GNU Linux-libre 6.4.15-gnu
[releases.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98                 unsigned long start, unsigned long end);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264 {
265         if (__vma_shareable_lock(vma)) {
266                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267
268                 down_read(&vma_lock->rw_sema);
269         }
270 }
271
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273 {
274         if (__vma_shareable_lock(vma)) {
275                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276
277                 up_read(&vma_lock->rw_sema);
278         }
279 }
280
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282 {
283         if (__vma_shareable_lock(vma)) {
284                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286                 down_write(&vma_lock->rw_sema);
287         }
288 }
289
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291 {
292         if (__vma_shareable_lock(vma)) {
293                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294
295                 up_write(&vma_lock->rw_sema);
296         }
297 }
298
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300 {
301         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302
303         if (!__vma_shareable_lock(vma))
304                 return 1;
305
306         return down_write_trylock(&vma_lock->rw_sema);
307 }
308
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310 {
311         if (__vma_shareable_lock(vma)) {
312                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314                 lockdep_assert_held(&vma_lock->rw_sema);
315         }
316 }
317
318 void hugetlb_vma_lock_release(struct kref *kref)
319 {
320         struct hugetlb_vma_lock *vma_lock = container_of(kref,
321                         struct hugetlb_vma_lock, refs);
322
323         kfree(vma_lock);
324 }
325
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327 {
328         struct vm_area_struct *vma = vma_lock->vma;
329
330         /*
331          * vma_lock structure may or not be released as a result of put,
332          * it certainly will no longer be attached to vma so clear pointer.
333          * Semaphore synchronizes access to vma_lock->vma field.
334          */
335         vma_lock->vma = NULL;
336         vma->vm_private_data = NULL;
337         up_write(&vma_lock->rw_sema);
338         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339 }
340
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342 {
343         if (__vma_shareable_lock(vma)) {
344                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345
346                 __hugetlb_vma_unlock_write_put(vma_lock);
347         }
348 }
349
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351 {
352         /*
353          * Only present in sharable vmas.
354          */
355         if (!vma || !__vma_shareable_lock(vma))
356                 return;
357
358         if (vma->vm_private_data) {
359                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360
361                 down_write(&vma_lock->rw_sema);
362                 __hugetlb_vma_unlock_write_put(vma_lock);
363         }
364 }
365
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367 {
368         struct hugetlb_vma_lock *vma_lock;
369
370         /* Only establish in (flags) sharable vmas */
371         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372                 return;
373
374         /* Should never get here with non-NULL vm_private_data */
375         if (vma->vm_private_data)
376                 return;
377
378         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379         if (!vma_lock) {
380                 /*
381                  * If we can not allocate structure, then vma can not
382                  * participate in pmd sharing.  This is only a possible
383                  * performance enhancement and memory saving issue.
384                  * However, the lock is also used to synchronize page
385                  * faults with truncation.  If the lock is not present,
386                  * unlikely races could leave pages in a file past i_size
387                  * until the file is removed.  Warn in the unlikely case of
388                  * allocation failure.
389                  */
390                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391                 return;
392         }
393
394         kref_init(&vma_lock->refs);
395         init_rwsem(&vma_lock->rw_sema);
396         vma_lock->vma = vma;
397         vma->vm_private_data = vma_lock;
398 }
399
400 /* Helper that removes a struct file_region from the resv_map cache and returns
401  * it for use.
402  */
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405 {
406         struct file_region *nrg;
407
408         VM_BUG_ON(resv->region_cache_count <= 0);
409
410         resv->region_cache_count--;
411         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412         list_del(&nrg->link);
413
414         nrg->from = from;
415         nrg->to = to;
416
417         return nrg;
418 }
419
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421                                               struct file_region *rg)
422 {
423 #ifdef CONFIG_CGROUP_HUGETLB
424         nrg->reservation_counter = rg->reservation_counter;
425         nrg->css = rg->css;
426         if (rg->css)
427                 css_get(rg->css);
428 #endif
429 }
430
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433                                                 struct hstate *h,
434                                                 struct resv_map *resv,
435                                                 struct file_region *nrg)
436 {
437 #ifdef CONFIG_CGROUP_HUGETLB
438         if (h_cg) {
439                 nrg->reservation_counter =
440                         &h_cg->rsvd_hugepage[hstate_index(h)];
441                 nrg->css = &h_cg->css;
442                 /*
443                  * The caller will hold exactly one h_cg->css reference for the
444                  * whole contiguous reservation region. But this area might be
445                  * scattered when there are already some file_regions reside in
446                  * it. As a result, many file_regions may share only one css
447                  * reference. In order to ensure that one file_region must hold
448                  * exactly one h_cg->css reference, we should do css_get for
449                  * each file_region and leave the reference held by caller
450                  * untouched.
451                  */
452                 css_get(&h_cg->css);
453                 if (!resv->pages_per_hpage)
454                         resv->pages_per_hpage = pages_per_huge_page(h);
455                 /* pages_per_hpage should be the same for all entries in
456                  * a resv_map.
457                  */
458                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459         } else {
460                 nrg->reservation_counter = NULL;
461                 nrg->css = NULL;
462         }
463 #endif
464 }
465
466 static void put_uncharge_info(struct file_region *rg)
467 {
468 #ifdef CONFIG_CGROUP_HUGETLB
469         if (rg->css)
470                 css_put(rg->css);
471 #endif
472 }
473
474 static bool has_same_uncharge_info(struct file_region *rg,
475                                    struct file_region *org)
476 {
477 #ifdef CONFIG_CGROUP_HUGETLB
478         return rg->reservation_counter == org->reservation_counter &&
479                rg->css == org->css;
480
481 #else
482         return true;
483 #endif
484 }
485
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487 {
488         struct file_region *nrg, *prg;
489
490         prg = list_prev_entry(rg, link);
491         if (&prg->link != &resv->regions && prg->to == rg->from &&
492             has_same_uncharge_info(prg, rg)) {
493                 prg->to = rg->to;
494
495                 list_del(&rg->link);
496                 put_uncharge_info(rg);
497                 kfree(rg);
498
499                 rg = prg;
500         }
501
502         nrg = list_next_entry(rg, link);
503         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504             has_same_uncharge_info(nrg, rg)) {
505                 nrg->from = rg->from;
506
507                 list_del(&rg->link);
508                 put_uncharge_info(rg);
509                 kfree(rg);
510         }
511 }
512
513 static inline long
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
516                      long *regions_needed)
517 {
518         struct file_region *nrg;
519
520         if (!regions_needed) {
521                 nrg = get_file_region_entry_from_cache(map, from, to);
522                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523                 list_add(&nrg->link, rg);
524                 coalesce_file_region(map, nrg);
525         } else
526                 *regions_needed += 1;
527
528         return to - from;
529 }
530
531 /*
532  * Must be called with resv->lock held.
533  *
534  * Calling this with regions_needed != NULL will count the number of pages
535  * to be added but will not modify the linked list. And regions_needed will
536  * indicate the number of file_regions needed in the cache to carry out to add
537  * the regions for this range.
538  */
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540                                      struct hugetlb_cgroup *h_cg,
541                                      struct hstate *h, long *regions_needed)
542 {
543         long add = 0;
544         struct list_head *head = &resv->regions;
545         long last_accounted_offset = f;
546         struct file_region *iter, *trg = NULL;
547         struct list_head *rg = NULL;
548
549         if (regions_needed)
550                 *regions_needed = 0;
551
552         /* In this loop, we essentially handle an entry for the range
553          * [last_accounted_offset, iter->from), at every iteration, with some
554          * bounds checking.
555          */
556         list_for_each_entry_safe(iter, trg, head, link) {
557                 /* Skip irrelevant regions that start before our range. */
558                 if (iter->from < f) {
559                         /* If this region ends after the last accounted offset,
560                          * then we need to update last_accounted_offset.
561                          */
562                         if (iter->to > last_accounted_offset)
563                                 last_accounted_offset = iter->to;
564                         continue;
565                 }
566
567                 /* When we find a region that starts beyond our range, we've
568                  * finished.
569                  */
570                 if (iter->from >= t) {
571                         rg = iter->link.prev;
572                         break;
573                 }
574
575                 /* Add an entry for last_accounted_offset -> iter->from, and
576                  * update last_accounted_offset.
577                  */
578                 if (iter->from > last_accounted_offset)
579                         add += hugetlb_resv_map_add(resv, iter->link.prev,
580                                                     last_accounted_offset,
581                                                     iter->from, h, h_cg,
582                                                     regions_needed);
583
584                 last_accounted_offset = iter->to;
585         }
586
587         /* Handle the case where our range extends beyond
588          * last_accounted_offset.
589          */
590         if (!rg)
591                 rg = head->prev;
592         if (last_accounted_offset < t)
593                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594                                             t, h, h_cg, regions_needed);
595
596         return add;
597 }
598
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600  */
601 static int allocate_file_region_entries(struct resv_map *resv,
602                                         int regions_needed)
603         __must_hold(&resv->lock)
604 {
605         LIST_HEAD(allocated_regions);
606         int to_allocate = 0, i = 0;
607         struct file_region *trg = NULL, *rg = NULL;
608
609         VM_BUG_ON(regions_needed < 0);
610
611         /*
612          * Check for sufficient descriptors in the cache to accommodate
613          * the number of in progress add operations plus regions_needed.
614          *
615          * This is a while loop because when we drop the lock, some other call
616          * to region_add or region_del may have consumed some region_entries,
617          * so we keep looping here until we finally have enough entries for
618          * (adds_in_progress + regions_needed).
619          */
620         while (resv->region_cache_count <
621                (resv->adds_in_progress + regions_needed)) {
622                 to_allocate = resv->adds_in_progress + regions_needed -
623                               resv->region_cache_count;
624
625                 /* At this point, we should have enough entries in the cache
626                  * for all the existing adds_in_progress. We should only be
627                  * needing to allocate for regions_needed.
628                  */
629                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630
631                 spin_unlock(&resv->lock);
632                 for (i = 0; i < to_allocate; i++) {
633                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634                         if (!trg)
635                                 goto out_of_memory;
636                         list_add(&trg->link, &allocated_regions);
637                 }
638
639                 spin_lock(&resv->lock);
640
641                 list_splice(&allocated_regions, &resv->region_cache);
642                 resv->region_cache_count += to_allocate;
643         }
644
645         return 0;
646
647 out_of_memory:
648         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649                 list_del(&rg->link);
650                 kfree(rg);
651         }
652         return -ENOMEM;
653 }
654
655 /*
656  * Add the huge page range represented by [f, t) to the reserve
657  * map.  Regions will be taken from the cache to fill in this range.
658  * Sufficient regions should exist in the cache due to the previous
659  * call to region_chg with the same range, but in some cases the cache will not
660  * have sufficient entries due to races with other code doing region_add or
661  * region_del.  The extra needed entries will be allocated.
662  *
663  * regions_needed is the out value provided by a previous call to region_chg.
664  *
665  * Return the number of new huge pages added to the map.  This number is greater
666  * than or equal to zero.  If file_region entries needed to be allocated for
667  * this operation and we were not able to allocate, it returns -ENOMEM.
668  * region_add of regions of length 1 never allocate file_regions and cannot
669  * fail; region_chg will always allocate at least 1 entry and a region_add for
670  * 1 page will only require at most 1 entry.
671  */
672 static long region_add(struct resv_map *resv, long f, long t,
673                        long in_regions_needed, struct hstate *h,
674                        struct hugetlb_cgroup *h_cg)
675 {
676         long add = 0, actual_regions_needed = 0;
677
678         spin_lock(&resv->lock);
679 retry:
680
681         /* Count how many regions are actually needed to execute this add. */
682         add_reservation_in_range(resv, f, t, NULL, NULL,
683                                  &actual_regions_needed);
684
685         /*
686          * Check for sufficient descriptors in the cache to accommodate
687          * this add operation. Note that actual_regions_needed may be greater
688          * than in_regions_needed, as the resv_map may have been modified since
689          * the region_chg call. In this case, we need to make sure that we
690          * allocate extra entries, such that we have enough for all the
691          * existing adds_in_progress, plus the excess needed for this
692          * operation.
693          */
694         if (actual_regions_needed > in_regions_needed &&
695             resv->region_cache_count <
696                     resv->adds_in_progress +
697                             (actual_regions_needed - in_regions_needed)) {
698                 /* region_add operation of range 1 should never need to
699                  * allocate file_region entries.
700                  */
701                 VM_BUG_ON(t - f <= 1);
702
703                 if (allocate_file_region_entries(
704                             resv, actual_regions_needed - in_regions_needed)) {
705                         return -ENOMEM;
706                 }
707
708                 goto retry;
709         }
710
711         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712
713         resv->adds_in_progress -= in_regions_needed;
714
715         spin_unlock(&resv->lock);
716         return add;
717 }
718
719 /*
720  * Examine the existing reserve map and determine how many
721  * huge pages in the specified range [f, t) are NOT currently
722  * represented.  This routine is called before a subsequent
723  * call to region_add that will actually modify the reserve
724  * map to add the specified range [f, t).  region_chg does
725  * not change the number of huge pages represented by the
726  * map.  A number of new file_region structures is added to the cache as a
727  * placeholder, for the subsequent region_add call to use. At least 1
728  * file_region structure is added.
729  *
730  * out_regions_needed is the number of regions added to the
731  * resv->adds_in_progress.  This value needs to be provided to a follow up call
732  * to region_add or region_abort for proper accounting.
733  *
734  * Returns the number of huge pages that need to be added to the existing
735  * reservation map for the range [f, t).  This number is greater or equal to
736  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
737  * is needed and can not be allocated.
738  */
739 static long region_chg(struct resv_map *resv, long f, long t,
740                        long *out_regions_needed)
741 {
742         long chg = 0;
743
744         spin_lock(&resv->lock);
745
746         /* Count how many hugepages in this range are NOT represented. */
747         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748                                        out_regions_needed);
749
750         if (*out_regions_needed == 0)
751                 *out_regions_needed = 1;
752
753         if (allocate_file_region_entries(resv, *out_regions_needed))
754                 return -ENOMEM;
755
756         resv->adds_in_progress += *out_regions_needed;
757
758         spin_unlock(&resv->lock);
759         return chg;
760 }
761
762 /*
763  * Abort the in progress add operation.  The adds_in_progress field
764  * of the resv_map keeps track of the operations in progress between
765  * calls to region_chg and region_add.  Operations are sometimes
766  * aborted after the call to region_chg.  In such cases, region_abort
767  * is called to decrement the adds_in_progress counter. regions_needed
768  * is the value returned by the region_chg call, it is used to decrement
769  * the adds_in_progress counter.
770  *
771  * NOTE: The range arguments [f, t) are not needed or used in this
772  * routine.  They are kept to make reading the calling code easier as
773  * arguments will match the associated region_chg call.
774  */
775 static void region_abort(struct resv_map *resv, long f, long t,
776                          long regions_needed)
777 {
778         spin_lock(&resv->lock);
779         VM_BUG_ON(!resv->region_cache_count);
780         resv->adds_in_progress -= regions_needed;
781         spin_unlock(&resv->lock);
782 }
783
784 /*
785  * Delete the specified range [f, t) from the reserve map.  If the
786  * t parameter is LONG_MAX, this indicates that ALL regions after f
787  * should be deleted.  Locate the regions which intersect [f, t)
788  * and either trim, delete or split the existing regions.
789  *
790  * Returns the number of huge pages deleted from the reserve map.
791  * In the normal case, the return value is zero or more.  In the
792  * case where a region must be split, a new region descriptor must
793  * be allocated.  If the allocation fails, -ENOMEM will be returned.
794  * NOTE: If the parameter t == LONG_MAX, then we will never split
795  * a region and possibly return -ENOMEM.  Callers specifying
796  * t == LONG_MAX do not need to check for -ENOMEM error.
797  */
798 static long region_del(struct resv_map *resv, long f, long t)
799 {
800         struct list_head *head = &resv->regions;
801         struct file_region *rg, *trg;
802         struct file_region *nrg = NULL;
803         long del = 0;
804
805 retry:
806         spin_lock(&resv->lock);
807         list_for_each_entry_safe(rg, trg, head, link) {
808                 /*
809                  * Skip regions before the range to be deleted.  file_region
810                  * ranges are normally of the form [from, to).  However, there
811                  * may be a "placeholder" entry in the map which is of the form
812                  * (from, to) with from == to.  Check for placeholder entries
813                  * at the beginning of the range to be deleted.
814                  */
815                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816                         continue;
817
818                 if (rg->from >= t)
819                         break;
820
821                 if (f > rg->from && t < rg->to) { /* Must split region */
822                         /*
823                          * Check for an entry in the cache before dropping
824                          * lock and attempting allocation.
825                          */
826                         if (!nrg &&
827                             resv->region_cache_count > resv->adds_in_progress) {
828                                 nrg = list_first_entry(&resv->region_cache,
829                                                         struct file_region,
830                                                         link);
831                                 list_del(&nrg->link);
832                                 resv->region_cache_count--;
833                         }
834
835                         if (!nrg) {
836                                 spin_unlock(&resv->lock);
837                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838                                 if (!nrg)
839                                         return -ENOMEM;
840                                 goto retry;
841                         }
842
843                         del += t - f;
844                         hugetlb_cgroup_uncharge_file_region(
845                                 resv, rg, t - f, false);
846
847                         /* New entry for end of split region */
848                         nrg->from = t;
849                         nrg->to = rg->to;
850
851                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852
853                         INIT_LIST_HEAD(&nrg->link);
854
855                         /* Original entry is trimmed */
856                         rg->to = f;
857
858                         list_add(&nrg->link, &rg->link);
859                         nrg = NULL;
860                         break;
861                 }
862
863                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864                         del += rg->to - rg->from;
865                         hugetlb_cgroup_uncharge_file_region(resv, rg,
866                                                             rg->to - rg->from, true);
867                         list_del(&rg->link);
868                         kfree(rg);
869                         continue;
870                 }
871
872                 if (f <= rg->from) {    /* Trim beginning of region */
873                         hugetlb_cgroup_uncharge_file_region(resv, rg,
874                                                             t - rg->from, false);
875
876                         del += t - rg->from;
877                         rg->from = t;
878                 } else {                /* Trim end of region */
879                         hugetlb_cgroup_uncharge_file_region(resv, rg,
880                                                             rg->to - f, false);
881
882                         del += rg->to - f;
883                         rg->to = f;
884                 }
885         }
886
887         spin_unlock(&resv->lock);
888         kfree(nrg);
889         return del;
890 }
891
892 /*
893  * A rare out of memory error was encountered which prevented removal of
894  * the reserve map region for a page.  The huge page itself was free'ed
895  * and removed from the page cache.  This routine will adjust the subpool
896  * usage count, and the global reserve count if needed.  By incrementing
897  * these counts, the reserve map entry which could not be deleted will
898  * appear as a "reserved" entry instead of simply dangling with incorrect
899  * counts.
900  */
901 void hugetlb_fix_reserve_counts(struct inode *inode)
902 {
903         struct hugepage_subpool *spool = subpool_inode(inode);
904         long rsv_adjust;
905         bool reserved = false;
906
907         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908         if (rsv_adjust > 0) {
909                 struct hstate *h = hstate_inode(inode);
910
911                 if (!hugetlb_acct_memory(h, 1))
912                         reserved = true;
913         } else if (!rsv_adjust) {
914                 reserved = true;
915         }
916
917         if (!reserved)
918                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919 }
920
921 /*
922  * Count and return the number of huge pages in the reserve map
923  * that intersect with the range [f, t).
924  */
925 static long region_count(struct resv_map *resv, long f, long t)
926 {
927         struct list_head *head = &resv->regions;
928         struct file_region *rg;
929         long chg = 0;
930
931         spin_lock(&resv->lock);
932         /* Locate each segment we overlap with, and count that overlap. */
933         list_for_each_entry(rg, head, link) {
934                 long seg_from;
935                 long seg_to;
936
937                 if (rg->to <= f)
938                         continue;
939                 if (rg->from >= t)
940                         break;
941
942                 seg_from = max(rg->from, f);
943                 seg_to = min(rg->to, t);
944
945                 chg += seg_to - seg_from;
946         }
947         spin_unlock(&resv->lock);
948
949         return chg;
950 }
951
952 /*
953  * Convert the address within this vma to the page offset within
954  * the mapping, in pagecache page units; huge pages here.
955  */
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957                         struct vm_area_struct *vma, unsigned long address)
958 {
959         return ((address - vma->vm_start) >> huge_page_shift(h)) +
960                         (vma->vm_pgoff >> huge_page_order(h));
961 }
962
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964                                      unsigned long address)
965 {
966         return vma_hugecache_offset(hstate_vma(vma), vma, address);
967 }
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
969
970 /*
971  * Return the size of the pages allocated when backing a VMA. In the majority
972  * cases this will be same size as used by the page table entries.
973  */
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975 {
976         if (vma->vm_ops && vma->vm_ops->pagesize)
977                 return vma->vm_ops->pagesize(vma);
978         return PAGE_SIZE;
979 }
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981
982 /*
983  * Return the page size being used by the MMU to back a VMA. In the majority
984  * of cases, the page size used by the kernel matches the MMU size. On
985  * architectures where it differs, an architecture-specific 'strong'
986  * version of this symbol is required.
987  */
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989 {
990         return vma_kernel_pagesize(vma);
991 }
992
993 /*
994  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
995  * bits of the reservation map pointer, which are always clear due to
996  * alignment.
997  */
998 #define HPAGE_RESV_OWNER    (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001
1002 /*
1003  * These helpers are used to track how many pages are reserved for
1004  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005  * is guaranteed to have their future faults succeed.
1006  *
1007  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008  * the reserve counters are updated with the hugetlb_lock held. It is safe
1009  * to reset the VMA at fork() time as it is not in use yet and there is no
1010  * chance of the global counters getting corrupted as a result of the values.
1011  *
1012  * The private mapping reservation is represented in a subtly different
1013  * manner to a shared mapping.  A shared mapping has a region map associated
1014  * with the underlying file, this region map represents the backing file
1015  * pages which have ever had a reservation assigned which this persists even
1016  * after the page is instantiated.  A private mapping has a region map
1017  * associated with the original mmap which is attached to all VMAs which
1018  * reference it, this region map represents those offsets which have consumed
1019  * reservation ie. where pages have been instantiated.
1020  */
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022 {
1023         return (unsigned long)vma->vm_private_data;
1024 }
1025
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027                                                         unsigned long value)
1028 {
1029         vma->vm_private_data = (void *)value;
1030 }
1031
1032 static void
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034                                           struct hugetlb_cgroup *h_cg,
1035                                           struct hstate *h)
1036 {
1037 #ifdef CONFIG_CGROUP_HUGETLB
1038         if (!h_cg || !h) {
1039                 resv_map->reservation_counter = NULL;
1040                 resv_map->pages_per_hpage = 0;
1041                 resv_map->css = NULL;
1042         } else {
1043                 resv_map->reservation_counter =
1044                         &h_cg->rsvd_hugepage[hstate_index(h)];
1045                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046                 resv_map->css = &h_cg->css;
1047         }
1048 #endif
1049 }
1050
1051 struct resv_map *resv_map_alloc(void)
1052 {
1053         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055
1056         if (!resv_map || !rg) {
1057                 kfree(resv_map);
1058                 kfree(rg);
1059                 return NULL;
1060         }
1061
1062         kref_init(&resv_map->refs);
1063         spin_lock_init(&resv_map->lock);
1064         INIT_LIST_HEAD(&resv_map->regions);
1065
1066         resv_map->adds_in_progress = 0;
1067         /*
1068          * Initialize these to 0. On shared mappings, 0's here indicate these
1069          * fields don't do cgroup accounting. On private mappings, these will be
1070          * re-initialized to the proper values, to indicate that hugetlb cgroup
1071          * reservations are to be un-charged from here.
1072          */
1073         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074
1075         INIT_LIST_HEAD(&resv_map->region_cache);
1076         list_add(&rg->link, &resv_map->region_cache);
1077         resv_map->region_cache_count = 1;
1078
1079         return resv_map;
1080 }
1081
1082 void resv_map_release(struct kref *ref)
1083 {
1084         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085         struct list_head *head = &resv_map->region_cache;
1086         struct file_region *rg, *trg;
1087
1088         /* Clear out any active regions before we release the map. */
1089         region_del(resv_map, 0, LONG_MAX);
1090
1091         /* ... and any entries left in the cache */
1092         list_for_each_entry_safe(rg, trg, head, link) {
1093                 list_del(&rg->link);
1094                 kfree(rg);
1095         }
1096
1097         VM_BUG_ON(resv_map->adds_in_progress);
1098
1099         kfree(resv_map);
1100 }
1101
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1103 {
1104         /*
1105          * At inode evict time, i_mapping may not point to the original
1106          * address space within the inode.  This original address space
1107          * contains the pointer to the resv_map.  So, always use the
1108          * address space embedded within the inode.
1109          * The VERY common case is inode->mapping == &inode->i_data but,
1110          * this may not be true for device special inodes.
1111          */
1112         return (struct resv_map *)(&inode->i_data)->private_data;
1113 }
1114
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116 {
1117         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118         if (vma->vm_flags & VM_MAYSHARE) {
1119                 struct address_space *mapping = vma->vm_file->f_mapping;
1120                 struct inode *inode = mapping->host;
1121
1122                 return inode_resv_map(inode);
1123
1124         } else {
1125                 return (struct resv_map *)(get_vma_private_data(vma) &
1126                                                         ~HPAGE_RESV_MASK);
1127         }
1128 }
1129
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131 {
1132         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134
1135         set_vma_private_data(vma, (get_vma_private_data(vma) &
1136                                 HPAGE_RESV_MASK) | (unsigned long)map);
1137 }
1138
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140 {
1141         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143
1144         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145 }
1146
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148 {
1149         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150
1151         return (get_vma_private_data(vma) & flag) != 0;
1152 }
1153
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155 {
1156         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157         /*
1158          * Clear vm_private_data
1159          * - For shared mappings this is a per-vma semaphore that may be
1160          *   allocated in a subsequent call to hugetlb_vm_op_open.
1161          *   Before clearing, make sure pointer is not associated with vma
1162          *   as this will leak the structure.  This is the case when called
1163          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164          *   been called to allocate a new structure.
1165          * - For MAP_PRIVATE mappings, this is the reserve map which does
1166          *   not apply to children.  Faults generated by the children are
1167          *   not guaranteed to succeed, even if read-only.
1168          */
1169         if (vma->vm_flags & VM_MAYSHARE) {
1170                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171
1172                 if (vma_lock && vma_lock->vma != vma)
1173                         vma->vm_private_data = NULL;
1174         } else
1175                 vma->vm_private_data = NULL;
1176 }
1177
1178 /*
1179  * Reset and decrement one ref on hugepage private reservation.
1180  * Called with mm->mmap_lock writer semaphore held.
1181  * This function should be only used by move_vma() and operate on
1182  * same sized vma. It should never come here with last ref on the
1183  * reservation.
1184  */
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186 {
1187         /*
1188          * Clear the old hugetlb private page reservation.
1189          * It has already been transferred to new_vma.
1190          *
1191          * During a mremap() operation of a hugetlb vma we call move_vma()
1192          * which copies vma into new_vma and unmaps vma. After the copy
1193          * operation both new_vma and vma share a reference to the resv_map
1194          * struct, and at that point vma is about to be unmapped. We don't
1195          * want to return the reservation to the pool at unmap of vma because
1196          * the reservation still lives on in new_vma, so simply decrement the
1197          * ref here and remove the resv_map reference from this vma.
1198          */
1199         struct resv_map *reservations = vma_resv_map(vma);
1200
1201         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203                 kref_put(&reservations->refs, resv_map_release);
1204         }
1205
1206         hugetlb_dup_vma_private(vma);
1207 }
1208
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211 {
1212         if (vma->vm_flags & VM_NORESERVE) {
1213                 /*
1214                  * This address is already reserved by other process(chg == 0),
1215                  * so, we should decrement reserved count. Without decrementing,
1216                  * reserve count remains after releasing inode, because this
1217                  * allocated page will go into page cache and is regarded as
1218                  * coming from reserved pool in releasing step.  Currently, we
1219                  * don't have any other solution to deal with this situation
1220                  * properly, so add work-around here.
1221                  */
1222                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223                         return true;
1224                 else
1225                         return false;
1226         }
1227
1228         /* Shared mappings always use reserves */
1229         if (vma->vm_flags & VM_MAYSHARE) {
1230                 /*
1231                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1232                  * be a region map for all pages.  The only situation where
1233                  * there is no region map is if a hole was punched via
1234                  * fallocate.  In this case, there really are no reserves to
1235                  * use.  This situation is indicated if chg != 0.
