huge pages.
4115  */
4116 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4117                             pte_t *dst_pte,
4118                             struct vm_area_struct *dst_vma,
4119                             unsigned long dst_addr,
4120                             unsigned long src_addr,
4121                             struct page **pagep)
4122 {
4123         struct address_space *mapping;
4124         pgoff_t idx;
4125         unsigned long size;
4126         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4127         struct hstate *h = hstate_vma(dst_vma);
4128         pte_t _dst_pte;
4129         spinlock_t *ptl;
4130         int ret;
4131         struct page *page;
4132
4133         if (!*pagep) {
4134                 /* If a page already exists, then it's UFFDIO_COPY for
4135                  * a non-missing case. Return -EEXIST.
4136                  */
4137                 if (vm_shared &&
4138                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4139                         ret = -EEXIST;
4140                         goto out;
4141                 }
4142
4143                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4144                 if (IS_ERR(page)) {
4145                         ret = -ENOMEM;
4146                         goto out;
4147                 }
4148
4149                 ret = copy_huge_page_from_user(page,
4150                                                 (const void __user *) src_addr,
4151                                                 pages_per_huge_page(h), false);
4152
4153                 /* fallback to copy_from_user outside mmap_sem */
4154                 if (unlikely(ret)) {
4155                         ret = -ENOENT;
4156                         *pagep = page;
4157                         /* don't free the page */
4158                         goto out;
4159                 }
4160         } else {
4161                 page = *pagep;
4162                 *pagep = NULL;
4163         }
4164
4165         /*
4166          * The memory barrier inside __SetPageUptodate makes sure that
4167          * preceding stores to the page contents become visible before
4168          * the set_pte_at() write.
4169          */
4170         __SetPageUptodate(page);
4171
4172         mapping = dst_vma->vm_file->f_mapping;
4173         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4174
4175         /*
4176          * If shared, add to page cache
4177          */
4178         if (vm_shared) {
4179                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4180                 ret = -EFAULT;
4181                 if (idx >= size)
4182                         goto out_release_nounlock;
4183
4184                 /*
4185                  * Serialization between remove_inode_hugepages() and
4186                  * huge_add_to_page_cache() below happens through the
4187                  * hugetlb_fault_mutex_table that here must be hold by
4188                  * the caller.
4189                  */
4190                 ret = huge_add_to_page_cache(page, mapping, idx);
4191                 if (ret)
4192                         goto out_release_nounlock;
4193         }
4194
4195         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4196         spin_lock(ptl);
4197
4198         /*
4199          * Recheck the i_size after holding PT lock to make sure not
4200          * to leave any page mapped (as page_mapped()) beyond the end
4201          * of the i_size (remove_inode_hugepages() is strict about
4202          * enforcing that). If we bail out here, we'll also leave a
4203          * page in the radix tree in the vm_shared case beyond the end
4204          * of the i_size, but remove_inode_hugepages() will take care
4205          * of it as soon as we drop the hugetlb_fault_mutex_table.
4206          */
4207         size = i_size_read(mapping->host) >> huge_page_shift(h);
4208         ret = -EFAULT;
4209         if (idx >= size)
4210                 goto out_release_unlock;
4211
4212         ret = -EEXIST;
4213         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4214                 goto out_release_unlock;
4215
4216         if (vm_shared) {
4217                 page_dup_rmap(page, true);
4218         } else {
4219                 ClearPagePrivate(page);
4220                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4221         }
4222
4223         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4224         if (dst_vma->vm_flags & VM_WRITE)
4225                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4226         _dst_pte = pte_mkyoung(_dst_pte);
4227
4228         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4229
4230         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4231                                         dst_vma->vm_flags & VM_WRITE);
4232         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4233
4234         /* No need to invalidate - it was non-present before */
4235         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4236
4237         spin_unlock(ptl);
4238         set_page_huge_active(page);
4239         if (vm_shared)
4240                 unlock_page(page);
4241         ret = 0;
4242 out:
4243         return ret;
4244 out_release_unlock:
4245         spin_unlock(ptl);
4246         if (vm_shared)
4247                 unlock_page(page);
4248 out_release_nounlock:
4249         put_page(page);
4250         goto out;
4251 }
4252
4253 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4254                          struct page **pages, struct vm_area_struct **vmas,
4255                          unsigned long *position, unsigned long *nr_pages,
4256                          long i, unsigned int flags, int *nonblocking)
4257 {
4258         unsigned long pfn_offset;
4259         unsigned long vaddr = *position;
4260         unsigned long remainder = *nr_pages;
4261         struct hstate *h = hstate_vma(vma);
4262         int err = -EFAULT;
4263
4264         while (vaddr < vma->vm_end && remainder) {
4265                 pte_t *pte;
4266                 spinlock_t *ptl = NULL;
4267                 int absent;
4268                 struct page *page;
4269
4270                 /*
4271                  * If we have a pending SIGKILL, don't keep faulting pages and
4272                  * potentially allocating memory.
