2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/page_owner.h>
39 #include <asm/pgalloc.h>
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
61 static struct shrinker deferred_split_shrinker;
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65 unsigned long huge_zero_pfn __read_mostly = ~0UL;
67 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
69 if (vma_is_anonymous(vma))
70 return __transparent_hugepage_enabled(vma);
71 if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
72 return __transparent_hugepage_enabled(vma);
77 static struct page *get_huge_zero_page(void)
79 struct page *zero_page;
81 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
82 return READ_ONCE(huge_zero_page);
84 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
87 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
90 count_vm_event(THP_ZERO_PAGE_ALLOC);
92 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
94 __free_pages(zero_page, compound_order(zero_page));
97 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
99 /* We take additional reference here. It will be put back by shrinker */
100 atomic_set(&huge_zero_refcount, 2);
102 return READ_ONCE(huge_zero_page);
105 static void put_huge_zero_page(void)
108 * Counter should never go to zero here. Only shrinker can put
111 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
116 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
117 return READ_ONCE(huge_zero_page);
119 if (!get_huge_zero_page())
122 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
123 put_huge_zero_page();
125 return READ_ONCE(huge_zero_page);
128 void mm_put_huge_zero_page(struct mm_struct *mm)
130 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
131 put_huge_zero_page();
134 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
135 struct shrink_control *sc)
137 /* we can free zero page only if last reference remains */
138 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
142 struct shrink_control *sc)
144 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
145 struct page *zero_page = xchg(&huge_zero_page, NULL);
146 BUG_ON(zero_page == NULL);
147 WRITE_ONCE(huge_zero_pfn, ~0UL);
148 __free_pages(zero_page, compound_order(zero_page));
155 static struct shrinker huge_zero_page_shrinker = {
156 .count_objects = shrink_huge_zero_page_count,
157 .scan_objects = shrink_huge_zero_page_scan,
158 .seeks = DEFAULT_SEEKS,
162 static ssize_t enabled_show(struct kobject *kobj,
163 struct kobj_attribute *attr, char *buf)
165 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
166 return sprintf(buf, "[always] madvise never\n");
167 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
168 return sprintf(buf, "always [madvise] never\n");
170 return sprintf(buf, "always madvise [never]\n");
173 static ssize_t enabled_store(struct kobject *kobj,
174 struct kobj_attribute *attr,
175 const char *buf, size_t count)
179 if (sysfs_streq(buf, "always")) {
180 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
181 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
182 } else if (sysfs_streq(buf, "madvise")) {
183 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
184 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
185 } else if (sysfs_streq(buf, "never")) {
186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
192 int err = start_stop_khugepaged();
198 static struct kobj_attribute enabled_attr =
199 __ATTR(enabled, 0644, enabled_show, enabled_store);
201 ssize_t single_hugepage_flag_show(struct kobject *kobj,
202 struct kobj_attribute *attr, char *buf,
203 enum transparent_hugepage_flag flag)
205 return sprintf(buf, "%d\n",
206 !!test_bit(flag, &transparent_hugepage_flags));
209 ssize_t single_hugepage_flag_store(struct kobject *kobj,
210 struct kobj_attribute *attr,
211 const char *buf, size_t count,
212 enum transparent_hugepage_flag flag)
217 ret = kstrtoul(buf, 10, &value);
224 set_bit(flag, &transparent_hugepage_flags);
226 clear_bit(flag, &transparent_hugepage_flags);
231 static ssize_t defrag_show(struct kobject *kobj,
232 struct kobj_attribute *attr, char *buf)
234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
235 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
236 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
237 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
241 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
242 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
245 static ssize_t defrag_store(struct kobject *kobj,
246 struct kobj_attribute *attr,
247 const char *buf, size_t count)
249 if (sysfs_streq(buf, "always")) {
250 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
253 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
254 } else if (sysfs_streq(buf, "defer+madvise")) {
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
259 } else if (sysfs_streq(buf, "defer")) {
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
264 } else if (sysfs_streq(buf, "madvise")) {
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 } else if (sysfs_streq(buf, "never")) {
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 static struct kobj_attribute defrag_attr =
280 __ATTR(defrag, 0644, defrag_show, defrag_store);
282 static ssize_t use_zero_page_show(struct kobject *kobj,
283 struct kobj_attribute *attr, char *buf)
285 return single_hugepage_flag_show(kobj, attr, buf,
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 static ssize_t use_zero_page_store(struct kobject *kobj,
289 struct kobj_attribute *attr, const char *buf, size_t count)
291 return single_hugepage_flag_store(kobj, attr, buf, count,
292 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 static struct kobj_attribute use_zero_page_attr =
295 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
298 struct kobj_attribute *attr, char *buf)
300 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 static struct kobj_attribute hpage_pmd_size_attr =
303 __ATTR_RO(hpage_pmd_size);
305 #ifdef CONFIG_DEBUG_VM
306 static ssize_t debug_cow_show(struct kobject *kobj,
307 struct kobj_attribute *attr, char *buf)
309 return single_hugepage_flag_show(kobj, attr, buf,
310 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 static ssize_t debug_cow_store(struct kobject *kobj,
313 struct kobj_attribute *attr,
314 const char *buf, size_t count)
316 return single_hugepage_flag_store(kobj, attr, buf, count,
317 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319 static struct kobj_attribute debug_cow_attr =
320 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
321 #endif /* CONFIG_DEBUG_VM */
323 static struct attribute *hugepage_attr[] = {
326 &use_zero_page_attr.attr,
327 &hpage_pmd_size_attr.attr,
328 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
329 &shmem_enabled_attr.attr,
331 #ifdef CONFIG_DEBUG_VM
332 &debug_cow_attr.attr,
337 static const struct attribute_group hugepage_attr_group = {
338 .attrs = hugepage_attr,
341 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
345 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
346 if (unlikely(!*hugepage_kobj)) {
347 pr_err("failed to create transparent hugepage kobject\n");
351 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
353 pr_err("failed to register transparent hugepage group\n");
357 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
359 pr_err("failed to register transparent hugepage group\n");
360 goto remove_hp_group;
366 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368 kobject_put(*hugepage_kobj);
372 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
374 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
375 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
376 kobject_put(hugepage_kobj);
379 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
384 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
387 #endif /* CONFIG_SYSFS */
389 static int __init hugepage_init(void)
392 struct kobject *hugepage_kobj;
394 if (!has_transparent_hugepage()) {
395 transparent_hugepage_flags = 0;
400 * hugepages can't be allocated by the buddy allocator
402 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
404 * we use page->mapping and page->index in second tail page
405 * as list_head: assuming THP order >= 2
407 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
409 err = hugepage_init_sysfs(&hugepage_kobj);
413 err = khugepaged_init();
417 err = register_shrinker(&huge_zero_page_shrinker);
419 goto err_hzp_shrinker;
420 err = register_shrinker(&deferred_split_shrinker);
422 goto err_split_shrinker;
425 * By default disable transparent hugepages on smaller systems,
426 * where the extra memory used could hurt more than TLB overhead
427 * is likely to save. The admin can still enable it through /sys.
429 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
430 transparent_hugepage_flags = 0;
434 err = start_stop_khugepaged();
440 unregister_shrinker(&deferred_split_shrinker);
442 unregister_shrinker(&huge_zero_page_shrinker);
444 khugepaged_destroy();
446 hugepage_exit_sysfs(hugepage_kobj);
450 subsys_initcall(hugepage_init);
452 static int __init setup_transparent_hugepage(char *str)
457 if (!strcmp(str, "always")) {
458 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
463 } else if (!strcmp(str, "madvise")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
469 } else if (!strcmp(str, "never")) {
470 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
471 &transparent_hugepage_flags);
472 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
473 &transparent_hugepage_flags);
478 pr_warn("transparent_hugepage= cannot parse, ignored\n");
481 __setup("transparent_hugepage=", setup_transparent_hugepage);
483 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
485 if (likely(vma->vm_flags & VM_WRITE))
486 pmd = pmd_mkwrite(pmd);
490 static inline struct list_head *page_deferred_list(struct page *page)
492 /* ->lru in the tail pages is occupied by compound_head. */
493 return &page[2].deferred_list;
496 void prep_transhuge_page(struct page *page)
499 * we use page->mapping and page->indexlru in second tail page
500 * as list_head: assuming THP order >= 2
503 INIT_LIST_HEAD(page_deferred_list(page));
504 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
507 static unsigned long __thp_get_unmapped_area(struct file *filp,
508 unsigned long addr, unsigned long len,
509 loff_t off, unsigned long flags, unsigned long size)
511 loff_t off_end = off + len;
512 loff_t off_align = round_up(off, size);
513 unsigned long len_pad, ret;
515 if (off_end <= off_align || (off_end - off_align) < size)
518 len_pad = len + size;
519 if (len_pad < len || (off + len_pad) < off)
522 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
523 off >> PAGE_SHIFT, flags);
526 * The failure might be due to length padding. The caller will retry
527 * without the padding.
