GNU Linux-libre 5.10.215-gnu1
[releases.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 static inline bool PageHugeFreed(struct page *head)
83 {
84         return page_private(head + 4) == -1UL;
85 }
86
87 static inline void SetPageHugeFreed(struct page *head)
88 {
89         set_page_private(head + 4, -1UL);
90 }
91
92 static inline void ClearPageHugeFreed(struct page *head)
93 {
94         set_page_private(head + 4, 0);
95 }
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101 {
102         bool free = (spool->count == 0) && (spool->used_hpages == 0);
103
104         spin_unlock(&spool->lock);
105
106         /* If no pages are used, and no other handles to the subpool
107          * remain, give up any reservations based on minimum size and
108          * free the subpool */
109         if (free) {
110                 if (spool->min_hpages != -1)
111                         hugetlb_acct_memory(spool->hstate,
112                                                 -spool->min_hpages);
113                 kfree(spool);
114         }
115 }
116
117 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118                                                 long min_hpages)
119 {
120         struct hugepage_subpool *spool;
121
122         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123         if (!spool)
124                 return NULL;
125
126         spin_lock_init(&spool->lock);
127         spool->count = 1;
128         spool->max_hpages = max_hpages;
129         spool->hstate = h;
130         spool->min_hpages = min_hpages;
131
132         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133                 kfree(spool);
134                 return NULL;
135         }
136         spool->rsv_hpages = min_hpages;
137
138         return spool;
139 }
140
141 void hugepage_put_subpool(struct hugepage_subpool *spool)
142 {
143         spin_lock(&spool->lock);
144         BUG_ON(!spool->count);
145         spool->count--;
146         unlock_or_release_subpool(spool);
147 }
148
149 /*
150  * Subpool accounting for allocating and reserving pages.
151  * Return -ENOMEM if there are not enough resources to satisfy the
152  * request.  Otherwise, return the number of pages by which the
153  * global pools must be adjusted (upward).  The returned value may
154  * only be different than the passed value (delta) in the case where
155  * a subpool minimum size must be maintained.
156  */
157 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158                                       long delta)
159 {
160         long ret = delta;
161
162         if (!spool)
163                 return ret;
164
165         spin_lock(&spool->lock);
166
167         if (spool->max_hpages != -1) {          /* maximum size accounting */
168                 if ((spool->used_hpages + delta) <= spool->max_hpages)
169                         spool->used_hpages += delta;
170                 else {
171                         ret = -ENOMEM;
172                         goto unlock_ret;
173                 }
174         }
175
176         /* minimum size accounting */
177         if (spool->min_hpages != -1 && spool->rsv_hpages) {
178                 if (delta > spool->rsv_hpages) {
179                         /*
180                          * Asking for more reserves than those already taken on
181                          * behalf of subpool.  Return difference.
182                          */
183                         ret = delta - spool->rsv_hpages;
184                         spool->rsv_hpages = 0;
185                 } else {
186                         ret = 0;        /* reserves already accounted for */
187                         spool->rsv_hpages -= delta;
188                 }
189         }
190
191 unlock_ret:
192         spin_unlock(&spool->lock);
193         return ret;
194 }
195
196 /*
197  * Subpool accounting for freeing and unreserving pages.
198  * Return the number of global page reservations that must be dropped.
199  * The return value may only be different than the passed value (delta)
200  * in the case where a subpool minimum size must be maintained.
201  */
202 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203                                        long delta)
204 {
205         long ret = delta;
206
207         if (!spool)
208                 return delta;
209
210         spin_lock(&spool->lock);
211
212         if (spool->max_hpages != -1)            /* maximum size accounting */
213                 spool->used_hpages -= delta;
214
215          /* minimum size accounting */
216         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217                 if (spool->rsv_hpages + delta <= spool->min_hpages)
218                         ret = 0;
219                 else
220                         ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222                 spool->rsv_hpages += delta;
223                 if (spool->rsv_hpages > spool->min_hpages)
224                         spool->rsv_hpages = spool->min_hpages;
225         }
226
227         /*
228          * If hugetlbfs_put_super couldn't free spool due to an outstanding
229          * quota reference, free it now.
230          */
231         unlock_or_release_subpool(spool);
232
233         return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238         return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243         return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252         struct file_region *nrg = NULL;
253
254         VM_BUG_ON(resv->region_cache_count <= 0);
255
256         resv->region_cache_count--;
257         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258         list_del(&nrg->link);
259
260         nrg->from = from;
261         nrg->to = to;
262
263         return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267                                               struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270         nrg->reservation_counter = rg->reservation_counter;
271         nrg->css = rg->css;
272         if (rg->css)
273                 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279                                                 struct hstate *h,
280                                                 struct resv_map *resv,
281                                                 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284         if (h_cg) {
285                 nrg->reservation_counter =
286                         &h_cg->rsvd_hugepage[hstate_index(h)];
287                 nrg->css = &h_cg->css;
288                 /*
289                  * The caller will hold exactly one h_cg->css reference for the
290                  * whole contiguous reservation region. But this area might be
291                  * scattered when there are already some file_regions reside in
292                  * it. As a result, many file_regions may share only one css
293                  * reference. In order to ensure that one file_region must hold
294                  * exactly one h_cg->css reference, we should do css_get for
295                  * each file_region and leave the reference held by caller
296                  * untouched.
297                  */
298                 css_get(&h_cg->css);
299                 if (!resv->pages_per_hpage)
300                         resv->pages_per_hpage = pages_per_huge_page(h);
301                 /* pages_per_hpage should be the same for all entries in
302                  * a resv_map.
303                  */
304                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305         } else {
306                 nrg->reservation_counter = NULL;
307                 nrg->css = NULL;
308         }
309 #endif
310 }
311
312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315         if (rg->css)
316                 css_put(rg->css);
317 #endif
318 }
319
320 static bool has_same_uncharge_info(struct file_region *rg,
321                                    struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324         return rg && org &&
325                rg->reservation_counter == org->reservation_counter &&
326                rg->css == org->css;
327
328 #else
329         return true;
330 #endif
331 }
332
333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335         struct file_region *nrg = NULL, *prg = NULL;
336
337         prg = list_prev_entry(rg, link);
338         if (&prg->link != &resv->regions && prg->to == rg->from &&
339             has_same_uncharge_info(prg, rg)) {
340                 prg->to = rg->to;
341
342                 list_del(&rg->link);
343                 put_uncharge_info(rg);
344                 kfree(rg);
345
346                 rg = prg;
347         }
348
349         nrg = list_next_entry(rg, link);
350         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351             has_same_uncharge_info(nrg, rg)) {
352                 nrg->from = rg->from;
353
354                 list_del(&rg->link);
355                 put_uncharge_info(rg);
356                 kfree(rg);
357         }
358 }
359
360 /*
361  * Must be called with resv->lock held.
362  *
363  * Calling this with regions_needed != NULL will count the number of pages
364  * to be added but will not modify the linked list. And regions_needed will
365  * indicate the number of file_regions needed in the cache to carry out to add
366  * the regions for this range.
367  */
368 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
369                                      struct hugetlb_cgroup *h_cg,
370                                      struct hstate *h, long *regions_needed)
371 {
372         long add = 0;
373         struct list_head *head = &resv->regions;
374         long last_accounted_offset = f;
375         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
376
377         if (regions_needed)
378                 *regions_needed = 0;
379
380         /* In this loop, we essentially handle an entry for the range
381          * [last_accounted_offset, rg->from), at every iteration, with some
382          * bounds checking.
383          */
384         list_for_each_entry_safe(rg, trg, head, link) {
385                 /* Skip irrelevant regions that start before our range. */
386                 if (rg->from < f) {
387                         /* If this region ends after the last accounted offset,
388                          * then we need to update last_accounted_offset.
389                          */
390                         if (rg->to > last_accounted_offset)
391                                 last_accounted_offset = rg->to;
392                         continue;
393                 }
394
395                 /* When we find a region that starts beyond our range, we've
396                  * finished.
397                  */
398                 if (rg->from > t)
399                         break;
400
401                 /* Add an entry for last_accounted_offset -> rg->from, and
402                  * update last_accounted_offset.
403                  */
404                 if (rg->from > last_accounted_offset) {
405                         add += rg->from - last_accounted_offset;
406                         if (!regions_needed) {
407                                 nrg = get_file_region_entry_from_cache(
408                                         resv, last_accounted_offset, rg->from);
409                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
410                                                                     resv, nrg);
411                                 list_add(&nrg->link, rg->link.prev);
412                                 coalesce_file_region(resv, nrg);
413                         } else
414                                 *regions_needed += 1;
415                 }
416
417                 last_accounted_offset = rg->to;
418         }
419
420         /* Handle the case where our range extends beyond
421          * last_accounted_offset.
422          */
423         if (last_accounted_offset < t) {
424                 add += t - last_accounted_offset;
425                 if (!regions_needed) {
426                         nrg = get_file_region_entry_from_cache(
427                                 resv, last_accounted_offset, t);
428                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
429                         list_add(&nrg->link, rg->link.prev);
430                         coalesce_file_region(resv, nrg);
431                 } else
432                         *regions_needed += 1;
433         }
434
435         VM_BUG_ON(add < 0);
436         return add;
437 }
438
439 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
440  */
441 static int allocate_file_region_entries(struct resv_map *resv,
442                                         int regions_needed)
443         __must_hold(&resv->lock)
444 {
445         struct list_head allocated_regions;
446         int to_allocate = 0, i = 0;
447         struct file_region *trg = NULL, *rg = NULL;
448
449         VM_BUG_ON(regions_needed < 0);
450
451         INIT_LIST_HEAD(&allocated_regions);
452
453         /*
454          * Check for sufficient descriptors in the cache to accommodate
455          * the number of in progress add operations plus regions_needed.
456          *
457          * This is a while loop because when we drop the lock, some other call
458          * to region_add or region_del may have consumed some region_entries,
459          * so we keep looping here until we finally have enough entries for
460          * (adds_in_progress + regions_needed).
461          */
462         while (resv->region_cache_count <
463                (resv->adds_in_progress + regions_needed)) {
464                 to_allocate = resv->adds_in_progress + regions_needed -
465                               resv->region_cache_count;
466
467                 /* At this point, we should have enough entries in the cache
468                  * for all the existings adds_in_progress. We should only be
469                  * needing to allocate for regions_needed.
470                  */
471                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
472
473                 spin_unlock(&resv->lock);
474                 for (i = 0; i < to_allocate; i++) {
475                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
476                         if (!trg)
477                                 goto out_of_memory;
478                         list_add(&trg->link, &allocated_regions);
479                 }
480
481                 spin_lock(&resv->lock);
482
483                 list_splice(&allocated_regions, &resv->region_cache);
484                 resv->region_cache_count += to_allocate;
485         }
486
487         return 0;
488
489 out_of_memory:
490         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
491                 list_del(&rg->link);
492                 kfree(rg);
493         }
494         return -ENOMEM;
495 }
496
497 /*
498  * Add the huge page range represented by [f, t) to the reserve
499  * map.  Regions will be taken from the cache to fill in this range.
500  * Sufficient regions should exist in the cache due to the previous
501  * call to region_chg with the same range, but in some cases the cache will not
502  * have sufficient entries due to races with other code doing region_add or
503  * region_del.  The extra needed entries will be allocated.
504  *
505  * regions_needed is the out value provided by a previous call to region_chg.
506  *
507  * Return the number of new huge pages added to the map.  This number is greater
508  * than or equal to zero.  If file_region entries needed to be allocated for
509  * this operation and we were not able to allocate, it returns -ENOMEM.
510  * region_add of regions of length 1 never allocate file_regions and cannot
511  * fail; region_chg will always allocate at least 1 entry and a region_add for
512  * 1 page will only require at most 1 entry.
513  */
514 static long region_add(struct resv_map *resv, long f, long t,
515                        long in_regions_needed, struct hstate *h,
516                        struct hugetlb_cgroup *h_cg)
517 {
518         long add = 0, actual_regions_needed = 0;
519
520         spin_lock(&resv->lock);
521 retry:
522
523         /* Count how many regions are actually needed to execute this add. */
524         add_reservation_in_range(resv, f, t, NULL, NULL,
525                                  &actual_regions_needed);
526
527         /*
528          * Check for sufficient descriptors in the cache to accommodate
529          * this add operation. Note that actual_regions_needed may be greater
530          * than in_regions_needed, as the resv_map may have been modified since
531          * the region_chg call. In this case, we need to make sure that we
532          * allocate extra entries, such that we have enough for all the
533          * existing adds_in_progress, plus the excess needed for this
534          * operation.
535          */
536         if (actual_regions_needed > in_regions_needed &&
537             resv->region_cache_count <
538                     resv->adds_in_progress +
539                             (actual_regions_needed - in_regions_needed)) {
540                 /* region_add operation of range 1 should never need to
541                  * allocate file_region entries.
542                  */
543                 VM_BUG_ON(t - f <= 1);
544
545                 if (allocate_file_region_entries(
546                             resv, actual_regions_needed - in_regions_needed)) {
547                         return -ENOMEM;
548                 }
549
550                 goto retry;
551         }
552
553         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
554
555         resv->adds_in_progress -= in_regions_needed;
556
557         spin_unlock(&resv->lock);
558         VM_BUG_ON(add < 0);
559         return add;
560 }
561
562 /*
563  * Examine the existing reserve map and determine how many
564  * huge pages in the specified range [f, t) are NOT currently
565  * represented.  This routine is called before a subsequent
566  * call to region_add that will actually modify the reserve
567  * map to add the specified range [f, t).  region_chg does
568  * not change the number of huge pages represented by the
569  * map.  A number of new file_region structures is added to the cache as a
570  * placeholder, for the subsequent region_add call to use. At least 1
571  * file_region structure is added.
572  *
573  * out_regions_needed is the number of regions added to the
574  * resv->adds_in_progress.  This value needs to be provided to a follow up call
575  * to region_add or region_abort for proper accounting.
576  *
577  * Returns the number of huge pages that need to be added to the existing
578  * reservation map for the range [f, t).  This number is greater or equal to
579  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
580  * is needed and can not be allocated.
581  */
582 static long region_chg(struct resv_map *resv, long f, long t,
583                        long *out_regions_needed)
584 {
585         long chg = 0;
586
587         spin_lock(&resv->lock);
588
589         /* Count how many hugepages in this range are NOT represented. */
590         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
591                                        out_regions_needed);
592
593         if (*out_regions_needed == 0)
594                 *out_regions_needed = 1;
595
596         if (allocate_file_region_entries(resv, *out_regions_needed))
597                 return -ENOMEM;
598
599         resv->adds_in_progress += *out_regions_needed;
600
601         spin_unlock(&resv->lock);
602         return chg;
603 }
604
605 /*
606  * Abort the in progress add operation.  The adds_in_progress field
607  * of the resv_map keeps track of the operations in progress between
608  * calls to region_chg and region_add.  Operations are sometimes
609  * aborted after the call to region_chg.  In such cases, region_abort
610  * is called to decrement the adds_in_progress counter. regions_needed
611  * is the value returned by the region_chg call, it is used to decrement
612  * the adds_in_progress counter.
613  *
614  * NOTE: The range arguments [f, t) are not needed or used in this
615  * routine.  They are kept to make reading the calling code easier as
616  * arguments will match the associated region_chg call.
617  */
618 static void region_abort(struct resv_map *resv, long f, long t,
619                          long regions_needed)
620 {
621         spin_lock(&resv->lock);
622         VM_BUG_ON(!resv->region_cache_count);
623         resv->adds_in_progress -= regions_needed;
624         spin_unlock(&resv->lock);
625 }
626
627 /*
628  * Delete the specified range [f, t) from the reserve map.  If the
629  * t parameter is LONG_MAX, this indicates that ALL regions after f
630  * should be deleted.  Locate the regions which intersect [f, t)
631  * and either trim, delete or split the existing regions.
632  *
633  * Returns the number of huge pages deleted from the reserve map.
634  * In the normal case, the return value is zero or more.  In the
635  * case where a region must be split, a new region descriptor must
636  * be allocated.  If the allocation fails, -ENOMEM will be returned.
637  * NOTE: If the parameter t == LONG_MAX, then we will never split
638  * a region and possibly return -ENOMEM.  Callers specifying
639  * t == LONG_MAX do not need to check for -ENOMEM error.
640  */
641 static long region_del(struct resv_map *resv, long f, long t)
642 {
643         struct list_head *head = &resv->regions;
644         struct file_region *rg, *trg;
645         struct file_region *nrg = NULL;
646         long del = 0;
647
648 retry:
649         spin_lock(&resv->lock);
650         list_for_each_entry_safe(rg, trg, head, link) {
651                 /*
652                  * Skip regions before the range to be deleted.  file_region
653                  * ranges are normally of the form [from, to).  However, there
654                  * may be a "placeholder" entry in the map which is of the form
655                  * (from, to) with from == to.  Check for placeholder entries
656                  * at the beginning of the range to be deleted.
657                  */
658                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
659                         continue;
660
661                 if (rg->from >= t)
662                         break;
663
664                 if (f > rg->from && t < rg->to) { /* Must split region */
665                         /*
666                          * Check for an entry in the cache before dropping
667                          * lock and attempting allocation.
668                          */
669                         if (!nrg &&
670                             resv->region_cache_count > resv->adds_in_progress) {
671                                 nrg = list_first_entry(&resv->region_cache,
672                                                         struct file_region,
673                                                         link);
674                                 list_del(&nrg->link);
675                                 resv->region_cache_count--;
676                         }
677
678                         if (!nrg) {
679                                 spin_unlock(&resv->lock);
680                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681                                 if (!nrg)
682                                         return -ENOMEM;
683                                 goto retry;
684                         }
685
686                         del += t - f;
687                         hugetlb_cgroup_uncharge_file_region(
688                                 resv, rg, t - f, false);
689
690                         /* New entry for end of split region */
691                         nrg->from = t;
692                         nrg->to = rg->to;
693
694                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695
696                         INIT_LIST_HEAD(&nrg->link);
697
698                         /* Original entry is trimmed */
699                         rg->to = f;
700
701                         list_add(&nrg->link, &rg->link);
702                         nrg = NULL;
703                         break;
704                 }
705
706                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707                         del += rg->to - rg->from;
708                         hugetlb_cgroup_uncharge_file_region(resv, rg,
709                                                             rg->to - rg->from, true);
710                         list_del(&rg->link);
711                         kfree(rg);
712                         continue;
713                 }
714
715                 if (f <= rg->from) {    /* Trim beginning of region */
716                         hugetlb_cgroup_uncharge_file_region(resv, rg,
717                                                             t - rg->from, false);
718
719                         del += t - rg->from;
720                         rg->from = t;
721                 } else {                /* Trim end of region */
722                         hugetlb_cgroup_uncharge_file_region(resv, rg,
723                                                             rg->to - f, false);
724
725                         del += rg->to - f;
726                         rg->to = f;
727                 }
728         }
729
730         spin_unlock(&resv->lock);
731         kfree(nrg);
732         return del;
733 }
734
735 /*
736  * A rare out of memory error was encountered which prevented removal of
737  * the reserve map region for a page.  The huge page itself was free'ed
738  * and removed from the page cache.  This routine will adjust the subpool
739  * usage count, and the global reserve count if needed.  By incrementing
740  * these counts, the reserve map entry which could not be deleted will
741  * appear as a "reserved" entry instead of simply dangling with incorrect
742  * counts.
743  */
744 void hugetlb_fix_reserve_counts(struct inode *inode)
745 {
746         struct hugepage_subpool *spool = subpool_inode(inode);
747         long rsv_adjust;
748         bool reserved = false;
749
750         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
751         if (rsv_adjust > 0) {
752                 struct hstate *h = hstate_inode(inode);
753
754                 if (!hugetlb_acct_memory(h, 1))
755                         reserved = true;
756         } else if (!rsv_adjust) {
757                 reserved = true;
758         }
759
760         if (!reserved)
761                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
762 }
763
764 /*
765  * Count and return the number of huge pages in the reserve map
766  * that intersect with the range [f, t).
767  */
768 static long region_count(struct resv_map *resv, long f, long t)
769 {
770         struct list_head *head = &resv->regions;
771         struct file_region *rg;
772         long chg = 0;
773
774         spin_lock(&resv->lock);
775         /* Locate each segment we overlap with, and count that overlap. */
776         list_for_each_entry(rg, head, link) {
777                 long seg_from;
778                 long seg_to;
779
780                 if (rg->to <= f)
781                         continue;
782                 if (rg->from >= t)
783                         break;
784
785                 seg_from = max(rg->from, f);
786                 seg_to = min(rg->to, t);
787
788                 chg += seg_to - seg_from;
789         }
790         spin_unlock(&resv->lock);
791
792         return chg;
793 }
794
795 /*
796  * Convert the address within this vma to the page offset within
797  * the mapping, in pagecache page units; huge pages here.
798  */
799 static pgoff_t vma_hugecache_offset(struct hstate *h,
800                         struct vm_area_struct *vma, unsigned long address)
801 {
802         return ((address - vma->vm_start) >> huge_page_shift(h)) +
803                         (vma->vm_pgoff >> huge_page_order(h));
804 }
805
806 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
807                                      unsigned long address)
808 {
809         return vma_hugecache_offset(hstate_vma(vma), vma, address);
810 }
811 EXPORT_SYMBOL_GPL(linear_hugepage_index);
812
813 /*
814  * Return the size of the pages allocated when backing a VMA. In the majority
815  * cases this will be same size as used by the page table entries.
816  */
817 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
818 {
819         if (vma->vm_ops && vma->vm_ops->pagesize)
820                 return vma->vm_ops->pagesize(vma);
821         return PAGE_SIZE;
822 }
823 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
824
825 /*
826  * Return the page size being used by the MMU to back a VMA. In the majority
827  * of cases, the page size used by the kernel matches the MMU size. On
828  * architectures where it differs, an architecture-specific 'strong'
829  * version of this symbol is required.