4273                  */
4274                 if (unlikely(fatal_signal_pending(current))) {
4275                         remainder = 0;
4276                         break;
4277                 }
4278
4279                 /*
4280                  * Some archs (sparc64, sh*) have multiple pte_ts to
4281                  * each hugepage.  We have to make sure we get the
4282                  * first, for the page indexing below to work.
4283                  *
4284                  * Note that page table lock is not held when pte is null.
4285                  */
4286                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4287                                       huge_page_size(h));
4288                 if (pte)
4289                         ptl = huge_pte_lock(h, mm, pte);
4290                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4291
4292                 /*
4293                  * When coredumping, it suits get_dump_page if we just return
4294                  * an error where there's an empty slot with no huge pagecache
4295                  * to back it.  This way, we avoid allocating a hugepage, and
4296                  * the sparse dumpfile avoids allocating disk blocks, but its
4297                  * huge holes still show up with zeroes where they need to be.
4298                  */
4299                 if (absent && (flags & FOLL_DUMP) &&
4300                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4301                         if (pte)
4302                                 spin_unlock(ptl);
4303                         remainder = 0;
4304                         break;
4305                 }
4306
4307                 /*
4308                  * We need call hugetlb_fault for both hugepages under migration
4309                  * (in which case hugetlb_fault waits for the migration,) and
4310                  * hwpoisoned hugepages (in which case we need to prevent the
4311                  * caller from accessing to them.) In order to do this, we use
4312                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4313                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4314                  * both cases, and because we can't follow correct pages
4315                  * directly from any kind of swap entries.
4316                  */
4317                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4318                     ((flags & FOLL_WRITE) &&
4319                       !huge_pte_write(huge_ptep_get(pte)))) {
4320                         int ret;
4321                         unsigned int fault_flags = 0;
4322
4323                         if (pte)
4324                                 spin_unlock(ptl);
4325                         if (flags & FOLL_WRITE)
4326                                 fault_flags |= FAULT_FLAG_WRITE;
4327                         if (nonblocking)
4328                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4329                         if (flags & FOLL_NOWAIT)
4330                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4331                                         FAULT_FLAG_RETRY_NOWAIT;
4332                         if (flags & FOLL_TRIED) {
4333                                 VM_WARN_ON_ONCE(fault_flags &
4334                                                 FAULT_FLAG_ALLOW_RETRY);
4335                                 fault_flags |= FAULT_FLAG_TRIED;
4336                         }
4337                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4338                         if (ret & VM_FAULT_ERROR) {
4339                                 err = vm_fault_to_errno(ret, flags);
4340                                 remainder = 0;
4341                                 break;
4342                         }
4343                         if (ret & VM_FAULT_RETRY) {
4344                                 if (nonblocking)
4345                                         *nonblocking = 0;
4346                                 *nr_pages = 0;
4347                                 /*
4348                                  * VM_FAULT_RETRY must not return an
4349                                  * error, it will return zero
4350                                  * instead.
4351                                  *
4352                                  * No need to update "position" as the
4353                                  * caller will not check it after
4354                                  * *nr_pages is set to 0.
4355                                  */
4356                                 return i;
4357                         }
4358                         continue;
4359                 }
4360
4361                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4362                 page = pte_page(huge_ptep_get(pte));
4363
4364                 /*
4365                  * Instead of doing 'try_get_page()' below in the same_page
4366                  * loop, just check the count once here.