1236                  */
1237                 if (chg)
1238                         return false;
1239                 else
1240                         return true;
1241         }
1242
1243         /*
1244          * Only the process that called mmap() has reserves for
1245          * private mappings.
1246          */
1247         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248                 /*
1249                  * Like the shared case above, a hole punch or truncate
1250                  * could have been performed on the private mapping.
1251                  * Examine the value of chg to determine if reserves
1252                  * actually exist or were previously consumed.
1253                  * Very Subtle - The value of chg comes from a previous
1254                  * call to vma_needs_reserves().  The reserve map for
1255                  * private mappings has different (opposite) semantics
1256                  * than that of shared mappings.  vma_needs_reserves()
1257                  * has already taken this difference in semantics into
1258                  * account.  Therefore, the meaning of chg is the same
1259                  * as in the shared case above.  Code could easily be
1260                  * combined, but keeping it separate draws attention to
1261                  * subtle differences.
1262                  */
1263                 if (chg)
1264                         return false;
1265                 else
1266                         return true;
1267         }
1268
1269         return false;
1270 }
1271
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273 {
1274         int nid = folio_nid(folio);
1275
1276         lockdep_assert_held(&hugetlb_lock);
1277         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278
1279         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280         h->free_huge_pages++;
1281         h->free_huge_pages_node[nid]++;
1282         folio_set_hugetlb_freed(folio);
1283 }
1284
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1286                                                                 int nid)
1287 {
1288         struct folio *folio;
1289         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1290
1291         lockdep_assert_held(&hugetlb_lock);
1292         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293                 if (pin && !folio_is_longterm_pinnable(folio))
1294                         continue;
1295
1296                 if (folio_test_hwpoison(folio))
1297                         continue;
1298
1299                 list_move(&folio->lru, &h->hugepage_activelist);
1300                 folio_ref_unfreeze(folio, 1);
1301                 folio_clear_hugetlb_freed(folio);
1302                 h->free_huge_pages--;
1303                 h->free_huge_pages_node[nid]--;
1304                 return folio;
1305         }
1306
1307         return NULL;
1308 }
1309
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311                                                         int nid, nodemask_t *nmask)
1312 {
1313         unsigned int cpuset_mems_cookie;
1314         struct zonelist *zonelist;
1315         struct zone *zone;
1316         struct zoneref *z;
1317         int node = NUMA_NO_NODE;
1318
1319         zonelist = node_zonelist(nid, gfp_mask);
1320
1321 retry_cpuset:
1322         cpuset_mems_cookie = read_mems_allowed_begin();
1323         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324                 struct folio *folio;
1325
1326                 if (!cpuset_zone_allowed(zone, gfp_mask))
1327                         continue;
1328                 /*
1329                  * no need to ask again on the same node. Pool is node rather than
1330                  * zone aware
1331                  */
1332                 if (zone_to_nid(zone) == node)
1333                         continue;
1334                 node = zone_to_nid(zone);
1335
1336                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1337                 if (folio)
1338                         return folio;
1339         }
1340         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1341                 goto retry_cpuset;
1342
1343         return NULL;
1344 }
1345
1346 static unsigned long available_huge_pages(struct hstate *h)
1347 {
1348         return h->free_huge_pages - h->resv_huge_pages;
1349 }
1350
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352                                 struct vm_area_struct *vma,
1353                                 unsigned long address, int avoid_reserve,
1354                                 long chg)
1355 {
1356         struct folio *folio = NULL;
1357         struct mempolicy *mpol;
1358         gfp_t gfp_mask;
1359         nodemask_t *nodemask;
1360         int nid;
1361
1362         /*
1363          * A child process with MAP_PRIVATE mappings created by their parent
1364          * have no page reserves. This check ensures that reservations are
1365          * not "stolen". The child may still get SIGKILLed
1366          */
1367         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1368                 goto err;
1369
1370         /* If reserves cannot be used, ensure enough pages are in the pool */
1371         if (avoid_reserve && !available_huge_pages(h))
1372                 goto err;
1373
1374         gfp_mask = htlb_alloc_mask(h);
1375         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1376
1377         if (mpol_is_preferred_many(mpol)) {
1378                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1379                                                         nid, nodemask);
1380
1381                 /* Fallback to all nodes if page==NULL */
1382                 nodemask = NULL;
1383         }
1384
1385         if (!folio)
1386                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1387                                                         nid, nodemask);
1388
1389         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390                 folio_set_hugetlb_restore_reserve(folio);
1391                 h->resv_huge_pages--;
1392         }
1393
1394         mpol_cond_put(mpol);
1395         return folio;
1396
1397 err:
1398         return NULL;
1399 }
1400
1401 /*
1402  * common helper functions for hstate_next_node_to_{alloc|free}.
1403  * We may have allocated or freed a huge page based on a different
1404  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405  * be outside of *nodes_allowed.  Ensure that we use an allowed
1406  * node for alloc or free.
1407  */
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1409 {
1410         nid = next_node_in(nid, *nodes_allowed);
1411         VM_BUG_ON(nid >= MAX_NUMNODES);
1412
1413         return nid;
1414 }
1415
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1417 {
1418         if (!node_isset(nid, *nodes_allowed))
1419                 nid = next_node_allowed(nid, nodes_allowed);
1420         return nid;
1421 }
1422
1423 /*
1424  * returns the previously saved node ["this node"] from which to
1425  * allocate a persistent huge page for the pool and advance the
1426  * next node from which to allocate, handling wrap at end of node
1427  * mask.
1428  */
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430                                         nodemask_t *nodes_allowed)
1431 {
1432         int nid;
1433
1434         VM_BUG_ON(!nodes_allowed);
1435
1436         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1438
1439         return nid;
1440 }
1441
1442 /*
1443  * helper for remove_pool_huge_page() - return the previously saved
1444  * node ["this node"] from which to free a huge page.  Advance the
1445  * next node id whether or not we find a free huge page to free so
1446  * that the next attempt to free addresses the next node.
1447  */
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1449 {
1450         int nid;
1451
1452         VM_BUG_ON(!nodes_allowed);
1453
1454         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1456
1457         return nid;
1458 }
1459
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1461         for (nr_nodes = nodes_weight(*mask);                            \
1462                 nr_nodes > 0 &&                                         \
1463                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1464                 nr_nodes--)
1465
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1467         for (nr_nodes = nodes_weight(*mask);                            \
1468                 nr_nodes > 0 &&                                         \
1469                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1470                 nr_nodes--)
1471
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474                                         unsigned int order, bool demote)
1475 {
1476         int i;
1477         int nr_pages = 1 << order;
1478         struct page *p;
1479
1480         atomic_set(&folio->_entire_mapcount, 0);
1481         atomic_set(&folio->_nr_pages_mapped, 0);
1482         atomic_set(&folio->_pincount, 0);
1483
1484         for (i = 1; i < nr_pages; i++) {
1485                 p = folio_page(folio, i);
1486                 p->mapping = NULL;
1487                 clear_compound_head(p);
1488                 if (!demote)
1489                         set_page_refcounted(p);
1490         }
1491
1492         folio_set_order(folio, 0);
1493         __folio_clear_head(folio);
1494 }
1495
1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1497                                         unsigned int order)
1498 {
1499         __destroy_compound_gigantic_folio(folio, order, true);
1500 }
1501
1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503 static void destroy_compound_gigantic_folio(struct folio *folio,
1504                                         unsigned int order)
1505 {
1506         __destroy_compound_gigantic_folio(folio, order, false);
1507 }
1508
1509 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1510 {
1511         /*
1512          * If the page isn't allocated using the cma allocator,
1513          * cma_release() returns false.
1514          */
1515 #ifdef CONFIG_CMA
1516         int nid = folio_nid(folio);
1517
1518         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1519                 return;
1520 #endif
1521
1522         free_contig_range(folio_pfn(folio), 1 << order);
1523 }
1524
1525 #ifdef CONFIG_CONTIG_ALLOC
1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527                 int nid, nodemask_t *nodemask)
1528 {
1529         struct page *page;
1530         unsigned long nr_pages = pages_per_huge_page(h);
1531         if (nid == NUMA_NO_NODE)
1532                 nid = numa_mem_id();
1533
1534 #ifdef CONFIG_CMA
1535         {
1536                 int node;
1537
1538                 if (hugetlb_cma[nid]) {
1539                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540                                         huge_page_order(h), true);
1541                         if (page)
1542                                 return page_folio(page);
1543                 }
1544
1545                 if (!(gfp_mask & __GFP_THISNODE)) {
1546                         for_each_node_mask(node, *nodemask) {
1547                                 if (node == nid || !hugetlb_cma[node])
1548                                         continue;
1549
1550                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1551                                                 huge_page_order(h), true);
1552                                 if (page)
1553                                         return page_folio(page);
1554                         }
1555                 }
1556         }
1557 #endif
1558
1559         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560         return page ? page_folio(page) : NULL;
1561 }
1562
1563 #else /* !CONFIG_CONTIG_ALLOC */
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565                                         int nid, nodemask_t *nodemask)
1566 {
1567         return NULL;
1568 }
1569 #endif /* CONFIG_CONTIG_ALLOC */
1570
1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573                                         int nid, nodemask_t *nodemask)
1574 {
1575         return NULL;
1576 }
1577 static inline void free_gigantic_folio(struct folio *folio,
1578                                                 unsigned int order) { }
1579 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580                                                 unsigned int order) { }
1581 #endif
1582
1583 static inline void __clear_hugetlb_destructor(struct hstate *h,
1584                                                 struct folio *folio)
1585 {
1586         lockdep_assert_held(&hugetlb_lock);
1587
1588         /*
1589          * Very subtle
1590          *
1591          * For non-gigantic pages set the destructor to the normal compound
1592          * page dtor.  This is needed in case someone takes an additional
1593          * temporary ref to the page, and freeing is delayed until they drop
1594          * their reference.
1595          *
1596          * For gigantic pages set the destructor to the null dtor.  This
1597          * destructor will never be called.  Before freeing the gigantic
1598          * page destroy_compound_gigantic_folio will turn the folio into a
1599          * simple group of pages.  After this the destructor does not
1600          * apply.
1601          *
1602          */
1603         if (hstate_is_gigantic(h))
1604                 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1605         else
1606                 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1607 }
1608
1609 /*
1610  * Remove hugetlb folio from lists.
1611  * If vmemmap exists for the folio, update dtor so that the folio appears
1612  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1613  * to update dtor.
1614  *
1615  * A reference is held on the folio, except in the case of demote.
1616  *
1617  * Must be called with hugetlb lock held.
1618  */
1619 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1620                                                         bool adjust_surplus,
1621                                                         bool demote)
1622 {
1623         int nid = folio_nid(folio);
1624
1625         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1626         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1627
1628         lockdep_assert_held(&hugetlb_lock);
1629         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1630                 return;
1631
1632         list_del(&folio->lru);
1633
1634         if (folio_test_hugetlb_freed(folio)) {
1635                 h->free_huge_pages--;
1636                 h->free_huge_pages_node[nid]--;
1637         }
1638         if (adjust_surplus) {
1639                 h->surplus_huge_pages--;
1640                 h->surplus_huge_pages_node[nid]--;
1641         }
1642
1643         /*
1644          * We can only clear the hugetlb destructor after allocating vmemmap
1645          * pages.  Otherwise, someone (memory error handling) may try to write
1646          * to tail struct pages.
1647          */
1648         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1649                 __clear_hugetlb_destructor(h, folio);
1650
1651          /*
1652           * In the case of demote we do not ref count the page as it will soon
1653           * be turned into a page of smaller size.
1654          */
1655         if (!demote)
1656                 folio_ref_unfreeze(folio, 1);
1657
1658         h->nr_huge_pages--;
1659         h->nr_huge_pages_node[nid]--;
1660 }
1661
1662 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1663                                                         bool adjust_surplus)
1664 {
1665         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1666 }
1667
1668 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1669                                                         bool adjust_surplus)
1670 {
1671         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1672 }
1673
1674 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1675                              bool adjust_surplus)
1676 {
1677         int zeroed;
1678         int nid = folio_nid(folio);
1679
1680         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1681
1682         lockdep_assert_held(&hugetlb_lock);
1683
1684         INIT_LIST_HEAD(&folio->lru);
1685         h->nr_huge_pages++;
1686         h->nr_huge_pages_node[nid]++;
1687
1688         if (adjust_surplus) {
1689                 h->surplus_huge_pages++;
1690                 h->surplus_huge_pages_node[nid]++;
1691         }
1692
1693         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1694         folio_change_private(folio, NULL);
1695         /*
1696          * We have to set hugetlb_vmemmap_optimized again as above
1697          * folio_change_private(folio, NULL) cleared it.
1698          */
1699         folio_set_hugetlb_vmemmap_optimized(folio);
1700
1701         /*
1702          * This folio is about to be managed by the hugetlb allocator and
1703          * should have no users.  Drop our reference, and check for others
1704          * just in case.
1705          */
1706         zeroed = folio_put_testzero(folio);
1707         if (unlikely(!zeroed))
1708                 /*
1709                  * It is VERY unlikely soneone else has taken a ref on
1710                  * the page.  In this case, we simply return as the
1711                  * hugetlb destructor (free_huge_page) will be called
1712                  * when this other ref is dropped.
1713                  */
1714                 return;
1715
1716         arch_clear_hugepage_flags(&folio->page);
1717         enqueue_hugetlb_folio(h, folio);
1718 }
1719
1720 static void __update_and_free_hugetlb_folio(struct hstate *h,
1721                                                 struct folio *folio)
1722 {
1723         int i;
1724         struct page *subpage;
1725         bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1726
1727         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1728                 return;
1729
1730         /*
1731          * If we don't know which subpages are hwpoisoned, we can't free
1732          * the hugepage, so it's leaked intentionally.
1733          */
1734         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1735                 return;
1736
1737         if (hugetlb_vmemmap_restore(h, &folio->page)) {
1738                 spin_lock_irq(&hugetlb_lock);
1739                 /*
1740                  * If we cannot allocate vmemmap pages, just refuse to free the
1741                  * page and put the page back on the hugetlb free list and treat
1742                  * as a surplus page.
1743                  */
1744                 add_hugetlb_folio(h, folio, true);
1745                 spin_unlock_irq(&hugetlb_lock);
1746                 return;
1747         }
1748
1749         /*
1750          * Move PageHWPoison flag from head page to the raw error pages,
1751          * which makes any healthy subpages reusable.
1752          */
1753         if (unlikely(folio_test_hwpoison(folio)))
1754                 folio_clear_hugetlb_hwpoison(folio);
1755
1756         /*
1757          * If vmemmap pages were allocated above, then we need to clear the
1758          * hugetlb destructor under the hugetlb lock.
1759          */
1760         if (clear_dtor) {
1761                 spin_lock_irq(&hugetlb_lock);
1762                 __clear_hugetlb_destructor(h, folio);
1763                 spin_unlock_irq(&hugetlb_lock);
1764         }
1765
1766         for (i = 0; i < pages_per_huge_page(h); i++) {
1767                 subpage = folio_page(folio, i);
1768                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1769                                 1 << PG_referenced | 1 << PG_dirty |
1770                                 1 << PG_active | 1 << PG_private |
1771                                 1 << PG_writeback);
1772         }
1773
1774         /*
1775          * Non-gigantic pages demoted from CMA allocated gigantic pages
1776          * need to be given back to CMA in free_gigantic_folio.
1777          */
1778         if (hstate_is_gigantic(h) ||
1779             hugetlb_cma_folio(folio, huge_page_order(h))) {
1780                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1781                 free_gigantic_folio(folio, huge_page_order(h));
1782         } else {
1783                 __free_pages(&folio->page, huge_page_order(h));
1784         }
1785 }
1786
1787 /*
1788  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1789  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1790  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1791  * the vmemmap pages.
1792  *
1793  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1794  * freed and frees them one-by-one. As the page->mapping pointer is going
1795  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1796  * structure of a lockless linked list of huge pages to be freed.
1797  */
1798 static LLIST_HEAD(hpage_freelist);
1799
1800 static void free_hpage_workfn(struct work_struct *work)
1801 {
1802         struct llist_node *node;
1803
1804         node = llist_del_all(&hpage_freelist);
1805
1806         while (node) {
1807                 struct page *page;
1808                 struct hstate *h;
1809
1810                 page = container_of((struct address_space **)node,
1811                                      struct page, mapping);
1812                 node = node->next;
1813                 page->mapping = NULL;
1814                 /*
1815                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1816                  * is going to trigger because a previous call to
1817                  * remove_hugetlb_folio() will call folio_set_compound_dtor
1818                  * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1819                  * directly.
1820                  */
1821                 h = size_to_hstate(page_size(page));
1822
1823                 __update_and_free_hugetlb_folio(h, page_folio(page));
1824
1825                 cond_resched();
1826         }
1827 }
1828 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1829
1830 static inline void flush_free_hpage_work(struct hstate *h)
1831 {
1832         if (hugetlb_vmemmap_optimizable(h))
1833                 flush_work(&free_hpage_work);
1834 }
1835
1836 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1837                                  bool atomic)
1838 {
1839         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1840                 __update_and_free_hugetlb_folio(h, folio);
1841                 return;
1842         }
1843
1844         /*
1845          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1846          *
1847          * Only call schedule_work() if hpage_freelist is previously
1848          * empty. Otherwise, schedule_work() had been called but the workfn
1849          * hasn't retrieved the list yet.
1850          */
1851         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1852                 schedule_work(&free_hpage_work);
1853 }
1854
1855 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1856 {
1857         struct page *page, *t_page;
1858         struct folio *folio;
1859
1860         list_for_each_entry_safe(page, t_page, list, lru) {
1861                 folio = page_folio(page);
1862                 update_and_free_hugetlb_folio(h, folio, false);
1863                 cond_resched();
1864         }
1865 }
1866
1867 struct hstate *size_to_hstate(unsigned long size)
1868 {
1869         struct hstate *h;
1870
1871         for_each_hstate(h) {
1872                 if (huge_page_size(h) == size)
1873                         return h;
1874         }
1875         return NULL;
1876 }
1877
1878 void free_huge_page(struct page *page)
1879 {
1880         /*
1881          * Can't pass hstate in here because it is called from the
1882          * compound page destructor.
1883          */
1884         struct folio *folio = page_folio(page);
1885         struct hstate *h = folio_hstate(folio);
1886         int nid = folio_nid(folio);
1887         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1888         bool restore_reserve;
1889         unsigned long flags;
1890
1891         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1892         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1893
1894         hugetlb_set_folio_subpool(folio, NULL);
1895         if (folio_test_anon(folio))
1896                 __ClearPageAnonExclusive(&folio->page);
1897         folio->mapping = NULL;
1898         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1899         folio_clear_hugetlb_restore_reserve(folio);
1900
1901         /*
1902          * If HPageRestoreReserve was set on page, page allocation consumed a
1903          * reservation.  If the page was associated with a subpool, there
1904          * would have been a page reserved in the subpool before allocation
1905          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1906          * reservation, do not call hugepage_subpool_put_pages() as this will
1907          * remove the reserved page from the subpool.
1908          */
1909         if (!restore_reserve) {
1910                 /*
1911                  * A return code of zero implies that the subpool will be
1912                  * under its minimum size if the reservation is not restored
1913                  * after page is free.  Therefore, force restore_reserve
1914                  * operation.
1915                  */
1916                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1917                         restore_reserve = true;
1918         }
1919
1920         spin_lock_irqsave(&hugetlb_lock, flags);
1921         folio_clear_hugetlb_migratable(folio);
1922         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1923                                      pages_per_huge_page(h), folio);
1924         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1925                                           pages_per_huge_page(h), folio);
1926         if (restore_reserve)
1927                 h->resv_huge_pages++;
1928
1929         if (folio_test_hugetlb_temporary(folio)) {
1930                 remove_hugetlb_folio(h, folio, false);
1931                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1932                 update_and_free_hugetlb_folio(h, folio, true);
1933         } else if (h->surplus_huge_pages_node[nid]) {
1934                 /* remove the page from active list */
1935                 remove_hugetlb_folio(h, folio, true);
1936                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1937                 update_and_free_hugetlb_folio(h, folio, true);
1938         } else {
1939                 arch_clear_hugepage_flags(page);
1940                 enqueue_hugetlb_folio(h, folio);
1941                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1942         }
1943 }
1944
1945 /*
1946  * Must be called with the hugetlb lock held
1947  */
1948 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1949 {
1950         lockdep_assert_held(&hugetlb_lock);
1951         h->nr_huge_pages++;
1952         h->nr_huge_pages_node[nid]++;
1953 }
1954
1955 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1956 {
1957         hugetlb_vmemmap_optimize(h, &folio->page);
1958         INIT_LIST_HEAD(&folio->lru);
1959         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1960         hugetlb_set_folio_subpool(folio, NULL);
1961         set_hugetlb_cgroup(folio, NULL);
1962         set_hugetlb_cgroup_rsvd(folio, NULL);
1963 }
1964
1965 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1966 {
1967         __prep_new_hugetlb_folio(h, folio);
1968         spin_lock_irq(&hugetlb_lock);
1969         __prep_account_new_huge_page(h, nid);
1970         spin_unlock_irq(&hugetlb_lock);
1971 }
1972
1973 static bool __prep_compound_gigantic_folio(struct folio *folio,
1974                                         unsigned int order, bool demote)
1975 {
1976         int i, j;
1977         int nr_pages = 1 << order;
1978         struct page *p;
1979
1980         __folio_clear_reserved(folio);
1981         __folio_set_head(folio);
1982         /* we rely on prep_new_hugetlb_folio to set the destructor */
1983         folio_set_order(folio, order);
1984         for (i = 0; i < nr_pages; i++) {
1985                 p = folio_page(folio, i);
1986
1987                 /*
1988                  * For gigantic hugepages allocated through bootmem at
1989                  * boot, it's safer to be consistent with the not-gigantic
1990                  * hugepages and clear the PG_reserved bit from all tail pages
1991                  * too.  Otherwise drivers using get_user_pages() to access tail
1992                  * pages may get the reference counting wrong if they see
1993                  * PG_reserved set on a tail page (despite the head page not
1994                  * having PG_reserved set).  Enforcing this consistency between
1995                  * head and tail pages allows drivers to optimize away a check
1996                  * on the head page when they need know if put_page() is needed
1997                  * after get_user_pages().
1998                  */
1999                 if (i != 0)     /* head page cleared above */
2000                         __ClearPageReserved(p);
2001                 /*
2002                  * Subtle and very unlikely
2003                  *
2004                  * Gigantic 'page allocators' such as memblock or cma will
2005                  * return a set of pages with each page ref counted.  We need
2006                  * to turn this set of pages into a compound page with tail
2007                  * page ref counts set to zero.  Code such as speculative page
2008                  * cache adding could take a ref on a 'to be' tail page.
2009                  * We need to respect any increased ref count, and only set
2010                  * the ref count to zero if count is currently 1.  If count
2011                  * is not 1, we return an error.  An error return indicates
2012                  * the set of pages can not be converted to a gigantic page.
2013                  * The caller who allocated the pages should then discard the
2014                  * pages using the appropriate free interface.
2015                  *
2016                  * In the case of demote, the ref count will be zero.
2017                  */
2018                 if (!demote) {
2019                         if (!page_ref_freeze(p, 1)) {
2020                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2021                                 goto out_error;
2022                         }
2023                 } else {
2024                         VM_BUG_ON_PAGE(page_count(p), p);
2025                 }
2026                 if (i != 0)
2027                         set_compound_head(p, &folio->page);
2028         }
2029         atomic_set(&folio->_entire_mapcount, -1);
2030         atomic_set(&folio->_nr_pages_mapped, 0);
2031         atomic_set(&folio->_pincount, 0);
2032         return true;
2033
2034 out_error:
2035         /* undo page modifications made above */
2036         for (j = 0; j < i; j++) {
2037                 p = folio_page(folio, j);
2038                 if (j != 0)
2039                         clear_compound_head(p);
2040                 set_page_refcounted(p);
2041         }
2042         /* need to clear PG_reserved on remaining tail pages  */
2043         for (; j < nr_pages; j++) {
2044                 p = folio_page(folio, j);
2045                 __ClearPageReserved(p);
2046         }
2047         folio_set_order(folio, 0);
2048         __folio_clear_head(folio);
2049         return false;
2050 }
2051
2052 static bool prep_compound_gigantic_folio(struct folio *folio,
2053                                                         unsigned int order)
2054 {
2055         return __prep_compound_gigantic_folio(folio, order, false);
2056 }
2057
2058 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2059                                                         unsigned int order)
2060 {
2061         return __prep_compound_gigantic_folio(folio, order, true);
2062 }
2063
2064 /*
2065  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2066  * transparent huge pages.  See the PageTransHuge() documentation for more
2067  * details.
2068  */
2069 int PageHuge(struct page *page)
2070 {
2071         struct folio *folio;
2072
2073         if (!PageCompound(page))
2074                 return 0;
2075         folio = page_folio(page);
2076         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2077 }
2078 EXPORT_SYMBOL_GPL(PageHuge);
2079
2080 /**
2081  * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2082  * @folio: The folio to test.
2083  *
2084  * Context: Any context.  Caller should have a reference on the folio to
2085  * prevent it from being turned into a tail page.
2086  * Return: True for hugetlbfs folios, false for anon folios or folios
2087  * belonging to other filesystems.
2088  */
2089 bool folio_test_hugetlb(struct folio *folio)
2090 {
2091         if (!folio_test_large(folio))
2092                 return false;
2093
2094         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2095 }
2096 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2097
2098 /*
2099  * Find and lock address space (mapping) in write mode.
2100  *
2101  * Upon entry, the page is locked which means that page_mapping() is
2102  * stable.  Due to locking order, we can only trylock_write.  If we can
2103  * not get the lock, simply return NULL to caller.
2104  */
2105 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2106 {
2107         struct address_space *mapping = page_mapping(hpage);
2108
2109         if (!mapping)
2110                 return mapping;
2111
2112         if (i_mmap_trylock_write(mapping))
2113                 return mapping;
2114
2115         return NULL;
2116 }
2117
2118 pgoff_t hugetlb_basepage_index(struct page *page)
2119 {
2120         struct page *page_head = compound_head(page);
2121         pgoff_t index = page_index(page_head);
2122         unsigned long compound_idx;
2123
2124         if (compound_order(page_head) > MAX_ORDER)
2125                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2126         else
2127                 compound_idx = page - page_head;
2128
2129         return (index << compound_order(page_head)) + compound_idx;
2130 }
2131
2132 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2133                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2134                 nodemask_t *node_alloc_noretry)
2135 {
2136         int order = huge_page_order(h);
2137         struct page *page;
2138         bool alloc_try_hard = true;
2139         bool retry = true;
2140
2141         /*
2142          * By default we always try hard to allocate the page with
2143          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2144          * a loop (to adjust global huge page counts) and previous allocation
2145          * failed, do not continue to try hard on the same node.  Use the
2146          * node_alloc_noretry bitmap to manage this state information.
2147          */
2148         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2149                 alloc_try_hard = false;
2150         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2151         if (alloc_try_hard)
2152                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2153         if (nid == NUMA_NO_NODE)
2154                 nid = numa_mem_id();
2155 retry:
2156         page = __alloc_pages(gfp_mask, order, nid, nmask);
2157
2158         /* Freeze head page */
2159         if (page && !page_ref_freeze(page, 1)) {
2160                 __free_pages(page, order);
2161                 if (retry) {    /* retry once */
2162                         retry = false;
2163                         goto retry;
2164                 }
2165                 /* WOW!  twice in a row. */
2166                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2167                 page = NULL;
2168         }
2169
2170         /*
2171          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2172          * indicates an overall state change.  Clear bit so that we resume
2173          * normal 'try hard' allocations.
2174          */
2175         if (node_alloc_noretry && page && !alloc_try_hard)
2176                 node_clear(nid, *node_alloc_noretry);
2177
2178         /*
2179          * If we tried hard to get a page but failed, set bit so that
2180          * subsequent attempts will not try as hard until there is an
2181          * overall state change.
2182          */
2183         if (node_alloc_noretry && !page && alloc_try_hard)
2184                 node_set(nid, *node_alloc_noretry);
2185
2186         if (!page) {
2187                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2188                 return NULL;
2189         }
2190
2191         __count_vm_event(HTLB_BUDDY_PGALLOC);
2192         return page_folio(page);
2193 }
2194
2195 /*
2196  * Common helper to allocate a fresh hugetlb page. All specific allocators
2197  * should use this function to get new hugetlb pages
2198  *
2199  * Note that returned page is 'frozen':  ref count of head page and all tail
2200  * pages is zero.
