GNU Linux-libre 4.19.211-gnu1
[releases.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem              (truncate_pagecache)
67  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock             (exclusive_swap_page, others)
69  *        ->i_pages lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
77  *        ->i_pages lock        (arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page               (access_process_vm)
81  *
82  *  ->i_mutex                   (generic_perform_write)
83  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock                   (fs/fs-writeback.c)
87  *    ->i_pages lock            (__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock           (vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock               (try_to_unmap_one)
97  *    ->private_lock            (try_to_unmap_one)
98  *    ->i_pages lock            (try_to_unmap_one)
99  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
101  *    ->private_lock            (page_remove_rmap->set_page_dirty)
102  *    ->i_pages lock            (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
108  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115                                   struct page *page, void **shadowp)
116 {
117         struct radix_tree_node *node;
118         void **slot;
119         int error;
120
121         error = __radix_tree_create(&mapping->i_pages, page->index, 0,
122                                     &node, &slot);
123         if (error)
124                 return error;
125         if (*slot) {
126                 void *p;
127
128                 p = radix_tree_deref_slot_protected(slot,
129                                                     &mapping->i_pages.xa_lock);
130                 if (!radix_tree_exceptional_entry(p))
131                         return -EEXIST;
132
133                 mapping->nrexceptional--;
134                 if (shadowp)
135                         *shadowp = p;
136         }
137         __radix_tree_replace(&mapping->i_pages, node, slot, page,
138                              workingset_lookup_update(mapping));
139         mapping->nrpages++;
140         return 0;
141 }
142
143 static void page_cache_tree_delete(struct address_space *mapping,
144                                    struct page *page, void *shadow)
145 {
146         int i, nr;
147
148         /* hugetlb pages are represented by one entry in the radix tree */
149         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
150
151         VM_BUG_ON_PAGE(!PageLocked(page), page);
152         VM_BUG_ON_PAGE(PageTail(page), page);
153         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
154
155         for (i = 0; i < nr; i++) {
156                 struct radix_tree_node *node;
157                 void **slot;
158
159                 __radix_tree_lookup(&mapping->i_pages, page->index + i,
160                                     &node, &slot);
161
162                 VM_BUG_ON_PAGE(!node && nr != 1, page);
163
164                 radix_tree_clear_tags(&mapping->i_pages, node, slot);
165                 __radix_tree_replace(&mapping->i_pages, node, slot, shadow,
166                                 workingset_lookup_update(mapping));
167         }
168
169         page->mapping = NULL;
170         /* Leave page->index set: truncation lookup relies upon it */
171
172         if (shadow) {
173                 mapping->nrexceptional += nr;
174                 /*
175                  * Make sure the nrexceptional update is committed before
176                  * the nrpages update so that final truncate racing
177                  * with reclaim does not see both counters 0 at the
178                  * same time and miss a shadow entry.
179                  */
180                 smp_wmb();
181         }
182         mapping->nrpages -= nr;
183 }
184
185 static void unaccount_page_cache_page(struct address_space *mapping,
186                                       struct page *page)
187 {
188         int nr;
189
190         /*
191          * if we're uptodate, flush out into the cleancache, otherwise
192          * invalidate any existing cleancache entries.  We can't leave
193          * stale data around in the cleancache once our page is gone
194          */
195         if (PageUptodate(page) && PageMappedToDisk(page))
196                 cleancache_put_page(page);
197         else
198                 cleancache_invalidate_page(mapping, page);
199
200         VM_BUG_ON_PAGE(PageTail(page), page);
201         VM_BUG_ON_PAGE(page_mapped(page), page);
202         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
203                 int mapcount;
204
205                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
206                          current->comm, page_to_pfn(page));
207                 dump_page(page, "still mapped when deleted");
208                 dump_stack();
209                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
210
211                 mapcount = page_mapcount(page);
212                 if (mapping_exiting(mapping) &&
213                     page_count(page) >= mapcount + 2) {
214                         /*
215                          * All vmas have already been torn down, so it's
216                          * a good bet that actually the page is unmapped,
217                          * and we'd prefer not to leak it: if we're wrong,
218                          * some other bad page check should catch it later.