529 if (IS_ERR_VALUE(ret))
533 * Do not try to align to THP boundary if allocation at the address
539 ret += (off - ret) & (size - 1);
543 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
544 unsigned long len, unsigned long pgoff, unsigned long flags)
547 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
549 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
552 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
556 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
558 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
560 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
561 struct page *page, gfp_t gfp)
563 struct vm_area_struct *vma = vmf->vma;
564 struct mem_cgroup *memcg;
566 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
569 VM_BUG_ON_PAGE(!PageCompound(page), page);
571 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
573 count_vm_event(THP_FAULT_FALLBACK);
574 return VM_FAULT_FALLBACK;
577 pgtable = pte_alloc_one(vma->vm_mm, haddr);
578 if (unlikely(!pgtable)) {
583 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
585 * The memory barrier inside __SetPageUptodate makes sure that
586 * clear_huge_page writes become visible before the set_pmd_at()
589 __SetPageUptodate(page);
591 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
592 if (unlikely(!pmd_none(*vmf->pmd))) {
597 ret = check_stable_address_space(vma->vm_mm);
601 /* Deliver the page fault to userland */
602 if (userfaultfd_missing(vma)) {
605 spin_unlock(vmf->ptl);
606 mem_cgroup_cancel_charge(page, memcg, true);
608 pte_free(vma->vm_mm, pgtable);
609 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
610 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
614 entry = mk_huge_pmd(page, vma->vm_page_prot);
615 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
616 page_add_new_anon_rmap(page, vma, haddr, true);
617 mem_cgroup_commit_charge(page, memcg, false, true);
618 lru_cache_add_active_or_unevictable(page, vma);
619 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
620 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
621 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
622 mm_inc_nr_ptes(vma->vm_mm);
623 spin_unlock(vmf->ptl);
624 count_vm_event(THP_FAULT_ALLOC);
629 spin_unlock(vmf->ptl);
632 pte_free(vma->vm_mm, pgtable);
633 mem_cgroup_cancel_charge(page, memcg, true);
640 * always: directly stall for all thp allocations
641 * defer: wake kswapd and fail if not immediately available
642 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
643 * fail if not immediately available
644 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
646 * never: never stall for any thp allocation
648 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
650 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
652 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
653 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
654 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
655 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
656 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
657 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
658 __GFP_KSWAPD_RECLAIM);
659 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
660 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
662 return GFP_TRANSHUGE_LIGHT;
665 /* Caller must hold page table lock. */
666 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
667 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
668 struct page *zero_page)
673 entry = mk_pmd(zero_page, vma->vm_page_prot);
674 entry = pmd_mkhuge(entry);
676 pgtable_trans_huge_deposit(mm, pmd, pgtable);
677 set_pmd_at(mm, haddr, pmd, entry);
682 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
684 struct vm_area_struct *vma = vmf->vma;
687 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
689 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
690 return VM_FAULT_FALLBACK;
691 if (unlikely(anon_vma_prepare(vma)))
693 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
695 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
696 !mm_forbids_zeropage(vma->vm_mm) &&
697 transparent_hugepage_use_zero_page()) {
699 struct page *zero_page;
701 pgtable = pte_alloc_one(vma->vm_mm, haddr);
702 if (unlikely(!pgtable))
704 zero_page = mm_get_huge_zero_page(vma->vm_mm);
705 if (unlikely(!zero_page)) {
706 pte_free(vma->vm_mm, pgtable);
707 count_vm_event(THP_FAULT_FALLBACK);
708 return VM_FAULT_FALLBACK;
710 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
712 if (pmd_none(*vmf->pmd)) {
713 ret = check_stable_address_space(vma->vm_mm);
715 spin_unlock(vmf->ptl);
716 pte_free(vma->vm_mm, pgtable);
717 } else if (userfaultfd_missing(vma)) {
718 spin_unlock(vmf->ptl);
719 pte_free(vma->vm_mm, pgtable);
720 ret = handle_userfault(vmf, VM_UFFD_MISSING);
721 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
723 set_huge_zero_page(pgtable, vma->vm_mm, vma,
724 haddr, vmf->pmd, zero_page);
725 spin_unlock(vmf->ptl);
728 spin_unlock(vmf->ptl);
729 pte_free(vma->vm_mm, pgtable);
733 gfp = alloc_hugepage_direct_gfpmask(vma);
734 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
735 if (unlikely(!page)) {
736 count_vm_event(THP_FAULT_FALLBACK);
737 return VM_FAULT_FALLBACK;
739 prep_transhuge_page(page);
740 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
743 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
744 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
747 struct mm_struct *mm = vma->vm_mm;
751 ptl = pmd_lock(mm, pmd);
752 if (!pmd_none(*pmd)) {
754 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
755 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
758 entry = pmd_mkyoung(*pmd);
759 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
760 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
761 update_mmu_cache_pmd(vma, addr, pmd);
767 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
768 if (pfn_t_devmap(pfn))
769 entry = pmd_mkdevmap(entry);
771 entry = pmd_mkyoung(pmd_mkdirty(entry));
772 entry = maybe_pmd_mkwrite(entry, vma);
776 pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 set_pmd_at(mm, addr, pmd, entry);
782 update_mmu_cache_pmd(vma, addr, pmd);
787 pte_free(mm, pgtable);
790 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
792 unsigned long addr = vmf->address & PMD_MASK;
793 struct vm_area_struct *vma = vmf->vma;
794 pgprot_t pgprot = vma->vm_page_prot;
795 pgtable_t pgtable = NULL;
798 * If we had pmd_special, we could avoid all these restrictions,
799 * but we need to be consistent with PTEs and architectures that
800 * can't support a 'special' bit.
802 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
804 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
805 (VM_PFNMAP|VM_MIXEDMAP));
806 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
808 if (addr < vma->vm_start || addr >= vma->vm_end)
809 return VM_FAULT_SIGBUS;
811 if (arch_needs_pgtable_deposit()) {
812 pgtable = pte_alloc_one(vma->vm_mm, addr);
817 track_pfn_insert(vma, &pgprot, pfn);
819 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
820 return VM_FAULT_NOPAGE;
822 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
824 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
825 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
827 if (likely(vma->vm_flags & VM_WRITE))
828 pud = pud_mkwrite(pud);
832 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
833 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
835 struct mm_struct *mm = vma->vm_mm;
839 ptl = pud_lock(mm, pud);
840 if (!pud_none(*pud)) {
842 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
843 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
846 entry = pud_mkyoung(*pud);
847 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
848 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
849 update_mmu_cache_pud(vma, addr, pud);
854 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
855 if (pfn_t_devmap(pfn))
856 entry = pud_mkdevmap(entry);
858 entry = pud_mkyoung(pud_mkdirty(entry));
859 entry = maybe_pud_mkwrite(entry, vma);
861 set_pud_at(mm, addr, pud, entry);
862 update_mmu_cache_pud(vma, addr, pud);
868 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
870 unsigned long addr = vmf->address & PUD_MASK;
871 struct vm_area_struct *vma = vmf->vma;
872 pgprot_t pgprot = vma->vm_page_prot;
875 * If we had pud_special, we could avoid all these restrictions,
876 * but we need to be consistent with PTEs and architectures that
877 * can't support a 'special' bit.