2201  */
2202 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2203                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2204                 nodemask_t *node_alloc_noretry)
2205 {
2206         struct folio *folio;
2207         bool retry = false;
2208
2209 retry:
2210         if (hstate_is_gigantic(h))
2211                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2212         else
2213                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2214                                 nid, nmask, node_alloc_noretry);
2215         if (!folio)
2216                 return NULL;
2217         if (hstate_is_gigantic(h)) {
2218                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2219                         /*
2220                          * Rare failure to convert pages to compound page.
2221                          * Free pages and try again - ONCE!
2222                          */
2223                         free_gigantic_folio(folio, huge_page_order(h));
2224                         if (!retry) {
2225                                 retry = true;
2226                                 goto retry;
2227                         }
2228                         return NULL;
2229                 }
2230         }
2231         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2232
2233         return folio;
2234 }
2235
2236 /*
2237  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2238  * manner.
2239  */
2240 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2241                                 nodemask_t *node_alloc_noretry)
2242 {
2243         struct folio *folio;
2244         int nr_nodes, node;
2245         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2246
2247         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2248                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2249                                         nodes_allowed, node_alloc_noretry);
2250                 if (folio) {
2251                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
2252                         return 1;
2253                 }
2254         }
2255
2256         return 0;
2257 }
2258
2259 /*
2260  * Remove huge page from pool from next node to free.  Attempt to keep
2261  * persistent huge pages more or less balanced over allowed nodes.
2262  * This routine only 'removes' the hugetlb page.  The caller must make
2263  * an additional call to free the page to low level allocators.
2264  * Called with hugetlb_lock locked.
2265  */
2266 static struct page *remove_pool_huge_page(struct hstate *h,
2267                                                 nodemask_t *nodes_allowed,
2268                                                  bool acct_surplus)
2269 {
2270         int nr_nodes, node;
2271         struct page *page = NULL;
2272         struct folio *folio;
2273
2274         lockdep_assert_held(&hugetlb_lock);
2275         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2276                 /*
2277                  * If we're returning unused surplus pages, only examine
2278                  * nodes with surplus pages.
2279                  */
2280                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2281                     !list_empty(&h->hugepage_freelists[node])) {
2282                         page = list_entry(h->hugepage_freelists[node].next,
2283                                           struct page, lru);
2284                         folio = page_folio(page);
2285                         remove_hugetlb_folio(h, folio, acct_surplus);
2286                         break;
2287                 }
2288         }
2289
2290         return page;
2291 }
2292
2293 /*
2294  * Dissolve a given free hugepage into free buddy pages. This function does
2295  * nothing for in-use hugepages and non-hugepages.
2296  * This function returns values like below:
2297  *
2298  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2299  *           when the system is under memory pressure and the feature of
2300  *           freeing unused vmemmap pages associated with each hugetlb page
2301  *           is enabled.
2302  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2303  *           (allocated or reserved.)
2304  *       0:  successfully dissolved free hugepages or the page is not a
2305  *           hugepage (considered as already dissolved)
2306  */
2307 int dissolve_free_huge_page(struct page *page)
2308 {
2309         int rc = -EBUSY;
2310         struct folio *folio = page_folio(page);
2311
2312 retry:
2313         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2314         if (!folio_test_hugetlb(folio))
2315                 return 0;
2316
2317         spin_lock_irq(&hugetlb_lock);
2318         if (!folio_test_hugetlb(folio)) {
2319                 rc = 0;
2320                 goto out;
2321         }
2322
2323         if (!folio_ref_count(folio)) {
2324                 struct hstate *h = folio_hstate(folio);
2325                 if (!available_huge_pages(h))
2326                         goto out;
2327
2328                 /*
2329                  * We should make sure that the page is already on the free list
2330                  * when it is dissolved.
2331                  */
2332                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2333                         spin_unlock_irq(&hugetlb_lock);
2334                         cond_resched();
2335
2336                         /*
2337                          * Theoretically, we should return -EBUSY when we
2338                          * encounter this race. In fact, we have a chance
2339                          * to successfully dissolve the page if we do a
2340                          * retry. Because the race window is quite small.
2341                          * If we seize this opportunity, it is an optimization
2342                          * for increasing the success rate of dissolving page.
2343                          */
2344                         goto retry;
2345                 }
2346
2347                 remove_hugetlb_folio(h, folio, false);
2348                 h->max_huge_pages--;
2349                 spin_unlock_irq(&hugetlb_lock);
2350
2351                 /*
2352                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2353                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2354                  * free the page if it can not allocate required vmemmap.  We
2355                  * need to adjust max_huge_pages if the page is not freed.
2356                  * Attempt to allocate vmemmmap here so that we can take
2357                  * appropriate action on failure.
2358                  */
2359                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2360                 if (!rc) {
2361                         update_and_free_hugetlb_folio(h, folio, false);
2362                 } else {
2363                         spin_lock_irq(&hugetlb_lock);
2364                         add_hugetlb_folio(h, folio, false);
2365                         h->max_huge_pages++;
2366                         spin_unlock_irq(&hugetlb_lock);
2367                 }
2368
2369                 return rc;
2370         }
2371 out:
2372         spin_unlock_irq(&hugetlb_lock);
2373         return rc;
2374 }
2375
2376 /*
2377  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2378  * make specified memory blocks removable from the system.
2379  * Note that this will dissolve a free gigantic hugepage completely, if any
2380  * part of it lies within the given range.
2381  * Also note that if dissolve_free_huge_page() returns with an error, all
2382  * free hugepages that were dissolved before that error are lost.
2383  */
2384 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2385 {
2386         unsigned long pfn;
2387         struct page *page;
2388         int rc = 0;
2389         unsigned int order;
2390         struct hstate *h;
2391
2392         if (!hugepages_supported())
2393                 return rc;
2394
2395         order = huge_page_order(&default_hstate);
2396         for_each_hstate(h)
2397                 order = min(order, huge_page_order(h));
2398
2399         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2400                 page = pfn_to_page(pfn);
2401                 rc = dissolve_free_huge_page(page);
2402                 if (rc)
2403                         break;
2404         }
2405
2406         return rc;
2407 }
2408
2409 /*
2410  * Allocates a fresh surplus page from the page allocator.
2411  */
2412 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2413                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2414 {
2415         struct folio *folio = NULL;
2416
2417         if (hstate_is_gigantic(h))
2418                 return NULL;
2419
2420         spin_lock_irq(&hugetlb_lock);
2421         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2422                 goto out_unlock;
2423         spin_unlock_irq(&hugetlb_lock);
2424
2425         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2426         if (!folio)
2427                 return NULL;
2428
2429         spin_lock_irq(&hugetlb_lock);
2430         /*
2431          * We could have raced with the pool size change.
2432          * Double check that and simply deallocate the new page
2433          * if we would end up overcommiting the surpluses. Abuse
2434          * temporary page to workaround the nasty free_huge_page
2435          * codeflow
2436          */
2437         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2438                 folio_set_hugetlb_temporary(folio);
2439                 spin_unlock_irq(&hugetlb_lock);
2440                 free_huge_page(&folio->page);
2441                 return NULL;
2442         }
2443
2444         h->surplus_huge_pages++;
2445         h->surplus_huge_pages_node[folio_nid(folio)]++;
2446
2447 out_unlock:
2448         spin_unlock_irq(&hugetlb_lock);
2449
2450         return folio;
2451 }
2452
2453 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2454                                      int nid, nodemask_t *nmask)
2455 {
2456         struct folio *folio;
2457
2458         if (hstate_is_gigantic(h))
2459                 return NULL;
2460
2461         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2462         if (!folio)
2463                 return NULL;
2464
2465         /* fresh huge pages are frozen */
2466         folio_ref_unfreeze(folio, 1);
2467         /*
2468          * We do not account these pages as surplus because they are only
2469          * temporary and will be released properly on the last reference
2470          */
2471         folio_set_hugetlb_temporary(folio);
2472
2473         return folio;
2474 }
2475
2476 /*
2477  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2478  */
2479 static
2480 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2481                 struct vm_area_struct *vma, unsigned long addr)
2482 {
2483         struct folio *folio = NULL;
2484         struct mempolicy *mpol;
2485         gfp_t gfp_mask = htlb_alloc_mask(h);
2486         int nid;
2487         nodemask_t *nodemask;
2488
2489         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2490         if (mpol_is_preferred_many(mpol)) {
2491                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2492
2493                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2494                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2495
2496                 /* Fallback to all nodes if page==NULL */
2497                 nodemask = NULL;
2498         }
2499
2500         if (!folio)
2501                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2502         mpol_cond_put(mpol);
2503         return folio;
2504 }
2505
2506 /* folio migration callback function */
2507 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2508                 nodemask_t *nmask, gfp_t gfp_mask)
2509 {
2510         spin_lock_irq(&hugetlb_lock);
2511         if (available_huge_pages(h)) {
2512                 struct folio *folio;
2513
2514                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2515                                                 preferred_nid, nmask);
2516                 if (folio) {
2517                         spin_unlock_irq(&hugetlb_lock);
2518                         return folio;
2519                 }
2520         }
2521         spin_unlock_irq(&hugetlb_lock);
2522
2523         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2524 }
2525
2526 /* mempolicy aware migration callback */
2527 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2528                 unsigned long address)
2529 {
2530         struct mempolicy *mpol;
2531         nodemask_t *nodemask;
2532         struct folio *folio;
2533         gfp_t gfp_mask;
2534         int node;
2535
2536         gfp_mask = htlb_alloc_mask(h);
2537         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2538         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2539         mpol_cond_put(mpol);
2540
2541         return folio;
2542 }
2543
2544 /*
2545  * Increase the hugetlb pool such that it can accommodate a reservation
2546  * of size 'delta'.
2547  */
2548 static int gather_surplus_pages(struct hstate *h, long delta)
2549         __must_hold(&hugetlb_lock)
2550 {
2551         LIST_HEAD(surplus_list);
2552         struct folio *folio;
2553         struct page *page, *tmp;
2554         int ret;
2555         long i;
2556         long needed, allocated;
2557         bool alloc_ok = true;
2558
2559         lockdep_assert_held(&hugetlb_lock);
2560         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2561         if (needed <= 0) {
2562                 h->resv_huge_pages += delta;
2563                 return 0;
2564         }
2565
2566         allocated = 0;
2567
2568         ret = -ENOMEM;
2569 retry:
2570         spin_unlock_irq(&hugetlb_lock);
2571         for (i = 0; i < needed; i++) {
2572                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2573                                 NUMA_NO_NODE, NULL);
2574                 if (!folio) {
2575                         alloc_ok = false;
2576                         break;
2577                 }
2578                 list_add(&folio->lru, &surplus_list);
2579                 cond_resched();
2580         }
2581         allocated += i;
2582
2583         /*
2584          * After retaking hugetlb_lock, we need to recalculate 'needed'
2585          * because either resv_huge_pages or free_huge_pages may have changed.
2586          */
2587         spin_lock_irq(&hugetlb_lock);
2588         needed = (h->resv_huge_pages + delta) -
2589                         (h->free_huge_pages + allocated);
2590         if (needed > 0) {
2591                 if (alloc_ok)
2592                         goto retry;
2593                 /*
2594                  * We were not able to allocate enough pages to
2595                  * satisfy the entire reservation so we free what
2596                  * we've allocated so far.
2597                  */
2598                 goto free;
2599         }
2600         /*
2601          * The surplus_list now contains _at_least_ the number of extra pages
2602          * needed to accommodate the reservation.  Add the appropriate number
2603          * of pages to the hugetlb pool and free the extras back to the buddy
2604          * allocator.  Commit the entire reservation here to prevent another
2605          * process from stealing the pages as they are added to the pool but
2606          * before they are reserved.
2607          */
2608         needed += allocated;
2609         h->resv_huge_pages += delta;
2610         ret = 0;
2611
2612         /* Free the needed pages to the hugetlb pool */
2613         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2614                 if ((--needed) < 0)
2615                         break;
2616                 /* Add the page to the hugetlb allocator */
2617                 enqueue_hugetlb_folio(h, page_folio(page));
2618         }
2619 free:
2620         spin_unlock_irq(&hugetlb_lock);
2621
2622         /*
2623          * Free unnecessary surplus pages to the buddy allocator.
2624          * Pages have no ref count, call free_huge_page directly.
2625          */
2626         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2627                 free_huge_page(page);
2628         spin_lock_irq(&hugetlb_lock);
2629
2630         return ret;
2631 }
2632
2633 /*
2634  * This routine has two main purposes:
2635  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2636  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2637  *    to the associated reservation map.
2638  * 2) Free any unused surplus pages that may have been allocated to satisfy
2639  *    the reservation.  As many as unused_resv_pages may be freed.
2640  */
2641 static void return_unused_surplus_pages(struct hstate *h,
2642                                         unsigned long unused_resv_pages)
2643 {
2644         unsigned long nr_pages;
2645         struct page *page;
2646         LIST_HEAD(page_list);
2647
2648         lockdep_assert_held(&hugetlb_lock);
2649         /* Uncommit the reservation */
2650         h->resv_huge_pages -= unused_resv_pages;
2651
2652         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2653                 goto out;
2654
2655         /*
2656          * Part (or even all) of the reservation could have been backed
2657          * by pre-allocated pages. Only free surplus pages.
2658          */
2659         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2660
2661         /*
2662          * We want to release as many surplus pages as possible, spread
2663          * evenly across all nodes with memory. Iterate across these nodes
2664          * until we can no longer free unreserved surplus pages. This occurs
2665          * when the nodes with surplus pages have no free pages.
2666          * remove_pool_huge_page() will balance the freed pages across the
2667          * on-line nodes with memory and will handle the hstate accounting.
2668          */
2669         while (nr_pages--) {
2670                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2671                 if (!page)
2672                         goto out;
2673
2674                 list_add(&page->lru, &page_list);
2675         }
2676
2677 out:
2678         spin_unlock_irq(&hugetlb_lock);
2679         update_and_free_pages_bulk(h, &page_list);
2680         spin_lock_irq(&hugetlb_lock);
2681 }
2682
2683
2684 /*
2685  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2686  * are used by the huge page allocation routines to manage reservations.
2687  *
2688  * vma_needs_reservation is called to determine if the huge page at addr
2689  * within the vma has an associated reservation.  If a reservation is
2690  * needed, the value 1 is returned.  The caller is then responsible for
2691  * managing the global reservation and subpool usage counts.  After
2692  * the huge page has been allocated, vma_commit_reservation is called
2693  * to add the page to the reservation map.  If the page allocation fails,
2694  * the reservation must be ended instead of committed.  vma_end_reservation
2695  * is called in such cases.
2696  *
2697  * In the normal case, vma_commit_reservation returns the same value
2698  * as the preceding vma_needs_reservation call.  The only time this
2699  * is not the case is if a reserve map was changed between calls.  It
2700  * is the responsibility of the caller to notice the difference and
2701  * take appropriate action.
2702  *
2703  * vma_add_reservation is used in error paths where a reservation must
2704  * be restored when a newly allocated huge page must be freed.  It is
2705  * to be called after calling vma_needs_reservation to determine if a
2706  * reservation exists.
2707  *
2708  * vma_del_reservation is used in error paths where an entry in the reserve
2709  * map was created during huge page allocation and must be removed.  It is to
2710  * be called after calling vma_needs_reservation to determine if a reservation
2711  * exists.
2712  */
2713 enum vma_resv_mode {
2714         VMA_NEEDS_RESV,
2715         VMA_COMMIT_RESV,
2716         VMA_END_RESV,
2717         VMA_ADD_RESV,
2718         VMA_DEL_RESV,
2719 };
2720 static long __vma_reservation_common(struct hstate *h,
2721                                 struct vm_area_struct *vma, unsigned long addr,
2722                                 enum vma_resv_mode mode)
2723 {
2724         struct resv_map *resv;
2725         pgoff_t idx;
2726         long ret;
2727         long dummy_out_regions_needed;
2728
2729         resv = vma_resv_map(vma);
2730         if (!resv)
2731                 return 1;
2732
2733         idx = vma_hugecache_offset(h, vma, addr);
2734         switch (mode) {
2735         case VMA_NEEDS_RESV:
2736                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2737                 /* We assume that vma_reservation_* routines always operate on
2738                  * 1 page, and that adding to resv map a 1 page entry can only
2739                  * ever require 1 region.
2740                  */
2741                 VM_BUG_ON(dummy_out_regions_needed != 1);
2742                 break;
2743         case VMA_COMMIT_RESV:
2744                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2745                 /* region_add calls of range 1 should never fail. */
2746                 VM_BUG_ON(ret < 0);
2747                 break;
2748         case VMA_END_RESV:
2749                 region_abort(resv, idx, idx + 1, 1);
2750                 ret = 0;
2751                 break;
2752         case VMA_ADD_RESV:
2753                 if (vma->vm_flags & VM_MAYSHARE) {
2754                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2755                         /* region_add calls of range 1 should never fail. */
2756                         VM_BUG_ON(ret < 0);
2757                 } else {
2758                         region_abort(resv, idx, idx + 1, 1);
2759                         ret = region_del(resv, idx, idx + 1);
2760                 }
2761                 break;
2762         case VMA_DEL_RESV:
2763                 if (vma->vm_flags & VM_MAYSHARE) {
2764                         region_abort(resv, idx, idx + 1, 1);
2765                         ret = region_del(resv, idx, idx + 1);
2766                 } else {
2767                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2768                         /* region_add calls of range 1 should never fail. */
2769                         VM_BUG_ON(ret < 0);
2770                 }
2771                 break;
2772         default:
2773                 BUG();
2774         }
2775
2776         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2777                 return ret;
2778         /*
2779          * We know private mapping must have HPAGE_RESV_OWNER set.
2780          *
2781          * In most cases, reserves always exist for private mappings.
2782          * However, a file associated with mapping could have been
2783          * hole punched or truncated after reserves were consumed.
2784          * As subsequent fault on such a range will not use reserves.
2785          * Subtle - The reserve map for private mappings has the
2786          * opposite meaning than that of shared mappings.  If NO
2787          * entry is in the reserve map, it means a reservation exists.
2788          * If an entry exists in the reserve map, it means the
2789          * reservation has already been consumed.  As a result, the
2790          * return value of this routine is the opposite of the
2791          * value returned from reserve map manipulation routines above.
2792          */
2793         if (ret > 0)
2794                 return 0;
2795         if (ret == 0)
2796                 return 1;
2797         return ret;
2798 }
2799
2800 static long vma_needs_reservation(struct hstate *h,
2801                         struct vm_area_struct *vma, unsigned long addr)
2802 {
2803         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2804 }
2805
2806 static long vma_commit_reservation(struct hstate *h,
2807                         struct vm_area_struct *vma, unsigned long addr)
2808 {
2809         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2810 }
2811
2812 static void vma_end_reservation(struct hstate *h,
2813                         struct vm_area_struct *vma, unsigned long addr)
2814 {
2815         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2816 }
2817
2818 static long vma_add_reservation(struct hstate *h,
2819                         struct vm_area_struct *vma, unsigned long addr)
2820 {
2821         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2822 }
2823
2824 static long vma_del_reservation(struct hstate *h,
2825                         struct vm_area_struct *vma, unsigned long addr)
2826 {
2827         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2828 }
2829
2830 /*
2831  * This routine is called to restore reservation information on error paths.
2832  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2833  * and the hugetlb mutex should remain held when calling this routine.
2834  *
2835  * It handles two specific cases:
2836  * 1) A reservation was in place and the folio consumed the reservation.
2837  *    hugetlb_restore_reserve is set in the folio.
2838  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2839  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2840  *
2841  * In case 1, free_huge_page later in the error path will increment the
2842  * global reserve count.  But, free_huge_page does not have enough context
2843  * to adjust the reservation map.  This case deals primarily with private
2844  * mappings.  Adjust the reserve map here to be consistent with global
2845  * reserve count adjustments to be made by free_huge_page.  Make sure the
2846  * reserve map indicates there is a reservation present.
2847  *
2848  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2849  */
2850 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2851                         unsigned long address, struct folio *folio)
2852 {
2853         long rc = vma_needs_reservation(h, vma, address);
2854
2855         if (folio_test_hugetlb_restore_reserve(folio)) {
2856                 if (unlikely(rc < 0))
2857                         /*
2858                          * Rare out of memory condition in reserve map
2859                          * manipulation.  Clear hugetlb_restore_reserve so
2860                          * that global reserve count will not be incremented
2861                          * by free_huge_page.  This will make it appear
2862                          * as though the reservation for this folio was
2863                          * consumed.  This may prevent the task from
2864                          * faulting in the folio at a later time.  This
2865                          * is better than inconsistent global huge page
2866                          * accounting of reserve counts.
2867                          */
2868                         folio_clear_hugetlb_restore_reserve(folio);
2869                 else if (rc)
2870                         (void)vma_add_reservation(h, vma, address);
2871                 else
2872                         vma_end_reservation(h, vma, address);
2873         } else {
2874                 if (!rc) {
2875                         /*
2876                          * This indicates there is an entry in the reserve map
2877                          * not added by alloc_hugetlb_folio.  We know it was added
2878                          * before the alloc_hugetlb_folio call, otherwise
2879                          * hugetlb_restore_reserve would be set on the folio.
2880                          * Remove the entry so that a subsequent allocation
2881                          * does not consume a reservation.
2882                          */
2883                         rc = vma_del_reservation(h, vma, address);
2884                         if (rc < 0)
2885                                 /*
2886                                  * VERY rare out of memory condition.  Since
2887                                  * we can not delete the entry, set
2888                                  * hugetlb_restore_reserve so that the reserve
2889                                  * count will be incremented when the folio
2890                                  * is freed.  This reserve will be consumed
2891                                  * on a subsequent allocation.
2892                                  */
2893                                 folio_set_hugetlb_restore_reserve(folio);
2894                 } else if (rc < 0) {
2895                         /*
2896                          * Rare out of memory condition from
2897                          * vma_needs_reservation call.  Memory allocation is
2898                          * only attempted if a new entry is needed.  Therefore,
2899                          * this implies there is not an entry in the
2900                          * reserve map.
2901                          *
2902                          * For shared mappings, no entry in the map indicates
2903                          * no reservation.  We are done.
2904                          */
2905                         if (!(vma->vm_flags & VM_MAYSHARE))
2906                                 /*
2907                                  * For private mappings, no entry indicates
2908                                  * a reservation is present.  Since we can
2909                                  * not add an entry, set hugetlb_restore_reserve
2910                                  * on the folio so reserve count will be
2911                                  * incremented when freed.  This reserve will
2912                                  * be consumed on a subsequent allocation.
2913                                  */
2914                                 folio_set_hugetlb_restore_reserve(folio);
2915                 } else
2916                         /*
2917                          * No reservation present, do nothing
2918                          */
2919                          vma_end_reservation(h, vma, address);
2920         }
2921 }
2922
2923 /*
2924  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2925  * the old one
2926  * @h: struct hstate old page belongs to
2927  * @old_folio: Old folio to dissolve
2928  * @list: List to isolate the page in case we need to
2929  * Returns 0 on success, otherwise negated error.
2930  */
2931 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2932                         struct folio *old_folio, struct list_head *list)
2933 {
2934         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2935         int nid = folio_nid(old_folio);
2936         struct folio *new_folio;
2937         int ret = 0;
2938
2939         /*
2940          * Before dissolving the folio, we need to allocate a new one for the
2941          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2942          * by doing everything but actually updating counters and adding to
2943          * the pool.  This simplifies and let us do most of the processing
2944          * under the lock.
2945          */
2946         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2947         if (!new_folio)
2948                 return -ENOMEM;
2949         __prep_new_hugetlb_folio(h, new_folio);
2950
2951 retry:
2952         spin_lock_irq(&hugetlb_lock);
2953         if (!folio_test_hugetlb(old_folio)) {
2954                 /*
2955                  * Freed from under us. Drop new_folio too.
2956                  */
2957                 goto free_new;
2958         } else if (folio_ref_count(old_folio)) {
2959                 bool isolated;
2960
2961                 /*
2962                  * Someone has grabbed the folio, try to isolate it here.
2963                  * Fail with -EBUSY if not possible.
2964                  */
2965                 spin_unlock_irq(&hugetlb_lock);
2966                 isolated = isolate_hugetlb(old_folio, list);
2967                 ret = isolated ? 0 : -EBUSY;
2968                 spin_lock_irq(&hugetlb_lock);
2969                 goto free_new;
2970         } else if (!folio_test_hugetlb_freed(old_folio)) {
2971                 /*
2972                  * Folio's refcount is 0 but it has not been enqueued in the
2973                  * freelist yet. Race window is small, so we can succeed here if
2974                  * we retry.
2975                  */
2976                 spin_unlock_irq(&hugetlb_lock);
2977                 cond_resched();
2978                 goto retry;
2979         } else {
2980                 /*
2981                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2982                  * the freelist and decrease the counters. These will be
2983                  * incremented again when calling __prep_account_new_huge_page()
2984                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2985                  * remain stable since this happens under the lock.
2986                  */
2987                 remove_hugetlb_folio(h, old_folio, false);
2988
2989                 /*
2990                  * Ref count on new_folio is already zero as it was dropped
2991                  * earlier.  It can be directly added to the pool free list.
2992                  */
2993                 __prep_account_new_huge_page(h, nid);
2994                 enqueue_hugetlb_folio(h, new_folio);
2995
2996                 /*
2997                  * Folio has been replaced, we can safely free the old one.
2998                  */
2999                 spin_unlock_irq(&hugetlb_lock);
3000                 update_and_free_hugetlb_folio(h, old_folio, false);
3001         }
3002
3003         return ret;
3004
3005 free_new:
3006         spin_unlock_irq(&hugetlb_lock);
3007         /* Folio has a zero ref count, but needs a ref to be freed */
3008         folio_ref_unfreeze(new_folio, 1);
3009         update_and_free_hugetlb_folio(h, new_folio, false);
3010
3011         return ret;
3012 }
3013
3014 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3015 {
3016         struct hstate *h;
3017         struct folio *folio = page_folio(page);
3018         int ret = -EBUSY;
3019
3020         /*
3021          * The page might have been dissolved from under our feet, so make sure
3022          * to carefully check the state under the lock.
3023          * Return success when racing as if we dissolved the page ourselves.
3024          */
3025         spin_lock_irq(&hugetlb_lock);
3026         if (folio_test_hugetlb(folio)) {
3027                 h = folio_hstate(folio);
3028         } else {
3029                 spin_unlock_irq(&hugetlb_lock);
3030                 return 0;
3031         }
3032         spin_unlock_irq(&hugetlb_lock);
3033
3034         /*
3035          * Fence off gigantic pages as there is a cyclic dependency between
3036          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3037          * of bailing out right away without further retrying.
3038          */
3039         if (hstate_is_gigantic(h))
3040                 return -ENOMEM;
3041
3042         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3043                 ret = 0;
3044         else if (!folio_ref_count(folio))
3045                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3046
3047         return ret;
3048 }
3049
3050 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3051                                     unsigned long addr, int avoid_reserve)
3052 {
3053         struct hugepage_subpool *spool = subpool_vma(vma);
3054         struct hstate *h = hstate_vma(vma);
3055         struct folio *folio;
3056         long map_chg, map_commit;
3057         long gbl_chg;
3058         int ret, idx;
3059         struct hugetlb_cgroup *h_cg = NULL;
3060         bool deferred_reserve;
3061
3062         idx = hstate_index(h);
3063         /*
3064          * Examine the region/reserve map to determine if the process
3065          * has a reservation for the page to be allocated.  A return
3066          * code of zero indicates a reservation exists (no change).
3067          */
3068         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3069         if (map_chg < 0)
3070                 return ERR_PTR(-ENOMEM);
3071
3072         /*
3073          * Processes that did not create the mapping will have no
3074          * reserves as indicated by the region/reserve map. Check
3075          * that the allocation will not exceed the subpool limit.
3076          * Allocations for MAP_NORESERVE mappings also need to be
3077          * checked against any subpool limit.
3078          */
3079         if (map_chg || avoid_reserve) {
3080                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3081                 if (gbl_chg < 0) {
3082                         vma_end_reservation(h, vma, addr);
3083                         return ERR_PTR(-ENOSPC);
3084                 }
3085
3086                 /*
3087                  * Even though there was no reservation in the region/reserve
3088                  * map, there could be reservations associated with the
3089                  * subpool that can be used.  This would be indicated if the
3090                  * return value of hugepage_subpool_get_pages() is zero.