219                          */
220                         page_mapcount_reset(page);
221                         page_ref_sub(page, mapcount);
222                 }
223         }
224
225         /* hugetlb pages do not participate in page cache accounting. */
226         if (PageHuge(page))
227                 return;
228
229         nr = hpage_nr_pages(page);
230
231         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
232         if (PageSwapBacked(page)) {
233                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
234                 if (PageTransHuge(page))
235                         __dec_node_page_state(page, NR_SHMEM_THPS);
236         } else {
237                 VM_BUG_ON_PAGE(PageTransHuge(page), page);
238         }
239
240         /*
241          * At this point page must be either written or cleaned by
242          * truncate.  Dirty page here signals a bug and loss of
243          * unwritten data.
244          *
245          * This fixes dirty accounting after removing the page entirely
246          * but leaves PageDirty set: it has no effect for truncated
247          * page and anyway will be cleared before returning page into
248          * buddy allocator.
249          */
250         if (WARN_ON_ONCE(PageDirty(page)))
251                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
252 }
253
254 /*
255  * Delete a page from the page cache and free it. Caller has to make
256  * sure the page is locked and that nobody else uses it - or that usage
257  * is safe.  The caller must hold the i_pages lock.
258  */
259 void __delete_from_page_cache(struct page *page, void *shadow)
260 {
261         struct address_space *mapping = page->mapping;
262
263         trace_mm_filemap_delete_from_page_cache(page);
264
265         unaccount_page_cache_page(mapping, page);
266         page_cache_tree_delete(mapping, page, shadow);
267 }
268
269 static void page_cache_free_page(struct address_space *mapping,
270                                 struct page *page)
271 {
272         void (*freepage)(struct page *);
273
274         freepage = mapping->a_ops->freepage;
275         if (freepage)
276                 freepage(page);
277
278         if (PageTransHuge(page) && !PageHuge(page)) {
279                 page_ref_sub(page, HPAGE_PMD_NR);
280                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
281         } else {
282                 put_page(page);
283         }
284 }
285
286 /**
287  * delete_from_page_cache - delete page from page cache
288  * @page: the page which the kernel is trying to remove from page cache
289  *
290  * This must be called only on pages that have been verified to be in the page
291  * cache and locked.  It will never put the page into the free list, the caller
292  * has a reference on the page.
293  */
294 void delete_from_page_cache(struct page *page)
295 {
296         struct address_space *mapping = page_mapping(page);
297         unsigned long flags;
298
299         BUG_ON(!PageLocked(page));
300         xa_lock_irqsave(&mapping->i_pages, flags);
301         __delete_from_page_cache(page, NULL);
302         xa_unlock_irqrestore(&mapping->i_pages, flags);
303
304         page_cache_free_page(mapping, page);
305 }
306 EXPORT_SYMBOL(delete_from_page_cache);
307
308 /*
309  * page_cache_tree_delete_batch - delete several pages from page cache
310  * @mapping: the mapping to which pages belong
311  * @pvec: pagevec with pages to delete
312  *
313  * The function walks over mapping->i_pages and removes pages passed in @pvec
314  * from the mapping. The function expects @pvec to be sorted by page index.
315  * It tolerates holes in @pvec (mapping entries at those indices are not
316  * modified). The function expects only THP head pages to be present in the
317  * @pvec and takes care to delete all corresponding tail pages from the
318  * mapping as well.
319  *
320  * The function expects the i_pages lock to be held.
321  */
322 static void
323 page_cache_tree_delete_batch(struct address_space *mapping,
324                              struct pagevec *pvec)
325 {
326         struct radix_tree_iter iter;
327         void **slot;
328         int total_pages = 0;
329         int i = 0, tail_pages = 0;
330         struct page *page;
331         pgoff_t start;
332
333         start = pvec->pages[0]->index;
334         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
335                 if (i >= pagevec_count(pvec) && !tail_pages)
336                         break;
337                 page = radix_tree_deref_slot_protected(slot,
338                                                        &mapping->i_pages.xa_lock);
339                 if (radix_tree_exceptional_entry(page))
340                         continue;
341                 if (!tail_pages) {
342                         /*
343                          * Some page got inserted in our range? Skip it. We
344                          * have our pages locked so they are protected from
345                          * being removed.