879 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
881 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
882 (VM_PFNMAP|VM_MIXEDMAP));
883 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
885 if (addr < vma->vm_start || addr >= vma->vm_end)
886 return VM_FAULT_SIGBUS;
888 track_pfn_insert(vma, &pgprot, pfn);
890 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
891 return VM_FAULT_NOPAGE;
893 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
894 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
896 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
897 pmd_t *pmd, int flags)
901 _pmd = pmd_mkyoung(*pmd);
902 if (flags & FOLL_WRITE)
903 _pmd = pmd_mkdirty(_pmd);
904 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
905 pmd, _pmd, flags & FOLL_WRITE))
906 update_mmu_cache_pmd(vma, addr, pmd);
909 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
910 pmd_t *pmd, int flags)
912 unsigned long pfn = pmd_pfn(*pmd);
913 struct mm_struct *mm = vma->vm_mm;
914 struct dev_pagemap *pgmap;
917 assert_spin_locked(pmd_lockptr(mm, pmd));
920 * When we COW a devmap PMD entry, we split it into PTEs, so we should
921 * not be in this function with `flags & FOLL_COW` set.
923 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
925 if (flags & FOLL_WRITE && !pmd_write(*pmd))
928 if (pmd_present(*pmd) && pmd_devmap(*pmd))
933 if (flags & FOLL_TOUCH)
934 touch_pmd(vma, addr, pmd, flags);
937 * device mapped pages can only be returned if the
938 * caller will manage the page reference count.
940 if (!(flags & FOLL_GET))
941 return ERR_PTR(-EEXIST);
943 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
944 pgmap = get_dev_pagemap(pfn, NULL);
946 return ERR_PTR(-EFAULT);
947 page = pfn_to_page(pfn);
949 put_dev_pagemap(pgmap);
954 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
955 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
956 struct vm_area_struct *vma)
958 spinlock_t *dst_ptl, *src_ptl;
959 struct page *src_page;
961 pgtable_t pgtable = NULL;
964 /* Skip if can be re-fill on fault */
965 if (!vma_is_anonymous(vma))
968 pgtable = pte_alloc_one(dst_mm, addr);
969 if (unlikely(!pgtable))
972 dst_ptl = pmd_lock(dst_mm, dst_pmd);
973 src_ptl = pmd_lockptr(src_mm, src_pmd);
974 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
979 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
980 if (unlikely(is_swap_pmd(pmd))) {
981 swp_entry_t entry = pmd_to_swp_entry(pmd);
983 VM_BUG_ON(!is_pmd_migration_entry(pmd));
984 if (is_write_migration_entry(entry)) {
985 make_migration_entry_read(&entry);
986 pmd = swp_entry_to_pmd(entry);
987 if (pmd_swp_soft_dirty(*src_pmd))
988 pmd = pmd_swp_mksoft_dirty(pmd);
989 set_pmd_at(src_mm, addr, src_pmd, pmd);
991 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
992 mm_inc_nr_ptes(dst_mm);
993 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
994 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1000 if (unlikely(!pmd_trans_huge(pmd))) {
1001 pte_free(dst_mm, pgtable);
1005 * When page table lock is held, the huge zero pmd should not be
1006 * under splitting since we don't split the page itself, only pmd to
1009 if (is_huge_zero_pmd(pmd)) {
1010 struct page *zero_page;
1012 * get_huge_zero_page() will never allocate a new page here,
1013 * since we already have a zero page to copy. It just takes a
1016 zero_page = mm_get_huge_zero_page(dst_mm);
1017 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1023 src_page = pmd_page(pmd);
1024 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1026 page_dup_rmap(src_page, true);
1027 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1028 mm_inc_nr_ptes(dst_mm);
1029 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1031 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1032 pmd = pmd_mkold(pmd_wrprotect(pmd));
1033 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1037 spin_unlock(src_ptl);
1038 spin_unlock(dst_ptl);
1043 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1044 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1045 pud_t *pud, int flags)
1049 _pud = pud_mkyoung(*pud);
1050 if (flags & FOLL_WRITE)
1051 _pud = pud_mkdirty(_pud);
1052 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1053 pud, _pud, flags & FOLL_WRITE))
1054 update_mmu_cache_pud(vma, addr, pud);
1057 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1058 pud_t *pud, int flags)
1060 unsigned long pfn = pud_pfn(*pud);
1061 struct mm_struct *mm = vma->vm_mm;
1062 struct dev_pagemap *pgmap;
1065 assert_spin_locked(pud_lockptr(mm, pud));
1067 if (flags & FOLL_WRITE && !pud_write(*pud))
1070 if (pud_present(*pud) && pud_devmap(*pud))
1075 if (flags & FOLL_TOUCH)
1076 touch_pud(vma, addr, pud, flags);
1079 * device mapped pages can only be returned if the
1080 * caller will manage the page reference count.
1082 if (!(flags & FOLL_GET))
1083 return ERR_PTR(-EEXIST);
1085 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1086 pgmap = get_dev_pagemap(pfn, NULL);
1088 return ERR_PTR(-EFAULT);
1089 page = pfn_to_page(pfn);
1091 put_dev_pagemap(pgmap);
1096 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1097 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1098 struct vm_area_struct *vma)
1100 spinlock_t *dst_ptl, *src_ptl;
1104 dst_ptl = pud_lock(dst_mm, dst_pud);
1105 src_ptl = pud_lockptr(src_mm, src_pud);
1106 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1110 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1114 * When page table lock is held, the huge zero pud should not be
1115 * under splitting since we don't split the page itself, only pud to
1118 if (is_huge_zero_pud(pud)) {
1119 /* No huge zero pud yet */
1122 pudp_set_wrprotect(src_mm, addr, src_pud);
1123 pud = pud_mkold(pud_wrprotect(pud));
1124 set_pud_at(dst_mm, addr, dst_pud, pud);
1128 spin_unlock(src_ptl);
1129 spin_unlock(dst_ptl);
1133 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1136 unsigned long haddr;
1137 bool write = vmf->flags & FAULT_FLAG_WRITE;
1139 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1140 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1143 entry = pud_mkyoung(orig_pud);
1145 entry = pud_mkdirty(entry);
1146 haddr = vmf->address & HPAGE_PUD_MASK;
1147 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1148 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1151 spin_unlock(vmf->ptl);
1153 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1155 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1158 unsigned long haddr;
1159 bool write = vmf->flags & FAULT_FLAG_WRITE;
1161 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1162 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1165 entry = pmd_mkyoung(orig_pmd);
1167 entry = pmd_mkdirty(entry);
1168 haddr = vmf->address & HPAGE_PMD_MASK;
1169 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1170 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1173 spin_unlock(vmf->ptl);
1176 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1177 pmd_t orig_pmd, struct page *page)
1179 struct vm_area_struct *vma = vmf->vma;
1180 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1181 struct mem_cgroup *memcg;
1186 struct page **pages;
1187 unsigned long mmun_start; /* For mmu_notifiers */
1188 unsigned long mmun_end; /* For mmu_notifiers */
1190 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1192 if (unlikely(!pages)) {
1193 ret |= VM_FAULT_OOM;
1197 for (i = 0; i < HPAGE_PMD_NR; i++) {
1198 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1199 vmf->address, page_to_nid(page));
1200 if (unlikely(!pages[i] ||
1201 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1202 GFP_KERNEL, &memcg, false))) {
1206 memcg = (void *)page_private(pages[i]);
1207 set_page_private(pages[i], 0);
1208 mem_cgroup_cancel_charge(pages[i], memcg,
1213 ret |= VM_FAULT_OOM;
1216 set_page_private(pages[i], (unsigned long)memcg);
1219 for (i = 0; i < HPAGE_PMD_NR; i++) {
1220 copy_user_highpage(pages[i], page + i,
1221 haddr + PAGE_SIZE * i, vma);
1222 __SetPageUptodate(pages[i]);
1227 mmun_end = haddr + HPAGE_PMD_SIZE;
1228 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1230 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1231 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1232 goto out_free_pages;
1233 VM_BUG_ON_PAGE(!PageHead(page), page);
1236 * Leave pmd empty until pte is filled note we must notify here as
1237 * concurrent CPU thread might write to new page before the call to
1238 * mmu_notifier_invalidate_range_end() happens which can lead to a
1239 * device seeing memory write in different order than CPU.