830  */
831 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
832 {
833         return vma_kernel_pagesize(vma);
834 }
835
836 /*
837  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
838  * bits of the reservation map pointer, which are always clear due to
839  * alignment.
840  */
841 #define HPAGE_RESV_OWNER    (1UL << 0)
842 #define HPAGE_RESV_UNMAPPED (1UL << 1)
843 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
844
845 /*
846  * These helpers are used to track how many pages are reserved for
847  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
848  * is guaranteed to have their future faults succeed.
849  *
850  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
851  * the reserve counters are updated with the hugetlb_lock held. It is safe
852  * to reset the VMA at fork() time as it is not in use yet and there is no
853  * chance of the global counters getting corrupted as a result of the values.
854  *
855  * The private mapping reservation is represented in a subtly different
856  * manner to a shared mapping.  A shared mapping has a region map associated
857  * with the underlying file, this region map represents the backing file
858  * pages which have ever had a reservation assigned which this persists even
859  * after the page is instantiated.  A private mapping has a region map
860  * associated with the original mmap which is attached to all VMAs which
861  * reference it, this region map represents those offsets which have consumed
862  * reservation ie. where pages have been instantiated.
863  */
864 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
865 {
866         return (unsigned long)vma->vm_private_data;
867 }
868
869 static void set_vma_private_data(struct vm_area_struct *vma,
870                                                         unsigned long value)
871 {
872         vma->vm_private_data = (void *)value;
873 }
874
875 static void
876 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
877                                           struct hugetlb_cgroup *h_cg,
878                                           struct hstate *h)
879 {
880 #ifdef CONFIG_CGROUP_HUGETLB
881         if (!h_cg || !h) {
882                 resv_map->reservation_counter = NULL;
883                 resv_map->pages_per_hpage = 0;
884                 resv_map->css = NULL;
885         } else {
886                 resv_map->reservation_counter =
887                         &h_cg->rsvd_hugepage[hstate_index(h)];
888                 resv_map->pages_per_hpage = pages_per_huge_page(h);
889                 resv_map->css = &h_cg->css;
890         }
891 #endif
892 }
893
894 struct resv_map *resv_map_alloc(void)
895 {
896         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
897         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
898
899         if (!resv_map || !rg) {
900                 kfree(resv_map);
901                 kfree(rg);
902                 return NULL;
903         }
904
905         kref_init(&resv_map->refs);
906         spin_lock_init(&resv_map->lock);
907         INIT_LIST_HEAD(&resv_map->regions);
908
909         resv_map->adds_in_progress = 0;
910         /*
911          * Initialize these to 0. On shared mappings, 0's here indicate these
912          * fields don't do cgroup accounting. On private mappings, these will be
913          * re-initialized to the proper values, to indicate that hugetlb cgroup
914          * reservations are to be un-charged from here.
915          */
916         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
917
918         INIT_LIST_HEAD(&resv_map->region_cache);
919         list_add(&rg->link, &resv_map->region_cache);
920         resv_map->region_cache_count = 1;
921
922         return resv_map;
923 }
924
925 void resv_map_release(struct kref *ref)
926 {
927         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
928         struct list_head *head = &resv_map->region_cache;
929         struct file_region *rg, *trg;
930
931         /* Clear out any active regions before we release the map. */
932         region_del(resv_map, 0, LONG_MAX);
933
934         /* ... and any entries left in the cache */
935         list_for_each_entry_safe(rg, trg, head, link) {
936                 list_del(&rg->link);
937                 kfree(rg);
938         }
939
940         VM_BUG_ON(resv_map->adds_in_progress);
941
942         kfree(resv_map);
943 }
944
945 static inline struct resv_map *inode_resv_map(struct inode *inode)
946 {
947         /*
948          * At inode evict time, i_mapping may not point to the original
949          * address space within the inode.  This original address space
950          * contains the pointer to the resv_map.  So, always use the
951          * address space embedded within the inode.
952          * The VERY common case is inode->mapping == &inode->i_data but,
953          * this may not be true for device special inodes.
954          */
955         return (struct resv_map *)(&inode->i_data)->private_data;
956 }
957
958 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
959 {
960         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961         if (vma->vm_flags & VM_MAYSHARE) {
962                 struct address_space *mapping = vma->vm_file->f_mapping;
963                 struct inode *inode = mapping->host;
964
965                 return inode_resv_map(inode);
966
967         } else {
968                 return (struct resv_map *)(get_vma_private_data(vma) &
969                                                         ~HPAGE_RESV_MASK);
970         }
971 }
972
973 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
974 {
975         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
977
978         set_vma_private_data(vma, (get_vma_private_data(vma) &
979                                 HPAGE_RESV_MASK) | (unsigned long)map);
980 }
981
982 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
983 {
984         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
985         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
986
987         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
988 }
989
990 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
991 {
992         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
993
994         return (get_vma_private_data(vma) & flag) != 0;
995 }
996
997 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
998 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
999 {
1000         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1001         if (!(vma->vm_flags & VM_MAYSHARE))
1002                 vma->vm_private_data = (void *)0;
1003 }
1004
1005 /* Returns true if the VMA has associated reserve pages */
1006 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1007 {
1008         if (vma->vm_flags & VM_NORESERVE) {
1009                 /*
1010                  * This address is already reserved by other process(chg == 0),
1011                  * so, we should decrement reserved count. Without decrementing,
1012                  * reserve count remains after releasing inode, because this
1013                  * allocated page will go into page cache and is regarded as
1014                  * coming from reserved pool in releasing step.  Currently, we
1015                  * don't have any other solution to deal with this situation
1016                  * properly, so add work-around here.
1017                  */
1018                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1019                         return true;
1020                 else
1021                         return false;
1022         }
1023
1024         /* Shared mappings always use reserves */
1025         if (vma->vm_flags & VM_MAYSHARE) {
1026                 /*
1027                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1028                  * be a region map for all pages.  The only situation where
1029                  * there is no region map is if a hole was punched via
1030                  * fallocate.  In this case, there really are no reserves to
1031                  * use.  This situation is indicated if chg != 0.
1032                  */
1033                 if (chg)
1034                         return false;
1035                 else
1036                         return true;
1037         }
1038
1039         /*
1040          * Only the process that called mmap() has reserves for
1041          * private mappings.
1042          */
1043         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1044                 /*
1045                  * Like the shared case above, a hole punch or truncate
1046                  * could have been performed on the private mapping.
1047                  * Examine the value of chg to determine if reserves
1048                  * actually exist or were previously consumed.
1049                  * Very Subtle - The value of chg comes from a previous
1050                  * call to vma_needs_reserves().  The reserve map for
1051                  * private mappings has different (opposite) semantics
1052                  * than that of shared mappings.  vma_needs_reserves()
1053                  * has already taken this difference in semantics into
1054                  * account.  Therefore, the meaning of chg is the same
1055                  * as in the shared case above.  Code could easily be
1056                  * combined, but keeping it separate draws attention to
1057                  * subtle differences.
1058                  */
1059                 if (chg)
1060                         return false;
1061                 else
1062                         return true;
1063         }
1064
1065         return false;
1066 }
1067
1068 static void enqueue_huge_page(struct hstate *h, struct page *page)
1069 {
1070         int nid = page_to_nid(page);
1071         list_move(&page->lru, &h->hugepage_freelists[nid]);
1072         h->free_huge_pages++;
1073         h->free_huge_pages_node[nid]++;
1074         SetPageHugeFreed(page);
1075 }
1076
1077 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1078 {
1079         struct page *page;
1080         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1081
1082         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1083                 if (nocma && is_migrate_cma_page(page))
1084                         continue;
1085
1086                 if (PageHWPoison(page))
1087                         continue;
1088
1089                 list_move(&page->lru, &h->hugepage_activelist);
1090                 set_page_refcounted(page);
1091                 ClearPageHugeFreed(page);
1092                 h->free_huge_pages--;
1093                 h->free_huge_pages_node[nid]--;
1094                 return page;
1095         }
1096
1097         return NULL;
1098 }
1099
1100 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1101                 nodemask_t *nmask)
1102 {
1103         unsigned int cpuset_mems_cookie;
1104         struct zonelist *zonelist;
1105         struct zone *zone;
1106         struct zoneref *z;
1107         int node = NUMA_NO_NODE;
1108
1109         zonelist = node_zonelist(nid, gfp_mask);
1110
1111 retry_cpuset:
1112         cpuset_mems_cookie = read_mems_allowed_begin();
1113         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1114                 struct page *page;
1115
1116                 if (!cpuset_zone_allowed(zone, gfp_mask))
1117                         continue;
1118                 /*
1119                  * no need to ask again on the same node. Pool is node rather than
1120                  * zone aware
1121                  */
1122                 if (zone_to_nid(zone) == node)
1123                         continue;
1124                 node = zone_to_nid(zone);
1125
1126                 page = dequeue_huge_page_node_exact(h, node);
1127                 if (page)
1128                         return page;
1129         }
1130         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1131                 goto retry_cpuset;
1132
1133         return NULL;
1134 }
1135
1136 static struct page *dequeue_huge_page_vma(struct hstate *h,
1137                                 struct vm_area_struct *vma,
1138                                 unsigned long address, int avoid_reserve,
1139                                 long chg)
1140 {
1141         struct page *page;
1142         struct mempolicy *mpol;
1143         gfp_t gfp_mask;
1144         nodemask_t *nodemask;
1145         int nid;
1146
1147         /*
1148          * A child process with MAP_PRIVATE mappings created by their parent
1149          * have no page reserves. This check ensures that reservations are
1150          * not "stolen". The child may still get SIGKILLed
1151          */
1152         if (!vma_has_reserves(vma, chg) &&
1153                         h->free_huge_pages - h->resv_huge_pages == 0)
1154                 goto err;
1155
1156         /* If reserves cannot be used, ensure enough pages are in the pool */
1157         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1158                 goto err;
1159
1160         gfp_mask = htlb_alloc_mask(h);
1161         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1162         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1163         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1164                 SetPagePrivate(page);
1165                 h->resv_huge_pages--;
1166         }
1167
1168         mpol_cond_put(mpol);
1169         return page;
1170
1171 err:
1172         return NULL;
1173 }
1174
1175 /*
1176  * common helper functions for hstate_next_node_to_{alloc|free}.
1177  * We may have allocated or freed a huge page based on a different
1178  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1179  * be outside of *nodes_allowed.  Ensure that we use an allowed
1180  * node for alloc or free.
1181  */
1182 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1183 {
1184         nid = next_node_in(nid, *nodes_allowed);
1185         VM_BUG_ON(nid >= MAX_NUMNODES);
1186
1187         return nid;
1188 }
1189
1190 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1191 {
1192         if (!node_isset(nid, *nodes_allowed))
1193                 nid = next_node_allowed(nid, nodes_allowed);
1194         return nid;
1195 }
1196
1197 /*
1198  * returns the previously saved node ["this node"] from which to
1199  * allocate a persistent huge page for the pool and advance the
1200  * next node from which to allocate, handling wrap at end of node
1201  * mask.
1202  */
1203 static int hstate_next_node_to_alloc(struct hstate *h,
1204                                         nodemask_t *nodes_allowed)
1205 {
1206         int nid;
1207
1208         VM_BUG_ON(!nodes_allowed);
1209
1210         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1211         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1212
1213         return nid;
1214 }
1215
1216 /*
1217  * helper for free_pool_huge_page() - return the previously saved
1218  * node ["this node"] from which to free a huge page.  Advance the
1219  * next node id whether or not we find a free huge page to free so
1220  * that the next attempt to free addresses the next node.
1221  */
1222 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1223 {
1224         int nid;
1225
1226         VM_BUG_ON(!nodes_allowed);
1227
1228         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1229         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1230
1231         return nid;
1232 }
1233
1234 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1235         for (nr_nodes = nodes_weight(*mask);                            \
1236                 nr_nodes > 0 &&                                         \
1237                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1238                 nr_nodes--)
1239
1240 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1241         for (nr_nodes = nodes_weight(*mask);                            \
1242                 nr_nodes > 0 &&                                         \
1243                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1244                 nr_nodes--)
1245
1246 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1247 static void destroy_compound_gigantic_page(struct page *page,
1248                                         unsigned int order)
1249 {
1250         int i;
1251         int nr_pages = 1 << order;
1252         struct page *p = page + 1;
1253
1254         atomic_set(compound_mapcount_ptr(page), 0);
1255         atomic_set(compound_pincount_ptr(page), 0);
1256
1257         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1258                 clear_compound_head(p);
1259                 set_page_refcounted(p);
1260         }
1261
1262         set_compound_order(page, 0);
1263         page[1].compound_nr = 0;
1264         __ClearPageHead(page);
1265 }
1266
1267 static void free_gigantic_page(struct page *page, unsigned int order)
1268 {
1269         /*
1270          * If the page isn't allocated using the cma allocator,
1271          * cma_release() returns false.
1272          */
1273 #ifdef CONFIG_CMA
1274         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1275                 return;
1276 #endif
1277
1278         free_contig_range(page_to_pfn(page), 1 << order);
1279 }
1280
1281 #ifdef CONFIG_CONTIG_ALLOC
1282 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1283                 int nid, nodemask_t *nodemask)
1284 {
1285         unsigned long nr_pages = 1UL << huge_page_order(h);
1286         if (nid == NUMA_NO_NODE)
1287                 nid = numa_mem_id();
1288
1289 #ifdef CONFIG_CMA
1290         {
1291                 struct page *page;
1292                 int node;
1293
1294                 if (hugetlb_cma[nid]) {
1295                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1296                                         huge_page_order(h), true);
1297                         if (page)
1298                                 return page;
1299                 }
1300
1301                 if (!(gfp_mask & __GFP_THISNODE)) {
1302                         for_each_node_mask(node, *nodemask) {
1303                                 if (node == nid || !hugetlb_cma[node])
1304                                         continue;
1305
1306                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1307                                                 huge_page_order(h), true);
1308                                 if (page)
1309                                         return page;
1310                         }
1311                 }
1312         }
1313 #endif
1314
1315         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1316 }
1317
1318 #else /* !CONFIG_CONTIG_ALLOC */
1319 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1320                                         int nid, nodemask_t *nodemask)
1321 {
1322         return NULL;
1323 }
1324 #endif /* CONFIG_CONTIG_ALLOC */
1325
1326 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1327 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1328                                         int nid, nodemask_t *nodemask)
1329 {
1330         return NULL;
1331 }
1332 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1333 static inline void destroy_compound_gigantic_page(struct page *page,
1334                                                 unsigned int order) { }
1335 #endif
1336
1337 static void update_and_free_page(struct hstate *h, struct page *page)
1338 {
1339         int i;
1340         struct page *subpage = page;
1341
1342         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1343                 return;
1344
1345         h->nr_huge_pages--;
1346         h->nr_huge_pages_node[page_to_nid(page)]--;
1347         for (i = 0; i < pages_per_huge_page(h);
1348              i++, subpage = mem_map_next(subpage, page, i)) {
1349                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1350                                 1 << PG_referenced | 1 << PG_dirty |
1351                                 1 << PG_active | 1 << PG_private |
1352                                 1 << PG_writeback);
1353         }
1354         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1357         set_page_refcounted(page);
1358         if (hstate_is_gigantic(h)) {
1359                 /*
1360                  * Temporarily drop the hugetlb_lock, because
1361                  * we might block in free_gigantic_page().
1362                  */
1363                 spin_unlock(&hugetlb_lock);
1364                 destroy_compound_gigantic_page(page, huge_page_order(h));
1365                 free_gigantic_page(page, huge_page_order(h));
1366                 spin_lock(&hugetlb_lock);
1367         } else {
1368                 __free_pages(page, huge_page_order(h));
1369         }
1370 }
1371
1372 struct hstate *size_to_hstate(unsigned long size)
1373 {
1374         struct hstate *h;
1375
1376         for_each_hstate(h) {
1377                 if (huge_page_size(h) == size)
1378                         return h;
1379         }
1380         return NULL;
1381 }
1382
1383 /*
1384  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1385  * to hstate->hugepage_activelist.)
1386  *
1387  * This function can be called for tail pages, but never returns true for them.
1388  */
1389 bool page_huge_active(struct page *page)
1390 {
1391         return PageHeadHuge(page) && PagePrivate(&page[1]);
1392 }
1393
1394 /* never called for tail page */
1395 void set_page_huge_active(struct page *page)
1396 {
1397         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1398         SetPagePrivate(&page[1]);
1399 }
1400
1401 static void clear_page_huge_active(struct page *page)
1402 {
1403         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1404         ClearPagePrivate(&page[1]);
1405 }
1406
1407 /*
1408  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1409  * code
1410  */
1411 static inline bool PageHugeTemporary(struct page *page)
1412 {
1413         if (!PageHuge(page))
1414                 return false;
1415
1416         return (unsigned long)page[2].mapping == -1U;
1417 }
1418
1419 static inline void SetPageHugeTemporary(struct page *page)
1420 {
1421         page[2].mapping = (void *)-1U;
1422 }
1423
1424 static inline void ClearPageHugeTemporary(struct page *page)
1425 {
1426         page[2].mapping = NULL;
1427 }
1428
1429 static void __free_huge_page(struct page *page)
1430 {
1431         /*
1432          * Can't pass hstate in here because it is called from the
1433          * compound page destructor.
1434          */
1435         struct hstate *h = page_hstate(page);
1436         int nid = page_to_nid(page);
1437         struct hugepage_subpool *spool =
1438                 (struct hugepage_subpool *)page_private(page);
1439         bool restore_reserve;
1440
1441         VM_BUG_ON_PAGE(page_count(page), page);
1442         VM_BUG_ON_PAGE(page_mapcount(page), page);
1443
1444         set_page_private(page, 0);
1445         page->mapping = NULL;
1446         restore_reserve = PagePrivate(page);
1447         ClearPagePrivate(page);
1448
1449         /*
1450          * If PagePrivate() was set on page, page allocation consumed a
1451          * reservation.  If the page was associated with a subpool, there
1452          * would have been a page reserved in the subpool before allocation
1453          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1454          * reservtion, do not call hugepage_subpool_put_pages() as this will
1455          * remove the reserved page from the subpool.
1456          */
1457         if (!restore_reserve) {
1458                 /*
1459                  * A return code of zero implies that the subpool will be
1460                  * under its minimum size if the reservation is not restored
1461                  * after page is free.  Therefore, force restore_reserve
1462                  * operation.
1463                  */
1464                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1465                         restore_reserve = true;
1466         }
1467
1468         spin_lock(&hugetlb_lock);
1469         clear_page_huge_active(page);
1470         hugetlb_cgroup_uncharge_page(hstate_index(h),
1471                                      pages_per_huge_page(h), page);
1472         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1473                                           pages_per_huge_page(h), page);
1474         if (restore_reserve)
1475                 h->resv_huge_pages++;
1476
1477         if (PageHugeTemporary(page)) {
1478                 list_del(&page->lru);
1479                 ClearPageHugeTemporary(page);
1480                 update_and_free_page(h, page);
1481         } else if (h->surplus_huge_pages_node[nid]) {
1482                 /* remove the page from active list */
1483                 list_del(&page->lru);
1484                 update_and_free_page(h, page);
1485                 h->surplus_huge_pages--;
1486                 h->surplus_huge_pages_node[nid]--;
1487         } else {
1488                 arch_clear_hugepage_flags(page);
1489                 enqueue_huge_page(h, page);
1490         }
1491         spin_unlock(&hugetlb_lock);
1492 }
1493
1494 /*
1495  * As free_huge_page() can be called from a non-task context, we have
1496  * to defer the actual freeing in a workqueue to prevent potential
1497  * hugetlb_lock deadlock.
1498  *
1499  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1500  * be freed and frees them one-by-one. As the page->mapping pointer is
1501  * going to be cleared in __free_huge_page() anyway, it is reused as the
1502  * llist_node structure of a lockless linked list of huge pages to be freed.
1503  */
1504 static LLIST_HEAD(hpage_freelist);
1505
1506 static void free_hpage_workfn(struct work_struct *work)
1507 {
1508         struct llist_node *node;
1509         struct page *page;
1510
1511         node = llist_del_all(&hpage_freelist);
1512
1513         while (node) {
1514                 page = container_of((struct address_space **)node,
1515                                      struct page, mapping);
1516                 node = node->next;
1517                 __free_huge_page(page);
1518         }
1519 }
1520 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1521
1522 void free_huge_page(struct page *page)
1523 {
1524         /*
1525          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1526          */
1527         if (!in_task()) {
1528                 /*
1529                  * Only call schedule_work() if hpage_freelist is previously
1530                  * empty. Otherwise, schedule_work() had been called but the
1531                  * workfn hasn't retrieved the list yet.
1532                  */
1533                 if (llist_add((struct llist_node *)&page->mapping,
1534                               &hpage_freelist))
1535                         schedule_work(&free_hpage_work);
1536                 return;
1537         }
1538
1539         __free_huge_page(page);
1540 }
1541
1542 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1543 {
1544         INIT_LIST_HEAD(&page->lru);
1545         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1546         set_hugetlb_cgroup(page, NULL);
1547         set_hugetlb_cgroup_rsvd(page, NULL);
1548         spin_lock(&hugetlb_lock);
1549         h->nr_huge_pages++;
1550         h->nr_huge_pages_node[nid]++;
1551         ClearPageHugeFreed(page);
1552         spin_unlock(&hugetlb_lock);
1553 }
1554
1555 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1556 {
1557         int i;
1558         int nr_pages = 1 << order;
1559         struct page *p = page + 1;
1560
1561         /* we rely on prep_new_huge_page to set the destructor */
1562         set_compound_order(page, order);
1563         __ClearPageReserved(page);
1564         __SetPageHead(page);
1565         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1566                 /*
1567                  * For gigantic hugepages allocated through bootmem at
1568                  * boot, it's safer to be consistent with the not-gigantic
1569                  * hugepages and clear the PG_reserved bit from all tail pages
1570                  * too.  Otherwise drivers using get_user_pages() to access tail
1571                  * pages may get the reference counting wrong if they see
1572                  * PG_reserved set on a tail page (despite the head page not
1573                  * having PG_reserved set).  Enforcing this consistency between
1574                  * head and tail pages allows drivers to optimize away a check
1575                  * on the head page when they need know if put_page() is needed
1576                  * after get_user_pages().