3091                  * However, if avoid_reserve is specified we still avoid even
3092                  * the subpool reservations.
3093                  */
3094                 if (avoid_reserve)
3095                         gbl_chg = 1;
3096         }
3097
3098         /* If this allocation is not consuming a reservation, charge it now.
3099          */
3100         deferred_reserve = map_chg || avoid_reserve;
3101         if (deferred_reserve) {
3102                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3103                         idx, pages_per_huge_page(h), &h_cg);
3104                 if (ret)
3105                         goto out_subpool_put;
3106         }
3107
3108         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3109         if (ret)
3110                 goto out_uncharge_cgroup_reservation;
3111
3112         spin_lock_irq(&hugetlb_lock);
3113         /*
3114          * glb_chg is passed to indicate whether or not a page must be taken
3115          * from the global free pool (global change).  gbl_chg == 0 indicates
3116          * a reservation exists for the allocation.
3117          */
3118         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3119         if (!folio) {
3120                 spin_unlock_irq(&hugetlb_lock);
3121                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3122                 if (!folio)
3123                         goto out_uncharge_cgroup;
3124                 spin_lock_irq(&hugetlb_lock);
3125                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3126                         folio_set_hugetlb_restore_reserve(folio);
3127                         h->resv_huge_pages--;
3128                 }
3129                 list_add(&folio->lru, &h->hugepage_activelist);
3130                 folio_ref_unfreeze(folio, 1);
3131                 /* Fall through */
3132         }
3133
3134         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3135         /* If allocation is not consuming a reservation, also store the
3136          * hugetlb_cgroup pointer on the page.
3137          */
3138         if (deferred_reserve) {
3139                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3140                                                   h_cg, folio);
3141         }
3142
3143         spin_unlock_irq(&hugetlb_lock);
3144
3145         hugetlb_set_folio_subpool(folio, spool);
3146
3147         map_commit = vma_commit_reservation(h, vma, addr);
3148         if (unlikely(map_chg > map_commit)) {
3149                 /*
3150                  * The page was added to the reservation map between
3151                  * vma_needs_reservation and vma_commit_reservation.
3152                  * This indicates a race with hugetlb_reserve_pages.
3153                  * Adjust for the subpool count incremented above AND
3154                  * in hugetlb_reserve_pages for the same page.  Also,
3155                  * the reservation count added in hugetlb_reserve_pages
3156                  * no longer applies.
3157                  */
3158                 long rsv_adjust;
3159
3160                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3161                 hugetlb_acct_memory(h, -rsv_adjust);
3162                 if (deferred_reserve)
3163                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3164                                         pages_per_huge_page(h), folio);
3165         }
3166         return folio;
3167
3168 out_uncharge_cgroup:
3169         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3170 out_uncharge_cgroup_reservation:
3171         if (deferred_reserve)
3172                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3173                                                     h_cg);
3174 out_subpool_put:
3175         if (map_chg || avoid_reserve)
3176                 hugepage_subpool_put_pages(spool, 1);
3177         vma_end_reservation(h, vma, addr);
3178         return ERR_PTR(-ENOSPC);
3179 }
3180
3181 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3182         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3183 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3184 {
3185         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3186         int nr_nodes, node;
3187
3188         /* do node specific alloc */
3189         if (nid != NUMA_NO_NODE) {
3190                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3191                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3192                 if (!m)
3193                         return 0;
3194                 goto found;
3195         }
3196         /* allocate from next node when distributing huge pages */
3197         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3198                 m = memblock_alloc_try_nid_raw(
3199                                 huge_page_size(h), huge_page_size(h),
3200                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3201                 /*
3202                  * Use the beginning of the huge page to store the
3203                  * huge_bootmem_page struct (until gather_bootmem
3204                  * puts them into the mem_map).
3205                  */
3206                 if (!m)
3207                         return 0;
3208                 goto found;
3209         }
3210
3211 found:
3212         /* Put them into a private list first because mem_map is not up yet */
3213         INIT_LIST_HEAD(&m->list);
3214         list_add(&m->list, &huge_boot_pages);
3215         m->hstate = h;
3216         return 1;
3217 }
3218
3219 /*
3220  * Put bootmem huge pages into the standard lists after mem_map is up.
3221  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3222  */
3223 static void __init gather_bootmem_prealloc(void)
3224 {
3225         struct huge_bootmem_page *m;
3226
3227         list_for_each_entry(m, &huge_boot_pages, list) {
3228                 struct page *page = virt_to_page(m);
3229                 struct folio *folio = page_folio(page);
3230                 struct hstate *h = m->hstate;
3231
3232                 VM_BUG_ON(!hstate_is_gigantic(h));
3233                 WARN_ON(folio_ref_count(folio) != 1);
3234                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3235                         WARN_ON(folio_test_reserved(folio));
3236                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3237                         free_huge_page(page); /* add to the hugepage allocator */
3238                 } else {
3239                         /* VERY unlikely inflated ref count on a tail page */
3240                         free_gigantic_folio(folio, huge_page_order(h));
3241                 }
3242
3243                 /*
3244                  * We need to restore the 'stolen' pages to totalram_pages
3245                  * in order to fix confusing memory reports from free(1) and
3246                  * other side-effects, like CommitLimit going negative.
3247                  */
3248                 adjust_managed_page_count(page, pages_per_huge_page(h));
3249                 cond_resched();
3250         }
3251 }
3252 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3253 {
3254         unsigned long i;
3255         char buf[32];
3256
3257         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3258                 if (hstate_is_gigantic(h)) {
3259                         if (!alloc_bootmem_huge_page(h, nid))
3260                                 break;
3261                 } else {
3262                         struct folio *folio;
3263                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3264
3265                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3266                                         &node_states[N_MEMORY], NULL);
3267                         if (!folio)
3268                                 break;
3269                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
3270                 }
3271                 cond_resched();
3272         }
3273         if (i == h->max_huge_pages_node[nid])
3274                 return;
3275
3276         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3277         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3278                 h->max_huge_pages_node[nid], buf, nid, i);
3279         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3280         h->max_huge_pages_node[nid] = i;
3281 }
3282
3283 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3284 {
3285         unsigned long i;
3286         nodemask_t *node_alloc_noretry;
3287         bool node_specific_alloc = false;
3288
3289         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3290         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3291                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3292                 return;
3293         }
3294
3295         /* do node specific alloc */
3296         for_each_online_node(i) {
3297                 if (h->max_huge_pages_node[i] > 0) {
3298                         hugetlb_hstate_alloc_pages_onenode(h, i);
3299                         node_specific_alloc = true;
3300                 }
3301         }
3302
3303         if (node_specific_alloc)
3304                 return;
3305
3306         /* below will do all node balanced alloc */
3307         if (!hstate_is_gigantic(h)) {
3308                 /*
3309                  * Bit mask controlling how hard we retry per-node allocations.
3310                  * Ignore errors as lower level routines can deal with
3311                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3312                  * time, we are likely in bigger trouble.
3313                  */
3314                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3315                                                 GFP_KERNEL);
3316         } else {
3317                 /* allocations done at boot time */
3318                 node_alloc_noretry = NULL;
3319         }
3320
3321         /* bit mask controlling how hard we retry per-node allocations */
3322         if (node_alloc_noretry)
3323                 nodes_clear(*node_alloc_noretry);
3324
3325         for (i = 0; i < h->max_huge_pages; ++i) {
3326                 if (hstate_is_gigantic(h)) {
3327                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3328                                 break;
3329                 } else if (!alloc_pool_huge_page(h,
3330                                          &node_states[N_MEMORY],
3331                                          node_alloc_noretry))
3332                         break;
3333                 cond_resched();
3334         }
3335         if (i < h->max_huge_pages) {
3336                 char buf[32];
3337
3338                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3339                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3340                         h->max_huge_pages, buf, i);
3341                 h->max_huge_pages = i;
3342         }
3343         kfree(node_alloc_noretry);
3344 }
3345
3346 static void __init hugetlb_init_hstates(void)
3347 {
3348         struct hstate *h, *h2;
3349
3350         for_each_hstate(h) {
3351                 /* oversize hugepages were init'ed in early boot */
3352                 if (!hstate_is_gigantic(h))
3353                         hugetlb_hstate_alloc_pages(h);
3354
3355                 /*
3356                  * Set demote order for each hstate.  Note that
3357                  * h->demote_order is initially 0.
3358                  * - We can not demote gigantic pages if runtime freeing
3359                  *   is not supported, so skip this.
3360                  * - If CMA allocation is possible, we can not demote
3361                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3362                  */
3363                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3364                         continue;
3365                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3366                         continue;
3367                 for_each_hstate(h2) {
3368                         if (h2 == h)
3369                                 continue;
3370                         if (h2->order < h->order &&
3371                             h2->order > h->demote_order)
3372                                 h->demote_order = h2->order;
3373                 }
3374         }
3375 }
3376
3377 static void __init report_hugepages(void)
3378 {
3379         struct hstate *h;
3380
3381         for_each_hstate(h) {
3382                 char buf[32];
3383
3384                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3385                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3386                         buf, h->free_huge_pages);
3387                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3388                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3389         }
3390 }
3391
3392 #ifdef CONFIG_HIGHMEM
3393 static void try_to_free_low(struct hstate *h, unsigned long count,
3394                                                 nodemask_t *nodes_allowed)
3395 {
3396         int i;
3397         LIST_HEAD(page_list);
3398
3399         lockdep_assert_held(&hugetlb_lock);
3400         if (hstate_is_gigantic(h))
3401                 return;
3402
3403         /*
3404          * Collect pages to be freed on a list, and free after dropping lock
3405          */
3406         for_each_node_mask(i, *nodes_allowed) {
3407                 struct page *page, *next;
3408                 struct list_head *freel = &h->hugepage_freelists[i];
3409                 list_for_each_entry_safe(page, next, freel, lru) {
3410                         if (count >= h->nr_huge_pages)
3411                                 goto out;
3412                         if (PageHighMem(page))
3413                                 continue;
3414                         remove_hugetlb_folio(h, page_folio(page), false);
3415                         list_add(&page->lru, &page_list);
3416                 }
3417         }
3418
3419 out:
3420         spin_unlock_irq(&hugetlb_lock);
3421         update_and_free_pages_bulk(h, &page_list);
3422         spin_lock_irq(&hugetlb_lock);
3423 }
3424 #else
3425 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3426                                                 nodemask_t *nodes_allowed)
3427 {
3428 }
3429 #endif
3430
3431 /*
3432  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3433  * balanced by operating on them in a round-robin fashion.
3434  * Returns 1 if an adjustment was made.
3435  */
3436 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3437                                 int delta)
3438 {
3439         int nr_nodes, node;
3440
3441         lockdep_assert_held(&hugetlb_lock);
3442         VM_BUG_ON(delta != -1 && delta != 1);
3443
3444         if (delta < 0) {
3445                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3446                         if (h->surplus_huge_pages_node[node])
3447                                 goto found;
3448                 }
3449         } else {
3450                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3451                         if (h->surplus_huge_pages_node[node] <
3452                                         h->nr_huge_pages_node[node])
3453                                 goto found;
3454                 }
3455         }
3456         return 0;
3457
3458 found:
3459         h->surplus_huge_pages += delta;
3460         h->surplus_huge_pages_node[node] += delta;
3461         return 1;
3462 }
3463
3464 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3465 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3466                               nodemask_t *nodes_allowed)
3467 {
3468         unsigned long min_count, ret;
3469         struct page *page;
3470         LIST_HEAD(page_list);
3471         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3472
3473         /*
3474          * Bit mask controlling how hard we retry per-node allocations.
3475          * If we can not allocate the bit mask, do not attempt to allocate
3476          * the requested huge pages.
3477          */
3478         if (node_alloc_noretry)
3479                 nodes_clear(*node_alloc_noretry);
3480         else
3481                 return -ENOMEM;
3482
3483         /*
3484          * resize_lock mutex prevents concurrent adjustments to number of
3485          * pages in hstate via the proc/sysfs interfaces.
3486          */
3487         mutex_lock(&h->resize_lock);
3488         flush_free_hpage_work(h);
3489         spin_lock_irq(&hugetlb_lock);
3490
3491         /*
3492          * Check for a node specific request.
3493          * Changing node specific huge page count may require a corresponding
3494          * change to the global count.  In any case, the passed node mask
3495          * (nodes_allowed) will restrict alloc/free to the specified node.
3496          */
3497         if (nid != NUMA_NO_NODE) {
3498                 unsigned long old_count = count;
3499
3500                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3501                 /*
3502                  * User may have specified a large count value which caused the
3503                  * above calculation to overflow.  In this case, they wanted
3504                  * to allocate as many huge pages as possible.  Set count to
3505                  * largest possible value to align with their intention.
3506                  */
3507                 if (count < old_count)
3508                         count = ULONG_MAX;
3509         }
3510
3511         /*
3512          * Gigantic pages runtime allocation depend on the capability for large
3513          * page range allocation.
3514          * If the system does not provide this feature, return an error when
3515          * the user tries to allocate gigantic pages but let the user free the
3516          * boottime allocated gigantic pages.
3517          */
3518         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3519                 if (count > persistent_huge_pages(h)) {
3520                         spin_unlock_irq(&hugetlb_lock);
3521                         mutex_unlock(&h->resize_lock);
3522                         NODEMASK_FREE(node_alloc_noretry);
3523                         return -EINVAL;
3524                 }
3525                 /* Fall through to decrease pool */
3526         }
3527
3528         /*
3529          * Increase the pool size
3530          * First take pages out of surplus state.  Then make up the
3531          * remaining difference by allocating fresh huge pages.
3532          *
3533          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3534          * to convert a surplus huge page to a normal huge page. That is
3535          * not critical, though, it just means the overall size of the
3536          * pool might be one hugepage larger than it needs to be, but
3537          * within all the constraints specified by the sysctls.
3538          */
3539         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3540                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3541                         break;
3542         }
3543
3544         while (count > persistent_huge_pages(h)) {
3545                 /*
3546                  * If this allocation races such that we no longer need the
3547                  * page, free_huge_page will handle it by freeing the page
3548                  * and reducing the surplus.
3549                  */
3550                 spin_unlock_irq(&hugetlb_lock);
3551
3552                 /* yield cpu to avoid soft lockup */
3553                 cond_resched();
3554
3555                 ret = alloc_pool_huge_page(h, nodes_allowed,
3556                                                 node_alloc_noretry);
3557                 spin_lock_irq(&hugetlb_lock);
3558                 if (!ret)
3559                         goto out;
3560
3561                 /* Bail for signals. Probably ctrl-c from user */
3562                 if (signal_pending(current))
3563                         goto out;
3564         }
3565
3566         /*
3567          * Decrease the pool size
3568          * First return free pages to the buddy allocator (being careful
3569          * to keep enough around to satisfy reservations).  Then place
3570          * pages into surplus state as needed so the pool will shrink
3571          * to the desired size as pages become free.
3572          *
3573          * By placing pages into the surplus state independent of the
3574          * overcommit value, we are allowing the surplus pool size to
3575          * exceed overcommit. There are few sane options here. Since
3576          * alloc_surplus_hugetlb_folio() is checking the global counter,
3577          * though, we'll note that we're not allowed to exceed surplus
3578          * and won't grow the pool anywhere else. Not until one of the
3579          * sysctls are changed, or the surplus pages go out of use.
3580          */
3581         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3582         min_count = max(count, min_count);
3583         try_to_free_low(h, min_count, nodes_allowed);
3584
3585         /*
3586          * Collect pages to be removed on list without dropping lock
3587          */
3588         while (min_count < persistent_huge_pages(h)) {
3589                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3590                 if (!page)
3591                         break;
3592
3593                 list_add(&page->lru, &page_list);
3594         }
3595         /* free the pages after dropping lock */
3596         spin_unlock_irq(&hugetlb_lock);
3597         update_and_free_pages_bulk(h, &page_list);
3598         flush_free_hpage_work(h);
3599         spin_lock_irq(&hugetlb_lock);
3600
3601         while (count < persistent_huge_pages(h)) {
3602                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3603                         break;
3604         }
3605 out:
3606         h->max_huge_pages = persistent_huge_pages(h);
3607         spin_unlock_irq(&hugetlb_lock);
3608         mutex_unlock(&h->resize_lock);
3609
3610         NODEMASK_FREE(node_alloc_noretry);
3611
3612         return 0;
3613 }
3614
3615 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3616 {
3617         int i, nid = folio_nid(folio);
3618         struct hstate *target_hstate;
3619         struct page *subpage;
3620         struct folio *inner_folio;
3621         int rc = 0;
3622
3623         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3624
3625         remove_hugetlb_folio_for_demote(h, folio, false);
3626         spin_unlock_irq(&hugetlb_lock);
3627
3628         rc = hugetlb_vmemmap_restore(h, &folio->page);
3629         if (rc) {
3630                 /* Allocation of vmemmmap failed, we can not demote folio */
3631                 spin_lock_irq(&hugetlb_lock);
3632                 folio_ref_unfreeze(folio, 1);
3633                 add_hugetlb_folio(h, folio, false);
3634                 return rc;
3635         }
3636
3637         /*
3638          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3639          * sizes as it will not ref count folios.
3640          */
3641         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3642
3643         /*
3644          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3645          * Without the mutex, pages added to target hstate could be marked
3646          * as surplus.
3647          *
3648          * Note that we already hold h->resize_lock.  To prevent deadlock,
3649          * use the convention of always taking larger size hstate mutex first.
3650          */
3651         mutex_lock(&target_hstate->resize_lock);
3652         for (i = 0; i < pages_per_huge_page(h);
3653                                 i += pages_per_huge_page(target_hstate)) {
3654                 subpage = folio_page(folio, i);
3655                 inner_folio = page_folio(subpage);
3656                 if (hstate_is_gigantic(target_hstate))
3657                         prep_compound_gigantic_folio_for_demote(inner_folio,
3658                                                         target_hstate->order);
3659                 else
3660                         prep_compound_page(subpage, target_hstate->order);
3661                 folio_change_private(inner_folio, NULL);
3662                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3663                 free_huge_page(subpage);
3664         }
3665         mutex_unlock(&target_hstate->resize_lock);
3666
3667         spin_lock_irq(&hugetlb_lock);
3668
3669         /*
3670          * Not absolutely necessary, but for consistency update max_huge_pages
3671          * based on pool changes for the demoted page.
3672          */
3673         h->max_huge_pages--;
3674         target_hstate->max_huge_pages +=
3675                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3676
3677         return rc;
3678 }
3679
3680 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3681         __must_hold(&hugetlb_lock)
3682 {
3683         int nr_nodes, node;
3684         struct folio *folio;
3685
3686         lockdep_assert_held(&hugetlb_lock);
3687
3688         /* We should never get here if no demote order */
3689         if (!h->demote_order) {
3690                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3691                 return -EINVAL;         /* internal error */
3692         }
3693
3694         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3695                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3696                         if (folio_test_hwpoison(folio))
3697                                 continue;
3698                         return demote_free_hugetlb_folio(h, folio);
3699                 }
3700         }
3701
3702         /*
3703          * Only way to get here is if all pages on free lists are poisoned.
3704          * Return -EBUSY so that caller will not retry.
3705          */
3706         return -EBUSY;
3707 }
3708
3709 #define HSTATE_ATTR_RO(_name) \
3710         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3711
3712 #define HSTATE_ATTR_WO(_name) \
3713         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3714
3715 #define HSTATE_ATTR(_name) \
3716         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3717
3718 static struct kobject *hugepages_kobj;
3719 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3720
3721 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3722
3723 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3724 {
3725         int i;
3726
3727         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3728                 if (hstate_kobjs[i] == kobj) {
3729                         if (nidp)
3730                                 *nidp = NUMA_NO_NODE;
3731                         return &hstates[i];
3732                 }
3733
3734         return kobj_to_node_hstate(kobj, nidp);
3735 }
3736
3737 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3738                                         struct kobj_attribute *attr, char *buf)
3739 {
3740         struct hstate *h;
3741         unsigned long nr_huge_pages;
3742         int nid;
3743
3744         h = kobj_to_hstate(kobj, &nid);
3745         if (nid == NUMA_NO_NODE)
3746                 nr_huge_pages = h->nr_huge_pages;
3747         else
3748                 nr_huge_pages = h->nr_huge_pages_node[nid];
3749
3750         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3751 }
3752
3753 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3754                                            struct hstate *h, int nid,
3755                                            unsigned long count, size_t len)
3756 {
3757         int err;
3758         nodemask_t nodes_allowed, *n_mask;
3759
3760         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3761                 return -EINVAL;
3762
3763         if (nid == NUMA_NO_NODE) {
3764                 /*
3765                  * global hstate attribute
3766                  */
3767                 if (!(obey_mempolicy &&
3768                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3769                         n_mask = &node_states[N_MEMORY];
3770                 else
3771                         n_mask = &nodes_allowed;
3772         } else {
3773                 /*
3774                  * Node specific request.  count adjustment happens in
3775                  * set_max_huge_pages() after acquiring hugetlb_lock.
3776                  */
3777                 init_nodemask_of_node(&nodes_allowed, nid);
3778                 n_mask = &nodes_allowed;
3779         }
3780
3781         err = set_max_huge_pages(h, count, nid, n_mask);
3782
3783         return err ? err : len;
3784 }
3785
3786 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3787                                          struct kobject *kobj, const char *buf,
3788                                          size_t len)
3789 {
3790         struct hstate *h;
3791         unsigned long count;
3792         int nid;
3793         int err;
3794
3795         err = kstrtoul(buf, 10, &count);
3796         if (err)
3797                 return err;
3798
3799         h = kobj_to_hstate(kobj, &nid);
3800         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3801 }
3802
3803 static ssize_t nr_hugepages_show(struct kobject *kobj,
3804                                        struct kobj_attribute *attr, char *buf)
3805 {
3806         return nr_hugepages_show_common(kobj, attr, buf);
3807 }
3808
3809 static ssize_t nr_hugepages_store(struct kobject *kobj,
3810                struct kobj_attribute *attr, const char *buf, size_t len)
3811 {
3812         return nr_hugepages_store_common(false, kobj, buf, len);
3813 }
3814 HSTATE_ATTR(nr_hugepages);
3815
3816 #ifdef CONFIG_NUMA
3817
3818 /*
3819  * hstate attribute for optionally mempolicy-based constraint on persistent
3820  * huge page alloc/free.
3821  */
3822 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3823                                            struct kobj_attribute *attr,
3824                                            char *buf)
3825 {
3826         return nr_hugepages_show_common(kobj, attr, buf);
3827 }
3828
3829 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3830                struct kobj_attribute *attr, const char *buf, size_t len)
3831 {
3832         return nr_hugepages_store_common(true, kobj, buf, len);
3833 }
3834 HSTATE_ATTR(nr_hugepages_mempolicy);
3835 #endif
3836
3837
3838 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3839                                         struct kobj_attribute *attr, char *buf)
3840 {
3841         struct hstate *h = kobj_to_hstate(kobj, NULL);
3842         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3843 }
3844
3845 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3846                 struct kobj_attribute *attr, const char *buf, size_t count)
3847 {
3848         int err;
3849         unsigned long input;
3850         struct hstate *h = kobj_to_hstate(kobj, NULL);
3851
3852         if (hstate_is_gigantic(h))
3853                 return -EINVAL;
3854
3855         err = kstrtoul(buf, 10, &input);
3856         if (err)
3857                 return err;
3858
3859         spin_lock_irq(&hugetlb_lock);
3860         h->nr_overcommit_huge_pages = input;
3861         spin_unlock_irq(&hugetlb_lock);
3862
3863         return count;
3864 }
3865 HSTATE_ATTR(nr_overcommit_hugepages);
3866
3867 static ssize_t free_hugepages_show(struct kobject *kobj,
3868                                         struct kobj_attribute *attr, char *buf)
3869 {
3870         struct hstate *h;
3871         unsigned long free_huge_pages;
3872         int nid;
3873
3874         h = kobj_to_hstate(kobj, &nid);
3875         if (nid == NUMA_NO_NODE)
3876                 free_huge_pages = h->free_huge_pages;
3877         else
3878                 free_huge_pages = h->free_huge_pages_node[nid];
3879
3880         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3881 }
3882 HSTATE_ATTR_RO(free_hugepages);
3883
3884 static ssize_t resv_hugepages_show(struct kobject *kobj,
3885                                         struct kobj_attribute *attr, char *buf)
3886 {
3887         struct hstate *h = kobj_to_hstate(kobj, NULL);
3888         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3889 }
3890 HSTATE_ATTR_RO(resv_hugepages);
3891
3892 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3893                                         struct kobj_attribute *attr, char *buf)
3894 {
3895         struct hstate *h;
3896         unsigned long surplus_huge_pages;
3897         int nid;
3898
3899         h = kobj_to_hstate(kobj, &nid);
3900         if (nid == NUMA_NO_NODE)
3901                 surplus_huge_pages = h->surplus_huge_pages;
3902         else
3903                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3904
3905         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3906 }
3907 HSTATE_ATTR_RO(surplus_hugepages);
3908
3909 static ssize_t demote_store(struct kobject *kobj,
3910                struct kobj_attribute *attr, const char *buf, size_t len)
3911 {
3912         unsigned long nr_demote;
3913         unsigned long nr_available;
3914         nodemask_t nodes_allowed, *n_mask;
3915         struct hstate *h;
3916         int err;
3917         int nid;
3918
3919         err = kstrtoul(buf, 10, &nr_demote);
3920         if (err)
3921                 return err;
3922         h = kobj_to_hstate(kobj, &nid);
3923
3924         if (nid != NUMA_NO_NODE) {
3925                 init_nodemask_of_node(&nodes_allowed, nid);
3926                 n_mask = &nodes_allowed;
3927         } else {
3928                 n_mask = &node_states[N_MEMORY];
3929         }
3930
3931         /* Synchronize with other sysfs operations modifying huge pages */
3932         mutex_lock(&h->resize_lock);
3933         spin_lock_irq(&hugetlb_lock);
3934
3935         while (nr_demote) {
3936                 /*
3937                  * Check for available pages to demote each time thorough the
3938                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3939                  */
3940                 if (nid != NUMA_NO_NODE)
3941                         nr_available = h->free_huge_pages_node[nid];
3942                 else
3943                         nr_available = h->free_huge_pages;
3944                 nr_available -= h->resv_huge_pages;
3945                 if (!nr_available)
3946                         break;
3947
3948                 err = demote_pool_huge_page(h, n_mask);
3949                 if (err)
3950                         break;
3951
3952                 nr_demote--;
3953         }
3954
3955         spin_unlock_irq(&hugetlb_lock);
3956         mutex_unlock(&h->resize_lock);
3957
3958         if (err)
3959                 return err;
3960         return len;
3961 }
3962 HSTATE_ATTR_WO(demote);
3963
3964 static ssize_t demote_size_show(struct kobject *kobj,
3965                                         struct kobj_attribute *attr, char *buf)
3966 {
3967         struct hstate *h = kobj_to_hstate(kobj, NULL);
3968         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3969
3970         return sysfs_emit(buf, "%lukB\n", demote_size);
3971 }
3972
3973 static ssize_t demote_size_store(struct kobject *kobj,
3974                                         struct kobj_attribute *attr,
3975                                         const char *buf, size_t count)
3976 {
3977         struct hstate *h, *demote_hstate;
3978         unsigned long demote_size;
3979         unsigned int demote_order;
3980
3981         demote_size = (unsigned long)memparse(buf, NULL);
3982
3983         demote_hstate = size_to_hstate(demote_size);
3984         if (!demote_hstate)
3985                 return -EINVAL;
3986         demote_order = demote_hstate->order;
3987         if (demote_order < HUGETLB_PAGE_ORDER)
3988                 return -EINVAL;
3989
3990         /* demote order must be smaller than hstate order */
3991         h = kobj_to_hstate(kobj, NULL);
3992         if (demote_order >= h->order)
3993                 return -EINVAL;
3994
3995         /* resize_lock synchronizes access to demote size and writes */
3996         mutex_lock(&h->resize_lock);
3997         h->demote_order = demote_order;
3998         mutex_unlock(&h->resize_lock);
3999
4000         return count;
4001 }
4002 HSTATE_ATTR(demote_size);
4003
4004 static struct attribute *hstate_attrs[] = {
4005         &nr_hugepages_attr.attr,
4006         &nr_overcommit_hugepages_attr.attr,
4007         &free_hugepages_attr.attr,
4008         &resv_hugepages_attr.attr,
4009         &surplus_hugepages_attr.attr,
4010 #ifdef CONFIG_NUMA
4011         &nr_hugepages_mempolicy_attr.attr,
4012 #endif
4013         NULL,
4014 };
4015
4016 static const struct attribute_group hstate_attr_group = {
4017         .attrs = hstate_attrs,
4018 };
4019
4020 static struct attribute *hstate_demote_attrs[] = {
4021         &demote_size_attr.attr,
4022         &demote_attr.attr,
4023         NULL,
4024 };
4025
4026 static const struct attribute_group hstate_demote_attr_group = {
4027         .attrs = hstate_demote_attrs,
4028 };
4029
4030 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4031                                     struct kobject **hstate_kobjs,
4032                                     const struct attribute_group *hstate_attr_group)
4033 {
4034         int retval;
4035         int hi = hstate_index(h);
4036
4037         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4038         if (!hstate_kobjs[hi])
4039                 return -ENOMEM;
4040
4041         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4042         if (retval) {
4043                 kobject_put(hstate_kobjs[hi]);
4044                 hstate_kobjs[hi] = NULL;
4045                 return retval;
4046         }
4047
4048         if (h->demote_order) {
4049                 retval = sysfs_create_group(hstate_kobjs[hi],
4050                                             &hstate_demote_attr_group);
4051                 if (retval) {
4052                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4053                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4054                         kobject_put(hstate_kobjs[hi]);
4055                         hstate_kobjs[hi] = NULL;
4056                         return retval;
4057                 }
4058         }
4059
4060         return 0;
4061 }
4062
4063 #ifdef CONFIG_NUMA
4064 static bool hugetlb_sysfs_initialized __ro_after_init;
4065
4066 /*
4067  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4068  * with node devices in node_devices[] using a parallel array.  The array
4069  * index of a node device or _hstate == node id.