1241 * See Documentation/vm/mmu_notifier.rst
1243 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1245 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1246 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1248 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1250 entry = mk_pte(pages[i], vma->vm_page_prot);
1251 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1252 memcg = (void *)page_private(pages[i]);
1253 set_page_private(pages[i], 0);
1254 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1255 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1256 lru_cache_add_active_or_unevictable(pages[i], vma);
1257 vmf->pte = pte_offset_map(&_pmd, haddr);
1258 VM_BUG_ON(!pte_none(*vmf->pte));
1259 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1260 pte_unmap(vmf->pte);
1264 smp_wmb(); /* make pte visible before pmd */
1265 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1266 page_remove_rmap(page, true);
1267 spin_unlock(vmf->ptl);
1270 * No need to double call mmu_notifier->invalidate_range() callback as
1271 * the above pmdp_huge_clear_flush_notify() did already call it.
1273 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1276 ret |= VM_FAULT_WRITE;
1283 spin_unlock(vmf->ptl);
1284 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1285 for (i = 0; i < HPAGE_PMD_NR; i++) {
1286 memcg = (void *)page_private(pages[i]);
1287 set_page_private(pages[i], 0);
1288 mem_cgroup_cancel_charge(pages[i], memcg, false);
1295 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1297 struct vm_area_struct *vma = vmf->vma;
1298 struct page *page = NULL, *new_page;
1299 struct mem_cgroup *memcg;
1300 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1301 unsigned long mmun_start; /* For mmu_notifiers */
1302 unsigned long mmun_end; /* For mmu_notifiers */
1303 gfp_t huge_gfp; /* for allocation and charge */
1306 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1307 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1308 if (is_huge_zero_pmd(orig_pmd))
1310 spin_lock(vmf->ptl);
1311 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1314 page = pmd_page(orig_pmd);
1315 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1317 * We can only reuse the page if nobody else maps the huge page or it's
1320 if (!trylock_page(page)) {
1322 spin_unlock(vmf->ptl);
1324 spin_lock(vmf->ptl);
1325 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1332 if (reuse_swap_page(page, NULL)) {
1334 entry = pmd_mkyoung(orig_pmd);
1335 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1336 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1337 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1338 ret |= VM_FAULT_WRITE;
1344 spin_unlock(vmf->ptl);
1346 if (__transparent_hugepage_enabled(vma) &&
1347 !transparent_hugepage_debug_cow()) {
1348 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1349 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1353 if (likely(new_page)) {
1354 prep_transhuge_page(new_page);
1357 split_huge_pmd(vma, vmf->pmd, vmf->address);
1358 ret |= VM_FAULT_FALLBACK;
1360 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1361 if (ret & VM_FAULT_OOM) {
1362 split_huge_pmd(vma, vmf->pmd, vmf->address);
1363 ret |= VM_FAULT_FALLBACK;
1367 count_vm_event(THP_FAULT_FALLBACK);
1371 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1372 huge_gfp, &memcg, true))) {
1374 split_huge_pmd(vma, vmf->pmd, vmf->address);
1377 ret |= VM_FAULT_FALLBACK;
1378 count_vm_event(THP_FAULT_FALLBACK);
1382 count_vm_event(THP_FAULT_ALLOC);
1385 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1387 copy_user_huge_page(new_page, page, vmf->address,
1389 __SetPageUptodate(new_page);
1392 mmun_end = haddr + HPAGE_PMD_SIZE;
1393 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1395 spin_lock(vmf->ptl);
1398 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1399 spin_unlock(vmf->ptl);
1400 mem_cgroup_cancel_charge(new_page, memcg, true);
1405 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1406 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1407 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1408 page_add_new_anon_rmap(new_page, vma, haddr, true);
1409 mem_cgroup_commit_charge(new_page, memcg, false, true);
1410 lru_cache_add_active_or_unevictable(new_page, vma);
1411 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1412 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1414 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1416 VM_BUG_ON_PAGE(!PageHead(page), page);
1417 page_remove_rmap(page, true);
1420 ret |= VM_FAULT_WRITE;
1422 spin_unlock(vmf->ptl);
1425 * No need to double call mmu_notifier->invalidate_range() callback as
1426 * the above pmdp_huge_clear_flush_notify() did already call it.
1428 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1433 spin_unlock(vmf->ptl);
1438 * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1439 * but only after we've gone through a COW cycle and they are dirty.
1441 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1443 return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
1446 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1451 struct mm_struct *mm = vma->vm_mm;
1452 struct page *page = NULL;
1454 assert_spin_locked(pmd_lockptr(mm, pmd));
1456 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1459 /* Avoid dumping huge zero page */
1460 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1461 return ERR_PTR(-EFAULT);
1463 /* Full NUMA hinting faults to serialise migration in fault paths */
1464 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1467 page = pmd_page(*pmd);
1468 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1469 if (flags & FOLL_TOUCH)
1470 touch_pmd(vma, addr, pmd, flags);
1471 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1473 * We don't mlock() pte-mapped THPs. This way we can avoid
1474 * leaking mlocked pages into non-VM_LOCKED VMAs.
1478 * In most cases the pmd is the only mapping of the page as we
1479 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1480 * writable private mappings in populate_vma_page_range().
1482 * The only scenario when we have the page shared here is if we
1483 * mlocking read-only mapping shared over fork(). We skip
1484 * mlocking such pages.
1488 * We can expect PageDoubleMap() to be stable under page lock:
1489 * for file pages we set it in page_add_file_rmap(), which
1490 * requires page to be locked.
1493 if (PageAnon(page) && compound_mapcount(page) != 1)
1495 if (PageDoubleMap(page) || !page->mapping)
1497 if (!trylock_page(page))
1500 if (page->mapping && !PageDoubleMap(page))
1501 mlock_vma_page(page);
1505 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1506 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1507 if (flags & FOLL_GET)
1514 /* NUMA hinting page fault entry point for trans huge pmds */
1515 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1517 struct vm_area_struct *vma = vmf->vma;
1518 struct anon_vma *anon_vma = NULL;
1520 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1521 int page_nid = -1, this_nid = numa_node_id();
1522 int target_nid, last_cpupid = -1;
1524 bool migrated = false;
1528 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1529 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1533 * If there are potential migrations, wait for completion and retry
1534 * without disrupting NUMA hinting information. Do not relock and
1535 * check_same as the page may no longer be mapped.
1537 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1538 page = pmd_page(*vmf->pmd);
1539 if (!get_page_unless_zero(page))
1541 spin_unlock(vmf->ptl);
1542 wait_on_page_locked(page);
1547 page = pmd_page(pmd);
1548 BUG_ON(is_huge_zero_page(page));
1549 page_nid = page_to_nid(page);
1550 last_cpupid = page_cpupid_last(page);
1551 count_vm_numa_event(NUMA_HINT_FAULTS);
1552 if (page_nid == this_nid) {
1553 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1554 flags |= TNF_FAULT_LOCAL;
1557 /* See similar comment in do_numa_page for explanation */
1558 if (!pmd_savedwrite(pmd))
1559 flags |= TNF_NO_GROUP;
1562 * Acquire the page lock to serialise THP migrations but avoid dropping
1563 * page_table_lock if at all possible
1565 page_locked = trylock_page(page);
1566 target_nid = mpol_misplaced(page, vma, haddr);
1567 if (target_nid == -1) {
1568 /* If the page was locked, there are no parallel migrations */
1573 /* Migration could have started since the pmd_trans_migrating check */
1576 if (!get_page_unless_zero(page))
1578 spin_unlock(vmf->ptl);
1579 wait_on_page_locked(page);
1585 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1586 * to serialises splits
1589 spin_unlock(vmf->ptl);
1590 anon_vma = page_lock_anon_vma_read(page);
1592 /* Confirm the PMD did not change while page_table_lock was released */
1593 spin_lock(vmf->ptl);
1594 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1601 /* Bail if we fail to protect against THP splits for any reason */
1602 if (unlikely(!anon_vma)) {
1609 * Since we took the NUMA fault, we must have observed the !accessible
1610 * bit. Make sure all other CPUs agree with that, to avoid them
1611 * modifying the page we're about to migrate.
1613 * Must be done under PTL such that we'll observe the relevant
1614 * inc_tlb_flush_pending().
1616 * We are not sure a pending tlb flush here is for a huge page
1617 * mapping or not. Hence use the tlb range variant
1619 if (mm_tlb_flush_pending(vma->vm_mm))
1620 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1623 * Migrate the THP to the requested node, returns with page unlocked
1624 * and access rights restored.