346                          */
347                         if (page != pvec->pages[i])
348                                 continue;
349                         WARN_ON_ONCE(!PageLocked(page));
350                         if (PageTransHuge(page) && !PageHuge(page))
351                                 tail_pages = HPAGE_PMD_NR - 1;
352                         page->mapping = NULL;
353                         /*
354                          * Leave page->index set: truncation lookup relies
355                          * upon it
356                          */
357                         i++;
358                 } else {
359                         tail_pages--;
360                 }
361                 radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
362                 __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
363                                 workingset_lookup_update(mapping));
364                 total_pages++;
365         }
366         mapping->nrpages -= total_pages;
367 }
368
369 void delete_from_page_cache_batch(struct address_space *mapping,
370                                   struct pagevec *pvec)
371 {
372         int i;
373         unsigned long flags;
374
375         if (!pagevec_count(pvec))
376                 return;
377
378         xa_lock_irqsave(&mapping->i_pages, flags);
379         for (i = 0; i < pagevec_count(pvec); i++) {
380                 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
381
382                 unaccount_page_cache_page(mapping, pvec->pages[i]);
383         }
384         page_cache_tree_delete_batch(mapping, pvec);
385         xa_unlock_irqrestore(&mapping->i_pages, flags);
386
387         for (i = 0; i < pagevec_count(pvec); i++)
388                 page_cache_free_page(mapping, pvec->pages[i]);
389 }
390
391 int filemap_check_errors(struct address_space *mapping)
392 {
393         int ret = 0;
394         /* Check for outstanding write errors */
395         if (test_bit(AS_ENOSPC, &mapping->flags) &&
396             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
397                 ret = -ENOSPC;
398         if (test_bit(AS_EIO, &mapping->flags) &&
399             test_and_clear_bit(AS_EIO, &mapping->flags))
400                 ret = -EIO;
401         return ret;
402 }
403 EXPORT_SYMBOL(filemap_check_errors);
404
405 static int filemap_check_and_keep_errors(struct address_space *mapping)
406 {
407         /* Check for outstanding write errors */
408         if (test_bit(AS_EIO, &mapping->flags))
409                 return -EIO;
410         if (test_bit(AS_ENOSPC, &mapping->flags))
411                 return -ENOSPC;
412         return 0;
413 }
414
415 /**
416  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
417  * @mapping:    address space structure to write
418  * @start:      offset in bytes where the range starts
419  * @end:        offset in bytes where the range ends (inclusive)
420  * @sync_mode:  enable synchronous operation
421  *
422  * Start writeback against all of a mapping's dirty pages that lie
423  * within the byte offsets <start, end> inclusive.
424  *
425  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
426  * opposed to a regular memory cleansing writeback.  The difference between
427  * these two operations is that if a dirty page/buffer is encountered, it must
428  * be waited upon, and not just skipped over.
429  */
430 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431                                 loff_t end, int sync_mode)
432 {
433         int ret;
434         struct writeback_control wbc = {
435                 .sync_mode = sync_mode,
436                 .nr_to_write = LONG_MAX,
437                 .range_start = start,
438                 .range_end = end,
439         };
440
441         if (!mapping_cap_writeback_dirty(mapping) ||
442             !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
443                 return 0;
444
445         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
446         ret = do_writepages(mapping, &wbc);
447         wbc_detach_inode(&wbc);
448         return ret;
449 }
450
451 static inline int __filemap_fdatawrite(struct address_space *mapping,
452         int sync_mode)
453 {
454         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
455 }
456
457 int filemap_fdatawrite(struct address_space *mapping)
458 {
459         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
460 }
461 EXPORT_SYMBOL(filemap_fdatawrite);
462
463 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
464                                 loff_t end)
465 {
466         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
467 }
468 EXPORT_SYMBOL(filemap_fdatawrite_range);
469
470 /**
471  * filemap_flush - mostly a non-blocking flush
472  * @mapping:    target address_space
473  *
474  * This is a mostly non-blocking flush.  Not suitable for data-integrity
475  * purposes - I/O may not be started against all dirty pages.
476  */
477 int filemap_flush(struct address_space *mapping)
478 {
479         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
480 }
481 EXPORT_SYMBOL(filemap_flush);
482
483 /**
484  * filemap_range_has_page - check if a page exists in range.
485  * @mapping:           address space within which to check
486  * @start_byte:        offset in bytes where the range starts
487  * @end_byte:          offset in bytes where the range ends (inclusive)
488  *
489  * Find at least one page in the range supplied, usually used to check if
490  * direct writing in this range will trigger a writeback.
