GNU Linux-libre 6.8.9-gnu
[releases.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61                                 1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66         return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70
71 __initdata LIST_HEAD(huge_boot_pages);
72
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99                 unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101
102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104         if (spool->count)
105                 return false;
106         if (spool->max_hpages != -1)
107                 return spool->used_hpages == 0;
108         if (spool->min_hpages != -1)
109                 return spool->rsv_hpages == spool->min_hpages;
110
111         return true;
112 }
113
114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115                                                 unsigned long irq_flags)
116 {
117         spin_unlock_irqrestore(&spool->lock, irq_flags);
118
119         /* If no pages are used, and no other handles to the subpool
120          * remain, give up any reservations based on minimum size and
121          * free the subpool */
122         if (subpool_is_free(spool)) {
123                 if (spool->min_hpages != -1)
124                         hugetlb_acct_memory(spool->hstate,
125                                                 -spool->min_hpages);
126                 kfree(spool);
127         }
128 }
129
130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131                                                 long min_hpages)
132 {
133         struct hugepage_subpool *spool;
134
135         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136         if (!spool)
137                 return NULL;
138
139         spin_lock_init(&spool->lock);
140         spool->count = 1;
141         spool->max_hpages = max_hpages;
142         spool->hstate = h;
143         spool->min_hpages = min_hpages;
144
145         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146                 kfree(spool);
147                 return NULL;
148         }
149         spool->rsv_hpages = min_hpages;
150
151         return spool;
152 }
153
154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156         unsigned long flags;
157
158         spin_lock_irqsave(&spool->lock, flags);
159         BUG_ON(!spool->count);
160         spool->count--;
161         unlock_or_release_subpool(spool, flags);
162 }
163
164 /*
165  * Subpool accounting for allocating and reserving pages.
166  * Return -ENOMEM if there are not enough resources to satisfy the
167  * request.  Otherwise, return the number of pages by which the
168  * global pools must be adjusted (upward).  The returned value may
169  * only be different than the passed value (delta) in the case where
170  * a subpool minimum size must be maintained.
171  */
172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173                                       long delta)
174 {
175         long ret = delta;
176
177         if (!spool)
178                 return ret;
179
180         spin_lock_irq(&spool->lock);
181
182         if (spool->max_hpages != -1) {          /* maximum size accounting */
183                 if ((spool->used_hpages + delta) <= spool->max_hpages)
184                         spool->used_hpages += delta;
185                 else {
186                         ret = -ENOMEM;
187                         goto unlock_ret;
188                 }
189         }
190
191         /* minimum size accounting */
192         if (spool->min_hpages != -1 && spool->rsv_hpages) {
193                 if (delta > spool->rsv_hpages) {
194                         /*
195                          * Asking for more reserves than those already taken on
196                          * behalf of subpool.  Return difference.
197                          */
198                         ret = delta - spool->rsv_hpages;
199                         spool->rsv_hpages = 0;
200                 } else {
201                         ret = 0;        /* reserves already accounted for */
202                         spool->rsv_hpages -= delta;
203                 }
204         }
205
206 unlock_ret:
207         spin_unlock_irq(&spool->lock);
208         return ret;
209 }
210
211 /*
212  * Subpool accounting for freeing and unreserving pages.
213  * Return the number of global page reservations that must be dropped.
214  * The return value may only be different than the passed value (delta)
215  * in the case where a subpool minimum size must be maintained.
216  */
217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218                                        long delta)
219 {
220         long ret = delta;
221         unsigned long flags;
222
223         if (!spool)
224                 return delta;
225
226         spin_lock_irqsave(&spool->lock, flags);
227
228         if (spool->max_hpages != -1)            /* maximum size accounting */
229                 spool->used_hpages -= delta;
230
231          /* minimum size accounting */
232         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233                 if (spool->rsv_hpages + delta <= spool->min_hpages)
234                         ret = 0;
235                 else
236                         ret = spool->rsv_hpages + delta - spool->min_hpages;
237
238                 spool->rsv_hpages += delta;
239                 if (spool->rsv_hpages > spool->min_hpages)
240                         spool->rsv_hpages = spool->min_hpages;
241         }
242
243         /*
244          * If hugetlbfs_put_super couldn't free spool due to an outstanding
245          * quota reference, free it now.
246          */
247         unlock_or_release_subpool(spool, flags);
248
249         return ret;
250 }
251
252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254         return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256
257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259         return subpool_inode(file_inode(vma->vm_file));
260 }
261
262 /*
263  * hugetlb vma_lock helper routines
264  */
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267         if (__vma_shareable_lock(vma)) {
268                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269
270                 down_read(&vma_lock->rw_sema);
271         } else if (__vma_private_lock(vma)) {
272                 struct resv_map *resv_map = vma_resv_map(vma);
273
274                 down_read(&resv_map->rw_sema);
275         }
276 }
277
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280         if (__vma_shareable_lock(vma)) {
281                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283                 up_read(&vma_lock->rw_sema);
284         } else if (__vma_private_lock(vma)) {
285                 struct resv_map *resv_map = vma_resv_map(vma);
286
287                 up_read(&resv_map->rw_sema);
288         }
289 }
290
291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293         if (__vma_shareable_lock(vma)) {
294                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295
296                 down_write(&vma_lock->rw_sema);
297         } else if (__vma_private_lock(vma)) {
298                 struct resv_map *resv_map = vma_resv_map(vma);
299
300                 down_write(&resv_map->rw_sema);
301         }
302 }
303
304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306         if (__vma_shareable_lock(vma)) {
307                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309                 up_write(&vma_lock->rw_sema);
310         } else if (__vma_private_lock(vma)) {
311                 struct resv_map *resv_map = vma_resv_map(vma);
312
313                 up_write(&resv_map->rw_sema);
314         }
315 }
316
317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319
320         if (__vma_shareable_lock(vma)) {
321                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322
323                 return down_write_trylock(&vma_lock->rw_sema);
324         } else if (__vma_private_lock(vma)) {
325                 struct resv_map *resv_map = vma_resv_map(vma);
326
327                 return down_write_trylock(&resv_map->rw_sema);
328         }
329
330         return 1;
331 }
332
333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335         if (__vma_shareable_lock(vma)) {
336                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337
338                 lockdep_assert_held(&vma_lock->rw_sema);
339         } else if (__vma_private_lock(vma)) {
340                 struct resv_map *resv_map = vma_resv_map(vma);
341
342                 lockdep_assert_held(&resv_map->rw_sema);
343         }
344 }
345
346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348         struct hugetlb_vma_lock *vma_lock = container_of(kref,
349                         struct hugetlb_vma_lock, refs);
350
351         kfree(vma_lock);
352 }
353
354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356         struct vm_area_struct *vma = vma_lock->vma;
357
358         /*
359          * vma_lock structure may or not be released as a result of put,
360          * it certainly will no longer be attached to vma so clear pointer.
361          * Semaphore synchronizes access to vma_lock->vma field.
362          */
363         vma_lock->vma = NULL;
364         vma->vm_private_data = NULL;
365         up_write(&vma_lock->rw_sema);
366         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368
369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371         if (__vma_shareable_lock(vma)) {
372                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373
374                 __hugetlb_vma_unlock_write_put(vma_lock);
375         } else if (__vma_private_lock(vma)) {
376                 struct resv_map *resv_map = vma_resv_map(vma);
377
378                 /* no free for anon vmas, but still need to unlock */
379                 up_write(&resv_map->rw_sema);
380         }
381 }
382
383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385         /*
386          * Only present in sharable vmas.
387          */
388         if (!vma || !__vma_shareable_lock(vma))
389                 return;
390
391         if (vma->vm_private_data) {
392                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393
394                 down_write(&vma_lock->rw_sema);
395                 __hugetlb_vma_unlock_write_put(vma_lock);
396         }
397 }
398
399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401         struct hugetlb_vma_lock *vma_lock;
402
403         /* Only establish in (flags) sharable vmas */
404         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405                 return;
406
407         /* Should never get here with non-NULL vm_private_data */
408         if (vma->vm_private_data)
409                 return;
410
411         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412         if (!vma_lock) {
413                 /*
414                  * If we can not allocate structure, then vma can not
415                  * participate in pmd sharing.  This is only a possible
416                  * performance enhancement and memory saving issue.
417                  * However, the lock is also used to synchronize page
418                  * faults with truncation.  If the lock is not present,
419                  * unlikely races could leave pages in a file past i_size
420                  * until the file is removed.  Warn in the unlikely case of
421                  * allocation failure.
422                  */
423                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424                 return;
425         }
426
427         kref_init(&vma_lock->refs);
428         init_rwsem(&vma_lock->rw_sema);
429         vma_lock->vma = vma;
430         vma->vm_private_data = vma_lock;
431 }
432
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434  * it for use.
435  */
436 static struct file_region *
437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439         struct file_region *nrg;
440
441         VM_BUG_ON(resv->region_cache_count <= 0);
442
443         resv->region_cache_count--;
444         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445         list_del(&nrg->link);
446
447         nrg->from = from;
448         nrg->to = to;
449
450         return nrg;
451 }
452
453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454                                               struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457         nrg->reservation_counter = rg->reservation_counter;
458         nrg->css = rg->css;
459         if (rg->css)
460                 css_get(rg->css);
461 #endif
462 }
463
464 /* Helper that records hugetlb_cgroup uncharge info. */
465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466                                                 struct hstate *h,
467                                                 struct resv_map *resv,
468                                                 struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471         if (h_cg) {
472                 nrg->reservation_counter =
473                         &h_cg->rsvd_hugepage[hstate_index(h)];
474                 nrg->css = &h_cg->css;
475                 /*
476                  * The caller will hold exactly one h_cg->css reference for the
477                  * whole contiguous reservation region. But this area might be
478                  * scattered when there are already some file_regions reside in
479                  * it. As a result, many file_regions may share only one css
480                  * reference. In order to ensure that one file_region must hold
481                  * exactly one h_cg->css reference, we should do css_get for
482                  * each file_region and leave the reference held by caller
483                  * untouched.
484                  */
485                 css_get(&h_cg->css);
486                 if (!resv->pages_per_hpage)
487                         resv->pages_per_hpage = pages_per_huge_page(h);
488                 /* pages_per_hpage should be the same for all entries in
489                  * a resv_map.
490                  */
491                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492         } else {
493                 nrg->reservation_counter = NULL;
494                 nrg->css = NULL;
495         }
496 #endif
497 }
498
499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502         if (rg->css)
503                 css_put(rg->css);
504 #endif
505 }
506
507 static bool has_same_uncharge_info(struct file_region *rg,
508                                    struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511         return rg->reservation_counter == org->reservation_counter &&
512                rg->css == org->css;
513
514 #else
515         return true;
516 #endif
517 }
518
519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521         struct file_region *nrg, *prg;
522
523         prg = list_prev_entry(rg, link);
524         if (&prg->link != &resv->regions && prg->to == rg->from &&
525             has_same_uncharge_info(prg, rg)) {
526                 prg->to = rg->to;
527
528                 list_del(&rg->link);
529                 put_uncharge_info(rg);
530                 kfree(rg);
531
532                 rg = prg;
533         }
534
535         nrg = list_next_entry(rg, link);
536         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537             has_same_uncharge_info(nrg, rg)) {
538                 nrg->from = rg->from;
539
540                 list_del(&rg->link);
541                 put_uncharge_info(rg);
542                 kfree(rg);
543         }
544 }
545
546 static inline long
547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
549                      long *regions_needed)
550 {
551         struct file_region *nrg;
552
553         if (!regions_needed) {
554                 nrg = get_file_region_entry_from_cache(map, from, to);
555                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556                 list_add(&nrg->link, rg);
557                 coalesce_file_region(map, nrg);
558         } else
559                 *regions_needed += 1;
560
561         return to - from;
562 }
563
564 /*
565  * Must be called with resv->lock held.
566  *
567  * Calling this with regions_needed != NULL will count the number of pages
568  * to be added but will not modify the linked list. And regions_needed will
569  * indicate the number of file_regions needed in the cache to carry out to add
570  * the regions for this range.
571  */
572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573                                      struct hugetlb_cgroup *h_cg,
574                                      struct hstate *h, long *regions_needed)
575 {
576         long add = 0;
577         struct list_head *head = &resv->regions;
578         long last_accounted_offset = f;
579         struct file_region *iter, *trg = NULL;
580         struct list_head *rg = NULL;
581
582         if (regions_needed)
583                 *regions_needed = 0;
584
585         /* In this loop, we essentially handle an entry for the range
586          * [last_accounted_offset, iter->from), at every iteration, with some
587          * bounds checking.
588          */
589         list_for_each_entry_safe(iter, trg, head, link) {
590                 /* Skip irrelevant regions that start before our range. */
591                 if (iter->from < f) {
592                         /* If this region ends after the last accounted offset,
593                          * then we need to update last_accounted_offset.
594                          */
595                         if (iter->to > last_accounted_offset)
596                                 last_accounted_offset = iter->to;
597                         continue;
598                 }
599
600                 /* When we find a region that starts beyond our range, we've
601                  * finished.
602                  */
603                 if (iter->from >= t) {
604                         rg = iter->link.prev;
605                         break;
606                 }
607
608                 /* Add an entry for last_accounted_offset -> iter->from, and
609                  * update last_accounted_offset.
610                  */
611                 if (iter->from > last_accounted_offset)
612                         add += hugetlb_resv_map_add(resv, iter->link.prev,
613                                                     last_accounted_offset,
614                                                     iter->from, h, h_cg,
615                                                     regions_needed);
616
617                 last_accounted_offset = iter->to;
618         }
619
620         /* Handle the case where our range extends beyond
621          * last_accounted_offset.
622          */
623         if (!rg)
624                 rg = head->prev;
625         if (last_accounted_offset < t)
626                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627                                             t, h, h_cg, regions_needed);
628
629         return add;
630 }
631
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633  */
634 static int allocate_file_region_entries(struct resv_map *resv,
635                                         int regions_needed)
636         __must_hold(&resv->lock)
637 {
638         LIST_HEAD(allocated_regions);
639         int to_allocate = 0, i = 0;
640         struct file_region *trg = NULL, *rg = NULL;
641
642         VM_BUG_ON(regions_needed < 0);
643
644         /*
645          * Check for sufficient descriptors in the cache to accommodate
646          * the number of in progress add operations plus regions_needed.
647          *
648          * This is a while loop because when we drop the lock, some other call
649          * to region_add or region_del may have consumed some region_entries,
650          * so we keep looping here until we finally have enough entries for
651          * (adds_in_progress + regions_needed).
652          */
653         while (resv->region_cache_count <
654                (resv->adds_in_progress + regions_needed)) {
655                 to_allocate = resv->adds_in_progress + regions_needed -
656                               resv->region_cache_count;
657
658                 /* At this point, we should have enough entries in the cache
659                  * for all the existing adds_in_progress. We should only be
660                  * needing to allocate for regions_needed.
661                  */
662                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663
664                 spin_unlock(&resv->lock);
665                 for (i = 0; i < to_allocate; i++) {
666                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667                         if (!trg)
668                                 goto out_of_memory;
669                         list_add(&trg->link, &allocated_regions);
670                 }
671
672                 spin_lock(&resv->lock);
673
674                 list_splice(&allocated_regions, &resv->region_cache);
675                 resv->region_cache_count += to_allocate;
676         }
677
678         return 0;
679
680 out_of_memory:
681         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682                 list_del(&rg->link);
683                 kfree(rg);
684         }
685         return -ENOMEM;
686 }
687
688 /*
689  * Add the huge page range represented by [f, t) to the reserve
690  * map.  Regions will be taken from the cache to fill in this range.
691  * Sufficient regions should exist in the cache due to the previous
692  * call to region_chg with the same range, but in some cases the cache will not
693  * have sufficient entries due to races with other code doing region_add or
694  * region_del.  The extra needed entries will be allocated.
695  *
696  * regions_needed is the out value provided by a previous call to region_chg.
697  *
698  * Return the number of new huge pages added to the map.  This number is greater
699  * than or equal to zero.  If file_region entries needed to be allocated for
700  * this operation and we were not able to allocate, it returns -ENOMEM.
701  * region_add of regions of length 1 never allocate file_regions and cannot
702  * fail; region_chg will always allocate at least 1 entry and a region_add for
703  * 1 page will only require at most 1 entry.
704  */
705 static long region_add(struct resv_map *resv, long f, long t,
706                        long in_regions_needed, struct hstate *h,
707                        struct hugetlb_cgroup *h_cg)
708 {
709         long add = 0, actual_regions_needed = 0;
710
711         spin_lock(&resv->lock);
712 retry:
713
714         /* Count how many regions are actually needed to execute this add. */
715         add_reservation_in_range(resv, f, t, NULL, NULL,
716                                  &actual_regions_needed);
717
718         /*
719          * Check for sufficient descriptors in the cache to accommodate
720          * this add operation. Note that actual_regions_needed may be greater
721          * than in_regions_needed, as the resv_map may have been modified since
722          * the region_chg call. In this case, we need to make sure that we
723          * allocate extra entries, such that we have enough for all the
724          * existing adds_in_progress, plus the excess needed for this
725          * operation.
726          */
727         if (actual_regions_needed > in_regions_needed &&
728             resv->region_cache_count <
729                     resv->adds_in_progress +
730                             (actual_regions_needed - in_regions_needed)) {
731                 /* region_add operation of range 1 should never need to
732                  * allocate file_region entries.
733                  */
734                 VM_BUG_ON(t - f <= 1);
735
736                 if (allocate_file_region_entries(
737                             resv, actual_regions_needed - in_regions_needed)) {
738                         return -ENOMEM;
739                 }
740
741                 goto retry;
742         }
743
744         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745
746         resv->adds_in_progress -= in_regions_needed;
747
748         spin_unlock(&resv->lock);
749         return add;
750 }
751
752 /*
753  * Examine the existing reserve map and determine how many
754  * huge pages in the specified range [f, t) are NOT currently
755  * represented.  This routine is called before a subsequent
756  * call to region_add that will actually modify the reserve
757  * map to add the specified range [f, t).  region_chg does
758  * not change the number of huge pages represented by the
759  * map.  A number of new file_region structures is added to the cache as a
760  * placeholder, for the subsequent region_add call to use. At least 1
761  * file_region structure is added.
762  *
763  * out_regions_needed is the number of regions added to the
764  * resv->adds_in_progress.  This value needs to be provided to a follow up call
765  * to region_add or region_abort for proper accounting.
766  *
767  * Returns the number of huge pages that need to be added to the existing
768  * reservation map for the range [f, t).  This number is greater or equal to
769  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
770  * is needed and can not be allocated.
771  */
772 static long region_chg(struct resv_map *resv, long f, long t,
773                        long *out_regions_needed)
774 {
775         long chg = 0;
776
777         spin_lock(&resv->lock);
778
779         /* Count how many hugepages in this range are NOT represented. */
780         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781                                        out_regions_needed);
782
783         if (*out_regions_needed == 0)
784                 *out_regions_needed = 1;
785
786         if (allocate_file_region_entries(resv, *out_regions_needed))
787                 return -ENOMEM;
788
789         resv->adds_in_progress += *out_regions_needed;
790
791         spin_unlock(&resv->lock);
792         return chg;
793 }
794
795 /*
796  * Abort the in progress add operation.  The adds_in_progress field
797  * of the resv_map keeps track of the operations in progress between
798  * calls to region_chg and region_add.  Operations are sometimes
799  * aborted after the call to region_chg.  In such cases, region_abort
800  * is called to decrement the adds_in_progress counter. regions_needed
801  * is the value returned by the region_chg call, it is used to decrement
802  * the adds_in_progress counter.
803  *
804  * NOTE: The range arguments [f, t) are not needed or used in this
805  * routine.  They are kept to make reading the calling code easier as
806  * arguments will match the associated region_chg call.
807  */
808 static void region_abort(struct resv_map *resv, long f, long t,
809                          long regions_needed)
810 {
811         spin_lock(&resv->lock);
812         VM_BUG_ON(!resv->region_cache_count);
813         resv->adds_in_progress -= regions_needed;
814         spin_unlock(&resv->lock);
815 }
816
817 /*
818  * Delete the specified range [f, t) from the reserve map.  If the
819  * t parameter is LONG_MAX, this indicates that ALL regions after f
820  * should be deleted.  Locate the regions which intersect [f, t)
821  * and either trim, delete or split the existing regions.
822  *
823  * Returns the number of huge pages deleted from the reserve map.
824  * In the normal case, the return value is zero or more.  In the
825  * case where a region must be split, a new region descriptor must
826  * be allocated.  If the allocation fails, -ENOMEM will be returned.
827  * NOTE: If the parameter t == LONG_MAX, then we will never split
828  * a region and possibly return -ENOMEM.  Callers specifying
829  * t == LONG_MAX do not need to check for -ENOMEM error.
830  */
831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833         struct list_head *head = &resv->regions;
834         struct file_region *rg, *trg;
835         struct file_region *nrg = NULL;
836         long del = 0;
837
838 retry:
839         spin_lock(&resv->lock);
840         list_for_each_entry_safe(rg, trg, head, link) {
841                 /*
842                  * Skip regions before the range to be deleted.  file_region
843                  * ranges are normally of the form [from, to).  However, there
844                  * may be a "placeholder" entry in the map which is of the form
845                  * (from, to) with from == to.  Check for placeholder entries
846                  * at the beginning of the range to be deleted.
847                  */
848                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849                         continue;
850
851                 if (rg->from >= t)
852                         break;
853
854                 if (f > rg->from && t < rg->to) { /* Must split region */
855                         /*
856                          * Check for an entry in the cache before dropping
857                          * lock and attempting allocation.
858                          */
859                         if (!nrg &&
860                             resv->region_cache_count > resv->adds_in_progress) {
861                                 nrg = list_first_entry(&resv->region_cache,
862                                                         struct file_region,
863                                                         link);
864                                 list_del(&nrg->link);
865                                 resv->region_cache_count--;
866                         }
867
868                         if (!nrg) {
869                                 spin_unlock(&resv->lock);
870                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871                                 if (!nrg)
872                                         return -ENOMEM;
873                                 goto retry;
874                         }
875
876                         del += t - f;
877                         hugetlb_cgroup_uncharge_file_region(
878                                 resv, rg, t - f, false);
879
880                         /* New entry for end of split region */
881                         nrg->from = t;
882                         nrg->to = rg->to;
883
884                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885
886                         INIT_LIST_HEAD(&nrg->link);
887
888                         /* Original entry is trimmed */
889                         rg->to = f;
890
891                         list_add(&nrg->link, &rg->link);
892                         nrg = NULL;
893                         break;
894                 }
895
896                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897                         del += rg->to - rg->from;
898                         hugetlb_cgroup_uncharge_file_region(resv, rg,
899                                                             rg->to - rg->from, true);
900                         list_del(&rg->link);
901                         kfree(rg);
902                         continue;
903                 }
904
905                 if (f <= rg->from) {    /* Trim beginning of region */
906                         hugetlb_cgroup_uncharge_file_region(resv, rg,
907                                                             t - rg->from, false);
908
909                         del += t - rg->from;
910                         rg->from = t;
911                 } else {                /* Trim end of region */
912                         hugetlb_cgroup_uncharge_file_region(resv, rg,
913                                                             rg->to - f, false);
914
915                         del += rg->to - f;
916                         rg->to = f;
917                 }
918         }
919
920         spin_unlock(&resv->lock);
921         kfree(nrg);
922         return del;
923 }
924
925 /*
926  * A rare out of memory error was encountered which prevented removal of
927  * the reserve map region for a page.  The huge page itself was free'ed
928  * and removed from the page cache.  This routine will adjust the subpool
929  * usage count, and the global reserve count if needed.  By incrementing
930  * these counts, the reserve map entry which could not be deleted will
931  * appear as a "reserved" entry instead of simply dangling with incorrect
932  * counts.
933  */
934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936         struct hugepage_subpool *spool = subpool_inode(inode);
937         long rsv_adjust;
938         bool reserved = false;
939
940         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941         if (rsv_adjust > 0) {
942                 struct hstate *h = hstate_inode(inode);
943
944                 if (!hugetlb_acct_memory(h, 1))
945                         reserved = true;
946         } else if (!rsv_adjust) {
947                 reserved = true;
948         }
949
950         if (!reserved)
951                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953
954 /*
955  * Count and return the number of huge pages in the reserve map
956  * that intersect with the range [f, t).
957  */
958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960         struct list_head *head = &resv->regions;
961         struct file_region *rg;
962         long chg = 0;
963
964         spin_lock(&resv->lock);
965         /* Locate each segment we overlap with, and count that overlap. */
966         list_for_each_entry(rg, head, link) {
967                 long seg_from;
968                 long seg_to;
969
970                 if (rg->to <= f)
971                         continue;
972                 if (rg->from >= t)
973                         break;
974
975                 seg_from = max(rg->from, f);
976                 seg_to = min(rg->to, t);
977
978                 chg += seg_to - seg_from;
979         }
980         spin_unlock(&resv->lock);
981
982         return chg;
983 }
984
985 /*
986  * Convert the address within this vma to the page offset within
987  * the mapping, huge page units here.
988  */
989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990                         struct vm_area_struct *vma, unsigned long address)
991 {
992         return ((address - vma->vm_start) >> huge_page_shift(h)) +
993                         (vma->vm_pgoff >> huge_page_order(h));
994 }
995
996 /**
997  * vma_kernel_pagesize - Page size granularity for this VMA.
998  * @vma: The user mapping.
999  *
1000  * Folios in this VMA will be aligned to, and at least the size of the
1001  * number of bytes returned by this function.
1002  *
1003  * Return: The default size of the folios allocated when backing a VMA.
1004  */
1005 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1006 {
1007         if (vma->vm_ops && vma->vm_ops->pagesize)
1008                 return vma->vm_ops->pagesize(vma);
1009         return PAGE_SIZE;
1010 }
1011 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1012
1013 /*
1014  * Return the page size being used by the MMU to back a VMA. In the majority
1015  * of cases, the page size used by the kernel matches the MMU size. On
1016  * architectures where it differs, an architecture-specific 'strong'
1017  * version of this symbol is required.
1018  */
1019 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1020 {
1021         return vma_kernel_pagesize(vma);
1022 }
1023
1024 /*
1025  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1026  * bits of the reservation map pointer, which are always clear due to
1027  * alignment.
1028  */
1029 #define HPAGE_RESV_OWNER    (1UL << 0)
1030 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1031 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1032
1033 /*
1034  * These helpers are used to track how many pages are reserved for
1035  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1036  * is guaranteed to have their future faults succeed.
1037  *
1038  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1039  * the reserve counters are updated with the hugetlb_lock held. It is safe
1040  * to reset the VMA at fork() time as it is not in use yet and there is no
1041  * chance of the global counters getting corrupted as a result of the values.
1042  *
1043  * The private mapping reservation is represented in a subtly different
1044  * manner to a shared mapping.  A shared mapping has a region map associated
1045  * with the underlying file, this region map represents the backing file
1046  * pages which have ever had a reservation assigned which this persists even
1047  * after the page is instantiated.  A private mapping has a region map
1048  * associated with the original mmap which is attached to all VMAs which
1049  * reference it, this region map represents those offsets which have consumed
1050  * reservation ie. where pages have been instantiated.
1051  */
1052 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1053 {
1054         return (unsigned long)vma->vm_private_data;
1055 }
1056
1057 static void set_vma_private_data(struct vm_area_struct *vma,
1058                                                         unsigned long value)
1059 {
1060         vma->vm_private_data = (void *)value;
1061 }
1062
1063 static void
1064 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1065                                           struct hugetlb_cgroup *h_cg,
1066                                           struct hstate *h)
1067 {
1068 #ifdef CONFIG_CGROUP_HUGETLB
1069         if (!h_cg || !h) {
1070                 resv_map->reservation_counter = NULL;
1071                 resv_map->pages_per_hpage = 0;
1072                 resv_map->css = NULL;
1073         } else {
1074                 resv_map->reservation_counter =
1075                         &h_cg->rsvd_hugepage[hstate_index(h)];
1076                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1077                 resv_map->css = &h_cg->css;
1078         }
1079 #endif
1080 }
1081
1082 struct resv_map *resv_map_alloc(void)
1083 {
1084         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1085         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1086
1087         if (!resv_map || !rg) {
1088                 kfree(resv_map);
1089                 kfree(rg);
1090                 return NULL;
1091         }
1092
1093         kref_init(&resv_map->refs);
1094         spin_lock_init(&resv_map->lock);
1095         INIT_LIST_HEAD(&resv_map->regions);
1096         init_rwsem(&resv_map->rw_sema);
1097
1098         resv_map->adds_in_progress = 0;
1099         /*
1100          * Initialize these to 0. On shared mappings, 0's here indicate these
1101          * fields don't do cgroup accounting. On private mappings, these will be
1102          * re-initialized to the proper values, to indicate that hugetlb cgroup
1103          * reservations are to be un-charged from here.
1104          */
1105         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1106
1107         INIT_LIST_HEAD(&resv_map->region_cache);
1108         list_add(&rg->link, &resv_map->region_cache);
1109         resv_map->region_cache_count = 1;
1110
1111         return resv_map;
1112 }
1113
1114 void resv_map_release(struct kref *ref)
1115 {
1116         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1117         struct list_head *head = &resv_map->region_cache;
1118         struct file_region *rg, *trg;
1119
1120         /* Clear out any active regions before we release the map. */
1121         region_del(resv_map, 0, LONG_MAX);
1122
1123         /* ... and any entries left in the cache */
1124         list_for_each_entry_safe(rg, trg, head, link) {
1125                 list_del(&rg->link);
1126                 kfree(rg);
1127         }
1128
1129         VM_BUG_ON(resv_map->adds_in_progress);
1130
1131         kfree(resv_map);
1132 }
1133
1134 static inline struct resv_map *inode_resv_map(struct inode *inode)
1135 {
1136         /*
1137          * At inode evict time, i_mapping may not point to the original
1138          * address space within the inode.  This original address space
1139          * contains the pointer to the resv_map.  So, always use the
1140          * address space embedded within the inode.