4070  * This is here to avoid any static dependency of the node device driver, in
4071  * the base kernel, on the hugetlb module.
4072  */
4073 struct node_hstate {
4074         struct kobject          *hugepages_kobj;
4075         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4076 };
4077 static struct node_hstate node_hstates[MAX_NUMNODES];
4078
4079 /*
4080  * A subset of global hstate attributes for node devices
4081  */
4082 static struct attribute *per_node_hstate_attrs[] = {
4083         &nr_hugepages_attr.attr,
4084         &free_hugepages_attr.attr,
4085         &surplus_hugepages_attr.attr,
4086         NULL,
4087 };
4088
4089 static const struct attribute_group per_node_hstate_attr_group = {
4090         .attrs = per_node_hstate_attrs,
4091 };
4092
4093 /*
4094  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4095  * Returns node id via non-NULL nidp.
4096  */
4097 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4098 {
4099         int nid;
4100
4101         for (nid = 0; nid < nr_node_ids; nid++) {
4102                 struct node_hstate *nhs = &node_hstates[nid];
4103                 int i;
4104                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4105                         if (nhs->hstate_kobjs[i] == kobj) {
4106                                 if (nidp)
4107                                         *nidp = nid;
4108                                 return &hstates[i];
4109                         }
4110         }
4111
4112         BUG();
4113         return NULL;
4114 }
4115
4116 /*
4117  * Unregister hstate attributes from a single node device.
4118  * No-op if no hstate attributes attached.
4119  */
4120 void hugetlb_unregister_node(struct node *node)
4121 {
4122         struct hstate *h;
4123         struct node_hstate *nhs = &node_hstates[node->dev.id];
4124
4125         if (!nhs->hugepages_kobj)
4126                 return;         /* no hstate attributes */
4127
4128         for_each_hstate(h) {
4129                 int idx = hstate_index(h);
4130                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4131
4132                 if (!hstate_kobj)
4133                         continue;
4134                 if (h->demote_order)
4135                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4136                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4137                 kobject_put(hstate_kobj);
4138                 nhs->hstate_kobjs[idx] = NULL;
4139         }
4140
4141         kobject_put(nhs->hugepages_kobj);
4142         nhs->hugepages_kobj = NULL;
4143 }
4144
4145
4146 /*
4147  * Register hstate attributes for a single node device.
4148  * No-op if attributes already registered.
4149  */
4150 void hugetlb_register_node(struct node *node)
4151 {
4152         struct hstate *h;
4153         struct node_hstate *nhs = &node_hstates[node->dev.id];
4154         int err;
4155
4156         if (!hugetlb_sysfs_initialized)
4157                 return;
4158
4159         if (nhs->hugepages_kobj)
4160                 return;         /* already allocated */
4161
4162         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4163                                                         &node->dev.kobj);
4164         if (!nhs->hugepages_kobj)
4165                 return;
4166
4167         for_each_hstate(h) {
4168                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4169                                                 nhs->hstate_kobjs,
4170                                                 &per_node_hstate_attr_group);
4171                 if (err) {
4172                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4173                                 h->name, node->dev.id);
4174                         hugetlb_unregister_node(node);
4175                         break;
4176                 }
4177         }
4178 }
4179
4180 /*
4181  * hugetlb init time:  register hstate attributes for all registered node
4182  * devices of nodes that have memory.  All on-line nodes should have
4183  * registered their associated device by this time.
4184  */
4185 static void __init hugetlb_register_all_nodes(void)
4186 {
4187         int nid;
4188
4189         for_each_online_node(nid)
4190                 hugetlb_register_node(node_devices[nid]);
4191 }
4192 #else   /* !CONFIG_NUMA */
4193
4194 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4195 {
4196         BUG();
4197         if (nidp)
4198                 *nidp = -1;
4199         return NULL;
4200 }
4201
4202 static void hugetlb_register_all_nodes(void) { }
4203
4204 #endif
4205
4206 #ifdef CONFIG_CMA
4207 static void __init hugetlb_cma_check(void);
4208 #else
4209 static inline __init void hugetlb_cma_check(void)
4210 {
4211 }
4212 #endif
4213
4214 static void __init hugetlb_sysfs_init(void)
4215 {
4216         struct hstate *h;
4217         int err;
4218
4219         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4220         if (!hugepages_kobj)
4221                 return;
4222
4223         for_each_hstate(h) {
4224                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4225                                          hstate_kobjs, &hstate_attr_group);
4226                 if (err)
4227                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4228         }
4229
4230 #ifdef CONFIG_NUMA
4231         hugetlb_sysfs_initialized = true;
4232 #endif
4233         hugetlb_register_all_nodes();
4234 }
4235
4236 #ifdef CONFIG_SYSCTL
4237 static void hugetlb_sysctl_init(void);
4238 #else
4239 static inline void hugetlb_sysctl_init(void) { }
4240 #endif
4241
4242 static int __init hugetlb_init(void)
4243 {
4244         int i;
4245
4246         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4247                         __NR_HPAGEFLAGS);
4248
4249         if (!hugepages_supported()) {
4250                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4251                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4252                 return 0;
4253         }
4254
4255         /*
4256          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4257          * architectures depend on setup being done here.
4258          */
4259         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4260         if (!parsed_default_hugepagesz) {
4261                 /*
4262                  * If we did not parse a default huge page size, set
4263                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4264                  * number of huge pages for this default size was implicitly
4265                  * specified, set that here as well.
4266                  * Note that the implicit setting will overwrite an explicit
4267                  * setting.  A warning will be printed in this case.
4268                  */
4269                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4270                 if (default_hstate_max_huge_pages) {
4271                         if (default_hstate.max_huge_pages) {
4272                                 char buf[32];
4273
4274                                 string_get_size(huge_page_size(&default_hstate),
4275                                         1, STRING_UNITS_2, buf, 32);
4276                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4277                                         default_hstate.max_huge_pages, buf);
4278                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4279                                         default_hstate_max_huge_pages);
4280                         }
4281                         default_hstate.max_huge_pages =
4282                                 default_hstate_max_huge_pages;
4283
4284                         for_each_online_node(i)
4285                                 default_hstate.max_huge_pages_node[i] =
4286                                         default_hugepages_in_node[i];
4287                 }
4288         }
4289
4290         hugetlb_cma_check();
4291         hugetlb_init_hstates();
4292         gather_bootmem_prealloc();
4293         report_hugepages();
4294
4295         hugetlb_sysfs_init();
4296         hugetlb_cgroup_file_init();
4297         hugetlb_sysctl_init();
4298
4299 #ifdef CONFIG_SMP
4300         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4301 #else
4302         num_fault_mutexes = 1;
4303 #endif
4304         hugetlb_fault_mutex_table =
4305                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4306                               GFP_KERNEL);
4307         BUG_ON(!hugetlb_fault_mutex_table);
4308
4309         for (i = 0; i < num_fault_mutexes; i++)
4310                 mutex_init(&hugetlb_fault_mutex_table[i]);
4311         return 0;
4312 }
4313 subsys_initcall(hugetlb_init);
4314
4315 /* Overwritten by architectures with more huge page sizes */
4316 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4317 {
4318         return size == HPAGE_SIZE;
4319 }
4320
4321 void __init hugetlb_add_hstate(unsigned int order)
4322 {
4323         struct hstate *h;
4324         unsigned long i;
4325
4326         if (size_to_hstate(PAGE_SIZE << order)) {
4327                 return;
4328         }
4329         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4330         BUG_ON(order == 0);
4331         h = &hstates[hugetlb_max_hstate++];
4332         mutex_init(&h->resize_lock);
4333         h->order = order;
4334         h->mask = ~(huge_page_size(h) - 1);
4335         for (i = 0; i < MAX_NUMNODES; ++i)
4336                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4337         INIT_LIST_HEAD(&h->hugepage_activelist);
4338         h->next_nid_to_alloc = first_memory_node;
4339         h->next_nid_to_free = first_memory_node;
4340         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4341                                         huge_page_size(h)/SZ_1K);
4342
4343         parsed_hstate = h;
4344 }
4345
4346 bool __init __weak hugetlb_node_alloc_supported(void)
4347 {
4348         return true;
4349 }
4350
4351 static void __init hugepages_clear_pages_in_node(void)
4352 {
4353         if (!hugetlb_max_hstate) {
4354                 default_hstate_max_huge_pages = 0;
4355                 memset(default_hugepages_in_node, 0,
4356                         sizeof(default_hugepages_in_node));
4357         } else {
4358                 parsed_hstate->max_huge_pages = 0;
4359                 memset(parsed_hstate->max_huge_pages_node, 0,
4360                         sizeof(parsed_hstate->max_huge_pages_node));
4361         }
4362 }
4363
4364 /*
4365  * hugepages command line processing
4366  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4367  * specification.  If not, ignore the hugepages value.  hugepages can also
4368  * be the first huge page command line  option in which case it implicitly
4369  * specifies the number of huge pages for the default size.
4370  */
4371 static int __init hugepages_setup(char *s)
4372 {
4373         unsigned long *mhp;
4374         static unsigned long *last_mhp;
4375         int node = NUMA_NO_NODE;
4376         int count;
4377         unsigned long tmp;
4378         char *p = s;
4379
4380         if (!parsed_valid_hugepagesz) {
4381                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4382                 parsed_valid_hugepagesz = true;
4383                 return 1;
4384         }
4385
4386         /*
4387          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4388          * yet, so this hugepages= parameter goes to the "default hstate".
4389          * Otherwise, it goes with the previously parsed hugepagesz or
4390          * default_hugepagesz.
4391          */
4392         else if (!hugetlb_max_hstate)
4393                 mhp = &default_hstate_max_huge_pages;
4394         else
4395                 mhp = &parsed_hstate->max_huge_pages;
4396
4397         if (mhp == last_mhp) {
4398                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4399                 return 1;
4400         }
4401
4402         while (*p) {
4403                 count = 0;
4404                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4405                         goto invalid;
4406                 /* Parameter is node format */
4407                 if (p[count] == ':') {
4408                         if (!hugetlb_node_alloc_supported()) {
4409                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4410                                 return 1;
4411                         }
4412                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4413                                 goto invalid;
4414                         node = array_index_nospec(tmp, MAX_NUMNODES);
4415                         p += count + 1;
4416                         /* Parse hugepages */
4417                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4418                                 goto invalid;
4419                         if (!hugetlb_max_hstate)
4420                                 default_hugepages_in_node[node] = tmp;
4421                         else
4422                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4423                         *mhp += tmp;
4424                         /* Go to parse next node*/
4425                         if (p[count] == ',')
4426                                 p += count + 1;
4427                         else
4428                                 break;
4429                 } else {
4430                         if (p != s)
4431                                 goto invalid;
4432                         *mhp = tmp;
4433                         break;
4434                 }
4435         }
4436
4437         /*
4438          * Global state is always initialized later in hugetlb_init.
4439          * But we need to allocate gigantic hstates here early to still
4440          * use the bootmem allocator.
4441          */
4442         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4443                 hugetlb_hstate_alloc_pages(parsed_hstate);
4444
4445         last_mhp = mhp;
4446
4447         return 1;
4448
4449 invalid:
4450         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4451         hugepages_clear_pages_in_node();
4452         return 1;
4453 }
4454 __setup("hugepages=", hugepages_setup);
4455
4456 /*
4457  * hugepagesz command line processing
4458  * A specific huge page size can only be specified once with hugepagesz.
4459  * hugepagesz is followed by hugepages on the command line.  The global
4460  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4461  * hugepagesz argument was valid.
4462  */
4463 static int __init hugepagesz_setup(char *s)
4464 {
4465         unsigned long size;
4466         struct hstate *h;
4467
4468         parsed_valid_hugepagesz = false;
4469         size = (unsigned long)memparse(s, NULL);
4470
4471         if (!arch_hugetlb_valid_size(size)) {
4472                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4473                 return 1;
4474         }
4475
4476         h = size_to_hstate(size);
4477         if (h) {
4478                 /*
4479                  * hstate for this size already exists.  This is normally
4480                  * an error, but is allowed if the existing hstate is the
4481                  * default hstate.  More specifically, it is only allowed if
4482                  * the number of huge pages for the default hstate was not
4483                  * previously specified.
4484                  */
4485                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4486                     default_hstate.max_huge_pages) {
4487                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4488                         return 1;
4489                 }
4490
4491                 /*
4492                  * No need to call hugetlb_add_hstate() as hstate already
4493                  * exists.  But, do set parsed_hstate so that a following
4494                  * hugepages= parameter will be applied to this hstate.
4495                  */
4496                 parsed_hstate = h;
4497                 parsed_valid_hugepagesz = true;
4498                 return 1;
4499         }
4500
4501         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4502         parsed_valid_hugepagesz = true;
4503         return 1;
4504 }
4505 __setup("hugepagesz=", hugepagesz_setup);
4506
4507 /*
4508  * default_hugepagesz command line input
4509  * Only one instance of default_hugepagesz allowed on command line.
4510  */
4511 static int __init default_hugepagesz_setup(char *s)
4512 {
4513         unsigned long size;
4514         int i;
4515
4516         parsed_valid_hugepagesz = false;
4517         if (parsed_default_hugepagesz) {
4518                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4519                 return 1;
4520         }
4521
4522         size = (unsigned long)memparse(s, NULL);
4523
4524         if (!arch_hugetlb_valid_size(size)) {
4525                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4526                 return 1;
4527         }
4528
4529         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4530         parsed_valid_hugepagesz = true;
4531         parsed_default_hugepagesz = true;
4532         default_hstate_idx = hstate_index(size_to_hstate(size));
4533
4534         /*
4535          * The number of default huge pages (for this size) could have been
4536          * specified as the first hugetlb parameter: hugepages=X.  If so,
4537          * then default_hstate_max_huge_pages is set.  If the default huge
4538          * page size is gigantic (> MAX_ORDER), then the pages must be
4539          * allocated here from bootmem allocator.
4540          */
4541         if (default_hstate_max_huge_pages) {
4542                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4543                 for_each_online_node(i)
4544                         default_hstate.max_huge_pages_node[i] =
4545                                 default_hugepages_in_node[i];
4546                 if (hstate_is_gigantic(&default_hstate))
4547                         hugetlb_hstate_alloc_pages(&default_hstate);
4548                 default_hstate_max_huge_pages = 0;
4549         }
4550
4551         return 1;
4552 }
4553 __setup("default_hugepagesz=", default_hugepagesz_setup);
4554
4555 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4556 {
4557 #ifdef CONFIG_NUMA
4558         struct mempolicy *mpol = get_task_policy(current);
4559
4560         /*
4561          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4562          * (from policy_nodemask) specifically for hugetlb case
4563          */
4564         if (mpol->mode == MPOL_BIND &&
4565                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4566                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4567                 return &mpol->nodes;
4568 #endif
4569         return NULL;
4570 }
4571
4572 static unsigned int allowed_mems_nr(struct hstate *h)
4573 {
4574         int node;
4575         unsigned int nr = 0;
4576         nodemask_t *mbind_nodemask;
4577         unsigned int *array = h->free_huge_pages_node;
4578         gfp_t gfp_mask = htlb_alloc_mask(h);
4579
4580         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4581         for_each_node_mask(node, cpuset_current_mems_allowed) {
4582                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4583                         nr += array[node];
4584         }
4585
4586         return nr;
4587 }
4588
4589 #ifdef CONFIG_SYSCTL
4590 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4591                                           void *buffer, size_t *length,
4592                                           loff_t *ppos, unsigned long *out)
4593 {
4594         struct ctl_table dup_table;
4595
4596         /*
4597          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4598          * can duplicate the @table and alter the duplicate of it.
4599          */
4600         dup_table = *table;
4601         dup_table.data = out;
4602
4603         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4604 }
4605
4606 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4607                          struct ctl_table *table, int write,
4608                          void *buffer, size_t *length, loff_t *ppos)
4609 {
4610         struct hstate *h = &default_hstate;
4611         unsigned long tmp = h->max_huge_pages;
4612         int ret;
4613
4614         if (!hugepages_supported())
4615                 return -EOPNOTSUPP;
4616
4617         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4618                                              &tmp);
4619         if (ret)
4620                 goto out;
4621
4622         if (write)
4623                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4624                                                   NUMA_NO_NODE, tmp, *length);
4625 out:
4626         return ret;
4627 }
4628
4629 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4630                           void *buffer, size_t *length, loff_t *ppos)
4631 {
4632
4633         return hugetlb_sysctl_handler_common(false, table, write,
4634                                                         buffer, length, ppos);
4635 }
4636
4637 #ifdef CONFIG_NUMA
4638 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4639                           void *buffer, size_t *length, loff_t *ppos)
4640 {
4641         return hugetlb_sysctl_handler_common(true, table, write,
4642                                                         buffer, length, ppos);
4643 }
4644 #endif /* CONFIG_NUMA */
4645
4646 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4647                 void *buffer, size_t *length, loff_t *ppos)
4648 {
4649         struct hstate *h = &default_hstate;
4650         unsigned long tmp;
4651         int ret;
4652
4653         if (!hugepages_supported())
4654                 return -EOPNOTSUPP;
4655
4656         tmp = h->nr_overcommit_huge_pages;
4657
4658         if (write && hstate_is_gigantic(h))
4659                 return -EINVAL;
4660
4661         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4662                                              &tmp);
4663         if (ret)
4664                 goto out;
4665
4666         if (write) {
4667                 spin_lock_irq(&hugetlb_lock);
4668                 h->nr_overcommit_huge_pages = tmp;
4669                 spin_unlock_irq(&hugetlb_lock);
4670         }
4671 out:
4672         return ret;
4673 }
4674
4675 static struct ctl_table hugetlb_table[] = {
4676         {
4677                 .procname       = "nr_hugepages",
4678                 .data           = NULL,
4679                 .maxlen         = sizeof(unsigned long),
4680                 .mode           = 0644,
4681                 .proc_handler   = hugetlb_sysctl_handler,
4682         },
4683 #ifdef CONFIG_NUMA
4684         {
4685                 .procname       = "nr_hugepages_mempolicy",
4686                 .data           = NULL,
4687                 .maxlen         = sizeof(unsigned long),
4688                 .mode           = 0644,
4689                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4690         },
4691 #endif
4692         {
4693                 .procname       = "hugetlb_shm_group",
4694                 .data           = &sysctl_hugetlb_shm_group,
4695                 .maxlen         = sizeof(gid_t),
4696                 .mode           = 0644,
4697                 .proc_handler   = proc_dointvec,
4698         },
4699         {
4700                 .procname       = "nr_overcommit_hugepages",
4701                 .data           = NULL,
4702                 .maxlen         = sizeof(unsigned long),
4703                 .mode           = 0644,
4704                 .proc_handler   = hugetlb_overcommit_handler,
4705         },
4706         { }
4707 };
4708
4709 static void hugetlb_sysctl_init(void)
4710 {
4711         register_sysctl_init("vm", hugetlb_table);
4712 }
4713 #endif /* CONFIG_SYSCTL */
4714
4715 void hugetlb_report_meminfo(struct seq_file *m)
4716 {
4717         struct hstate *h;
4718         unsigned long total = 0;
4719
4720         if (!hugepages_supported())
4721                 return;
4722
4723         for_each_hstate(h) {
4724                 unsigned long count = h->nr_huge_pages;
4725
4726                 total += huge_page_size(h) * count;
4727
4728                 if (h == &default_hstate)
4729                         seq_printf(m,
4730                                    "HugePages_Total:   %5lu\n"
4731                                    "HugePages_Free:    %5lu\n"
4732                                    "HugePages_Rsvd:    %5lu\n"
4733                                    "HugePages_Surp:    %5lu\n"
4734                                    "Hugepagesize:   %8lu kB\n",
4735                                    count,
4736                                    h->free_huge_pages,
4737                                    h->resv_huge_pages,
4738                                    h->surplus_huge_pages,
4739                                    huge_page_size(h) / SZ_1K);
4740         }
4741
4742         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4743 }
4744
4745 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4746 {
4747         struct hstate *h = &default_hstate;
4748
4749         if (!hugepages_supported())
4750                 return 0;
4751
4752         return sysfs_emit_at(buf, len,
4753                              "Node %d HugePages_Total: %5u\n"
4754                              "Node %d HugePages_Free:  %5u\n"
4755                              "Node %d HugePages_Surp:  %5u\n",
4756                              nid, h->nr_huge_pages_node[nid],
4757                              nid, h->free_huge_pages_node[nid],
4758                              nid, h->surplus_huge_pages_node[nid]);
4759 }
4760
4761 void hugetlb_show_meminfo_node(int nid)
4762 {
4763         struct hstate *h;
4764
4765         if (!hugepages_supported())
4766                 return;
4767
4768         for_each_hstate(h)
4769                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4770                         nid,
4771                         h->nr_huge_pages_node[nid],
4772                         h->free_huge_pages_node[nid],
4773                         h->surplus_huge_pages_node[nid],
4774                         huge_page_size(h) / SZ_1K);
4775 }
4776
4777 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4778 {
4779         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4780                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4781 }
4782
4783 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4784 unsigned long hugetlb_total_pages(void)
4785 {
4786         struct hstate *h;
4787         unsigned long nr_total_pages = 0;
4788
4789         for_each_hstate(h)
4790                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4791         return nr_total_pages;
4792 }
4793
4794 static int hugetlb_acct_memory(struct hstate *h, long delta)
4795 {
4796         int ret = -ENOMEM;
4797
4798         if (!delta)
4799                 return 0;
4800
4801         spin_lock_irq(&hugetlb_lock);
4802         /*
4803          * When cpuset is configured, it breaks the strict hugetlb page
4804          * reservation as the accounting is done on a global variable. Such
4805          * reservation is completely rubbish in the presence of cpuset because
4806          * the reservation is not checked against page availability for the
4807          * current cpuset. Application can still potentially OOM'ed by kernel
4808          * with lack of free htlb page in cpuset that the task is in.
4809          * Attempt to enforce strict accounting with cpuset is almost
4810          * impossible (or too ugly) because cpuset is too fluid that
4811          * task or memory node can be dynamically moved between cpusets.
4812          *
4813          * The change of semantics for shared hugetlb mapping with cpuset is
4814          * undesirable. However, in order to preserve some of the semantics,
4815          * we fall back to check against current free page availability as
4816          * a best attempt and hopefully to minimize the impact of changing
4817          * semantics that cpuset has.
4818          *
4819          * Apart from cpuset, we also have memory policy mechanism that
4820          * also determines from which node the kernel will allocate memory
4821          * in a NUMA system. So similar to cpuset, we also should consider
4822          * the memory policy of the current task. Similar to the description
4823          * above.
4824          */
4825         if (delta > 0) {
4826                 if (gather_surplus_pages(h, delta) < 0)
4827                         goto out;
4828
4829                 if (delta > allowed_mems_nr(h)) {
4830                         return_unused_surplus_pages(h, delta);
4831                         goto out;
4832                 }
4833         }
4834
4835         ret = 0;
4836         if (delta < 0)
4837                 return_unused_surplus_pages(h, (unsigned long) -delta);
4838
4839 out:
4840         spin_unlock_irq(&hugetlb_lock);
4841         return ret;
4842 }
4843
4844 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4845 {
4846         struct resv_map *resv = vma_resv_map(vma);
4847
4848         /*
4849          * HPAGE_RESV_OWNER indicates a private mapping.
4850          * This new VMA should share its siblings reservation map if present.
4851          * The VMA will only ever have a valid reservation map pointer where
4852          * it is being copied for another still existing VMA.  As that VMA
4853          * has a reference to the reservation map it cannot disappear until
4854          * after this open call completes.  It is therefore safe to take a
4855          * new reference here without additional locking.
4856          */
4857         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4858                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4859                 kref_get(&resv->refs);
4860         }
4861
4862         /*
4863          * vma_lock structure for sharable mappings is vma specific.
4864          * Clear old pointer (if copied via vm_area_dup) and allocate
4865          * new structure.  Before clearing, make sure vma_lock is not
4866          * for this vma.
4867          */
4868         if (vma->vm_flags & VM_MAYSHARE) {
4869                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4870
4871                 if (vma_lock) {
4872                         if (vma_lock->vma != vma) {
4873                                 vma->vm_private_data = NULL;
4874                                 hugetlb_vma_lock_alloc(vma);
4875                         } else
4876                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4877                 } else
4878                         hugetlb_vma_lock_alloc(vma);
4879         }
4880 }
4881
4882 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4883 {
4884         struct hstate *h = hstate_vma(vma);
4885         struct resv_map *resv;
4886         struct hugepage_subpool *spool = subpool_vma(vma);
4887         unsigned long reserve, start, end;
4888         long gbl_reserve;
4889
4890         hugetlb_vma_lock_free(vma);
4891
4892         resv = vma_resv_map(vma);
4893         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4894                 return;
4895
4896         start = vma_hugecache_offset(h, vma, vma->vm_start);
4897         end = vma_hugecache_offset(h, vma, vma->vm_end);
4898
4899         reserve = (end - start) - region_count(resv, start, end);
4900         hugetlb_cgroup_uncharge_counter(resv, start, end);
4901         if (reserve) {
4902                 /*
4903                  * Decrement reserve counts.  The global reserve count may be
4904                  * adjusted if the subpool has a minimum size.
4905                  */
4906                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4907                 hugetlb_acct_memory(h, -gbl_reserve);
4908         }
4909
4910         kref_put(&resv->refs, resv_map_release);
4911 }
4912
4913 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4914 {
4915         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4916                 return -EINVAL;
4917
4918         /*
4919          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4920          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4921          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4922          */
4923         if (addr & ~PUD_MASK) {
4924                 /*
4925                  * hugetlb_vm_op_split is called right before we attempt to
4926                  * split the VMA. We will need to unshare PMDs in the old and
4927                  * new VMAs, so let's unshare before we split.
4928                  */
4929                 unsigned long floor = addr & PUD_MASK;
4930                 unsigned long ceil = floor + PUD_SIZE;
4931
4932                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4933                         hugetlb_unshare_pmds(vma, floor, ceil);
4934         }
4935
4936         return 0;
4937 }
4938
4939 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4940 {
4941         return huge_page_size(hstate_vma(vma));
4942 }
4943
4944 /*
4945  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4946  * handle_mm_fault() to try to instantiate regular-sized pages in the
4947  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4948  * this far.
4949  */
4950 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4951 {
4952         BUG();
4953         return 0;
4954 }
4955
4956 /*
4957  * When a new function is introduced to vm_operations_struct and added
4958  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4959  * This is because under System V memory model, mappings created via
4960  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4961  * their original vm_ops are overwritten with shm_vm_ops.