4367                  */
4368                 if (unlikely(page_count(page) <= 0)) {
4369                         if (pages) {
4370                                 spin_unlock(ptl);
4371                                 remainder = 0;
4372                                 err = -ENOMEM;
4373                                 break;
4374                         }
4375                 }
4376 same_page:
4377                 if (pages) {
4378                         pages[i] = mem_map_offset(page, pfn_offset);
4379                         get_page(pages[i]);
4380                 }
4381
4382                 if (vmas)
4383                         vmas[i] = vma;
4384
4385                 vaddr += PAGE_SIZE;
4386                 ++pfn_offset;
4387                 --remainder;
4388                 ++i;
4389                 if (vaddr < vma->vm_end && remainder &&
4390                                 pfn_offset < pages_per_huge_page(h)) {
4391                         /*
4392                          * We use pfn_offset to avoid touching the pageframes
4393                          * of this compound page.
4394                          */
4395                         goto same_page;
4396                 }
4397                 spin_unlock(ptl);
4398         }
4399         *nr_pages = remainder;
4400         /*
4401          * setting position is actually required only if remainder is
4402          * not zero but it's faster not to add a "if (remainder)"
4403          * branch.
4404          */
4405         *position = vaddr;
4406
4407         return i ? i : err;
4408 }
4409
4410 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4411 /*
4412  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4413  * implement this.
4414  */
4415 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4416 #endif
4417
4418 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4419                 unsigned long address, unsigned long end, pgprot_t newprot)
4420 {
4421         struct mm_struct *mm = vma->vm_mm;
4422         unsigned long start = address;
4423         pte_t *ptep;
4424         pte_t pte;
4425         struct hstate *h = hstate_vma(vma);
4426         unsigned long pages = 0;
4427         unsigned long f_start = start;
4428         unsigned long f_end = end;
4429         bool shared_pmd = false;
4430
4431         /*
4432          * In the case of shared PMDs, the area to flush could be beyond
4433          * start/end.  Set f_start/f_end to cover the maximum possible
4434          * range if PMD sharing is possible.
4435          */
4436         adjust_range_if_pmd_sharing_possible(vma, &f_start, &f_end);
4437
4438         BUG_ON(address >= end);
4439         flush_cache_range(vma, f_start, f_end);
4440
4441         mmu_notifier_invalidate_range_start(mm, f_start, f_end);
4442         i_mmap_lock_write(vma->vm_file->f_mapping);
4443         for (; address < end; address += huge_page_size(h)) {
4444                 spinlock_t *ptl;
4445                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4446                 if (!ptep)
4447                         continue;
4448                 ptl = huge_pte_lock(h, mm, ptep);
4449                 if (huge_pmd_unshare(mm, &address, ptep)) {
4450                         pages++;
4451                         spin_unlock(ptl);
4452                         shared_pmd = true;
4453                         continue;
4454                 }
4455                 pte = huge_ptep_get(ptep);
4456                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4457                         spin_unlock(ptl);
4458                         continue;
4459                 }
4460                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4461                         swp_entry_t entry = pte_to_swp_entry(pte);
4462
4463                         if (is_write_migration_entry(entry)) {
4464                                 pte_t newpte;
4465
4466                                 make_migration_entry_read(&entry);
4467                                 newpte = swp_entry_to_pte(entry);
4468                                 set_huge_swap_pte_at(mm, address, ptep,
4469                                                      newpte, huge_page_size(h));
4470                                 pages++;
4471                         }
4472                         spin_unlock(ptl);
4473                         continue;
4474                 }
4475                 if (!huge_pte_none(pte)) {
4476                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4477                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4478                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4479                         set_huge_pte_at(mm, address, ptep, pte);
4480                         pages++;
4481                 }
4482                 spin_unlock(ptl);
4483         }
4484         /*
4485          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4486          * may have cleared our pud entry and done put_page on the page table:
4487          * once we release i_mmap_rwsem, another task can do the final put_page
4488          * and that page table be reused and filled with junk.  If we actually
4489          * did unshare a page of pmds, flush the range corresponding to the pud.