1141          * The VERY common case is inode->mapping == &inode->i_data but,
1142          * this may not be true for device special inodes.
1143          */
1144         return (struct resv_map *)(&inode->i_data)->i_private_data;
1145 }
1146
1147 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1148 {
1149         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150         if (vma->vm_flags & VM_MAYSHARE) {
1151                 struct address_space *mapping = vma->vm_file->f_mapping;
1152                 struct inode *inode = mapping->host;
1153
1154                 return inode_resv_map(inode);
1155
1156         } else {
1157                 return (struct resv_map *)(get_vma_private_data(vma) &
1158                                                         ~HPAGE_RESV_MASK);
1159         }
1160 }
1161
1162 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1163 {
1164         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1165         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1166
1167         set_vma_private_data(vma, (unsigned long)map);
1168 }
1169
1170 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1171 {
1172         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1173         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1174
1175         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1176 }
1177
1178 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1179 {
1180         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1181
1182         return (get_vma_private_data(vma) & flag) != 0;
1183 }
1184
1185 bool __vma_private_lock(struct vm_area_struct *vma)
1186 {
1187         return !(vma->vm_flags & VM_MAYSHARE) &&
1188                 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1189                 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1190 }
1191
1192 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1193 {
1194         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1195         /*
1196          * Clear vm_private_data
1197          * - For shared mappings this is a per-vma semaphore that may be
1198          *   allocated in a subsequent call to hugetlb_vm_op_open.
1199          *   Before clearing, make sure pointer is not associated with vma
1200          *   as this will leak the structure.  This is the case when called
1201          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1202          *   been called to allocate a new structure.
1203          * - For MAP_PRIVATE mappings, this is the reserve map which does
1204          *   not apply to children.  Faults generated by the children are
1205          *   not guaranteed to succeed, even if read-only.
1206          */
1207         if (vma->vm_flags & VM_MAYSHARE) {
1208                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1209
1210                 if (vma_lock && vma_lock->vma != vma)
1211                         vma->vm_private_data = NULL;
1212         } else
1213                 vma->vm_private_data = NULL;
1214 }
1215
1216 /*
1217  * Reset and decrement one ref on hugepage private reservation.
1218  * Called with mm->mmap_lock writer semaphore held.
1219  * This function should be only used by move_vma() and operate on
1220  * same sized vma. It should never come here with last ref on the
1221  * reservation.
1222  */
1223 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1224 {
1225         /*
1226          * Clear the old hugetlb private page reservation.
1227          * It has already been transferred to new_vma.
1228          *
1229          * During a mremap() operation of a hugetlb vma we call move_vma()
1230          * which copies vma into new_vma and unmaps vma. After the copy
1231          * operation both new_vma and vma share a reference to the resv_map
1232          * struct, and at that point vma is about to be unmapped. We don't
1233          * want to return the reservation to the pool at unmap of vma because
1234          * the reservation still lives on in new_vma, so simply decrement the
1235          * ref here and remove the resv_map reference from this vma.
1236          */
1237         struct resv_map *reservations = vma_resv_map(vma);
1238
1239         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1240                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1241                 kref_put(&reservations->refs, resv_map_release);
1242         }
1243
1244         hugetlb_dup_vma_private(vma);
1245 }
1246
1247 /* Returns true if the VMA has associated reserve pages */
1248 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1249 {
1250         if (vma->vm_flags & VM_NORESERVE) {
1251                 /*
1252                  * This address is already reserved by other process(chg == 0),
1253                  * so, we should decrement reserved count. Without decrementing,
1254                  * reserve count remains after releasing inode, because this
1255                  * allocated page will go into page cache and is regarded as
1256                  * coming from reserved pool in releasing step.  Currently, we
1257                  * don't have any other solution to deal with this situation
1258                  * properly, so add work-around here.
1259                  */
1260                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1261                         return true;
1262                 else
1263                         return false;
1264         }
1265
1266         /* Shared mappings always use reserves */
1267         if (vma->vm_flags & VM_MAYSHARE) {
1268                 /*
1269                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1270                  * be a region map for all pages.  The only situation where
1271                  * there is no region map is if a hole was punched via
1272                  * fallocate.  In this case, there really are no reserves to
1273                  * use.  This situation is indicated if chg != 0.
1274                  */
1275                 if (chg)
1276                         return false;
1277                 else
1278                         return true;
1279         }
1280
1281         /*
1282          * Only the process that called mmap() has reserves for
1283          * private mappings.
1284          */
1285         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1286                 /*
1287                  * Like the shared case above, a hole punch or truncate
1288                  * could have been performed on the private mapping.
1289                  * Examine the value of chg to determine if reserves
1290                  * actually exist or were previously consumed.
1291                  * Very Subtle - The value of chg comes from a previous
1292                  * call to vma_needs_reserves().  The reserve map for
1293                  * private mappings has different (opposite) semantics
1294                  * than that of shared mappings.  vma_needs_reserves()
1295                  * has already taken this difference in semantics into
1296                  * account.  Therefore, the meaning of chg is the same
1297                  * as in the shared case above.  Code could easily be
1298                  * combined, but keeping it separate draws attention to
1299                  * subtle differences.
1300                  */
1301                 if (chg)
1302                         return false;
1303                 else
1304                         return true;
1305         }
1306
1307         return false;
1308 }
1309
1310 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1311 {
1312         int nid = folio_nid(folio);
1313
1314         lockdep_assert_held(&hugetlb_lock);
1315         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1316
1317         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1318         h->free_huge_pages++;
1319         h->free_huge_pages_node[nid]++;
1320         folio_set_hugetlb_freed(folio);
1321 }
1322
1323 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1324                                                                 int nid)
1325 {
1326         struct folio *folio;
1327         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1328
1329         lockdep_assert_held(&hugetlb_lock);
1330         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1331                 if (pin && !folio_is_longterm_pinnable(folio))
1332                         continue;
1333
1334                 if (folio_test_hwpoison(folio))
1335                         continue;
1336
1337                 list_move(&folio->lru, &h->hugepage_activelist);
1338                 folio_ref_unfreeze(folio, 1);
1339                 folio_clear_hugetlb_freed(folio);
1340                 h->free_huge_pages--;
1341                 h->free_huge_pages_node[nid]--;
1342                 return folio;
1343         }
1344
1345         return NULL;
1346 }
1347
1348 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1349                                                         int nid, nodemask_t *nmask)
1350 {
1351         unsigned int cpuset_mems_cookie;
1352         struct zonelist *zonelist;
1353         struct zone *zone;
1354         struct zoneref *z;
1355         int node = NUMA_NO_NODE;
1356
1357         zonelist = node_zonelist(nid, gfp_mask);
1358
1359 retry_cpuset:
1360         cpuset_mems_cookie = read_mems_allowed_begin();
1361         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1362                 struct folio *folio;
1363
1364                 if (!cpuset_zone_allowed(zone, gfp_mask))
1365                         continue;
1366                 /*
1367                  * no need to ask again on the same node. Pool is node rather than
1368                  * zone aware
1369                  */
1370                 if (zone_to_nid(zone) == node)
1371                         continue;
1372                 node = zone_to_nid(zone);
1373
1374                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1375                 if (folio)
1376                         return folio;
1377         }
1378         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1379                 goto retry_cpuset;
1380
1381         return NULL;
1382 }
1383
1384 static unsigned long available_huge_pages(struct hstate *h)
1385 {
1386         return h->free_huge_pages - h->resv_huge_pages;
1387 }
1388
1389 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1390                                 struct vm_area_struct *vma,
1391                                 unsigned long address, int avoid_reserve,
1392                                 long chg)
1393 {
1394         struct folio *folio = NULL;
1395         struct mempolicy *mpol;
1396         gfp_t gfp_mask;
1397         nodemask_t *nodemask;
1398         int nid;
1399
1400         /*
1401          * A child process with MAP_PRIVATE mappings created by their parent
1402          * have no page reserves. This check ensures that reservations are
1403          * not "stolen". The child may still get SIGKILLed
1404          */
1405         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1406                 goto err;
1407
1408         /* If reserves cannot be used, ensure enough pages are in the pool */
1409         if (avoid_reserve && !available_huge_pages(h))
1410                 goto err;
1411
1412         gfp_mask = htlb_alloc_mask(h);
1413         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1414
1415         if (mpol_is_preferred_many(mpol)) {
1416                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1417                                                         nid, nodemask);
1418
1419                 /* Fallback to all nodes if page==NULL */
1420                 nodemask = NULL;
1421         }
1422
1423         if (!folio)
1424                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1425                                                         nid, nodemask);
1426
1427         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1428                 folio_set_hugetlb_restore_reserve(folio);
1429                 h->resv_huge_pages--;
1430         }
1431
1432         mpol_cond_put(mpol);
1433         return folio;
1434
1435 err:
1436         return NULL;
1437 }
1438
1439 /*
1440  * common helper functions for hstate_next_node_to_{alloc|free}.
1441  * We may have allocated or freed a huge page based on a different
1442  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1443  * be outside of *nodes_allowed.  Ensure that we use an allowed
1444  * node for alloc or free.
1445  */
1446 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1447 {
1448         nid = next_node_in(nid, *nodes_allowed);
1449         VM_BUG_ON(nid >= MAX_NUMNODES);
1450
1451         return nid;
1452 }
1453
1454 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1455 {
1456         if (!node_isset(nid, *nodes_allowed))
1457                 nid = next_node_allowed(nid, nodes_allowed);
1458         return nid;
1459 }
1460
1461 /*
1462  * returns the previously saved node ["this node"] from which to
1463  * allocate a persistent huge page for the pool and advance the
1464  * next node from which to allocate, handling wrap at end of node
1465  * mask.
1466  */
1467 static int hstate_next_node_to_alloc(struct hstate *h,
1468                                         nodemask_t *nodes_allowed)
1469 {
1470         int nid;
1471
1472         VM_BUG_ON(!nodes_allowed);
1473
1474         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1475         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1476
1477         return nid;
1478 }
1479
1480 /*
1481  * helper for remove_pool_hugetlb_folio() - return the previously saved
1482  * node ["this node"] from which to free a huge page.  Advance the
1483  * next node id whether or not we find a free huge page to free so
1484  * that the next attempt to free addresses the next node.
1485  */
1486 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1487 {
1488         int nid;
1489
1490         VM_BUG_ON(!nodes_allowed);
1491
1492         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1493         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1494
1495         return nid;
1496 }
1497
1498 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1499         for (nr_nodes = nodes_weight(*mask);                            \
1500                 nr_nodes > 0 &&                                         \
1501                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1502                 nr_nodes--)
1503
1504 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1505         for (nr_nodes = nodes_weight(*mask);                            \
1506                 nr_nodes > 0 &&                                         \
1507                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1508                 nr_nodes--)
1509
1510 /* used to demote non-gigantic_huge pages as well */
1511 static void __destroy_compound_gigantic_folio(struct folio *folio,
1512                                         unsigned int order, bool demote)
1513 {
1514         int i;
1515         int nr_pages = 1 << order;
1516         struct page *p;
1517
1518         atomic_set(&folio->_entire_mapcount, 0);
1519         atomic_set(&folio->_nr_pages_mapped, 0);
1520         atomic_set(&folio->_pincount, 0);
1521
1522         for (i = 1; i < nr_pages; i++) {
1523                 p = folio_page(folio, i);
1524                 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1525                 p->mapping = NULL;
1526                 clear_compound_head(p);
1527                 if (!demote)
1528                         set_page_refcounted(p);
1529         }
1530
1531         __folio_clear_head(folio);
1532 }
1533
1534 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1535                                         unsigned int order)
1536 {
1537         __destroy_compound_gigantic_folio(folio, order, true);
1538 }
1539
1540 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1541 static void destroy_compound_gigantic_folio(struct folio *folio,
1542                                         unsigned int order)
1543 {
1544         __destroy_compound_gigantic_folio(folio, order, false);
1545 }
1546
1547 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1548 {
1549         /*
1550          * If the page isn't allocated using the cma allocator,
1551          * cma_release() returns false.
1552          */
1553 #ifdef CONFIG_CMA
1554         int nid = folio_nid(folio);
1555
1556         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1557                 return;
1558 #endif
1559
1560         free_contig_range(folio_pfn(folio), 1 << order);
1561 }
1562
1563 #ifdef CONFIG_CONTIG_ALLOC
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565                 int nid, nodemask_t *nodemask)
1566 {
1567         struct page *page;
1568         unsigned long nr_pages = pages_per_huge_page(h);
1569         if (nid == NUMA_NO_NODE)
1570                 nid = numa_mem_id();
1571
1572 #ifdef CONFIG_CMA
1573         {
1574                 int node;
1575
1576                 if (hugetlb_cma[nid]) {
1577                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1578                                         huge_page_order(h), true);
1579                         if (page)
1580                                 return page_folio(page);
1581                 }
1582
1583                 if (!(gfp_mask & __GFP_THISNODE)) {
1584                         for_each_node_mask(node, *nodemask) {
1585                                 if (node == nid || !hugetlb_cma[node])
1586                                         continue;
1587
1588                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1589                                                 huge_page_order(h), true);
1590                                 if (page)
1591                                         return page_folio(page);
1592                         }
1593                 }
1594         }
1595 #endif
1596
1597         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1598         return page ? page_folio(page) : NULL;
1599 }
1600
1601 #else /* !CONFIG_CONTIG_ALLOC */
1602 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1603                                         int nid, nodemask_t *nodemask)
1604 {
1605         return NULL;
1606 }
1607 #endif /* CONFIG_CONTIG_ALLOC */
1608
1609 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1610 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1611                                         int nid, nodemask_t *nodemask)
1612 {
1613         return NULL;
1614 }
1615 static inline void free_gigantic_folio(struct folio *folio,
1616                                                 unsigned int order) { }
1617 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1618                                                 unsigned int order) { }
1619 #endif
1620
1621 static inline void __clear_hugetlb_destructor(struct hstate *h,
1622                                                 struct folio *folio)
1623 {
1624         lockdep_assert_held(&hugetlb_lock);
1625
1626         __folio_clear_hugetlb(folio);
1627 }
1628
1629 /*
1630  * Remove hugetlb folio from lists.
1631  * If vmemmap exists for the folio, update dtor so that the folio appears
1632  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1633  * to update dtor.
1634  *
1635  * A reference is held on the folio, except in the case of demote.
1636  *
1637  * Must be called with hugetlb lock held.
1638  */
1639 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1640                                                         bool adjust_surplus,
1641                                                         bool demote)
1642 {
1643         int nid = folio_nid(folio);
1644
1645         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1646         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1647
1648         lockdep_assert_held(&hugetlb_lock);
1649         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1650                 return;
1651
1652         list_del(&folio->lru);
1653
1654         if (folio_test_hugetlb_freed(folio)) {
1655                 h->free_huge_pages--;
1656                 h->free_huge_pages_node[nid]--;
1657         }
1658         if (adjust_surplus) {
1659                 h->surplus_huge_pages--;
1660                 h->surplus_huge_pages_node[nid]--;
1661         }
1662
1663         /*
1664          * We can only clear the hugetlb destructor after allocating vmemmap
1665          * pages.  Otherwise, someone (memory error handling) may try to write
1666          * to tail struct pages.
1667          */
1668         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1669                 __clear_hugetlb_destructor(h, folio);
1670
1671          /*
1672           * In the case of demote we do not ref count the page as it will soon
1673           * be turned into a page of smaller size.
1674          */
1675         if (!demote)
1676                 folio_ref_unfreeze(folio, 1);
1677
1678         h->nr_huge_pages--;
1679         h->nr_huge_pages_node[nid]--;
1680 }
1681
1682 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1683                                                         bool adjust_surplus)
1684 {
1685         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1686 }
1687
1688 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1689                                                         bool adjust_surplus)
1690 {
1691         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1692 }
1693
1694 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1695                              bool adjust_surplus)
1696 {
1697         int zeroed;
1698         int nid = folio_nid(folio);
1699
1700         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1701
1702         lockdep_assert_held(&hugetlb_lock);
1703
1704         INIT_LIST_HEAD(&folio->lru);
1705         h->nr_huge_pages++;
1706         h->nr_huge_pages_node[nid]++;
1707
1708         if (adjust_surplus) {
1709                 h->surplus_huge_pages++;
1710                 h->surplus_huge_pages_node[nid]++;
1711         }
1712
1713         __folio_set_hugetlb(folio);
1714         folio_change_private(folio, NULL);
1715         /*
1716          * We have to set hugetlb_vmemmap_optimized again as above
1717          * folio_change_private(folio, NULL) cleared it.
1718          */
1719         folio_set_hugetlb_vmemmap_optimized(folio);
1720
1721         /*
1722          * This folio is about to be managed by the hugetlb allocator and
1723          * should have no users.  Drop our reference, and check for others
1724          * just in case.
1725          */
1726         zeroed = folio_put_testzero(folio);
1727         if (unlikely(!zeroed))
1728                 /*
1729                  * It is VERY unlikely soneone else has taken a ref
1730                  * on the folio.  In this case, we simply return as
1731                  * free_huge_folio() will be called when this other ref
1732                  * is dropped.
1733                  */
1734                 return;
1735
1736         arch_clear_hugepage_flags(&folio->page);
1737         enqueue_hugetlb_folio(h, folio);
1738 }
1739
1740 static void __update_and_free_hugetlb_folio(struct hstate *h,
1741                                                 struct folio *folio)
1742 {
1743         bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1744
1745         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1746                 return;
1747
1748         /*
1749          * If we don't know which subpages are hwpoisoned, we can't free
1750          * the hugepage, so it's leaked intentionally.
1751          */
1752         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1753                 return;
1754
1755         /*
1756          * If folio is not vmemmap optimized (!clear_dtor), then the folio
1757          * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1758          * can only be passed hugetlb pages and will BUG otherwise.
1759          */
1760         if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1761                 spin_lock_irq(&hugetlb_lock);
1762                 /*
1763                  * If we cannot allocate vmemmap pages, just refuse to free the
1764                  * page and put the page back on the hugetlb free list and treat
1765                  * as a surplus page.
1766                  */
1767                 add_hugetlb_folio(h, folio, true);
1768                 spin_unlock_irq(&hugetlb_lock);
1769                 return;
1770         }
1771
1772         /*
1773          * Move PageHWPoison flag from head page to the raw error pages,
1774          * which makes any healthy subpages reusable.
1775          */
1776         if (unlikely(folio_test_hwpoison(folio)))
1777                 folio_clear_hugetlb_hwpoison(folio);
1778
1779         /*
1780          * If vmemmap pages were allocated above, then we need to clear the
1781          * hugetlb destructor under the hugetlb lock.
1782          */
1783         if (folio_test_hugetlb(folio)) {
1784                 spin_lock_irq(&hugetlb_lock);
1785                 __clear_hugetlb_destructor(h, folio);
1786                 spin_unlock_irq(&hugetlb_lock);
1787         }
1788
1789         /*
1790          * Non-gigantic pages demoted from CMA allocated gigantic pages
1791          * need to be given back to CMA in free_gigantic_folio.
1792          */
1793         if (hstate_is_gigantic(h) ||
1794             hugetlb_cma_folio(folio, huge_page_order(h))) {
1795                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1796                 free_gigantic_folio(folio, huge_page_order(h));
1797         } else {
1798                 __free_pages(&folio->page, huge_page_order(h));
1799         }
1800 }
1801
1802 /*
1803  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1804  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1805  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1806  * the vmemmap pages.
1807  *
1808  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1809  * freed and frees them one-by-one. As the page->mapping pointer is going
1810  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1811  * structure of a lockless linked list of huge pages to be freed.
1812  */
1813 static LLIST_HEAD(hpage_freelist);
1814
1815 static void free_hpage_workfn(struct work_struct *work)
1816 {
1817         struct llist_node *node;
1818
1819         node = llist_del_all(&hpage_freelist);
1820
1821         while (node) {
1822                 struct folio *folio;
1823                 struct hstate *h;
1824
1825                 folio = container_of((struct address_space **)node,
1826                                      struct folio, mapping);
1827                 node = node->next;
1828                 folio->mapping = NULL;
1829                 /*
1830                  * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1831                  * folio_hstate() is going to trigger because a previous call to
1832                  * remove_hugetlb_folio() will clear the hugetlb bit, so do
1833                  * not use folio_hstate() directly.
1834                  */
1835                 h = size_to_hstate(folio_size(folio));
1836
1837                 __update_and_free_hugetlb_folio(h, folio);
1838
1839                 cond_resched();
1840         }
1841 }
1842 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1843
1844 static inline void flush_free_hpage_work(struct hstate *h)
1845 {
1846         if (hugetlb_vmemmap_optimizable(h))
1847                 flush_work(&free_hpage_work);
1848 }
1849
1850 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1851                                  bool atomic)
1852 {
1853         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1854                 __update_and_free_hugetlb_folio(h, folio);
1855                 return;
1856         }
1857
1858         /*
1859          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1860          *
1861          * Only call schedule_work() if hpage_freelist is previously
1862          * empty. Otherwise, schedule_work() had been called but the workfn
1863          * hasn't retrieved the list yet.
1864          */
1865         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1866                 schedule_work(&free_hpage_work);
1867 }
1868
1869 static void bulk_vmemmap_restore_error(struct hstate *h,
1870                                         struct list_head *folio_list,
1871                                         struct list_head *non_hvo_folios)
1872 {
1873         struct folio *folio, *t_folio;
1874
1875         if (!list_empty(non_hvo_folios)) {
1876                 /*
1877                  * Free any restored hugetlb pages so that restore of the
1878                  * entire list can be retried.
1879                  * The idea is that in the common case of ENOMEM errors freeing
1880                  * hugetlb pages with vmemmap we will free up memory so that we
1881                  * can allocate vmemmap for more hugetlb pages.
1882                  */
1883                 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1884                         list_del(&folio->lru);
1885                         spin_lock_irq(&hugetlb_lock);
1886                         __clear_hugetlb_destructor(h, folio);
1887                         spin_unlock_irq(&hugetlb_lock);
1888                         update_and_free_hugetlb_folio(h, folio, false);
1889                         cond_resched();
1890                 }
1891         } else {
1892                 /*
1893                  * In the case where there are no folios which can be
1894                  * immediately freed, we loop through the list trying to restore
1895                  * vmemmap individually in the hope that someone elsewhere may
1896                  * have done something to cause success (such as freeing some
1897                  * memory).  If unable to restore a hugetlb page, the hugetlb
1898                  * page is made a surplus page and removed from the list.
1899                  * If are able to restore vmemmap and free one hugetlb page, we
1900                  * quit processing the list to retry the bulk operation.
1901                  */
1902                 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1903                         if (hugetlb_vmemmap_restore_folio(h, folio)) {
1904                                 list_del(&folio->lru);
1905                                 spin_lock_irq(&hugetlb_lock);
1906                                 add_hugetlb_folio(h, folio, true);
1907                                 spin_unlock_irq(&hugetlb_lock);
1908                         } else {
1909                                 list_del(&folio->lru);
1910                                 spin_lock_irq(&hugetlb_lock);
1911                                 __clear_hugetlb_destructor(h, folio);
1912                                 spin_unlock_irq(&hugetlb_lock);
1913                                 update_and_free_hugetlb_folio(h, folio, false);
1914                                 cond_resched();
1915                                 break;
1916                         }
1917         }
1918 }
1919
1920 static void update_and_free_pages_bulk(struct hstate *h,
1921                                                 struct list_head *folio_list)
1922 {
1923         long ret;
1924         struct folio *folio, *t_folio;
1925         LIST_HEAD(non_hvo_folios);
1926
1927         /*
1928          * First allocate required vmemmmap (if necessary) for all folios.
1929          * Carefully handle errors and free up any available hugetlb pages
1930          * in an effort to make forward progress.
1931          */
1932 retry:
1933         ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1934         if (ret < 0) {
1935                 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1936                 goto retry;
1937         }
1938
1939         /*
1940          * At this point, list should be empty, ret should be >= 0 and there
1941          * should only be pages on the non_hvo_folios list.
1942          * Do note that the non_hvo_folios list could be empty.
1943          * Without HVO enabled, ret will be 0 and there is no need to call
1944          * __clear_hugetlb_destructor as this was done previously.
1945          */
1946         VM_WARN_ON(!list_empty(folio_list));
1947         VM_WARN_ON(ret < 0);
1948         if (!list_empty(&non_hvo_folios) && ret) {
1949                 spin_lock_irq(&hugetlb_lock);
1950                 list_for_each_entry(folio, &non_hvo_folios, lru)
1951                         __clear_hugetlb_destructor(h, folio);
1952                 spin_unlock_irq(&hugetlb_lock);
1953         }
1954
1955         list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1956                 update_and_free_hugetlb_folio(h, folio, false);
1957                 cond_resched();
1958         }
1959 }
1960
1961 struct hstate *size_to_hstate(unsigned long size)
1962 {
1963         struct hstate *h;
1964
1965         for_each_hstate(h) {
1966                 if (huge_page_size(h) == size)
1967                         return h;
1968         }
1969         return NULL;
1970 }
1971
1972 void free_huge_folio(struct folio *folio)
1973 {
1974         /*
1975          * Can't pass hstate in here because it is called from the
1976          * compound page destructor.
1977          */
1978         struct hstate *h = folio_hstate(folio);
1979         int nid = folio_nid(folio);
1980         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1981         bool restore_reserve;
1982         unsigned long flags;
1983
1984         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1985         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1986
1987         hugetlb_set_folio_subpool(folio, NULL);
1988         if (folio_test_anon(folio))
1989                 __ClearPageAnonExclusive(&folio->page);
1990         folio->mapping = NULL;
1991         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1992         folio_clear_hugetlb_restore_reserve(folio);
1993
1994         /*
1995          * If HPageRestoreReserve was set on page, page allocation consumed a
1996          * reservation.  If the page was associated with a subpool, there
1997          * would have been a page reserved in the subpool before allocation
1998          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1999          * reservation, do not call hugepage_subpool_put_pages() as this will
2000          * remove the reserved page from the subpool.
2001          */
2002         if (!restore_reserve) {
2003                 /*
2004                  * A return code of zero implies that the subpool will be
2005                  * under its minimum size if the reservation is not restored
2006                  * after page is free.  Therefore, force restore_reserve
2007                  * operation.
2008                  */
2009                 if (hugepage_subpool_put_pages(spool, 1) == 0)
2010                         restore_reserve = true;
2011         }
2012
2013         spin_lock_irqsave(&hugetlb_lock, flags);
2014         folio_clear_hugetlb_migratable(folio);
2015         hugetlb_cgroup_uncharge_folio(hstate_index(h),
2016                                      pages_per_huge_page(h), folio);
2017         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2018                                           pages_per_huge_page(h), folio);
2019         mem_cgroup_uncharge(folio);
2020         if (restore_reserve)
2021                 h->resv_huge_pages++;
2022
2023         if (folio_test_hugetlb_temporary(folio)) {
2024                 remove_hugetlb_folio(h, folio, false);
2025                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2026                 update_and_free_hugetlb_folio(h, folio, true);
2027         } else if (h->surplus_huge_pages_node[nid]) {
2028                 /* remove the page from active list */
2029                 remove_hugetlb_folio(h, folio, true);
2030                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2031                 update_and_free_hugetlb_folio(h, folio, true);
2032         } else {
2033                 arch_clear_hugepage_flags(&folio->page);
2034                 enqueue_hugetlb_folio(h, folio);
2035                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2036         }
2037 }
2038
2039 /*
2040  * Must be called with the hugetlb lock held
2041  */
2042 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2043 {
2044         lockdep_assert_held(&hugetlb_lock);
2045         h->nr_huge_pages++;
2046         h->nr_huge_pages_node[nid]++;
2047 }
2048
2049 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2050 {
2051         __folio_set_hugetlb(folio);
2052         INIT_LIST_HEAD(&folio->lru);
2053         hugetlb_set_folio_subpool(folio, NULL);
2054         set_hugetlb_cgroup(folio, NULL);
2055         set_hugetlb_cgroup_rsvd(folio, NULL);
2056 }
2057
2058 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2059 {
2060         init_new_hugetlb_folio(h, folio);
2061         hugetlb_vmemmap_optimize_folio(h, folio);
2062 }
2063
2064 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2065 {
2066         __prep_new_hugetlb_folio(h, folio);
2067         spin_lock_irq(&hugetlb_lock);
2068         __prep_account_new_huge_page(h, nid);
2069         spin_unlock_irq(&hugetlb_lock);
2070 }
2071
2072 static bool __prep_compound_gigantic_folio(struct folio *folio,
2073                                         unsigned int order, bool demote)
2074 {
2075         int i, j;
2076         int nr_pages = 1 << order;
2077         struct page *p;
2078
2079         __folio_clear_reserved(folio);
2080         for (i = 0; i < nr_pages; i++) {
2081                 p = folio_page(folio, i);
2082
2083                 /*
2084                  * For gigantic hugepages allocated through bootmem at
2085                  * boot, it's safer to be consistent with the not-gigantic
2086                  * hugepages and clear the PG_reserved bit from all tail pages
2087                  * too.  Otherwise drivers using get_user_pages() to access tail
2088                  * pages may get the reference counting wrong if they see
2089                  * PG_reserved set on a tail page (despite the head page not
2090                  * having PG_reserved set).  Enforcing this consistency between
2091                  * head and tail pages allows drivers to optimize away a check
2092                  * on the head page when they need know if put_page() is needed
2093                  * after get_user_pages().
2094                  */
2095                 if (i != 0)     /* head page cleared above */
2096                         __ClearPageReserved(p);
2097                 /*
2098                  * Subtle and very unlikely
2099                  *
2100                  * Gigantic 'page allocators' such as memblock or cma will
2101                  * return a set of pages with each page ref counted.  We need
2102                  * to turn this set of pages into a compound page with tail
2103                  * page ref counts set to zero.  Code such as speculative page
2104                  * cache adding could take a ref on a 'to be' tail page.