491  */
492 bool filemap_range_has_page(struct address_space *mapping,
493                            loff_t start_byte, loff_t end_byte)
494 {
495         pgoff_t index = start_byte >> PAGE_SHIFT;
496         pgoff_t end = end_byte >> PAGE_SHIFT;
497         struct page *page;
498
499         if (end_byte < start_byte)
500                 return false;
501
502         if (mapping->nrpages == 0)
503                 return false;
504
505         if (!find_get_pages_range(mapping, &index, end, 1, &page))
506                 return false;
507         put_page(page);
508         return true;
509 }
510 EXPORT_SYMBOL(filemap_range_has_page);
511
512 static void __filemap_fdatawait_range(struct address_space *mapping,
513                                      loff_t start_byte, loff_t end_byte)
514 {
515         pgoff_t index = start_byte >> PAGE_SHIFT;
516         pgoff_t end = end_byte >> PAGE_SHIFT;
517         struct pagevec pvec;
518         int nr_pages;
519
520         if (end_byte < start_byte)
521                 return;
522
523         pagevec_init(&pvec);
524         while (index <= end) {
525                 unsigned i;
526
527                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
528                                 end, PAGECACHE_TAG_WRITEBACK);
529                 if (!nr_pages)
530                         break;
531
532                 for (i = 0; i < nr_pages; i++) {
533                         struct page *page = pvec.pages[i];
534
535                         wait_on_page_writeback(page);
536                         ClearPageError(page);
537                 }
538                 pagevec_release(&pvec);
539                 cond_resched();
540         }
541 }
542
543 /**
544  * filemap_fdatawait_range - wait for writeback to complete
545  * @mapping:            address space structure to wait for
546  * @start_byte:         offset in bytes where the range starts
547  * @end_byte:           offset in bytes where the range ends (inclusive)
548  *
549  * Walk the list of under-writeback pages of the given address space
550  * in the given range and wait for all of them.  Check error status of
551  * the address space and return it.
552  *
553  * Since the error status of the address space is cleared by this function,
554  * callers are responsible for checking the return value and handling and/or
555  * reporting the error.
556  */
557 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
558                             loff_t end_byte)
559 {
560         __filemap_fdatawait_range(mapping, start_byte, end_byte);
561         return filemap_check_errors(mapping);
562 }
563 EXPORT_SYMBOL(filemap_fdatawait_range);
564
565 /**
566  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
567  * @mapping:            address space structure to wait for
568  * @start_byte:         offset in bytes where the range starts
569  * @end_byte:           offset in bytes where the range ends (inclusive)
570  *
571  * Walk the list of under-writeback pages of the given address space in the
572  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
573  * this function does not clear error status of the address space.
574  *
575  * Use this function if callers don't handle errors themselves.  Expected
576  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
577  * fsfreeze(8)
578  */
579 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
580                 loff_t start_byte, loff_t end_byte)
581 {
582         __filemap_fdatawait_range(mapping, start_byte, end_byte);
583         return filemap_check_and_keep_errors(mapping);
584 }
585 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
586
587 /**
588  * file_fdatawait_range - wait for writeback to complete
589  * @file:               file pointing to address space structure to wait for
590  * @start_byte:         offset in bytes where the range starts
591  * @end_byte:           offset in bytes where the range ends (inclusive)
592  *
593  * Walk the list of under-writeback pages of the address space that file
594  * refers to, in the given range and wait for all of them.  Check error
595  * status of the address space vs. the file->f_wb_err cursor and return it.
596  *
597  * Since the error status of the file is advanced by this function,
598  * callers are responsible for checking the return value and handling and/or
599  * reporting the error.
600  */
601 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
602 {
603         struct address_space *mapping = file->f_mapping;
604
605         __filemap_fdatawait_range(mapping, start_byte, end_byte);
606         return file_check_and_advance_wb_err(file);
607 }
608 EXPORT_SYMBOL(file_fdatawait_range);
609
610 /**
611  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
612  * @mapping: address space structure to wait for
613  *
614  * Walk the list of under-writeback pages of the given address space
615  * and wait for all of them.  Unlike filemap_fdatawait(), this function
616  * does not clear error status of the address space.
617  *
618  * Use this function if callers don't handle errors themselves.  Expected
619  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
620  * fsfreeze(8)
621  */
622 int filemap_fdatawait_keep_errors(struct address_space *mapping)
623 {
624         __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
625         return filemap_check_and_keep_errors(mapping);
626 }
627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
628
629 static bool mapping_needs_writeback(struct address_space *mapping)
630 {
631         return (!dax_mapping(mapping) && mapping->nrpages) ||
632             (dax_mapping(mapping) && mapping->nrexceptional);
633 }
634
635 int filemap_write_and_wait(struct address_space *mapping)
636 {
637         int err = 0;
638
639         if (mapping_needs_writeback(mapping)) {
640                 err = filemap_fdatawrite(mapping);
641                 /*
642                  * Even if the above returned error, the pages may be
643                  * written partially (e.g. -ENOSPC), so we wait for it.