1577                  */
1578                 __ClearPageReserved(p);
1579                 set_page_count(p, 0);
1580                 set_compound_head(p, page);
1581         }
1582         atomic_set(compound_mapcount_ptr(page), -1);
1583         atomic_set(compound_pincount_ptr(page), 0);
1584 }
1585
1586 /*
1587  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1588  * transparent huge pages.  See the PageTransHuge() documentation for more
1589  * details.
1590  */
1591 int PageHuge(struct page *page)
1592 {
1593         if (!PageCompound(page))
1594                 return 0;
1595
1596         page = compound_head(page);
1597         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1598 }
1599 EXPORT_SYMBOL_GPL(PageHuge);
1600
1601 /*
1602  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1603  * normal or transparent huge pages.
1604  */
1605 int PageHeadHuge(struct page *page_head)
1606 {
1607         if (!PageHead(page_head))
1608                 return 0;
1609
1610         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1611 }
1612
1613 /*
1614  * Find and lock address space (mapping) in write mode.
1615  *
1616  * Upon entry, the page is locked which means that page_mapping() is
1617  * stable.  Due to locking order, we can only trylock_write.  If we can
1618  * not get the lock, simply return NULL to caller.
1619  */
1620 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1621 {
1622         struct address_space *mapping = page_mapping(hpage);
1623
1624         if (!mapping)
1625                 return mapping;
1626
1627         if (i_mmap_trylock_write(mapping))
1628                 return mapping;
1629
1630         return NULL;
1631 }
1632
1633 pgoff_t hugetlb_basepage_index(struct page *page)
1634 {
1635         struct page *page_head = compound_head(page);
1636         pgoff_t index = page_index(page_head);
1637         unsigned long compound_idx;
1638
1639         if (compound_order(page_head) >= MAX_ORDER)
1640                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1641         else
1642                 compound_idx = page - page_head;
1643
1644         return (index << compound_order(page_head)) + compound_idx;
1645 }
1646
1647 static struct page *alloc_buddy_huge_page(struct hstate *h,
1648                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1649                 nodemask_t *node_alloc_noretry)
1650 {
1651         int order = huge_page_order(h);
1652         struct page *page;
1653         bool alloc_try_hard = true;
1654
1655         /*
1656          * By default we always try hard to allocate the page with
1657          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1658          * a loop (to adjust global huge page counts) and previous allocation
1659          * failed, do not continue to try hard on the same node.  Use the
1660          * node_alloc_noretry bitmap to manage this state information.
1661          */
1662         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1663                 alloc_try_hard = false;
1664         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1665         if (alloc_try_hard)
1666                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1667         if (nid == NUMA_NO_NODE)
1668                 nid = numa_mem_id();
1669         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1670         if (page)
1671                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1672         else
1673                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1674
1675         /*
1676          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1677          * indicates an overall state change.  Clear bit so that we resume
1678          * normal 'try hard' allocations.
1679          */
1680         if (node_alloc_noretry && page && !alloc_try_hard)
1681                 node_clear(nid, *node_alloc_noretry);
1682
1683         /*
1684          * If we tried hard to get a page but failed, set bit so that
1685          * subsequent attempts will not try as hard until there is an
1686          * overall state change.
1687          */
1688         if (node_alloc_noretry && !page && alloc_try_hard)
1689                 node_set(nid, *node_alloc_noretry);
1690
1691         return page;
1692 }
1693
1694 /*
1695  * Common helper to allocate a fresh hugetlb page. All specific allocators
1696  * should use this function to get new hugetlb pages
1697  */
1698 static struct page *alloc_fresh_huge_page(struct hstate *h,
1699                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1700                 nodemask_t *node_alloc_noretry)
1701 {
1702         struct page *page;
1703
1704         if (hstate_is_gigantic(h))
1705                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1706         else
1707                 page = alloc_buddy_huge_page(h, gfp_mask,
1708                                 nid, nmask, node_alloc_noretry);
1709         if (!page)
1710                 return NULL;
1711
1712         if (hstate_is_gigantic(h))
1713                 prep_compound_gigantic_page(page, huge_page_order(h));
1714         prep_new_huge_page(h, page, page_to_nid(page));
1715
1716         return page;
1717 }
1718
1719 /*
1720  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1721  * manner.
1722  */
1723 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1724                                 nodemask_t *node_alloc_noretry)
1725 {
1726         struct page *page;
1727         int nr_nodes, node;
1728         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1729
1730         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1731                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1732                                                 node_alloc_noretry);
1733                 if (page)
1734                         break;
1735         }
1736
1737         if (!page)
1738                 return 0;
1739
1740         put_page(page); /* free it into the hugepage allocator */
1741
1742         return 1;
1743 }
1744
1745 /*
1746  * Free huge page from pool from next node to free.
1747  * Attempt to keep persistent huge pages more or less
1748  * balanced over allowed nodes.
1749  * Called with hugetlb_lock locked.
1750  */
1751 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1752                                                          bool acct_surplus)
1753 {
1754         int nr_nodes, node;
1755         int ret = 0;
1756
1757         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1758                 /*
1759                  * If we're returning unused surplus pages, only examine
1760                  * nodes with surplus pages.
1761                  */
1762                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1763                     !list_empty(&h->hugepage_freelists[node])) {
1764                         struct page *page =
1765                                 list_entry(h->hugepage_freelists[node].next,
1766                                           struct page, lru);
1767                         list_del(&page->lru);
1768                         h->free_huge_pages--;
1769                         h->free_huge_pages_node[node]--;
1770                         if (acct_surplus) {
1771                                 h->surplus_huge_pages--;
1772                                 h->surplus_huge_pages_node[node]--;
1773                         }
1774                         update_and_free_page(h, page);
1775                         ret = 1;
1776                         break;
1777                 }
1778         }
1779
1780         return ret;
1781 }
1782
1783 /*
1784  * Dissolve a given free hugepage into free buddy pages. This function does
1785  * nothing for in-use hugepages and non-hugepages.
1786  * This function returns values like below:
1787  *
1788  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1789  *          (allocated or reserved.)
1790  *       0: successfully dissolved free hugepages or the page is not a
1791  *          hugepage (considered as already dissolved)
1792  */
1793 int dissolve_free_huge_page(struct page *page)
1794 {
1795         int rc = -EBUSY;
1796
1797 retry:
1798         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1799         if (!PageHuge(page))
1800                 return 0;
1801
1802         spin_lock(&hugetlb_lock);
1803         if (!PageHuge(page)) {
1804                 rc = 0;
1805                 goto out;
1806         }
1807
1808         if (!page_count(page)) {
1809                 struct page *head = compound_head(page);
1810                 struct hstate *h = page_hstate(head);
1811                 int nid = page_to_nid(head);
1812                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1813                         goto out;
1814
1815                 /*
1816                  * We should make sure that the page is already on the free list
1817                  * when it is dissolved.
1818                  */
1819                 if (unlikely(!PageHugeFreed(head))) {
1820                         spin_unlock(&hugetlb_lock);
1821                         cond_resched();
1822
1823                         /*
1824                          * Theoretically, we should return -EBUSY when we
1825                          * encounter this race. In fact, we have a chance
1826                          * to successfully dissolve the page if we do a
1827                          * retry. Because the race window is quite small.
1828                          * If we seize this opportunity, it is an optimization
1829                          * for increasing the success rate of dissolving page.
1830                          */
1831                         goto retry;
1832                 }
1833
1834                 /*
1835                  * Move PageHWPoison flag from head page to the raw error page,
1836                  * which makes any subpages rather than the error page reusable.
1837                  */
1838                 if (PageHWPoison(head) && page != head) {
1839                         SetPageHWPoison(page);
1840                         ClearPageHWPoison(head);
1841                 }
1842                 list_del(&head->lru);
1843                 h->free_huge_pages--;
1844                 h->free_huge_pages_node[nid]--;
1845                 h->max_huge_pages--;
1846                 update_and_free_page(h, head);
1847                 rc = 0;
1848         }
1849 out:
1850         spin_unlock(&hugetlb_lock);
1851         return rc;
1852 }
1853
1854 /*
1855  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1856  * make specified memory blocks removable from the system.
1857  * Note that this will dissolve a free gigantic hugepage completely, if any
1858  * part of it lies within the given range.
1859  * Also note that if dissolve_free_huge_page() returns with an error, all
1860  * free hugepages that were dissolved before that error are lost.
1861  */
1862 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1863 {
1864         unsigned long pfn;
1865         struct page *page;
1866         int rc = 0;
1867
1868         if (!hugepages_supported())
1869                 return rc;
1870
1871         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1872                 page = pfn_to_page(pfn);
1873                 rc = dissolve_free_huge_page(page);
1874                 if (rc)
1875                         break;
1876         }
1877
1878         return rc;
1879 }
1880
1881 /*
1882  * Allocates a fresh surplus page from the page allocator.
1883  */
1884 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1885                 int nid, nodemask_t *nmask)
1886 {
1887         struct page *page = NULL;
1888
1889         if (hstate_is_gigantic(h))
1890                 return NULL;
1891
1892         spin_lock(&hugetlb_lock);
1893         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1894                 goto out_unlock;
1895         spin_unlock(&hugetlb_lock);
1896
1897         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1898         if (!page)
1899                 return NULL;
1900
1901         spin_lock(&hugetlb_lock);
1902         /*
1903          * We could have raced with the pool size change.
1904          * Double check that and simply deallocate the new page
1905          * if we would end up overcommiting the surpluses. Abuse
1906          * temporary page to workaround the nasty free_huge_page
1907          * codeflow
1908          */
1909         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1910                 SetPageHugeTemporary(page);
1911                 spin_unlock(&hugetlb_lock);
1912                 put_page(page);
1913                 return NULL;
1914         } else {
1915                 h->surplus_huge_pages++;
1916                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1917         }
1918
1919 out_unlock:
1920         spin_unlock(&hugetlb_lock);
1921
1922         return page;
1923 }
1924
1925 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1926                                      int nid, nodemask_t *nmask)
1927 {
1928         struct page *page;
1929
1930         if (hstate_is_gigantic(h))
1931                 return NULL;
1932
1933         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1934         if (!page)
1935                 return NULL;
1936
1937         /*
1938          * We do not account these pages as surplus because they are only
1939          * temporary and will be released properly on the last reference
1940          */
1941         SetPageHugeTemporary(page);
1942
1943         return page;
1944 }
1945
1946 /*
1947  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1948  */
1949 static
1950 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1951                 struct vm_area_struct *vma, unsigned long addr)
1952 {
1953         struct page *page;
1954         struct mempolicy *mpol;
1955         gfp_t gfp_mask = htlb_alloc_mask(h);
1956         int nid;
1957         nodemask_t *nodemask;
1958
1959         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1960         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1961         mpol_cond_put(mpol);
1962
1963         return page;
1964 }
1965
1966 /* page migration callback function */
1967 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1968                 nodemask_t *nmask, gfp_t gfp_mask)
1969 {
1970         spin_lock(&hugetlb_lock);
1971         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1972                 struct page *page;
1973
1974                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1975                 if (page) {
1976                         spin_unlock(&hugetlb_lock);
1977                         return page;
1978                 }
1979         }
1980         spin_unlock(&hugetlb_lock);
1981
1982         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1983 }
1984
1985 /* mempolicy aware migration callback */
1986 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1987                 unsigned long address)
1988 {
1989         struct mempolicy *mpol;
1990         nodemask_t *nodemask;
1991         struct page *page;
1992         gfp_t gfp_mask;
1993         int node;
1994
1995         gfp_mask = htlb_alloc_mask(h);
1996         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1997         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1998         mpol_cond_put(mpol);
1999
2000         return page;
2001 }
2002
2003 /*
2004  * Increase the hugetlb pool such that it can accommodate a reservation
2005  * of size 'delta'.
2006  */
2007 static int gather_surplus_pages(struct hstate *h, int delta)
2008         __must_hold(&hugetlb_lock)
2009 {
2010         struct list_head surplus_list;
2011         struct page *page, *tmp;
2012         int ret, i;
2013         int needed, allocated;
2014         bool alloc_ok = true;
2015
2016         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2017         if (needed <= 0) {
2018                 h->resv_huge_pages += delta;
2019                 return 0;
2020         }
2021
2022         allocated = 0;
2023         INIT_LIST_HEAD(&surplus_list);
2024
2025         ret = -ENOMEM;
2026 retry:
2027         spin_unlock(&hugetlb_lock);
2028         for (i = 0; i < needed; i++) {
2029                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2030                                 NUMA_NO_NODE, NULL);
2031                 if (!page) {
2032                         alloc_ok = false;
2033                         break;
2034                 }
2035                 list_add(&page->lru, &surplus_list);
2036                 cond_resched();
2037         }
2038         allocated += i;
2039
2040         /*
2041          * After retaking hugetlb_lock, we need to recalculate 'needed'
2042          * because either resv_huge_pages or free_huge_pages may have changed.
2043          */
2044         spin_lock(&hugetlb_lock);
2045         needed = (h->resv_huge_pages + delta) -
2046                         (h->free_huge_pages + allocated);
2047         if (needed > 0) {
2048                 if (alloc_ok)
2049                         goto retry;
2050                 /*
2051                  * We were not able to allocate enough pages to
2052                  * satisfy the entire reservation so we free what
2053                  * we've allocated so far.
2054                  */
2055                 goto free;
2056         }
2057         /*
2058          * The surplus_list now contains _at_least_ the number of extra pages
2059          * needed to accommodate the reservation.  Add the appropriate number
2060          * of pages to the hugetlb pool and free the extras back to the buddy
2061          * allocator.  Commit the entire reservation here to prevent another
2062          * process from stealing the pages as they are added to the pool but
2063          * before they are reserved.
2064          */
2065         needed += allocated;
2066         h->resv_huge_pages += delta;
2067         ret = 0;
2068
2069         /* Free the needed pages to the hugetlb pool */
2070         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2071                 if ((--needed) < 0)
2072                         break;
2073                 /*
2074                  * This page is now managed by the hugetlb allocator and has
2075                  * no users -- drop the buddy allocator's reference.
2076                  */
2077                 put_page_testzero(page);
2078                 VM_BUG_ON_PAGE(page_count(page), page);
2079                 enqueue_huge_page(h, page);
2080         }
2081 free:
2082         spin_unlock(&hugetlb_lock);
2083
2084         /* Free unnecessary surplus pages to the buddy allocator */
2085         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2086                 put_page(page);
2087         spin_lock(&hugetlb_lock);
2088
2089         return ret;
2090 }
2091
2092 /*
2093  * This routine has two main purposes:
2094  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2095  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2096  *    to the associated reservation map.
2097  * 2) Free any unused surplus pages that may have been allocated to satisfy
2098  *    the reservation.  As many as unused_resv_pages may be freed.
2099  *
2100  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2101  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2102  * we must make sure nobody else can claim pages we are in the process of
2103  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2104  * number of huge pages we plan to free when dropping the lock.
2105  */
2106 static void return_unused_surplus_pages(struct hstate *h,
2107                                         unsigned long unused_resv_pages)
2108 {
2109         unsigned long nr_pages;
2110
2111         /* Cannot return gigantic pages currently */
2112         if (hstate_is_gigantic(h))
2113                 goto out;
2114
2115         /*
2116          * Part (or even all) of the reservation could have been backed
2117          * by pre-allocated pages. Only free surplus pages.
2118          */
2119         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2120
2121         /*
2122          * We want to release as many surplus pages as possible, spread
2123          * evenly across all nodes with memory. Iterate across these nodes
2124          * until we can no longer free unreserved surplus pages. This occurs
2125          * when the nodes with surplus pages have no free pages.
2126          * free_pool_huge_page() will balance the freed pages across the
2127          * on-line nodes with memory and will handle the hstate accounting.
2128          *
2129          * Note that we decrement resv_huge_pages as we free the pages.  If
2130          * we drop the lock, resv_huge_pages will still be sufficiently large
2131          * to cover subsequent pages we may free.
2132          */
2133         while (nr_pages--) {
2134                 h->resv_huge_pages--;
2135                 unused_resv_pages--;
2136                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2137                         goto out;
2138                 cond_resched_lock(&hugetlb_lock);
2139         }
2140
2141 out:
2142         /* Fully uncommit the reservation */
2143         h->resv_huge_pages -= unused_resv_pages;
2144 }
2145
2146
2147 /*
2148  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2149  * are used by the huge page allocation routines to manage reservations.
2150  *
2151  * vma_needs_reservation is called to determine if the huge page at addr
2152  * within the vma has an associated reservation.  If a reservation is
2153  * needed, the value 1 is returned.  The caller is then responsible for
2154  * managing the global reservation and subpool usage counts.  After
2155  * the huge page has been allocated, vma_commit_reservation is called
2156  * to add the page to the reservation map.  If the page allocation fails,
2157  * the reservation must be ended instead of committed.  vma_end_reservation
2158  * is called in such cases.
2159  *
2160  * In the normal case, vma_commit_reservation returns the same value
2161  * as the preceding vma_needs_reservation call.  The only time this
2162  * is not the case is if a reserve map was changed between calls.  It
2163  * is the responsibility of the caller to notice the difference and
2164  * take appropriate action.
2165  *
2166  * vma_add_reservation is used in error paths where a reservation must
2167  * be restored when a newly allocated huge page must be freed.  It is
2168  * to be called after calling vma_needs_reservation to determine if a
2169  * reservation exists.
2170  */
2171 enum vma_resv_mode {
2172         VMA_NEEDS_RESV,
2173         VMA_COMMIT_RESV,
2174         VMA_END_RESV,
2175         VMA_ADD_RESV,
2176 };
2177 static long __vma_reservation_common(struct hstate *h,
2178                                 struct vm_area_struct *vma, unsigned long addr,
2179                                 enum vma_resv_mode mode)
2180 {
2181         struct resv_map *resv;
2182         pgoff_t idx;
2183         long ret;
2184         long dummy_out_regions_needed;
2185
2186         resv = vma_resv_map(vma);
2187         if (!resv)
2188                 return 1;
2189
2190         idx = vma_hugecache_offset(h, vma, addr);
2191         switch (mode) {
2192         case VMA_NEEDS_RESV:
2193                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2194                 /* We assume that vma_reservation_* routines always operate on
2195                  * 1 page, and that adding to resv map a 1 page entry can only
2196                  * ever require 1 region.
2197                  */
2198                 VM_BUG_ON(dummy_out_regions_needed != 1);
2199                 break;
2200         case VMA_COMMIT_RESV:
2201                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2202                 /* region_add calls of range 1 should never fail. */
2203                 VM_BUG_ON(ret < 0);
2204                 break;
2205         case VMA_END_RESV:
2206                 region_abort(resv, idx, idx + 1, 1);
2207                 ret = 0;
2208                 break;
2209         case VMA_ADD_RESV:
2210                 if (vma->vm_flags & VM_MAYSHARE) {
2211                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2212                         /* region_add calls of range 1 should never fail. */
2213                         VM_BUG_ON(ret < 0);
2214                 } else {
2215                         region_abort(resv, idx, idx + 1, 1);
2216                         ret = region_del(resv, idx, idx + 1);
2217                 }
2218                 break;
2219         default:
2220                 BUG();
2221         }
2222
2223         if (vma->vm_flags & VM_MAYSHARE)
2224                 return ret;
2225         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2226                 /*
2227                  * In most cases, reserves always exist for private mappings.
2228                  * However, a file associated with mapping could have been
2229                  * hole punched or truncated after reserves were consumed.
2230                  * As subsequent fault on such a range will not use reserves.
2231                  * Subtle - The reserve map for private mappings has the
2232                  * opposite meaning than that of shared mappings.  If NO
2233                  * entry is in the reserve map, it means a reservation exists.
2234                  * If an entry exists in the reserve map, it means the
2235                  * reservation has already been consumed.  As a result, the
2236                  * return value of this routine is the opposite of the
2237                  * value returned from reserve map manipulation routines above.
2238                  */
2239                 if (ret)
2240                         return 0;
2241                 else
2242                         return 1;
2243         }
2244         else
2245                 return ret < 0 ? ret : 0;
2246 }
2247
2248 static long vma_needs_reservation(struct hstate *h,
2249                         struct vm_area_struct *vma, unsigned long addr)
2250 {
2251         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2252 }
2253
2254 static long vma_commit_reservation(struct hstate *h,
2255                         struct vm_area_struct *vma, unsigned long addr)
2256 {
2257         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2258 }
2259
2260 static void vma_end_reservation(struct hstate *h,
2261                         struct vm_area_struct *vma, unsigned long addr)
2262 {
2263         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2264 }
2265
2266 static long vma_add_reservation(struct hstate *h,
2267                         struct vm_area_struct *vma, unsigned long addr)
2268 {
2269         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2270 }
2271
2272 /*
2273  * This routine is called to restore a reservation on error paths.  In the
2274  * specific error paths, a huge page was allocated (via alloc_huge_page)
2275  * and is about to be freed.  If a reservation for the page existed,
2276  * alloc_huge_page would have consumed the reservation and set PagePrivate
2277  * in the newly allocated page.  When the page is freed via free_huge_page,
2278  * the global reservation count will be incremented if PagePrivate is set.