4490          */
4491         if (shared_pmd) {
4492                 flush_hugetlb_tlb_range(vma, f_start, f_end);
4493                 mmu_notifier_invalidate_range(mm, f_start, f_end);
4494         } else {
4495                 flush_hugetlb_tlb_range(vma, start, end);
4496                 mmu_notifier_invalidate_range(mm, start, end);
4497         }
4498         i_mmap_unlock_write(vma->vm_file->f_mapping);
4499         mmu_notifier_invalidate_range_end(mm, f_start, f_end);
4500
4501         return pages << h->order;
4502 }
4503
4504 int hugetlb_reserve_pages(struct inode *inode,
4505                                         long from, long to,
4506                                         struct vm_area_struct *vma,
4507                                         vm_flags_t vm_flags)
4508 {
4509         long ret, chg;
4510         struct hstate *h = hstate_inode(inode);
4511         struct hugepage_subpool *spool = subpool_inode(inode);
4512         struct resv_map *resv_map;
4513         long gbl_reserve;
4514
4515         /* This should never happen */
4516         if (from > to) {
4517                 VM_WARN(1, "%s called with a negative range\n", __func__);
4518                 return -EINVAL;
4519         }
4520
4521         /*
4522          * Only apply hugepage reservation if asked. At fault time, an
4523          * attempt will be made for VM_NORESERVE to allocate a page
4524          * without using reserves
4525          */
4526         if (vm_flags & VM_NORESERVE)
4527                 return 0;
4528
4529         /*
4530          * Shared mappings base their reservation on the number of pages that
4531          * are already allocated on behalf of the file. Private mappings need
4532          * to reserve the full area even if read-only as mprotect() may be
4533          * called to make the mapping read-write. Assume !vma is a shm mapping
4534          */
4535         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4536                 resv_map = inode_resv_map(inode);
4537
4538                 chg = region_chg(resv_map, from, to);
4539
4540         } else {
4541                 resv_map = resv_map_alloc();
4542                 if (!resv_map)
4543                         return -ENOMEM;
4544
4545                 chg = to - from;
4546
4547                 set_vma_resv_map(vma, resv_map);
4548                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4549         }
4550
4551         if (chg < 0) {
4552                 ret = chg;
4553                 goto out_err;
4554         }
4555
4556         /*
4557          * There must be enough pages in the subpool for the mapping. If
4558          * the subpool has a minimum size, there may be some global
4559          * reservations already in place (gbl_reserve).
4560          */
4561         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4562         if (gbl_reserve < 0) {
4563                 ret = -ENOSPC;
4564                 goto out_err;
4565         }
4566
4567         /*
4568          * Check enough hugepages are available for the reservation.
4569          * Hand the pages back to the subpool if there are not
4570          */
4571         ret = hugetlb_acct_memory(h, gbl_reserve);
4572         if (ret < 0) {
4573                 /* put back original number of pages, chg */
4574                 (void)hugepage_subpool_put_pages(spool, chg);
4575                 goto out_err;
4576         }
4577
4578         /*
4579          * Account for the reservations made. Shared mappings record regions
4580          * that have reservations as they are shared by multiple VMAs.
4581          * When the last VMA disappears, the region map says how much
4582          * the reservation was and the page cache tells how much of
4583          * the reservation was consumed. Private mappings are per-VMA and
4584          * only the consumed reservations are tracked. When the VMA
4585          * disappears, the original reservation is the VMA size and the
4586          * consumed reservations are stored in the map. Hence, nothing
4587          * else has to be done for private mappings here
4588          */
4589         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4590                 long add = region_add(resv_map, from, to);
4591
4592                 if (unlikely(chg > add)) {
4593                         /*
4594                          * pages in this range were added to the reserve
4595                          * map between region_chg and region_add.  This
4596                          * indicates a race with alloc_huge_page.  Adjust
4597                          * the subpool and reserve counts modified above
4598                          * based on the difference.