2105                  * We need to respect any increased ref count, and only set
2106                  * the ref count to zero if count is currently 1.  If count
2107                  * is not 1, we return an error.  An error return indicates
2108                  * the set of pages can not be converted to a gigantic page.
2109                  * The caller who allocated the pages should then discard the
2110                  * pages using the appropriate free interface.
2111                  *
2112                  * In the case of demote, the ref count will be zero.
2113                  */
2114                 if (!demote) {
2115                         if (!page_ref_freeze(p, 1)) {
2116                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2117                                 goto out_error;
2118                         }
2119                 } else {
2120                         VM_BUG_ON_PAGE(page_count(p), p);
2121                 }
2122                 if (i != 0)
2123                         set_compound_head(p, &folio->page);
2124         }
2125         __folio_set_head(folio);
2126         /* we rely on prep_new_hugetlb_folio to set the destructor */
2127         folio_set_order(folio, order);
2128         atomic_set(&folio->_entire_mapcount, -1);
2129         atomic_set(&folio->_nr_pages_mapped, 0);
2130         atomic_set(&folio->_pincount, 0);
2131         return true;
2132
2133 out_error:
2134         /* undo page modifications made above */
2135         for (j = 0; j < i; j++) {
2136                 p = folio_page(folio, j);
2137                 if (j != 0)
2138                         clear_compound_head(p);
2139                 set_page_refcounted(p);
2140         }
2141         /* need to clear PG_reserved on remaining tail pages  */
2142         for (; j < nr_pages; j++) {
2143                 p = folio_page(folio, j);
2144                 __ClearPageReserved(p);
2145         }
2146         return false;
2147 }
2148
2149 static bool prep_compound_gigantic_folio(struct folio *folio,
2150                                                         unsigned int order)
2151 {
2152         return __prep_compound_gigantic_folio(folio, order, false);
2153 }
2154
2155 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2156                                                         unsigned int order)
2157 {
2158         return __prep_compound_gigantic_folio(folio, order, true);
2159 }
2160
2161 /*
2162  * Find and lock address space (mapping) in write mode.
2163  *
2164  * Upon entry, the page is locked which means that page_mapping() is
2165  * stable.  Due to locking order, we can only trylock_write.  If we can
2166  * not get the lock, simply return NULL to caller.
2167  */
2168 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2169 {
2170         struct address_space *mapping = page_mapping(hpage);
2171
2172         if (!mapping)
2173                 return mapping;
2174
2175         if (i_mmap_trylock_write(mapping))
2176                 return mapping;
2177
2178         return NULL;
2179 }
2180
2181 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2182                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2183                 nodemask_t *node_alloc_noretry)
2184 {
2185         int order = huge_page_order(h);
2186         struct page *page;
2187         bool alloc_try_hard = true;
2188         bool retry = true;
2189
2190         /*
2191          * By default we always try hard to allocate the page with
2192          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2193          * a loop (to adjust global huge page counts) and previous allocation
2194          * failed, do not continue to try hard on the same node.  Use the
2195          * node_alloc_noretry bitmap to manage this state information.
2196          */
2197         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2198                 alloc_try_hard = false;
2199         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2200         if (alloc_try_hard)
2201                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2202         if (nid == NUMA_NO_NODE)
2203                 nid = numa_mem_id();
2204 retry:
2205         page = __alloc_pages(gfp_mask, order, nid, nmask);
2206
2207         /* Freeze head page */
2208         if (page && !page_ref_freeze(page, 1)) {
2209                 __free_pages(page, order);
2210                 if (retry) {    /* retry once */
2211                         retry = false;
2212                         goto retry;
2213                 }
2214                 /* WOW!  twice in a row. */
2215                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2216                 page = NULL;
2217         }
2218
2219         /*
2220          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2221          * indicates an overall state change.  Clear bit so that we resume
2222          * normal 'try hard' allocations.
2223          */
2224         if (node_alloc_noretry && page && !alloc_try_hard)
2225                 node_clear(nid, *node_alloc_noretry);
2226
2227         /*
2228          * If we tried hard to get a page but failed, set bit so that
2229          * subsequent attempts will not try as hard until there is an
2230          * overall state change.
2231          */
2232         if (node_alloc_noretry && !page && alloc_try_hard)
2233                 node_set(nid, *node_alloc_noretry);
2234
2235         if (!page) {
2236                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2237                 return NULL;
2238         }
2239
2240         __count_vm_event(HTLB_BUDDY_PGALLOC);
2241         return page_folio(page);
2242 }
2243
2244 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2245                                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2246                                 nodemask_t *node_alloc_noretry)
2247 {
2248         struct folio *folio;
2249         bool retry = false;
2250
2251 retry:
2252         if (hstate_is_gigantic(h))
2253                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2254         else
2255                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2256                                 nid, nmask, node_alloc_noretry);
2257         if (!folio)
2258                 return NULL;
2259
2260         if (hstate_is_gigantic(h)) {
2261                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2262                         /*
2263                          * Rare failure to convert pages to compound page.
2264                          * Free pages and try again - ONCE!
2265                          */
2266                         free_gigantic_folio(folio, huge_page_order(h));
2267                         if (!retry) {
2268                                 retry = true;
2269                                 goto retry;
2270                         }
2271                         return NULL;
2272                 }
2273         }
2274
2275         return folio;
2276 }
2277
2278 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2279                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2280                 nodemask_t *node_alloc_noretry)
2281 {
2282         struct folio *folio;
2283
2284         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2285                                                 node_alloc_noretry);
2286         if (folio)
2287                 init_new_hugetlb_folio(h, folio);
2288         return folio;
2289 }
2290
2291 /*
2292  * Common helper to allocate a fresh hugetlb page. All specific allocators
2293  * should use this function to get new hugetlb pages
2294  *
2295  * Note that returned page is 'frozen':  ref count of head page and all tail
2296  * pages is zero.
2297  */
2298 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2299                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2300                 nodemask_t *node_alloc_noretry)
2301 {
2302         struct folio *folio;
2303
2304         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2305                                                 node_alloc_noretry);
2306         if (!folio)
2307                 return NULL;
2308
2309         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2310         return folio;
2311 }
2312
2313 static void prep_and_add_allocated_folios(struct hstate *h,
2314                                         struct list_head *folio_list)
2315 {
2316         unsigned long flags;
2317         struct folio *folio, *tmp_f;
2318
2319         /* Send list for bulk vmemmap optimization processing */
2320         hugetlb_vmemmap_optimize_folios(h, folio_list);
2321
2322         /* Add all new pool pages to free lists in one lock cycle */
2323         spin_lock_irqsave(&hugetlb_lock, flags);
2324         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2325                 __prep_account_new_huge_page(h, folio_nid(folio));
2326                 enqueue_hugetlb_folio(h, folio);
2327         }
2328         spin_unlock_irqrestore(&hugetlb_lock, flags);
2329 }
2330
2331 /*
2332  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2333  * will later be added to the appropriate hugetlb pool.
2334  */
2335 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2336                                         nodemask_t *nodes_allowed,
2337                                         nodemask_t *node_alloc_noretry)
2338 {
2339         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2340         int nr_nodes, node;
2341
2342         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2343                 struct folio *folio;
2344
2345                 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2346                                         nodes_allowed, node_alloc_noretry);
2347                 if (folio)
2348                         return folio;
2349         }
2350
2351         return NULL;
2352 }
2353
2354 /*
2355  * Remove huge page from pool from next node to free.  Attempt to keep
2356  * persistent huge pages more or less balanced over allowed nodes.
2357  * This routine only 'removes' the hugetlb page.  The caller must make
2358  * an additional call to free the page to low level allocators.
2359  * Called with hugetlb_lock locked.
2360  */
2361 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2362                 nodemask_t *nodes_allowed, bool acct_surplus)
2363 {
2364         int nr_nodes, node;
2365         struct folio *folio = NULL;
2366
2367         lockdep_assert_held(&hugetlb_lock);
2368         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2369                 /*
2370                  * If we're returning unused surplus pages, only examine
2371                  * nodes with surplus pages.
2372                  */
2373                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2374                     !list_empty(&h->hugepage_freelists[node])) {
2375                         folio = list_entry(h->hugepage_freelists[node].next,
2376                                           struct folio, lru);
2377                         remove_hugetlb_folio(h, folio, acct_surplus);
2378                         break;
2379                 }
2380         }
2381
2382         return folio;
2383 }
2384
2385 /*
2386  * Dissolve a given free hugepage into free buddy pages. This function does
2387  * nothing for in-use hugepages and non-hugepages.
2388  * This function returns values like below:
2389  *
2390  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2391  *           when the system is under memory pressure and the feature of
2392  *           freeing unused vmemmap pages associated with each hugetlb page
2393  *           is enabled.
2394  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2395  *           (allocated or reserved.)
2396  *       0:  successfully dissolved free hugepages or the page is not a
2397  *           hugepage (considered as already dissolved)
2398  */
2399 int dissolve_free_huge_page(struct page *page)
2400 {
2401         int rc = -EBUSY;
2402         struct folio *folio = page_folio(page);
2403
2404 retry:
2405         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2406         if (!folio_test_hugetlb(folio))
2407                 return 0;
2408
2409         spin_lock_irq(&hugetlb_lock);
2410         if (!folio_test_hugetlb(folio)) {
2411                 rc = 0;
2412                 goto out;
2413         }
2414
2415         if (!folio_ref_count(folio)) {
2416                 struct hstate *h = folio_hstate(folio);
2417                 if (!available_huge_pages(h))
2418                         goto out;
2419
2420                 /*
2421                  * We should make sure that the page is already on the free list
2422                  * when it is dissolved.
2423                  */
2424                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2425                         spin_unlock_irq(&hugetlb_lock);
2426                         cond_resched();
2427
2428                         /*
2429                          * Theoretically, we should return -EBUSY when we
2430                          * encounter this race. In fact, we have a chance
2431                          * to successfully dissolve the page if we do a
2432                          * retry. Because the race window is quite small.
2433                          * If we seize this opportunity, it is an optimization
2434                          * for increasing the success rate of dissolving page.
2435                          */
2436                         goto retry;
2437                 }
2438
2439                 remove_hugetlb_folio(h, folio, false);
2440                 h->max_huge_pages--;
2441                 spin_unlock_irq(&hugetlb_lock);
2442
2443                 /*
2444                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2445                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2446                  * free the page if it can not allocate required vmemmap.  We
2447                  * need to adjust max_huge_pages if the page is not freed.
2448                  * Attempt to allocate vmemmmap here so that we can take
2449                  * appropriate action on failure.
2450                  *
2451                  * The folio_test_hugetlb check here is because
2452                  * remove_hugetlb_folio will clear hugetlb folio flag for
2453                  * non-vmemmap optimized hugetlb folios.
2454                  */
2455                 if (folio_test_hugetlb(folio)) {
2456                         rc = hugetlb_vmemmap_restore_folio(h, folio);
2457                         if (rc) {
2458                                 spin_lock_irq(&hugetlb_lock);
2459                                 add_hugetlb_folio(h, folio, false);
2460                                 h->max_huge_pages++;
2461                                 goto out;
2462                         }
2463                 } else
2464                         rc = 0;
2465
2466                 update_and_free_hugetlb_folio(h, folio, false);
2467                 return rc;
2468         }
2469 out:
2470         spin_unlock_irq(&hugetlb_lock);
2471         return rc;
2472 }
2473
2474 /*
2475  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2476  * make specified memory blocks removable from the system.
2477  * Note that this will dissolve a free gigantic hugepage completely, if any
2478  * part of it lies within the given range.
2479  * Also note that if dissolve_free_huge_page() returns with an error, all
2480  * free hugepages that were dissolved before that error are lost.
2481  */
2482 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2483 {
2484         unsigned long pfn;
2485         struct page *page;
2486         int rc = 0;
2487         unsigned int order;
2488         struct hstate *h;
2489
2490         if (!hugepages_supported())
2491                 return rc;
2492
2493         order = huge_page_order(&default_hstate);
2494         for_each_hstate(h)
2495                 order = min(order, huge_page_order(h));
2496
2497         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2498                 page = pfn_to_page(pfn);
2499                 rc = dissolve_free_huge_page(page);
2500                 if (rc)
2501                         break;
2502         }
2503
2504         return rc;
2505 }
2506
2507 /*
2508  * Allocates a fresh surplus page from the page allocator.
2509  */
2510 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2511                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2512 {
2513         struct folio *folio = NULL;
2514
2515         if (hstate_is_gigantic(h))
2516                 return NULL;
2517
2518         spin_lock_irq(&hugetlb_lock);
2519         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2520                 goto out_unlock;
2521         spin_unlock_irq(&hugetlb_lock);
2522
2523         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2524         if (!folio)
2525                 return NULL;
2526
2527         spin_lock_irq(&hugetlb_lock);
2528         /*
2529          * We could have raced with the pool size change.
2530          * Double check that and simply deallocate the new page
2531          * if we would end up overcommiting the surpluses. Abuse
2532          * temporary page to workaround the nasty free_huge_folio
2533          * codeflow
2534          */
2535         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2536                 folio_set_hugetlb_temporary(folio);
2537                 spin_unlock_irq(&hugetlb_lock);
2538                 free_huge_folio(folio);
2539                 return NULL;
2540         }
2541
2542         h->surplus_huge_pages++;
2543         h->surplus_huge_pages_node[folio_nid(folio)]++;
2544
2545 out_unlock:
2546         spin_unlock_irq(&hugetlb_lock);
2547
2548         return folio;
2549 }
2550
2551 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2552                                      int nid, nodemask_t *nmask)
2553 {
2554         struct folio *folio;
2555
2556         if (hstate_is_gigantic(h))
2557                 return NULL;
2558
2559         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2560         if (!folio)
2561                 return NULL;
2562
2563         /* fresh huge pages are frozen */
2564         folio_ref_unfreeze(folio, 1);
2565         /*
2566          * We do not account these pages as surplus because they are only
2567          * temporary and will be released properly on the last reference
2568          */
2569         folio_set_hugetlb_temporary(folio);
2570
2571         return folio;
2572 }
2573
2574 /*
2575  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2576  */
2577 static
2578 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2579                 struct vm_area_struct *vma, unsigned long addr)
2580 {
2581         struct folio *folio = NULL;
2582         struct mempolicy *mpol;
2583         gfp_t gfp_mask = htlb_alloc_mask(h);
2584         int nid;
2585         nodemask_t *nodemask;
2586
2587         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2588         if (mpol_is_preferred_many(mpol)) {
2589                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2590
2591                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2592                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2593
2594                 /* Fallback to all nodes if page==NULL */
2595                 nodemask = NULL;
2596         }
2597
2598         if (!folio)
2599                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2600         mpol_cond_put(mpol);
2601         return folio;
2602 }
2603
2604 /* folio migration callback function */
2605 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2606                 nodemask_t *nmask, gfp_t gfp_mask)
2607 {
2608         spin_lock_irq(&hugetlb_lock);
2609         if (available_huge_pages(h)) {
2610                 struct folio *folio;
2611
2612                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2613                                                 preferred_nid, nmask);
2614                 if (folio) {
2615                         spin_unlock_irq(&hugetlb_lock);
2616                         return folio;
2617                 }
2618         }
2619         spin_unlock_irq(&hugetlb_lock);
2620
2621         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2622 }
2623
2624 /*
2625  * Increase the hugetlb pool such that it can accommodate a reservation
2626  * of size 'delta'.
2627  */
2628 static int gather_surplus_pages(struct hstate *h, long delta)
2629         __must_hold(&hugetlb_lock)
2630 {
2631         LIST_HEAD(surplus_list);
2632         struct folio *folio, *tmp;
2633         int ret;
2634         long i;
2635         long needed, allocated;
2636         bool alloc_ok = true;
2637
2638         lockdep_assert_held(&hugetlb_lock);
2639         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2640         if (needed <= 0) {
2641                 h->resv_huge_pages += delta;
2642                 return 0;
2643         }
2644
2645         allocated = 0;
2646
2647         ret = -ENOMEM;
2648 retry:
2649         spin_unlock_irq(&hugetlb_lock);
2650         for (i = 0; i < needed; i++) {
2651                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2652                                 NUMA_NO_NODE, NULL);
2653                 if (!folio) {
2654                         alloc_ok = false;
2655                         break;
2656                 }
2657                 list_add(&folio->lru, &surplus_list);
2658                 cond_resched();
2659         }
2660         allocated += i;
2661
2662         /*
2663          * After retaking hugetlb_lock, we need to recalculate 'needed'
2664          * because either resv_huge_pages or free_huge_pages may have changed.
2665          */
2666         spin_lock_irq(&hugetlb_lock);
2667         needed = (h->resv_huge_pages + delta) -
2668                         (h->free_huge_pages + allocated);
2669         if (needed > 0) {
2670                 if (alloc_ok)
2671                         goto retry;
2672                 /*
2673                  * We were not able to allocate enough pages to
2674                  * satisfy the entire reservation so we free what
2675                  * we've allocated so far.
2676                  */
2677                 goto free;
2678         }
2679         /*
2680          * The surplus_list now contains _at_least_ the number of extra pages
2681          * needed to accommodate the reservation.  Add the appropriate number
2682          * of pages to the hugetlb pool and free the extras back to the buddy
2683          * allocator.  Commit the entire reservation here to prevent another
2684          * process from stealing the pages as they are added to the pool but
2685          * before they are reserved.
2686          */
2687         needed += allocated;
2688         h->resv_huge_pages += delta;
2689         ret = 0;
2690
2691         /* Free the needed pages to the hugetlb pool */
2692         list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2693                 if ((--needed) < 0)
2694                         break;
2695                 /* Add the page to the hugetlb allocator */
2696                 enqueue_hugetlb_folio(h, folio);
2697         }
2698 free:
2699         spin_unlock_irq(&hugetlb_lock);
2700
2701         /*
2702          * Free unnecessary surplus pages to the buddy allocator.
2703          * Pages have no ref count, call free_huge_folio directly.
2704          */
2705         list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2706                 free_huge_folio(folio);
2707         spin_lock_irq(&hugetlb_lock);
2708
2709         return ret;
2710 }
2711
2712 /*
2713  * This routine has two main purposes:
2714  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2715  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2716  *    to the associated reservation map.
2717  * 2) Free any unused surplus pages that may have been allocated to satisfy
2718  *    the reservation.  As many as unused_resv_pages may be freed.
2719  */
2720 static void return_unused_surplus_pages(struct hstate *h,
2721                                         unsigned long unused_resv_pages)
2722 {
2723         unsigned long nr_pages;
2724         LIST_HEAD(page_list);
2725
2726         lockdep_assert_held(&hugetlb_lock);
2727         /* Uncommit the reservation */
2728         h->resv_huge_pages -= unused_resv_pages;
2729
2730         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2731                 goto out;
2732
2733         /*
2734          * Part (or even all) of the reservation could have been backed
2735          * by pre-allocated pages. Only free surplus pages.
2736          */
2737         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2738
2739         /*
2740          * We want to release as many surplus pages as possible, spread
2741          * evenly across all nodes with memory. Iterate across these nodes
2742          * until we can no longer free unreserved surplus pages. This occurs
2743          * when the nodes with surplus pages have no free pages.
2744          * remove_pool_hugetlb_folio() will balance the freed pages across the
2745          * on-line nodes with memory and will handle the hstate accounting.
2746          */
2747         while (nr_pages--) {
2748                 struct folio *folio;
2749
2750                 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2751                 if (!folio)
2752                         goto out;
2753
2754                 list_add(&folio->lru, &page_list);
2755         }
2756
2757 out:
2758         spin_unlock_irq(&hugetlb_lock);
2759         update_and_free_pages_bulk(h, &page_list);
2760         spin_lock_irq(&hugetlb_lock);
2761 }
2762
2763
2764 /*
2765  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2766  * are used by the huge page allocation routines to manage reservations.
2767  *
2768  * vma_needs_reservation is called to determine if the huge page at addr
2769  * within the vma has an associated reservation.  If a reservation is
2770  * needed, the value 1 is returned.  The caller is then responsible for
2771  * managing the global reservation and subpool usage counts.  After
2772  * the huge page has been allocated, vma_commit_reservation is called
2773  * to add the page to the reservation map.  If the page allocation fails,
2774  * the reservation must be ended instead of committed.  vma_end_reservation
2775  * is called in such cases.
2776  *
2777  * In the normal case, vma_commit_reservation returns the same value
2778  * as the preceding vma_needs_reservation call.  The only time this
2779  * is not the case is if a reserve map was changed between calls.  It
2780  * is the responsibility of the caller to notice the difference and
2781  * take appropriate action.
2782  *
2783  * vma_add_reservation is used in error paths where a reservation must
2784  * be restored when a newly allocated huge page must be freed.  It is
2785  * to be called after calling vma_needs_reservation to determine if a
2786  * reservation exists.
2787  *
2788  * vma_del_reservation is used in error paths where an entry in the reserve
2789  * map was created during huge page allocation and must be removed.  It is to
2790  * be called after calling vma_needs_reservation to determine if a reservation
2791  * exists.
2792  */
2793 enum vma_resv_mode {
2794         VMA_NEEDS_RESV,
2795         VMA_COMMIT_RESV,
2796         VMA_END_RESV,
2797         VMA_ADD_RESV,
2798         VMA_DEL_RESV,
2799 };
2800 static long __vma_reservation_common(struct hstate *h,
2801                                 struct vm_area_struct *vma, unsigned long addr,
2802                                 enum vma_resv_mode mode)
2803 {
2804         struct resv_map *resv;
2805         pgoff_t idx;
2806         long ret;
2807         long dummy_out_regions_needed;
2808
2809         resv = vma_resv_map(vma);
2810         if (!resv)
2811                 return 1;
2812
2813         idx = vma_hugecache_offset(h, vma, addr);
2814         switch (mode) {
2815         case VMA_NEEDS_RESV:
2816                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2817                 /* We assume that vma_reservation_* routines always operate on
2818                  * 1 page, and that adding to resv map a 1 page entry can only
2819                  * ever require 1 region.
2820                  */
2821                 VM_BUG_ON(dummy_out_regions_needed != 1);
2822                 break;
2823         case VMA_COMMIT_RESV:
2824                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2825                 /* region_add calls of range 1 should never fail. */
2826                 VM_BUG_ON(ret < 0);
2827                 break;
2828         case VMA_END_RESV:
2829                 region_abort(resv, idx, idx + 1, 1);
2830                 ret = 0;
2831                 break;
2832         case VMA_ADD_RESV:
2833                 if (vma->vm_flags & VM_MAYSHARE) {
2834                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2835                         /* region_add calls of range 1 should never fail. */
2836                         VM_BUG_ON(ret < 0);
2837                 } else {
2838                         region_abort(resv, idx, idx + 1, 1);
2839                         ret = region_del(resv, idx, idx + 1);
2840                 }
2841                 break;
2842         case VMA_DEL_RESV:
2843                 if (vma->vm_flags & VM_MAYSHARE) {
2844                         region_abort(resv, idx, idx + 1, 1);
2845                         ret = region_del(resv, idx, idx + 1);
2846                 } else {
2847                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2848                         /* region_add calls of range 1 should never fail. */
2849                         VM_BUG_ON(ret < 0);
2850                 }
2851                 break;
2852         default:
2853                 BUG();
2854         }
2855
2856         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2857                 return ret;
2858         /*
2859          * We know private mapping must have HPAGE_RESV_OWNER set.
2860          *
2861          * In most cases, reserves always exist for private mappings.
2862          * However, a file associated with mapping could have been
2863          * hole punched or truncated after reserves were consumed.
2864          * As subsequent fault on such a range will not use reserves.
2865          * Subtle - The reserve map for private mappings has the
2866          * opposite meaning than that of shared mappings.  If NO
2867          * entry is in the reserve map, it means a reservation exists.
2868          * If an entry exists in the reserve map, it means the
2869          * reservation has already been consumed.  As a result, the
2870          * return value of this routine is the opposite of the
2871          * value returned from reserve map manipulation routines above.
2872          */
2873         if (ret > 0)
2874                 return 0;
2875         if (ret == 0)
2876                 return 1;
2877         return ret;
2878 }
2879
2880 static long vma_needs_reservation(struct hstate *h,
2881                         struct vm_area_struct *vma, unsigned long addr)
2882 {
2883         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2884 }
2885
2886 static long vma_commit_reservation(struct hstate *h,
2887                         struct vm_area_struct *vma, unsigned long addr)
2888 {
2889         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2890 }
2891
2892 static void vma_end_reservation(struct hstate *h,
2893                         struct vm_area_struct *vma, unsigned long addr)
2894 {
2895         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2896 }
2897
2898 static long vma_add_reservation(struct hstate *h,
2899                         struct vm_area_struct *vma, unsigned long addr)
2900 {
2901         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2902 }
2903
2904 static long vma_del_reservation(struct hstate *h,
2905                         struct vm_area_struct *vma, unsigned long addr)
2906 {
2907         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2908 }
2909
2910 /*
2911  * This routine is called to restore reservation information on error paths.
2912  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2913  * and the hugetlb mutex should remain held when calling this routine.
2914  *
2915  * It handles two specific cases:
2916  * 1) A reservation was in place and the folio consumed the reservation.
2917  *    hugetlb_restore_reserve is set in the folio.
2918  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2919  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2920  *
2921  * In case 1, free_huge_folio later in the error path will increment the
2922  * global reserve count.  But, free_huge_folio does not have enough context
2923  * to adjust the reservation map.  This case deals primarily with private
2924  * mappings.  Adjust the reserve map here to be consistent with global
2925  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2926  * reserve map indicates there is a reservation present.
2927  *
2928  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2929  */
2930 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2931                         unsigned long address, struct folio *folio)
2932 {
2933         long rc = vma_needs_reservation(h, vma, address);
2934
2935         if (folio_test_hugetlb_restore_reserve(folio)) {
2936                 if (unlikely(rc < 0))
2937                         /*
2938                          * Rare out of memory condition in reserve map
2939                          * manipulation.  Clear hugetlb_restore_reserve so
2940                          * that global reserve count will not be incremented
2941                          * by free_huge_folio.  This will make it appear
2942                          * as though the reservation for this folio was
2943                          * consumed.  This may prevent the task from
2944                          * faulting in the folio at a later time.  This
2945                          * is better than inconsistent global huge page
2946                          * accounting of reserve counts.
2947                          */
2948                         folio_clear_hugetlb_restore_reserve(folio);
2949                 else if (rc)
2950                         (void)vma_add_reservation(h, vma, address);
2951                 else
2952                         vma_end_reservation(h, vma, address);
2953         } else {
2954                 if (!rc) {
2955                         /*
2956                          * This indicates there is an entry in the reserve map
2957                          * not added by alloc_hugetlb_folio.  We know it was added
2958                          * before the alloc_hugetlb_folio call, otherwise
2959                          * hugetlb_restore_reserve would be set on the folio.
2960                          * Remove the entry so that a subsequent allocation
2961                          * does not consume a reservation.
2962                          */
2963                         rc = vma_del_reservation(h, vma, address);
2964                         if (rc < 0)
2965                                 /*
2966                                  * VERY rare out of memory condition.  Since
2967                                  * we can not delete the entry, set
2968                                  * hugetlb_restore_reserve so that the reserve
2969                                  * count will be incremented when the folio
2970                                  * is freed.  This reserve will be consumed
2971                                  * on a subsequent allocation.
2972                                  */
2973                                 folio_set_hugetlb_restore_reserve(folio);
2974                 } else if (rc < 0) {
2975                         /*
2976                          * Rare out of memory condition from
2977                          * vma_needs_reservation call.  Memory allocation is
2978                          * only attempted if a new entry is needed.  Therefore,
2979                          * this implies there is not an entry in the
2980                          * reserve map.
2981                          *
2982                          * For shared mappings, no entry in the map indicates
2983                          * no reservation.  We are done.
2984                          */
2985                         if (!(vma->vm_flags & VM_MAYSHARE))
2986                                 /*
2987                                  * For private mappings, no entry indicates
2988                                  * a reservation is present.  Since we can
2989                                  * not add an entry, set hugetlb_restore_reserve
2990                                  * on the folio so reserve count will be
2991                                  * incremented when freed.  This reserve will
2992                                  * be consumed on a subsequent allocation.
2993                                  */
2994                                 folio_set_hugetlb_restore_reserve(folio);
2995                 } else
2996                         /*
2997                          * No reservation present, do nothing
2998                          */
2999                          vma_end_reservation(h, vma, address);
3000         }
3001 }
3002
3003 /*
3004  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3005  * the old one
3006  * @h: struct hstate old page belongs to
3007  * @old_folio: Old folio to dissolve
3008  * @list: List to isolate the page in case we need to
3009  * Returns 0 on success, otherwise negated error.
3010  */
3011 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3012                         struct folio *old_folio, struct list_head *list)
3013 {
3014         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3015         int nid = folio_nid(old_folio);
3016         struct folio *new_folio;
3017         int ret = 0;
3018
3019         /*
3020          * Before dissolving the folio, we need to allocate a new one for the
3021          * pool to remain stable.  Here, we allocate the folio and 'prep' it
3022          * by doing everything but actually updating counters and adding to
3023          * the pool.  This simplifies and let us do most of the processing
3024          * under the lock.
3025          */
3026         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
3027         if (!new_folio)
3028                 return -ENOMEM;
3029         __prep_new_hugetlb_folio(h, new_folio);
3030
3031 retry:
3032         spin_lock_irq(&hugetlb_lock);
3033         if (!folio_test_hugetlb(old_folio)) {
3034                 /*
3035                  * Freed from under us. Drop new_folio too.