2279  * However, free_huge_page can not adjust the reserve map.  Adjust the
2280  * reserve map here to be consistent with global reserve count adjustments
2281  * to be made by free_huge_page.
2282  */
2283 static void restore_reserve_on_error(struct hstate *h,
2284                         struct vm_area_struct *vma, unsigned long address,
2285                         struct page *page)
2286 {
2287         if (unlikely(PagePrivate(page))) {
2288                 long rc = vma_needs_reservation(h, vma, address);
2289
2290                 if (unlikely(rc < 0)) {
2291                         /*
2292                          * Rare out of memory condition in reserve map
2293                          * manipulation.  Clear PagePrivate so that
2294                          * global reserve count will not be incremented
2295                          * by free_huge_page.  This will make it appear
2296                          * as though the reservation for this page was
2297                          * consumed.  This may prevent the task from
2298                          * faulting in the page at a later time.  This
2299                          * is better than inconsistent global huge page
2300                          * accounting of reserve counts.
2301                          */
2302                         ClearPagePrivate(page);
2303                 } else if (rc) {
2304                         rc = vma_add_reservation(h, vma, address);
2305                         if (unlikely(rc < 0))
2306                                 /*
2307                                  * See above comment about rare out of
2308                                  * memory condition.
2309                                  */
2310                                 ClearPagePrivate(page);
2311                 } else
2312                         vma_end_reservation(h, vma, address);
2313         }
2314 }
2315
2316 struct page *alloc_huge_page(struct vm_area_struct *vma,
2317                                     unsigned long addr, int avoid_reserve)
2318 {
2319         struct hugepage_subpool *spool = subpool_vma(vma);
2320         struct hstate *h = hstate_vma(vma);
2321         struct page *page;
2322         long map_chg, map_commit;
2323         long gbl_chg;
2324         int ret, idx;
2325         struct hugetlb_cgroup *h_cg;
2326         bool deferred_reserve;
2327
2328         idx = hstate_index(h);
2329         /*
2330          * Examine the region/reserve map to determine if the process
2331          * has a reservation for the page to be allocated.  A return
2332          * code of zero indicates a reservation exists (no change).
2333          */
2334         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2335         if (map_chg < 0)
2336                 return ERR_PTR(-ENOMEM);
2337
2338         /*
2339          * Processes that did not create the mapping will have no
2340          * reserves as indicated by the region/reserve map. Check
2341          * that the allocation will not exceed the subpool limit.
2342          * Allocations for MAP_NORESERVE mappings also need to be
2343          * checked against any subpool limit.
2344          */
2345         if (map_chg || avoid_reserve) {
2346                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2347                 if (gbl_chg < 0) {
2348                         vma_end_reservation(h, vma, addr);
2349                         return ERR_PTR(-ENOSPC);
2350                 }
2351
2352                 /*
2353                  * Even though there was no reservation in the region/reserve
2354                  * map, there could be reservations associated with the
2355                  * subpool that can be used.  This would be indicated if the
2356                  * return value of hugepage_subpool_get_pages() is zero.
2357                  * However, if avoid_reserve is specified we still avoid even
2358                  * the subpool reservations.
2359                  */
2360                 if (avoid_reserve)
2361                         gbl_chg = 1;
2362         }
2363
2364         /* If this allocation is not consuming a reservation, charge it now.
2365          */
2366         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2367         if (deferred_reserve) {
2368                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2369                         idx, pages_per_huge_page(h), &h_cg);
2370                 if (ret)
2371                         goto out_subpool_put;
2372         }
2373
2374         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2375         if (ret)
2376                 goto out_uncharge_cgroup_reservation;
2377
2378         spin_lock(&hugetlb_lock);
2379         /*
2380          * glb_chg is passed to indicate whether or not a page must be taken
2381          * from the global free pool (global change).  gbl_chg == 0 indicates
2382          * a reservation exists for the allocation.
2383          */
2384         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2385         if (!page) {
2386                 spin_unlock(&hugetlb_lock);
2387                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2388                 if (!page)
2389                         goto out_uncharge_cgroup;
2390                 spin_lock(&hugetlb_lock);
2391                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2392                         SetPagePrivate(page);
2393                         h->resv_huge_pages--;
2394                 }
2395                 list_add(&page->lru, &h->hugepage_activelist);
2396                 /* Fall through */
2397         }
2398         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2399         /* If allocation is not consuming a reservation, also store the
2400          * hugetlb_cgroup pointer on the page.
2401          */
2402         if (deferred_reserve) {
2403                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2404                                                   h_cg, page);
2405         }
2406
2407         spin_unlock(&hugetlb_lock);
2408
2409         set_page_private(page, (unsigned long)spool);
2410
2411         map_commit = vma_commit_reservation(h, vma, addr);
2412         if (unlikely(map_chg > map_commit)) {
2413                 /*
2414                  * The page was added to the reservation map between
2415                  * vma_needs_reservation and vma_commit_reservation.
2416                  * This indicates a race with hugetlb_reserve_pages.
2417                  * Adjust for the subpool count incremented above AND
2418                  * in hugetlb_reserve_pages for the same page.  Also,
2419                  * the reservation count added in hugetlb_reserve_pages
2420                  * no longer applies.
2421                  */
2422                 long rsv_adjust;
2423
2424                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2425                 hugetlb_acct_memory(h, -rsv_adjust);
2426                 if (deferred_reserve)
2427                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2428                                         pages_per_huge_page(h), page);
2429         }
2430         return page;
2431
2432 out_uncharge_cgroup:
2433         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2434 out_uncharge_cgroup_reservation:
2435         if (deferred_reserve)
2436                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2437                                                     h_cg);
2438 out_subpool_put:
2439         if (map_chg || avoid_reserve)
2440                 hugepage_subpool_put_pages(spool, 1);
2441         vma_end_reservation(h, vma, addr);
2442         return ERR_PTR(-ENOSPC);
2443 }
2444
2445 int alloc_bootmem_huge_page(struct hstate *h)
2446         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2447 int __alloc_bootmem_huge_page(struct hstate *h)
2448 {
2449         struct huge_bootmem_page *m;
2450         int nr_nodes, node;
2451
2452         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2453                 void *addr;
2454
2455                 addr = memblock_alloc_try_nid_raw(
2456                                 huge_page_size(h), huge_page_size(h),
2457                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2458                 if (addr) {
2459                         /*
2460                          * Use the beginning of the huge page to store the
2461                          * huge_bootmem_page struct (until gather_bootmem
2462                          * puts them into the mem_map).
2463                          */
2464                         m = addr;
2465                         goto found;
2466                 }
2467         }
2468         return 0;
2469
2470 found:
2471         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2472         /* Put them into a private list first because mem_map is not up yet */
2473         INIT_LIST_HEAD(&m->list);
2474         list_add(&m->list, &huge_boot_pages);
2475         m->hstate = h;
2476         return 1;
2477 }
2478
2479 /*
2480  * Put bootmem huge pages into the standard lists after mem_map is up.
2481  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2482  */
2483 static void __init gather_bootmem_prealloc(void)
2484 {
2485         struct huge_bootmem_page *m;
2486
2487         list_for_each_entry(m, &huge_boot_pages, list) {
2488                 struct page *page = virt_to_page(m);
2489                 struct hstate *h = m->hstate;
2490
2491                 VM_BUG_ON(!hstate_is_gigantic(h));
2492                 WARN_ON(page_count(page) != 1);
2493                 prep_compound_gigantic_page(page, huge_page_order(h));
2494                 WARN_ON(PageReserved(page));
2495                 prep_new_huge_page(h, page, page_to_nid(page));
2496                 put_page(page); /* free it into the hugepage allocator */
2497
2498                 /*
2499                  * We need to restore the 'stolen' pages to totalram_pages
2500                  * in order to fix confusing memory reports from free(1) and
2501                  * other side-effects, like CommitLimit going negative.
2502                  */
2503                 adjust_managed_page_count(page, pages_per_huge_page(h));
2504                 cond_resched();
2505         }
2506 }
2507
2508 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2509 {
2510         unsigned long i;
2511         nodemask_t *node_alloc_noretry;
2512
2513         if (!hstate_is_gigantic(h)) {
2514                 /*
2515                  * Bit mask controlling how hard we retry per-node allocations.
2516                  * Ignore errors as lower level routines can deal with
2517                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2518                  * time, we are likely in bigger trouble.
2519                  */
2520                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2521                                                 GFP_KERNEL);
2522         } else {
2523                 /* allocations done at boot time */
2524                 node_alloc_noretry = NULL;
2525         }
2526
2527         /* bit mask controlling how hard we retry per-node allocations */
2528         if (node_alloc_noretry)
2529                 nodes_clear(*node_alloc_noretry);
2530
2531         for (i = 0; i < h->max_huge_pages; ++i) {
2532                 if (hstate_is_gigantic(h)) {
2533                         if (hugetlb_cma_size) {
2534                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2535                                 goto free;
2536                         }
2537                         if (!alloc_bootmem_huge_page(h))
2538                                 break;
2539                 } else if (!alloc_pool_huge_page(h,
2540                                          &node_states[N_MEMORY],
2541                                          node_alloc_noretry))
2542                         break;
2543                 cond_resched();
2544         }
2545         if (i < h->max_huge_pages) {
2546                 char buf[32];
2547
2548                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2549                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2550                         h->max_huge_pages, buf, i);
2551                 h->max_huge_pages = i;
2552         }
2553 free:
2554         kfree(node_alloc_noretry);
2555 }
2556
2557 static void __init hugetlb_init_hstates(void)
2558 {
2559         struct hstate *h;
2560
2561         for_each_hstate(h) {
2562                 if (minimum_order > huge_page_order(h))
2563                         minimum_order = huge_page_order(h);
2564
2565                 /* oversize hugepages were init'ed in early boot */
2566                 if (!hstate_is_gigantic(h))
2567                         hugetlb_hstate_alloc_pages(h);
2568         }
2569         VM_BUG_ON(minimum_order == UINT_MAX);
2570 }
2571
2572 static void __init report_hugepages(void)
2573 {
2574         struct hstate *h;
2575
2576         for_each_hstate(h) {
2577                 char buf[32];
2578
2579                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2580                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2581                         buf, h->free_huge_pages);
2582         }
2583 }
2584
2585 #ifdef CONFIG_HIGHMEM
2586 static void try_to_free_low(struct hstate *h, unsigned long count,
2587                                                 nodemask_t *nodes_allowed)
2588 {
2589         int i;
2590
2591         if (hstate_is_gigantic(h))
2592                 return;
2593
2594         for_each_node_mask(i, *nodes_allowed) {
2595                 struct page *page, *next;
2596                 struct list_head *freel = &h->hugepage_freelists[i];
2597                 list_for_each_entry_safe(page, next, freel, lru) {
2598                         if (count >= h->nr_huge_pages)
2599                                 return;
2600                         if (PageHighMem(page))
2601                                 continue;
2602                         list_del(&page->lru);
2603                         update_and_free_page(h, page);
2604                         h->free_huge_pages--;
2605                         h->free_huge_pages_node[page_to_nid(page)]--;
2606                 }
2607         }
2608 }
2609 #else
2610 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2611                                                 nodemask_t *nodes_allowed)
2612 {
2613 }
2614 #endif
2615
2616 /*
2617  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2618  * balanced by operating on them in a round-robin fashion.
2619  * Returns 1 if an adjustment was made.
2620  */
2621 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2622                                 int delta)
2623 {
2624         int nr_nodes, node;
2625
2626         VM_BUG_ON(delta != -1 && delta != 1);
2627
2628         if (delta < 0) {
2629                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2630                         if (h->surplus_huge_pages_node[node])
2631                                 goto found;
2632                 }
2633         } else {
2634                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2635                         if (h->surplus_huge_pages_node[node] <
2636                                         h->nr_huge_pages_node[node])
2637                                 goto found;
2638                 }
2639         }
2640         return 0;
2641
2642 found:
2643         h->surplus_huge_pages += delta;
2644         h->surplus_huge_pages_node[node] += delta;
2645         return 1;
2646 }
2647
2648 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2649 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2650                               nodemask_t *nodes_allowed)
2651 {
2652         unsigned long min_count, ret;
2653         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2654
2655         /*
2656          * Bit mask controlling how hard we retry per-node allocations.
2657          * If we can not allocate the bit mask, do not attempt to allocate
2658          * the requested huge pages.
2659          */
2660         if (node_alloc_noretry)
2661                 nodes_clear(*node_alloc_noretry);
2662         else
2663                 return -ENOMEM;
2664
2665         spin_lock(&hugetlb_lock);
2666
2667         /*
2668          * Check for a node specific request.
2669          * Changing node specific huge page count may require a corresponding
2670          * change to the global count.  In any case, the passed node mask
2671          * (nodes_allowed) will restrict alloc/free to the specified node.
2672          */
2673         if (nid != NUMA_NO_NODE) {
2674                 unsigned long old_count = count;
2675
2676                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2677                 /*
2678                  * User may have specified a large count value which caused the
2679                  * above calculation to overflow.  In this case, they wanted
2680                  * to allocate as many huge pages as possible.  Set count to
2681                  * largest possible value to align with their intention.
2682                  */
2683                 if (count < old_count)
2684                         count = ULONG_MAX;
2685         }
2686
2687         /*
2688          * Gigantic pages runtime allocation depend on the capability for large
2689          * page range allocation.
2690          * If the system does not provide this feature, return an error when
2691          * the user tries to allocate gigantic pages but let the user free the
2692          * boottime allocated gigantic pages.
2693          */
2694         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2695                 if (count > persistent_huge_pages(h)) {
2696                         spin_unlock(&hugetlb_lock);
2697                         NODEMASK_FREE(node_alloc_noretry);
2698                         return -EINVAL;
2699                 }
2700                 /* Fall through to decrease pool */
2701         }
2702
2703         /*
2704          * Increase the pool size
2705          * First take pages out of surplus state.  Then make up the
2706          * remaining difference by allocating fresh huge pages.
2707          *
2708          * We might race with alloc_surplus_huge_page() here and be unable
2709          * to convert a surplus huge page to a normal huge page. That is
2710          * not critical, though, it just means the overall size of the
2711          * pool might be one hugepage larger than it needs to be, but
2712          * within all the constraints specified by the sysctls.
2713          */
2714         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2715                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2716                         break;
2717         }
2718
2719         while (count > persistent_huge_pages(h)) {
2720                 /*
2721                  * If this allocation races such that we no longer need the
2722                  * page, free_huge_page will handle it by freeing the page
2723                  * and reducing the surplus.
2724                  */
2725                 spin_unlock(&hugetlb_lock);
2726
2727                 /* yield cpu to avoid soft lockup */
2728                 cond_resched();
2729
2730                 ret = alloc_pool_huge_page(h, nodes_allowed,
2731                                                 node_alloc_noretry);
2732                 spin_lock(&hugetlb_lock);
2733                 if (!ret)
2734                         goto out;
2735
2736                 /* Bail for signals. Probably ctrl-c from user */
2737                 if (signal_pending(current))
2738                         goto out;
2739         }
2740
2741         /*
2742          * Decrease the pool size
2743          * First return free pages to the buddy allocator (being careful
2744          * to keep enough around to satisfy reservations).  Then place
2745          * pages into surplus state as needed so the pool will shrink
2746          * to the desired size as pages become free.
2747          *
2748          * By placing pages into the surplus state independent of the
2749          * overcommit value, we are allowing the surplus pool size to
2750          * exceed overcommit. There are few sane options here. Since
2751          * alloc_surplus_huge_page() is checking the global counter,
2752          * though, we'll note that we're not allowed to exceed surplus
2753          * and won't grow the pool anywhere else. Not until one of the
2754          * sysctls are changed, or the surplus pages go out of use.
2755          */
2756         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2757         min_count = max(count, min_count);
2758         try_to_free_low(h, min_count, nodes_allowed);
2759         while (min_count < persistent_huge_pages(h)) {
2760                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2761                         break;
2762                 cond_resched_lock(&hugetlb_lock);
2763         }
2764         while (count < persistent_huge_pages(h)) {
2765                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2766                         break;
2767         }
2768 out:
2769         h->max_huge_pages = persistent_huge_pages(h);
2770         spin_unlock(&hugetlb_lock);
2771
2772         NODEMASK_FREE(node_alloc_noretry);
2773
2774         return 0;
2775 }
2776
2777 #define HSTATE_ATTR_RO(_name) \
2778         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2779
2780 #define HSTATE_ATTR(_name) \
2781         static struct kobj_attribute _name##_attr = \
2782                 __ATTR(_name, 0644, _name##_show, _name##_store)
2783
2784 static struct kobject *hugepages_kobj;
2785 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2786
2787 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2788
2789 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2790 {
2791         int i;
2792
2793         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2794                 if (hstate_kobjs[i] == kobj) {
2795                         if (nidp)
2796                                 *nidp = NUMA_NO_NODE;
2797                         return &hstates[i];
2798                 }
2799
2800         return kobj_to_node_hstate(kobj, nidp);
2801 }
2802
2803 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2804                                         struct kobj_attribute *attr, char *buf)
2805 {
2806         struct hstate *h;
2807         unsigned long nr_huge_pages;
2808         int nid;
2809
2810         h = kobj_to_hstate(kobj, &nid);
2811         if (nid == NUMA_NO_NODE)
2812                 nr_huge_pages = h->nr_huge_pages;
2813         else
2814                 nr_huge_pages = h->nr_huge_pages_node[nid];
2815
2816         return sprintf(buf, "%lu\n", nr_huge_pages);
2817 }
2818
2819 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2820                                            struct hstate *h, int nid,
2821                                            unsigned long count, size_t len)
2822 {
2823         int err;
2824         nodemask_t nodes_allowed, *n_mask;
2825
2826         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2827                 return -EINVAL;
2828
2829         if (nid == NUMA_NO_NODE) {
2830                 /*
2831                  * global hstate attribute
2832                  */
2833                 if (!(obey_mempolicy &&
2834                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2835                         n_mask = &node_states[N_MEMORY];
2836                 else
2837                         n_mask = &nodes_allowed;
2838         } else {
2839                 /*
2840                  * Node specific request.  count adjustment happens in
2841                  * set_max_huge_pages() after acquiring hugetlb_lock.
2842                  */
2843                 init_nodemask_of_node(&nodes_allowed, nid);
2844                 n_mask = &nodes_allowed;
2845         }
2846
2847         err = set_max_huge_pages(h, count, nid, n_mask);
2848
2849         return err ? err : len;
2850 }
2851
2852 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2853                                          struct kobject *kobj, const char *buf,
2854                                          size_t len)
2855 {
2856         struct hstate *h;
2857         unsigned long count;
2858         int nid;
2859         int err;
2860
2861         err = kstrtoul(buf, 10, &count);
2862         if (err)
2863                 return err;
2864
2865         h = kobj_to_hstate(kobj, &nid);
2866         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2867 }
2868
2869 static ssize_t nr_hugepages_show(struct kobject *kobj,
2870                                        struct kobj_attribute *attr, char *buf)
2871 {
2872         return nr_hugepages_show_common(kobj, attr, buf);
2873 }
2874
2875 static ssize_t nr_hugepages_store(struct kobject *kobj,
2876                struct kobj_attribute *attr, const char *buf, size_t len)
2877 {
2878         return nr_hugepages_store_common(false, kobj, buf, len);
2879 }
2880 HSTATE_ATTR(nr_hugepages);
2881
2882 #ifdef CONFIG_NUMA
2883
2884 /*
2885  * hstate attribute for optionally mempolicy-based constraint on persistent
2886  * huge page alloc/free.
2887  */
2888 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2889                                        struct kobj_attribute *attr, char *buf)
2890 {
2891         return nr_hugepages_show_common(kobj, attr, buf);
2892 }
2893
2894 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2895                struct kobj_attribute *attr, const char *buf, size_t len)
2896 {
2897         return nr_hugepages_store_common(true, kobj, buf, len);
2898 }
2899 HSTATE_ATTR(nr_hugepages_mempolicy);
2900 #endif
2901
2902
2903 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2904                                         struct kobj_attribute *attr, char *buf)
2905 {
2906         struct hstate *h = kobj_to_hstate(kobj, NULL);
2907         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2908 }
2909
2910 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2911                 struct kobj_attribute *attr, const char *buf, size_t count)
2912 {
2913         int err;
2914         unsigned long input;
2915         struct hstate *h = kobj_to_hstate(kobj, NULL);
2916
2917         if (hstate_is_gigantic(h))
2918                 return -EINVAL;
2919
2920         err = kstrtoul(buf, 10, &input);
2921         if (err)
2922                 return err;
2923
2924         spin_lock(&hugetlb_lock);
2925         h->nr_overcommit_huge_pages = input;
2926         spin_unlock(&hugetlb_lock);
2927
2928         return count;
2929 }
2930 HSTATE_ATTR(nr_overcommit_hugepages);
2931
2932 static ssize_t free_hugepages_show(struct kobject *kobj,
2933                                         struct kobj_attribute *attr, char *buf)
2934 {
2935         struct hstate *h;
2936         unsigned long free_huge_pages;
2937         int nid;
2938
2939         h = kobj_to_hstate(kobj, &nid);
2940         if (nid == NUMA_NO_NODE)
2941                 free_huge_pages = h->free_huge_pages;
2942         else
2943                 free_huge_pages = h->free_huge_pages_node[nid];
2944
2945         return sprintf(buf, "%lu\n", free_huge_pages);
2946 }
2947 HSTATE_ATTR_RO(free_hugepages);
2948
2949 static ssize_t resv_hugepages_show(struct kobject *kobj,
2950                                         struct kobj_attribute *attr, char *buf)
2951 {
2952         struct hstate *h = kobj_to_hstate(kobj, NULL);
2953         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2954 }
2955 HSTATE_ATTR_RO(resv_hugepages);
2956
2957 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2958                                         struct kobj_attribute *attr, char *buf)
2959 {
2960         struct hstate *h;
2961         unsigned long surplus_huge_pages;
2962         int nid;
2963
2964         h = kobj_to_hstate(kobj, &nid);
2965         if (nid == NUMA_NO_NODE)
2966                 surplus_huge_pages = h->surplus_huge_pages;
2967         else
2968                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2969
2970         return sprintf(buf, "%lu\n", surplus_huge_pages);
2971 }
2972 HSTATE_ATTR_RO(surplus_hugepages);
2973
2974 static struct attribute *hstate_attrs[] = {
2975         &nr_hugepages_attr.attr,
2976         &nr_overcommit_hugepages_attr.attr,
2977         &free_hugepages_attr.attr,
2978         &resv_hugepages_attr.attr,
2979         &surplus_hugepages_attr.attr,
2980 #ifdef CONFIG_NUMA
2981         &nr_hugepages_mempolicy_attr.attr,
2982 #endif
2983         NULL,
2984 };
2985
2986 static const struct attribute_group hstate_attr_group = {
2987         .attrs = hstate_attrs,
2988 };
2989
2990 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2991                                     struct kobject **hstate_kobjs,
2992                                     const struct attribute_group *hstate_attr_group)
2993 {
2994         int retval;
2995         int hi = hstate_index(h);
2996
2997         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2998         if (!hstate_kobjs[hi])
2999                 return -ENOMEM;
3000
3001         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3002         if (retval) {
3003                 kobject_put(hstate_kobjs[hi]);
3004                 hstate_kobjs[hi] = NULL;
3005         }
3006
3007         return retval;
3008 }
3009
3010 static void __init hugetlb_sysfs_init(void)
3011 {
3012         struct hstate *h;
3013         int err;
3014
3015         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3016         if (!hugepages_kobj)
3017                 return;
3018
3019         for_each_hstate(h) {
3020                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3021                                          hstate_kobjs, &hstate_attr_group);
3022                 if (err)
3023                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3024         }
3025 }
3026
3027 #ifdef CONFIG_NUMA
3028
3029 /*
3030  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3031  * with node devices in node_devices[] using a parallel array.  The array
3032  * index of a node device or _hstate == node id.