4962  */
4963 const struct vm_operations_struct hugetlb_vm_ops = {
4964         .fault = hugetlb_vm_op_fault,
4965         .open = hugetlb_vm_op_open,
4966         .close = hugetlb_vm_op_close,
4967         .may_split = hugetlb_vm_op_split,
4968         .pagesize = hugetlb_vm_op_pagesize,
4969 };
4970
4971 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4972                                 int writable)
4973 {
4974         pte_t entry;
4975         unsigned int shift = huge_page_shift(hstate_vma(vma));
4976
4977         if (writable) {
4978                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4979                                          vma->vm_page_prot)));
4980         } else {
4981                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4982                                            vma->vm_page_prot));
4983         }
4984         entry = pte_mkyoung(entry);
4985         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4986
4987         return entry;
4988 }
4989
4990 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4991                                    unsigned long address, pte_t *ptep)
4992 {
4993         pte_t entry;
4994
4995         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4996         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4997                 update_mmu_cache(vma, address, ptep);
4998 }
4999
5000 bool is_hugetlb_entry_migration(pte_t pte)
5001 {
5002         swp_entry_t swp;
5003
5004         if (huge_pte_none(pte) || pte_present(pte))
5005                 return false;
5006         swp = pte_to_swp_entry(pte);
5007         if (is_migration_entry(swp))
5008                 return true;
5009         else
5010                 return false;
5011 }
5012
5013 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5014 {
5015         swp_entry_t swp;
5016
5017         if (huge_pte_none(pte) || pte_present(pte))
5018                 return false;
5019         swp = pte_to_swp_entry(pte);
5020         if (is_hwpoison_entry(swp))
5021                 return true;
5022         else
5023                 return false;
5024 }
5025
5026 static void
5027 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5028                       struct folio *new_folio, pte_t old)
5029 {
5030         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5031
5032         __folio_mark_uptodate(new_folio);
5033         hugepage_add_new_anon_rmap(new_folio, vma, addr);
5034         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5035                 newpte = huge_pte_mkuffd_wp(newpte);
5036         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5037         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5038         folio_set_hugetlb_migratable(new_folio);
5039 }
5040
5041 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5042                             struct vm_area_struct *dst_vma,
5043                             struct vm_area_struct *src_vma)
5044 {
5045         pte_t *src_pte, *dst_pte, entry;
5046         struct page *ptepage;
5047         unsigned long addr;
5048         bool cow = is_cow_mapping(src_vma->vm_flags);
5049         struct hstate *h = hstate_vma(src_vma);
5050         unsigned long sz = huge_page_size(h);
5051         unsigned long npages = pages_per_huge_page(h);
5052         struct mmu_notifier_range range;
5053         unsigned long last_addr_mask;
5054         int ret = 0;
5055
5056         if (cow) {
5057                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5058                                         src_vma->vm_start,
5059                                         src_vma->vm_end);
5060                 mmu_notifier_invalidate_range_start(&range);
5061                 mmap_assert_write_locked(src);
5062                 raw_write_seqcount_begin(&src->write_protect_seq);
5063         } else {
5064                 /*
5065                  * For shared mappings the vma lock must be held before
5066                  * calling hugetlb_walk() in the src vma. Otherwise, the
5067                  * returned ptep could go away if part of a shared pmd and
5068                  * another thread calls huge_pmd_unshare.
5069                  */
5070                 hugetlb_vma_lock_read(src_vma);
5071         }
5072
5073         last_addr_mask = hugetlb_mask_last_page(h);
5074         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5075                 spinlock_t *src_ptl, *dst_ptl;
5076                 src_pte = hugetlb_walk(src_vma, addr, sz);
5077                 if (!src_pte) {
5078                         addr |= last_addr_mask;
5079                         continue;
5080                 }
5081                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5082                 if (!dst_pte) {
5083                         ret = -ENOMEM;
5084                         break;
5085                 }
5086
5087                 /*
5088                  * If the pagetables are shared don't copy or take references.
5089                  *
5090                  * dst_pte == src_pte is the common case of src/dest sharing.
5091                  * However, src could have 'unshared' and dst shares with
5092                  * another vma. So page_count of ptep page is checked instead
5093                  * to reliably determine whether pte is shared.
5094                  */
5095                 if (page_count(virt_to_page(dst_pte)) > 1) {
5096                         addr |= last_addr_mask;
5097                         continue;
5098                 }
5099
5100                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5101                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5102                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5103                 entry = huge_ptep_get(src_pte);
5104 again:
5105                 if (huge_pte_none(entry)) {
5106                         /*
5107                          * Skip if src entry none.
5108                          */
5109                         ;
5110                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5111                         if (!userfaultfd_wp(dst_vma))
5112                                 entry = huge_pte_clear_uffd_wp(entry);
5113                         set_huge_pte_at(dst, addr, dst_pte, entry);
5114                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5115                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5116                         bool uffd_wp = pte_swp_uffd_wp(entry);
5117
5118                         if (!is_readable_migration_entry(swp_entry) && cow) {
5119                                 /*
5120                                  * COW mappings require pages in both
5121                                  * parent and child to be set to read.
5122                                  */
5123                                 swp_entry = make_readable_migration_entry(
5124                                                         swp_offset(swp_entry));
5125                                 entry = swp_entry_to_pte(swp_entry);
5126                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5127                                         entry = pte_swp_mkuffd_wp(entry);
5128                                 set_huge_pte_at(src, addr, src_pte, entry);
5129                         }
5130                         if (!userfaultfd_wp(dst_vma))
5131                                 entry = huge_pte_clear_uffd_wp(entry);
5132                         set_huge_pte_at(dst, addr, dst_pte, entry);
5133                 } else if (unlikely(is_pte_marker(entry))) {
5134                         /* No swap on hugetlb */
5135                         WARN_ON_ONCE(
5136                             is_swapin_error_entry(pte_to_swp_entry(entry)));
5137                         /*
5138                          * We copy the pte marker only if the dst vma has
5139                          * uffd-wp enabled.
5140                          */
5141                         if (userfaultfd_wp(dst_vma))
5142                                 set_huge_pte_at(dst, addr, dst_pte, entry);
5143                 } else {
5144                         entry = huge_ptep_get(src_pte);
5145                         ptepage = pte_page(entry);
5146                         get_page(ptepage);
5147
5148                         /*
5149                          * Failing to duplicate the anon rmap is a rare case
5150                          * where we see pinned hugetlb pages while they're
5151                          * prone to COW. We need to do the COW earlier during
5152                          * fork.
5153                          *
5154                          * When pre-allocating the page or copying data, we
5155                          * need to be without the pgtable locks since we could
5156                          * sleep during the process.
5157                          */
5158                         if (!PageAnon(ptepage)) {
5159                                 page_dup_file_rmap(ptepage, true);
5160                         } else if (page_try_dup_anon_rmap(ptepage, true,
5161                                                           src_vma)) {
5162                                 pte_t src_pte_old = entry;
5163                                 struct folio *new_folio;
5164
5165                                 spin_unlock(src_ptl);
5166                                 spin_unlock(dst_ptl);
5167                                 /* Do not use reserve as it's private owned */
5168                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5169                                 if (IS_ERR(new_folio)) {
5170                                         put_page(ptepage);
5171                                         ret = PTR_ERR(new_folio);
5172                                         break;
5173                                 }
5174                                 ret = copy_user_large_folio(new_folio,
5175                                                       page_folio(ptepage),
5176                                                       addr, dst_vma);
5177                                 put_page(ptepage);
5178                                 if (ret) {
5179                                         folio_put(new_folio);
5180                                         break;
5181                                 }
5182
5183                                 /* Install the new hugetlb folio if src pte stable */
5184                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5185                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5186                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5187                                 entry = huge_ptep_get(src_pte);
5188                                 if (!pte_same(src_pte_old, entry)) {
5189                                         restore_reserve_on_error(h, dst_vma, addr,
5190                                                                 new_folio);
5191                                         folio_put(new_folio);
5192                                         /* huge_ptep of dst_pte won't change as in child */
5193                                         goto again;
5194                                 }
5195                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5196                                                       new_folio, src_pte_old);
5197                                 spin_unlock(src_ptl);
5198                                 spin_unlock(dst_ptl);
5199                                 continue;
5200                         }
5201
5202                         if (cow) {
5203                                 /*
5204                                  * No need to notify as we are downgrading page
5205                                  * table protection not changing it to point
5206                                  * to a new page.
5207                                  *
5208                                  * See Documentation/mm/mmu_notifier.rst
5209                                  */
5210                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5211                                 entry = huge_pte_wrprotect(entry);
5212                         }
5213
5214                         if (!userfaultfd_wp(dst_vma))
5215                                 entry = huge_pte_clear_uffd_wp(entry);
5216
5217                         set_huge_pte_at(dst, addr, dst_pte, entry);
5218                         hugetlb_count_add(npages, dst);
5219                 }
5220                 spin_unlock(src_ptl);
5221                 spin_unlock(dst_ptl);
5222         }
5223
5224         if (cow) {
5225                 raw_write_seqcount_end(&src->write_protect_seq);
5226                 mmu_notifier_invalidate_range_end(&range);
5227         } else {
5228                 hugetlb_vma_unlock_read(src_vma);
5229         }
5230
5231         return ret;
5232 }
5233
5234 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5235                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5236 {
5237         struct hstate *h = hstate_vma(vma);
5238         struct mm_struct *mm = vma->vm_mm;
5239         spinlock_t *src_ptl, *dst_ptl;
5240         pte_t pte;
5241
5242         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5243         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5244
5245         /*
5246          * We don't have to worry about the ordering of src and dst ptlocks
5247          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5248          */
5249         if (src_ptl != dst_ptl)
5250                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5251
5252         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5253         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5254
5255         if (src_ptl != dst_ptl)
5256                 spin_unlock(src_ptl);
5257         spin_unlock(dst_ptl);
5258 }
5259
5260 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5261                              struct vm_area_struct *new_vma,
5262                              unsigned long old_addr, unsigned long new_addr,
5263                              unsigned long len)
5264 {
5265         struct hstate *h = hstate_vma(vma);
5266         struct address_space *mapping = vma->vm_file->f_mapping;
5267         unsigned long sz = huge_page_size(h);
5268         struct mm_struct *mm = vma->vm_mm;
5269         unsigned long old_end = old_addr + len;
5270         unsigned long last_addr_mask;
5271         pte_t *src_pte, *dst_pte;
5272         struct mmu_notifier_range range;
5273         bool shared_pmd = false;
5274
5275         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5276                                 old_end);
5277         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5278         /*
5279          * In case of shared PMDs, we should cover the maximum possible
5280          * range.
5281          */
5282         flush_cache_range(vma, range.start, range.end);
5283
5284         mmu_notifier_invalidate_range_start(&range);
5285         last_addr_mask = hugetlb_mask_last_page(h);
5286         /* Prevent race with file truncation */
5287         hugetlb_vma_lock_write(vma);
5288         i_mmap_lock_write(mapping);
5289         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5290                 src_pte = hugetlb_walk(vma, old_addr, sz);
5291                 if (!src_pte) {
5292                         old_addr |= last_addr_mask;
5293                         new_addr |= last_addr_mask;
5294                         continue;
5295                 }
5296                 if (huge_pte_none(huge_ptep_get(src_pte)))
5297                         continue;
5298
5299                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5300                         shared_pmd = true;
5301                         old_addr |= last_addr_mask;
5302                         new_addr |= last_addr_mask;
5303                         continue;
5304                 }
5305
5306                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5307                 if (!dst_pte)
5308                         break;
5309
5310                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5311         }
5312
5313         if (shared_pmd)
5314                 flush_tlb_range(vma, range.start, range.end);
5315         else
5316                 flush_tlb_range(vma, old_end - len, old_end);
5317         mmu_notifier_invalidate_range_end(&range);
5318         i_mmap_unlock_write(mapping);
5319         hugetlb_vma_unlock_write(vma);
5320
5321         return len + old_addr - old_end;
5322 }
5323
5324 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5325                                    unsigned long start, unsigned long end,
5326                                    struct page *ref_page, zap_flags_t zap_flags)
5327 {
5328         struct mm_struct *mm = vma->vm_mm;
5329         unsigned long address;
5330         pte_t *ptep;
5331         pte_t pte;
5332         spinlock_t *ptl;
5333         struct page *page;
5334         struct hstate *h = hstate_vma(vma);
5335         unsigned long sz = huge_page_size(h);
5336         unsigned long last_addr_mask;
5337         bool force_flush = false;
5338
5339         WARN_ON(!is_vm_hugetlb_page(vma));
5340         BUG_ON(start & ~huge_page_mask(h));
5341         BUG_ON(end & ~huge_page_mask(h));
5342
5343         /*
5344          * This is a hugetlb vma, all the pte entries should point
5345          * to huge page.
5346          */
5347         tlb_change_page_size(tlb, sz);
5348         tlb_start_vma(tlb, vma);
5349
5350         last_addr_mask = hugetlb_mask_last_page(h);
5351         address = start;
5352         for (; address < end; address += sz) {
5353                 ptep = hugetlb_walk(vma, address, sz);
5354                 if (!ptep) {
5355                         address |= last_addr_mask;
5356                         continue;
5357                 }
5358
5359                 ptl = huge_pte_lock(h, mm, ptep);
5360                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5361                         spin_unlock(ptl);
5362                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5363                         force_flush = true;
5364                         address |= last_addr_mask;
5365                         continue;
5366                 }
5367
5368                 pte = huge_ptep_get(ptep);
5369                 if (huge_pte_none(pte)) {
5370                         spin_unlock(ptl);
5371                         continue;
5372                 }
5373
5374                 /*
5375                  * Migrating hugepage or HWPoisoned hugepage is already
5376                  * unmapped and its refcount is dropped, so just clear pte here.
5377                  */
5378                 if (unlikely(!pte_present(pte))) {
5379                         /*
5380                          * If the pte was wr-protected by uffd-wp in any of the
5381                          * swap forms, meanwhile the caller does not want to
5382                          * drop the uffd-wp bit in this zap, then replace the
5383                          * pte with a marker.
5384                          */
5385                         if (pte_swp_uffd_wp_any(pte) &&
5386                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5387                                 set_huge_pte_at(mm, address, ptep,
5388                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5389                         else
5390                                 huge_pte_clear(mm, address, ptep, sz);
5391                         spin_unlock(ptl);
5392                         continue;
5393                 }
5394
5395                 page = pte_page(pte);
5396                 /*
5397                  * If a reference page is supplied, it is because a specific
5398                  * page is being unmapped, not a range. Ensure the page we
5399                  * are about to unmap is the actual page of interest.
5400                  */
5401                 if (ref_page) {
5402                         if (page != ref_page) {
5403                                 spin_unlock(ptl);
5404                                 continue;
5405                         }
5406                         /*
5407                          * Mark the VMA as having unmapped its page so that
5408                          * future faults in this VMA will fail rather than
5409                          * looking like data was lost
5410                          */
5411                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5412                 }
5413
5414                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5415                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5416                 if (huge_pte_dirty(pte))
5417                         set_page_dirty(page);
5418                 /* Leave a uffd-wp pte marker if needed */
5419                 if (huge_pte_uffd_wp(pte) &&
5420                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5421                         set_huge_pte_at(mm, address, ptep,
5422                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5423                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5424                 page_remove_rmap(page, vma, true);
5425
5426                 spin_unlock(ptl);
5427                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5428                 /*
5429                  * Bail out after unmapping reference page if supplied
5430                  */
5431                 if (ref_page)
5432                         break;
5433         }
5434         tlb_end_vma(tlb, vma);
5435
5436         /*
5437          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5438          * could defer the flush until now, since by holding i_mmap_rwsem we
5439          * guaranteed that the last refernece would not be dropped. But we must
5440          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5441          * dropped and the last reference to the shared PMDs page might be
5442          * dropped as well.
5443          *
5444          * In theory we could defer the freeing of the PMD pages as well, but
5445          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5446          * detect sharing, so we cannot defer the release of the page either.
5447          * Instead, do flush now.
5448          */
5449         if (force_flush)
5450                 tlb_flush_mmu_tlbonly(tlb);
5451 }
5452
5453 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5454                           struct vm_area_struct *vma, unsigned long start,
5455                           unsigned long end, struct page *ref_page,
5456                           zap_flags_t zap_flags)
5457 {
5458         hugetlb_vma_lock_write(vma);
5459         i_mmap_lock_write(vma->vm_file->f_mapping);
5460
5461         /* mmu notification performed in caller */
5462         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5463
5464         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5465                 /*
5466                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5467                  * When the vma_lock is freed, this makes the vma ineligible
5468                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5469                  * pmd sharing.  This is important as page tables for this
5470                  * unmapped range will be asynchrously deleted.  If the page
5471                  * tables are shared, there will be issues when accessed by
5472                  * someone else.
5473                  */
5474                 __hugetlb_vma_unlock_write_free(vma);
5475                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5476         } else {
5477                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5478                 hugetlb_vma_unlock_write(vma);
5479         }
5480 }
5481
5482 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5483                           unsigned long end, struct page *ref_page,
5484                           zap_flags_t zap_flags)
5485 {
5486         struct mmu_notifier_range range;
5487         struct mmu_gather tlb;
5488
5489         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5490                                 start, end);
5491         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5492         mmu_notifier_invalidate_range_start(&range);
5493         tlb_gather_mmu(&tlb, vma->vm_mm);
5494
5495         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5496
5497         mmu_notifier_invalidate_range_end(&range);
5498         tlb_finish_mmu(&tlb);
5499 }
5500
5501 /*
5502  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5503  * mapping it owns the reserve page for. The intention is to unmap the page
5504  * from other VMAs and let the children be SIGKILLed if they are faulting the
5505  * same region.
5506  */
5507 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5508                               struct page *page, unsigned long address)
5509 {
5510         struct hstate *h = hstate_vma(vma);
5511         struct vm_area_struct *iter_vma;
5512         struct address_space *mapping;
5513         pgoff_t pgoff;
5514
5515         /*
5516          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5517          * from page cache lookup which is in HPAGE_SIZE units.
5518          */
5519         address = address & huge_page_mask(h);
5520         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5521                         vma->vm_pgoff;
5522         mapping = vma->vm_file->f_mapping;
5523
5524         /*
5525          * Take the mapping lock for the duration of the table walk. As
5526          * this mapping should be shared between all the VMAs,
5527          * __unmap_hugepage_range() is called as the lock is already held
5528          */
5529         i_mmap_lock_write(mapping);
5530         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5531                 /* Do not unmap the current VMA */
5532                 if (iter_vma == vma)
5533                         continue;
5534
5535                 /*
5536                  * Shared VMAs have their own reserves and do not affect
5537                  * MAP_PRIVATE accounting but it is possible that a shared
5538                  * VMA is using the same page so check and skip such VMAs.
5539                  */
5540                 if (iter_vma->vm_flags & VM_MAYSHARE)
5541                         continue;
5542
5543                 /*
5544                  * Unmap the page from other VMAs without their own reserves.
5545                  * They get marked to be SIGKILLed if they fault in these
5546                  * areas. This is because a future no-page fault on this VMA
5547                  * could insert a zeroed page instead of the data existing
5548                  * from the time of fork. This would look like data corruption
5549                  */
5550                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5551                         unmap_hugepage_range(iter_vma, address,
5552                                              address + huge_page_size(h), page, 0);
5553         }
5554         i_mmap_unlock_write(mapping);
5555 }
5556
5557 /*
5558  * hugetlb_wp() should be called with page lock of the original hugepage held.
5559  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5560  * cannot race with other handlers or page migration.
5561  * Keep the pte_same checks anyway to make transition from the mutex easier.
5562  */
5563 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5564                        unsigned long address, pte_t *ptep, unsigned int flags,
5565                        struct folio *pagecache_folio, spinlock_t *ptl)
5566 {
5567         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5568         pte_t pte = huge_ptep_get(ptep);
5569         struct hstate *h = hstate_vma(vma);
5570         struct page *old_page;
5571         struct folio *new_folio;
5572         int outside_reserve = 0;
5573         vm_fault_t ret = 0;
5574         unsigned long haddr = address & huge_page_mask(h);
5575         struct mmu_notifier_range range;
5576
5577         /*
5578          * Never handle CoW for uffd-wp protected pages.  It should be only
5579          * handled when the uffd-wp protection is removed.
5580          *
5581          * Note that only the CoW optimization path (in hugetlb_no_page())
5582          * can trigger this, because hugetlb_fault() will always resolve
5583          * uffd-wp bit first.
5584          */
5585         if (!unshare && huge_pte_uffd_wp(pte))
5586                 return 0;
5587
5588         /*
5589          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5590          * PTE mapped R/O such as maybe_mkwrite() would do.
5591          */
5592         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5593                 return VM_FAULT_SIGSEGV;
5594
5595         /* Let's take out MAP_SHARED mappings first. */
5596         if (vma->vm_flags & VM_MAYSHARE) {
5597                 set_huge_ptep_writable(vma, haddr, ptep);
5598                 return 0;
5599         }
5600
5601         old_page = pte_page(pte);
5602
5603         delayacct_wpcopy_start();
5604
5605 retry_avoidcopy:
5606         /*
5607          * If no-one else is actually using this page, we're the exclusive
5608          * owner and can reuse this page.
5609          */
5610         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5611                 if (!PageAnonExclusive(old_page))
5612                         page_move_anon_rmap(old_page, vma);
5613                 if (likely(!unshare))
5614                         set_huge_ptep_writable(vma, haddr, ptep);
5615
5616                 delayacct_wpcopy_end();
5617                 return 0;
5618         }
5619         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5620                        old_page);
5621
5622         /*
5623          * If the process that created a MAP_PRIVATE mapping is about to
5624          * perform a COW due to a shared page count, attempt to satisfy
5625          * the allocation without using the existing reserves. The pagecache
5626          * page is used to determine if the reserve at this address was
5627          * consumed or not. If reserves were used, a partial faulted mapping
5628          * at the time of fork() could consume its reserves on COW instead
5629          * of the full address range.
5630          */
5631         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5632                         page_folio(old_page) != pagecache_folio)
5633                 outside_reserve = 1;
5634
5635         get_page(old_page);
5636
5637         /*
5638          * Drop page table lock as buddy allocator may be called. It will
5639          * be acquired again before returning to the caller, as expected.
5640          */
5641         spin_unlock(ptl);
5642         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5643
5644         if (IS_ERR(new_folio)) {
5645                 /*
5646                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5647                  * it is due to references held by a child and an insufficient
5648                  * huge page pool. To guarantee the original mappers
5649                  * reliability, unmap the page from child processes. The child
5650                  * may get SIGKILLed if it later faults.
5651                  */
5652                 if (outside_reserve) {
5653                         struct address_space *mapping = vma->vm_file->f_mapping;
5654                         pgoff_t idx;
5655                         u32 hash;
5656
5657                         put_page(old_page);
5658                         /*
5659                          * Drop hugetlb_fault_mutex and vma_lock before
5660                          * unmapping.  unmapping needs to hold vma_lock
5661                          * in write mode.  Dropping vma_lock in read mode
5662                          * here is OK as COW mappings do not interact with
5663                          * PMD sharing.
5664                          *
5665                          * Reacquire both after unmap operation.
5666                          */
5667                         idx = vma_hugecache_offset(h, vma, haddr);
5668                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5669                         hugetlb_vma_unlock_read(vma);
5670                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5671
5672                         unmap_ref_private(mm, vma, old_page, haddr);
5673
5674                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5675                         hugetlb_vma_lock_read(vma);
5676                         spin_lock(ptl);
5677                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5678                         if (likely(ptep &&
5679                                    pte_same(huge_ptep_get(ptep), pte)))
5680                                 goto retry_avoidcopy;
5681                         /*
5682                          * race occurs while re-acquiring page table
5683                          * lock, and our job is done.
5684                          */
5685                         delayacct_wpcopy_end();
5686                         return 0;
5687                 }
5688
5689                 ret = vmf_error(PTR_ERR(new_folio));
5690                 goto out_release_old;
5691         }
5692
5693         /*
5694          * When the original hugepage is shared one, it does not have
5695          * anon_vma prepared.
5696          */
5697         if (unlikely(anon_vma_prepare(vma))) {
5698                 ret = VM_FAULT_OOM;
5699                 goto out_release_all;
5700         }
5701
5702         if (copy_user_large_folio(new_folio, page_folio(old_page), address, vma)) {
5703                 ret = VM_FAULT_HWPOISON_LARGE;
5704                 goto out_release_all;
5705         }
5706         __folio_mark_uptodate(new_folio);
5707
5708         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5709                                 haddr + huge_page_size(h));
5710         mmu_notifier_invalidate_range_start(&range);
5711
5712         /*
5713          * Retake the page table lock to check for racing updates
5714          * before the page tables are altered
5715          */
5716         spin_lock(ptl);
5717         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5718         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5719                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5720
5721                 /* Break COW or unshare */
5722                 huge_ptep_clear_flush(vma, haddr, ptep);
5723                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5724                 page_remove_rmap(old_page, vma, true);
5725                 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5726                 if (huge_pte_uffd_wp(pte))
5727                         newpte = huge_pte_mkuffd_wp(newpte);
5728                 set_huge_pte_at(mm, haddr, ptep, newpte);
5729                 folio_set_hugetlb_migratable(new_folio);
5730                 /* Make the old page be freed below */
5731                 new_folio = page_folio(old_page);
5732         }
5733         spin_unlock(ptl);
5734         mmu_notifier_invalidate_range_end(&range);
5735 out_release_all:
5736         /*
5737          * No restore in case of successful pagetable update (Break COW or
5738          * unshare)
5739          */
5740         if (new_folio != page_folio(old_page))
5741                 restore_reserve_on_error(h, vma, haddr, new_folio);
5742         folio_put(new_folio);
5743 out_release_old:
5744         put_page(old_page);
5745
5746         spin_lock(ptl); /* Caller expects lock to be held */
5747
5748         delayacct_wpcopy_end();
5749         return ret;
5750 }
5751
5752 /*
5753  * Return whether there is a pagecache page to back given address within VMA.
5754  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5755  */
5756 static bool hugetlbfs_pagecache_present(struct hstate *h,
5757                         struct vm_area_struct *vma, unsigned long address)
5758 {
5759         struct address_space *mapping = vma->vm_file->f_mapping;
5760         pgoff_t idx = vma_hugecache_offset(h, vma, address);
5761         struct folio *folio;
5762
5763         folio = filemap_get_folio(mapping, idx);
5764         if (IS_ERR(folio))
5765                 return false;
5766         folio_put(folio);
5767         return true;
5768 }
5769
5770 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5771                            pgoff_t idx)
5772 {
5773         struct inode *inode = mapping->host;
5774         struct hstate *h = hstate_inode(inode);
5775         int err;
5776
5777         __folio_set_locked(folio);
5778         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5779
5780         if (unlikely(err)) {
5781                 __folio_clear_locked(folio);
5782                 return err;
5783         }
5784         folio_clear_hugetlb_restore_reserve(folio);
5785
5786         /*
5787          * mark folio dirty so that it will not be removed from cache/file
5788          * by non-hugetlbfs specific code paths.
5789          */
5790         folio_mark_dirty(folio);
5791
5792         spin_lock(&inode->i_lock);
5793         inode->i_blocks += blocks_per_huge_page(h);
5794         spin_unlock(&inode->i_lock);
5795         return 0;
5796 }
5797
5798 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5799                                                   struct address_space *mapping,
5800                                                   pgoff_t idx,
5801                                                   unsigned int flags,
5802                                                   unsigned long haddr,
5803                                                   unsigned long addr,
5804                                                   unsigned long reason)
5805 {
5806         u32 hash;
5807         struct vm_fault vmf = {
5808                 .vma = vma,
5809                 .address = haddr,
5810                 .real_address = addr,
5811                 .flags = flags,
5812
5813                 /*
5814                  * Hard to debug if it ends up being
5815                  * used by a callee that assumes
5816                  * something about the other
5817                  * uninitialized fields... same as in
5818                  * memory.c
5819                  */
5820         };
5821
5822         /*
5823          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5824          * userfault. Also mmap_lock could be dropped due to handling
5825          * userfault, any vma operation should be careful from here.
5826          */
5827         hugetlb_vma_unlock_read(vma);
5828         hash = hugetlb_fault_mutex_hash(mapping, idx);
5829         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5830         return handle_userfault(&vmf, reason);
5831 }
5832
5833 /*
5834  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5835  * false if pte changed or is changing.