3036                  */
3037                 goto free_new;
3038         } else if (folio_ref_count(old_folio)) {
3039                 bool isolated;
3040
3041                 /*
3042                  * Someone has grabbed the folio, try to isolate it here.
3043                  * Fail with -EBUSY if not possible.
3044                  */
3045                 spin_unlock_irq(&hugetlb_lock);
3046                 isolated = isolate_hugetlb(old_folio, list);
3047                 ret = isolated ? 0 : -EBUSY;
3048                 spin_lock_irq(&hugetlb_lock);
3049                 goto free_new;
3050         } else if (!folio_test_hugetlb_freed(old_folio)) {
3051                 /*
3052                  * Folio's refcount is 0 but it has not been enqueued in the
3053                  * freelist yet. Race window is small, so we can succeed here if
3054                  * we retry.
3055                  */
3056                 spin_unlock_irq(&hugetlb_lock);
3057                 cond_resched();
3058                 goto retry;
3059         } else {
3060                 /*
3061                  * Ok, old_folio is still a genuine free hugepage. Remove it from
3062                  * the freelist and decrease the counters. These will be
3063                  * incremented again when calling __prep_account_new_huge_page()
3064                  * and enqueue_hugetlb_folio() for new_folio. The counters will
3065                  * remain stable since this happens under the lock.
3066                  */
3067                 remove_hugetlb_folio(h, old_folio, false);
3068
3069                 /*
3070                  * Ref count on new_folio is already zero as it was dropped
3071                  * earlier.  It can be directly added to the pool free list.
3072                  */
3073                 __prep_account_new_huge_page(h, nid);
3074                 enqueue_hugetlb_folio(h, new_folio);
3075
3076                 /*
3077                  * Folio has been replaced, we can safely free the old one.
3078                  */
3079                 spin_unlock_irq(&hugetlb_lock);
3080                 update_and_free_hugetlb_folio(h, old_folio, false);
3081         }
3082
3083         return ret;
3084
3085 free_new:
3086         spin_unlock_irq(&hugetlb_lock);
3087         /* Folio has a zero ref count, but needs a ref to be freed */
3088         folio_ref_unfreeze(new_folio, 1);
3089         update_and_free_hugetlb_folio(h, new_folio, false);
3090
3091         return ret;
3092 }
3093
3094 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3095 {
3096         struct hstate *h;
3097         struct folio *folio = page_folio(page);
3098         int ret = -EBUSY;
3099
3100         /*
3101          * The page might have been dissolved from under our feet, so make sure
3102          * to carefully check the state under the lock.
3103          * Return success when racing as if we dissolved the page ourselves.
3104          */
3105         spin_lock_irq(&hugetlb_lock);
3106         if (folio_test_hugetlb(folio)) {
3107                 h = folio_hstate(folio);
3108         } else {
3109                 spin_unlock_irq(&hugetlb_lock);
3110                 return 0;
3111         }
3112         spin_unlock_irq(&hugetlb_lock);
3113
3114         /*
3115          * Fence off gigantic pages as there is a cyclic dependency between
3116          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3117          * of bailing out right away without further retrying.
3118          */
3119         if (hstate_is_gigantic(h))
3120                 return -ENOMEM;
3121
3122         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3123                 ret = 0;
3124         else if (!folio_ref_count(folio))
3125                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3126
3127         return ret;
3128 }
3129
3130 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3131                                     unsigned long addr, int avoid_reserve)
3132 {
3133         struct hugepage_subpool *spool = subpool_vma(vma);
3134         struct hstate *h = hstate_vma(vma);
3135         struct folio *folio;
3136         long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3137         long gbl_chg;
3138         int memcg_charge_ret, ret, idx;
3139         struct hugetlb_cgroup *h_cg = NULL;
3140         struct mem_cgroup *memcg;
3141         bool deferred_reserve;
3142         gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3143
3144         memcg = get_mem_cgroup_from_current();
3145         memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3146         if (memcg_charge_ret == -ENOMEM) {
3147                 mem_cgroup_put(memcg);
3148                 return ERR_PTR(-ENOMEM);
3149         }
3150
3151         idx = hstate_index(h);
3152         /*
3153          * Examine the region/reserve map to determine if the process
3154          * has a reservation for the page to be allocated.  A return
3155          * code of zero indicates a reservation exists (no change).
3156          */
3157         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3158         if (map_chg < 0) {
3159                 if (!memcg_charge_ret)
3160                         mem_cgroup_cancel_charge(memcg, nr_pages);
3161                 mem_cgroup_put(memcg);
3162                 return ERR_PTR(-ENOMEM);
3163         }
3164
3165         /*
3166          * Processes that did not create the mapping will have no
3167          * reserves as indicated by the region/reserve map. Check
3168          * that the allocation will not exceed the subpool limit.
3169          * Allocations for MAP_NORESERVE mappings also need to be
3170          * checked against any subpool limit.
3171          */
3172         if (map_chg || avoid_reserve) {
3173                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3174                 if (gbl_chg < 0)
3175                         goto out_end_reservation;
3176
3177                 /*
3178                  * Even though there was no reservation in the region/reserve
3179                  * map, there could be reservations associated with the
3180                  * subpool that can be used.  This would be indicated if the
3181                  * return value of hugepage_subpool_get_pages() is zero.
3182                  * However, if avoid_reserve is specified we still avoid even
3183                  * the subpool reservations.
3184                  */
3185                 if (avoid_reserve)
3186                         gbl_chg = 1;
3187         }
3188
3189         /* If this allocation is not consuming a reservation, charge it now.
3190          */
3191         deferred_reserve = map_chg || avoid_reserve;
3192         if (deferred_reserve) {
3193                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3194                         idx, pages_per_huge_page(h), &h_cg);
3195                 if (ret)
3196                         goto out_subpool_put;
3197         }
3198
3199         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3200         if (ret)
3201                 goto out_uncharge_cgroup_reservation;
3202
3203         spin_lock_irq(&hugetlb_lock);
3204         /*
3205          * glb_chg is passed to indicate whether or not a page must be taken
3206          * from the global free pool (global change).  gbl_chg == 0 indicates
3207          * a reservation exists for the allocation.
3208          */
3209         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3210         if (!folio) {
3211                 spin_unlock_irq(&hugetlb_lock);
3212                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3213                 if (!folio)
3214                         goto out_uncharge_cgroup;
3215                 spin_lock_irq(&hugetlb_lock);
3216                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3217                         folio_set_hugetlb_restore_reserve(folio);
3218                         h->resv_huge_pages--;
3219                 }
3220                 list_add(&folio->lru, &h->hugepage_activelist);
3221                 folio_ref_unfreeze(folio, 1);
3222                 /* Fall through */
3223         }
3224
3225         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3226         /* If allocation is not consuming a reservation, also store the
3227          * hugetlb_cgroup pointer on the page.
3228          */
3229         if (deferred_reserve) {
3230                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3231                                                   h_cg, folio);
3232         }
3233
3234         spin_unlock_irq(&hugetlb_lock);
3235
3236         hugetlb_set_folio_subpool(folio, spool);
3237
3238         map_commit = vma_commit_reservation(h, vma, addr);
3239         if (unlikely(map_chg > map_commit)) {
3240                 /*
3241                  * The page was added to the reservation map between
3242                  * vma_needs_reservation and vma_commit_reservation.
3243                  * This indicates a race with hugetlb_reserve_pages.
3244                  * Adjust for the subpool count incremented above AND
3245                  * in hugetlb_reserve_pages for the same page.  Also,
3246                  * the reservation count added in hugetlb_reserve_pages
3247                  * no longer applies.
3248                  */
3249                 long rsv_adjust;
3250
3251                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3252                 hugetlb_acct_memory(h, -rsv_adjust);
3253                 if (deferred_reserve) {
3254                         spin_lock_irq(&hugetlb_lock);
3255                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3256                                         pages_per_huge_page(h), folio);
3257                         spin_unlock_irq(&hugetlb_lock);
3258                 }
3259         }
3260
3261         if (!memcg_charge_ret)
3262                 mem_cgroup_commit_charge(folio, memcg);
3263         mem_cgroup_put(memcg);
3264
3265         return folio;
3266
3267 out_uncharge_cgroup:
3268         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3269 out_uncharge_cgroup_reservation:
3270         if (deferred_reserve)
3271                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3272                                                     h_cg);
3273 out_subpool_put:
3274         if (map_chg || avoid_reserve)
3275                 hugepage_subpool_put_pages(spool, 1);
3276 out_end_reservation:
3277         vma_end_reservation(h, vma, addr);
3278         if (!memcg_charge_ret)
3279                 mem_cgroup_cancel_charge(memcg, nr_pages);
3280         mem_cgroup_put(memcg);
3281         return ERR_PTR(-ENOSPC);
3282 }
3283
3284 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3285         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3286 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3287 {
3288         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3289         int nr_nodes, node;
3290
3291         /* do node specific alloc */
3292         if (nid != NUMA_NO_NODE) {
3293                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3294                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3295                 if (!m)
3296                         return 0;
3297                 goto found;
3298         }
3299         /* allocate from next node when distributing huge pages */
3300         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3301                 m = memblock_alloc_try_nid_raw(
3302                                 huge_page_size(h), huge_page_size(h),
3303                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3304                 /*
3305                  * Use the beginning of the huge page to store the
3306                  * huge_bootmem_page struct (until gather_bootmem
3307                  * puts them into the mem_map).
3308                  */
3309                 if (!m)
3310                         return 0;
3311                 goto found;
3312         }
3313
3314 found:
3315
3316         /*
3317          * Only initialize the head struct page in memmap_init_reserved_pages,
3318          * rest of the struct pages will be initialized by the HugeTLB
3319          * subsystem itself.
3320          * The head struct page is used to get folio information by the HugeTLB
3321          * subsystem like zone id and node id.
3322          */
3323         memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3324                 huge_page_size(h) - PAGE_SIZE);
3325         /* Put them into a private list first because mem_map is not up yet */
3326         INIT_LIST_HEAD(&m->list);
3327         list_add(&m->list, &huge_boot_pages);
3328         m->hstate = h;
3329         return 1;
3330 }
3331
3332 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3333 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3334                                         unsigned long start_page_number,
3335                                         unsigned long end_page_number)
3336 {
3337         enum zone_type zone = zone_idx(folio_zone(folio));
3338         int nid = folio_nid(folio);
3339         unsigned long head_pfn = folio_pfn(folio);
3340         unsigned long pfn, end_pfn = head_pfn + end_page_number;
3341         int ret;
3342
3343         for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3344                 struct page *page = pfn_to_page(pfn);
3345
3346                 __init_single_page(page, pfn, zone, nid);
3347                 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3348                 ret = page_ref_freeze(page, 1);
3349                 VM_BUG_ON(!ret);
3350         }
3351 }
3352
3353 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3354                                               struct hstate *h,
3355                                               unsigned long nr_pages)
3356 {
3357         int ret;
3358
3359         /* Prepare folio head */
3360         __folio_clear_reserved(folio);
3361         __folio_set_head(folio);
3362         ret = folio_ref_freeze(folio, 1);
3363         VM_BUG_ON(!ret);
3364         /* Initialize the necessary tail struct pages */
3365         hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3366         prep_compound_head((struct page *)folio, huge_page_order(h));
3367 }
3368
3369 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3370                                         struct list_head *folio_list)
3371 {
3372         unsigned long flags;
3373         struct folio *folio, *tmp_f;
3374
3375         /* Send list for bulk vmemmap optimization processing */
3376         hugetlb_vmemmap_optimize_folios(h, folio_list);
3377
3378         /* Add all new pool pages to free lists in one lock cycle */
3379         spin_lock_irqsave(&hugetlb_lock, flags);
3380         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3381                 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3382                         /*
3383                          * If HVO fails, initialize all tail struct pages
3384                          * We do not worry about potential long lock hold
3385                          * time as this is early in boot and there should
3386                          * be no contention.
3387                          */
3388                         hugetlb_folio_init_tail_vmemmap(folio,
3389                                         HUGETLB_VMEMMAP_RESERVE_PAGES,
3390                                         pages_per_huge_page(h));
3391                 }
3392                 __prep_account_new_huge_page(h, folio_nid(folio));
3393                 enqueue_hugetlb_folio(h, folio);
3394         }
3395         spin_unlock_irqrestore(&hugetlb_lock, flags);
3396 }
3397
3398 /*
3399  * Put bootmem huge pages into the standard lists after mem_map is up.
3400  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3401  */
3402 static void __init gather_bootmem_prealloc(void)
3403 {
3404         LIST_HEAD(folio_list);
3405         struct huge_bootmem_page *m;
3406         struct hstate *h = NULL, *prev_h = NULL;
3407
3408         list_for_each_entry(m, &huge_boot_pages, list) {
3409                 struct page *page = virt_to_page(m);
3410                 struct folio *folio = (void *)page;
3411
3412                 h = m->hstate;
3413                 /*
3414                  * It is possible to have multiple huge page sizes (hstates)
3415                  * in this list.  If so, process each size separately.
3416                  */
3417                 if (h != prev_h && prev_h != NULL)
3418                         prep_and_add_bootmem_folios(prev_h, &folio_list);
3419                 prev_h = h;
3420
3421                 VM_BUG_ON(!hstate_is_gigantic(h));
3422                 WARN_ON(folio_ref_count(folio) != 1);
3423
3424                 hugetlb_folio_init_vmemmap(folio, h,
3425                                            HUGETLB_VMEMMAP_RESERVE_PAGES);
3426                 init_new_hugetlb_folio(h, folio);
3427                 list_add(&folio->lru, &folio_list);
3428
3429                 /*
3430                  * We need to restore the 'stolen' pages to totalram_pages
3431                  * in order to fix confusing memory reports from free(1) and
3432                  * other side-effects, like CommitLimit going negative.
3433                  */
3434                 adjust_managed_page_count(page, pages_per_huge_page(h));
3435                 cond_resched();
3436         }
3437
3438         prep_and_add_bootmem_folios(h, &folio_list);
3439 }
3440
3441 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3442 {
3443         unsigned long i;
3444         char buf[32];
3445
3446         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3447                 if (hstate_is_gigantic(h)) {
3448                         if (!alloc_bootmem_huge_page(h, nid))
3449                                 break;
3450                 } else {
3451                         struct folio *folio;
3452                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3453
3454                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3455                                         &node_states[N_MEMORY], NULL);
3456                         if (!folio)
3457                                 break;
3458                         free_huge_folio(folio); /* free it into the hugepage allocator */
3459                 }
3460                 cond_resched();
3461         }
3462         if (i == h->max_huge_pages_node[nid])
3463                 return;
3464
3465         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3466         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3467                 h->max_huge_pages_node[nid], buf, nid, i);
3468         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3469         h->max_huge_pages_node[nid] = i;
3470 }
3471
3472 /*
3473  * NOTE: this routine is called in different contexts for gigantic and
3474  * non-gigantic pages.
3475  * - For gigantic pages, this is called early in the boot process and
3476  *   pages are allocated from memblock allocated or something similar.
3477  *   Gigantic pages are actually added to pools later with the routine
3478  *   gather_bootmem_prealloc.
3479  * - For non-gigantic pages, this is called later in the boot process after
3480  *   all of mm is up and functional.  Pages are allocated from buddy and
3481  *   then added to hugetlb pools.
3482  */
3483 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3484 {
3485         unsigned long i;
3486         struct folio *folio;
3487         LIST_HEAD(folio_list);
3488         nodemask_t *node_alloc_noretry;
3489         bool node_specific_alloc = false;
3490
3491         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3492         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3493                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3494                 return;
3495         }
3496
3497         /* do node specific alloc */
3498         for_each_online_node(i) {
3499                 if (h->max_huge_pages_node[i] > 0) {
3500                         hugetlb_hstate_alloc_pages_onenode(h, i);
3501                         node_specific_alloc = true;
3502                 }
3503         }
3504
3505         if (node_specific_alloc)
3506                 return;
3507
3508         /* below will do all node balanced alloc */
3509         if (!hstate_is_gigantic(h)) {
3510                 /*
3511                  * Bit mask controlling how hard we retry per-node allocations.
3512                  * Ignore errors as lower level routines can deal with
3513                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3514                  * time, we are likely in bigger trouble.
3515                  */
3516                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3517                                                 GFP_KERNEL);
3518         } else {
3519                 /* allocations done at boot time */
3520                 node_alloc_noretry = NULL;
3521         }
3522
3523         /* bit mask controlling how hard we retry per-node allocations */
3524         if (node_alloc_noretry)
3525                 nodes_clear(*node_alloc_noretry);
3526
3527         for (i = 0; i < h->max_huge_pages; ++i) {
3528                 if (hstate_is_gigantic(h)) {
3529                         /*
3530                          * gigantic pages not added to list as they are not
3531                          * added to pools now.
3532                          */
3533                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3534                                 break;
3535                 } else {
3536                         folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3537                                                         node_alloc_noretry);
3538                         if (!folio)
3539                                 break;
3540                         list_add(&folio->lru, &folio_list);
3541                 }
3542                 cond_resched();
3543         }
3544
3545         /* list will be empty if hstate_is_gigantic */
3546         prep_and_add_allocated_folios(h, &folio_list);
3547
3548         if (i < h->max_huge_pages) {
3549                 char buf[32];
3550
3551                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3552                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3553                         h->max_huge_pages, buf, i);
3554                 h->max_huge_pages = i;
3555         }
3556         kfree(node_alloc_noretry);
3557 }
3558
3559 static void __init hugetlb_init_hstates(void)
3560 {
3561         struct hstate *h, *h2;
3562
3563         for_each_hstate(h) {
3564                 /* oversize hugepages were init'ed in early boot */
3565                 if (!hstate_is_gigantic(h))
3566                         hugetlb_hstate_alloc_pages(h);
3567
3568                 /*
3569                  * Set demote order for each hstate.  Note that
3570                  * h->demote_order is initially 0.
3571                  * - We can not demote gigantic pages if runtime freeing
3572                  *   is not supported, so skip this.
3573                  * - If CMA allocation is possible, we can not demote
3574                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3575                  */
3576                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3577                         continue;
3578                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3579                         continue;
3580                 for_each_hstate(h2) {
3581                         if (h2 == h)
3582                                 continue;
3583                         if (h2->order < h->order &&
3584                             h2->order > h->demote_order)
3585                                 h->demote_order = h2->order;
3586                 }
3587         }
3588 }
3589
3590 static void __init report_hugepages(void)
3591 {
3592         struct hstate *h;
3593
3594         for_each_hstate(h) {
3595                 char buf[32];
3596
3597                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3598                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3599                         buf, h->free_huge_pages);
3600                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3601                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3602         }
3603 }
3604
3605 #ifdef CONFIG_HIGHMEM
3606 static void try_to_free_low(struct hstate *h, unsigned long count,
3607                                                 nodemask_t *nodes_allowed)
3608 {
3609         int i;
3610         LIST_HEAD(page_list);
3611
3612         lockdep_assert_held(&hugetlb_lock);
3613         if (hstate_is_gigantic(h))
3614                 return;
3615
3616         /*
3617          * Collect pages to be freed on a list, and free after dropping lock
3618          */
3619         for_each_node_mask(i, *nodes_allowed) {
3620                 struct folio *folio, *next;
3621                 struct list_head *freel = &h->hugepage_freelists[i];
3622                 list_for_each_entry_safe(folio, next, freel, lru) {
3623                         if (count >= h->nr_huge_pages)
3624                                 goto out;
3625                         if (folio_test_highmem(folio))
3626                                 continue;
3627                         remove_hugetlb_folio(h, folio, false);
3628                         list_add(&folio->lru, &page_list);
3629                 }
3630         }
3631
3632 out:
3633         spin_unlock_irq(&hugetlb_lock);
3634         update_and_free_pages_bulk(h, &page_list);
3635         spin_lock_irq(&hugetlb_lock);
3636 }
3637 #else
3638 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3639                                                 nodemask_t *nodes_allowed)
3640 {
3641 }
3642 #endif
3643
3644 /*
3645  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3646  * balanced by operating on them in a round-robin fashion.
3647  * Returns 1 if an adjustment was made.
3648  */
3649 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3650                                 int delta)
3651 {
3652         int nr_nodes, node;
3653
3654         lockdep_assert_held(&hugetlb_lock);
3655         VM_BUG_ON(delta != -1 && delta != 1);
3656
3657         if (delta < 0) {
3658                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3659                         if (h->surplus_huge_pages_node[node])
3660                                 goto found;
3661                 }
3662         } else {
3663                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3664                         if (h->surplus_huge_pages_node[node] <
3665                                         h->nr_huge_pages_node[node])
3666                                 goto found;
3667                 }
3668         }
3669         return 0;
3670
3671 found:
3672         h->surplus_huge_pages += delta;
3673         h->surplus_huge_pages_node[node] += delta;
3674         return 1;
3675 }
3676
3677 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3678 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3679                               nodemask_t *nodes_allowed)
3680 {
3681         unsigned long min_count;
3682         unsigned long allocated;
3683         struct folio *folio;
3684         LIST_HEAD(page_list);
3685         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3686
3687         /*
3688          * Bit mask controlling how hard we retry per-node allocations.
3689          * If we can not allocate the bit mask, do not attempt to allocate
3690          * the requested huge pages.
3691          */
3692         if (node_alloc_noretry)
3693                 nodes_clear(*node_alloc_noretry);
3694         else
3695                 return -ENOMEM;
3696
3697         /*
3698          * resize_lock mutex prevents concurrent adjustments to number of
3699          * pages in hstate via the proc/sysfs interfaces.
3700          */
3701         mutex_lock(&h->resize_lock);
3702         flush_free_hpage_work(h);
3703         spin_lock_irq(&hugetlb_lock);
3704
3705         /*
3706          * Check for a node specific request.
3707          * Changing node specific huge page count may require a corresponding
3708          * change to the global count.  In any case, the passed node mask
3709          * (nodes_allowed) will restrict alloc/free to the specified node.
3710          */
3711         if (nid != NUMA_NO_NODE) {
3712                 unsigned long old_count = count;
3713
3714                 count += persistent_huge_pages(h) -
3715                          (h->nr_huge_pages_node[nid] -
3716                           h->surplus_huge_pages_node[nid]);
3717                 /*
3718                  * User may have specified a large count value which caused the
3719                  * above calculation to overflow.  In this case, they wanted
3720                  * to allocate as many huge pages as possible.  Set count to
3721                  * largest possible value to align with their intention.
3722                  */
3723                 if (count < old_count)
3724                         count = ULONG_MAX;
3725         }
3726
3727         /*
3728          * Gigantic pages runtime allocation depend on the capability for large
3729          * page range allocation.
3730          * If the system does not provide this feature, return an error when
3731          * the user tries to allocate gigantic pages but let the user free the
3732          * boottime allocated gigantic pages.
3733          */
3734         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3735                 if (count > persistent_huge_pages(h)) {
3736                         spin_unlock_irq(&hugetlb_lock);
3737                         mutex_unlock(&h->resize_lock);
3738                         NODEMASK_FREE(node_alloc_noretry);
3739                         return -EINVAL;
3740                 }
3741                 /* Fall through to decrease pool */
3742         }
3743
3744         /*
3745          * Increase the pool size
3746          * First take pages out of surplus state.  Then make up the
3747          * remaining difference by allocating fresh huge pages.
3748          *
3749          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3750          * to convert a surplus huge page to a normal huge page. That is
3751          * not critical, though, it just means the overall size of the
3752          * pool might be one hugepage larger than it needs to be, but
3753          * within all the constraints specified by the sysctls.
3754          */
3755         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3756                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3757                         break;
3758         }
3759
3760         allocated = 0;
3761         while (count > (persistent_huge_pages(h) + allocated)) {
3762                 /*
3763                  * If this allocation races such that we no longer need the
3764                  * page, free_huge_folio will handle it by freeing the page
3765                  * and reducing the surplus.
3766                  */
3767                 spin_unlock_irq(&hugetlb_lock);
3768
3769                 /* yield cpu to avoid soft lockup */
3770                 cond_resched();
3771
3772                 folio = alloc_pool_huge_folio(h, nodes_allowed,
3773                                                 node_alloc_noretry);
3774                 if (!folio) {
3775                         prep_and_add_allocated_folios(h, &page_list);
3776                         spin_lock_irq(&hugetlb_lock);
3777                         goto out;
3778                 }
3779
3780                 list_add(&folio->lru, &page_list);
3781                 allocated++;
3782
3783                 /* Bail for signals. Probably ctrl-c from user */
3784                 if (signal_pending(current)) {
3785                         prep_and_add_allocated_folios(h, &page_list);
3786                         spin_lock_irq(&hugetlb_lock);
3787                         goto out;
3788                 }
3789
3790                 spin_lock_irq(&hugetlb_lock);
3791         }
3792
3793         /* Add allocated pages to the pool */
3794         if (!list_empty(&page_list)) {
3795                 spin_unlock_irq(&hugetlb_lock);
3796                 prep_and_add_allocated_folios(h, &page_list);
3797                 spin_lock_irq(&hugetlb_lock);
3798         }
3799
3800         /*
3801          * Decrease the pool size
3802          * First return free pages to the buddy allocator (being careful
3803          * to keep enough around to satisfy reservations).  Then place
3804          * pages into surplus state as needed so the pool will shrink
3805          * to the desired size as pages become free.
3806          *
3807          * By placing pages into the surplus state independent of the
3808          * overcommit value, we are allowing the surplus pool size to
3809          * exceed overcommit. There are few sane options here. Since
3810          * alloc_surplus_hugetlb_folio() is checking the global counter,
3811          * though, we'll note that we're not allowed to exceed surplus
3812          * and won't grow the pool anywhere else. Not until one of the
3813          * sysctls are changed, or the surplus pages go out of use.
3814          */
3815         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3816         min_count = max(count, min_count);
3817         try_to_free_low(h, min_count, nodes_allowed);
3818
3819         /*
3820          * Collect pages to be removed on list without dropping lock
3821          */
3822         while (min_count < persistent_huge_pages(h)) {
3823                 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3824                 if (!folio)
3825                         break;
3826
3827                 list_add(&folio->lru, &page_list);
3828         }
3829         /* free the pages after dropping lock */
3830         spin_unlock_irq(&hugetlb_lock);
3831         update_and_free_pages_bulk(h, &page_list);
3832         flush_free_hpage_work(h);
3833         spin_lock_irq(&hugetlb_lock);
3834
3835         while (count < persistent_huge_pages(h)) {
3836                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3837                         break;
3838         }
3839 out:
3840         h->max_huge_pages = persistent_huge_pages(h);
3841         spin_unlock_irq(&hugetlb_lock);
3842         mutex_unlock(&h->resize_lock);
3843
3844         NODEMASK_FREE(node_alloc_noretry);
3845
3846         return 0;
3847 }
3848
3849 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3850 {
3851         int i, nid = folio_nid(folio);
3852         struct hstate *target_hstate;
3853         struct page *subpage;
3854         struct folio *inner_folio;
3855         int rc = 0;
3856
3857         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3858
3859         remove_hugetlb_folio_for_demote(h, folio, false);
3860         spin_unlock_irq(&hugetlb_lock);
3861
3862         /*
3863          * If vmemmap already existed for folio, the remove routine above would
3864          * have cleared the hugetlb folio flag.  Hence the folio is technically
3865          * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3866          * passed hugetlb folios and will BUG otherwise.
3867          */
3868         if (folio_test_hugetlb(folio)) {
3869                 rc = hugetlb_vmemmap_restore_folio(h, folio);
3870                 if (rc) {
3871                         /* Allocation of vmemmmap failed, we can not demote folio */
3872                         spin_lock_irq(&hugetlb_lock);
3873                         folio_ref_unfreeze(folio, 1);
3874                         add_hugetlb_folio(h, folio, false);
3875                         return rc;
3876                 }
3877         }
3878
3879         /*
3880          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3881          * sizes as it will not ref count folios.
3882          */
3883         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3884
3885         /*
3886          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3887          * Without the mutex, pages added to target hstate could be marked
3888          * as surplus.
3889          *
3890          * Note that we already hold h->resize_lock.  To prevent deadlock,
3891          * use the convention of always taking larger size hstate mutex first.
3892          */
3893         mutex_lock(&target_hstate->resize_lock);
3894         for (i = 0; i < pages_per_huge_page(h);
3895                                 i += pages_per_huge_page(target_hstate)) {
3896                 subpage = folio_page(folio, i);
3897                 inner_folio = page_folio(subpage);
3898                 if (hstate_is_gigantic(target_hstate))
3899                         prep_compound_gigantic_folio_for_demote(inner_folio,
3900                                                         target_hstate->order);
3901                 else
3902                         prep_compound_page(subpage, target_hstate->order);
3903                 folio_change_private(inner_folio, NULL);
3904                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3905                 free_huge_folio(inner_folio);
3906         }
3907         mutex_unlock(&target_hstate->resize_lock);
3908
3909         spin_lock_irq(&hugetlb_lock);
3910
3911         /*
3912          * Not absolutely necessary, but for consistency update max_huge_pages
3913          * based on pool changes for the demoted page.
3914          */
3915         h->max_huge_pages--;
3916         target_hstate->max_huge_pages +=
3917                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3918
3919         return rc;
3920 }
3921
3922 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3923         __must_hold(&hugetlb_lock)
3924 {
3925         int nr_nodes, node;
3926         struct folio *folio;
3927
3928         lockdep_assert_held(&hugetlb_lock);
3929
3930         /* We should never get here if no demote order */
3931         if (!h->demote_order) {
3932                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3933                 return -EINVAL;         /* internal error */
3934         }
3935
3936         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3937                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3938                         if (folio_test_hwpoison(folio))
3939                                 continue;
3940                         return demote_free_hugetlb_folio(h, folio);
3941                 }
3942         }
3943
3944         /*
3945          * Only way to get here is if all pages on free lists are poisoned.
3946          * Return -EBUSY so that caller will not retry.