1626 spin_unlock(vmf->ptl);
1628 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1629 vmf->pmd, pmd, vmf->address, page, target_nid);
1631 flags |= TNF_MIGRATED;
1632 page_nid = target_nid;
1634 flags |= TNF_MIGRATE_FAIL;
1638 BUG_ON(!PageLocked(page));
1639 was_writable = pmd_savedwrite(pmd);
1640 pmd = pmd_modify(pmd, vma->vm_page_prot);
1641 pmd = pmd_mkyoung(pmd);
1643 pmd = pmd_mkwrite(pmd);
1644 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1645 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1648 spin_unlock(vmf->ptl);
1652 page_unlock_anon_vma_read(anon_vma);
1655 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1662 * Return true if we do MADV_FREE successfully on entire pmd page.
1663 * Otherwise, return false.
1665 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1666 pmd_t *pmd, unsigned long addr, unsigned long next)
1671 struct mm_struct *mm = tlb->mm;
1674 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1676 ptl = pmd_trans_huge_lock(pmd, vma);
1681 if (is_huge_zero_pmd(orig_pmd))
1684 if (unlikely(!pmd_present(orig_pmd))) {
1685 VM_BUG_ON(thp_migration_supported() &&
1686 !is_pmd_migration_entry(orig_pmd));
1690 page = pmd_page(orig_pmd);
1692 * If other processes are mapping this page, we couldn't discard
1693 * the page unless they all do MADV_FREE so let's skip the page.
1695 if (total_mapcount(page) != 1)
1698 if (!trylock_page(page))
1702 * If user want to discard part-pages of THP, split it so MADV_FREE
1703 * will deactivate only them.
1705 if (next - addr != HPAGE_PMD_SIZE) {
1708 split_huge_page(page);
1714 if (PageDirty(page))
1715 ClearPageDirty(page);
1718 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1719 pmdp_invalidate(vma, addr, pmd);
1720 orig_pmd = pmd_mkold(orig_pmd);
1721 orig_pmd = pmd_mkclean(orig_pmd);
1723 set_pmd_at(mm, addr, pmd, orig_pmd);
1724 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1727 mark_page_lazyfree(page);
1735 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1739 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1740 pte_free(mm, pgtable);
1744 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1745 pmd_t *pmd, unsigned long addr)
1750 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1752 ptl = __pmd_trans_huge_lock(pmd, vma);
1756 * For architectures like ppc64 we look at deposited pgtable
1757 * when calling pmdp_huge_get_and_clear. So do the
1758 * pgtable_trans_huge_withdraw after finishing pmdp related
1761 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1763 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1764 if (vma_is_dax(vma)) {
1765 if (arch_needs_pgtable_deposit())
1766 zap_deposited_table(tlb->mm, pmd);
1768 if (is_huge_zero_pmd(orig_pmd))
1769 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1770 } else if (is_huge_zero_pmd(orig_pmd)) {
1771 zap_deposited_table(tlb->mm, pmd);
1773 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1775 struct page *page = NULL;
1776 int flush_needed = 1;
1778 if (pmd_present(orig_pmd)) {
1779 page = pmd_page(orig_pmd);
1780 page_remove_rmap(page, true);
1781 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1782 VM_BUG_ON_PAGE(!PageHead(page), page);
1783 } else if (thp_migration_supported()) {
1786 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1787 entry = pmd_to_swp_entry(orig_pmd);
1788 page = pfn_to_page(swp_offset(entry));
1791 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1793 if (PageAnon(page)) {
1794 zap_deposited_table(tlb->mm, pmd);
1795 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1797 if (arch_needs_pgtable_deposit())
1798 zap_deposited_table(tlb->mm, pmd);
1799 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1804 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1809 #ifndef pmd_move_must_withdraw
1810 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1811 spinlock_t *old_pmd_ptl,
1812 struct vm_area_struct *vma)
1815 * With split pmd lock we also need to move preallocated
1816 * PTE page table if new_pmd is on different PMD page table.
1818 * We also don't deposit and withdraw tables for file pages.
1820 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1824 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1826 #ifdef CONFIG_MEM_SOFT_DIRTY
1827 if (unlikely(is_pmd_migration_entry(pmd)))
1828 pmd = pmd_swp_mksoft_dirty(pmd);
1829 else if (pmd_present(pmd))
1830 pmd = pmd_mksoft_dirty(pmd);
1835 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1836 unsigned long new_addr, unsigned long old_end,
1837 pmd_t *old_pmd, pmd_t *new_pmd)
1839 spinlock_t *old_ptl, *new_ptl;
1841 struct mm_struct *mm = vma->vm_mm;
1842 bool force_flush = false;
1844 if ((old_addr & ~HPAGE_PMD_MASK) ||
1845 (new_addr & ~HPAGE_PMD_MASK) ||
1846 old_end - old_addr < HPAGE_PMD_SIZE)
1850 * The destination pmd shouldn't be established, free_pgtables()
1851 * should have release it.
1853 if (WARN_ON(!pmd_none(*new_pmd))) {
1854 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1859 * We don't have to worry about the ordering of src and dst
1860 * ptlocks because exclusive mmap_sem prevents deadlock.
1862 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1864 new_ptl = pmd_lockptr(mm, new_pmd);
1865 if (new_ptl != old_ptl)
1866 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1867 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1868 if (pmd_present(pmd))
1870 VM_BUG_ON(!pmd_none(*new_pmd));
1872 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1874 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1875 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1877 pmd = move_soft_dirty_pmd(pmd);
1878 set_pmd_at(mm, new_addr, new_pmd, pmd);
1880 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1881 if (new_ptl != old_ptl)
1882 spin_unlock(new_ptl);
1883 spin_unlock(old_ptl);
1891 * - 0 if PMD could not be locked
1892 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1893 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1895 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1896 unsigned long addr, pgprot_t newprot, int prot_numa)
1898 struct mm_struct *mm = vma->vm_mm;
1901 bool preserve_write;
1904 ptl = __pmd_trans_huge_lock(pmd, vma);
1908 preserve_write = prot_numa && pmd_write(*pmd);
1911 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1912 if (is_swap_pmd(*pmd)) {
1913 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1915 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1916 if (is_write_migration_entry(entry)) {
1919 * A protection check is difficult so
1920 * just be safe and disable write
1922 make_migration_entry_read(&entry);
1923 newpmd = swp_entry_to_pmd(entry);
1924 if (pmd_swp_soft_dirty(*pmd))
1925 newpmd = pmd_swp_mksoft_dirty(newpmd);
1926 set_pmd_at(mm, addr, pmd, newpmd);
1933 * Avoid trapping faults against the zero page. The read-only
1934 * data is likely to be read-cached on the local CPU and
1935 * local/remote hits to the zero page are not interesting.
1937 if (prot_numa && is_huge_zero_pmd(*pmd))
1940 if (prot_numa && pmd_protnone(*pmd))
1944 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1945 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1946 * which is also under down_read(mmap_sem):
1949 * change_huge_pmd(prot_numa=1)
1950 * pmdp_huge_get_and_clear_notify()
1951 * madvise_dontneed()
1953 * pmd_trans_huge(*pmd) == 0 (without ptl)
1956 * // pmd is re-established
1958 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1959 * which may break userspace.
1961 * pmdp_invalidate() is required to make sure we don't miss
1962 * dirty/young flags set by hardware.
1964 entry = pmdp_invalidate(vma, addr, pmd);
1966 entry = pmd_modify(entry, newprot);
1968 entry = pmd_mk_savedwrite(entry);
1970 set_pmd_at(mm, addr, pmd, entry);
1971 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1978 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1980 * Note that if it returns page table lock pointer, this routine returns without
1981 * unlocking page table lock. So callers must unlock it.
1983 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1986 ptl = pmd_lock(vma->vm_mm, pmd);
1987 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1995 * Returns true if a given pud maps a thp, false otherwise.
1997 * Note that if it returns true, this routine returns without unlocking page
1998 * table lock. So callers must unlock it.