5836  */
5837 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5838                                pte_t *ptep, pte_t old_pte)
5839 {
5840         spinlock_t *ptl;
5841         bool same;
5842
5843         ptl = huge_pte_lock(h, mm, ptep);
5844         same = pte_same(huge_ptep_get(ptep), old_pte);
5845         spin_unlock(ptl);
5846
5847         return same;
5848 }
5849
5850 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5851                         struct vm_area_struct *vma,
5852                         struct address_space *mapping, pgoff_t idx,
5853                         unsigned long address, pte_t *ptep,
5854                         pte_t old_pte, unsigned int flags)
5855 {
5856         struct hstate *h = hstate_vma(vma);
5857         vm_fault_t ret = VM_FAULT_SIGBUS;
5858         int anon_rmap = 0;
5859         unsigned long size;
5860         struct folio *folio;
5861         pte_t new_pte;
5862         spinlock_t *ptl;
5863         unsigned long haddr = address & huge_page_mask(h);
5864         bool new_folio, new_pagecache_folio = false;
5865         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5866
5867         /*
5868          * Currently, we are forced to kill the process in the event the
5869          * original mapper has unmapped pages from the child due to a failed
5870          * COW/unsharing. Warn that such a situation has occurred as it may not
5871          * be obvious.
5872          */
5873         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5874                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5875                            current->pid);
5876                 goto out;
5877         }
5878
5879         /*
5880          * Use page lock to guard against racing truncation
5881          * before we get page_table_lock.
5882          */
5883         new_folio = false;
5884         folio = filemap_lock_folio(mapping, idx);
5885         if (IS_ERR(folio)) {
5886                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5887                 if (idx >= size)
5888                         goto out;
5889                 /* Check for page in userfault range */
5890                 if (userfaultfd_missing(vma)) {
5891                         /*
5892                          * Since hugetlb_no_page() was examining pte
5893                          * without pgtable lock, we need to re-test under
5894                          * lock because the pte may not be stable and could
5895                          * have changed from under us.  Try to detect
5896                          * either changed or during-changing ptes and retry
5897                          * properly when needed.
5898                          *
5899                          * Note that userfaultfd is actually fine with
5900                          * false positives (e.g. caused by pte changed),
5901                          * but not wrong logical events (e.g. caused by
5902                          * reading a pte during changing).  The latter can
5903                          * confuse the userspace, so the strictness is very
5904                          * much preferred.  E.g., MISSING event should
5905                          * never happen on the page after UFFDIO_COPY has
5906                          * correctly installed the page and returned.
5907                          */
5908                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5909                                 ret = 0;
5910                                 goto out;
5911                         }
5912
5913                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5914                                                         haddr, address,
5915                                                         VM_UFFD_MISSING);
5916                 }
5917
5918                 folio = alloc_hugetlb_folio(vma, haddr, 0);
5919                 if (IS_ERR(folio)) {
5920                         /*
5921                          * Returning error will result in faulting task being
5922                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5923                          * tasks from racing to fault in the same page which
5924                          * could result in false unable to allocate errors.
5925                          * Page migration does not take the fault mutex, but
5926                          * does a clear then write of pte's under page table
5927                          * lock.  Page fault code could race with migration,
5928                          * notice the clear pte and try to allocate a page
5929                          * here.  Before returning error, get ptl and make
5930                          * sure there really is no pte entry.
5931                          */
5932                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5933                                 ret = vmf_error(PTR_ERR(folio));
5934                         else
5935                                 ret = 0;
5936                         goto out;
5937                 }
5938                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5939                 __folio_mark_uptodate(folio);
5940                 new_folio = true;
5941
5942                 if (vma->vm_flags & VM_MAYSHARE) {
5943                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5944                         if (err) {
5945                                 /*
5946                                  * err can't be -EEXIST which implies someone
5947                                  * else consumed the reservation since hugetlb
5948                                  * fault mutex is held when add a hugetlb page
5949                                  * to the page cache. So it's safe to call
5950                                  * restore_reserve_on_error() here.
5951                                  */
5952                                 restore_reserve_on_error(h, vma, haddr, folio);
5953                                 folio_put(folio);
5954                                 goto out;
5955                         }
5956                         new_pagecache_folio = true;
5957                 } else {
5958                         folio_lock(folio);
5959                         if (unlikely(anon_vma_prepare(vma))) {
5960                                 ret = VM_FAULT_OOM;
5961                                 goto backout_unlocked;
5962                         }
5963                         anon_rmap = 1;
5964                 }
5965         } else {
5966                 /*
5967                  * If memory error occurs between mmap() and fault, some process
5968                  * don't have hwpoisoned swap entry for errored virtual address.
5969                  * So we need to block hugepage fault by PG_hwpoison bit check.
5970                  */
5971                 if (unlikely(folio_test_hwpoison(folio))) {
5972                         ret = VM_FAULT_HWPOISON_LARGE |
5973                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5974                         goto backout_unlocked;
5975                 }
5976
5977                 /* Check for page in userfault range. */
5978                 if (userfaultfd_minor(vma)) {
5979                         folio_unlock(folio);
5980                         folio_put(folio);
5981                         /* See comment in userfaultfd_missing() block above */
5982                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5983                                 ret = 0;
5984                                 goto out;
5985                         }
5986                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5987                                                         haddr, address,
5988                                                         VM_UFFD_MINOR);
5989                 }
5990         }
5991
5992         /*
5993          * If we are going to COW a private mapping later, we examine the
5994          * pending reservations for this page now. This will ensure that
5995          * any allocations necessary to record that reservation occur outside
5996          * the spinlock.
5997          */
5998         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5999                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6000                         ret = VM_FAULT_OOM;
6001                         goto backout_unlocked;
6002                 }
6003                 /* Just decrements count, does not deallocate */
6004                 vma_end_reservation(h, vma, haddr);
6005         }
6006
6007         ptl = huge_pte_lock(h, mm, ptep);
6008         ret = 0;
6009         /* If pte changed from under us, retry */
6010         if (!pte_same(huge_ptep_get(ptep), old_pte))
6011                 goto backout;
6012
6013         if (anon_rmap)
6014                 hugepage_add_new_anon_rmap(folio, vma, haddr);
6015         else
6016                 page_dup_file_rmap(&folio->page, true);
6017         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6018                                 && (vma->vm_flags & VM_SHARED)));
6019         /*
6020          * If this pte was previously wr-protected, keep it wr-protected even
6021          * if populated.
6022          */
6023         if (unlikely(pte_marker_uffd_wp(old_pte)))
6024                 new_pte = huge_pte_mkuffd_wp(new_pte);
6025         set_huge_pte_at(mm, haddr, ptep, new_pte);
6026
6027         hugetlb_count_add(pages_per_huge_page(h), mm);
6028         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6029                 /* Optimization, do the COW without a second fault */
6030                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6031         }
6032
6033         spin_unlock(ptl);
6034
6035         /*
6036          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6037          * found in the pagecache may not have hugetlb_migratable if they have
6038          * been isolated for migration.
6039          */
6040         if (new_folio)
6041                 folio_set_hugetlb_migratable(folio);
6042
6043         folio_unlock(folio);
6044 out:
6045         hugetlb_vma_unlock_read(vma);
6046         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6047         return ret;
6048
6049 backout:
6050         spin_unlock(ptl);
6051 backout_unlocked:
6052         if (new_folio && !new_pagecache_folio)
6053                 restore_reserve_on_error(h, vma, haddr, folio);
6054
6055         folio_unlock(folio);
6056         folio_put(folio);
6057         goto out;
6058 }
6059
6060 #ifdef CONFIG_SMP
6061 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6062 {
6063         unsigned long key[2];
6064         u32 hash;
6065
6066         key[0] = (unsigned long) mapping;
6067         key[1] = idx;
6068
6069         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6070
6071         return hash & (num_fault_mutexes - 1);
6072 }
6073 #else
6074 /*
6075  * For uniprocessor systems we always use a single mutex, so just
6076  * return 0 and avoid the hashing overhead.
6077  */
6078 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6079 {
6080         return 0;
6081 }
6082 #endif
6083
6084 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6085                         unsigned long address, unsigned int flags)
6086 {
6087         pte_t *ptep, entry;
6088         spinlock_t *ptl;
6089         vm_fault_t ret;
6090         u32 hash;
6091         pgoff_t idx;
6092         struct page *page = NULL;
6093         struct folio *pagecache_folio = NULL;
6094         struct hstate *h = hstate_vma(vma);
6095         struct address_space *mapping;
6096         int need_wait_lock = 0;
6097         unsigned long haddr = address & huge_page_mask(h);
6098
6099         /*
6100          * Serialize hugepage allocation and instantiation, so that we don't
6101          * get spurious allocation failures if two CPUs race to instantiate
6102          * the same page in the page cache.
6103          */
6104         mapping = vma->vm_file->f_mapping;
6105         idx = vma_hugecache_offset(h, vma, haddr);
6106         hash = hugetlb_fault_mutex_hash(mapping, idx);
6107         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6108
6109         /*
6110          * Acquire vma lock before calling huge_pte_alloc and hold
6111          * until finished with ptep.  This prevents huge_pmd_unshare from
6112          * being called elsewhere and making the ptep no longer valid.
6113          */
6114         hugetlb_vma_lock_read(vma);
6115         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6116         if (!ptep) {
6117                 hugetlb_vma_unlock_read(vma);
6118                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6119                 return VM_FAULT_OOM;
6120         }
6121
6122         entry = huge_ptep_get(ptep);
6123         /* PTE markers should be handled the same way as none pte */
6124         if (huge_pte_none_mostly(entry))
6125                 /*
6126                  * hugetlb_no_page will drop vma lock and hugetlb fault
6127                  * mutex internally, which make us return immediately.
6128                  */
6129                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6130                                       entry, flags);
6131
6132         ret = 0;
6133
6134         /*
6135          * entry could be a migration/hwpoison entry at this point, so this
6136          * check prevents the kernel from going below assuming that we have
6137          * an active hugepage in pagecache. This goto expects the 2nd page
6138          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6139          * properly handle it.
6140          */
6141         if (!pte_present(entry)) {
6142                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6143                         /*
6144                          * Release the hugetlb fault lock now, but retain
6145                          * the vma lock, because it is needed to guard the
6146                          * huge_pte_lockptr() later in
6147                          * migration_entry_wait_huge(). The vma lock will
6148                          * be released there.
6149                          */
6150                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6151                         migration_entry_wait_huge(vma, ptep);
6152                         return 0;
6153                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6154                         ret = VM_FAULT_HWPOISON_LARGE |
6155                             VM_FAULT_SET_HINDEX(hstate_index(h));
6156                 goto out_mutex;
6157         }
6158
6159         /*
6160          * If we are going to COW/unshare the mapping later, we examine the
6161          * pending reservations for this page now. This will ensure that any
6162          * allocations necessary to record that reservation occur outside the
6163          * spinlock. Also lookup the pagecache page now as it is used to
6164          * determine if a reservation has been consumed.
6165          */
6166         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6167             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6168                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6169                         ret = VM_FAULT_OOM;
6170                         goto out_mutex;
6171                 }
6172                 /* Just decrements count, does not deallocate */
6173                 vma_end_reservation(h, vma, haddr);
6174
6175                 pagecache_folio = filemap_lock_folio(mapping, idx);
6176                 if (IS_ERR(pagecache_folio))
6177                         pagecache_folio = NULL;
6178         }
6179
6180         ptl = huge_pte_lock(h, mm, ptep);
6181
6182         /* Check for a racing update before calling hugetlb_wp() */
6183         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6184                 goto out_ptl;
6185
6186         /* Handle userfault-wp first, before trying to lock more pages */
6187         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6188             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6189                 struct vm_fault vmf = {
6190                         .vma = vma,
6191                         .address = haddr,
6192                         .real_address = address,
6193                         .flags = flags,
6194                 };
6195
6196                 spin_unlock(ptl);
6197                 if (pagecache_folio) {
6198                         folio_unlock(pagecache_folio);
6199                         folio_put(pagecache_folio);
6200                 }
6201                 hugetlb_vma_unlock_read(vma);
6202                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6203                 return handle_userfault(&vmf, VM_UFFD_WP);
6204         }
6205
6206         /*
6207          * hugetlb_wp() requires page locks of pte_page(entry) and
6208          * pagecache_folio, so here we need take the former one
6209          * when page != pagecache_folio or !pagecache_folio.
6210          */
6211         page = pte_page(entry);
6212         if (page_folio(page) != pagecache_folio)
6213                 if (!trylock_page(page)) {
6214                         need_wait_lock = 1;
6215                         goto out_ptl;
6216                 }
6217
6218         get_page(page);
6219
6220         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6221                 if (!huge_pte_write(entry)) {
6222                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6223                                          pagecache_folio, ptl);
6224                         goto out_put_page;
6225                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6226                         entry = huge_pte_mkdirty(entry);
6227                 }
6228         }
6229         entry = pte_mkyoung(entry);
6230         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6231                                                 flags & FAULT_FLAG_WRITE))
6232                 update_mmu_cache(vma, haddr, ptep);
6233 out_put_page:
6234         if (page_folio(page) != pagecache_folio)
6235                 unlock_page(page);
6236         put_page(page);
6237 out_ptl:
6238         spin_unlock(ptl);
6239
6240         if (pagecache_folio) {
6241                 folio_unlock(pagecache_folio);
6242                 folio_put(pagecache_folio);
6243         }
6244 out_mutex:
6245         hugetlb_vma_unlock_read(vma);
6246         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6247         /*
6248          * Generally it's safe to hold refcount during waiting page lock. But
6249          * here we just wait to defer the next page fault to avoid busy loop and
6250          * the page is not used after unlocked before returning from the current
6251          * page fault. So we are safe from accessing freed page, even if we wait
6252          * here without taking refcount.
6253          */
6254         if (need_wait_lock)
6255                 wait_on_page_locked(page);
6256         return ret;
6257 }
6258
6259 #ifdef CONFIG_USERFAULTFD
6260 /*
6261  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6262  * with modifications for hugetlb pages.
6263  */
6264 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6265                              struct vm_area_struct *dst_vma,
6266                              unsigned long dst_addr,
6267                              unsigned long src_addr,
6268                              uffd_flags_t flags,
6269                              struct folio **foliop)
6270 {
6271         struct mm_struct *dst_mm = dst_vma->vm_mm;
6272         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6273         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6274         struct hstate *h = hstate_vma(dst_vma);
6275         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6276         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6277         unsigned long size;
6278         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6279         pte_t _dst_pte;
6280         spinlock_t *ptl;
6281         int ret = -ENOMEM;
6282         struct folio *folio;
6283         int writable;
6284         bool folio_in_pagecache = false;
6285
6286         if (is_continue) {
6287                 ret = -EFAULT;
6288                 folio = filemap_lock_folio(mapping, idx);
6289                 if (IS_ERR(folio))
6290                         goto out;
6291                 folio_in_pagecache = true;
6292         } else if (!*foliop) {
6293                 /* If a folio already exists, then it's UFFDIO_COPY for
6294                  * a non-missing case. Return -EEXIST.
6295                  */
6296                 if (vm_shared &&
6297                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6298                         ret = -EEXIST;
6299                         goto out;
6300                 }
6301
6302                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6303                 if (IS_ERR(folio)) {
6304                         ret = -ENOMEM;
6305                         goto out;
6306                 }
6307
6308                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6309                                            false);
6310
6311                 /* fallback to copy_from_user outside mmap_lock */
6312                 if (unlikely(ret)) {
6313                         ret = -ENOENT;
6314                         /* Free the allocated folio which may have
6315                          * consumed a reservation.
6316                          */
6317                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6318                         folio_put(folio);
6319
6320                         /* Allocate a temporary folio to hold the copied
6321                          * contents.
6322                          */
6323                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6324                         if (!folio) {
6325                                 ret = -ENOMEM;
6326                                 goto out;
6327                         }
6328                         *foliop = folio;
6329                         /* Set the outparam foliop and return to the caller to
6330                          * copy the contents outside the lock. Don't free the
6331                          * folio.
6332                          */
6333                         goto out;
6334                 }
6335         } else {
6336                 if (vm_shared &&
6337                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6338                         folio_put(*foliop);
6339                         ret = -EEXIST;
6340                         *foliop = NULL;
6341                         goto out;
6342                 }
6343
6344                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6345                 if (IS_ERR(folio)) {
6346                         folio_put(*foliop);
6347                         ret = -ENOMEM;
6348                         *foliop = NULL;
6349                         goto out;
6350                 }
6351                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6352                 folio_put(*foliop);
6353                 *foliop = NULL;
6354                 if (ret) {
6355                         folio_put(folio);
6356                         goto out;
6357                 }
6358         }
6359
6360         /*
6361          * The memory barrier inside __folio_mark_uptodate makes sure that
6362          * preceding stores to the page contents become visible before
6363          * the set_pte_at() write.
6364          */
6365         __folio_mark_uptodate(folio);
6366
6367         /* Add shared, newly allocated pages to the page cache. */
6368         if (vm_shared && !is_continue) {
6369                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6370                 ret = -EFAULT;
6371                 if (idx >= size)
6372                         goto out_release_nounlock;
6373
6374                 /*
6375                  * Serialization between remove_inode_hugepages() and
6376                  * hugetlb_add_to_page_cache() below happens through the
6377                  * hugetlb_fault_mutex_table that here must be hold by
6378                  * the caller.
6379                  */
6380                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6381                 if (ret)
6382                         goto out_release_nounlock;
6383                 folio_in_pagecache = true;
6384         }
6385
6386         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6387
6388         ret = -EIO;
6389         if (folio_test_hwpoison(folio))
6390                 goto out_release_unlock;
6391
6392         /*
6393          * We allow to overwrite a pte marker: consider when both MISSING|WP
6394          * registered, we firstly wr-protect a none pte which has no page cache
6395          * page backing it, then access the page.
6396          */
6397         ret = -EEXIST;
6398         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6399                 goto out_release_unlock;
6400
6401         if (folio_in_pagecache)
6402                 page_dup_file_rmap(&folio->page, true);
6403         else
6404                 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6405
6406         /*
6407          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6408          * with wp flag set, don't set pte write bit.
6409          */
6410         if (wp_enabled || (is_continue && !vm_shared))
6411                 writable = 0;
6412         else
6413                 writable = dst_vma->vm_flags & VM_WRITE;
6414
6415         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6416         /*
6417          * Always mark UFFDIO_COPY page dirty; note that this may not be
6418          * extremely important for hugetlbfs for now since swapping is not
6419          * supported, but we should still be clear in that this page cannot be
6420          * thrown away at will, even if write bit not set.
6421          */
6422         _dst_pte = huge_pte_mkdirty(_dst_pte);
6423         _dst_pte = pte_mkyoung(_dst_pte);
6424
6425         if (wp_enabled)
6426                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6427
6428         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6429
6430         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6431
6432         /* No need to invalidate - it was non-present before */
6433         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6434
6435         spin_unlock(ptl);
6436         if (!is_continue)
6437                 folio_set_hugetlb_migratable(folio);
6438         if (vm_shared || is_continue)
6439                 folio_unlock(folio);
6440         ret = 0;
6441 out:
6442         return ret;
6443 out_release_unlock:
6444         spin_unlock(ptl);
6445         if (vm_shared || is_continue)
6446                 folio_unlock(folio);
6447 out_release_nounlock:
6448         if (!folio_in_pagecache)
6449                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6450         folio_put(folio);
6451         goto out;
6452 }
6453 #endif /* CONFIG_USERFAULTFD */
6454
6455 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6456                                  int refs, struct page **pages,
6457                                  struct vm_area_struct **vmas)
6458 {
6459         int nr;
6460
6461         for (nr = 0; nr < refs; nr++) {
6462                 if (likely(pages))
6463                         pages[nr] = nth_page(page, nr);
6464                 if (vmas)
6465                         vmas[nr] = vma;
6466         }
6467 }
6468
6469 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6470                                                unsigned int flags, pte_t *pte,
6471                                                bool *unshare)
6472 {
6473         pte_t pteval = huge_ptep_get(pte);
6474
6475         *unshare = false;
6476         if (is_swap_pte(pteval))
6477                 return true;
6478         if (huge_pte_write(pteval))
6479                 return false;
6480         if (flags & FOLL_WRITE)
6481                 return true;
6482         if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6483                 *unshare = true;
6484                 return true;
6485         }
6486         return false;
6487 }
6488
6489 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6490                                 unsigned long address, unsigned int flags)
6491 {
6492         struct hstate *h = hstate_vma(vma);
6493         struct mm_struct *mm = vma->vm_mm;
6494         unsigned long haddr = address & huge_page_mask(h);
6495         struct page *page = NULL;
6496         spinlock_t *ptl;
6497         pte_t *pte, entry;
6498
6499         /*
6500          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6501          * follow_hugetlb_page().
6502          */
6503         if (WARN_ON_ONCE(flags & FOLL_PIN))
6504                 return NULL;
6505
6506         hugetlb_vma_lock_read(vma);
6507         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6508         if (!pte)
6509                 goto out_unlock;
6510
6511         ptl = huge_pte_lock(h, mm, pte);
6512         entry = huge_ptep_get(pte);
6513         if (pte_present(entry)) {
6514                 page = pte_page(entry) +
6515                                 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6516                 /*
6517                  * Note that page may be a sub-page, and with vmemmap
6518                  * optimizations the page struct may be read only.
6519                  * try_grab_page() will increase the ref count on the
6520                  * head page, so this will be OK.
6521                  *
6522                  * try_grab_page() should always be able to get the page here,
6523                  * because we hold the ptl lock and have verified pte_present().
6524                  */
6525                 if (try_grab_page(page, flags)) {
6526                         page = NULL;
6527                         goto out;
6528                 }
6529         }
6530 out:
6531         spin_unlock(ptl);
6532 out_unlock:
6533         hugetlb_vma_unlock_read(vma);
6534         return page;
6535 }
6536
6537 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6538                          struct page **pages, struct vm_area_struct **vmas,
6539                          unsigned long *position, unsigned long *nr_pages,
6540                          long i, unsigned int flags, int *locked)
6541 {
6542         unsigned long pfn_offset;
6543         unsigned long vaddr = *position;
6544         unsigned long remainder = *nr_pages;
6545         struct hstate *h = hstate_vma(vma);
6546         int err = -EFAULT, refs;
6547
6548         while (vaddr < vma->vm_end && remainder) {
6549                 pte_t *pte;
6550                 spinlock_t *ptl = NULL;
6551                 bool unshare = false;
6552                 int absent;
6553                 struct page *page;
6554
6555                 /*
6556                  * If we have a pending SIGKILL, don't keep faulting pages and
6557                  * potentially allocating memory.
6558                  */
6559                 if (fatal_signal_pending(current)) {
6560                         remainder = 0;
6561                         break;
6562                 }
6563
6564                 hugetlb_vma_lock_read(vma);
6565                 /*
6566                  * Some archs (sparc64, sh*) have multiple pte_ts to
6567                  * each hugepage.  We have to make sure we get the
6568                  * first, for the page indexing below to work.
6569                  *
6570                  * Note that page table lock is not held when pte is null.
6571                  */
6572                 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6573                                    huge_page_size(h));
6574                 if (pte)
6575                         ptl = huge_pte_lock(h, mm, pte);
6576                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6577
6578                 /*
6579                  * When coredumping, it suits get_dump_page if we just return
6580                  * an error where there's an empty slot with no huge pagecache
6581                  * to back it.  This way, we avoid allocating a hugepage, and
6582                  * the sparse dumpfile avoids allocating disk blocks, but its
6583                  * huge holes still show up with zeroes where they need to be.
6584                  */
6585                 if (absent && (flags & FOLL_DUMP) &&
6586                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6587                         if (pte)
6588                                 spin_unlock(ptl);
6589                         hugetlb_vma_unlock_read(vma);
6590                         remainder = 0;
6591                         break;
6592                 }
6593
6594                 /*
6595                  * We need call hugetlb_fault for both hugepages under migration
6596                  * (in which case hugetlb_fault waits for the migration,) and
6597                  * hwpoisoned hugepages (in which case we need to prevent the
6598                  * caller from accessing to them.) In order to do this, we use
6599                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6600                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6601                  * both cases, and because we can't follow correct pages
6602                  * directly from any kind of swap entries.
6603                  */
6604                 if (absent ||
6605                     __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6606                         vm_fault_t ret;
6607                         unsigned int fault_flags = 0;
6608
6609                         if (pte)
6610                                 spin_unlock(ptl);
6611                         hugetlb_vma_unlock_read(vma);
6612
6613                         if (flags & FOLL_WRITE)
6614                                 fault_flags |= FAULT_FLAG_WRITE;
6615                         else if (unshare)
6616                                 fault_flags |= FAULT_FLAG_UNSHARE;
6617                         if (locked) {
6618                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6619                                         FAULT_FLAG_KILLABLE;
6620                                 if (flags & FOLL_INTERRUPTIBLE)
6621                                         fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6622                         }
6623                         if (flags & FOLL_NOWAIT)
6624                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6625                                         FAULT_FLAG_RETRY_NOWAIT;
6626                         if (flags & FOLL_TRIED) {
6627                                 /*
6628                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6629                                  * FAULT_FLAG_TRIED can co-exist
6630                                  */
6631                                 fault_flags |= FAULT_FLAG_TRIED;
6632                         }
6633                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6634                         if (ret & VM_FAULT_ERROR) {
6635                                 err = vm_fault_to_errno(ret, flags);
6636                                 remainder = 0;
6637                                 break;
6638                         }
6639                         if (ret & VM_FAULT_RETRY) {
6640                                 if (locked &&
6641                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6642                                         *locked = 0;
6643                                 *nr_pages = 0;
6644                                 /*
6645                                  * VM_FAULT_RETRY must not return an
6646                                  * error, it will return zero
6647                                  * instead.
6648                                  *
6649                                  * No need to update "position" as the
6650                                  * caller will not check it after
6651                                  * *nr_pages is set to 0.
6652                                  */
6653                                 return i;
6654                         }
6655                         continue;
6656                 }
6657
6658                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6659                 page = pte_page(huge_ptep_get(pte));
6660
6661                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6662                                !PageAnonExclusive(page), page);
6663
6664                 /*
6665                  * If subpage information not requested, update counters
6666                  * and skip the same_page loop below.
6667                  */
6668                 if (!pages && !vmas && !pfn_offset &&
6669                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6670                     (remainder >= pages_per_huge_page(h))) {
6671                         vaddr += huge_page_size(h);
6672                         remainder -= pages_per_huge_page(h);
6673                         i += pages_per_huge_page(h);
6674                         spin_unlock(ptl);
6675                         hugetlb_vma_unlock_read(vma);
6676                         continue;
6677                 }
6678
6679                 /* vaddr may not be aligned to PAGE_SIZE */
6680                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6681                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6682
6683                 if (pages || vmas)
6684                         record_subpages_vmas(nth_page(page, pfn_offset),
6685                                              vma, refs,
6686                                              likely(pages) ? pages + i : NULL,
6687                                              vmas ? vmas + i : NULL);
6688
6689                 if (pages) {
6690                         /*
6691                          * try_grab_folio() should always succeed here,
6692                          * because: a) we hold the ptl lock, and b) we've just
6693                          * checked that the huge page is present in the page
6694                          * tables. If the huge page is present, then the tail
6695                          * pages must also be present. The ptl prevents the
6696                          * head page and tail pages from being rearranged in
6697                          * any way. As this is hugetlb, the pages will never
6698                          * be p2pdma or not longterm pinable. So this page
6699                          * must be available at this point, unless the page
6700                          * refcount overflowed:
6701                          */
6702                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6703                                                          flags))) {
6704                                 spin_unlock(ptl);
6705                                 hugetlb_vma_unlock_read(vma);
6706                                 remainder = 0;
6707                                 err = -ENOMEM;
6708                                 break;
6709                         }
6710                 }
6711
6712                 vaddr += (refs << PAGE_SHIFT);
6713                 remainder -= refs;
6714                 i += refs;
6715
6716                 spin_unlock(ptl);
6717                 hugetlb_vma_unlock_read(vma);
6718         }
6719         *nr_pages = remainder;
6720         /*
6721          * setting position is actually required only if remainder is
6722          * not zero but it's faster not to add a "if (remainder)"
6723          * branch.
6724          */
6725         *position = vaddr;
6726
6727         return i ? i : err;
6728 }
6729
6730 long hugetlb_change_protection(struct vm_area_struct *vma,
6731                 unsigned long address, unsigned long end,
6732                 pgprot_t newprot, unsigned long cp_flags)
6733 {
6734         struct mm_struct *mm = vma->vm_mm;
6735         unsigned long start = address;
6736         pte_t *ptep;
6737         pte_t pte;
6738         struct hstate *h = hstate_vma(vma);
6739         long pages = 0, psize = huge_page_size(h);
6740         bool shared_pmd = false;
6741         struct mmu_notifier_range range;
6742         unsigned long last_addr_mask;
6743         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6744         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6745
6746         /*
6747          * In the case of shared PMDs, the area to flush could be beyond
6748          * start/end.  Set range.start/range.end to cover the maximum possible
6749          * range if PMD sharing is possible.