3947          */
3948         return -EBUSY;
3949 }
3950
3951 #define HSTATE_ATTR_RO(_name) \
3952         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3953
3954 #define HSTATE_ATTR_WO(_name) \
3955         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3956
3957 #define HSTATE_ATTR(_name) \
3958         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3959
3960 static struct kobject *hugepages_kobj;
3961 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3962
3963 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3964
3965 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3966 {
3967         int i;
3968
3969         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3970                 if (hstate_kobjs[i] == kobj) {
3971                         if (nidp)
3972                                 *nidp = NUMA_NO_NODE;
3973                         return &hstates[i];
3974                 }
3975
3976         return kobj_to_node_hstate(kobj, nidp);
3977 }
3978
3979 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3980                                         struct kobj_attribute *attr, char *buf)
3981 {
3982         struct hstate *h;
3983         unsigned long nr_huge_pages;
3984         int nid;
3985
3986         h = kobj_to_hstate(kobj, &nid);
3987         if (nid == NUMA_NO_NODE)
3988                 nr_huge_pages = h->nr_huge_pages;
3989         else
3990                 nr_huge_pages = h->nr_huge_pages_node[nid];
3991
3992         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3993 }
3994
3995 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3996                                            struct hstate *h, int nid,
3997                                            unsigned long count, size_t len)
3998 {
3999         int err;
4000         nodemask_t nodes_allowed, *n_mask;
4001
4002         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4003                 return -EINVAL;
4004
4005         if (nid == NUMA_NO_NODE) {
4006                 /*
4007                  * global hstate attribute
4008                  */
4009                 if (!(obey_mempolicy &&
4010                                 init_nodemask_of_mempolicy(&nodes_allowed)))
4011                         n_mask = &node_states[N_MEMORY];
4012                 else
4013                         n_mask = &nodes_allowed;
4014         } else {
4015                 /*
4016                  * Node specific request.  count adjustment happens in
4017                  * set_max_huge_pages() after acquiring hugetlb_lock.
4018                  */
4019                 init_nodemask_of_node(&nodes_allowed, nid);
4020                 n_mask = &nodes_allowed;
4021         }
4022
4023         err = set_max_huge_pages(h, count, nid, n_mask);
4024
4025         return err ? err : len;
4026 }
4027
4028 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4029                                          struct kobject *kobj, const char *buf,
4030                                          size_t len)
4031 {
4032         struct hstate *h;
4033         unsigned long count;
4034         int nid;
4035         int err;
4036
4037         err = kstrtoul(buf, 10, &count);
4038         if (err)
4039                 return err;
4040
4041         h = kobj_to_hstate(kobj, &nid);
4042         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4043 }
4044
4045 static ssize_t nr_hugepages_show(struct kobject *kobj,
4046                                        struct kobj_attribute *attr, char *buf)
4047 {
4048         return nr_hugepages_show_common(kobj, attr, buf);
4049 }
4050
4051 static ssize_t nr_hugepages_store(struct kobject *kobj,
4052                struct kobj_attribute *attr, const char *buf, size_t len)
4053 {
4054         return nr_hugepages_store_common(false, kobj, buf, len);
4055 }
4056 HSTATE_ATTR(nr_hugepages);
4057
4058 #ifdef CONFIG_NUMA
4059
4060 /*
4061  * hstate attribute for optionally mempolicy-based constraint on persistent
4062  * huge page alloc/free.
4063  */
4064 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4065                                            struct kobj_attribute *attr,
4066                                            char *buf)
4067 {
4068         return nr_hugepages_show_common(kobj, attr, buf);
4069 }
4070
4071 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4072                struct kobj_attribute *attr, const char *buf, size_t len)
4073 {
4074         return nr_hugepages_store_common(true, kobj, buf, len);
4075 }
4076 HSTATE_ATTR(nr_hugepages_mempolicy);
4077 #endif
4078
4079
4080 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4081                                         struct kobj_attribute *attr, char *buf)
4082 {
4083         struct hstate *h = kobj_to_hstate(kobj, NULL);
4084         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4085 }
4086
4087 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4088                 struct kobj_attribute *attr, const char *buf, size_t count)
4089 {
4090         int err;
4091         unsigned long input;
4092         struct hstate *h = kobj_to_hstate(kobj, NULL);
4093
4094         if (hstate_is_gigantic(h))
4095                 return -EINVAL;
4096
4097         err = kstrtoul(buf, 10, &input);
4098         if (err)
4099                 return err;
4100
4101         spin_lock_irq(&hugetlb_lock);
4102         h->nr_overcommit_huge_pages = input;
4103         spin_unlock_irq(&hugetlb_lock);
4104
4105         return count;
4106 }
4107 HSTATE_ATTR(nr_overcommit_hugepages);
4108
4109 static ssize_t free_hugepages_show(struct kobject *kobj,
4110                                         struct kobj_attribute *attr, char *buf)
4111 {
4112         struct hstate *h;
4113         unsigned long free_huge_pages;
4114         int nid;
4115
4116         h = kobj_to_hstate(kobj, &nid);
4117         if (nid == NUMA_NO_NODE)
4118                 free_huge_pages = h->free_huge_pages;
4119         else
4120                 free_huge_pages = h->free_huge_pages_node[nid];
4121
4122         return sysfs_emit(buf, "%lu\n", free_huge_pages);
4123 }
4124 HSTATE_ATTR_RO(free_hugepages);
4125
4126 static ssize_t resv_hugepages_show(struct kobject *kobj,
4127                                         struct kobj_attribute *attr, char *buf)
4128 {
4129         struct hstate *h = kobj_to_hstate(kobj, NULL);
4130         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4131 }
4132 HSTATE_ATTR_RO(resv_hugepages);
4133
4134 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4135                                         struct kobj_attribute *attr, char *buf)
4136 {
4137         struct hstate *h;
4138         unsigned long surplus_huge_pages;
4139         int nid;
4140
4141         h = kobj_to_hstate(kobj, &nid);
4142         if (nid == NUMA_NO_NODE)
4143                 surplus_huge_pages = h->surplus_huge_pages;
4144         else
4145                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4146
4147         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4148 }
4149 HSTATE_ATTR_RO(surplus_hugepages);
4150
4151 static ssize_t demote_store(struct kobject *kobj,
4152                struct kobj_attribute *attr, const char *buf, size_t len)
4153 {
4154         unsigned long nr_demote;
4155         unsigned long nr_available;
4156         nodemask_t nodes_allowed, *n_mask;
4157         struct hstate *h;
4158         int err;
4159         int nid;
4160
4161         err = kstrtoul(buf, 10, &nr_demote);
4162         if (err)
4163                 return err;
4164         h = kobj_to_hstate(kobj, &nid);
4165
4166         if (nid != NUMA_NO_NODE) {
4167                 init_nodemask_of_node(&nodes_allowed, nid);
4168                 n_mask = &nodes_allowed;
4169         } else {
4170                 n_mask = &node_states[N_MEMORY];
4171         }
4172
4173         /* Synchronize with other sysfs operations modifying huge pages */
4174         mutex_lock(&h->resize_lock);
4175         spin_lock_irq(&hugetlb_lock);
4176
4177         while (nr_demote) {
4178                 /*
4179                  * Check for available pages to demote each time thorough the
4180                  * loop as demote_pool_huge_page will drop hugetlb_lock.
4181                  */
4182                 if (nid != NUMA_NO_NODE)
4183                         nr_available = h->free_huge_pages_node[nid];
4184                 else
4185                         nr_available = h->free_huge_pages;
4186                 nr_available -= h->resv_huge_pages;
4187                 if (!nr_available)
4188                         break;
4189
4190                 err = demote_pool_huge_page(h, n_mask);
4191                 if (err)
4192                         break;
4193
4194                 nr_demote--;
4195         }
4196
4197         spin_unlock_irq(&hugetlb_lock);
4198         mutex_unlock(&h->resize_lock);
4199
4200         if (err)
4201                 return err;
4202         return len;
4203 }
4204 HSTATE_ATTR_WO(demote);
4205
4206 static ssize_t demote_size_show(struct kobject *kobj,
4207                                         struct kobj_attribute *attr, char *buf)
4208 {
4209         struct hstate *h = kobj_to_hstate(kobj, NULL);
4210         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4211
4212         return sysfs_emit(buf, "%lukB\n", demote_size);
4213 }
4214
4215 static ssize_t demote_size_store(struct kobject *kobj,
4216                                         struct kobj_attribute *attr,
4217                                         const char *buf, size_t count)
4218 {
4219         struct hstate *h, *demote_hstate;
4220         unsigned long demote_size;
4221         unsigned int demote_order;
4222
4223         demote_size = (unsigned long)memparse(buf, NULL);
4224
4225         demote_hstate = size_to_hstate(demote_size);
4226         if (!demote_hstate)
4227                 return -EINVAL;
4228         demote_order = demote_hstate->order;
4229         if (demote_order < HUGETLB_PAGE_ORDER)
4230                 return -EINVAL;
4231
4232         /* demote order must be smaller than hstate order */
4233         h = kobj_to_hstate(kobj, NULL);
4234         if (demote_order >= h->order)
4235                 return -EINVAL;
4236
4237         /* resize_lock synchronizes access to demote size and writes */
4238         mutex_lock(&h->resize_lock);
4239         h->demote_order = demote_order;
4240         mutex_unlock(&h->resize_lock);
4241
4242         return count;
4243 }
4244 HSTATE_ATTR(demote_size);
4245
4246 static struct attribute *hstate_attrs[] = {
4247         &nr_hugepages_attr.attr,
4248         &nr_overcommit_hugepages_attr.attr,
4249         &free_hugepages_attr.attr,
4250         &resv_hugepages_attr.attr,
4251         &surplus_hugepages_attr.attr,
4252 #ifdef CONFIG_NUMA
4253         &nr_hugepages_mempolicy_attr.attr,
4254 #endif
4255         NULL,
4256 };
4257
4258 static const struct attribute_group hstate_attr_group = {
4259         .attrs = hstate_attrs,
4260 };
4261
4262 static struct attribute *hstate_demote_attrs[] = {
4263         &demote_size_attr.attr,
4264         &demote_attr.attr,
4265         NULL,
4266 };
4267
4268 static const struct attribute_group hstate_demote_attr_group = {
4269         .attrs = hstate_demote_attrs,
4270 };
4271
4272 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4273                                     struct kobject **hstate_kobjs,
4274                                     const struct attribute_group *hstate_attr_group)
4275 {
4276         int retval;
4277         int hi = hstate_index(h);
4278
4279         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4280         if (!hstate_kobjs[hi])
4281                 return -ENOMEM;
4282
4283         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4284         if (retval) {
4285                 kobject_put(hstate_kobjs[hi]);
4286                 hstate_kobjs[hi] = NULL;
4287                 return retval;
4288         }
4289
4290         if (h->demote_order) {
4291                 retval = sysfs_create_group(hstate_kobjs[hi],
4292                                             &hstate_demote_attr_group);
4293                 if (retval) {
4294                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4295                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4296                         kobject_put(hstate_kobjs[hi]);
4297                         hstate_kobjs[hi] = NULL;
4298                         return retval;
4299                 }
4300         }
4301
4302         return 0;
4303 }
4304
4305 #ifdef CONFIG_NUMA
4306 static bool hugetlb_sysfs_initialized __ro_after_init;
4307
4308 /*
4309  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4310  * with node devices in node_devices[] using a parallel array.  The array
4311  * index of a node device or _hstate == node id.
4312  * This is here to avoid any static dependency of the node device driver, in
4313  * the base kernel, on the hugetlb module.
4314  */
4315 struct node_hstate {
4316         struct kobject          *hugepages_kobj;
4317         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4318 };
4319 static struct node_hstate node_hstates[MAX_NUMNODES];
4320
4321 /*
4322  * A subset of global hstate attributes for node devices
4323  */
4324 static struct attribute *per_node_hstate_attrs[] = {
4325         &nr_hugepages_attr.attr,
4326         &free_hugepages_attr.attr,
4327         &surplus_hugepages_attr.attr,
4328         NULL,
4329 };
4330
4331 static const struct attribute_group per_node_hstate_attr_group = {
4332         .attrs = per_node_hstate_attrs,
4333 };
4334
4335 /*
4336  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4337  * Returns node id via non-NULL nidp.
4338  */
4339 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4340 {
4341         int nid;
4342
4343         for (nid = 0; nid < nr_node_ids; nid++) {
4344                 struct node_hstate *nhs = &node_hstates[nid];
4345                 int i;
4346                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4347                         if (nhs->hstate_kobjs[i] == kobj) {
4348                                 if (nidp)
4349                                         *nidp = nid;
4350                                 return &hstates[i];
4351                         }
4352         }
4353
4354         BUG();
4355         return NULL;
4356 }
4357
4358 /*
4359  * Unregister hstate attributes from a single node device.
4360  * No-op if no hstate attributes attached.
4361  */
4362 void hugetlb_unregister_node(struct node *node)
4363 {
4364         struct hstate *h;
4365         struct node_hstate *nhs = &node_hstates[node->dev.id];
4366
4367         if (!nhs->hugepages_kobj)
4368                 return;         /* no hstate attributes */
4369
4370         for_each_hstate(h) {
4371                 int idx = hstate_index(h);
4372                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4373
4374                 if (!hstate_kobj)
4375                         continue;
4376                 if (h->demote_order)
4377                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4378                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4379                 kobject_put(hstate_kobj);
4380                 nhs->hstate_kobjs[idx] = NULL;
4381         }
4382
4383         kobject_put(nhs->hugepages_kobj);
4384         nhs->hugepages_kobj = NULL;
4385 }
4386
4387
4388 /*
4389  * Register hstate attributes for a single node device.
4390  * No-op if attributes already registered.
4391  */
4392 void hugetlb_register_node(struct node *node)
4393 {
4394         struct hstate *h;
4395         struct node_hstate *nhs = &node_hstates[node->dev.id];
4396         int err;
4397
4398         if (!hugetlb_sysfs_initialized)
4399                 return;
4400
4401         if (nhs->hugepages_kobj)
4402                 return;         /* already allocated */
4403
4404         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4405                                                         &node->dev.kobj);
4406         if (!nhs->hugepages_kobj)
4407                 return;
4408
4409         for_each_hstate(h) {
4410                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4411                                                 nhs->hstate_kobjs,
4412                                                 &per_node_hstate_attr_group);
4413                 if (err) {
4414                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4415                                 h->name, node->dev.id);
4416                         hugetlb_unregister_node(node);
4417                         break;
4418                 }
4419         }
4420 }
4421
4422 /*
4423  * hugetlb init time:  register hstate attributes for all registered node
4424  * devices of nodes that have memory.  All on-line nodes should have
4425  * registered their associated device by this time.
4426  */
4427 static void __init hugetlb_register_all_nodes(void)
4428 {
4429         int nid;
4430
4431         for_each_online_node(nid)
4432                 hugetlb_register_node(node_devices[nid]);
4433 }
4434 #else   /* !CONFIG_NUMA */
4435
4436 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4437 {
4438         BUG();
4439         if (nidp)
4440                 *nidp = -1;
4441         return NULL;
4442 }
4443
4444 static void hugetlb_register_all_nodes(void) { }
4445
4446 #endif
4447
4448 #ifdef CONFIG_CMA
4449 static void __init hugetlb_cma_check(void);
4450 #else
4451 static inline __init void hugetlb_cma_check(void)
4452 {
4453 }
4454 #endif
4455
4456 static void __init hugetlb_sysfs_init(void)
4457 {
4458         struct hstate *h;
4459         int err;
4460
4461         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4462         if (!hugepages_kobj)
4463                 return;
4464
4465         for_each_hstate(h) {
4466                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4467                                          hstate_kobjs, &hstate_attr_group);
4468                 if (err)
4469                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4470         }
4471
4472 #ifdef CONFIG_NUMA
4473         hugetlb_sysfs_initialized = true;
4474 #endif
4475         hugetlb_register_all_nodes();
4476 }
4477
4478 #ifdef CONFIG_SYSCTL
4479 static void hugetlb_sysctl_init(void);
4480 #else
4481 static inline void hugetlb_sysctl_init(void) { }
4482 #endif
4483
4484 static int __init hugetlb_init(void)
4485 {
4486         int i;
4487
4488         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4489                         __NR_HPAGEFLAGS);
4490
4491         if (!hugepages_supported()) {
4492                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4493                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4494                 return 0;
4495         }
4496
4497         /*
4498          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4499          * architectures depend on setup being done here.
4500          */
4501         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4502         if (!parsed_default_hugepagesz) {
4503                 /*
4504                  * If we did not parse a default huge page size, set
4505                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4506                  * number of huge pages for this default size was implicitly
4507                  * specified, set that here as well.
4508                  * Note that the implicit setting will overwrite an explicit
4509                  * setting.  A warning will be printed in this case.
4510                  */
4511                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4512                 if (default_hstate_max_huge_pages) {
4513                         if (default_hstate.max_huge_pages) {
4514                                 char buf[32];
4515
4516                                 string_get_size(huge_page_size(&default_hstate),
4517                                         1, STRING_UNITS_2, buf, 32);
4518                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4519                                         default_hstate.max_huge_pages, buf);
4520                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4521                                         default_hstate_max_huge_pages);
4522                         }
4523                         default_hstate.max_huge_pages =
4524                                 default_hstate_max_huge_pages;
4525
4526                         for_each_online_node(i)
4527                                 default_hstate.max_huge_pages_node[i] =
4528                                         default_hugepages_in_node[i];
4529                 }
4530         }
4531
4532         hugetlb_cma_check();
4533         hugetlb_init_hstates();
4534         gather_bootmem_prealloc();
4535         report_hugepages();
4536
4537         hugetlb_sysfs_init();
4538         hugetlb_cgroup_file_init();
4539         hugetlb_sysctl_init();
4540
4541 #ifdef CONFIG_SMP
4542         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4543 #else
4544         num_fault_mutexes = 1;
4545 #endif
4546         hugetlb_fault_mutex_table =
4547                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4548                               GFP_KERNEL);
4549         BUG_ON(!hugetlb_fault_mutex_table);
4550
4551         for (i = 0; i < num_fault_mutexes; i++)
4552                 mutex_init(&hugetlb_fault_mutex_table[i]);
4553         return 0;
4554 }
4555 subsys_initcall(hugetlb_init);
4556
4557 /* Overwritten by architectures with more huge page sizes */
4558 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4559 {
4560         return size == HPAGE_SIZE;
4561 }
4562
4563 void __init hugetlb_add_hstate(unsigned int order)
4564 {
4565         struct hstate *h;
4566         unsigned long i;
4567
4568         if (size_to_hstate(PAGE_SIZE << order)) {
4569                 return;
4570         }
4571         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4572         BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4573         h = &hstates[hugetlb_max_hstate++];
4574         mutex_init(&h->resize_lock);
4575         h->order = order;
4576         h->mask = ~(huge_page_size(h) - 1);
4577         for (i = 0; i < MAX_NUMNODES; ++i)
4578                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4579         INIT_LIST_HEAD(&h->hugepage_activelist);
4580         h->next_nid_to_alloc = first_memory_node;
4581         h->next_nid_to_free = first_memory_node;
4582         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4583                                         huge_page_size(h)/SZ_1K);
4584
4585         parsed_hstate = h;
4586 }
4587
4588 bool __init __weak hugetlb_node_alloc_supported(void)
4589 {
4590         return true;
4591 }
4592
4593 static void __init hugepages_clear_pages_in_node(void)
4594 {
4595         if (!hugetlb_max_hstate) {
4596                 default_hstate_max_huge_pages = 0;
4597                 memset(default_hugepages_in_node, 0,
4598                         sizeof(default_hugepages_in_node));
4599         } else {
4600                 parsed_hstate->max_huge_pages = 0;
4601                 memset(parsed_hstate->max_huge_pages_node, 0,
4602                         sizeof(parsed_hstate->max_huge_pages_node));
4603         }
4604 }
4605
4606 /*
4607  * hugepages command line processing
4608  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4609  * specification.  If not, ignore the hugepages value.  hugepages can also
4610  * be the first huge page command line  option in which case it implicitly
4611  * specifies the number of huge pages for the default size.
4612  */
4613 static int __init hugepages_setup(char *s)
4614 {
4615         unsigned long *mhp;
4616         static unsigned long *last_mhp;
4617         int node = NUMA_NO_NODE;
4618         int count;
4619         unsigned long tmp;
4620         char *p = s;
4621
4622         if (!parsed_valid_hugepagesz) {
4623                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4624                 parsed_valid_hugepagesz = true;
4625                 return 1;
4626         }
4627
4628         /*
4629          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4630          * yet, so this hugepages= parameter goes to the "default hstate".
4631          * Otherwise, it goes with the previously parsed hugepagesz or
4632          * default_hugepagesz.
4633          */
4634         else if (!hugetlb_max_hstate)
4635                 mhp = &default_hstate_max_huge_pages;
4636         else
4637                 mhp = &parsed_hstate->max_huge_pages;
4638
4639         if (mhp == last_mhp) {
4640                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4641                 return 1;
4642         }
4643
4644         while (*p) {
4645                 count = 0;
4646                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4647                         goto invalid;
4648                 /* Parameter is node format */
4649                 if (p[count] == ':') {
4650                         if (!hugetlb_node_alloc_supported()) {
4651                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4652                                 return 1;
4653                         }
4654                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4655                                 goto invalid;
4656                         node = array_index_nospec(tmp, MAX_NUMNODES);
4657                         p += count + 1;
4658                         /* Parse hugepages */
4659                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4660                                 goto invalid;
4661                         if (!hugetlb_max_hstate)
4662                                 default_hugepages_in_node[node] = tmp;
4663                         else
4664                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4665                         *mhp += tmp;
4666                         /* Go to parse next node*/
4667                         if (p[count] == ',')
4668                                 p += count + 1;
4669                         else
4670                                 break;
4671                 } else {
4672                         if (p != s)
4673                                 goto invalid;
4674                         *mhp = tmp;
4675                         break;
4676                 }
4677         }
4678
4679         /*
4680          * Global state is always initialized later in hugetlb_init.
4681          * But we need to allocate gigantic hstates here early to still
4682          * use the bootmem allocator.
4683          */
4684         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4685                 hugetlb_hstate_alloc_pages(parsed_hstate);
4686
4687         last_mhp = mhp;
4688
4689         return 1;
4690
4691 invalid:
4692         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4693         hugepages_clear_pages_in_node();
4694         return 1;
4695 }
4696 __setup("hugepages=", hugepages_setup);
4697
4698 /*
4699  * hugepagesz command line processing
4700  * A specific huge page size can only be specified once with hugepagesz.
4701  * hugepagesz is followed by hugepages on the command line.  The global
4702  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4703  * hugepagesz argument was valid.
4704  */
4705 static int __init hugepagesz_setup(char *s)
4706 {
4707         unsigned long size;
4708         struct hstate *h;
4709
4710         parsed_valid_hugepagesz = false;
4711         size = (unsigned long)memparse(s, NULL);
4712
4713         if (!arch_hugetlb_valid_size(size)) {
4714                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4715                 return 1;
4716         }
4717
4718         h = size_to_hstate(size);
4719         if (h) {
4720                 /*
4721                  * hstate for this size already exists.  This is normally
4722                  * an error, but is allowed if the existing hstate is the
4723                  * default hstate.  More specifically, it is only allowed if
4724                  * the number of huge pages for the default hstate was not
4725                  * previously specified.
4726                  */
4727                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4728                     default_hstate.max_huge_pages) {
4729                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4730                         return 1;
4731                 }
4732
4733                 /*
4734                  * No need to call hugetlb_add_hstate() as hstate already
4735                  * exists.  But, do set parsed_hstate so that a following
4736                  * hugepages= parameter will be applied to this hstate.
4737                  */
4738                 parsed_hstate = h;
4739                 parsed_valid_hugepagesz = true;
4740                 return 1;
4741         }
4742
4743         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4744         parsed_valid_hugepagesz = true;
4745         return 1;
4746 }
4747 __setup("hugepagesz=", hugepagesz_setup);
4748
4749 /*
4750  * default_hugepagesz command line input
4751  * Only one instance of default_hugepagesz allowed on command line.
4752  */
4753 static int __init default_hugepagesz_setup(char *s)
4754 {
4755         unsigned long size;
4756         int i;
4757
4758         parsed_valid_hugepagesz = false;
4759         if (parsed_default_hugepagesz) {
4760                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4761                 return 1;
4762         }
4763
4764         size = (unsigned long)memparse(s, NULL);
4765
4766         if (!arch_hugetlb_valid_size(size)) {
4767                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4768                 return 1;
4769         }
4770
4771         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4772         parsed_valid_hugepagesz = true;
4773         parsed_default_hugepagesz = true;
4774         default_hstate_idx = hstate_index(size_to_hstate(size));
4775
4776         /*
4777          * The number of default huge pages (for this size) could have been
4778          * specified as the first hugetlb parameter: hugepages=X.  If so,
4779          * then default_hstate_max_huge_pages is set.  If the default huge
4780          * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4781          * allocated here from bootmem allocator.
4782          */
4783         if (default_hstate_max_huge_pages) {
4784                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4785                 for_each_online_node(i)
4786                         default_hstate.max_huge_pages_node[i] =
4787                                 default_hugepages_in_node[i];
4788                 if (hstate_is_gigantic(&default_hstate))
4789                         hugetlb_hstate_alloc_pages(&default_hstate);
4790                 default_hstate_max_huge_pages = 0;
4791         }
4792
4793         return 1;
4794 }
4795 __setup("default_hugepagesz=", default_hugepagesz_setup);
4796
4797 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4798 {
4799 #ifdef CONFIG_NUMA
4800         struct mempolicy *mpol = get_task_policy(current);
4801
4802         /*
4803          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4804          * (from policy_nodemask) specifically for hugetlb case
4805          */
4806         if (mpol->mode == MPOL_BIND &&
4807                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4808                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4809                 return &mpol->nodes;
4810 #endif
4811         return NULL;
4812 }
4813
4814 static unsigned int allowed_mems_nr(struct hstate *h)
4815 {
4816         int node;
4817         unsigned int nr = 0;
4818         nodemask_t *mbind_nodemask;
4819         unsigned int *array = h->free_huge_pages_node;
4820         gfp_t gfp_mask = htlb_alloc_mask(h);
4821
4822         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4823         for_each_node_mask(node, cpuset_current_mems_allowed) {
4824                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4825                         nr += array[node];
4826         }
4827
4828         return nr;
4829 }
4830
4831 #ifdef CONFIG_SYSCTL
4832 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4833                                           void *buffer, size_t *length,
4834                                           loff_t *ppos, unsigned long *out)
4835 {
4836         struct ctl_table dup_table;
4837
4838         /*
4839          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4840          * can duplicate the @table and alter the duplicate of it.
4841          */
4842         dup_table = *table;
4843         dup_table.data = out;
4844
4845         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4846 }
4847
4848 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4849                          struct ctl_table *table, int write,
4850                          void *buffer, size_t *length, loff_t *ppos)
4851 {
4852         struct hstate *h = &default_hstate;
4853         unsigned long tmp = h->max_huge_pages;
4854         int ret;
4855
4856         if (!hugepages_supported())
4857                 return -EOPNOTSUPP;
4858
4859         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4860                                              &tmp);
4861         if (ret)
4862                 goto out;
4863
4864         if (write)
4865                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4866                                                   NUMA_NO_NODE, tmp, *length);
4867 out:
4868         return ret;
4869 }
4870
4871 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4872                           void *buffer, size_t *length, loff_t *ppos)
4873 {
4874
4875         return hugetlb_sysctl_handler_common(false, table, write,
4876                                                         buffer, length, ppos);
4877 }
4878
4879 #ifdef CONFIG_NUMA
4880 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4881                           void *buffer, size_t *length, loff_t *ppos)
4882 {
4883         return hugetlb_sysctl_handler_common(true, table, write,
4884                                                         buffer, length, ppos);
4885 }
4886 #endif /* CONFIG_NUMA */
4887
4888 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4889                 void *buffer, size_t *length, loff_t *ppos)
4890 {
4891         struct hstate *h = &default_hstate;
4892         unsigned long tmp;
4893         int ret;
4894
4895         if (!hugepages_supported())
4896                 return -EOPNOTSUPP;
4897
4898         tmp = h->nr_overcommit_huge_pages;
4899
4900         if (write && hstate_is_gigantic(h))
4901                 return -EINVAL;
4902
4903         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4904                                              &tmp);
4905         if (ret)
4906                 goto out;
4907
4908         if (write) {
4909                 spin_lock_irq(&hugetlb_lock);
4910                 h->nr_overcommit_huge_pages = tmp;
4911                 spin_unlock_irq(&hugetlb_lock);
4912         }
4913 out:
4914         return ret;
4915 }
4916
4917 static struct ctl_table hugetlb_table[] = {
4918         {
4919                 .procname       = "nr_hugepages",
4920                 .data           = NULL,
4921                 .maxlen         = sizeof(unsigned long),
4922                 .mode           = 0644,
4923                 .proc_handler   = hugetlb_sysctl_handler,
4924         },
4925 #ifdef CONFIG_NUMA
4926         {
4927                 .procname       = "nr_hugepages_mempolicy",
4928                 .data           = NULL,
4929                 .maxlen         = sizeof(unsigned long),
4930                 .mode           = 0644,
4931                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4932         },
4933 #endif
4934         {
4935                 .procname       = "hugetlb_shm_group",
4936                 .data           = &sysctl_hugetlb_shm_group,
4937                 .maxlen         = sizeof(gid_t),
4938                 .mode           = 0644,
4939                 .proc_handler   = proc_dointvec,
4940         },
4941         {
4942                 .procname       = "nr_overcommit_hugepages",
4943                 .data           = NULL,
4944                 .maxlen         = sizeof(unsigned long),
4945                 .mode           = 0644,
4946                 .proc_handler   = hugetlb_overcommit_handler,
4947         },
4948         { }
4949 };
4950
4951 static void hugetlb_sysctl_init(void)
4952 {
4953         register_sysctl_init("vm", hugetlb_table);
4954 }
4955 #endif /* CONFIG_SYSCTL */
4956
4957 void hugetlb_report_meminfo(struct seq_file *m)
4958 {
4959         struct hstate *h;
4960         unsigned long total = 0;
4961
4962         if (!hugepages_supported())
4963                 return;
4964
4965         for_each_hstate(h) {
4966                 unsigned long count = h->nr_huge_pages;
4967
4968                 total += huge_page_size(h) * count;
4969
4970                 if (h == &default_hstate)
4971                         seq_printf(m,
4972                                    "HugePages_Total:   %5lu\n"
4973                                    "HugePages_Free:    %5lu\n"
4974                                    "HugePages_Rsvd:    %5lu\n"
4975                                    "HugePages_Surp:    %5lu\n"
4976                                    "Hugepagesize:   %8lu kB\n",
4977                                    count,
4978                                    h->free_huge_pages,
4979                                    h->resv_huge_pages,
4980                                    h->surplus_huge_pages,
4981                                    huge_page_size(h) / SZ_1K);
4982         }
4983
4984         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4985 }
4986
4987 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4988 {
4989         struct hstate *h = &default_hstate;
4990
4991         if (!hugepages_supported())
4992                 return 0;
4993
4994         return sysfs_emit_at(buf, len,
4995                              "Node %d HugePages_Total: %5u\n"
4996                              "Node %d HugePages_Free:  %5u\n"
4997                              "Node %d HugePages_Surp:  %5u\n",
4998                              nid, h->nr_huge_pages_node[nid],
4999                              nid, h->free_huge_pages_node[nid],
5000                              nid, h->surplus_huge_pages_node[nid]);
5001 }
5002
5003 void hugetlb_show_meminfo_node(int nid)
5004 {
5005         struct hstate *h;
5006
5007         if (!hugepages_supported())
5008                 return;
5009
5010         for_each_hstate(h)
5011                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5012                         nid,
5013                         h->nr_huge_pages_node[nid],
5014                         h->free_huge_pages_node[nid],
5015                         h->surplus_huge_pages_node[nid],
5016                         huge_page_size(h) / SZ_1K);
5017 }
5018
5019 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5020 {
5021         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5022                    K(atomic_long_read(&mm->hugetlb_usage)));
5023 }
5024
5025 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5026 unsigned long hugetlb_total_pages(void)
5027 {
5028         struct hstate *h;
5029         unsigned long nr_total_pages = 0;
5030
5031         for_each_hstate(h)
5032                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5033         return nr_total_pages;
5034 }
5035
5036 static int hugetlb_acct_memory(struct hstate *h, long delta)
5037 {
5038         int ret = -ENOMEM;
5039
5040         if (!delta)
5041                 return 0;
5042
5043         spin_lock_irq(&hugetlb_lock);
5044         /*
5045          * When cpuset is configured, it breaks the strict hugetlb page
5046          * reservation as the accounting is done on a global variable. Such
5047          * reservation is completely rubbish in the presence of cpuset because
5048          * the reservation is not checked against page availability for the
5049          * current cpuset. Application can still potentially OOM'ed by kernel
5050          * with lack of free htlb page in cpuset that the task is in.