644                  * But the -EIO is special case, it may indicate the worst
645                  * thing (e.g. bug) happened, so we avoid waiting for it.
646                  */
647                 if (err != -EIO) {
648                         int err2 = filemap_fdatawait(mapping);
649                         if (!err)
650                                 err = err2;
651                 } else {
652                         /* Clear any previously stored errors */
653                         filemap_check_errors(mapping);
654                 }
655         } else {
656                 err = filemap_check_errors(mapping);
657         }
658         return err;
659 }
660 EXPORT_SYMBOL(filemap_write_and_wait);
661
662 /**
663  * filemap_write_and_wait_range - write out & wait on a file range
664  * @mapping:    the address_space for the pages
665  * @lstart:     offset in bytes where the range starts
666  * @lend:       offset in bytes where the range ends (inclusive)
667  *
668  * Write out and wait upon file offsets lstart->lend, inclusive.
669  *
670  * Note that @lend is inclusive (describes the last byte to be written) so
671  * that this function can be used to write to the very end-of-file (end = -1).
672  */
673 int filemap_write_and_wait_range(struct address_space *mapping,
674                                  loff_t lstart, loff_t lend)
675 {
676         int err = 0;
677
678         if (mapping_needs_writeback(mapping)) {
679                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
680                                                  WB_SYNC_ALL);
681                 /* See comment of filemap_write_and_wait() */
682                 if (err != -EIO) {
683                         int err2 = filemap_fdatawait_range(mapping,
684                                                 lstart, lend);
685                         if (!err)
686                                 err = err2;
687                 } else {
688                         /* Clear any previously stored errors */
689                         filemap_check_errors(mapping);
690                 }
691         } else {
692                 err = filemap_check_errors(mapping);
693         }
694         return err;
695 }
696 EXPORT_SYMBOL(filemap_write_and_wait_range);
697
698 void __filemap_set_wb_err(struct address_space *mapping, int err)
699 {
700         errseq_t eseq = errseq_set(&mapping->wb_err, err);
701
702         trace_filemap_set_wb_err(mapping, eseq);
703 }
704 EXPORT_SYMBOL(__filemap_set_wb_err);
705
706 /**
707  * file_check_and_advance_wb_err - report wb error (if any) that was previously
708  *                                 and advance wb_err to current one
709  * @file: struct file on which the error is being reported
710  *
711  * When userland calls fsync (or something like nfsd does the equivalent), we
712  * want to report any writeback errors that occurred since the last fsync (or
713  * since the file was opened if there haven't been any).
714  *
715  * Grab the wb_err from the mapping. If it matches what we have in the file,
716  * then just quickly return 0. The file is all caught up.
717  *
718  * If it doesn't match, then take the mapping value, set the "seen" flag in
719  * it and try to swap it into place. If it works, or another task beat us
720  * to it with the new value, then update the f_wb_err and return the error
721  * portion. The error at this point must be reported via proper channels
722  * (a'la fsync, or NFS COMMIT operation, etc.).
723  *
724  * While we handle mapping->wb_err with atomic operations, the f_wb_err
725  * value is protected by the f_lock since we must ensure that it reflects
726  * the latest value swapped in for this file descriptor.
727  */
728 int file_check_and_advance_wb_err(struct file *file)
729 {
730         int err = 0;
731         errseq_t old = READ_ONCE(file->f_wb_err);
732         struct address_space *mapping = file->f_mapping;
733
734         /* Locklessly handle the common case where nothing has changed */
735         if (errseq_check(&mapping->wb_err, old)) {
736                 /* Something changed, must use slow path */
737                 spin_lock(&file->f_lock);
738                 old = file->f_wb_err;
739                 err = errseq_check_and_advance(&mapping->wb_err,
740                                                 &file->f_wb_err);
741                 trace_file_check_and_advance_wb_err(file, old);
742                 spin_unlock(&file->f_lock);
743         }
744
745         /*
746          * We're mostly using this function as a drop in replacement for
747          * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748          * that the legacy code would have had on these flags.