3033  * This is here to avoid any static dependency of the node device driver, in
3034  * the base kernel, on the hugetlb module.
3035  */
3036 struct node_hstate {
3037         struct kobject          *hugepages_kobj;
3038         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3039 };
3040 static struct node_hstate node_hstates[MAX_NUMNODES];
3041
3042 /*
3043  * A subset of global hstate attributes for node devices
3044  */
3045 static struct attribute *per_node_hstate_attrs[] = {
3046         &nr_hugepages_attr.attr,
3047         &free_hugepages_attr.attr,
3048         &surplus_hugepages_attr.attr,
3049         NULL,
3050 };
3051
3052 static const struct attribute_group per_node_hstate_attr_group = {
3053         .attrs = per_node_hstate_attrs,
3054 };
3055
3056 /*
3057  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3058  * Returns node id via non-NULL nidp.
3059  */
3060 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3061 {
3062         int nid;
3063
3064         for (nid = 0; nid < nr_node_ids; nid++) {
3065                 struct node_hstate *nhs = &node_hstates[nid];
3066                 int i;
3067                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3068                         if (nhs->hstate_kobjs[i] == kobj) {
3069                                 if (nidp)
3070                                         *nidp = nid;
3071                                 return &hstates[i];
3072                         }
3073         }
3074
3075         BUG();
3076         return NULL;
3077 }
3078
3079 /*
3080  * Unregister hstate attributes from a single node device.
3081  * No-op if no hstate attributes attached.
3082  */
3083 static void hugetlb_unregister_node(struct node *node)
3084 {
3085         struct hstate *h;
3086         struct node_hstate *nhs = &node_hstates[node->dev.id];
3087
3088         if (!nhs->hugepages_kobj)
3089                 return;         /* no hstate attributes */
3090
3091         for_each_hstate(h) {
3092                 int idx = hstate_index(h);
3093                 if (nhs->hstate_kobjs[idx]) {
3094                         kobject_put(nhs->hstate_kobjs[idx]);
3095                         nhs->hstate_kobjs[idx] = NULL;
3096                 }
3097         }
3098
3099         kobject_put(nhs->hugepages_kobj);
3100         nhs->hugepages_kobj = NULL;
3101 }
3102
3103
3104 /*
3105  * Register hstate attributes for a single node device.
3106  * No-op if attributes already registered.
3107  */
3108 static void hugetlb_register_node(struct node *node)
3109 {
3110         struct hstate *h;
3111         struct node_hstate *nhs = &node_hstates[node->dev.id];
3112         int err;
3113
3114         if (nhs->hugepages_kobj)
3115                 return;         /* already allocated */
3116
3117         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3118                                                         &node->dev.kobj);
3119         if (!nhs->hugepages_kobj)
3120                 return;
3121
3122         for_each_hstate(h) {
3123                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3124                                                 nhs->hstate_kobjs,
3125                                                 &per_node_hstate_attr_group);
3126                 if (err) {
3127                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3128                                 h->name, node->dev.id);
3129                         hugetlb_unregister_node(node);
3130                         break;
3131                 }
3132         }
3133 }
3134
3135 /*
3136  * hugetlb init time:  register hstate attributes for all registered node
3137  * devices of nodes that have memory.  All on-line nodes should have
3138  * registered their associated device by this time.
3139  */
3140 static void __init hugetlb_register_all_nodes(void)
3141 {
3142         int nid;
3143
3144         for_each_node_state(nid, N_MEMORY) {
3145                 struct node *node = node_devices[nid];
3146                 if (node->dev.id == nid)
3147                         hugetlb_register_node(node);
3148         }
3149
3150         /*
3151          * Let the node device driver know we're here so it can
3152          * [un]register hstate attributes on node hotplug.
3153          */
3154         register_hugetlbfs_with_node(hugetlb_register_node,
3155                                      hugetlb_unregister_node);
3156 }
3157 #else   /* !CONFIG_NUMA */
3158
3159 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3160 {
3161         BUG();
3162         if (nidp)
3163                 *nidp = -1;
3164         return NULL;
3165 }
3166
3167 static void hugetlb_register_all_nodes(void) { }
3168
3169 #endif
3170
3171 static int __init hugetlb_init(void)
3172 {
3173         int i;
3174
3175         if (!hugepages_supported()) {
3176                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3177                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3178                 return 0;
3179         }
3180
3181         /*
3182          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3183          * architectures depend on setup being done here.
3184          */
3185         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3186         if (!parsed_default_hugepagesz) {
3187                 /*
3188                  * If we did not parse a default huge page size, set
3189                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3190                  * number of huge pages for this default size was implicitly
3191                  * specified, set that here as well.
3192                  * Note that the implicit setting will overwrite an explicit
3193                  * setting.  A warning will be printed in this case.
3194                  */
3195                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3196                 if (default_hstate_max_huge_pages) {
3197                         if (default_hstate.max_huge_pages) {
3198                                 char buf[32];
3199
3200                                 string_get_size(huge_page_size(&default_hstate),
3201                                         1, STRING_UNITS_2, buf, 32);
3202                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3203                                         default_hstate.max_huge_pages, buf);
3204                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3205                                         default_hstate_max_huge_pages);
3206                         }
3207                         default_hstate.max_huge_pages =
3208                                 default_hstate_max_huge_pages;
3209                 }
3210         }
3211
3212         hugetlb_cma_check();
3213         hugetlb_init_hstates();
3214         gather_bootmem_prealloc();
3215         report_hugepages();
3216
3217         hugetlb_sysfs_init();
3218         hugetlb_register_all_nodes();
3219         hugetlb_cgroup_file_init();
3220
3221 #ifdef CONFIG_SMP
3222         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3223 #else
3224         num_fault_mutexes = 1;
3225 #endif
3226         hugetlb_fault_mutex_table =
3227                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3228                               GFP_KERNEL);
3229         BUG_ON(!hugetlb_fault_mutex_table);
3230
3231         for (i = 0; i < num_fault_mutexes; i++)
3232                 mutex_init(&hugetlb_fault_mutex_table[i]);
3233         return 0;
3234 }
3235 subsys_initcall(hugetlb_init);
3236
3237 /* Overwritten by architectures with more huge page sizes */
3238 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3239 {
3240         return size == HPAGE_SIZE;
3241 }
3242
3243 void __init hugetlb_add_hstate(unsigned int order)
3244 {
3245         struct hstate *h;
3246         unsigned long i;
3247
3248         if (size_to_hstate(PAGE_SIZE << order)) {
3249                 return;
3250         }
3251         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3252         BUG_ON(order == 0);
3253         h = &hstates[hugetlb_max_hstate++];
3254         h->order = order;
3255         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3256         h->nr_huge_pages = 0;
3257         h->free_huge_pages = 0;
3258         for (i = 0; i < MAX_NUMNODES; ++i)
3259                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3260         INIT_LIST_HEAD(&h->hugepage_activelist);
3261         h->next_nid_to_alloc = first_memory_node;
3262         h->next_nid_to_free = first_memory_node;
3263         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3264                                         huge_page_size(h)/1024);
3265
3266         parsed_hstate = h;
3267 }
3268
3269 /*
3270  * hugepages command line processing
3271  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3272  * specification.  If not, ignore the hugepages value.  hugepages can also
3273  * be the first huge page command line  option in which case it implicitly
3274  * specifies the number of huge pages for the default size.
3275  */
3276 static int __init hugepages_setup(char *s)
3277 {
3278         unsigned long *mhp;
3279         static unsigned long *last_mhp;
3280
3281         if (!parsed_valid_hugepagesz) {
3282                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3283                 parsed_valid_hugepagesz = true;
3284                 return 0;
3285         }
3286
3287         /*
3288          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3289          * yet, so this hugepages= parameter goes to the "default hstate".
3290          * Otherwise, it goes with the previously parsed hugepagesz or
3291          * default_hugepagesz.
3292          */
3293         else if (!hugetlb_max_hstate)
3294                 mhp = &default_hstate_max_huge_pages;
3295         else
3296                 mhp = &parsed_hstate->max_huge_pages;
3297
3298         if (mhp == last_mhp) {
3299                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3300                 return 0;
3301         }
3302
3303         if (sscanf(s, "%lu", mhp) <= 0)
3304                 *mhp = 0;
3305
3306         /*
3307          * Global state is always initialized later in hugetlb_init.
3308          * But we need to allocate >= MAX_ORDER hstates here early to still
3309          * use the bootmem allocator.
3310          */
3311         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3312                 hugetlb_hstate_alloc_pages(parsed_hstate);
3313
3314         last_mhp = mhp;
3315
3316         return 1;
3317 }
3318 __setup("hugepages=", hugepages_setup);
3319
3320 /*
3321  * hugepagesz command line processing
3322  * A specific huge page size can only be specified once with hugepagesz.
3323  * hugepagesz is followed by hugepages on the command line.  The global
3324  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3325  * hugepagesz argument was valid.
3326  */
3327 static int __init hugepagesz_setup(char *s)
3328 {
3329         unsigned long size;
3330         struct hstate *h;
3331
3332         parsed_valid_hugepagesz = false;
3333         size = (unsigned long)memparse(s, NULL);
3334
3335         if (!arch_hugetlb_valid_size(size)) {
3336                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3337                 return 0;
3338         }
3339
3340         h = size_to_hstate(size);
3341         if (h) {
3342                 /*
3343                  * hstate for this size already exists.  This is normally
3344                  * an error, but is allowed if the existing hstate is the
3345                  * default hstate.  More specifically, it is only allowed if
3346                  * the number of huge pages for the default hstate was not
3347                  * previously specified.
3348                  */
3349                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3350                     default_hstate.max_huge_pages) {
3351                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3352                         return 0;
3353                 }
3354
3355                 /*
3356                  * No need to call hugetlb_add_hstate() as hstate already
3357                  * exists.  But, do set parsed_hstate so that a following
3358                  * hugepages= parameter will be applied to this hstate.
3359                  */
3360                 parsed_hstate = h;
3361                 parsed_valid_hugepagesz = true;
3362                 return 1;
3363         }
3364
3365         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3366         parsed_valid_hugepagesz = true;
3367         return 1;
3368 }
3369 __setup("hugepagesz=", hugepagesz_setup);
3370
3371 /*
3372  * default_hugepagesz command line input
3373  * Only one instance of default_hugepagesz allowed on command line.
3374  */
3375 static int __init default_hugepagesz_setup(char *s)
3376 {
3377         unsigned long size;
3378
3379         parsed_valid_hugepagesz = false;
3380         if (parsed_default_hugepagesz) {
3381                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3382                 return 0;
3383         }
3384
3385         size = (unsigned long)memparse(s, NULL);
3386
3387         if (!arch_hugetlb_valid_size(size)) {
3388                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3389                 return 0;
3390         }
3391
3392         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3393         parsed_valid_hugepagesz = true;
3394         parsed_default_hugepagesz = true;
3395         default_hstate_idx = hstate_index(size_to_hstate(size));
3396
3397         /*
3398          * The number of default huge pages (for this size) could have been
3399          * specified as the first hugetlb parameter: hugepages=X.  If so,
3400          * then default_hstate_max_huge_pages is set.  If the default huge
3401          * page size is gigantic (>= MAX_ORDER), then the pages must be
3402          * allocated here from bootmem allocator.
3403          */
3404         if (default_hstate_max_huge_pages) {
3405                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3406                 if (hstate_is_gigantic(&default_hstate))
3407                         hugetlb_hstate_alloc_pages(&default_hstate);
3408                 default_hstate_max_huge_pages = 0;
3409         }
3410
3411         return 1;
3412 }
3413 __setup("default_hugepagesz=", default_hugepagesz_setup);
3414
3415 static unsigned int allowed_mems_nr(struct hstate *h)
3416 {
3417         int node;
3418         unsigned int nr = 0;
3419         nodemask_t *mpol_allowed;
3420         unsigned int *array = h->free_huge_pages_node;
3421         gfp_t gfp_mask = htlb_alloc_mask(h);
3422
3423         mpol_allowed = policy_nodemask_current(gfp_mask);
3424
3425         for_each_node_mask(node, cpuset_current_mems_allowed) {
3426                 if (!mpol_allowed ||
3427                     (mpol_allowed && node_isset(node, *mpol_allowed)))
3428                         nr += array[node];
3429         }
3430
3431         return nr;
3432 }
3433
3434 #ifdef CONFIG_SYSCTL
3435 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3436                                           void *buffer, size_t *length,
3437                                           loff_t *ppos, unsigned long *out)
3438 {
3439         struct ctl_table dup_table;
3440
3441         /*
3442          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3443          * can duplicate the @table and alter the duplicate of it.
3444          */
3445         dup_table = *table;
3446         dup_table.data = out;
3447
3448         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3449 }
3450
3451 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3452                          struct ctl_table *table, int write,
3453                          void *buffer, size_t *length, loff_t *ppos)
3454 {
3455         struct hstate *h = &default_hstate;
3456         unsigned long tmp = h->max_huge_pages;
3457         int ret;
3458
3459         if (!hugepages_supported())
3460                 return -EOPNOTSUPP;
3461
3462         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3463                                              &tmp);
3464         if (ret)
3465                 goto out;
3466
3467         if (write)
3468                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3469                                                   NUMA_NO_NODE, tmp, *length);
3470 out:
3471         return ret;
3472 }
3473
3474 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3475                           void *buffer, size_t *length, loff_t *ppos)
3476 {
3477
3478         return hugetlb_sysctl_handler_common(false, table, write,
3479                                                         buffer, length, ppos);
3480 }
3481
3482 #ifdef CONFIG_NUMA
3483 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3484                           void *buffer, size_t *length, loff_t *ppos)
3485 {
3486         return hugetlb_sysctl_handler_common(true, table, write,
3487                                                         buffer, length, ppos);
3488 }
3489 #endif /* CONFIG_NUMA */
3490
3491 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3492                 void *buffer, size_t *length, loff_t *ppos)
3493 {
3494         struct hstate *h = &default_hstate;
3495         unsigned long tmp;
3496         int ret;
3497
3498         if (!hugepages_supported())
3499                 return -EOPNOTSUPP;
3500
3501         tmp = h->nr_overcommit_huge_pages;
3502
3503         if (write && hstate_is_gigantic(h))
3504                 return -EINVAL;
3505
3506         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3507                                              &tmp);
3508         if (ret)
3509                 goto out;
3510
3511         if (write) {
3512                 spin_lock(&hugetlb_lock);
3513                 h->nr_overcommit_huge_pages = tmp;
3514                 spin_unlock(&hugetlb_lock);
3515         }
3516 out:
3517         return ret;
3518 }
3519
3520 #endif /* CONFIG_SYSCTL */
3521
3522 void hugetlb_report_meminfo(struct seq_file *m)
3523 {
3524         struct hstate *h;
3525         unsigned long total = 0;
3526
3527         if (!hugepages_supported())
3528                 return;
3529
3530         for_each_hstate(h) {
3531                 unsigned long count = h->nr_huge_pages;
3532
3533                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3534
3535                 if (h == &default_hstate)
3536                         seq_printf(m,
3537                                    "HugePages_Total:   %5lu\n"
3538                                    "HugePages_Free:    %5lu\n"
3539                                    "HugePages_Rsvd:    %5lu\n"
3540                                    "HugePages_Surp:    %5lu\n"
3541                                    "Hugepagesize:   %8lu kB\n",
3542                                    count,
3543                                    h->free_huge_pages,
3544                                    h->resv_huge_pages,
3545                                    h->surplus_huge_pages,
3546                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3547         }
3548
3549         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3550 }
3551
3552 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3553 {
3554         struct hstate *h = &default_hstate;
3555
3556         if (!hugepages_supported())
3557                 return 0;
3558
3559         return sysfs_emit_at(buf, len,
3560                              "Node %d HugePages_Total: %5u\n"
3561                              "Node %d HugePages_Free:  %5u\n"
3562                              "Node %d HugePages_Surp:  %5u\n",
3563                              nid, h->nr_huge_pages_node[nid],
3564                              nid, h->free_huge_pages_node[nid],
3565                              nid, h->surplus_huge_pages_node[nid]);
3566 }
3567
3568 void hugetlb_show_meminfo(void)
3569 {
3570         struct hstate *h;
3571         int nid;
3572
3573         if (!hugepages_supported())
3574                 return;
3575
3576         for_each_node_state(nid, N_MEMORY)
3577                 for_each_hstate(h)
3578                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3579                                 nid,
3580                                 h->nr_huge_pages_node[nid],
3581                                 h->free_huge_pages_node[nid],
3582                                 h->surplus_huge_pages_node[nid],
3583                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3584 }
3585
3586 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3587 {
3588         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3589                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3590 }
3591
3592 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3593 unsigned long hugetlb_total_pages(void)
3594 {
3595         struct hstate *h;
3596         unsigned long nr_total_pages = 0;
3597
3598         for_each_hstate(h)
3599                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3600         return nr_total_pages;
3601 }
3602
3603 static int hugetlb_acct_memory(struct hstate *h, long delta)
3604 {
3605         int ret = -ENOMEM;
3606
3607         spin_lock(&hugetlb_lock);
3608         /*
3609          * When cpuset is configured, it breaks the strict hugetlb page
3610          * reservation as the accounting is done on a global variable. Such
3611          * reservation is completely rubbish in the presence of cpuset because
3612          * the reservation is not checked against page availability for the
3613          * current cpuset. Application can still potentially OOM'ed by kernel
3614          * with lack of free htlb page in cpuset that the task is in.
3615          * Attempt to enforce strict accounting with cpuset is almost
3616          * impossible (or too ugly) because cpuset is too fluid that
3617          * task or memory node can be dynamically moved between cpusets.
3618          *
3619          * The change of semantics for shared hugetlb mapping with cpuset is
3620          * undesirable. However, in order to preserve some of the semantics,
3621          * we fall back to check against current free page availability as
3622          * a best attempt and hopefully to minimize the impact of changing
3623          * semantics that cpuset has.
3624          *
3625          * Apart from cpuset, we also have memory policy mechanism that
3626          * also determines from which node the kernel will allocate memory
3627          * in a NUMA system. So similar to cpuset, we also should consider
3628          * the memory policy of the current task. Similar to the description
3629          * above.
3630          */
3631         if (delta > 0) {
3632                 if (gather_surplus_pages(h, delta) < 0)
3633                         goto out;
3634
3635                 if (delta > allowed_mems_nr(h)) {
3636                         return_unused_surplus_pages(h, delta);
3637                         goto out;
3638                 }
3639         }
3640
3641         ret = 0;
3642         if (delta < 0)
3643                 return_unused_surplus_pages(h, (unsigned long) -delta);
3644
3645 out:
3646         spin_unlock(&hugetlb_lock);
3647         return ret;
3648 }
3649
3650 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3651 {
3652         struct resv_map *resv = vma_resv_map(vma);
3653
3654         /*
3655          * This new VMA should share its siblings reservation map if present.
3656          * The VMA will only ever have a valid reservation map pointer where
3657          * it is being copied for another still existing VMA.  As that VMA
3658          * has a reference to the reservation map it cannot disappear until
3659          * after this open call completes.  It is therefore safe to take a
3660          * new reference here without additional locking.
3661          */
3662         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
3663                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
3664                 kref_get(&resv->refs);
3665         }
3666 }
3667
3668 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3669 {
3670         struct hstate *h = hstate_vma(vma);
3671         struct resv_map *resv = vma_resv_map(vma);
3672         struct hugepage_subpool *spool = subpool_vma(vma);
3673         unsigned long reserve, start, end;
3674         long gbl_reserve;
3675
3676         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3677                 return;
3678
3679         start = vma_hugecache_offset(h, vma, vma->vm_start);
3680         end = vma_hugecache_offset(h, vma, vma->vm_end);
3681
3682         reserve = (end - start) - region_count(resv, start, end);
3683         hugetlb_cgroup_uncharge_counter(resv, start, end);
3684         if (reserve) {
3685                 /*
3686                  * Decrement reserve counts.  The global reserve count may be
3687                  * adjusted if the subpool has a minimum size.