5051          * Attempt to enforce strict accounting with cpuset is almost
5052          * impossible (or too ugly) because cpuset is too fluid that
5053          * task or memory node can be dynamically moved between cpusets.
5054          *
5055          * The change of semantics for shared hugetlb mapping with cpuset is
5056          * undesirable. However, in order to preserve some of the semantics,
5057          * we fall back to check against current free page availability as
5058          * a best attempt and hopefully to minimize the impact of changing
5059          * semantics that cpuset has.
5060          *
5061          * Apart from cpuset, we also have memory policy mechanism that
5062          * also determines from which node the kernel will allocate memory
5063          * in a NUMA system. So similar to cpuset, we also should consider
5064          * the memory policy of the current task. Similar to the description
5065          * above.
5066          */
5067         if (delta > 0) {
5068                 if (gather_surplus_pages(h, delta) < 0)
5069                         goto out;
5070
5071                 if (delta > allowed_mems_nr(h)) {
5072                         return_unused_surplus_pages(h, delta);
5073                         goto out;
5074                 }
5075         }
5076
5077         ret = 0;
5078         if (delta < 0)
5079                 return_unused_surplus_pages(h, (unsigned long) -delta);
5080
5081 out:
5082         spin_unlock_irq(&hugetlb_lock);
5083         return ret;
5084 }
5085
5086 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5087 {
5088         struct resv_map *resv = vma_resv_map(vma);
5089
5090         /*
5091          * HPAGE_RESV_OWNER indicates a private mapping.
5092          * This new VMA should share its siblings reservation map if present.
5093          * The VMA will only ever have a valid reservation map pointer where
5094          * it is being copied for another still existing VMA.  As that VMA
5095          * has a reference to the reservation map it cannot disappear until
5096          * after this open call completes.  It is therefore safe to take a
5097          * new reference here without additional locking.
5098          */
5099         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5100                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5101                 kref_get(&resv->refs);
5102         }
5103
5104         /*
5105          * vma_lock structure for sharable mappings is vma specific.
5106          * Clear old pointer (if copied via vm_area_dup) and allocate
5107          * new structure.  Before clearing, make sure vma_lock is not
5108          * for this vma.
5109          */
5110         if (vma->vm_flags & VM_MAYSHARE) {
5111                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5112
5113                 if (vma_lock) {
5114                         if (vma_lock->vma != vma) {
5115                                 vma->vm_private_data = NULL;
5116                                 hugetlb_vma_lock_alloc(vma);
5117                         } else
5118                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5119                 } else
5120                         hugetlb_vma_lock_alloc(vma);
5121         }
5122 }
5123
5124 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5125 {
5126         struct hstate *h = hstate_vma(vma);
5127         struct resv_map *resv;
5128         struct hugepage_subpool *spool = subpool_vma(vma);
5129         unsigned long reserve, start, end;
5130         long gbl_reserve;
5131
5132         hugetlb_vma_lock_free(vma);
5133
5134         resv = vma_resv_map(vma);
5135         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5136                 return;
5137
5138         start = vma_hugecache_offset(h, vma, vma->vm_start);
5139         end = vma_hugecache_offset(h, vma, vma->vm_end);
5140
5141         reserve = (end - start) - region_count(resv, start, end);
5142         hugetlb_cgroup_uncharge_counter(resv, start, end);
5143         if (reserve) {
5144                 /*
5145                  * Decrement reserve counts.  The global reserve count may be
5146                  * adjusted if the subpool has a minimum size.
5147                  */
5148                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5149                 hugetlb_acct_memory(h, -gbl_reserve);
5150         }
5151
5152         kref_put(&resv->refs, resv_map_release);
5153 }
5154
5155 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5156 {
5157         if (addr & ~(huge_page_mask(hstate_vma(vma))))
5158                 return -EINVAL;
5159
5160         /*
5161          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5162          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5163          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5164          */
5165         if (addr & ~PUD_MASK) {
5166                 /*
5167                  * hugetlb_vm_op_split is called right before we attempt to
5168                  * split the VMA. We will need to unshare PMDs in the old and
5169                  * new VMAs, so let's unshare before we split.
5170                  */
5171                 unsigned long floor = addr & PUD_MASK;
5172                 unsigned long ceil = floor + PUD_SIZE;
5173
5174                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5175                         hugetlb_unshare_pmds(vma, floor, ceil);
5176         }
5177
5178         return 0;
5179 }
5180
5181 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5182 {
5183         return huge_page_size(hstate_vma(vma));
5184 }
5185
5186 /*
5187  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5188  * handle_mm_fault() to try to instantiate regular-sized pages in the
5189  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5190  * this far.
5191  */
5192 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5193 {
5194         BUG();
5195         return 0;
5196 }
5197
5198 /*
5199  * When a new function is introduced to vm_operations_struct and added
5200  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5201  * This is because under System V memory model, mappings created via
5202  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5203  * their original vm_ops are overwritten with shm_vm_ops.
5204  */
5205 const struct vm_operations_struct hugetlb_vm_ops = {
5206         .fault = hugetlb_vm_op_fault,
5207         .open = hugetlb_vm_op_open,
5208         .close = hugetlb_vm_op_close,
5209         .may_split = hugetlb_vm_op_split,
5210         .pagesize = hugetlb_vm_op_pagesize,
5211 };
5212
5213 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5214                                 int writable)
5215 {
5216         pte_t entry;
5217         unsigned int shift = huge_page_shift(hstate_vma(vma));
5218
5219         if (writable) {
5220                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5221                                          vma->vm_page_prot)));
5222         } else {
5223                 entry = huge_pte_wrprotect(mk_huge_pte(page,
5224                                            vma->vm_page_prot));
5225         }
5226         entry = pte_mkyoung(entry);
5227         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5228
5229         return entry;
5230 }
5231
5232 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5233                                    unsigned long address, pte_t *ptep)
5234 {
5235         pte_t entry;
5236
5237         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5238         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5239                 update_mmu_cache(vma, address, ptep);
5240 }
5241
5242 bool is_hugetlb_entry_migration(pte_t pte)
5243 {
5244         swp_entry_t swp;
5245
5246         if (huge_pte_none(pte) || pte_present(pte))
5247                 return false;
5248         swp = pte_to_swp_entry(pte);
5249         if (is_migration_entry(swp))
5250                 return true;
5251         else
5252                 return false;
5253 }
5254
5255 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5256 {
5257         swp_entry_t swp;
5258
5259         if (huge_pte_none(pte) || pte_present(pte))
5260                 return false;
5261         swp = pte_to_swp_entry(pte);
5262         if (is_hwpoison_entry(swp))
5263                 return true;
5264         else
5265                 return false;
5266 }
5267
5268 static void
5269 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5270                       struct folio *new_folio, pte_t old, unsigned long sz)
5271 {
5272         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5273
5274         __folio_mark_uptodate(new_folio);
5275         hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5276         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5277                 newpte = huge_pte_mkuffd_wp(newpte);
5278         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5279         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5280         folio_set_hugetlb_migratable(new_folio);
5281 }
5282
5283 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5284                             struct vm_area_struct *dst_vma,
5285                             struct vm_area_struct *src_vma)
5286 {
5287         pte_t *src_pte, *dst_pte, entry;
5288         struct folio *pte_folio;
5289         unsigned long addr;
5290         bool cow = is_cow_mapping(src_vma->vm_flags);
5291         struct hstate *h = hstate_vma(src_vma);
5292         unsigned long sz = huge_page_size(h);
5293         unsigned long npages = pages_per_huge_page(h);
5294         struct mmu_notifier_range range;
5295         unsigned long last_addr_mask;
5296         int ret = 0;
5297
5298         if (cow) {
5299                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5300                                         src_vma->vm_start,
5301                                         src_vma->vm_end);
5302                 mmu_notifier_invalidate_range_start(&range);
5303                 vma_assert_write_locked(src_vma);
5304                 raw_write_seqcount_begin(&src->write_protect_seq);
5305         } else {
5306                 /*
5307                  * For shared mappings the vma lock must be held before
5308                  * calling hugetlb_walk() in the src vma. Otherwise, the
5309                  * returned ptep could go away if part of a shared pmd and
5310                  * another thread calls huge_pmd_unshare.
5311                  */
5312                 hugetlb_vma_lock_read(src_vma);
5313         }
5314
5315         last_addr_mask = hugetlb_mask_last_page(h);
5316         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5317                 spinlock_t *src_ptl, *dst_ptl;
5318                 src_pte = hugetlb_walk(src_vma, addr, sz);
5319                 if (!src_pte) {
5320                         addr |= last_addr_mask;
5321                         continue;
5322                 }
5323                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5324                 if (!dst_pte) {
5325                         ret = -ENOMEM;
5326                         break;
5327                 }
5328
5329                 /*
5330                  * If the pagetables are shared don't copy or take references.
5331                  *
5332                  * dst_pte == src_pte is the common case of src/dest sharing.
5333                  * However, src could have 'unshared' and dst shares with
5334                  * another vma. So page_count of ptep page is checked instead
5335                  * to reliably determine whether pte is shared.
5336                  */
5337                 if (page_count(virt_to_page(dst_pte)) > 1) {
5338                         addr |= last_addr_mask;
5339                         continue;
5340                 }
5341
5342                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5343                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5344                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5345                 entry = huge_ptep_get(src_pte);
5346 again:
5347                 if (huge_pte_none(entry)) {
5348                         /*
5349                          * Skip if src entry none.
5350                          */
5351                         ;
5352                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5353                         if (!userfaultfd_wp(dst_vma))
5354                                 entry = huge_pte_clear_uffd_wp(entry);
5355                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5356                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5357                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5358                         bool uffd_wp = pte_swp_uffd_wp(entry);
5359
5360                         if (!is_readable_migration_entry(swp_entry) && cow) {
5361                                 /*
5362                                  * COW mappings require pages in both
5363                                  * parent and child to be set to read.
5364                                  */
5365                                 swp_entry = make_readable_migration_entry(
5366                                                         swp_offset(swp_entry));
5367                                 entry = swp_entry_to_pte(swp_entry);
5368                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5369                                         entry = pte_swp_mkuffd_wp(entry);
5370                                 set_huge_pte_at(src, addr, src_pte, entry, sz);
5371                         }
5372                         if (!userfaultfd_wp(dst_vma))
5373                                 entry = huge_pte_clear_uffd_wp(entry);
5374                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5375                 } else if (unlikely(is_pte_marker(entry))) {
5376                         pte_marker marker = copy_pte_marker(
5377                                 pte_to_swp_entry(entry), dst_vma);
5378
5379                         if (marker)
5380                                 set_huge_pte_at(dst, addr, dst_pte,
5381                                                 make_pte_marker(marker), sz);
5382                 } else {
5383                         entry = huge_ptep_get(src_pte);
5384                         pte_folio = page_folio(pte_page(entry));
5385                         folio_get(pte_folio);
5386
5387                         /*
5388                          * Failing to duplicate the anon rmap is a rare case
5389                          * where we see pinned hugetlb pages while they're
5390                          * prone to COW. We need to do the COW earlier during
5391                          * fork.
5392                          *
5393                          * When pre-allocating the page or copying data, we
5394                          * need to be without the pgtable locks since we could
5395                          * sleep during the process.
5396                          */
5397                         if (!folio_test_anon(pte_folio)) {
5398                                 hugetlb_add_file_rmap(pte_folio);
5399                         } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5400                                 pte_t src_pte_old = entry;
5401                                 struct folio *new_folio;
5402
5403                                 spin_unlock(src_ptl);
5404                                 spin_unlock(dst_ptl);
5405                                 /* Do not use reserve as it's private owned */
5406                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5407                                 if (IS_ERR(new_folio)) {
5408                                         folio_put(pte_folio);
5409                                         ret = PTR_ERR(new_folio);
5410                                         break;
5411                                 }
5412                                 ret = copy_user_large_folio(new_folio,
5413                                                             pte_folio,
5414                                                             addr, dst_vma);
5415                                 folio_put(pte_folio);
5416                                 if (ret) {
5417                                         folio_put(new_folio);
5418                                         break;
5419                                 }
5420
5421                                 /* Install the new hugetlb folio if src pte stable */
5422                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5423                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5424                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5425                                 entry = huge_ptep_get(src_pte);
5426                                 if (!pte_same(src_pte_old, entry)) {
5427                                         restore_reserve_on_error(h, dst_vma, addr,
5428                                                                 new_folio);
5429                                         folio_put(new_folio);
5430                                         /* huge_ptep of dst_pte won't change as in child */
5431                                         goto again;
5432                                 }
5433                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5434                                                       new_folio, src_pte_old, sz);
5435                                 spin_unlock(src_ptl);
5436                                 spin_unlock(dst_ptl);
5437                                 continue;
5438                         }
5439
5440                         if (cow) {
5441                                 /*
5442                                  * No need to notify as we are downgrading page
5443                                  * table protection not changing it to point
5444                                  * to a new page.
5445                                  *
5446                                  * See Documentation/mm/mmu_notifier.rst
5447                                  */
5448                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5449                                 entry = huge_pte_wrprotect(entry);
5450                         }
5451
5452                         if (!userfaultfd_wp(dst_vma))
5453                                 entry = huge_pte_clear_uffd_wp(entry);
5454
5455                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5456                         hugetlb_count_add(npages, dst);
5457                 }
5458                 spin_unlock(src_ptl);
5459                 spin_unlock(dst_ptl);
5460         }
5461
5462         if (cow) {
5463                 raw_write_seqcount_end(&src->write_protect_seq);
5464                 mmu_notifier_invalidate_range_end(&range);
5465         } else {
5466                 hugetlb_vma_unlock_read(src_vma);
5467         }
5468
5469         return ret;
5470 }
5471
5472 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5473                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5474                           unsigned long sz)
5475 {
5476         struct hstate *h = hstate_vma(vma);
5477         struct mm_struct *mm = vma->vm_mm;
5478         spinlock_t *src_ptl, *dst_ptl;
5479         pte_t pte;
5480
5481         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5482         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5483
5484         /*
5485          * We don't have to worry about the ordering of src and dst ptlocks
5486          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5487          */
5488         if (src_ptl != dst_ptl)
5489                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5490
5491         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5492         set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5493
5494         if (src_ptl != dst_ptl)
5495                 spin_unlock(src_ptl);
5496         spin_unlock(dst_ptl);
5497 }
5498
5499 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5500                              struct vm_area_struct *new_vma,
5501                              unsigned long old_addr, unsigned long new_addr,
5502                              unsigned long len)
5503 {
5504         struct hstate *h = hstate_vma(vma);
5505         struct address_space *mapping = vma->vm_file->f_mapping;
5506         unsigned long sz = huge_page_size(h);
5507         struct mm_struct *mm = vma->vm_mm;
5508         unsigned long old_end = old_addr + len;
5509         unsigned long last_addr_mask;
5510         pte_t *src_pte, *dst_pte;
5511         struct mmu_notifier_range range;
5512         bool shared_pmd = false;
5513
5514         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5515                                 old_end);
5516         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5517         /*
5518          * In case of shared PMDs, we should cover the maximum possible
5519          * range.
5520          */
5521         flush_cache_range(vma, range.start, range.end);
5522
5523         mmu_notifier_invalidate_range_start(&range);
5524         last_addr_mask = hugetlb_mask_last_page(h);
5525         /* Prevent race with file truncation */
5526         hugetlb_vma_lock_write(vma);
5527         i_mmap_lock_write(mapping);
5528         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5529                 src_pte = hugetlb_walk(vma, old_addr, sz);
5530                 if (!src_pte) {
5531                         old_addr |= last_addr_mask;
5532                         new_addr |= last_addr_mask;
5533                         continue;
5534                 }
5535                 if (huge_pte_none(huge_ptep_get(src_pte)))
5536                         continue;
5537
5538                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5539                         shared_pmd = true;
5540                         old_addr |= last_addr_mask;
5541                         new_addr |= last_addr_mask;
5542                         continue;
5543                 }
5544
5545                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5546                 if (!dst_pte)
5547                         break;
5548
5549                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5550         }
5551
5552         if (shared_pmd)
5553                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5554         else
5555                 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5556         mmu_notifier_invalidate_range_end(&range);
5557         i_mmap_unlock_write(mapping);
5558         hugetlb_vma_unlock_write(vma);
5559
5560         return len + old_addr - old_end;
5561 }
5562
5563 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5564                             unsigned long start, unsigned long end,
5565                             struct page *ref_page, zap_flags_t zap_flags)
5566 {
5567         struct mm_struct *mm = vma->vm_mm;
5568         unsigned long address;
5569         pte_t *ptep;
5570         pte_t pte;
5571         spinlock_t *ptl;
5572         struct page *page;
5573         struct hstate *h = hstate_vma(vma);
5574         unsigned long sz = huge_page_size(h);
5575         unsigned long last_addr_mask;
5576         bool force_flush = false;
5577
5578         WARN_ON(!is_vm_hugetlb_page(vma));
5579         BUG_ON(start & ~huge_page_mask(h));
5580         BUG_ON(end & ~huge_page_mask(h));
5581
5582         /*
5583          * This is a hugetlb vma, all the pte entries should point
5584          * to huge page.
5585          */
5586         tlb_change_page_size(tlb, sz);
5587         tlb_start_vma(tlb, vma);
5588
5589         last_addr_mask = hugetlb_mask_last_page(h);
5590         address = start;
5591         for (; address < end; address += sz) {
5592                 ptep = hugetlb_walk(vma, address, sz);
5593                 if (!ptep) {
5594                         address |= last_addr_mask;
5595                         continue;
5596                 }
5597
5598                 ptl = huge_pte_lock(h, mm, ptep);
5599                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5600                         spin_unlock(ptl);
5601                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5602                         force_flush = true;
5603                         address |= last_addr_mask;
5604                         continue;
5605                 }
5606
5607                 pte = huge_ptep_get(ptep);
5608                 if (huge_pte_none(pte)) {
5609                         spin_unlock(ptl);
5610                         continue;
5611                 }
5612
5613                 /*
5614                  * Migrating hugepage or HWPoisoned hugepage is already
5615                  * unmapped and its refcount is dropped, so just clear pte here.
5616                  */
5617                 if (unlikely(!pte_present(pte))) {
5618                         /*
5619                          * If the pte was wr-protected by uffd-wp in any of the
5620                          * swap forms, meanwhile the caller does not want to
5621                          * drop the uffd-wp bit in this zap, then replace the
5622                          * pte with a marker.
5623                          */
5624                         if (pte_swp_uffd_wp_any(pte) &&
5625                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5626                                 set_huge_pte_at(mm, address, ptep,
5627                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
5628                                                 sz);
5629                         else
5630                                 huge_pte_clear(mm, address, ptep, sz);
5631                         spin_unlock(ptl);
5632                         continue;
5633                 }
5634
5635                 page = pte_page(pte);
5636                 /*
5637                  * If a reference page is supplied, it is because a specific
5638                  * page is being unmapped, not a range. Ensure the page we
5639                  * are about to unmap is the actual page of interest.
5640                  */
5641                 if (ref_page) {
5642                         if (page != ref_page) {
5643                                 spin_unlock(ptl);
5644                                 continue;
5645                         }
5646                         /*
5647                          * Mark the VMA as having unmapped its page so that
5648                          * future faults in this VMA will fail rather than
5649                          * looking like data was lost
5650                          */
5651                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5652                 }
5653
5654                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5655                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5656                 if (huge_pte_dirty(pte))
5657                         set_page_dirty(page);
5658                 /* Leave a uffd-wp pte marker if needed */
5659                 if (huge_pte_uffd_wp(pte) &&
5660                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5661                         set_huge_pte_at(mm, address, ptep,
5662                                         make_pte_marker(PTE_MARKER_UFFD_WP),
5663                                         sz);
5664                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5665                 hugetlb_remove_rmap(page_folio(page));
5666
5667                 spin_unlock(ptl);
5668                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5669                 /*
5670                  * Bail out after unmapping reference page if supplied
5671                  */
5672                 if (ref_page)
5673                         break;
5674         }
5675         tlb_end_vma(tlb, vma);
5676
5677         /*
5678          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5679          * could defer the flush until now, since by holding i_mmap_rwsem we
5680          * guaranteed that the last refernece would not be dropped. But we must
5681          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5682          * dropped and the last reference to the shared PMDs page might be
5683          * dropped as well.
5684          *
5685          * In theory we could defer the freeing of the PMD pages as well, but
5686          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5687          * detect sharing, so we cannot defer the release of the page either.
5688          * Instead, do flush now.
5689          */
5690         if (force_flush)
5691                 tlb_flush_mmu_tlbonly(tlb);
5692 }
5693
5694 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5695                          unsigned long *start, unsigned long *end)
5696 {
5697         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5698                 return;
5699
5700         adjust_range_if_pmd_sharing_possible(vma, start, end);
5701         hugetlb_vma_lock_write(vma);
5702         if (vma->vm_file)
5703                 i_mmap_lock_write(vma->vm_file->f_mapping);
5704 }
5705
5706 void __hugetlb_zap_end(struct vm_area_struct *vma,
5707                        struct zap_details *details)
5708 {
5709         zap_flags_t zap_flags = details ? details->zap_flags : 0;
5710
5711         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5712                 return;
5713
5714         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5715                 /*
5716                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5717                  * When the vma_lock is freed, this makes the vma ineligible
5718                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5719                  * pmd sharing.  This is important as page tables for this
5720                  * unmapped range will be asynchrously deleted.  If the page
5721                  * tables are shared, there will be issues when accessed by
5722                  * someone else.
5723                  */
5724                 __hugetlb_vma_unlock_write_free(vma);
5725         } else {
5726                 hugetlb_vma_unlock_write(vma);
5727         }
5728
5729         if (vma->vm_file)
5730                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5731 }
5732
5733 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5734                           unsigned long end, struct page *ref_page,
5735                           zap_flags_t zap_flags)
5736 {
5737         struct mmu_notifier_range range;
5738         struct mmu_gather tlb;
5739
5740         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5741                                 start, end);
5742         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5743         mmu_notifier_invalidate_range_start(&range);
5744         tlb_gather_mmu(&tlb, vma->vm_mm);
5745
5746         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5747
5748         mmu_notifier_invalidate_range_end(&range);
5749         tlb_finish_mmu(&tlb);
5750 }
5751
5752 /*
5753  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5754  * mapping it owns the reserve page for. The intention is to unmap the page
5755  * from other VMAs and let the children be SIGKILLed if they are faulting the
5756  * same region.
5757  */
5758 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5759                               struct page *page, unsigned long address)
5760 {
5761         struct hstate *h = hstate_vma(vma);
5762         struct vm_area_struct *iter_vma;
5763         struct address_space *mapping;
5764         pgoff_t pgoff;
5765
5766         /*
5767          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5768          * from page cache lookup which is in HPAGE_SIZE units.
5769          */
5770         address = address & huge_page_mask(h);
5771         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5772                         vma->vm_pgoff;
5773         mapping = vma->vm_file->f_mapping;
5774
5775         /*
5776          * Take the mapping lock for the duration of the table walk. As
5777          * this mapping should be shared between all the VMAs,
5778          * __unmap_hugepage_range() is called as the lock is already held
5779          */
5780         i_mmap_lock_write(mapping);
5781         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5782                 /* Do not unmap the current VMA */
5783                 if (iter_vma == vma)
5784                         continue;
5785
5786                 /*
5787                  * Shared VMAs have their own reserves and do not affect
5788                  * MAP_PRIVATE accounting but it is possible that a shared
5789                  * VMA is using the same page so check and skip such VMAs.
5790                  */
5791                 if (iter_vma->vm_flags & VM_MAYSHARE)
5792                         continue;
5793
5794                 /*
5795                  * Unmap the page from other VMAs without their own reserves.
5796                  * They get marked to be SIGKILLed if they fault in these
5797                  * areas. This is because a future no-page fault on this VMA
5798                  * could insert a zeroed page instead of the data existing
5799                  * from the time of fork. This would look like data corruption
5800                  */
5801                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5802                         unmap_hugepage_range(iter_vma, address,
5803                                              address + huge_page_size(h), page, 0);
5804         }
5805         i_mmap_unlock_write(mapping);
5806 }
5807
5808 /*
5809  * hugetlb_wp() should be called with page lock of the original hugepage held.
5810  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5811  * cannot race with other handlers or page migration.
5812  * Keep the pte_same checks anyway to make transition from the mutex easier.
5813  */
5814 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5815                        unsigned long address, pte_t *ptep, unsigned int flags,
5816                        struct folio *pagecache_folio, spinlock_t *ptl)
5817 {
5818         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5819         pte_t pte = huge_ptep_get(ptep);
5820         struct hstate *h = hstate_vma(vma);
5821         struct folio *old_folio;
5822         struct folio *new_folio;
5823         int outside_reserve = 0;
5824         vm_fault_t ret = 0;
5825         unsigned long haddr = address & huge_page_mask(h);
5826         struct mmu_notifier_range range;
5827
5828         /*
5829          * Never handle CoW for uffd-wp protected pages.  It should be only
5830          * handled when the uffd-wp protection is removed.
5831          *
5832          * Note that only the CoW optimization path (in hugetlb_no_page())
5833          * can trigger this, because hugetlb_fault() will always resolve
5834          * uffd-wp bit first.
5835          */
5836         if (!unshare && huge_pte_uffd_wp(pte))
5837                 return 0;
5838
5839         /*
5840          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5841          * PTE mapped R/O such as maybe_mkwrite() would do.
5842          */
5843         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5844                 return VM_FAULT_SIGSEGV;
5845
5846         /* Let's take out MAP_SHARED mappings first. */
5847         if (vma->vm_flags & VM_MAYSHARE) {
5848                 set_huge_ptep_writable(vma, haddr, ptep);
5849                 return 0;
5850         }
5851
5852         old_folio = page_folio(pte_page(pte));
5853
5854         delayacct_wpcopy_start();
5855
5856 retry_avoidcopy:
5857         /*
5858          * If no-one else is actually using this page, we're the exclusive
5859          * owner and can reuse this page.
5860          */
5861         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5862                 if (!PageAnonExclusive(&old_folio->page)) {
5863                         folio_move_anon_rmap(old_folio, vma);
5864                         SetPageAnonExclusive(&old_folio->page);
5865                 }
5866                 if (likely(!unshare))
5867                         set_huge_ptep_writable(vma, haddr, ptep);
5868
5869                 delayacct_wpcopy_end();
5870                 return 0;
5871         }
5872         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5873                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5874
5875         /*
5876          * If the process that created a MAP_PRIVATE mapping is about to
5877          * perform a COW due to a shared page count, attempt to satisfy
5878          * the allocation without using the existing reserves. The pagecache
5879          * page is used to determine if the reserve at this address was
5880          * consumed or not. If reserves were used, a partial faulted mapping
5881          * at the time of fork() could consume its reserves on COW instead
5882          * of the full address range.