2000 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2004 ptl = pud_lock(vma->vm_mm, pud);
2005 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2011 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2012 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2013 pud_t *pud, unsigned long addr)
2018 ptl = __pud_trans_huge_lock(pud, vma);
2022 * For architectures like ppc64 we look at deposited pgtable
2023 * when calling pudp_huge_get_and_clear. So do the
2024 * pgtable_trans_huge_withdraw after finishing pudp related
2027 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
2029 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2030 if (vma_is_dax(vma)) {
2032 /* No zero page support yet */
2034 /* No support for anonymous PUD pages yet */
2040 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2041 unsigned long haddr)
2043 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2044 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2045 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2046 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2048 count_vm_event(THP_SPLIT_PUD);
2050 pudp_huge_clear_flush_notify(vma, haddr, pud);
2053 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2054 unsigned long address)
2057 struct mm_struct *mm = vma->vm_mm;
2058 unsigned long haddr = address & HPAGE_PUD_MASK;
2060 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2061 ptl = pud_lock(mm, pud);
2062 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2064 __split_huge_pud_locked(vma, pud, haddr);
2069 * No need to double call mmu_notifier->invalidate_range() callback as
2070 * the above pudp_huge_clear_flush_notify() did already call it.
2072 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2075 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2077 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2078 unsigned long haddr, pmd_t *pmd)
2080 struct mm_struct *mm = vma->vm_mm;
2086 * Leave pmd empty until pte is filled note that it is fine to delay
2087 * notification until mmu_notifier_invalidate_range_end() as we are
2088 * replacing a zero pmd write protected page with a zero pte write
2091 * See Documentation/vm/mmu_notifier.rst
2093 pmdp_huge_clear_flush(vma, haddr, pmd);
2095 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2096 pmd_populate(mm, &_pmd, pgtable);
2098 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2100 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2101 entry = pte_mkspecial(entry);
2102 pte = pte_offset_map(&_pmd, haddr);
2103 VM_BUG_ON(!pte_none(*pte));
2104 set_pte_at(mm, haddr, pte, entry);
2107 smp_wmb(); /* make pte visible before pmd */
2108 pmd_populate(mm, pmd, pgtable);
2111 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2112 unsigned long haddr, bool freeze)
2114 struct mm_struct *mm = vma->vm_mm;
2117 pmd_t old_pmd, _pmd;
2118 bool young, write, soft_dirty, pmd_migration = false;
2122 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2123 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2124 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2125 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2126 && !pmd_devmap(*pmd));
2128 count_vm_event(THP_SPLIT_PMD);
2130 if (!vma_is_anonymous(vma)) {
2131 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2133 * We are going to unmap this huge page. So
2134 * just go ahead and zap it
2136 if (arch_needs_pgtable_deposit())
2137 zap_deposited_table(mm, pmd);
2138 if (vma_is_dax(vma))
2140 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2143 entry = pmd_to_swp_entry(old_pmd);
2144 page = migration_entry_to_page(entry);
2146 page = pmd_page(old_pmd);
2147 if (!PageDirty(page) && pmd_dirty(old_pmd))
2148 set_page_dirty(page);
2149 if (!PageReferenced(page) && pmd_young(old_pmd))
2150 SetPageReferenced(page);
2151 page_remove_rmap(page, true);
2154 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2158 if (is_huge_zero_pmd(*pmd)) {
2160 * FIXME: Do we want to invalidate secondary mmu by calling
2161 * mmu_notifier_invalidate_range() see comments below inside
2162 * __split_huge_pmd() ?
2164 * We are going from a zero huge page write protected to zero
2165 * small page also write protected so it does not seems useful
2166 * to invalidate secondary mmu at this time.
2168 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2172 * Up to this point the pmd is present and huge and userland has the
2173 * whole access to the hugepage during the split (which happens in
2174 * place). If we overwrite the pmd with the not-huge version pointing
2175 * to the pte here (which of course we could if all CPUs were bug
2176 * free), userland could trigger a small page size TLB miss on the
2177 * small sized TLB while the hugepage TLB entry is still established in
2178 * the huge TLB. Some CPU doesn't like that.
2179 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2180 * 383 on page 93. Intel should be safe but is also warns that it's
2181 * only safe if the permission and cache attributes of the two entries
2182 * loaded in the two TLB is identical (which should be the case here).
2183 * But it is generally safer to never allow small and huge TLB entries
2184 * for the same virtual address to be loaded simultaneously. So instead
2185 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2186 * current pmd notpresent (atomically because here the pmd_trans_huge
2187 * must remain set at all times on the pmd until the split is complete
2188 * for this pmd), then we flush the SMP TLB and finally we write the
2189 * non-huge version of the pmd entry with pmd_populate.
2191 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2193 pmd_migration = is_pmd_migration_entry(old_pmd);
2194 if (unlikely(pmd_migration)) {
2197 entry = pmd_to_swp_entry(old_pmd);
2198 page = pfn_to_page(swp_offset(entry));
2199 write = is_write_migration_entry(entry);
2201 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2203 page = pmd_page(old_pmd);
2204 if (pmd_dirty(old_pmd))
2206 write = pmd_write(old_pmd);
2207 young = pmd_young(old_pmd);
2208 soft_dirty = pmd_soft_dirty(old_pmd);
2210 VM_BUG_ON_PAGE(!page_count(page), page);
2211 page_ref_add(page, HPAGE_PMD_NR - 1);
2214 * Withdraw the table only after we mark the pmd entry invalid.
2215 * This's critical for some architectures (Power).
2217 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2218 pmd_populate(mm, &_pmd, pgtable);
2220 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2223 * Note that NUMA hinting access restrictions are not
2224 * transferred to avoid any possibility of altering
2225 * permissions across VMAs.
2227 if (freeze || pmd_migration) {
2228 swp_entry_t swp_entry;
2229 swp_entry = make_migration_entry(page + i, write);
2230 entry = swp_entry_to_pte(swp_entry);
2232 entry = pte_swp_mksoft_dirty(entry);
2234 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2235 entry = maybe_mkwrite(entry, vma);
2237 entry = pte_wrprotect(entry);
2239 entry = pte_mkold(entry);
2241 entry = pte_mksoft_dirty(entry);
2243 pte = pte_offset_map(&_pmd, addr);
2244 BUG_ON(!pte_none(*pte));
2245 set_pte_at(mm, addr, pte, entry);
2247 atomic_inc(&page[i]._mapcount);
2251 if (!pmd_migration) {
2253 * Set PG_double_map before dropping compound_mapcount to avoid
2254 * false-negative page_mapped().
2256 if (compound_mapcount(page) > 1 &&
2257 !TestSetPageDoubleMap(page)) {
2258 for (i = 0; i < HPAGE_PMD_NR; i++)
2259 atomic_inc(&page[i]._mapcount);
2262 lock_page_memcg(page);
2263 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2264 /* Last compound_mapcount is gone. */
2265 __dec_lruvec_page_state(page, NR_ANON_THPS);
2266 if (TestClearPageDoubleMap(page)) {
2267 /* No need in mapcount reference anymore */
2268 for (i = 0; i < HPAGE_PMD_NR; i++)
2269 atomic_dec(&page[i]._mapcount);
2272 unlock_page_memcg(page);
2275 smp_wmb(); /* make pte visible before pmd */
2276 pmd_populate(mm, pmd, pgtable);
2279 for (i = 0; i < HPAGE_PMD_NR; i++) {
2280 page_remove_rmap(page + i, false);
2286 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2287 unsigned long address, bool freeze, struct page *page)
2290 struct mm_struct *mm = vma->vm_mm;
2291 unsigned long haddr = address & HPAGE_PMD_MASK;
2292 bool do_unlock_page = false;
2295 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2296 ptl = pmd_lock(mm, pmd);
2299 * If caller asks to setup a migration entries, we need a page to check
2300 * pmd against. Otherwise we can end up replacing wrong page.
2302 VM_BUG_ON(freeze && !page);
2304 VM_WARN_ON_ONCE(!PageLocked(page));
2305 if (page != pmd_page(*pmd))
2310 if (pmd_trans_huge(*pmd)) {
2312 page = pmd_page(*pmd);
2314 * An anonymous page must be locked, to ensure that a
2315 * concurrent reuse_swap_page() sees stable mapcount;
2316 * but reuse_swap_page() is not used on shmem or file,
2317 * and page lock must not be taken when zap_pmd_range()
2318 * calls __split_huge_pmd() while i_mmap_lock is held.
2320 if (PageAnon(page)) {
2321 if (unlikely(!trylock_page(page))) {
2327 if (unlikely(!pmd_same(*pmd, _pmd))) {
2335 do_unlock_page = true;
2338 if (PageMlocked(page))
2339 clear_page_mlock(page);
2340 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2342 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2348 * No need to double call mmu_notifier->invalidate_range() callback.