3688                  */
3689                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3690                 hugetlb_acct_memory(h, -gbl_reserve);
3691         }
3692
3693         kref_put(&resv->refs, resv_map_release);
3694 }
3695
3696 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3697 {
3698         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3699                 return -EINVAL;
3700         return 0;
3701 }
3702
3703 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3704 {
3705         struct hstate *hstate = hstate_vma(vma);
3706
3707         return 1UL << huge_page_shift(hstate);
3708 }
3709
3710 /*
3711  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3712  * handle_mm_fault() to try to instantiate regular-sized pages in the
3713  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3714  * this far.
3715  */
3716 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3717 {
3718         BUG();
3719         return 0;
3720 }
3721
3722 /*
3723  * When a new function is introduced to vm_operations_struct and added
3724  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3725  * This is because under System V memory model, mappings created via
3726  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3727  * their original vm_ops are overwritten with shm_vm_ops.
3728  */
3729 const struct vm_operations_struct hugetlb_vm_ops = {
3730         .fault = hugetlb_vm_op_fault,
3731         .open = hugetlb_vm_op_open,
3732         .close = hugetlb_vm_op_close,
3733         .split = hugetlb_vm_op_split,
3734         .pagesize = hugetlb_vm_op_pagesize,
3735 };
3736
3737 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3738                                 int writable)
3739 {
3740         pte_t entry;
3741
3742         if (writable) {
3743                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3744                                          vma->vm_page_prot)));
3745         } else {
3746                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3747                                            vma->vm_page_prot));
3748         }
3749         entry = pte_mkyoung(entry);
3750         entry = pte_mkhuge(entry);
3751         entry = arch_make_huge_pte(entry, vma, page, writable);
3752
3753         return entry;
3754 }
3755
3756 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3757                                    unsigned long address, pte_t *ptep)
3758 {
3759         pte_t entry;
3760
3761         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3762         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3763                 update_mmu_cache(vma, address, ptep);
3764 }
3765
3766 bool is_hugetlb_entry_migration(pte_t pte)
3767 {
3768         swp_entry_t swp;
3769
3770         if (huge_pte_none(pte) || pte_present(pte))
3771                 return false;
3772         swp = pte_to_swp_entry(pte);
3773         if (is_migration_entry(swp))
3774                 return true;
3775         else
3776                 return false;
3777 }
3778
3779 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3780 {
3781         swp_entry_t swp;
3782
3783         if (huge_pte_none(pte) || pte_present(pte))
3784                 return false;
3785         swp = pte_to_swp_entry(pte);
3786         if (is_hwpoison_entry(swp))
3787                 return true;
3788         else
3789                 return false;
3790 }
3791
3792 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3793                             struct vm_area_struct *vma)
3794 {
3795         pte_t *src_pte, *dst_pte, entry, dst_entry;
3796         struct page *ptepage;
3797         unsigned long addr;
3798         int cow;
3799         struct hstate *h = hstate_vma(vma);
3800         unsigned long sz = huge_page_size(h);
3801         struct address_space *mapping = vma->vm_file->f_mapping;
3802         struct mmu_notifier_range range;
3803         int ret = 0;
3804
3805         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3806
3807         if (cow) {
3808                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3809                                         vma->vm_start,
3810                                         vma->vm_end);
3811                 mmu_notifier_invalidate_range_start(&range);
3812         } else {
3813                 /*
3814                  * For shared mappings i_mmap_rwsem must be held to call
3815                  * huge_pte_alloc, otherwise the returned ptep could go
3816                  * away if part of a shared pmd and another thread calls
3817                  * huge_pmd_unshare.
3818                  */
3819                 i_mmap_lock_read(mapping);
3820         }
3821
3822         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3823                 spinlock_t *src_ptl, *dst_ptl;
3824                 src_pte = huge_pte_offset(src, addr, sz);
3825                 if (!src_pte)
3826                         continue;
3827                 dst_pte = huge_pte_alloc(dst, addr, sz);
3828                 if (!dst_pte) {
3829                         ret = -ENOMEM;
3830                         break;
3831                 }
3832
3833                 /*
3834                  * If the pagetables are shared don't copy or take references.
3835                  * dst_pte == src_pte is the common case of src/dest sharing.
3836                  *
3837                  * However, src could have 'unshared' and dst shares with
3838                  * another vma.  If dst_pte !none, this implies sharing.
3839                  * Check here before taking page table lock, and once again
3840                  * after taking the lock below.
3841                  */
3842                 dst_entry = huge_ptep_get(dst_pte);
3843                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3844                         continue;
3845
3846                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3847                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3848                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3849                 entry = huge_ptep_get(src_pte);
3850                 dst_entry = huge_ptep_get(dst_pte);
3851                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3852                         /*
3853                          * Skip if src entry none.  Also, skip in the
3854                          * unlikely case dst entry !none as this implies
3855                          * sharing with another vma.
3856                          */
3857                         ;
3858                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3859                                     is_hugetlb_entry_hwpoisoned(entry))) {
3860                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3861
3862                         if (is_write_migration_entry(swp_entry) && cow) {
3863                                 /*
3864                                  * COW mappings require pages in both
3865                                  * parent and child to be set to read.
3866                                  */
3867                                 make_migration_entry_read(&swp_entry);
3868                                 entry = swp_entry_to_pte(swp_entry);
3869                                 set_huge_swap_pte_at(src, addr, src_pte,
3870                                                      entry, sz);
3871                         }
3872                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3873                 } else {
3874                         if (cow) {
3875                                 /*
3876                                  * No need to notify as we are downgrading page
3877                                  * table protection not changing it to point
3878                                  * to a new page.
3879                                  *
3880                                  * See Documentation/vm/mmu_notifier.rst
3881                                  */
3882                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3883                         }
3884                         entry = huge_ptep_get(src_pte);
3885                         ptepage = pte_page(entry);
3886                         get_page(ptepage);
3887                         page_dup_rmap(ptepage, true);
3888                         set_huge_pte_at(dst, addr, dst_pte, entry);
3889                         hugetlb_count_add(pages_per_huge_page(h), dst);
3890                 }
3891                 spin_unlock(src_ptl);
3892                 spin_unlock(dst_ptl);
3893         }
3894
3895         if (cow)
3896                 mmu_notifier_invalidate_range_end(&range);
3897         else
3898                 i_mmap_unlock_read(mapping);
3899
3900         return ret;
3901 }
3902
3903 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3904                             unsigned long start, unsigned long end,
3905                             struct page *ref_page)
3906 {
3907         struct mm_struct *mm = vma->vm_mm;
3908         unsigned long address;
3909         pte_t *ptep;
3910         pte_t pte;
3911         spinlock_t *ptl;
3912         struct page *page;
3913         struct hstate *h = hstate_vma(vma);
3914         unsigned long sz = huge_page_size(h);
3915         struct mmu_notifier_range range;
3916         bool force_flush = false;
3917
3918         WARN_ON(!is_vm_hugetlb_page(vma));
3919         BUG_ON(start & ~huge_page_mask(h));
3920         BUG_ON(end & ~huge_page_mask(h));
3921
3922         /*
3923          * This is a hugetlb vma, all the pte entries should point
3924          * to huge page.
3925          */
3926         tlb_change_page_size(tlb, sz);
3927         tlb_start_vma(tlb, vma);
3928
3929         /*
3930          * If sharing possible, alert mmu notifiers of worst case.
3931          */
3932         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3933                                 end);
3934         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3935         mmu_notifier_invalidate_range_start(&range);
3936         address = start;
3937         for (; address < end; address += sz) {
3938                 ptep = huge_pte_offset(mm, address, sz);
3939                 if (!ptep)
3940                         continue;
3941
3942                 ptl = huge_pte_lock(h, mm, ptep);
3943                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3944                         spin_unlock(ptl);
3945                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
3946                         force_flush = true;
3947                         continue;
3948                 }
3949
3950                 pte = huge_ptep_get(ptep);
3951                 if (huge_pte_none(pte)) {
3952                         spin_unlock(ptl);
3953                         continue;
3954                 }
3955
3956                 /*
3957                  * Migrating hugepage or HWPoisoned hugepage is already
3958                  * unmapped and its refcount is dropped, so just clear pte here.
3959                  */
3960                 if (unlikely(!pte_present(pte))) {
3961                         huge_pte_clear(mm, address, ptep, sz);
3962                         spin_unlock(ptl);
3963                         continue;
3964                 }
3965
3966                 page = pte_page(pte);
3967                 /*
3968                  * If a reference page is supplied, it is because a specific
3969                  * page is being unmapped, not a range. Ensure the page we
3970                  * are about to unmap is the actual page of interest.
3971                  */
3972                 if (ref_page) {
3973                         if (page != ref_page) {
3974                                 spin_unlock(ptl);
3975                                 continue;
3976                         }
3977                         /*
3978                          * Mark the VMA as having unmapped its page so that
3979                          * future faults in this VMA will fail rather than
3980                          * looking like data was lost
3981                          */
3982                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3983                 }
3984
3985                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3986                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3987                 if (huge_pte_dirty(pte))
3988                         set_page_dirty(page);
3989
3990                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3991                 page_remove_rmap(page, true);
3992
3993                 spin_unlock(ptl);
3994                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3995                 /*
3996                  * Bail out after unmapping reference page if supplied
3997                  */
3998                 if (ref_page)
3999                         break;
4000         }
4001         mmu_notifier_invalidate_range_end(&range);
4002         tlb_end_vma(tlb, vma);
4003
4004         /*
4005          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4006          * could defer the flush until now, since by holding i_mmap_rwsem we
4007          * guaranteed that the last refernece would not be dropped. But we must
4008          * do the flushing before we return, as otherwise i_mmap_rwsem will be
4009          * dropped and the last reference to the shared PMDs page might be
4010          * dropped as well.
4011          *
4012          * In theory we could defer the freeing of the PMD pages as well, but
4013          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4014          * detect sharing, so we cannot defer the release of the page either.
4015          * Instead, do flush now.
4016          */
4017         if (force_flush)
4018                 tlb_flush_mmu_tlbonly(tlb);
4019 }
4020
4021 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4022                           struct vm_area_struct *vma, unsigned long start,
4023                           unsigned long end, struct page *ref_page)
4024 {
4025         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4026
4027         /*
4028          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4029          * test will fail on a vma being torn down, and not grab a page table
4030          * on its way out.  We're lucky that the flag has such an appropriate
4031          * name, and can in fact be safely cleared here. We could clear it
4032          * before the __unmap_hugepage_range above, but all that's necessary
4033          * is to clear it before releasing the i_mmap_rwsem. This works
4034          * because in the context this is called, the VMA is about to be
4035          * destroyed and the i_mmap_rwsem is held.
4036          */
4037         vma->vm_flags &= ~VM_MAYSHARE;
4038 }
4039
4040 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4041                           unsigned long end, struct page *ref_page)
4042 {
4043         struct mm_struct *mm;
4044         struct mmu_gather tlb;
4045         unsigned long tlb_start = start;
4046         unsigned long tlb_end = end;
4047
4048         /*
4049          * If shared PMDs were possibly used within this vma range, adjust
4050          * start/end for worst case tlb flushing.
4051          * Note that we can not be sure if PMDs are shared until we try to
4052          * unmap pages.  However, we want to make sure TLB flushing covers
4053          * the largest possible range.
4054          */
4055         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4056
4057         mm = vma->vm_mm;
4058
4059         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4060         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4061         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4062 }
4063
4064 /*
4065  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4066  * mappping it owns the reserve page for. The intention is to unmap the page
4067  * from other VMAs and let the children be SIGKILLed if they are faulting the
4068  * same region.
4069  */
4070 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4071                               struct page *page, unsigned long address)
4072 {
4073         struct hstate *h = hstate_vma(vma);
4074         struct vm_area_struct *iter_vma;
4075         struct address_space *mapping;
4076         pgoff_t pgoff;
4077
4078         /*
4079          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4080          * from page cache lookup which is in HPAGE_SIZE units.
4081          */
4082         address = address & huge_page_mask(h);
4083         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4084                         vma->vm_pgoff;
4085         mapping = vma->vm_file->f_mapping;
4086
4087         /*
4088          * Take the mapping lock for the duration of the table walk. As
4089          * this mapping should be shared between all the VMAs,
4090          * __unmap_hugepage_range() is called as the lock is already held
4091          */
4092         i_mmap_lock_write(mapping);
4093         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4094                 /* Do not unmap the current VMA */
4095                 if (iter_vma == vma)
4096                         continue;
4097
4098                 /*
4099                  * Shared VMAs have their own reserves and do not affect
4100                  * MAP_PRIVATE accounting but it is possible that a shared
4101                  * VMA is using the same page so check and skip such VMAs.
4102                  */
4103                 if (iter_vma->vm_flags & VM_MAYSHARE)
4104                         continue;
4105
4106                 /*
4107                  * Unmap the page from other VMAs without their own reserves.
4108                  * They get marked to be SIGKILLed if they fault in these
4109                  * areas. This is because a future no-page fault on this VMA
4110                  * could insert a zeroed page instead of the data existing
4111                  * from the time of fork. This would look like data corruption
4112                  */
4113                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4114                         unmap_hugepage_range(iter_vma, address,
4115                                              address + huge_page_size(h), page);
4116         }
4117         i_mmap_unlock_write(mapping);
4118 }
4119
4120 /*
4121  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4122  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4123  * cannot race with other handlers or page migration.
4124  * Keep the pte_same checks anyway to make transition from the mutex easier.
4125  */
4126 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4127                        unsigned long address, pte_t *ptep,
4128                        struct page *pagecache_page, spinlock_t *ptl)
4129 {
4130         pte_t pte;
4131         struct hstate *h = hstate_vma(vma);
4132         struct page *old_page, *new_page;
4133         int outside_reserve = 0;
4134         vm_fault_t ret = 0;
4135         unsigned long haddr = address & huge_page_mask(h);
4136         struct mmu_notifier_range range;
4137
4138         pte = huge_ptep_get(ptep);
4139         old_page = pte_page(pte);
4140
4141 retry_avoidcopy:
4142         /* If no-one else is actually using this page, avoid the copy
4143          * and just make the page writable */
4144         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4145                 page_move_anon_rmap(old_page, vma);
4146                 set_huge_ptep_writable(vma, haddr, ptep);
4147                 return 0;
4148         }
4149
4150         /*
4151          * If the process that created a MAP_PRIVATE mapping is about to
4152          * perform a COW due to a shared page count, attempt to satisfy
4153          * the allocation without using the existing reserves. The pagecache
4154          * page is used to determine if the reserve at this address was
4155          * consumed or not. If reserves were used, a partial faulted mapping
4156          * at the time of fork() could consume its reserves on COW instead
4157          * of the full address range.
4158          */
4159         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4160                         old_page != pagecache_page)
4161                 outside_reserve = 1;
4162
4163         get_page(old_page);
4164
4165         /*
4166          * Drop page table lock as buddy allocator may be called. It will
4167          * be acquired again before returning to the caller, as expected.
4168          */
4169         spin_unlock(ptl);
4170         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4171
4172         if (IS_ERR(new_page)) {
4173                 /*
4174                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4175                  * it is due to references held by a child and an insufficient
4176                  * huge page pool. To guarantee the original mappers
4177                  * reliability, unmap the page from child processes. The child
4178                  * may get SIGKILLed if it later faults.
4179                  */
4180                 if (outside_reserve) {
4181                         struct address_space *mapping = vma->vm_file->f_mapping;
4182                         pgoff_t idx;
4183                         u32 hash;
4184
4185                         put_page(old_page);
4186                         BUG_ON(huge_pte_none(pte));
4187                         /*
4188                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4189                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4190                          * in write mode.  Dropping i_mmap_rwsem in read mode
4191                          * here is OK as COW mappings do not interact with
4192                          * PMD sharing.
4193                          *
4194                          * Reacquire both after unmap operation.
4195                          */
4196                         idx = vma_hugecache_offset(h, vma, haddr);
4197                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4198                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4199                         i_mmap_unlock_read(mapping);
4200
4201                         unmap_ref_private(mm, vma, old_page, haddr);
4202
4203                         i_mmap_lock_read(mapping);
4204                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4205                         spin_lock(ptl);
4206                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4207                         if (likely(ptep &&
4208                                    pte_same(huge_ptep_get(ptep), pte)))
4209                                 goto retry_avoidcopy;
4210                         /*
4211                          * race occurs while re-acquiring page table
4212                          * lock, and our job is done.
4213                          */
4214                         return 0;
4215                 }
4216
4217                 ret = vmf_error(PTR_ERR(new_page));
4218                 goto out_release_old;
4219         }
4220
4221         /*
4222          * When the original hugepage is shared one, it does not have
4223          * anon_vma prepared.
4224          */
4225         if (unlikely(anon_vma_prepare(vma))) {
4226                 ret = VM_FAULT_OOM;
4227                 goto out_release_all;
4228         }
4229
4230         copy_user_huge_page(new_page, old_page, address, vma,
4231                             pages_per_huge_page(h));
4232         __SetPageUptodate(new_page);
4233
4234         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4235                                 haddr + huge_page_size(h));
4236         mmu_notifier_invalidate_range_start(&range);
4237
4238         /*
4239          * Retake the page table lock to check for racing updates
4240          * before the page tables are altered
4241          */
4242         spin_lock(ptl);
4243         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4244         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4245                 ClearPagePrivate(new_page);
4246
4247                 /* Break COW */
4248                 huge_ptep_clear_flush(vma, haddr, ptep);
4249                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4250                 set_huge_pte_at(mm, haddr, ptep,
4251                                 make_huge_pte(vma, new_page, 1));
4252                 page_remove_rmap(old_page, true);
4253                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4254                 set_page_huge_active(new_page);
4255                 /* Make the old page be freed below */
4256                 new_page = old_page;
4257         }
4258         spin_unlock(ptl);
4259         mmu_notifier_invalidate_range_end(&range);
4260 out_release_all:
4261         restore_reserve_on_error(h, vma, haddr, new_page);
4262         put_page(new_page);
4263 out_release_old:
4264         put_page(old_page);
4265
4266         spin_lock(ptl); /* Caller expects lock to be held */
4267         return ret;
4268 }
4269
4270 /* Return the pagecache page at a given address within a VMA */
4271 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4272                         struct vm_area_struct *vma, unsigned long address)
4273 {
4274         struct address_space *mapping;
4275         pgoff_t idx;
4276
4277         mapping = vma->vm_file->f_mapping;
4278         idx = vma_hugecache_offset(h, vma, address);
4279
4280         return find_lock_page(mapping, idx);
4281 }
4282
4283 /*
4284  * Return whether there is a pagecache page to back given address within VMA.
4285  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4286  */
4287 static bool hugetlbfs_pagecache_present(struct hstate *h,
4288                         struct vm_area_struct *vma, unsigned long address)
4289 {
4290         struct address_space *mapping;
4291         pgoff_t idx;
4292         struct page *page;
4293
4294         mapping = vma->vm_file->f_mapping;
4295         idx = vma_hugecache_offset(h, vma, address);
4296
4297         page = find_get_page(mapping, idx);
4298         if (page)
4299                 put_page(page);
4300         return page != NULL;
4301 }
4302
4303 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4304                            pgoff_t idx)
4305 {
4306         struct inode *inode = mapping->host;
4307         struct hstate *h = hstate_inode(inode);
4308         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4309
4310         if (err)
4311                 return err;
4312         ClearPagePrivate(page);
4313
4314         /*
4315          * set page dirty so that it will not be removed from cache/file
4316          * by non-hugetlbfs specific code paths.
4317          */
4318         set_page_dirty(page);
4319
4320         spin_lock(&inode->i_lock);
4321         inode->i_blocks += blocks_per_huge_page(h);
4322         spin_unlock(&inode->i_lock);
4323         return 0;
4324 }
4325
4326 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4327                         struct vm_area_struct *vma,
4328                         struct address_space *mapping, pgoff_t idx,
4329                         unsigned long address, pte_t *ptep, unsigned int flags)
4330 {
4331         struct hstate *h = hstate_vma(vma);
4332         vm_fault_t ret = VM_FAULT_SIGBUS;
4333         int anon_rmap = 0;
4334         unsigned long size;
4335         struct page *page;
4336         pte_t new_pte;
4337         spinlock_t *ptl;
4338         unsigned long haddr = address & huge_page_mask(h);
4339         bool new_page = false;
4340         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4341
4342         /*
4343          * Currently, we are forced to kill the process in the event the
4344          * original mapper has unmapped pages from the child due to a failed
4345          * COW. Warn that such a situation has occurred as it may not be obvious
4346          */
4347         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4348                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4349                            current->pid);
4350                 goto out;
4351         }
4352
4353         /*
4354          * We can not race with truncation due to holding i_mmap_rwsem.
4355          * i_size is modified when holding i_mmap_rwsem, so check here
4356          * once for faults beyond end of file.
4357          */
4358         size = i_size_read(mapping->host) >> huge_page_shift(h);
4359         if (idx >= size)
4360                 goto out;
4361
4362 retry:
4363         page = find_lock_page(mapping, idx);
4364         if (!page) {
4365                 /*
4366                  * Check for page in userfault range
4367                  */
4368                 if (userfaultfd_missing(vma)) {
4369                         struct vm_fault vmf = {
4370                                 .vma = vma,
4371                                 .address = haddr,
4372                                 .flags = flags,
4373                                 /*
4374                                  * Hard to debug if it ends up being
4375                                  * used by a callee that assumes
4376                                  * something about the other
4377                                  * uninitialized fields... same as in
4378                                  * memory.c
4379                                  */
4380                         };
4381
4382                         /*
4383                          * vma_lock and hugetlb_fault_mutex must be dropped
4384                          * before handling userfault. Also mmap_lock will
4385                          * be dropped during handling userfault, any vma
4386                          * operation should be careful from here.