5883          */
5884         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5885                         old_folio != pagecache_folio)
5886                 outside_reserve = 1;
5887
5888         folio_get(old_folio);
5889
5890         /*
5891          * Drop page table lock as buddy allocator may be called. It will
5892          * be acquired again before returning to the caller, as expected.
5893          */
5894         spin_unlock(ptl);
5895         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5896
5897         if (IS_ERR(new_folio)) {
5898                 /*
5899                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5900                  * it is due to references held by a child and an insufficient
5901                  * huge page pool. To guarantee the original mappers
5902                  * reliability, unmap the page from child processes. The child
5903                  * may get SIGKILLed if it later faults.
5904                  */
5905                 if (outside_reserve) {
5906                         struct address_space *mapping = vma->vm_file->f_mapping;
5907                         pgoff_t idx;
5908                         u32 hash;
5909
5910                         folio_put(old_folio);
5911                         /*
5912                          * Drop hugetlb_fault_mutex and vma_lock before
5913                          * unmapping.  unmapping needs to hold vma_lock
5914                          * in write mode.  Dropping vma_lock in read mode
5915                          * here is OK as COW mappings do not interact with
5916                          * PMD sharing.
5917                          *
5918                          * Reacquire both after unmap operation.
5919                          */
5920                         idx = vma_hugecache_offset(h, vma, haddr);
5921                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5922                         hugetlb_vma_unlock_read(vma);
5923                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5924
5925                         unmap_ref_private(mm, vma, &old_folio->page, haddr);
5926
5927                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5928                         hugetlb_vma_lock_read(vma);
5929                         spin_lock(ptl);
5930                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5931                         if (likely(ptep &&
5932                                    pte_same(huge_ptep_get(ptep), pte)))
5933                                 goto retry_avoidcopy;
5934                         /*
5935                          * race occurs while re-acquiring page table
5936                          * lock, and our job is done.
5937                          */
5938                         delayacct_wpcopy_end();
5939                         return 0;
5940                 }
5941
5942                 ret = vmf_error(PTR_ERR(new_folio));
5943                 goto out_release_old;
5944         }
5945
5946         /*
5947          * When the original hugepage is shared one, it does not have
5948          * anon_vma prepared.
5949          */
5950         if (unlikely(anon_vma_prepare(vma))) {
5951                 ret = VM_FAULT_OOM;
5952                 goto out_release_all;
5953         }
5954
5955         if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5956                 ret = VM_FAULT_HWPOISON_LARGE;
5957                 goto out_release_all;
5958         }
5959         __folio_mark_uptodate(new_folio);
5960
5961         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5962                                 haddr + huge_page_size(h));
5963         mmu_notifier_invalidate_range_start(&range);
5964
5965         /*
5966          * Retake the page table lock to check for racing updates
5967          * before the page tables are altered
5968          */
5969         spin_lock(ptl);
5970         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5971         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5972                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5973
5974                 /* Break COW or unshare */
5975                 huge_ptep_clear_flush(vma, haddr, ptep);
5976                 hugetlb_remove_rmap(old_folio);
5977                 hugetlb_add_new_anon_rmap(new_folio, vma, haddr);
5978                 if (huge_pte_uffd_wp(pte))
5979                         newpte = huge_pte_mkuffd_wp(newpte);
5980                 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5981                 folio_set_hugetlb_migratable(new_folio);
5982                 /* Make the old page be freed below */
5983                 new_folio = old_folio;
5984         }
5985         spin_unlock(ptl);
5986         mmu_notifier_invalidate_range_end(&range);
5987 out_release_all:
5988         /*
5989          * No restore in case of successful pagetable update (Break COW or
5990          * unshare)
5991          */
5992         if (new_folio != old_folio)
5993                 restore_reserve_on_error(h, vma, haddr, new_folio);
5994         folio_put(new_folio);
5995 out_release_old:
5996         folio_put(old_folio);
5997
5998         spin_lock(ptl); /* Caller expects lock to be held */
5999
6000         delayacct_wpcopy_end();
6001         return ret;
6002 }
6003
6004 /*
6005  * Return whether there is a pagecache page to back given address within VMA.
6006  */
6007 static bool hugetlbfs_pagecache_present(struct hstate *h,
6008                         struct vm_area_struct *vma, unsigned long address)
6009 {
6010         struct address_space *mapping = vma->vm_file->f_mapping;
6011         pgoff_t idx = linear_page_index(vma, address);
6012         struct folio *folio;
6013
6014         folio = filemap_get_folio(mapping, idx);
6015         if (IS_ERR(folio))
6016                 return false;
6017         folio_put(folio);
6018         return true;
6019 }
6020
6021 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6022                            pgoff_t idx)
6023 {
6024         struct inode *inode = mapping->host;
6025         struct hstate *h = hstate_inode(inode);
6026         int err;
6027
6028         idx <<= huge_page_order(h);
6029         __folio_set_locked(folio);
6030         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6031
6032         if (unlikely(err)) {
6033                 __folio_clear_locked(folio);
6034                 return err;
6035         }
6036         folio_clear_hugetlb_restore_reserve(folio);
6037
6038         /*
6039          * mark folio dirty so that it will not be removed from cache/file
6040          * by non-hugetlbfs specific code paths.
6041          */
6042         folio_mark_dirty(folio);
6043
6044         spin_lock(&inode->i_lock);
6045         inode->i_blocks += blocks_per_huge_page(h);
6046         spin_unlock(&inode->i_lock);
6047         return 0;
6048 }
6049
6050 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
6051                                                   struct address_space *mapping,
6052                                                   pgoff_t idx,
6053                                                   unsigned int flags,
6054                                                   unsigned long haddr,
6055                                                   unsigned long addr,
6056                                                   unsigned long reason)
6057 {
6058         u32 hash;
6059         struct vm_fault vmf = {
6060                 .vma = vma,
6061                 .address = haddr,
6062                 .real_address = addr,
6063                 .flags = flags,
6064
6065                 /*
6066                  * Hard to debug if it ends up being
6067                  * used by a callee that assumes
6068                  * something about the other
6069                  * uninitialized fields... same as in
6070                  * memory.c
6071                  */
6072         };
6073
6074         /*
6075          * vma_lock and hugetlb_fault_mutex must be dropped before handling
6076          * userfault. Also mmap_lock could be dropped due to handling
6077          * userfault, any vma operation should be careful from here.
6078          */
6079         hugetlb_vma_unlock_read(vma);
6080         hash = hugetlb_fault_mutex_hash(mapping, idx);
6081         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6082         return handle_userfault(&vmf, reason);
6083 }
6084
6085 /*
6086  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6087  * false if pte changed or is changing.
6088  */
6089 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6090                                pte_t *ptep, pte_t old_pte)
6091 {
6092         spinlock_t *ptl;
6093         bool same;
6094
6095         ptl = huge_pte_lock(h, mm, ptep);
6096         same = pte_same(huge_ptep_get(ptep), old_pte);
6097         spin_unlock(ptl);
6098
6099         return same;
6100 }
6101
6102 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6103                         struct vm_area_struct *vma,
6104                         struct address_space *mapping, pgoff_t idx,
6105                         unsigned long address, pte_t *ptep,
6106                         pte_t old_pte, unsigned int flags)
6107 {
6108         struct hstate *h = hstate_vma(vma);
6109         vm_fault_t ret = VM_FAULT_SIGBUS;
6110         int anon_rmap = 0;
6111         unsigned long size;
6112         struct folio *folio;
6113         pte_t new_pte;
6114         spinlock_t *ptl;
6115         unsigned long haddr = address & huge_page_mask(h);
6116         bool new_folio, new_pagecache_folio = false;
6117         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6118
6119         /*
6120          * Currently, we are forced to kill the process in the event the
6121          * original mapper has unmapped pages from the child due to a failed
6122          * COW/unsharing. Warn that such a situation has occurred as it may not
6123          * be obvious.
6124          */
6125         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6126                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6127                            current->pid);
6128                 goto out;
6129         }
6130
6131         /*
6132          * Use page lock to guard against racing truncation
6133          * before we get page_table_lock.
6134          */
6135         new_folio = false;
6136         folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6137         if (IS_ERR(folio)) {
6138                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6139                 if (idx >= size)
6140                         goto out;
6141                 /* Check for page in userfault range */
6142                 if (userfaultfd_missing(vma)) {
6143                         /*
6144                          * Since hugetlb_no_page() was examining pte
6145                          * without pgtable lock, we need to re-test under
6146                          * lock because the pte may not be stable and could
6147                          * have changed from under us.  Try to detect
6148                          * either changed or during-changing ptes and retry
6149                          * properly when needed.
6150                          *
6151                          * Note that userfaultfd is actually fine with
6152                          * false positives (e.g. caused by pte changed),
6153                          * but not wrong logical events (e.g. caused by
6154                          * reading a pte during changing).  The latter can
6155                          * confuse the userspace, so the strictness is very
6156                          * much preferred.  E.g., MISSING event should
6157                          * never happen on the page after UFFDIO_COPY has
6158                          * correctly installed the page and returned.
6159                          */
6160                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6161                                 ret = 0;
6162                                 goto out;
6163                         }
6164
6165                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
6166                                                         haddr, address,
6167                                                         VM_UFFD_MISSING);
6168                 }
6169
6170                 folio = alloc_hugetlb_folio(vma, haddr, 0);
6171                 if (IS_ERR(folio)) {
6172                         /*
6173                          * Returning error will result in faulting task being
6174                          * sent SIGBUS.  The hugetlb fault mutex prevents two
6175                          * tasks from racing to fault in the same page which
6176                          * could result in false unable to allocate errors.
6177                          * Page migration does not take the fault mutex, but
6178                          * does a clear then write of pte's under page table
6179                          * lock.  Page fault code could race with migration,
6180                          * notice the clear pte and try to allocate a page
6181                          * here.  Before returning error, get ptl and make
6182                          * sure there really is no pte entry.
6183                          */
6184                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6185                                 ret = vmf_error(PTR_ERR(folio));
6186                         else
6187                                 ret = 0;
6188                         goto out;
6189                 }
6190                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6191                 __folio_mark_uptodate(folio);
6192                 new_folio = true;
6193
6194                 if (vma->vm_flags & VM_MAYSHARE) {
6195                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6196                         if (err) {
6197                                 /*
6198                                  * err can't be -EEXIST which implies someone
6199                                  * else consumed the reservation since hugetlb
6200                                  * fault mutex is held when add a hugetlb page
6201                                  * to the page cache. So it's safe to call
6202                                  * restore_reserve_on_error() here.
6203                                  */
6204                                 restore_reserve_on_error(h, vma, haddr, folio);
6205                                 folio_put(folio);
6206                                 goto out;
6207                         }
6208                         new_pagecache_folio = true;
6209                 } else {
6210                         folio_lock(folio);
6211                         if (unlikely(anon_vma_prepare(vma))) {
6212                                 ret = VM_FAULT_OOM;
6213                                 goto backout_unlocked;
6214                         }
6215                         anon_rmap = 1;
6216                 }
6217         } else {
6218                 /*
6219                  * If memory error occurs between mmap() and fault, some process
6220                  * don't have hwpoisoned swap entry for errored virtual address.
6221                  * So we need to block hugepage fault by PG_hwpoison bit check.
6222                  */
6223                 if (unlikely(folio_test_hwpoison(folio))) {
6224                         ret = VM_FAULT_HWPOISON_LARGE |
6225                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6226                         goto backout_unlocked;
6227                 }
6228
6229                 /* Check for page in userfault range. */
6230                 if (userfaultfd_minor(vma)) {
6231                         folio_unlock(folio);
6232                         folio_put(folio);
6233                         /* See comment in userfaultfd_missing() block above */
6234                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6235                                 ret = 0;
6236                                 goto out;
6237                         }
6238                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
6239                                                         haddr, address,
6240                                                         VM_UFFD_MINOR);
6241                 }
6242         }
6243
6244         /*
6245          * If we are going to COW a private mapping later, we examine the
6246          * pending reservations for this page now. This will ensure that
6247          * any allocations necessary to record that reservation occur outside
6248          * the spinlock.
6249          */
6250         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6251                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6252                         ret = VM_FAULT_OOM;
6253                         goto backout_unlocked;
6254                 }
6255                 /* Just decrements count, does not deallocate */
6256                 vma_end_reservation(h, vma, haddr);
6257         }
6258
6259         ptl = huge_pte_lock(h, mm, ptep);
6260         ret = 0;
6261         /* If pte changed from under us, retry */
6262         if (!pte_same(huge_ptep_get(ptep), old_pte))
6263                 goto backout;
6264
6265         if (anon_rmap)
6266                 hugetlb_add_new_anon_rmap(folio, vma, haddr);
6267         else
6268                 hugetlb_add_file_rmap(folio);
6269         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6270                                 && (vma->vm_flags & VM_SHARED)));
6271         /*
6272          * If this pte was previously wr-protected, keep it wr-protected even
6273          * if populated.
6274          */
6275         if (unlikely(pte_marker_uffd_wp(old_pte)))
6276                 new_pte = huge_pte_mkuffd_wp(new_pte);
6277         set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6278
6279         hugetlb_count_add(pages_per_huge_page(h), mm);
6280         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6281                 /* Optimization, do the COW without a second fault */
6282                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6283         }
6284
6285         spin_unlock(ptl);
6286
6287         /*
6288          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6289          * found in the pagecache may not have hugetlb_migratable if they have
6290          * been isolated for migration.
6291          */
6292         if (new_folio)
6293                 folio_set_hugetlb_migratable(folio);
6294
6295         folio_unlock(folio);
6296 out:
6297         hugetlb_vma_unlock_read(vma);
6298         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6299         return ret;
6300
6301 backout:
6302         spin_unlock(ptl);
6303 backout_unlocked:
6304         if (new_folio && !new_pagecache_folio)
6305                 restore_reserve_on_error(h, vma, haddr, folio);
6306
6307         folio_unlock(folio);
6308         folio_put(folio);
6309         goto out;
6310 }
6311
6312 #ifdef CONFIG_SMP
6313 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6314 {
6315         unsigned long key[2];
6316         u32 hash;
6317
6318         key[0] = (unsigned long) mapping;
6319         key[1] = idx;
6320
6321         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6322
6323         return hash & (num_fault_mutexes - 1);
6324 }
6325 #else
6326 /*
6327  * For uniprocessor systems we always use a single mutex, so just
6328  * return 0 and avoid the hashing overhead.
6329  */
6330 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6331 {
6332         return 0;
6333 }
6334 #endif
6335
6336 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6337                         unsigned long address, unsigned int flags)
6338 {
6339         pte_t *ptep, entry;
6340         spinlock_t *ptl;
6341         vm_fault_t ret;
6342         u32 hash;
6343         pgoff_t idx;
6344         struct folio *folio = NULL;
6345         struct folio *pagecache_folio = NULL;
6346         struct hstate *h = hstate_vma(vma);
6347         struct address_space *mapping;
6348         int need_wait_lock = 0;
6349         unsigned long haddr = address & huge_page_mask(h);
6350
6351         /* TODO: Handle faults under the VMA lock */
6352         if (flags & FAULT_FLAG_VMA_LOCK) {
6353                 vma_end_read(vma);
6354                 return VM_FAULT_RETRY;
6355         }
6356
6357         /*
6358          * Serialize hugepage allocation and instantiation, so that we don't
6359          * get spurious allocation failures if two CPUs race to instantiate
6360          * the same page in the page cache.
6361          */
6362         mapping = vma->vm_file->f_mapping;
6363         idx = vma_hugecache_offset(h, vma, haddr);
6364         hash = hugetlb_fault_mutex_hash(mapping, idx);
6365         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6366
6367         /*
6368          * Acquire vma lock before calling huge_pte_alloc and hold
6369          * until finished with ptep.  This prevents huge_pmd_unshare from
6370          * being called elsewhere and making the ptep no longer valid.
6371          */
6372         hugetlb_vma_lock_read(vma);
6373         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6374         if (!ptep) {
6375                 hugetlb_vma_unlock_read(vma);
6376                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6377                 return VM_FAULT_OOM;
6378         }
6379
6380         entry = huge_ptep_get(ptep);
6381         if (huge_pte_none_mostly(entry)) {
6382                 if (is_pte_marker(entry)) {
6383                         pte_marker marker =
6384                                 pte_marker_get(pte_to_swp_entry(entry));
6385
6386                         if (marker & PTE_MARKER_POISONED) {
6387                                 ret = VM_FAULT_HWPOISON_LARGE;
6388                                 goto out_mutex;
6389                         }
6390                 }
6391
6392                 /*
6393                  * Other PTE markers should be handled the same way as none PTE.
6394                  *
6395                  * hugetlb_no_page will drop vma lock and hugetlb fault
6396                  * mutex internally, which make us return immediately.
6397                  */
6398                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6399                                       entry, flags);
6400         }
6401
6402         ret = 0;
6403
6404         /*
6405          * entry could be a migration/hwpoison entry at this point, so this
6406          * check prevents the kernel from going below assuming that we have
6407          * an active hugepage in pagecache. This goto expects the 2nd page
6408          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6409          * properly handle it.
6410          */
6411         if (!pte_present(entry)) {
6412                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6413                         /*
6414                          * Release the hugetlb fault lock now, but retain
6415                          * the vma lock, because it is needed to guard the
6416                          * huge_pte_lockptr() later in
6417                          * migration_entry_wait_huge(). The vma lock will
6418                          * be released there.
6419                          */
6420                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6421                         migration_entry_wait_huge(vma, ptep);
6422                         return 0;
6423                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6424                         ret = VM_FAULT_HWPOISON_LARGE |
6425                             VM_FAULT_SET_HINDEX(hstate_index(h));
6426                 goto out_mutex;
6427         }
6428
6429         /*
6430          * If we are going to COW/unshare the mapping later, we examine the
6431          * pending reservations for this page now. This will ensure that any
6432          * allocations necessary to record that reservation occur outside the
6433          * spinlock. Also lookup the pagecache page now as it is used to
6434          * determine if a reservation has been consumed.
6435          */
6436         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6437             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6438                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6439                         ret = VM_FAULT_OOM;
6440                         goto out_mutex;
6441                 }
6442                 /* Just decrements count, does not deallocate */
6443                 vma_end_reservation(h, vma, haddr);
6444
6445                 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6446                 if (IS_ERR(pagecache_folio))
6447                         pagecache_folio = NULL;
6448         }
6449
6450         ptl = huge_pte_lock(h, mm, ptep);
6451
6452         /* Check for a racing update before calling hugetlb_wp() */
6453         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6454                 goto out_ptl;
6455
6456         /* Handle userfault-wp first, before trying to lock more pages */
6457         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6458             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6459                 if (!userfaultfd_wp_async(vma)) {
6460                         struct vm_fault vmf = {
6461                                 .vma = vma,
6462                                 .address = haddr,
6463                                 .real_address = address,
6464                                 .flags = flags,
6465                         };
6466
6467                         spin_unlock(ptl);
6468                         if (pagecache_folio) {
6469                                 folio_unlock(pagecache_folio);
6470                                 folio_put(pagecache_folio);
6471                         }
6472                         hugetlb_vma_unlock_read(vma);
6473                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6474                         return handle_userfault(&vmf, VM_UFFD_WP);
6475                 }
6476
6477                 entry = huge_pte_clear_uffd_wp(entry);
6478                 set_huge_pte_at(mm, haddr, ptep, entry,
6479                                 huge_page_size(hstate_vma(vma)));
6480                 /* Fallthrough to CoW */
6481         }
6482
6483         /*
6484          * hugetlb_wp() requires page locks of pte_page(entry) and
6485          * pagecache_folio, so here we need take the former one
6486          * when folio != pagecache_folio or !pagecache_folio.
6487          */
6488         folio = page_folio(pte_page(entry));
6489         if (folio != pagecache_folio)
6490                 if (!folio_trylock(folio)) {
6491                         need_wait_lock = 1;
6492                         goto out_ptl;
6493                 }
6494
6495         folio_get(folio);
6496
6497         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6498                 if (!huge_pte_write(entry)) {
6499                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6500                                          pagecache_folio, ptl);
6501                         goto out_put_page;
6502                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6503                         entry = huge_pte_mkdirty(entry);
6504                 }
6505         }
6506         entry = pte_mkyoung(entry);
6507         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6508                                                 flags & FAULT_FLAG_WRITE))
6509                 update_mmu_cache(vma, haddr, ptep);
6510 out_put_page:
6511         if (folio != pagecache_folio)
6512                 folio_unlock(folio);
6513         folio_put(folio);
6514 out_ptl:
6515         spin_unlock(ptl);
6516
6517         if (pagecache_folio) {
6518                 folio_unlock(pagecache_folio);
6519                 folio_put(pagecache_folio);
6520         }
6521 out_mutex:
6522         hugetlb_vma_unlock_read(vma);
6523         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6524         /*
6525          * Generally it's safe to hold refcount during waiting page lock. But
6526          * here we just wait to defer the next page fault to avoid busy loop and
6527          * the page is not used after unlocked before returning from the current
6528          * page fault. So we are safe from accessing freed page, even if we wait
6529          * here without taking refcount.
6530          */
6531         if (need_wait_lock)
6532                 folio_wait_locked(folio);
6533         return ret;
6534 }
6535
6536 #ifdef CONFIG_USERFAULTFD
6537 /*
6538  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6539  */
6540 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6541                 struct vm_area_struct *vma, unsigned long address)
6542 {
6543         struct mempolicy *mpol;
6544         nodemask_t *nodemask;
6545         struct folio *folio;
6546         gfp_t gfp_mask;
6547         int node;
6548
6549         gfp_mask = htlb_alloc_mask(h);
6550         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6551         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6552         mpol_cond_put(mpol);
6553
6554         return folio;
6555 }
6556
6557 /*
6558  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6559  * with modifications for hugetlb pages.
6560  */
6561 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6562                              struct vm_area_struct *dst_vma,
6563                              unsigned long dst_addr,
6564                              unsigned long src_addr,
6565                              uffd_flags_t flags,
6566                              struct folio **foliop)
6567 {
6568         struct mm_struct *dst_mm = dst_vma->vm_mm;
6569         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6570         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6571         struct hstate *h = hstate_vma(dst_vma);
6572         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6573         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6574         unsigned long size;
6575         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6576         pte_t _dst_pte;
6577         spinlock_t *ptl;
6578         int ret = -ENOMEM;
6579         struct folio *folio;
6580         int writable;
6581         bool folio_in_pagecache = false;
6582
6583         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6584                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6585
6586                 /* Don't overwrite any existing PTEs (even markers) */
6587                 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6588                         spin_unlock(ptl);
6589                         return -EEXIST;
6590                 }
6591
6592                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6593                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6594                                 huge_page_size(h));
6595
6596                 /* No need to invalidate - it was non-present before */
6597                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6598
6599                 spin_unlock(ptl);
6600                 return 0;
6601         }
6602
6603         if (is_continue) {
6604                 ret = -EFAULT;
6605                 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6606                 if (IS_ERR(folio))
6607                         goto out;
6608                 folio_in_pagecache = true;
6609         } else if (!*foliop) {
6610                 /* If a folio already exists, then it's UFFDIO_COPY for
6611                  * a non-missing case. Return -EEXIST.
6612                  */
6613                 if (vm_shared &&
6614                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6615                         ret = -EEXIST;
6616                         goto out;
6617                 }
6618
6619                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6620                 if (IS_ERR(folio)) {
6621                         ret = -ENOMEM;
6622                         goto out;
6623                 }
6624
6625                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6626                                            false);
6627
6628                 /* fallback to copy_from_user outside mmap_lock */
6629                 if (unlikely(ret)) {
6630                         ret = -ENOENT;
6631                         /* Free the allocated folio which may have
6632                          * consumed a reservation.
6633                          */
6634                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6635                         folio_put(folio);
6636
6637                         /* Allocate a temporary folio to hold the copied
6638                          * contents.
6639                          */
6640                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6641                         if (!folio) {
6642                                 ret = -ENOMEM;
6643                                 goto out;
6644                         }
6645                         *foliop = folio;
6646                         /* Set the outparam foliop and return to the caller to
6647                          * copy the contents outside the lock. Don't free the
6648                          * folio.
6649                          */
6650                         goto out;
6651                 }
6652         } else {
6653                 if (vm_shared &&
6654                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6655                         folio_put(*foliop);
6656                         ret = -EEXIST;
6657                         *foliop = NULL;
6658                         goto out;
6659                 }
6660
6661                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6662                 if (IS_ERR(folio)) {
6663                         folio_put(*foliop);
6664                         ret = -ENOMEM;
6665                         *foliop = NULL;
6666                         goto out;
6667                 }
6668                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6669                 folio_put(*foliop);
6670                 *foliop = NULL;
6671                 if (ret) {
6672                         folio_put(folio);
6673                         goto out;
6674                 }
6675         }
6676
6677         /*
6678          * The memory barrier inside __folio_mark_uptodate makes sure that
6679          * preceding stores to the page contents become visible before
6680          * the set_pte_at() write.
6681          */
6682         __folio_mark_uptodate(folio);
6683
6684         /* Add shared, newly allocated pages to the page cache. */
6685         if (vm_shared && !is_continue) {
6686                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6687                 ret = -EFAULT;
6688                 if (idx >= size)
6689                         goto out_release_nounlock;
6690
6691                 /*
6692                  * Serialization between remove_inode_hugepages() and
6693                  * hugetlb_add_to_page_cache() below happens through the
6694                  * hugetlb_fault_mutex_table that here must be hold by
6695                  * the caller.
6696                  */
6697                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6698                 if (ret)
6699                         goto out_release_nounlock;
6700                 folio_in_pagecache = true;
6701         }
6702
6703         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6704
6705         ret = -EIO;
6706         if (folio_test_hwpoison(folio))
6707                 goto out_release_unlock;
6708
6709         /*
6710          * We allow to overwrite a pte marker: consider when both MISSING|WP
6711          * registered, we firstly wr-protect a none pte which has no page cache
6712          * page backing it, then access the page.
6713          */
6714         ret = -EEXIST;
6715         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6716                 goto out_release_unlock;
6717
6718         if (folio_in_pagecache)
6719                 hugetlb_add_file_rmap(folio);
6720         else
6721                 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6722
6723         /*
6724          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6725          * with wp flag set, don't set pte write bit.
6726          */
6727         if (wp_enabled || (is_continue && !vm_shared))
6728                 writable = 0;
6729         else
6730                 writable = dst_vma->vm_flags & VM_WRITE;
6731
6732         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6733         /*
6734          * Always mark UFFDIO_COPY page dirty; note that this may not be
6735          * extremely important for hugetlbfs for now since swapping is not
6736          * supported, but we should still be clear in that this page cannot be
6737          * thrown away at will, even if write bit not set.
6738          */
6739         _dst_pte = huge_pte_mkdirty(_dst_pte);
6740         _dst_pte = pte_mkyoung(_dst_pte);
6741
6742         if (wp_enabled)
6743                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6744
6745         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6746
6747         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6748
6749         /* No need to invalidate - it was non-present before */
6750         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6751
6752         spin_unlock(ptl);
6753         if (!is_continue)
6754                 folio_set_hugetlb_migratable(folio);
6755         if (vm_shared || is_continue)
6756                 folio_unlock(folio);
6757         ret = 0;
6758 out:
6759         return ret;
6760 out_release_unlock:
6761         spin_unlock(ptl);
6762         if (vm_shared || is_continue)
6763                 folio_unlock(folio);
6764 out_release_nounlock:
6765         if (!folio_in_pagecache)
6766                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6767         folio_put(folio);
6768         goto out;
6769 }
6770 #endif /* CONFIG_USERFAULTFD */
6771
6772 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6773                                       unsigned long address, unsigned int flags,
6774                                       unsigned int *page_mask)
6775 {
6776         struct hstate *h = hstate_vma(vma);
6777         struct mm_struct *mm = vma->vm_mm;
6778         unsigned long haddr = address & huge_page_mask(h);
6779         struct page *page = NULL;
6780         spinlock_t *ptl;
6781         pte_t *pte, entry;
6782         int ret;
6783
6784         hugetlb_vma_lock_read(vma);
6785         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6786         if (!pte)
6787                 goto out_unlock;
6788
6789         ptl = huge_pte_lock(h, mm, pte);
6790         entry = huge_ptep_get(pte);
6791         if (pte_present(entry)) {
6792                 page = pte_page(entry);
6793
6794                 if (!huge_pte_write(entry)) {
6795                         if (flags & FOLL_WRITE) {
6796                                 page = NULL;
6797                                 goto out;
6798                         }
6799
6800                         if (gup_must_unshare(vma, flags, page)) {
6801                                 /* Tell the caller to do unsharing */
6802                                 page = ERR_PTR(-EMLINK);
6803                                 goto out;
6804                         }
6805                 }
6806
6807                 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6808
6809                 /*
6810                  * Note that page may be a sub-page, and with vmemmap
6811                  * optimizations the page struct may be read only.
6812                  * try_grab_page() will increase the ref count on the
6813                  * head page, so this will be OK.
6814                  *
6815                  * try_grab_page() should always be able to get the page here,
6816                  * because we hold the ptl lock and have verified pte_present().
6817                  */
6818                 ret = try_grab_page(page, flags);
6819
6820                 if (WARN_ON_ONCE(ret)) {
6821                         page = ERR_PTR(ret);
6822                         goto out;
6823                 }
6824
6825                 *page_mask = (1U << huge_page_order(h)) - 1;
6826         }
6827 out:
6828         spin_unlock(ptl);
6829 out_unlock:
6830         hugetlb_vma_unlock_read(vma);
6831
6832         /*
6833          * Fixup retval for dump requests: if pagecache doesn't exist,
6834          * don't try to allocate a new page but just skip it.