749          */
750         clear_bit(AS_EIO, &mapping->flags);
751         clear_bit(AS_ENOSPC, &mapping->flags);
752         return err;
753 }
754 EXPORT_SYMBOL(file_check_and_advance_wb_err);
755
756 /**
757  * file_write_and_wait_range - write out & wait on a file range
758  * @file:       file pointing to address_space with pages
759  * @lstart:     offset in bytes where the range starts
760  * @lend:       offset in bytes where the range ends (inclusive)
761  *
762  * Write out and wait upon file offsets lstart->lend, inclusive.
763  *
764  * Note that @lend is inclusive (describes the last byte to be written) so
765  * that this function can be used to write to the very end-of-file (end = -1).
766  *
767  * After writing out and waiting on the data, we check and advance the
768  * f_wb_err cursor to the latest value, and return any errors detected there.
769  */
770 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
771 {
772         int err = 0, err2;
773         struct address_space *mapping = file->f_mapping;
774
775         if (mapping_needs_writeback(mapping)) {
776                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
777                                                  WB_SYNC_ALL);
778                 /* See comment of filemap_write_and_wait() */
779                 if (err != -EIO)
780                         __filemap_fdatawait_range(mapping, lstart, lend);
781         }
782         err2 = file_check_and_advance_wb_err(file);
783         if (!err)
784                 err = err2;
785         return err;
786 }
787 EXPORT_SYMBOL(file_write_and_wait_range);
788
789 /**
790  * replace_page_cache_page - replace a pagecache page with a new one
791  * @old:        page to be replaced
792  * @new:        page to replace with
793  * @gfp_mask:   allocation mode
794  *
795  * This function replaces a page in the pagecache with a new one.  On
796  * success it acquires the pagecache reference for the new page and
797  * drops it for the old page.  Both the old and new pages must be
798  * locked.  This function does not add the new page to the LRU, the
799  * caller must do that.
800  *
801  * The remove + add is atomic.  The only way this function can fail is
802  * memory allocation failure.
803  */
804 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
805 {
806         int error;
807
808         VM_BUG_ON_PAGE(!PageLocked(old), old);
809         VM_BUG_ON_PAGE(!PageLocked(new), new);
810         VM_BUG_ON_PAGE(new->mapping, new);
811
812         error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
813         if (!error) {
814                 struct address_space *mapping = old->mapping;
815                 void (*freepage)(struct page *);
816                 unsigned long flags;
817
818                 pgoff_t offset = old->index;
819                 freepage = mapping->a_ops->freepage;
820
821                 get_page(new);
822                 new->mapping = mapping;
823                 new->index = offset;
824
825                 xa_lock_irqsave(&mapping->i_pages, flags);
826                 __delete_from_page_cache(old, NULL);
827                 error = page_cache_tree_insert(mapping, new, NULL);
828                 BUG_ON(error);
829
830                 /*
831                  * hugetlb pages do not participate in page cache accounting.
832                  */
833                 if (!PageHuge(new))
834                         __inc_node_page_state(new, NR_FILE_PAGES);
835                 if (PageSwapBacked(new))
836                         __inc_node_page_state(new, NR_SHMEM);
837                 xa_unlock_irqrestore(&mapping->i_pages, flags);
838                 mem_cgroup_migrate(old, new);
839                 radix_tree_preload_end();
840                 if (freepage)
841                         freepage(old);
842                 put_page(old);
843         }
844
845         return error;
846 }
847 EXPORT_SYMBOL_GPL(replace_page_cache_page);
848
849 static int __add_to_page_cache_locked(struct page *page,
850                                       struct address_space *mapping,
851                                       pgoff_t offset, gfp_t gfp_mask,
852                                       void **shadowp)
853 {
854         int huge = PageHuge(page);
855         struct mem_cgroup *memcg;
856         int error;
857
858         VM_BUG_ON_PAGE(!PageLocked(page), page);
859         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
860
861         if (!huge) {
862                 error = mem_cgroup_try_charge(page, current->mm,
863                                               gfp_mask, &memcg, false);
864                 if (error)
865                         return error;
866         }
867
868         error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
869         if (error) {
870                 if (!huge)
871                         mem_cgroup_cancel_charge(page, memcg, false);
872                 return error;
873         }
874
875         get_page(page);
876         page->mapping = mapping;
877         page->index = offset;
878
879         xa_lock_irq(&mapping->i_pages);
880         error = page_cache_tree_insert(mapping, page, shadowp);
881         radix_tree_preload_end();
882         if (unlikely(error))
883                 goto err_insert;
884
885         /* hugetlb pages do not participate in page cache accounting. */
886         if (!huge)
887                 __inc_node_page_state(page, NR_FILE_PAGES);
888         xa_unlock_irq(&mapping->i_pages);
889         if (!huge)
890                 mem_cgroup_commit_charge(page, memcg, false, false);
891         trace_mm_filemap_add_to_page_cache(page);
892         return 0;
893 err_insert:
894         page->mapping = NULL;
895         /* Leave page->index set: truncation relies upon it */
896         xa_unlock_irq(&mapping->i_pages);
897         if (!huge)
898                 mem_cgroup_cancel_charge(page, memcg, false);
899         put_page(page);
900         return error;
901 }
902
903 /**
904  * add_to_page_cache_locked - add a locked page to the pagecache
905  * @page:       page to add
906  * @mapping:    the page's address_space
907  * @offset:     page index
908  * @gfp_mask:   page allocation mode
909  *
910  * This function is used to add a page to the pagecache. It must be locked.