2349 * They are 3 cases to consider inside __split_huge_pmd_locked():
2350 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2351 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2352 * fault will trigger a flush_notify before pointing to a new page
2353 * (it is fine if the secondary mmu keeps pointing to the old zero
2354 * page in the meantime)
2355 * 3) Split a huge pmd into pte pointing to the same page. No need
2356 * to invalidate secondary tlb entry they are all still valid.
2357 * any further changes to individual pte will notify. So no need
2358 * to call mmu_notifier->invalidate_range()
2360 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2364 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2365 bool freeze, struct page *page)
2372 pgd = pgd_offset(vma->vm_mm, address);
2373 if (!pgd_present(*pgd))
2376 p4d = p4d_offset(pgd, address);
2377 if (!p4d_present(*p4d))
2380 pud = pud_offset(p4d, address);
2381 if (!pud_present(*pud))
2384 pmd = pmd_offset(pud, address);
2386 __split_huge_pmd(vma, pmd, address, freeze, page);
2389 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2390 unsigned long start,
2395 * If the new start address isn't hpage aligned and it could
2396 * previously contain an hugepage: check if we need to split
2399 if (start & ~HPAGE_PMD_MASK &&
2400 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2401 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2402 split_huge_pmd_address(vma, start, false, NULL);
2405 * If the new end address isn't hpage aligned and it could
2406 * previously contain an hugepage: check if we need to split
2409 if (end & ~HPAGE_PMD_MASK &&
2410 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2411 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2412 split_huge_pmd_address(vma, end, false, NULL);
2415 * If we're also updating the vma->vm_next->vm_start, if the new
2416 * vm_next->vm_start isn't page aligned and it could previously
2417 * contain an hugepage: check if we need to split an huge pmd.
2419 if (adjust_next > 0) {
2420 struct vm_area_struct *next = vma->vm_next;
2421 unsigned long nstart = next->vm_start;
2422 nstart += adjust_next << PAGE_SHIFT;
2423 if (nstart & ~HPAGE_PMD_MASK &&
2424 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2425 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2426 split_huge_pmd_address(next, nstart, false, NULL);
2430 static void unmap_page(struct page *page)
2432 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2433 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | TTU_SYNC;
2435 VM_BUG_ON_PAGE(!PageHead(page), page);
2438 ttu_flags |= TTU_SPLIT_FREEZE;
2440 try_to_unmap(page, ttu_flags);
2442 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2445 static void remap_page(struct page *page)
2448 if (PageTransHuge(page)) {
2449 remove_migration_ptes(page, page, true);
2451 for (i = 0; i < HPAGE_PMD_NR; i++)
2452 remove_migration_ptes(page + i, page + i, true);
2456 static void __split_huge_page_tail(struct page *head, int tail,
2457 struct lruvec *lruvec, struct list_head *list)
2459 struct page *page_tail = head + tail;
2461 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2464 * Clone page flags before unfreezing refcount.
2466 * After successful get_page_unless_zero() might follow flags change,
2467 * for exmaple lock_page() which set PG_waiters.
2469 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2470 page_tail->flags |= (head->flags &
2471 ((1L << PG_referenced) |
2472 (1L << PG_swapbacked) |
2473 (1L << PG_swapcache) |
2474 (1L << PG_mlocked) |
2475 (1L << PG_uptodate) |
2478 (1L << PG_unevictable) |
2481 /* ->mapping in first tail page is compound_mapcount */
2482 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2484 page_tail->mapping = head->mapping;
2485 page_tail->index = head->index + tail;
2487 /* Page flags must be visible before we make the page non-compound. */
2491 * Clear PageTail before unfreezing page refcount.
2493 * After successful get_page_unless_zero() might follow put_page()
2494 * which needs correct compound_head().
2496 clear_compound_head(page_tail);
2498 /* Finally unfreeze refcount. Additional reference from page cache. */
2499 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2500 PageSwapCache(head)));
2502 if (page_is_young(head))
2503 set_page_young(page_tail);
2504 if (page_is_idle(head))
2505 set_page_idle(page_tail);
2507 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2510 * always add to the tail because some iterators expect new
2511 * pages to show after the currently processed elements - e.g.
2514 lru_add_page_tail(head, page_tail, lruvec, list);
2517 static void __split_huge_page(struct page *page, struct list_head *list,
2518 pgoff_t end, unsigned long flags)
2520 struct page *head = compound_head(page);
2521 struct zone *zone = page_zone(head);
2522 struct lruvec *lruvec;
2525 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2527 /* complete memcg works before add pages to LRU */
2528 mem_cgroup_split_huge_fixup(head);
2530 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2531 __split_huge_page_tail(head, i, lruvec, list);
2532 /* Some pages can be beyond i_size: drop them from page cache */
2533 if (head[i].index >= end) {
2534 ClearPageDirty(head + i);
2535 __delete_from_page_cache(head + i, NULL);
2536 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2537 shmem_uncharge(head->mapping->host, 1);
2542 ClearPageCompound(head);
2544 split_page_owner(head, HPAGE_PMD_ORDER);
2546 /* See comment in __split_huge_page_tail() */
2547 if (PageAnon(head)) {
2548 /* Additional pin to radix tree of swap cache */
2549 if (PageSwapCache(head))
2550 page_ref_add(head, 2);
2554 /* Additional pin to radix tree */
2555 page_ref_add(head, 2);
2556 xa_unlock(&head->mapping->i_pages);
2559 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2563 for (i = 0; i < HPAGE_PMD_NR; i++) {
2564 struct page *subpage = head + i;
2565 if (subpage == page)
2567 unlock_page(subpage);
2570 * Subpages may be freed if there wasn't any mapping
2571 * like if add_to_swap() is running on a lru page that
2572 * had its mapping zapped. And freeing these pages
2573 * requires taking the lru_lock so we do the put_page
2574 * of the tail pages after the split is complete.
2580 int total_mapcount(struct page *page)
2582 int i, compound, ret;
2584 VM_BUG_ON_PAGE(PageTail(page), page);
2586 if (likely(!PageCompound(page)))
2587 return atomic_read(&page->_mapcount) + 1;
2589 compound = compound_mapcount(page);
2593 for (i = 0; i < HPAGE_PMD_NR; i++)
2594 ret += atomic_read(&page[i]._mapcount) + 1;
2595 /* File pages has compound_mapcount included in _mapcount */
2596 if (!PageAnon(page))
2597 return ret - compound * HPAGE_PMD_NR;
2598 if (PageDoubleMap(page))
2599 ret -= HPAGE_PMD_NR;
2604 * This calculates accurately how many mappings a transparent hugepage
2605 * has (unlike page_mapcount() which isn't fully accurate). This full
2606 * accuracy is primarily needed to know if copy-on-write faults can
2607 * reuse the page and change the mapping to read-write instead of
2608 * copying them. At the same time this returns the total_mapcount too.
2610 * The function returns the highest mapcount any one of the subpages
2611 * has. If the return value is one, even if different processes are
2612 * mapping different subpages of the transparent hugepage, they can
2613 * all reuse it, because each process is reusing a different subpage.
2615 * The total_mapcount is instead counting all virtual mappings of the
2616 * subpages. If the total_mapcount is equal to "one", it tells the
2617 * caller all mappings belong to the same "mm" and in turn the
2618 * anon_vma of the transparent hugepage can become the vma->anon_vma
2619 * local one as no other process may be mapping any of the subpages.
2621 * It would be more accurate to replace page_mapcount() with
2622 * page_trans_huge_mapcount(), however we only use
2623 * page_trans_huge_mapcount() in the copy-on-write faults where we
2624 * need full accuracy to avoid breaking page pinning, because
2625 * page_trans_huge_mapcount() is slower than page_mapcount().