6835          */
6836         if (!page && (flags & FOLL_DUMP) &&
6837             !hugetlbfs_pagecache_present(h, vma, address))
6838                 page = ERR_PTR(-EFAULT);
6839
6840         return page;
6841 }
6842
6843 long hugetlb_change_protection(struct vm_area_struct *vma,
6844                 unsigned long address, unsigned long end,
6845                 pgprot_t newprot, unsigned long cp_flags)
6846 {
6847         struct mm_struct *mm = vma->vm_mm;
6848         unsigned long start = address;
6849         pte_t *ptep;
6850         pte_t pte;
6851         struct hstate *h = hstate_vma(vma);
6852         long pages = 0, psize = huge_page_size(h);
6853         bool shared_pmd = false;
6854         struct mmu_notifier_range range;
6855         unsigned long last_addr_mask;
6856         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6857         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6858
6859         /*
6860          * In the case of shared PMDs, the area to flush could be beyond
6861          * start/end.  Set range.start/range.end to cover the maximum possible
6862          * range if PMD sharing is possible.
6863          */
6864         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6865                                 0, mm, start, end);
6866         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6867
6868         BUG_ON(address >= end);
6869         flush_cache_range(vma, range.start, range.end);
6870
6871         mmu_notifier_invalidate_range_start(&range);
6872         hugetlb_vma_lock_write(vma);
6873         i_mmap_lock_write(vma->vm_file->f_mapping);
6874         last_addr_mask = hugetlb_mask_last_page(h);
6875         for (; address < end; address += psize) {
6876                 spinlock_t *ptl;
6877                 ptep = hugetlb_walk(vma, address, psize);
6878                 if (!ptep) {
6879                         if (!uffd_wp) {
6880                                 address |= last_addr_mask;
6881                                 continue;
6882                         }
6883                         /*
6884                          * Userfaultfd wr-protect requires pgtable
6885                          * pre-allocations to install pte markers.
6886                          */
6887                         ptep = huge_pte_alloc(mm, vma, address, psize);
6888                         if (!ptep) {
6889                                 pages = -ENOMEM;
6890                                 break;
6891                         }
6892                 }
6893                 ptl = huge_pte_lock(h, mm, ptep);
6894                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6895                         /*
6896                          * When uffd-wp is enabled on the vma, unshare
6897                          * shouldn't happen at all.  Warn about it if it
6898                          * happened due to some reason.
6899                          */
6900                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6901                         pages++;
6902                         spin_unlock(ptl);
6903                         shared_pmd = true;
6904                         address |= last_addr_mask;
6905                         continue;
6906                 }
6907                 pte = huge_ptep_get(ptep);
6908                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6909                         /* Nothing to do. */
6910                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6911                         swp_entry_t entry = pte_to_swp_entry(pte);
6912                         struct page *page = pfn_swap_entry_to_page(entry);
6913                         pte_t newpte = pte;
6914
6915                         if (is_writable_migration_entry(entry)) {
6916                                 if (PageAnon(page))
6917                                         entry = make_readable_exclusive_migration_entry(
6918                                                                 swp_offset(entry));
6919                                 else
6920                                         entry = make_readable_migration_entry(
6921                                                                 swp_offset(entry));
6922                                 newpte = swp_entry_to_pte(entry);
6923                                 pages++;
6924                         }
6925
6926                         if (uffd_wp)
6927                                 newpte = pte_swp_mkuffd_wp(newpte);
6928                         else if (uffd_wp_resolve)
6929                                 newpte = pte_swp_clear_uffd_wp(newpte);
6930                         if (!pte_same(pte, newpte))
6931                                 set_huge_pte_at(mm, address, ptep, newpte, psize);
6932                 } else if (unlikely(is_pte_marker(pte))) {
6933                         /*
6934                          * Do nothing on a poison marker; page is
6935                          * corrupted, permissons do not apply.  Here
6936                          * pte_marker_uffd_wp()==true implies !poison
6937                          * because they're mutual exclusive.
6938                          */
6939                         if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6940                                 /* Safe to modify directly (non-present->none). */
6941                                 huge_pte_clear(mm, address, ptep, psize);
6942                 } else if (!huge_pte_none(pte)) {
6943                         pte_t old_pte;
6944                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6945
6946                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6947                         pte = huge_pte_modify(old_pte, newprot);
6948                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6949                         if (uffd_wp)
6950                                 pte = huge_pte_mkuffd_wp(pte);
6951                         else if (uffd_wp_resolve)
6952                                 pte = huge_pte_clear_uffd_wp(pte);
6953                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6954                         pages++;
6955                 } else {
6956                         /* None pte */
6957                         if (unlikely(uffd_wp))
6958                                 /* Safe to modify directly (none->non-present). */
6959                                 set_huge_pte_at(mm, address, ptep,
6960                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
6961                                                 psize);
6962                 }
6963                 spin_unlock(ptl);
6964         }
6965         /*
6966          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6967          * may have cleared our pud entry and done put_page on the page table:
6968          * once we release i_mmap_rwsem, another task can do the final put_page
6969          * and that page table be reused and filled with junk.  If we actually
6970          * did unshare a page of pmds, flush the range corresponding to the pud.
6971          */
6972         if (shared_pmd)
6973                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6974         else
6975                 flush_hugetlb_tlb_range(vma, start, end);
6976         /*
6977          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6978          * downgrading page table protection not changing it to point to a new
6979          * page.
6980          *
6981          * See Documentation/mm/mmu_notifier.rst
6982          */
6983         i_mmap_unlock_write(vma->vm_file->f_mapping);
6984         hugetlb_vma_unlock_write(vma);
6985         mmu_notifier_invalidate_range_end(&range);
6986
6987         return pages > 0 ? (pages << h->order) : pages;
6988 }
6989
6990 /* Return true if reservation was successful, false otherwise.  */
6991 bool hugetlb_reserve_pages(struct inode *inode,
6992                                         long from, long to,
6993                                         struct vm_area_struct *vma,
6994                                         vm_flags_t vm_flags)
6995 {
6996         long chg = -1, add = -1;
6997         struct hstate *h = hstate_inode(inode);
6998         struct hugepage_subpool *spool = subpool_inode(inode);
6999         struct resv_map *resv_map;
7000         struct hugetlb_cgroup *h_cg = NULL;
7001         long gbl_reserve, regions_needed = 0;
7002
7003         /* This should never happen */
7004         if (from > to) {
7005                 VM_WARN(1, "%s called with a negative range\n", __func__);
7006                 return false;
7007         }
7008
7009         /*
7010          * vma specific semaphore used for pmd sharing and fault/truncation
7011          * synchronization
7012          */
7013         hugetlb_vma_lock_alloc(vma);
7014
7015         /*
7016          * Only apply hugepage reservation if asked. At fault time, an
7017          * attempt will be made for VM_NORESERVE to allocate a page
7018          * without using reserves
7019          */
7020         if (vm_flags & VM_NORESERVE)
7021                 return true;
7022
7023         /*
7024          * Shared mappings base their reservation on the number of pages that
7025          * are already allocated on behalf of the file. Private mappings need
7026          * to reserve the full area even if read-only as mprotect() may be
7027          * called to make the mapping read-write. Assume !vma is a shm mapping
7028          */
7029         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7030                 /*
7031                  * resv_map can not be NULL as hugetlb_reserve_pages is only
7032                  * called for inodes for which resv_maps were created (see
7033                  * hugetlbfs_get_inode).
7034                  */
7035                 resv_map = inode_resv_map(inode);
7036
7037                 chg = region_chg(resv_map, from, to, &regions_needed);
7038         } else {
7039                 /* Private mapping. */
7040                 resv_map = resv_map_alloc();
7041                 if (!resv_map)
7042                         goto out_err;
7043
7044                 chg = to - from;
7045
7046                 set_vma_resv_map(vma, resv_map);
7047                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7048         }
7049
7050         if (chg < 0)
7051                 goto out_err;
7052
7053         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7054                                 chg * pages_per_huge_page(h), &h_cg) < 0)
7055                 goto out_err;
7056
7057         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7058                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7059                  * of the resv_map.
7060                  */
7061                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7062         }
7063
7064         /*
7065          * There must be enough pages in the subpool for the mapping. If
7066          * the subpool has a minimum size, there may be some global
7067          * reservations already in place (gbl_reserve).
7068          */
7069         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7070         if (gbl_reserve < 0)
7071                 goto out_uncharge_cgroup;
7072
7073         /*
7074          * Check enough hugepages are available for the reservation.
7075          * Hand the pages back to the subpool if there are not
7076          */
7077         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7078                 goto out_put_pages;
7079
7080         /*
7081          * Account for the reservations made. Shared mappings record regions
7082          * that have reservations as they are shared by multiple VMAs.
7083          * When the last VMA disappears, the region map says how much
7084          * the reservation was and the page cache tells how much of
7085          * the reservation was consumed. Private mappings are per-VMA and
7086          * only the consumed reservations are tracked. When the VMA
7087          * disappears, the original reservation is the VMA size and the
7088          * consumed reservations are stored in the map. Hence, nothing
7089          * else has to be done for private mappings here
7090          */
7091         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7092                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7093
7094                 if (unlikely(add < 0)) {
7095                         hugetlb_acct_memory(h, -gbl_reserve);
7096                         goto out_put_pages;
7097                 } else if (unlikely(chg > add)) {
7098                         /*
7099                          * pages in this range were added to the reserve
7100                          * map between region_chg and region_add.  This
7101                          * indicates a race with alloc_hugetlb_folio.  Adjust
7102                          * the subpool and reserve counts modified above
7103                          * based on the difference.
7104                          */
7105                         long rsv_adjust;
7106
7107                         /*
7108                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7109                          * reference to h_cg->css. See comment below for detail.
7110                          */
7111                         hugetlb_cgroup_uncharge_cgroup_rsvd(
7112                                 hstate_index(h),
7113                                 (chg - add) * pages_per_huge_page(h), h_cg);
7114
7115                         rsv_adjust = hugepage_subpool_put_pages(spool,
7116                                                                 chg - add);
7117                         hugetlb_acct_memory(h, -rsv_adjust);
7118                 } else if (h_cg) {
7119                         /*
7120                          * The file_regions will hold their own reference to
7121                          * h_cg->css. So we should release the reference held
7122                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7123                          * done.
7124                          */
7125                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7126                 }
7127         }
7128         return true;
7129
7130 out_put_pages:
7131         /* put back original number of pages, chg */
7132         (void)hugepage_subpool_put_pages(spool, chg);
7133 out_uncharge_cgroup:
7134         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7135                                             chg * pages_per_huge_page(h), h_cg);
7136 out_err:
7137         hugetlb_vma_lock_free(vma);
7138         if (!vma || vma->vm_flags & VM_MAYSHARE)
7139                 /* Only call region_abort if the region_chg succeeded but the
7140                  * region_add failed or didn't run.
7141                  */
7142                 if (chg >= 0 && add < 0)
7143                         region_abort(resv_map, from, to, regions_needed);
7144         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7145                 kref_put(&resv_map->refs, resv_map_release);
7146                 set_vma_resv_map(vma, NULL);
7147         }
7148         return false;
7149 }
7150
7151 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7152                                                                 long freed)
7153 {
7154         struct hstate *h = hstate_inode(inode);
7155         struct resv_map *resv_map = inode_resv_map(inode);
7156         long chg = 0;
7157         struct hugepage_subpool *spool = subpool_inode(inode);
7158         long gbl_reserve;
7159
7160         /*
7161          * Since this routine can be called in the evict inode path for all
7162          * hugetlbfs inodes, resv_map could be NULL.
7163          */
7164         if (resv_map) {
7165                 chg = region_del(resv_map, start, end);
7166                 /*
7167                  * region_del() can fail in the rare case where a region
7168                  * must be split and another region descriptor can not be
7169                  * allocated.  If end == LONG_MAX, it will not fail.
7170                  */
7171                 if (chg < 0)
7172                         return chg;
7173         }
7174
7175         spin_lock(&inode->i_lock);
7176         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7177         spin_unlock(&inode->i_lock);
7178
7179         /*
7180          * If the subpool has a minimum size, the number of global
7181          * reservations to be released may be adjusted.
7182          *
7183          * Note that !resv_map implies freed == 0. So (chg - freed)
7184          * won't go negative.
7185          */
7186         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7187         hugetlb_acct_memory(h, -gbl_reserve);
7188
7189         return 0;
7190 }
7191
7192 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7193 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7194                                 struct vm_area_struct *vma,
7195                                 unsigned long addr, pgoff_t idx)
7196 {
7197         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7198                                 svma->vm_start;
7199         unsigned long sbase = saddr & PUD_MASK;
7200         unsigned long s_end = sbase + PUD_SIZE;
7201
7202         /* Allow segments to share if only one is marked locked */
7203         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7204         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7205
7206         /*
7207          * match the virtual addresses, permission and the alignment of the
7208          * page table page.
7209          *
7210          * Also, vma_lock (vm_private_data) is required for sharing.
7211          */
7212         if (pmd_index(addr) != pmd_index(saddr) ||
7213             vm_flags != svm_flags ||
7214             !range_in_vma(svma, sbase, s_end) ||
7215             !svma->vm_private_data)
7216                 return 0;
7217
7218         return saddr;
7219 }
7220
7221 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7222 {
7223         unsigned long start = addr & PUD_MASK;
7224         unsigned long end = start + PUD_SIZE;
7225
7226 #ifdef CONFIG_USERFAULTFD
7227         if (uffd_disable_huge_pmd_share(vma))
7228                 return false;
7229 #endif
7230         /*
7231          * check on proper vm_flags and page table alignment
7232          */
7233         if (!(vma->vm_flags & VM_MAYSHARE))
7234                 return false;
7235         if (!vma->vm_private_data)      /* vma lock required for sharing */
7236                 return false;
7237         if (!range_in_vma(vma, start, end))
7238                 return false;
7239         return true;
7240 }
7241
7242 /*
7243  * Determine if start,end range within vma could be mapped by shared pmd.
7244  * If yes, adjust start and end to cover range associated with possible
7245  * shared pmd mappings.
7246  */
7247 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7248                                 unsigned long *start, unsigned long *end)
7249 {
7250         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7251                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7252
7253         /*
7254          * vma needs to span at least one aligned PUD size, and the range
7255          * must be at least partially within in.
7256          */
7257         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7258                 (*end <= v_start) || (*start >= v_end))
7259                 return;
7260
7261         /* Extend the range to be PUD aligned for a worst case scenario */
7262         if (*start > v_start)
7263                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7264
7265         if (*end < v_end)
7266                 *end = ALIGN(*end, PUD_SIZE);
7267 }
7268
7269 /*
7270  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7271  * and returns the corresponding pte. While this is not necessary for the
7272  * !shared pmd case because we can allocate the pmd later as well, it makes the
7273  * code much cleaner. pmd allocation is essential for the shared case because
7274  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7275  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7276  * bad pmd for sharing.
7277  */
7278 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7279                       unsigned long addr, pud_t *pud)
7280 {
7281         struct address_space *mapping = vma->vm_file->f_mapping;
7282         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7283                         vma->vm_pgoff;
7284         struct vm_area_struct *svma;
7285         unsigned long saddr;
7286         pte_t *spte = NULL;
7287         pte_t *pte;
7288
7289         i_mmap_lock_read(mapping);
7290         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7291                 if (svma == vma)
7292                         continue;
7293
7294                 saddr = page_table_shareable(svma, vma, addr, idx);
7295                 if (saddr) {
7296                         spte = hugetlb_walk(svma, saddr,
7297                                             vma_mmu_pagesize(svma));
7298                         if (spte) {
7299                                 get_page(virt_to_page(spte));
7300                                 break;
7301                         }
7302                 }
7303         }
7304
7305         if (!spte)
7306                 goto out;
7307
7308         spin_lock(&mm->page_table_lock);
7309         if (pud_none(*pud)) {
7310                 pud_populate(mm, pud,
7311                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7312                 mm_inc_nr_pmds(mm);
7313         } else {
7314                 put_page(virt_to_page(spte));
7315         }
7316         spin_unlock(&mm->page_table_lock);
7317 out:
7318         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7319         i_mmap_unlock_read(mapping);
7320         return pte;
7321 }
7322
7323 /*
7324  * unmap huge page backed by shared pte.
7325  *
7326  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7327  * indicated by page_count > 1, unmap is achieved by clearing pud and
7328  * decrementing the ref count. If count == 1, the pte page is not shared.
7329  *
7330  * Called with page table lock held.
7331  *
7332  * returns: 1 successfully unmapped a shared pte page
7333  *          0 the underlying pte page is not shared, or it is the last user
7334  */
7335 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7336                                         unsigned long addr, pte_t *ptep)
7337 {
7338         pgd_t *pgd = pgd_offset(mm, addr);
7339         p4d_t *p4d = p4d_offset(pgd, addr);
7340         pud_t *pud = pud_offset(p4d, addr);
7341
7342         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7343         hugetlb_vma_assert_locked(vma);
7344         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7345         if (page_count(virt_to_page(ptep)) == 1)
7346                 return 0;
7347
7348         pud_clear(pud);
7349         put_page(virt_to_page(ptep));
7350         mm_dec_nr_pmds(mm);
7351         return 1;
7352 }
7353
7354 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7355
7356 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7357                       unsigned long addr, pud_t *pud)
7358 {
7359         return NULL;
7360 }
7361
7362 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7363                                 unsigned long addr, pte_t *ptep)
7364 {
7365         return 0;
7366 }
7367
7368 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7369                                 unsigned long *start, unsigned long *end)
7370 {
7371 }
7372
7373 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7374 {
7375         return false;
7376 }
7377 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7378
7379 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7380 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7381                         unsigned long addr, unsigned long sz)
7382 {
7383         pgd_t *pgd;
7384         p4d_t *p4d;
7385         pud_t *pud;
7386         pte_t *pte = NULL;
7387
7388         pgd = pgd_offset(mm, addr);
7389         p4d = p4d_alloc(mm, pgd, addr);
7390         if (!p4d)
7391                 return NULL;
7392         pud = pud_alloc(mm, p4d, addr);
7393         if (pud) {
7394                 if (sz == PUD_SIZE) {
7395                         pte = (pte_t *)pud;
7396                 } else {
7397                         BUG_ON(sz != PMD_SIZE);
7398                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7399                                 pte = huge_pmd_share(mm, vma, addr, pud);
7400                         else
7401                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7402                 }
7403         }
7404
7405         if (pte) {
7406                 pte_t pteval = ptep_get_lockless(pte);
7407
7408                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7409         }
7410
7411         return pte;
7412 }
7413
7414 /*
7415  * huge_pte_offset() - Walk the page table to resolve the hugepage
7416  * entry at address @addr
7417  *
7418  * Return: Pointer to page table entry (PUD or PMD) for
7419  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7420  * size @sz doesn't match the hugepage size at this level of the page
7421  * table.
7422  */
7423 pte_t *huge_pte_offset(struct mm_struct *mm,
7424                        unsigned long addr, unsigned long sz)
7425 {
7426         pgd_t *pgd;
7427         p4d_t *p4d;
7428         pud_t *pud;
7429         pmd_t *pmd;
7430
7431         pgd = pgd_offset(mm, addr);
7432         if (!pgd_present(*pgd))
7433                 return NULL;
7434         p4d = p4d_offset(pgd, addr);
7435         if (!p4d_present(*p4d))
7436                 return NULL;
7437
7438         pud = pud_offset(p4d, addr);
7439         if (sz == PUD_SIZE)
7440                 /* must be pud huge, non-present or none */
7441                 return (pte_t *)pud;
7442         if (!pud_present(*pud))
7443                 return NULL;
7444         /* must have a valid entry and size to go further */
7445
7446         pmd = pmd_offset(pud, addr);
7447         /* must be pmd huge, non-present or none */
7448         return (pte_t *)pmd;
7449 }
7450
7451 /*
7452  * Return a mask that can be used to update an address to the last huge
7453  * page in a page table page mapping size.  Used to skip non-present
7454  * page table entries when linearly scanning address ranges.  Architectures
7455  * with unique huge page to page table relationships can define their own
7456  * version of this routine.
7457  */
7458 unsigned long hugetlb_mask_last_page(struct hstate *h)
7459 {
7460         unsigned long hp_size = huge_page_size(h);
7461
7462         if (hp_size == PUD_SIZE)
7463                 return P4D_SIZE - PUD_SIZE;
7464         else if (hp_size == PMD_SIZE)
7465                 return PUD_SIZE - PMD_SIZE;
7466         else
7467                 return 0UL;
7468 }
7469
7470 #else
7471
7472 /* See description above.  Architectures can provide their own version. */
7473 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7474 {
7475 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7476         if (huge_page_size(h) == PMD_SIZE)
7477                 return PUD_SIZE - PMD_SIZE;
7478 #endif
7479         return 0UL;
7480 }
7481
7482 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7483
7484 /*
7485  * These functions are overwritable if your architecture needs its own
7486  * behavior.
7487  */
7488 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7489 {
7490         bool ret = true;
7491
7492         spin_lock_irq(&hugetlb_lock);
7493         if (!folio_test_hugetlb(folio) ||
7494             !folio_test_hugetlb_migratable(folio) ||
7495             !folio_try_get(folio)) {
7496                 ret = false;
7497                 goto unlock;
7498         }
7499         folio_clear_hugetlb_migratable(folio);
7500         list_move_tail(&folio->lru, list);
7501 unlock:
7502         spin_unlock_irq(&hugetlb_lock);
7503         return ret;
7504 }
7505
7506 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7507 {
7508         int ret = 0;
7509
7510         *hugetlb = false;
7511         spin_lock_irq(&hugetlb_lock);
7512         if (folio_test_hugetlb(folio)) {
7513                 *hugetlb = true;
7514                 if (folio_test_hugetlb_freed(folio))
7515                         ret = 0;
7516                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7517                         ret = folio_try_get(folio);
7518                 else
7519                         ret = -EBUSY;
7520         }
7521         spin_unlock_irq(&hugetlb_lock);
7522         return ret;
7523 }
7524
7525 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7526                                 bool *migratable_cleared)
7527 {
7528         int ret;
7529
7530         spin_lock_irq(&hugetlb_lock);
7531         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7532         spin_unlock_irq(&hugetlb_lock);
7533         return ret;
7534 }
7535
7536 void folio_putback_active_hugetlb(struct folio *folio)
7537 {
7538         spin_lock_irq(&hugetlb_lock);
7539         folio_set_hugetlb_migratable(folio);
7540         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7541         spin_unlock_irq(&hugetlb_lock);
7542         folio_put(folio);
7543 }
7544
7545 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7546 {
7547         struct hstate *h = folio_hstate(old_folio);
7548
7549         hugetlb_cgroup_migrate(old_folio, new_folio);
7550         set_page_owner_migrate_reason(&new_folio->page, reason);
7551
7552         /*
7553          * transfer temporary state of the new hugetlb folio. This is
7554          * reverse to other transitions because the newpage is going to
7555          * be final while the old one will be freed so it takes over
7556          * the temporary status.
7557          *
7558          * Also note that we have to transfer the per-node surplus state
7559          * here as well otherwise the global surplus count will not match
7560          * the per-node's.
7561          */
7562         if (folio_test_hugetlb_temporary(new_folio)) {
7563                 int old_nid = folio_nid(old_folio);
7564                 int new_nid = folio_nid(new_folio);
7565
7566                 folio_set_hugetlb_temporary(old_folio);
7567                 folio_clear_hugetlb_temporary(new_folio);
7568
7569
7570                 /*
7571                  * There is no need to transfer the per-node surplus state
7572                  * when we do not cross the node.
7573                  */
7574                 if (new_nid == old_nid)
7575                         return;
7576                 spin_lock_irq(&hugetlb_lock);
7577                 if (h->surplus_huge_pages_node[old_nid]) {
7578                         h->surplus_huge_pages_node[old_nid]--;
7579                         h->surplus_huge_pages_node[new_nid]++;
7580                 }
7581                 spin_unlock_irq(&hugetlb_lock);
7582         }
7583 }
7584
7585 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7586                                    unsigned long start,
7587                                    unsigned long end)
7588 {
7589         struct hstate *h = hstate_vma(vma);
7590         unsigned long sz = huge_page_size(h);
7591         struct mm_struct *mm = vma->vm_mm;
7592         struct mmu_notifier_range range;
7593         unsigned long address;
7594         spinlock_t *ptl;
7595         pte_t *ptep;
7596
7597         if (!(vma->vm_flags & VM_MAYSHARE))
7598                 return;
7599
7600         if (start >= end)
7601                 return;
7602
7603         flush_cache_range(vma, start, end);
7604         /*
7605          * No need to call adjust_range_if_pmd_sharing_possible(), because
7606          * we have already done the PUD_SIZE alignment.
7607          */
7608         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7609                                 start, end);
7610         mmu_notifier_invalidate_range_start(&range);
7611         hugetlb_vma_lock_write(vma);
7612         i_mmap_lock_write(vma->vm_file->f_mapping);
7613         for (address = start; address < end; address += PUD_SIZE) {
7614                 ptep = hugetlb_walk(vma, address, sz);
7615                 if (!ptep)
7616                         continue;
7617                 ptl = huge_pte_lock(h, mm, ptep);
7618                 huge_pmd_unshare(mm, vma, address, ptep);
7619                 spin_unlock(ptl);
7620         }
7621         flush_hugetlb_tlb_range(vma, start, end);
7622         i_mmap_unlock_write(vma->vm_file->f_mapping);
7623         hugetlb_vma_unlock_write(vma);
7624         /*
7625          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7626          * Documentation/mm/mmu_notifier.rst.
7627          */
7628         mmu_notifier_invalidate_range_end(&range);
7629 }
7630
7631 /*
7632  * This function will unconditionally remove all the shared pmd pgtable entries
7633  * within the specific vma for a hugetlbfs memory range.
7634  */
7635 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7636 {
7637         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7638                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7639 }
7640
7641 #ifdef CONFIG_CMA
7642 static bool cma_reserve_called __initdata;
7643
7644 static int __init cmdline_parse_hugetlb_cma(char *p)
7645 {
7646         int nid, count = 0;
7647         unsigned long tmp;
7648         char *s = p;
7649
7650         while (*s) {
7651                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7652                         break;
7653
7654                 if (s[count] == ':') {
7655                         if (tmp >= MAX_NUMNODES)
7656                                 break;
7657                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7658
7659                         s += count + 1;
7660                         tmp = memparse(s, &s);
7661                         hugetlb_cma_size_in_node[nid] = tmp;
7662                         hugetlb_cma_size += tmp;
7663
7664                         /*
7665                          * Skip the separator if have one, otherwise
7666                          * break the parsing.
7667                          */
7668                         if (*s == ',')
7669                                 s++;
7670                         else
7671                                 break;
7672                 } else {
7673                         hugetlb_cma_size = memparse(p, &p);
7674                         break;
7675                 }
7676         }
7677
7678         return 0;
7679 }
7680
7681 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7682
7683 void __init hugetlb_cma_reserve(int order)
7684 {
7685         unsigned long size, reserved, per_node;
7686         bool node_specific_cma_alloc = false;
7687         int nid;
7688
7689         cma_reserve_called = true;
7690
7691         if (!hugetlb_cma_size)
7692                 return;
7693
7694         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7695                 if (hugetlb_cma_size_in_node[nid] == 0)
7696                         continue;
7697
7698                 if (!node_online(nid)) {
7699                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7700                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7701                         hugetlb_cma_size_in_node[nid] = 0;
7702                         continue;
7703                 }
7704
7705                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7706                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7707                                 nid, (PAGE_SIZE << order) / SZ_1M);
7708                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7709                         hugetlb_cma_size_in_node[nid] = 0;
7710                 } else {
7711                         node_specific_cma_alloc = true;
7712                 }
7713         }
7714
7715         /* Validate the CMA size again in case some invalid nodes specified. */
7716         if (!hugetlb_cma_size)
7717                 return;
7718
7719         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7720                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7721                         (PAGE_SIZE << order) / SZ_1M);
7722                 hugetlb_cma_size = 0;
7723                 return;
7724         }
7725
7726         if (!node_specific_cma_alloc) {
7727                 /*
7728                  * If 3 GB area is requested on a machine with 4 numa nodes,
7729                  * let's allocate 1 GB on first three nodes and ignore the last one.
7730                  */
7731                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7732                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7733                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7734         }
7735
7736         reserved = 0;
7737         for_each_online_node(nid) {
7738                 int res;
7739                 char name[CMA_MAX_NAME];
7740
7741                 if (node_specific_cma_alloc) {
7742                         if (hugetlb_cma_size_in_node[nid] == 0)
7743                                 continue;
7744
7745                         size = hugetlb_cma_size_in_node[nid];
7746                 } else {
7747                         size = min(per_node, hugetlb_cma_size - reserved);
7748                 }
7749
7750                 size = round_up(size, PAGE_SIZE << order);
7751
7752                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7753                 /*
7754                  * Note that 'order per bit' is based on smallest size that
7755                  * may be returned to CMA allocator in the case of
7756                  * huge page demotion.
7757                  */
7758                 res = cma_declare_contiguous_nid(0, size, 0,
7759                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7760                                                  0, false, name,
7761                                                  &hugetlb_cma[nid], nid);
7762                 if (res) {
7763                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7764                                 res, nid);
7765                         continue;
7766                 }
7767
7768                 reserved += size;
7769                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7770                         size / SZ_1M, nid);
7771
7772                 if (reserved >= hugetlb_cma_size)
7773                         break;
7774         }
7775
7776         if (!reserved)
7777                 /*
7778                  * hugetlb_cma_size is used to determine if allocations from
7779                  * cma are possible.  Set to zero if no cma regions are set up.
7780                  */
7781                 hugetlb_cma_size = 0;
7782 }
7783
7784 static void __init hugetlb_cma_check(void)
7785 {
7786         if (!hugetlb_cma_size || cma_reserve_called)
7787                 return;
7788
7789         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7790 }
7791
7792 #endif /* CONFIG_CMA */