911  * This function does not add the page to the LRU.  The caller must do that.
912  */
913 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
914                 pgoff_t offset, gfp_t gfp_mask)
915 {
916         return __add_to_page_cache_locked(page, mapping, offset,
917                                           gfp_mask, NULL);
918 }
919 EXPORT_SYMBOL(add_to_page_cache_locked);
920
921 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
922                                 pgoff_t offset, gfp_t gfp_mask)
923 {
924         void *shadow = NULL;
925         int ret;
926
927         __SetPageLocked(page);
928         ret = __add_to_page_cache_locked(page, mapping, offset,
929                                          gfp_mask, &shadow);
930         if (unlikely(ret))
931                 __ClearPageLocked(page);
932         else {
933                 /*
934                  * The page might have been evicted from cache only
935                  * recently, in which case it should be activated like
936                  * any other repeatedly accessed page.
937                  * The exception is pages getting rewritten; evicting other
938                  * data from the working set, only to cache data that will
939                  * get overwritten with something else, is a waste of memory.
940                  */
941                 if (!(gfp_mask & __GFP_WRITE) &&
942                     shadow && workingset_refault(shadow)) {
943                         SetPageActive(page);
944                         workingset_activation(page);
945                 } else
946                         ClearPageActive(page);
947                 lru_cache_add(page);
948         }
949         return ret;
950 }
951 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
952
953 #ifdef CONFIG_NUMA
954 struct page *__page_cache_alloc(gfp_t gfp)
955 {
956         int n;
957         struct page *page;
958
959         if (cpuset_do_page_mem_spread()) {
960                 unsigned int cpuset_mems_cookie;
961                 do {
962                         cpuset_mems_cookie = read_mems_allowed_begin();
963                         n = cpuset_mem_spread_node();
964                         page = __alloc_pages_node(n, gfp, 0);
965                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
966
967                 return page;
968         }
969         return alloc_pages(gfp, 0);
970 }
971 EXPORT_SYMBOL(__page_cache_alloc);
972 #endif
973
974 /*
975  * In order to wait for pages to become available there must be
976  * waitqueues associated with pages. By using a hash table of
977  * waitqueues where the bucket discipline is to maintain all
978  * waiters on the same queue and wake all when any of the pages
979  * become available, and for the woken contexts to check to be
980  * sure the appropriate page became available, this saves space
981  * at a cost of "thundering herd" phenomena during rare hash
982  * collisions.