6750          */
6751         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6752                                 0, mm, start, end);
6753         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6754
6755         BUG_ON(address >= end);
6756         flush_cache_range(vma, range.start, range.end);
6757
6758         mmu_notifier_invalidate_range_start(&range);
6759         hugetlb_vma_lock_write(vma);
6760         i_mmap_lock_write(vma->vm_file->f_mapping);
6761         last_addr_mask = hugetlb_mask_last_page(h);
6762         for (; address < end; address += psize) {
6763                 spinlock_t *ptl;
6764                 ptep = hugetlb_walk(vma, address, psize);
6765                 if (!ptep) {
6766                         if (!uffd_wp) {
6767                                 address |= last_addr_mask;
6768                                 continue;
6769                         }
6770                         /*
6771                          * Userfaultfd wr-protect requires pgtable
6772                          * pre-allocations to install pte markers.
6773                          */
6774                         ptep = huge_pte_alloc(mm, vma, address, psize);
6775                         if (!ptep) {
6776                                 pages = -ENOMEM;
6777                                 break;
6778                         }
6779                 }
6780                 ptl = huge_pte_lock(h, mm, ptep);
6781                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6782                         /*
6783                          * When uffd-wp is enabled on the vma, unshare
6784                          * shouldn't happen at all.  Warn about it if it
6785                          * happened due to some reason.
6786                          */
6787                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6788                         pages++;
6789                         spin_unlock(ptl);
6790                         shared_pmd = true;
6791                         address |= last_addr_mask;
6792                         continue;
6793                 }
6794                 pte = huge_ptep_get(ptep);
6795                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6796                         /* Nothing to do. */
6797                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6798                         swp_entry_t entry = pte_to_swp_entry(pte);
6799                         struct page *page = pfn_swap_entry_to_page(entry);
6800                         pte_t newpte = pte;
6801
6802                         if (is_writable_migration_entry(entry)) {
6803                                 if (PageAnon(page))
6804                                         entry = make_readable_exclusive_migration_entry(
6805                                                                 swp_offset(entry));
6806                                 else
6807                                         entry = make_readable_migration_entry(
6808                                                                 swp_offset(entry));
6809                                 newpte = swp_entry_to_pte(entry);
6810                                 pages++;
6811                         }
6812
6813                         if (uffd_wp)
6814                                 newpte = pte_swp_mkuffd_wp(newpte);
6815                         else if (uffd_wp_resolve)
6816                                 newpte = pte_swp_clear_uffd_wp(newpte);
6817                         if (!pte_same(pte, newpte))
6818                                 set_huge_pte_at(mm, address, ptep, newpte);
6819                 } else if (unlikely(is_pte_marker(pte))) {
6820                         /* No other markers apply for now. */
6821                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6822                         if (uffd_wp_resolve)
6823                                 /* Safe to modify directly (non-present->none). */
6824                                 huge_pte_clear(mm, address, ptep, psize);
6825                 } else if (!huge_pte_none(pte)) {
6826                         pte_t old_pte;
6827                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6828
6829                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6830                         pte = huge_pte_modify(old_pte, newprot);
6831                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6832                         if (uffd_wp)
6833                                 pte = huge_pte_mkuffd_wp(pte);
6834                         else if (uffd_wp_resolve)
6835                                 pte = huge_pte_clear_uffd_wp(pte);
6836                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6837                         pages++;
6838                 } else {
6839                         /* None pte */
6840                         if (unlikely(uffd_wp))
6841                                 /* Safe to modify directly (none->non-present). */
6842                                 set_huge_pte_at(mm, address, ptep,
6843                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6844                 }
6845                 spin_unlock(ptl);
6846         }
6847         /*
6848          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6849          * may have cleared our pud entry and done put_page on the page table:
6850          * once we release i_mmap_rwsem, another task can do the final put_page
6851          * and that page table be reused and filled with junk.  If we actually
6852          * did unshare a page of pmds, flush the range corresponding to the pud.
6853          */
6854         if (shared_pmd)
6855                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6856         else
6857                 flush_hugetlb_tlb_range(vma, start, end);
6858         /*
6859          * No need to call mmu_notifier_invalidate_range() we are downgrading
6860          * page table protection not changing it to point to a new page.
6861          *
6862          * See Documentation/mm/mmu_notifier.rst
6863          */
6864         i_mmap_unlock_write(vma->vm_file->f_mapping);
6865         hugetlb_vma_unlock_write(vma);
6866         mmu_notifier_invalidate_range_end(&range);
6867
6868         return pages > 0 ? (pages << h->order) : pages;
6869 }
6870
6871 /* Return true if reservation was successful, false otherwise.  */
6872 bool hugetlb_reserve_pages(struct inode *inode,
6873                                         long from, long to,
6874                                         struct vm_area_struct *vma,
6875                                         vm_flags_t vm_flags)
6876 {
6877         long chg = -1, add = -1;
6878         struct hstate *h = hstate_inode(inode);
6879         struct hugepage_subpool *spool = subpool_inode(inode);
6880         struct resv_map *resv_map;
6881         struct hugetlb_cgroup *h_cg = NULL;
6882         long gbl_reserve, regions_needed = 0;
6883
6884         /* This should never happen */
6885         if (from > to) {
6886                 VM_WARN(1, "%s called with a negative range\n", __func__);
6887                 return false;
6888         }
6889
6890         /*
6891          * vma specific semaphore used for pmd sharing and fault/truncation
6892          * synchronization
6893          */
6894         hugetlb_vma_lock_alloc(vma);
6895
6896         /*
6897          * Only apply hugepage reservation if asked. At fault time, an
6898          * attempt will be made for VM_NORESERVE to allocate a page
6899          * without using reserves
6900          */
6901         if (vm_flags & VM_NORESERVE)
6902                 return true;
6903
6904         /*
6905          * Shared mappings base their reservation on the number of pages that
6906          * are already allocated on behalf of the file. Private mappings need
6907          * to reserve the full area even if read-only as mprotect() may be
6908          * called to make the mapping read-write. Assume !vma is a shm mapping
6909          */
6910         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6911                 /*
6912                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6913                  * called for inodes for which resv_maps were created (see
6914                  * hugetlbfs_get_inode).
6915                  */
6916                 resv_map = inode_resv_map(inode);
6917
6918                 chg = region_chg(resv_map, from, to, &regions_needed);
6919         } else {
6920                 /* Private mapping. */
6921                 resv_map = resv_map_alloc();
6922                 if (!resv_map)
6923                         goto out_err;
6924
6925                 chg = to - from;
6926
6927                 set_vma_resv_map(vma, resv_map);
6928                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6929         }
6930
6931         if (chg < 0)
6932                 goto out_err;
6933
6934         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6935                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6936                 goto out_err;
6937
6938         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6939                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6940                  * of the resv_map.
6941                  */
6942                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6943         }
6944
6945         /*
6946          * There must be enough pages in the subpool for the mapping. If
6947          * the subpool has a minimum size, there may be some global
6948          * reservations already in place (gbl_reserve).
6949          */
6950         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6951         if (gbl_reserve < 0)
6952                 goto out_uncharge_cgroup;
6953
6954         /*
6955          * Check enough hugepages are available for the reservation.
6956          * Hand the pages back to the subpool if there are not
6957          */
6958         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6959                 goto out_put_pages;
6960
6961         /*
6962          * Account for the reservations made. Shared mappings record regions
6963          * that have reservations as they are shared by multiple VMAs.
6964          * When the last VMA disappears, the region map says how much
6965          * the reservation was and the page cache tells how much of
6966          * the reservation was consumed. Private mappings are per-VMA and
6967          * only the consumed reservations are tracked. When the VMA
6968          * disappears, the original reservation is the VMA size and the
6969          * consumed reservations are stored in the map. Hence, nothing
6970          * else has to be done for private mappings here
6971          */
6972         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6973                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6974
6975                 if (unlikely(add < 0)) {
6976                         hugetlb_acct_memory(h, -gbl_reserve);
6977                         goto out_put_pages;
6978                 } else if (unlikely(chg > add)) {
6979                         /*
6980                          * pages in this range were added to the reserve
6981                          * map between region_chg and region_add.  This
6982                          * indicates a race with alloc_hugetlb_folio.  Adjust
6983                          * the subpool and reserve counts modified above
6984                          * based on the difference.
6985                          */
6986                         long rsv_adjust;
6987
6988                         /*
6989                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6990                          * reference to h_cg->css. See comment below for detail.
6991                          */
6992                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6993                                 hstate_index(h),
6994                                 (chg - add) * pages_per_huge_page(h), h_cg);
6995
6996                         rsv_adjust = hugepage_subpool_put_pages(spool,
6997                                                                 chg - add);
6998                         hugetlb_acct_memory(h, -rsv_adjust);
6999                 } else if (h_cg) {
7000                         /*
7001                          * The file_regions will hold their own reference to
7002                          * h_cg->css. So we should release the reference held
7003                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7004                          * done.
7005                          */
7006                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7007                 }
7008         }
7009         return true;
7010
7011 out_put_pages:
7012         /* put back original number of pages, chg */
7013         (void)hugepage_subpool_put_pages(spool, chg);
7014 out_uncharge_cgroup:
7015         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7016                                             chg * pages_per_huge_page(h), h_cg);
7017 out_err:
7018         hugetlb_vma_lock_free(vma);
7019         if (!vma || vma->vm_flags & VM_MAYSHARE)
7020                 /* Only call region_abort if the region_chg succeeded but the
7021                  * region_add failed or didn't run.
7022                  */
7023                 if (chg >= 0 && add < 0)
7024                         region_abort(resv_map, from, to, regions_needed);
7025         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
7026                 kref_put(&resv_map->refs, resv_map_release);
7027         return false;
7028 }
7029
7030 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7031                                                                 long freed)
7032 {
7033         struct hstate *h = hstate_inode(inode);
7034         struct resv_map *resv_map = inode_resv_map(inode);
7035         long chg = 0;
7036         struct hugepage_subpool *spool = subpool_inode(inode);
7037         long gbl_reserve;
7038
7039         /*
7040          * Since this routine can be called in the evict inode path for all
7041          * hugetlbfs inodes, resv_map could be NULL.
7042          */
7043         if (resv_map) {
7044                 chg = region_del(resv_map, start, end);
7045                 /*
7046                  * region_del() can fail in the rare case where a region
7047                  * must be split and another region descriptor can not be
7048                  * allocated.  If end == LONG_MAX, it will not fail.
7049                  */
7050                 if (chg < 0)
7051                         return chg;
7052         }
7053
7054         spin_lock(&inode->i_lock);
7055         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7056         spin_unlock(&inode->i_lock);
7057
7058         /*
7059          * If the subpool has a minimum size, the number of global
7060          * reservations to be released may be adjusted.
7061          *
7062          * Note that !resv_map implies freed == 0. So (chg - freed)
7063          * won't go negative.
7064          */
7065         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7066         hugetlb_acct_memory(h, -gbl_reserve);
7067
7068         return 0;
7069 }
7070
7071 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7072 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7073                                 struct vm_area_struct *vma,
7074                                 unsigned long addr, pgoff_t idx)
7075 {
7076         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7077                                 svma->vm_start;
7078         unsigned long sbase = saddr & PUD_MASK;
7079         unsigned long s_end = sbase + PUD_SIZE;
7080
7081         /* Allow segments to share if only one is marked locked */
7082         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7083         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7084
7085         /*
7086          * match the virtual addresses, permission and the alignment of the
7087          * page table page.
7088          *
7089          * Also, vma_lock (vm_private_data) is required for sharing.
7090          */
7091         if (pmd_index(addr) != pmd_index(saddr) ||
7092             vm_flags != svm_flags ||
7093             !range_in_vma(svma, sbase, s_end) ||
7094             !svma->vm_private_data)
7095                 return 0;
7096
7097         return saddr;
7098 }
7099
7100 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7101 {
7102         unsigned long start = addr & PUD_MASK;
7103         unsigned long end = start + PUD_SIZE;
7104
7105 #ifdef CONFIG_USERFAULTFD
7106         if (uffd_disable_huge_pmd_share(vma))
7107                 return false;
7108 #endif
7109         /*
7110          * check on proper vm_flags and page table alignment
7111          */
7112         if (!(vma->vm_flags & VM_MAYSHARE))
7113                 return false;
7114         if (!vma->vm_private_data)      /* vma lock required for sharing */
7115                 return false;
7116         if (!range_in_vma(vma, start, end))
7117                 return false;
7118         return true;
7119 }
7120
7121 /*
7122  * Determine if start,end range within vma could be mapped by shared pmd.
7123  * If yes, adjust start and end to cover range associated with possible
7124  * shared pmd mappings.
7125  */
7126 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7127                                 unsigned long *start, unsigned long *end)
7128 {
7129         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7130                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7131
7132         /*
7133          * vma needs to span at least one aligned PUD size, and the range
7134          * must be at least partially within in.
7135          */
7136         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7137                 (*end <= v_start) || (*start >= v_end))
7138                 return;
7139
7140         /* Extend the range to be PUD aligned for a worst case scenario */
7141         if (*start > v_start)
7142                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7143
7144         if (*end < v_end)
7145                 *end = ALIGN(*end, PUD_SIZE);
7146 }
7147
7148 /*
7149  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7150  * and returns the corresponding pte. While this is not necessary for the
7151  * !shared pmd case because we can allocate the pmd later as well, it makes the
7152  * code much cleaner. pmd allocation is essential for the shared case because
7153  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7154  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7155  * bad pmd for sharing.
7156  */
7157 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7158                       unsigned long addr, pud_t *pud)
7159 {
7160         struct address_space *mapping = vma->vm_file->f_mapping;
7161         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7162                         vma->vm_pgoff;
7163         struct vm_area_struct *svma;
7164         unsigned long saddr;
7165         pte_t *spte = NULL;
7166         pte_t *pte;
7167         spinlock_t *ptl;
7168
7169         i_mmap_lock_read(mapping);
7170         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7171                 if (svma == vma)
7172                         continue;
7173
7174                 saddr = page_table_shareable(svma, vma, addr, idx);
7175                 if (saddr) {
7176                         spte = hugetlb_walk(svma, saddr,
7177                                             vma_mmu_pagesize(svma));
7178                         if (spte) {
7179                                 get_page(virt_to_page(spte));
7180                                 break;
7181                         }
7182                 }
7183         }
7184
7185         if (!spte)
7186                 goto out;
7187
7188         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7189         if (pud_none(*pud)) {
7190                 pud_populate(mm, pud,
7191                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7192                 mm_inc_nr_pmds(mm);
7193         } else {
7194                 put_page(virt_to_page(spte));
7195         }
7196         spin_unlock(ptl);
7197 out:
7198         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7199         i_mmap_unlock_read(mapping);
7200         return pte;
7201 }
7202
7203 /*
7204  * unmap huge page backed by shared pte.
7205  *
7206  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7207  * indicated by page_count > 1, unmap is achieved by clearing pud and
7208  * decrementing the ref count. If count == 1, the pte page is not shared.
7209  *
7210  * Called with page table lock held.
7211  *
7212  * returns: 1 successfully unmapped a shared pte page
7213  *          0 the underlying pte page is not shared, or it is the last user
7214  */
7215 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7216                                         unsigned long addr, pte_t *ptep)
7217 {
7218         pgd_t *pgd = pgd_offset(mm, addr);
7219         p4d_t *p4d = p4d_offset(pgd, addr);
7220         pud_t *pud = pud_offset(p4d, addr);
7221
7222         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7223         hugetlb_vma_assert_locked(vma);
7224         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7225         if (page_count(virt_to_page(ptep)) == 1)
7226                 return 0;
7227
7228         pud_clear(pud);
7229         put_page(virt_to_page(ptep));
7230         mm_dec_nr_pmds(mm);
7231         return 1;
7232 }
7233
7234 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7235
7236 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7237                       unsigned long addr, pud_t *pud)
7238 {
7239         return NULL;
7240 }
7241
7242 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7243                                 unsigned long addr, pte_t *ptep)
7244 {
7245         return 0;
7246 }
7247
7248 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7249                                 unsigned long *start, unsigned long *end)
7250 {
7251 }
7252
7253 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7254 {
7255         return false;
7256 }
7257 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7258
7259 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7260 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7261                         unsigned long addr, unsigned long sz)
7262 {
7263         pgd_t *pgd;
7264         p4d_t *p4d;
7265         pud_t *pud;
7266         pte_t *pte = NULL;
7267
7268         pgd = pgd_offset(mm, addr);
7269         p4d = p4d_alloc(mm, pgd, addr);
7270         if (!p4d)
7271                 return NULL;
7272         pud = pud_alloc(mm, p4d, addr);
7273         if (pud) {
7274                 if (sz == PUD_SIZE) {
7275                         pte = (pte_t *)pud;
7276                 } else {
7277                         BUG_ON(sz != PMD_SIZE);
7278                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7279                                 pte = huge_pmd_share(mm, vma, addr, pud);
7280                         else
7281                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7282                 }
7283         }
7284         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7285
7286         return pte;
7287 }
7288
7289 /*
7290  * huge_pte_offset() - Walk the page table to resolve the hugepage
7291  * entry at address @addr
7292  *
7293  * Return: Pointer to page table entry (PUD or PMD) for
7294  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7295  * size @sz doesn't match the hugepage size at this level of the page
7296  * table.
7297  */
7298 pte_t *huge_pte_offset(struct mm_struct *mm,
7299                        unsigned long addr, unsigned long sz)
7300 {
7301         pgd_t *pgd;
7302         p4d_t *p4d;
7303         pud_t *pud;
7304         pmd_t *pmd;
7305
7306         pgd = pgd_offset(mm, addr);
7307         if (!pgd_present(*pgd))
7308                 return NULL;
7309         p4d = p4d_offset(pgd, addr);
7310         if (!p4d_present(*p4d))
7311                 return NULL;
7312
7313         pud = pud_offset(p4d, addr);
7314         if (sz == PUD_SIZE)
7315                 /* must be pud huge, non-present or none */
7316                 return (pte_t *)pud;
7317         if (!pud_present(*pud))
7318                 return NULL;
7319         /* must have a valid entry and size to go further */
7320
7321         pmd = pmd_offset(pud, addr);
7322         /* must be pmd huge, non-present or none */
7323         return (pte_t *)pmd;
7324 }
7325
7326 /*
7327  * Return a mask that can be used to update an address to the last huge
7328  * page in a page table page mapping size.  Used to skip non-present
7329  * page table entries when linearly scanning address ranges.  Architectures
7330  * with unique huge page to page table relationships can define their own
7331  * version of this routine.
7332  */
7333 unsigned long hugetlb_mask_last_page(struct hstate *h)
7334 {
7335         unsigned long hp_size = huge_page_size(h);
7336
7337         if (hp_size == PUD_SIZE)
7338                 return P4D_SIZE - PUD_SIZE;
7339         else if (hp_size == PMD_SIZE)
7340                 return PUD_SIZE - PMD_SIZE;
7341         else
7342                 return 0UL;
7343 }
7344
7345 #else
7346
7347 /* See description above.  Architectures can provide their own version. */
7348 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7349 {
7350 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7351         if (huge_page_size(h) == PMD_SIZE)
7352                 return PUD_SIZE - PMD_SIZE;
7353 #endif
7354         return 0UL;
7355 }
7356
7357 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7358
7359 /*
7360  * These functions are overwritable if your architecture needs its own
7361  * behavior.
7362  */
7363 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7364 {
7365         bool ret = true;
7366
7367         spin_lock_irq(&hugetlb_lock);
7368         if (!folio_test_hugetlb(folio) ||
7369             !folio_test_hugetlb_migratable(folio) ||
7370             !folio_try_get(folio)) {
7371                 ret = false;
7372                 goto unlock;
7373         }
7374         folio_clear_hugetlb_migratable(folio);
7375         list_move_tail(&folio->lru, list);
7376 unlock:
7377         spin_unlock_irq(&hugetlb_lock);
7378         return ret;
7379 }
7380
7381 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7382 {
7383         int ret = 0;
7384
7385         *hugetlb = false;
7386         spin_lock_irq(&hugetlb_lock);
7387         if (folio_test_hugetlb(folio)) {
7388                 *hugetlb = true;
7389                 if (folio_test_hugetlb_freed(folio))
7390                         ret = 0;
7391                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7392                         ret = folio_try_get(folio);
7393                 else
7394                         ret = -EBUSY;
7395         }
7396         spin_unlock_irq(&hugetlb_lock);
7397         return ret;
7398 }
7399
7400 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7401                                 bool *migratable_cleared)
7402 {
7403         int ret;
7404
7405         spin_lock_irq(&hugetlb_lock);
7406         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7407         spin_unlock_irq(&hugetlb_lock);
7408         return ret;
7409 }
7410
7411 void folio_putback_active_hugetlb(struct folio *folio)
7412 {
7413         spin_lock_irq(&hugetlb_lock);
7414         folio_set_hugetlb_migratable(folio);
7415         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7416         spin_unlock_irq(&hugetlb_lock);
7417         folio_put(folio);
7418 }
7419
7420 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7421 {
7422         struct hstate *h = folio_hstate(old_folio);
7423
7424         hugetlb_cgroup_migrate(old_folio, new_folio);
7425         set_page_owner_migrate_reason(&new_folio->page, reason);
7426
7427         /*
7428          * transfer temporary state of the new hugetlb folio. This is
7429          * reverse to other transitions because the newpage is going to
7430          * be final while the old one will be freed so it takes over
7431          * the temporary status.
7432          *
7433          * Also note that we have to transfer the per-node surplus state
7434          * here as well otherwise the global surplus count will not match
7435          * the per-node's.
7436          */
7437         if (folio_test_hugetlb_temporary(new_folio)) {
7438                 int old_nid = folio_nid(old_folio);
7439                 int new_nid = folio_nid(new_folio);
7440
7441                 folio_set_hugetlb_temporary(old_folio);
7442                 folio_clear_hugetlb_temporary(new_folio);
7443
7444
7445                 /*
7446                  * There is no need to transfer the per-node surplus state
7447                  * when we do not cross the node.
7448                  */
7449                 if (new_nid == old_nid)
7450                         return;
7451                 spin_lock_irq(&hugetlb_lock);
7452                 if (h->surplus_huge_pages_node[old_nid]) {
7453                         h->surplus_huge_pages_node[old_nid]--;
7454                         h->surplus_huge_pages_node[new_nid]++;
7455                 }
7456                 spin_unlock_irq(&hugetlb_lock);
7457         }
7458 }
7459
7460 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7461                                    unsigned long start,
7462                                    unsigned long end)
7463 {
7464         struct hstate *h = hstate_vma(vma);
7465         unsigned long sz = huge_page_size(h);
7466         struct mm_struct *mm = vma->vm_mm;
7467         struct mmu_notifier_range range;
7468         unsigned long address;
7469         spinlock_t *ptl;
7470         pte_t *ptep;
7471
7472         if (!(vma->vm_flags & VM_MAYSHARE))
7473                 return;
7474
7475         if (start >= end)
7476                 return;
7477
7478         flush_cache_range(vma, start, end);
7479         /*
7480          * No need to call adjust_range_if_pmd_sharing_possible(), because
7481          * we have already done the PUD_SIZE alignment.
7482          */
7483         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7484                                 start, end);
7485         mmu_notifier_invalidate_range_start(&range);
7486         hugetlb_vma_lock_write(vma);
7487         i_mmap_lock_write(vma->vm_file->f_mapping);
7488         for (address = start; address < end; address += PUD_SIZE) {
7489                 ptep = hugetlb_walk(vma, address, sz);
7490                 if (!ptep)
7491                         continue;
7492                 ptl = huge_pte_lock(h, mm, ptep);
7493                 huge_pmd_unshare(mm, vma, address, ptep);
7494                 spin_unlock(ptl);
7495         }
7496         flush_hugetlb_tlb_range(vma, start, end);
7497         i_mmap_unlock_write(vma->vm_file->f_mapping);
7498         hugetlb_vma_unlock_write(vma);
7499         /*
7500          * No need to call mmu_notifier_invalidate_range(), see
7501          * Documentation/mm/mmu_notifier.rst.
7502          */
7503         mmu_notifier_invalidate_range_end(&range);
7504 }
7505
7506 /*
7507  * This function will unconditionally remove all the shared pmd pgtable entries
7508  * within the specific vma for a hugetlbfs memory range.
7509  */
7510 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7511 {
7512         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7513                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7514 }
7515
7516 #ifdef CONFIG_CMA
7517 static bool cma_reserve_called __initdata;
7518
7519 static int __init cmdline_parse_hugetlb_cma(char *p)
7520 {
7521         int nid, count = 0;
7522         unsigned long tmp;
7523         char *s = p;
7524
7525         while (*s) {
7526                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7527                         break;
7528
7529                 if (s[count] == ':') {
7530                         if (tmp >= MAX_NUMNODES)
7531                                 break;
7532                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7533
7534                         s += count + 1;
7535                         tmp = memparse(s, &s);
7536                         hugetlb_cma_size_in_node[nid] = tmp;
7537                         hugetlb_cma_size += tmp;
7538
7539                         /*
7540                          * Skip the separator if have one, otherwise
7541                          * break the parsing.
7542                          */
7543                         if (*s == ',')
7544                                 s++;
7545                         else
7546                                 break;
7547                 } else {
7548                         hugetlb_cma_size = memparse(p, &p);
7549                         break;
7550                 }
7551         }
7552
7553         return 0;
7554 }
7555
7556 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7557
7558 void __init hugetlb_cma_reserve(int order)
7559 {
7560         unsigned long size, reserved, per_node;
7561         bool node_specific_cma_alloc = false;
7562         int nid;
7563
7564         cma_reserve_called = true;
7565
7566         if (!hugetlb_cma_size)
7567                 return;
7568
7569         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7570                 if (hugetlb_cma_size_in_node[nid] == 0)
7571                         continue;
7572
7573                 if (!node_online(nid)) {
7574                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7575                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7576                         hugetlb_cma_size_in_node[nid] = 0;
7577                         continue;
7578                 }
7579
7580                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7581                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7582                                 nid, (PAGE_SIZE << order) / SZ_1M);
7583                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7584                         hugetlb_cma_size_in_node[nid] = 0;
7585                 } else {
7586                         node_specific_cma_alloc = true;
7587                 }
7588         }
7589
7590         /* Validate the CMA size again in case some invalid nodes specified. */
7591         if (!hugetlb_cma_size)
7592                 return;
7593
7594         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7595                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7596                         (PAGE_SIZE << order) / SZ_1M);
7597                 hugetlb_cma_size = 0;
7598                 return;
7599         }
7600
7601         if (!node_specific_cma_alloc) {
7602                 /*
7603                  * If 3 GB area is requested on a machine with 4 numa nodes,
7604                  * let's allocate 1 GB on first three nodes and ignore the last one.
7605                  */
7606                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7607                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7608                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7609         }
7610
7611         reserved = 0;
7612         for_each_online_node(nid) {
7613                 int res;
7614                 char name[CMA_MAX_NAME];
7615
7616                 if (node_specific_cma_alloc) {
7617                         if (hugetlb_cma_size_in_node[nid] == 0)
7618                                 continue;
7619
7620                         size = hugetlb_cma_size_in_node[nid];
7621                 } else {
7622                         size = min(per_node, hugetlb_cma_size - reserved);
7623                 }
7624
7625                 size = round_up(size, PAGE_SIZE << order);
7626
7627                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7628                 /*
7629                  * Note that 'order per bit' is based on smallest size that
7630                  * may be returned to CMA allocator in the case of
7631                  * huge page demotion.
7632                  */
7633                 res = cma_declare_contiguous_nid(0, size, 0,
7634                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7635                                                  0, false, name,
7636                                                  &hugetlb_cma[nid], nid);
7637                 if (res) {
7638                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7639                                 res, nid);
7640                         continue;
7641                 }
7642
7643                 reserved += size;
7644                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7645                         size / SZ_1M, nid);
7646
7647                 if (reserved >= hugetlb_cma_size)
7648                         break;
7649         }
7650
7651         if (!reserved)
7652                 /*
7653                  * hugetlb_cma_size is used to determine if allocations from
7654                  * cma are possible.  Set to zero if no cma regions are set up.
7655                  */
7656                 hugetlb_cma_size = 0;
7657 }
7658
7659 static void __init hugetlb_cma_check(void)
7660 {
7661         if (!hugetlb_cma_size || cma_reserve_called)
7662                 return;
7663
7664         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7665 }
7666
7667 #endif /* CONFIG_CMA */