2627 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2629 int i, ret, _total_mapcount, mapcount;
2631 /* hugetlbfs shouldn't call it */
2632 VM_BUG_ON_PAGE(PageHuge(page), page);
2634 if (likely(!PageTransCompound(page))) {
2635 mapcount = atomic_read(&page->_mapcount) + 1;
2637 *total_mapcount = mapcount;
2641 page = compound_head(page);
2643 _total_mapcount = ret = 0;
2644 for (i = 0; i < HPAGE_PMD_NR; i++) {
2645 mapcount = atomic_read(&page[i]._mapcount) + 1;
2646 ret = max(ret, mapcount);
2647 _total_mapcount += mapcount;
2649 if (PageDoubleMap(page)) {
2651 _total_mapcount -= HPAGE_PMD_NR;
2653 mapcount = compound_mapcount(page);
2655 _total_mapcount += mapcount;
2657 *total_mapcount = _total_mapcount;
2661 /* Racy check whether the huge page can be split */
2662 bool can_split_huge_page(struct page *page, int *pextra_pins)
2666 /* Additional pins from radix tree */
2668 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2670 extra_pins = HPAGE_PMD_NR;
2672 *pextra_pins = extra_pins;
2673 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2677 * This function splits huge page into normal pages. @page can point to any
2678 * subpage of huge page to split. Split doesn't change the position of @page.
2680 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2681 * The huge page must be locked.
2683 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2685 * Both head page and tail pages will inherit mapping, flags, and so on from
2688 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2689 * they are not mapped.
2691 * Returns 0 if the hugepage is split successfully.
2692 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2695 int split_huge_page_to_list(struct page *page, struct list_head *list)
2697 struct page *head = compound_head(page);
2698 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2699 struct anon_vma *anon_vma = NULL;
2700 struct address_space *mapping = NULL;
2701 int extra_pins, ret;
2703 unsigned long flags;
2706 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2707 VM_BUG_ON_PAGE(!PageLocked(page), page);
2708 VM_BUG_ON_PAGE(!PageCompound(page), page);
2710 if (PageWriteback(page))
2713 if (PageAnon(head)) {
2715 * The caller does not necessarily hold an mmap_sem that would
2716 * prevent the anon_vma disappearing so we first we take a
2717 * reference to it and then lock the anon_vma for write. This
2718 * is similar to page_lock_anon_vma_read except the write lock
2719 * is taken to serialise against parallel split or collapse
2722 anon_vma = page_get_anon_vma(head);
2729 anon_vma_lock_write(anon_vma);
2731 mapping = head->mapping;
2740 i_mmap_lock_read(mapping);
2743 *__split_huge_page() may need to trim off pages beyond EOF:
2744 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2745 * which cannot be nested inside the page tree lock. So note
2746 * end now: i_size itself may be changed at any moment, but
2747 * head page lock is good enough to serialize the trimming.
2749 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2753 * Racy check if we can split the page, before unmap_page() will
2756 if (!can_split_huge_page(head, &extra_pins)) {
2761 mlocked = PageMlocked(page);
2764 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2768 /* prevent PageLRU to go away from under us, and freeze lru stats */
2769 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2774 xa_lock(&mapping->i_pages);
2775 pslot = radix_tree_lookup_slot(&mapping->i_pages,
2778 * Check if the head page is present in radix tree.
2779 * We assume all tail are present too, if head is there.
2781 if (radix_tree_deref_slot_protected(pslot,
2782 &mapping->i_pages.xa_lock) != head)
2786 /* Prevent deferred_split_scan() touching ->_refcount */
2787 spin_lock(&pgdata->split_queue_lock);
2788 if (page_ref_freeze(head, 1 + extra_pins)) {
2789 if (!list_empty(page_deferred_list(head))) {
2790 pgdata->split_queue_len--;
2791 list_del(page_deferred_list(head));
2794 __dec_node_page_state(page, NR_SHMEM_THPS);
2795 spin_unlock(&pgdata->split_queue_lock);
2796 __split_huge_page(page, list, end, flags);
2797 if (PageSwapCache(head)) {
2798 swp_entry_t entry = { .val = page_private(head) };
2800 ret = split_swap_cluster(entry);
2804 spin_unlock(&pgdata->split_queue_lock);
2807 xa_unlock(&mapping->i_pages);
2808 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2815 anon_vma_unlock_write(anon_vma);
2816 put_anon_vma(anon_vma);
2819 i_mmap_unlock_read(mapping);
2821 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2825 void free_transhuge_page(struct page *page)
2827 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2828 unsigned long flags;
2830 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2831 if (!list_empty(page_deferred_list(page))) {
2832 pgdata->split_queue_len--;
2833 list_del(page_deferred_list(page));
2835 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2836 free_compound_page(page);
2839 void deferred_split_huge_page(struct page *page)
2841 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2842 unsigned long flags;
2844 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2846 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2847 if (list_empty(page_deferred_list(page))) {
2848 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2849 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2850 pgdata->split_queue_len++;
2852 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2855 static unsigned long deferred_split_count(struct shrinker *shrink,
2856 struct shrink_control *sc)
2858 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2859 return READ_ONCE(pgdata->split_queue_len);
2862 static unsigned long deferred_split_scan(struct shrinker *shrink,
2863 struct shrink_control *sc)
2865 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2866 unsigned long flags;
2867 LIST_HEAD(list), *pos, *next;
2871 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2872 /* Take pin on all head pages to avoid freeing them under us */
2873 list_for_each_safe(pos, next, &pgdata->split_queue) {
2874 page = list_entry((void *)pos, struct page, mapping);
2875 page = compound_head(page);
2876 if (get_page_unless_zero(page)) {
2877 list_move(page_deferred_list(page), &list);
2879 /* We lost race with put_compound_page() */
2880 list_del_init(page_deferred_list(page));
2881 pgdata->split_queue_len--;
2883 if (!--sc->nr_to_scan)
2886 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2888 list_for_each_safe(pos, next, &list) {
2889 page = list_entry((void *)pos, struct page, mapping);
2890 if (!trylock_page(page))
2892 /* split_huge_page() removes page from list on success */
2893 if (!split_huge_page(page))
2900 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2901 list_splice_tail(&list, &pgdata->split_queue);
2902 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2905 * Stop shrinker if we didn't split any page, but the queue is empty.
2906 * This can happen if pages were freed under us.
2908 if (!split && list_empty(&pgdata->split_queue))
2913 static struct shrinker deferred_split_shrinker = {
2914 .count_objects = deferred_split_count,
2915 .scan_objects = deferred_split_scan,
2916 .seeks = DEFAULT_SEEKS,
2917 .flags = SHRINKER_NUMA_AWARE,
2920 #ifdef CONFIG_DEBUG_FS
2921 static int split_huge_pages_set(void *data, u64 val)
2925 unsigned long pfn, max_zone_pfn;
2926 unsigned long total = 0, split = 0;
2931 for_each_populated_zone(zone) {
2932 max_zone_pfn = zone_end_pfn(zone);
2933 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2934 if (!pfn_valid(pfn))
2937 page = pfn_to_page(pfn);
2938 if (!get_page_unless_zero(page))
2941 if (zone != page_zone(page))
2944 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2949 if (!split_huge_page(page))
2957 pr_info("%lu of %lu THP split\n", split, total);
2961 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2964 static int __init split_huge_pages_debugfs(void)
2968 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2969 &split_huge_pages_fops);
2971 pr_warn("Failed to create split_huge_pages in debugfs");
2974 late_initcall(split_huge_pages_debugfs);
2977 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2978 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2981 struct vm_area_struct *vma = pvmw->vma;
2982 struct mm_struct *mm = vma->vm_mm;
2983 unsigned long address = pvmw->address;
2988 if (!(pvmw->pmd && !pvmw->pte))
2991 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2992 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2993 if (pmd_dirty(pmdval))
2994 set_page_dirty(page);
2995 entry = make_migration_entry(page, pmd_write(pmdval));
2996 pmdswp = swp_entry_to_pmd(entry);
2997 if (pmd_soft_dirty(pmdval))
2998 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2999 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3000 page_remove_rmap(page, true);
3004 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3006 struct vm_area_struct *vma = pvmw->vma;
3007 struct mm_struct *mm = vma->vm_mm;
3008 unsigned long address = pvmw->address;
3009 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3013 if (!(pvmw->pmd && !pvmw->pte))
3016 entry = pmd_to_swp_entry(*pvmw->pmd);
3018 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3019 if (pmd_swp_soft_dirty(*pvmw->pmd))
3020 pmde = pmd_mksoft_dirty(pmde);
3021 if (is_write_migration_entry(entry))
3022 pmde = maybe_pmd_mkwrite(pmde, vma);
3024 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3026 page_add_anon_rmap(new, vma, mmun_start, true);
3028 page_add_file_rmap(new, true);
3029 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3030 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3031 mlock_vma_page(new);
3032 update_mmu_cache_pmd(vma, address, pvmw->pmd);