4599                          */
4600                         long rsv_adjust;
4601
4602                         rsv_adjust = hugepage_subpool_put_pages(spool,
4603                                                                 chg - add);
4604                         hugetlb_acct_memory(h, -rsv_adjust);
4605                 }
4606         }
4607         return 0;
4608 out_err:
4609         if (!vma || vma->vm_flags & VM_MAYSHARE)
4610                 /* Don't call region_abort if region_chg failed */
4611                 if (chg >= 0)
4612                         region_abort(resv_map, from, to);
4613         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4614                 kref_put(&resv_map->refs, resv_map_release);
4615         return ret;
4616 }
4617
4618 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4619                                                                 long freed)
4620 {
4621         struct hstate *h = hstate_inode(inode);
4622         struct resv_map *resv_map = inode_resv_map(inode);
4623         long chg = 0;
4624         struct hugepage_subpool *spool = subpool_inode(inode);
4625         long gbl_reserve;
4626
4627         if (resv_map) {
4628                 chg = region_del(resv_map, start, end);
4629                 /*
4630                  * region_del() can fail in the rare case where a region
4631                  * must be split and another region descriptor can not be
4632                  * allocated.  If end == LONG_MAX, it will not fail.
4633                  */
4634                 if (chg < 0)
4635                         return chg;
4636         }
4637
4638         spin_lock(&inode->i_lock);
4639         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4640         spin_unlock(&inode->i_lock);
4641
4642         /*
4643          * If the subpool has a minimum size, the number of global
4644          * reservations to be released may be adjusted.
4645          */
4646         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4647         hugetlb_acct_memory(h, -gbl_reserve);
4648
4649         return 0;
4650 }
4651
4652 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4653 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4654                                 struct vm_area_struct *vma,
4655                                 unsigned long addr, pgoff_t idx)
4656 {
4657         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4658                                 svma->vm_start;
4659         unsigned long sbase = saddr & PUD_MASK;
4660         unsigned long s_end = sbase + PUD_SIZE;
4661
4662         /* Allow segments to share if only one is marked locked */
4663         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4664         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4665
4666         /*
4667          * match the virtual addresses, permission and the alignment of the
4668          * page table page.
4669          */
4670         if (pmd_index(addr) != pmd_index(saddr) ||
4671             vm_flags != svm_flags ||
4672             sbase < svma->vm_start || svma->vm_end < s_end)
4673                 return 0;
4674
4675         return saddr;
4676 }
4677
4678 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4679 {
4680         unsigned long base = addr & PUD_MASK;
4681         unsigned long end = base + PUD_SIZE;
4682
4683         /*
4684          * check on proper vm_flags and page table alignment
4685          */
4686         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4687                 return true;
4688         return false;
4689 }
4690
4691 /*
4692  * Determine if start,end range within vma could be mapped by shared pmd.
4693  * If yes, adjust start and end to cover range associated with possible
4694  * shared pmd mappings.
4695  */
4696 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4697                                 unsigned long *start, unsigned long *end)
4698 {
4699         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
4700                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
4701
4702         /*
4703          * vma need span at least one aligned PUD size and the start,end range
4704          * must at least partialy within it.
4705          */
4706         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
4707                 (*end <= v_start) || (*start >= v_end))
4708                 return;
4709
4710         /* Extend the range to be PUD aligned for a worst case scenario */
4711         if (*start > v_start)
4712                 *start = ALIGN_DOWN(*start, PUD_SIZE);
4713
4714         if (*end < v_end)
4715                 *end = ALIGN(*end, PUD_SIZE);
4716 }
4717
4718 /*
4719  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4720  * and returns the corresponding pte. While this is not necessary for the
4721  * !shared pmd case because we can allocate the pmd later as well, it makes the
4722  * code much cleaner. pmd allocation is essential for the shared case because
4723  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4724  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4725  * bad pmd for sharing.