4387                          */
4388                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4389                         i_mmap_unlock_read(mapping);
4390                         return handle_userfault(&vmf, VM_UFFD_MISSING);
4391                 }
4392
4393                 page = alloc_huge_page(vma, haddr, 0);
4394                 if (IS_ERR(page)) {
4395                         /*
4396                          * Returning error will result in faulting task being
4397                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4398                          * tasks from racing to fault in the same page which
4399                          * could result in false unable to allocate errors.
4400                          * Page migration does not take the fault mutex, but
4401                          * does a clear then write of pte's under page table
4402                          * lock.  Page fault code could race with migration,
4403                          * notice the clear pte and try to allocate a page
4404                          * here.  Before returning error, get ptl and make
4405                          * sure there really is no pte entry.
4406                          */
4407                         ptl = huge_pte_lock(h, mm, ptep);
4408                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4409                                 ret = 0;
4410                                 spin_unlock(ptl);
4411                                 goto out;
4412                         }
4413                         spin_unlock(ptl);
4414                         ret = vmf_error(PTR_ERR(page));
4415                         goto out;
4416                 }
4417                 clear_huge_page(page, address, pages_per_huge_page(h));
4418                 __SetPageUptodate(page);
4419                 new_page = true;
4420
4421                 if (vma->vm_flags & VM_MAYSHARE) {
4422                         int err = huge_add_to_page_cache(page, mapping, idx);
4423                         if (err) {
4424                                 put_page(page);
4425                                 if (err == -EEXIST)
4426                                         goto retry;
4427                                 goto out;
4428                         }
4429                 } else {
4430                         lock_page(page);
4431                         if (unlikely(anon_vma_prepare(vma))) {
4432                                 ret = VM_FAULT_OOM;
4433                                 goto backout_unlocked;
4434                         }
4435                         anon_rmap = 1;
4436                 }
4437         } else {
4438                 /*
4439                  * If memory error occurs between mmap() and fault, some process
4440                  * don't have hwpoisoned swap entry for errored virtual address.
4441                  * So we need to block hugepage fault by PG_hwpoison bit check.
4442                  */
4443                 if (unlikely(PageHWPoison(page))) {
4444                         ret = VM_FAULT_HWPOISON_LARGE |
4445                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4446                         goto backout_unlocked;
4447                 }
4448         }
4449
4450         /*
4451          * If we are going to COW a private mapping later, we examine the
4452          * pending reservations for this page now. This will ensure that
4453          * any allocations necessary to record that reservation occur outside
4454          * the spinlock.
4455          */
4456         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4457                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4458                         ret = VM_FAULT_OOM;
4459                         goto backout_unlocked;
4460                 }
4461                 /* Just decrements count, does not deallocate */
4462                 vma_end_reservation(h, vma, haddr);
4463         }
4464
4465         ptl = huge_pte_lock(h, mm, ptep);
4466         ret = 0;
4467         if (!huge_pte_none(huge_ptep_get(ptep)))
4468                 goto backout;
4469
4470         if (anon_rmap) {
4471                 ClearPagePrivate(page);
4472                 hugepage_add_new_anon_rmap(page, vma, haddr);
4473         } else
4474                 page_dup_rmap(page, true);
4475         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4476                                 && (vma->vm_flags & VM_SHARED)));
4477         set_huge_pte_at(mm, haddr, ptep, new_pte);
4478
4479         hugetlb_count_add(pages_per_huge_page(h), mm);
4480         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4481                 /* Optimization, do the COW without a second fault */
4482                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4483         }
4484
4485         spin_unlock(ptl);
4486
4487         /*
4488          * Only make newly allocated pages active.  Existing pages found
4489          * in the pagecache could be !page_huge_active() if they have been
4490          * isolated for migration.
4491          */
4492         if (new_page)
4493                 set_page_huge_active(page);
4494
4495         unlock_page(page);
4496 out:
4497         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4498         i_mmap_unlock_read(mapping);
4499         return ret;
4500
4501 backout:
4502         spin_unlock(ptl);
4503 backout_unlocked:
4504         unlock_page(page);
4505         restore_reserve_on_error(h, vma, haddr, page);
4506         put_page(page);
4507         goto out;
4508 }
4509
4510 #ifdef CONFIG_SMP
4511 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4512 {
4513         unsigned long key[2];
4514         u32 hash;
4515
4516         key[0] = (unsigned long) mapping;
4517         key[1] = idx;
4518
4519         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4520
4521         return hash & (num_fault_mutexes - 1);
4522 }
4523 #else
4524 /*
4525  * For uniprocesor systems we always use a single mutex, so just
4526  * return 0 and avoid the hashing overhead.
4527  */
4528 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4529 {
4530         return 0;
4531 }
4532 #endif
4533
4534 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4535                         unsigned long address, unsigned int flags)
4536 {
4537         pte_t *ptep, entry;
4538         spinlock_t *ptl;
4539         vm_fault_t ret;
4540         u32 hash;
4541         pgoff_t idx;
4542         struct page *page = NULL;
4543         struct page *pagecache_page = NULL;
4544         struct hstate *h = hstate_vma(vma);
4545         struct address_space *mapping;
4546         int need_wait_lock = 0;
4547         unsigned long haddr = address & huge_page_mask(h);
4548
4549         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4550         if (ptep) {
4551                 /*
4552                  * Since we hold no locks, ptep could be stale.  That is
4553                  * OK as we are only making decisions based on content and
4554                  * not actually modifying content here.
4555                  */
4556                 entry = huge_ptep_get(ptep);
4557                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4558                         migration_entry_wait_huge(vma, mm, ptep);
4559                         return 0;
4560                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4561                         return VM_FAULT_HWPOISON_LARGE |
4562                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4563         }
4564
4565         /*
4566          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4567          * until finished with ptep.  This serves two purposes:
4568          * 1) It prevents huge_pmd_unshare from being called elsewhere
4569          *    and making the ptep no longer valid.
4570          * 2) It synchronizes us with i_size modifications during truncation.
4571          *
4572          * ptep could have already be assigned via huge_pte_offset.  That
4573          * is OK, as huge_pte_alloc will return the same value unless
4574          * something has changed.
4575          */
4576         mapping = vma->vm_file->f_mapping;
4577         i_mmap_lock_read(mapping);
4578         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4579         if (!ptep) {
4580                 i_mmap_unlock_read(mapping);
4581                 return VM_FAULT_OOM;
4582         }
4583
4584         /*
4585          * Serialize hugepage allocation and instantiation, so that we don't
4586          * get spurious allocation failures if two CPUs race to instantiate
4587          * the same page in the page cache.
4588          */
4589         idx = vma_hugecache_offset(h, vma, haddr);
4590         hash = hugetlb_fault_mutex_hash(mapping, idx);
4591         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4592
4593         entry = huge_ptep_get(ptep);
4594         if (huge_pte_none(entry))
4595                 /*
4596                  * hugetlb_no_page will drop vma lock and hugetlb fault
4597                  * mutex internally, which make us return immediately.
4598                  */
4599                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4600
4601         ret = 0;
4602
4603         /*
4604          * entry could be a migration/hwpoison entry at this point, so this
4605          * check prevents the kernel from going below assuming that we have
4606          * an active hugepage in pagecache. This goto expects the 2nd page
4607          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4608          * properly handle it.
4609          */
4610         if (!pte_present(entry))
4611                 goto out_mutex;
4612
4613         /*
4614          * If we are going to COW the mapping later, we examine the pending
4615          * reservations for this page now. This will ensure that any
4616          * allocations necessary to record that reservation occur outside the
4617          * spinlock. For private mappings, we also lookup the pagecache
4618          * page now as it is used to determine if a reservation has been
4619          * consumed.
4620          */
4621         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4622                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4623                         ret = VM_FAULT_OOM;
4624                         goto out_mutex;
4625                 }
4626                 /* Just decrements count, does not deallocate */
4627                 vma_end_reservation(h, vma, haddr);
4628
4629                 if (!(vma->vm_flags & VM_MAYSHARE))
4630                         pagecache_page = hugetlbfs_pagecache_page(h,
4631                                                                 vma, haddr);
4632         }
4633
4634         ptl = huge_pte_lock(h, mm, ptep);
4635
4636         /* Check for a racing update before calling hugetlb_cow */
4637         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4638                 goto out_ptl;
4639
4640         /*
4641          * hugetlb_cow() requires page locks of pte_page(entry) and
4642          * pagecache_page, so here we need take the former one
4643          * when page != pagecache_page or !pagecache_page.
4644          */
4645         page = pte_page(entry);
4646         if (page != pagecache_page)
4647                 if (!trylock_page(page)) {
4648                         need_wait_lock = 1;
4649                         goto out_ptl;
4650                 }
4651
4652         get_page(page);
4653
4654         if (flags & FAULT_FLAG_WRITE) {
4655                 if (!huge_pte_write(entry)) {
4656                         ret = hugetlb_cow(mm, vma, address, ptep,
4657                                           pagecache_page, ptl);
4658                         goto out_put_page;
4659                 }
4660                 entry = huge_pte_mkdirty(entry);
4661         }
4662         entry = pte_mkyoung(entry);
4663         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4664                                                 flags & FAULT_FLAG_WRITE))
4665                 update_mmu_cache(vma, haddr, ptep);
4666 out_put_page:
4667         if (page != pagecache_page)
4668                 unlock_page(page);
4669         put_page(page);
4670 out_ptl:
4671         spin_unlock(ptl);
4672
4673         if (pagecache_page) {
4674                 unlock_page(pagecache_page);
4675                 put_page(pagecache_page);
4676         }
4677 out_mutex:
4678         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4679         i_mmap_unlock_read(mapping);
4680         /*
4681          * Generally it's safe to hold refcount during waiting page lock. But
4682          * here we just wait to defer the next page fault to avoid busy loop and
4683          * the page is not used after unlocked before returning from the current
4684          * page fault. So we are safe from accessing freed page, even if we wait
4685          * here without taking refcount.
4686          */
4687         if (need_wait_lock)
4688                 wait_on_page_locked(page);
4689         return ret;
4690 }
4691
4692 /*
4693  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4694  * modifications for huge pages.
4695  */
4696 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4697                             pte_t *dst_pte,
4698                             struct vm_area_struct *dst_vma,
4699                             unsigned long dst_addr,
4700                             unsigned long src_addr,
4701                             struct page **pagep)
4702 {
4703         struct address_space *mapping;
4704         pgoff_t idx;
4705         unsigned long size;
4706         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4707         struct hstate *h = hstate_vma(dst_vma);
4708         pte_t _dst_pte;
4709         spinlock_t *ptl;
4710         int ret;
4711         struct page *page;
4712
4713         if (!*pagep) {
4714                 /* If a page already exists, then it's UFFDIO_COPY for
4715                  * a non-missing case. Return -EEXIST.
4716                  */
4717                 if (vm_shared &&
4718                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4719                         ret = -EEXIST;
4720                         goto out;
4721                 }
4722
4723                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4724                 if (IS_ERR(page)) {
4725                         ret = -ENOMEM;
4726                         goto out;
4727                 }
4728
4729                 ret = copy_huge_page_from_user(page,
4730                                                 (const void __user *) src_addr,
4731                                                 pages_per_huge_page(h), false);
4732
4733                 /* fallback to copy_from_user outside mmap_lock */
4734                 if (unlikely(ret)) {
4735                         ret = -ENOENT;
4736                         *pagep = page;
4737                         /* don't free the page */
4738                         goto out;
4739                 }
4740         } else {
4741                 page = *pagep;
4742                 *pagep = NULL;
4743         }
4744
4745         /*
4746          * The memory barrier inside __SetPageUptodate makes sure that
4747          * preceding stores to the page contents become visible before
4748          * the set_pte_at() write.
4749          */
4750         __SetPageUptodate(page);
4751
4752         mapping = dst_vma->vm_file->f_mapping;
4753         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4754
4755         /*
4756          * If shared, add to page cache
4757          */
4758         if (vm_shared) {
4759                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4760                 ret = -EFAULT;
4761                 if (idx >= size)
4762                         goto out_release_nounlock;
4763
4764                 /*
4765                  * Serialization between remove_inode_hugepages() and
4766                  * huge_add_to_page_cache() below happens through the
4767                  * hugetlb_fault_mutex_table that here must be hold by
4768                  * the caller.
4769                  */
4770                 ret = huge_add_to_page_cache(page, mapping, idx);
4771                 if (ret)
4772                         goto out_release_nounlock;
4773         }
4774
4775         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4776         spin_lock(ptl);
4777
4778         /*
4779          * Recheck the i_size after holding PT lock to make sure not
4780          * to leave any page mapped (as page_mapped()) beyond the end
4781          * of the i_size (remove_inode_hugepages() is strict about
4782          * enforcing that). If we bail out here, we'll also leave a
4783          * page in the radix tree in the vm_shared case beyond the end
4784          * of the i_size, but remove_inode_hugepages() will take care
4785          * of it as soon as we drop the hugetlb_fault_mutex_table.
4786          */
4787         size = i_size_read(mapping->host) >> huge_page_shift(h);
4788         ret = -EFAULT;
4789         if (idx >= size)
4790                 goto out_release_unlock;
4791
4792         ret = -EEXIST;
4793         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4794                 goto out_release_unlock;
4795
4796         if (vm_shared) {
4797                 page_dup_rmap(page, true);
4798         } else {
4799                 ClearPagePrivate(page);
4800                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4801         }
4802
4803         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4804         if (dst_vma->vm_flags & VM_WRITE)
4805                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4806         _dst_pte = pte_mkyoung(_dst_pte);
4807
4808         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4809
4810         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4811                                         dst_vma->vm_flags & VM_WRITE);
4812         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4813
4814         /* No need to invalidate - it was non-present before */
4815         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4816
4817         spin_unlock(ptl);
4818         set_page_huge_active(page);
4819         if (vm_shared)
4820                 unlock_page(page);
4821         ret = 0;
4822 out:
4823         return ret;
4824 out_release_unlock:
4825         spin_unlock(ptl);
4826         if (vm_shared)
4827                 unlock_page(page);
4828 out_release_nounlock:
4829         put_page(page);
4830         goto out;
4831 }
4832
4833 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4834                          struct page **pages, struct vm_area_struct **vmas,
4835                          unsigned long *position, unsigned long *nr_pages,
4836                          long i, unsigned int flags, int *locked)
4837 {
4838         unsigned long pfn_offset;
4839         unsigned long vaddr = *position;
4840         unsigned long remainder = *nr_pages;
4841         struct hstate *h = hstate_vma(vma);
4842         int err = -EFAULT;
4843
4844         while (vaddr < vma->vm_end && remainder) {
4845                 pte_t *pte;
4846                 spinlock_t *ptl = NULL;
4847                 int absent;
4848                 struct page *page;
4849
4850                 /*
4851                  * If we have a pending SIGKILL, don't keep faulting pages and
4852                  * potentially allocating memory.
4853                  */
4854                 if (fatal_signal_pending(current)) {
4855                         remainder = 0;
4856                         break;
4857                 }
4858
4859                 /*
4860                  * Some archs (sparc64, sh*) have multiple pte_ts to
4861                  * each hugepage.  We have to make sure we get the
4862                  * first, for the page indexing below to work.
4863                  *
4864                  * Note that page table lock is not held when pte is null.
4865                  */
4866                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4867                                       huge_page_size(h));
4868                 if (pte)
4869                         ptl = huge_pte_lock(h, mm, pte);
4870                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4871
4872                 /*
4873                  * When coredumping, it suits get_dump_page if we just return
4874                  * an error where there's an empty slot with no huge pagecache
4875                  * to back it.  This way, we avoid allocating a hugepage, and
4876                  * the sparse dumpfile avoids allocating disk blocks, but its
4877                  * huge holes still show up with zeroes where they need to be.
4878                  */
4879                 if (absent && (flags & FOLL_DUMP) &&
4880                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4881                         if (pte)
4882                                 spin_unlock(ptl);
4883                         remainder = 0;
4884                         break;
4885                 }
4886
4887                 /*
4888                  * We need call hugetlb_fault for both hugepages under migration
4889                  * (in which case hugetlb_fault waits for the migration,) and
4890                  * hwpoisoned hugepages (in which case we need to prevent the
4891                  * caller from accessing to them.) In order to do this, we use
4892                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4893                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4894                  * both cases, and because we can't follow correct pages
4895                  * directly from any kind of swap entries.
4896                  */
4897                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4898                     ((flags & FOLL_WRITE) &&
4899                       !huge_pte_write(huge_ptep_get(pte)))) {
4900                         vm_fault_t ret;
4901                         unsigned int fault_flags = 0;
4902
4903                         if (pte)
4904                                 spin_unlock(ptl);
4905                         if (flags & FOLL_WRITE)
4906                                 fault_flags |= FAULT_FLAG_WRITE;
4907                         if (locked)
4908                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4909                                         FAULT_FLAG_KILLABLE;
4910                         if (flags & FOLL_NOWAIT)
4911                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4912                                         FAULT_FLAG_RETRY_NOWAIT;
4913                         if (flags & FOLL_TRIED) {
4914                                 /*
4915                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4916                                  * FAULT_FLAG_TRIED can co-exist
4917                                  */
4918                                 fault_flags |= FAULT_FLAG_TRIED;
4919                         }
4920                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4921                         if (ret & VM_FAULT_ERROR) {
4922                                 err = vm_fault_to_errno(ret, flags);
4923                                 remainder = 0;
4924                                 break;
4925                         }
4926                         if (ret & VM_FAULT_RETRY) {
4927                                 if (locked &&
4928                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4929                                         *locked = 0;
4930                                 *nr_pages = 0;
4931                                 /*
4932                                  * VM_FAULT_RETRY must not return an
4933                                  * error, it will return zero
4934                                  * instead.
4935                                  *
4936                                  * No need to update "position" as the
4937                                  * caller will not check it after
4938                                  * *nr_pages is set to 0.
4939                                  */
4940                                 return i;
4941                         }
4942                         continue;
4943                 }
4944
4945                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4946                 page = pte_page(huge_ptep_get(pte));
4947
4948                 /*
4949                  * If subpage information not requested, update counters
4950                  * and skip the same_page loop below.
4951                  */
4952                 if (!pages && !vmas && !pfn_offset &&
4953                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4954                     (remainder >= pages_per_huge_page(h))) {
4955                         vaddr += huge_page_size(h);
4956                         remainder -= pages_per_huge_page(h);
4957                         i += pages_per_huge_page(h);
4958                         spin_unlock(ptl);
4959                         continue;
4960                 }
4961
4962 same_page:
4963                 if (pages) {
4964                         pages[i] = mem_map_offset(page, pfn_offset);
4965                         /*
4966                          * try_grab_page() should always succeed here, because:
4967                          * a) we hold the ptl lock, and b) we've just checked
4968                          * that the huge page is present in the page tables. If
4969                          * the huge page is present, then the tail pages must
4970                          * also be present. The ptl prevents the head page and
4971                          * tail pages from being rearranged in any way. So this
4972                          * page must be available at this point, unless the page
4973                          * refcount overflowed:
4974                          */
4975                         if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4976                                 spin_unlock(ptl);
4977                                 remainder = 0;
4978                                 err = -ENOMEM;
4979                                 break;
4980                         }
4981                 }
4982
4983                 if (vmas)
4984                         vmas[i] = vma;
4985
4986                 vaddr += PAGE_SIZE;
4987                 ++pfn_offset;
4988                 --remainder;
4989                 ++i;
4990                 if (vaddr < vma->vm_end && remainder &&
4991                                 pfn_offset < pages_per_huge_page(h)) {
4992                         /*
4993                          * We use pfn_offset to avoid touching the pageframes
4994                          * of this compound page.
4995                          */
4996                         goto same_page;
4997                 }
4998                 spin_unlock(ptl);
4999         }
5000         *nr_pages = remainder;
5001         /*
5002          * setting position is actually required only if remainder is
5003          * not zero but it's faster not to add a "if (remainder)"
5004          * branch.
5005          */
5006         *position = vaddr;
5007
5008         return i ? i : err;
5009 }
5010
5011 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
5012 /*
5013  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
5014  * implement this.
5015  */
5016 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
5017 #endif
5018
5019 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5020                 unsigned long address, unsigned long end, pgprot_t newprot)
5021 {
5022         struct mm_struct *mm = vma->vm_mm;
5023         unsigned long start = address;
5024         pte_t *ptep;
5025         pte_t pte;
5026         struct hstate *h = hstate_vma(vma);
5027         unsigned long pages = 0;
5028         bool shared_pmd = false;
5029         struct mmu_notifier_range range;
5030
5031         /*
5032          * In the case of shared PMDs, the area to flush could be beyond
5033          * start/end.  Set range.start/range.end to cover the maximum possible
5034          * range if PMD sharing is possible.