4726  */
4727 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4728 {
4729         struct vm_area_struct *vma = find_vma(mm, addr);
4730         struct address_space *mapping = vma->vm_file->f_mapping;
4731         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4732                         vma->vm_pgoff;
4733         struct vm_area_struct *svma;
4734         unsigned long saddr;
4735         pte_t *spte = NULL;
4736         pte_t *pte;
4737         spinlock_t *ptl;
4738
4739         if (!vma_shareable(vma, addr))
4740                 return (pte_t *)pmd_alloc(mm, pud, addr);
4741
4742         i_mmap_lock_write(mapping);
4743         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4744                 if (svma == vma)
4745                         continue;
4746
4747                 saddr = page_table_shareable(svma, vma, addr, idx);
4748                 if (saddr) {
4749                         spte = huge_pte_offset(svma->vm_mm, saddr,
4750                                                vma_mmu_pagesize(svma));
4751                         if (spte) {
4752                                 get_page(virt_to_page(spte));
4753                                 break;
4754                         }
4755                 }
4756         }
4757
4758         if (!spte)
4759                 goto out;
4760
4761         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4762         if (pud_none(*pud)) {
4763                 pud_populate(mm, pud,
4764                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4765                 mm_inc_nr_pmds(mm);
4766         } else {
4767                 put_page(virt_to_page(spte));
4768         }
4769         spin_unlock(ptl);
4770 out:
4771         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4772         i_mmap_unlock_write(mapping);
4773         return pte;
4774 }
4775
4776 /*
4777  * unmap huge page backed by shared pte.
4778  *
4779  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4780  * indicated by page_count > 1, unmap is achieved by clearing pud and
4781  * decrementing the ref count. If count == 1, the pte page is not shared.
4782  *
4783  * called with page table lock held.
4784  *
4785  * returns: 1 successfully unmapped a shared pte page
4786  *          0 the underlying pte page is not shared, or it is the last user
4787  */
4788 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4789 {
4790         pgd_t *pgd = pgd_offset(mm, *addr);
4791         p4d_t *p4d = p4d_offset(pgd, *addr);
4792         pud_t *pud = pud_offset(p4d, *addr);
4793
4794         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4795         if (page_count(virt_to_page(ptep)) == 1)
4796                 return 0;
4797
4798         pud_clear(pud);
4799         put_page(virt_to_page(ptep));
4800         mm_dec_nr_pmds(mm);
4801         /*
4802          * This update of passed address optimizes loops sequentially
4803          * processing addresses in increments of huge page size (PMD_SIZE
4804          * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
4805          * Update address to the 'last page' in the cleared area so that
4806          * calling loop can move to first page past this area.
4807          */
4808         *addr |= PUD_SIZE - PMD_SIZE;
4809         return 1;
4810 }
4811 #define want_pmd_share()        (1)
4812 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4813 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4814 {
4815         return NULL;
4816 }
4817
4818 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4819 {
4820         return 0;
4821 }
4822
4823 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4824                                 unsigned long *start, unsigned long *end)
4825 {
4826 }
4827 #define want_pmd_share()        (0)
4828 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4829
4830 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4831 pte_t *huge_pte_alloc(struct mm_struct *mm,
4832                         unsigned long addr, unsigned long sz)
4833 {
4834         pgd_t *pgd;
4835         p4d_t *p4d;
4836         pud_t *pud;
4837         pte_t *pte = NULL;
4838
4839         pgd = pgd_offset(mm, addr);
4840         p4d = p4d_alloc(mm, pgd, addr);
4841         if (!p4d)
4842                 return NULL;
4843         pud = pud_alloc(mm, p4d, addr);
4844         if (pud) {
4845                 if (sz == PUD_SIZE) {
4846                         pte = (pte_t *)pud;
4847                 } else {
4848                         BUG_ON(sz != PMD_SIZE);
4849                         if (want_pmd_share() && pud_none(*pud))
4850                                 pte = huge_pmd_share(mm, addr, pud);
4851                         else
4852                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4853                 }
4854         }
4855         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4856
4857         return pte;
4858 }
4859
4860 /*
4861  * huge_pte_offset() - Walk the page table to resolve the hugepage
4862  * entry at address @addr
4863  *
4864  * Return: Pointer to page table or swap entry (PUD or PMD) for
4865  * address @addr, or NULL if a p*d_none() entry is encountered and the
4866  * size @sz doesn't match the hugepage size at this level of the page
4867  * table.
4868  */
4869 pte_t *huge_pte_offset(struct mm_struct *mm,
4870                        unsigned long addr, unsigned long sz)
4871 {
4872         pgd_t *pgd;
4873         p4d_t *p4d;
4874         pud_t *pud, pud_entry;
4875         pmd_t *pmd, pmd_entry;
4876
4877         pgd = pgd_offset(mm, addr);
4878         if (!pgd_present(*pgd))
4879                 return NULL;
4880         p4d = p4d_offset(pgd, addr);
4881         if (!p4d_present(*p4d))
4882                 return NULL;
4883
4884         pud = pud_offset(p4d, addr);
4885         pud_entry = READ_ONCE(*pud);
4886         if (sz != PUD_SIZE && pud_none(pud_entry))
4887                 return NULL;
4888         /* hugepage or swap? */
4889         if (pud_huge(pud_entry) || !pud_present(pud_entry))
4890                 return (pte_t *)pud;
4891
4892         pmd = pmd_offset(pud, addr);
4893         pmd_entry = READ_ONCE(*pmd);
4894         if (sz != PMD_SIZE && pmd_none(pmd_entry))
4895                 return NULL;
4896         /* hugepage or swap? */
4897         if (pmd_huge(pmd_entry) || !pmd_present(pmd_entry))
4898                 return (pte_t *)pmd;
4899
4900         return NULL;
4901 }
4902
4903 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4904
4905 /*
4906  * These functions are overwritable if your architecture needs its own
4907  * behavior.
4908  */
4909 struct page * __weak
4910 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4911                               int write)
4912 {
4913         return ERR_PTR(-EINVAL);
4914 }
4915
4916 struct page * __weak
4917 follow_huge_pd(struct vm_area_struct *vma,
4918                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4919 {
4920         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4921         return NULL;
4922 }
4923
4924 struct page * __weak
4925 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4926                 pmd_t *pmd, int flags)
4927 {
4928         struct page *page = NULL;
4929         spinlock_t *ptl;
4930         pte_t pte;
4931 retry:
4932         ptl = pmd_lockptr(mm, pmd);
4933         spin_lock(ptl);
4934         /*
4935          * make sure that the address range covered by this pmd is not
4936          * unmapped from other threads.
4937          */
4938         if (!pmd_huge(*pmd))
4939                 goto out;
4940         pte = huge_ptep_get((pte_t *)pmd);
4941         if (pte_present(pte)) {
4942                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4943                 if (flags & FOLL_GET)
4944                         get_page(page);
4945         } else {
4946                 if (is_hugetlb_entry_migration(pte)) {
4947                         spin_unlock(ptl);
4948                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4949                         goto retry;
4950                 }
4951                 /*
4952                  * hwpoisoned entry is treated as no_page_table in
4953                  * follow_page_mask().
4954                  */
4955         }
4956 out:
4957         spin_unlock(ptl);
4958         return page;
4959 }
4960
4961 struct page * __weak
4962 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4963                 pud_t *pud, int flags)
4964 {
4965         if (flags & FOLL_GET)
4966                 return NULL;
4967
4968         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4969 }
4970
4971 struct page * __weak
4972 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4973 {
4974         if (flags & FOLL_GET)
4975                 return NULL;
4976
4977         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4978 }
4979
4980 bool isolate_huge_page(struct page *page, struct list_head *list)
4981 {
4982         bool ret = true;
4983
4984         spin_lock(&hugetlb_lock);
4985         if (!PageHeadHuge(page) || !page_huge_active(page) ||
4986             !get_page_unless_zero(page)) {
4987                 ret = false;
4988                 goto unlock;
4989         }
4990         clear_page_huge_active(page);
4991         list_move_tail(&page->lru, list);
4992 unlock:
4993         spin_unlock(&hugetlb_lock);
4994         return ret;
4995 }
4996
4997 void putback_active_hugepage(struct page *page)
4998 {
4999         VM_BUG_ON_PAGE(!PageHead(page), page);
5000         spin_lock(&hugetlb_lock);
5001         set_page_huge_active(page);
5002         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5003         spin_unlock(&hugetlb_lock);
5004         put_page(page);
5005 }