5035          */
5036         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5037                                 0, vma, mm, start, end);
5038         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5039
5040         BUG_ON(address >= end);
5041         flush_cache_range(vma, range.start, range.end);
5042
5043         mmu_notifier_invalidate_range_start(&range);
5044         i_mmap_lock_write(vma->vm_file->f_mapping);
5045         for (; address < end; address += huge_page_size(h)) {
5046                 spinlock_t *ptl;
5047                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5048                 if (!ptep)
5049                         continue;
5050                 ptl = huge_pte_lock(h, mm, ptep);
5051                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5052                         pages++;
5053                         spin_unlock(ptl);
5054                         shared_pmd = true;
5055                         continue;
5056                 }
5057                 pte = huge_ptep_get(ptep);
5058                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5059                         spin_unlock(ptl);
5060                         continue;
5061                 }
5062                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5063                         swp_entry_t entry = pte_to_swp_entry(pte);
5064
5065                         if (is_write_migration_entry(entry)) {
5066                                 pte_t newpte;
5067
5068                                 make_migration_entry_read(&entry);
5069                                 newpte = swp_entry_to_pte(entry);
5070                                 set_huge_swap_pte_at(mm, address, ptep,
5071                                                      newpte, huge_page_size(h));
5072                                 pages++;
5073                         }
5074                         spin_unlock(ptl);
5075                         continue;
5076                 }
5077                 if (!huge_pte_none(pte)) {
5078                         pte_t old_pte;
5079
5080                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5081                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5082                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5083                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5084                         pages++;
5085                 }
5086                 spin_unlock(ptl);
5087         }
5088         /*
5089          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5090          * may have cleared our pud entry and done put_page on the page table:
5091          * once we release i_mmap_rwsem, another task can do the final put_page
5092          * and that page table be reused and filled with junk.  If we actually
5093          * did unshare a page of pmds, flush the range corresponding to the pud.
5094          */
5095         if (shared_pmd)
5096                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5097         else
5098                 flush_hugetlb_tlb_range(vma, start, end);
5099         /*
5100          * No need to call mmu_notifier_invalidate_range() we are downgrading
5101          * page table protection not changing it to point to a new page.
5102          *
5103          * See Documentation/vm/mmu_notifier.rst
5104          */
5105         i_mmap_unlock_write(vma->vm_file->f_mapping);
5106         mmu_notifier_invalidate_range_end(&range);
5107
5108         return pages << h->order;
5109 }
5110
5111 /* Return true if reservation was successful, false otherwise.  */
5112 bool hugetlb_reserve_pages(struct inode *inode,
5113                                         long from, long to,
5114                                         struct vm_area_struct *vma,
5115                                         vm_flags_t vm_flags)
5116 {
5117         long chg, add = -1;
5118         struct hstate *h = hstate_inode(inode);
5119         struct hugepage_subpool *spool = subpool_inode(inode);
5120         struct resv_map *resv_map;
5121         struct hugetlb_cgroup *h_cg = NULL;
5122         long gbl_reserve, regions_needed = 0;
5123
5124         /* This should never happen */
5125         if (from > to) {
5126                 VM_WARN(1, "%s called with a negative range\n", __func__);
5127                 return false;
5128         }
5129
5130         /*
5131          * Only apply hugepage reservation if asked. At fault time, an
5132          * attempt will be made for VM_NORESERVE to allocate a page
5133          * without using reserves
5134          */
5135         if (vm_flags & VM_NORESERVE)
5136                 return true;
5137
5138         /*
5139          * Shared mappings base their reservation on the number of pages that
5140          * are already allocated on behalf of the file. Private mappings need
5141          * to reserve the full area even if read-only as mprotect() may be
5142          * called to make the mapping read-write. Assume !vma is a shm mapping
5143          */
5144         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5145                 /*
5146                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5147                  * called for inodes for which resv_maps were created (see
5148                  * hugetlbfs_get_inode).
5149                  */
5150                 resv_map = inode_resv_map(inode);
5151
5152                 chg = region_chg(resv_map, from, to, &regions_needed);
5153
5154         } else {
5155                 /* Private mapping. */
5156                 resv_map = resv_map_alloc();
5157                 if (!resv_map)
5158                         return false;
5159
5160                 chg = to - from;
5161
5162                 set_vma_resv_map(vma, resv_map);
5163                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5164         }
5165
5166         if (chg < 0)
5167                 goto out_err;
5168
5169         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5170                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5171                 goto out_err;
5172
5173         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5174                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5175                  * of the resv_map.
5176                  */
5177                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5178         }
5179
5180         /*
5181          * There must be enough pages in the subpool for the mapping. If
5182          * the subpool has a minimum size, there may be some global
5183          * reservations already in place (gbl_reserve).
5184          */
5185         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5186         if (gbl_reserve < 0)
5187                 goto out_uncharge_cgroup;
5188
5189         /*
5190          * Check enough hugepages are available for the reservation.
5191          * Hand the pages back to the subpool if there are not
5192          */
5193         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5194                 goto out_put_pages;
5195
5196         /*
5197          * Account for the reservations made. Shared mappings record regions
5198          * that have reservations as they are shared by multiple VMAs.
5199          * When the last VMA disappears, the region map says how much
5200          * the reservation was and the page cache tells how much of
5201          * the reservation was consumed. Private mappings are per-VMA and
5202          * only the consumed reservations are tracked. When the VMA
5203          * disappears, the original reservation is the VMA size and the
5204          * consumed reservations are stored in the map. Hence, nothing
5205          * else has to be done for private mappings here
5206          */
5207         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5208                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5209
5210                 if (unlikely(add < 0)) {
5211                         hugetlb_acct_memory(h, -gbl_reserve);
5212                         goto out_put_pages;
5213                 } else if (unlikely(chg > add)) {
5214                         /*
5215                          * pages in this range were added to the reserve
5216                          * map between region_chg and region_add.  This
5217                          * indicates a race with alloc_huge_page.  Adjust
5218                          * the subpool and reserve counts modified above
5219                          * based on the difference.
5220                          */
5221                         long rsv_adjust;
5222
5223                         /*
5224                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5225                          * reference to h_cg->css. See comment below for detail.
5226                          */
5227                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5228                                 hstate_index(h),
5229                                 (chg - add) * pages_per_huge_page(h), h_cg);
5230
5231                         rsv_adjust = hugepage_subpool_put_pages(spool,
5232                                                                 chg - add);
5233                         hugetlb_acct_memory(h, -rsv_adjust);
5234                 } else if (h_cg) {
5235                         /*
5236                          * The file_regions will hold their own reference to
5237                          * h_cg->css. So we should release the reference held
5238                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5239                          * done.
5240                          */
5241                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5242                 }
5243         }
5244         return true;
5245
5246 out_put_pages:
5247         /* put back original number of pages, chg */
5248         (void)hugepage_subpool_put_pages(spool, chg);
5249 out_uncharge_cgroup:
5250         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5251                                             chg * pages_per_huge_page(h), h_cg);
5252 out_err:
5253         if (!vma || vma->vm_flags & VM_MAYSHARE)
5254                 /* Only call region_abort if the region_chg succeeded but the
5255                  * region_add failed or didn't run.
5256                  */
5257                 if (chg >= 0 && add < 0)
5258                         region_abort(resv_map, from, to, regions_needed);
5259         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5260                 kref_put(&resv_map->refs, resv_map_release);
5261         return false;
5262 }
5263
5264 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5265                                                                 long freed)
5266 {
5267         struct hstate *h = hstate_inode(inode);
5268         struct resv_map *resv_map = inode_resv_map(inode);
5269         long chg = 0;
5270         struct hugepage_subpool *spool = subpool_inode(inode);
5271         long gbl_reserve;
5272
5273         /*
5274          * Since this routine can be called in the evict inode path for all
5275          * hugetlbfs inodes, resv_map could be NULL.
5276          */
5277         if (resv_map) {
5278                 chg = region_del(resv_map, start, end);
5279                 /*
5280                  * region_del() can fail in the rare case where a region
5281                  * must be split and another region descriptor can not be
5282                  * allocated.  If end == LONG_MAX, it will not fail.
5283                  */
5284                 if (chg < 0)
5285                         return chg;
5286         }
5287
5288         spin_lock(&inode->i_lock);
5289         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5290         spin_unlock(&inode->i_lock);
5291
5292         /*
5293          * If the subpool has a minimum size, the number of global
5294          * reservations to be released may be adjusted.
5295          */
5296         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5297         hugetlb_acct_memory(h, -gbl_reserve);
5298
5299         return 0;
5300 }
5301
5302 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5303 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5304                                 struct vm_area_struct *vma,
5305                                 unsigned long addr, pgoff_t idx)
5306 {
5307         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5308                                 svma->vm_start;
5309         unsigned long sbase = saddr & PUD_MASK;
5310         unsigned long s_end = sbase + PUD_SIZE;
5311
5312         /* Allow segments to share if only one is marked locked */
5313         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5314         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5315
5316         /*
5317          * match the virtual addresses, permission and the alignment of the
5318          * page table page.
5319          */
5320         if (pmd_index(addr) != pmd_index(saddr) ||
5321             vm_flags != svm_flags ||
5322             sbase < svma->vm_start || svma->vm_end < s_end)
5323                 return 0;
5324
5325         return saddr;
5326 }
5327
5328 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5329 {
5330         unsigned long base = addr & PUD_MASK;
5331         unsigned long end = base + PUD_SIZE;
5332
5333         /*
5334          * check on proper vm_flags and page table alignment
5335          */
5336         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5337                 return true;
5338         return false;
5339 }
5340
5341 /*
5342  * Determine if start,end range within vma could be mapped by shared pmd.
5343  * If yes, adjust start and end to cover range associated with possible
5344  * shared pmd mappings.
5345  */
5346 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5347                                 unsigned long *start, unsigned long *end)
5348 {
5349         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5350                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5351
5352         /*
5353          * vma need span at least one aligned PUD size and the start,end range
5354          * must at least partialy within it.
5355          */
5356         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5357                 (*end <= v_start) || (*start >= v_end))
5358                 return;
5359
5360         /* Extend the range to be PUD aligned for a worst case scenario */
5361         if (*start > v_start)
5362                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5363
5364         if (*end < v_end)
5365                 *end = ALIGN(*end, PUD_SIZE);
5366 }
5367
5368 /*
5369  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5370  * and returns the corresponding pte. While this is not necessary for the
5371  * !shared pmd case because we can allocate the pmd later as well, it makes the
5372  * code much cleaner.
5373  *
5374  * This routine must be called with i_mmap_rwsem held in at least read mode if
5375  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5376  * table entries associated with the address space.  This is important as we
5377  * are setting up sharing based on existing page table entries (mappings).
5378  *
5379  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5380  * huge_pte_alloc know that sharing is not possible and do not take
5381  * i_mmap_rwsem as a performance optimization.  This is handled by the
5382  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5383  * only required for subsequent processing.
5384  */
5385 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5386 {
5387         struct vm_area_struct *vma = find_vma(mm, addr);
5388         struct address_space *mapping = vma->vm_file->f_mapping;
5389         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5390                         vma->vm_pgoff;
5391         struct vm_area_struct *svma;
5392         unsigned long saddr;
5393         pte_t *spte = NULL;
5394         pte_t *pte;
5395         spinlock_t *ptl;
5396
5397         if (!vma_shareable(vma, addr))
5398                 return (pte_t *)pmd_alloc(mm, pud, addr);
5399
5400         i_mmap_assert_locked(mapping);
5401         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5402                 if (svma == vma)
5403                         continue;
5404
5405                 saddr = page_table_shareable(svma, vma, addr, idx);
5406                 if (saddr) {
5407                         spte = huge_pte_offset(svma->vm_mm, saddr,
5408                                                vma_mmu_pagesize(svma));
5409                         if (spte) {
5410                                 get_page(virt_to_page(spte));
5411                                 break;
5412                         }
5413                 }
5414         }
5415
5416         if (!spte)
5417                 goto out;
5418
5419         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5420         if (pud_none(*pud)) {
5421                 pud_populate(mm, pud,
5422                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5423                 mm_inc_nr_pmds(mm);
5424         } else {
5425                 put_page(virt_to_page(spte));
5426         }
5427         spin_unlock(ptl);
5428 out:
5429         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5430         return pte;
5431 }
5432
5433 /*
5434  * unmap huge page backed by shared pte.
5435  *
5436  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5437  * indicated by page_count > 1, unmap is achieved by clearing pud and
5438  * decrementing the ref count. If count == 1, the pte page is not shared.
5439  *
5440  * Called with page table lock held and i_mmap_rwsem held in write mode.
5441  *
5442  * returns: 1 successfully unmapped a shared pte page
5443  *          0 the underlying pte page is not shared, or it is the last user
5444  */
5445 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5446                                         unsigned long *addr, pte_t *ptep)
5447 {
5448         pgd_t *pgd = pgd_offset(mm, *addr);
5449         p4d_t *p4d = p4d_offset(pgd, *addr);
5450         pud_t *pud = pud_offset(p4d, *addr);
5451
5452         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5453         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5454         if (page_count(virt_to_page(ptep)) == 1)
5455                 return 0;
5456
5457         pud_clear(pud);
5458         put_page(virt_to_page(ptep));
5459         mm_dec_nr_pmds(mm);
5460         /*
5461          * This update of passed address optimizes loops sequentially
5462          * processing addresses in increments of huge page size (PMD_SIZE
5463          * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
5464          * Update address to the 'last page' in the cleared area so that
5465          * calling loop can move to first page past this area.
5466          */
5467         *addr |= PUD_SIZE - PMD_SIZE;
5468         return 1;
5469 }
5470 #define want_pmd_share()        (1)
5471 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5472 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5473 {
5474         return NULL;
5475 }
5476
5477 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5478                                 unsigned long *addr, pte_t *ptep)
5479 {
5480         return 0;
5481 }
5482
5483 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5484                                 unsigned long *start, unsigned long *end)
5485 {
5486 }
5487 #define want_pmd_share()        (0)
5488 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5489
5490 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5491 pte_t *huge_pte_alloc(struct mm_struct *mm,
5492                         unsigned long addr, unsigned long sz)
5493 {
5494         pgd_t *pgd;
5495         p4d_t *p4d;
5496         pud_t *pud;
5497         pte_t *pte = NULL;
5498
5499         pgd = pgd_offset(mm, addr);
5500         p4d = p4d_alloc(mm, pgd, addr);
5501         if (!p4d)
5502                 return NULL;
5503         pud = pud_alloc(mm, p4d, addr);
5504         if (pud) {
5505                 if (sz == PUD_SIZE) {
5506                         pte = (pte_t *)pud;
5507                 } else {
5508                         BUG_ON(sz != PMD_SIZE);
5509                         if (want_pmd_share() && pud_none(*pud))
5510                                 pte = huge_pmd_share(mm, addr, pud);
5511                         else
5512                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5513                 }
5514         }
5515         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5516
5517         return pte;
5518 }
5519
5520 /*
5521  * huge_pte_offset() - Walk the page table to resolve the hugepage
5522  * entry at address @addr
5523  *
5524  * Return: Pointer to page table entry (PUD or PMD) for
5525  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5526  * size @sz doesn't match the hugepage size at this level of the page
5527  * table.
5528  */
5529 pte_t *huge_pte_offset(struct mm_struct *mm,
5530                        unsigned long addr, unsigned long sz)
5531 {
5532         pgd_t *pgd;
5533         p4d_t *p4d;
5534         pud_t *pud;
5535         pmd_t *pmd;
5536
5537         pgd = pgd_offset(mm, addr);
5538         if (!pgd_present(*pgd))
5539                 return NULL;
5540         p4d = p4d_offset(pgd, addr);
5541         if (!p4d_present(*p4d))
5542                 return NULL;
5543
5544         pud = pud_offset(p4d, addr);
5545         if (sz == PUD_SIZE)
5546                 /* must be pud huge, non-present or none */
5547                 return (pte_t *)pud;
5548         if (!pud_present(*pud))
5549                 return NULL;
5550         /* must have a valid entry and size to go further */
5551
5552         pmd = pmd_offset(pud, addr);
5553         /* must be pmd huge, non-present or none */
5554         return (pte_t *)pmd;
5555 }
5556
5557 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5558
5559 /*
5560  * These functions are overwritable if your architecture needs its own
5561  * behavior.
5562  */
5563 struct page * __weak
5564 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5565                               int write)
5566 {
5567         return ERR_PTR(-EINVAL);
5568 }
5569
5570 struct page * __weak
5571 follow_huge_pd(struct vm_area_struct *vma,
5572                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5573 {
5574         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5575         return NULL;
5576 }
5577
5578 struct page * __weak
5579 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
5580 {
5581         struct hstate *h = hstate_vma(vma);
5582         struct mm_struct *mm = vma->vm_mm;
5583         struct page *page = NULL;
5584         spinlock_t *ptl;
5585         pte_t *ptep, pte;
5586
5587         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5588         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5589                          (FOLL_PIN | FOLL_GET)))
5590                 return NULL;
5591
5592 retry:
5593         ptep = huge_pte_offset(mm, address, huge_page_size(h));
5594         if (!ptep)
5595                 return NULL;
5596
5597         ptl = huge_pte_lock(h, mm, ptep);
5598         pte = huge_ptep_get(ptep);
5599         if (pte_present(pte)) {
5600                 page = pte_page(pte) +
5601                         ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
5602                 /*
5603                  * try_grab_page() should always succeed here, because: a) we
5604                  * hold the pmd (ptl) lock, and b) we've just checked that the
5605                  * huge pmd (head) page is present in the page tables. The ptl
5606                  * prevents the head page and tail pages from being rearranged
5607                  * in any way. So this page must be available at this point,
5608                  * unless the page refcount overflowed:
5609                  */
5610                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5611                         page = NULL;
5612                         goto out;
5613                 }
5614         } else {
5615                 if (is_hugetlb_entry_migration(pte)) {
5616                         spin_unlock(ptl);
5617                         __migration_entry_wait(mm, ptep, ptl);
5618                         goto retry;
5619                 }
5620                 /*
5621                  * hwpoisoned entry is treated as no_page_table in
5622                  * follow_page_mask().
5623                  */
5624         }
5625 out:
5626         spin_unlock(ptl);
5627         return page;
5628 }
5629
5630 struct page * __weak
5631 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5632                 pud_t *pud, int flags)
5633 {
5634         if (flags & (FOLL_GET | FOLL_PIN))
5635                 return NULL;
5636
5637         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5638 }
5639
5640 struct page * __weak
5641 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5642 {
5643         if (flags & (FOLL_GET | FOLL_PIN))
5644                 return NULL;
5645
5646         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5647 }
5648
5649 int isolate_hugetlb(struct page *page, struct list_head *list)
5650 {
5651         int ret = 0;
5652
5653         spin_lock(&hugetlb_lock);
5654         if (!PageHeadHuge(page) || !page_huge_active(page) ||
5655             !get_page_unless_zero(page)) {
5656                 ret = -EBUSY;
5657                 goto unlock;
5658         }
5659         clear_page_huge_active(page);
5660         list_move_tail(&page->lru, list);
5661 unlock:
5662         spin_unlock(&hugetlb_lock);
5663         return ret;
5664 }
5665
5666 void putback_active_hugepage(struct page *page)
5667 {
5668         VM_BUG_ON_PAGE(!PageHead(page), page);
5669         spin_lock(&hugetlb_lock);
5670         set_page_huge_active(page);
5671         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5672         spin_unlock(&hugetlb_lock);
5673         put_page(page);
5674 }
5675
5676 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5677 {
5678         struct hstate *h = page_hstate(oldpage);
5679
5680         hugetlb_cgroup_migrate(oldpage, newpage);
5681         set_page_owner_migrate_reason(newpage, reason);
5682
5683         /*
5684          * transfer temporary state of the new huge page. This is
5685          * reverse to other transitions because the newpage is going to
5686          * be final while the old one will be freed so it takes over
5687          * the temporary status.
5688          *
5689          * Also note that we have to transfer the per-node surplus state
5690          * here as well otherwise the global surplus count will not match
5691          * the per-node's.
5692          */
5693         if (PageHugeTemporary(newpage)) {
5694                 int old_nid = page_to_nid(oldpage);
5695                 int new_nid = page_to_nid(newpage);
5696
5697                 SetPageHugeTemporary(oldpage);
5698                 ClearPageHugeTemporary(newpage);
5699
5700                 spin_lock(&hugetlb_lock);
5701                 if (h->surplus_huge_pages_node[old_nid]) {
5702                         h->surplus_huge_pages_node[old_nid]--;
5703                         h->surplus_huge_pages_node[new_nid]++;
5704                 }
5705                 spin_unlock(&hugetlb_lock);
5706         }
5707 }
5708
5709 #ifdef CONFIG_CMA
5710 static bool cma_reserve_called __initdata;
5711
5712 static int __init cmdline_parse_hugetlb_cma(char *p)
5713 {
5714         hugetlb_cma_size = memparse(p, &p);
5715         return 0;
5716 }
5717
5718 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5719
5720 void __init hugetlb_cma_reserve(int order)
5721 {
5722         unsigned long size, reserved, per_node;
5723         int nid;
5724
5725         cma_reserve_called = true;
5726
5727         if (!hugetlb_cma_size)
5728                 return;
5729
5730         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5731                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5732                         (PAGE_SIZE << order) / SZ_1M);
5733                 return;
5734         }
5735
5736         /*
5737          * If 3 GB area is requested on a machine with 4 numa nodes,
5738          * let's allocate 1 GB on first three nodes and ignore the last one.
5739          */
5740         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5741         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5742                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5743
5744         reserved = 0;
5745         for_each_node_state(nid, N_ONLINE) {
5746                 int res;
5747                 char name[CMA_MAX_NAME];
5748
5749                 size = min(per_node, hugetlb_cma_size - reserved);
5750                 size = round_up(size, PAGE_SIZE << order);
5751
5752                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5753                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5754                                                  0, false, name,
5755                                                  &hugetlb_cma[nid], nid);
5756                 if (res) {
5757                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5758                                 res, nid);
5759                         continue;
5760                 }
5761
5762                 reserved += size;
5763                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5764                         size / SZ_1M, nid);
5765
5766                 if (reserved >= hugetlb_cma_size)
5767                         break;
5768         }
5769 }
5770
5771 void __init hugetlb_cma_check(void)
5772 {
5773         if (!hugetlb_cma_size || cma_reserve_called)
5774                 return;
5775
5776         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5777 }
5778
5779 #endif /* CONFIG_CMA */