983  */
984 #define PAGE_WAIT_TABLE_BITS 8
985 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
986 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
987
988 static wait_queue_head_t *page_waitqueue(struct page *page)
989 {
990         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
991 }
992
993 void __init pagecache_init(void)
994 {
995         int i;
996
997         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
998                 init_waitqueue_head(&page_wait_table[i]);
999
1000         page_writeback_init();
1001 }
1002
1003 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1004 struct wait_page_key {
1005         struct page *page;
1006         int bit_nr;
1007         int page_match;
1008 };
1009
1010 struct wait_page_queue {
1011         struct page *page;
1012         int bit_nr;
1013         wait_queue_entry_t wait;
1014 };
1015
1016 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1017 {
1018         struct wait_page_key *key = arg;
1019         struct wait_page_queue *wait_page
1020                 = container_of(wait, struct wait_page_queue, wait);
1021
1022         if (wait_page->page != key->page)
1023                return 0;
1024         key->page_match = 1;
1025
1026         if (wait_page->bit_nr != key->bit_nr)
1027                 return 0;
1028
1029         /* Stop walking if it's locked */
1030         if (test_bit(key->bit_nr, &key->page->flags))
1031                 return -1;
1032
1033         return autoremove_wake_function(wait, mode, sync, key);
1034 }
1035
1036 static void wake_up_page_bit(struct page *page, int bit_nr)
1037 {
1038         wait_queue_head_t *q = page_waitqueue(page);
1039         struct wait_page_key key;
1040         unsigned long flags;
1041         wait_queue_entry_t bookmark;
1042
1043         key.page = page;
1044         key.bit_nr = bit_nr;
1045         key.page_match = 0;
1046
1047         bookmark.flags = 0;
1048         bookmark.private = NULL;
1049         bookmark.func = NULL;
1050         INIT_LIST_HEAD(&bookmark.entry);
1051
1052         spin_lock_irqsave(&q->lock, flags);
1053         __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1054
1055         while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1056                 /*
1057                  * Take a breather from holding the lock,
1058                  * allow pages that finish wake up asynchronously
1059                  * to acquire the lock and remove themselves
1060                  * from wait queue
1061                  */
1062                 spin_unlock_irqrestore(&q->lock, flags);
1063                 cpu_relax();
1064                 spin_lock_irqsave(&q->lock, flags);
1065                 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1066         }
1067
1068         /*
1069          * It is possible for other pages to have collided on the waitqueue
1070          * hash, so in that case check for a page match. That prevents a long-
1071          * term waiter
1072          *
1073          * It is still possible to miss a case here, when we woke page waiters
1074          * and removed them from the waitqueue, but there are still other
1075          * page waiters.
1076          */
1077         if (!waitqueue_active(q) || !key.page_match) {
1078                 ClearPageWaiters(page);
1079                 /*
1080                  * It's possible to miss clearing Waiters here, when we woke
1081                  * our page waiters, but the hashed waitqueue has waiters for
1082                  * other pages on it.
1083                  *
1084                  * That's okay, it's a rare case. The next waker will clear it.
1085                  */
1086         }
1087         spin_unlock_irqrestore(&q->lock, flags);
1088 }
1089
1090 static void wake_up_page(struct page *page, int bit)
1091 {
1092         if (!PageWaiters(page))
1093                 return;
1094         wake_up_page_bit(page, bit);
1095 }
1096
1097 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1098                 struct page *page, int bit_nr, int state, bool lock)
1099 {
1100         struct wait_page_queue wait_page;
1101         wait_queue_entry_t *wait = &wait_page.wait;
1102         int ret = 0;
1103
1104         init_wait(wait);
1105         wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1106         wait->func = wake_page_function;
1107         wait_page.page = page;
1108         wait_page.bit_nr = bit_nr;
1109
1110         for (;;) {
1111                 spin_lock_irq(&q->lock);
1112
1113                 if (likely(list_empty(&wait->entry))) {
1114                         __add_wait_queue_entry_tail(q, wait);
1115                         SetPageWaiters(page);
1116                 }
1117
1118                 set_current_state(state);
1119
1120                 spin_unlock_irq(&q->lock);
1121
1122                 if (likely(test_bit(bit_nr, &page->flags))) {
1123                         io_schedule();
1124                 }
1125
1126                 if (lock) {
1127                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
1128                                 break;
1129                 } else {
1130                         if (!test_bit(bit_nr, &page->flags))
1131                                 break;
1132                 }
1133
1134                 if (unlikely(signal_pending_state(state, current))) {
1135                         ret = -EINTR;
1136                         break;
1137                 }
1138         }
1139
1140         finish_wait(q, wait);
1141
1142         /*
1143          * A signal could leave PageWaiters set. Clearing it here if
1144          * !waitqueue_active would be possible (by open-coding finish_wait),
1145          * but still fail to catch it in the case of wait hash collision. We
1146          * already can fail to clear wait hash collision cases, so don't
1147          * bother with signals either.
1148          */
1149
1150         return ret;
1151 }
1152
1153 void wait_on_page_bit(struct page *page, int bit_nr)
1154 {
1155         wait_queue_head_t *q = page_waitqueue(page);
1156         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1157 }
1158 EXPORT_SYMBOL(wait_on_page_bit);
1159
1160 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1161 {
1162         wait_queue_head_t *q = page_waitqueue(page);
1163         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1164 }
1165 EXPORT_SYMBOL(wait_on_page_bit_killable);
1166
1167 /**
1168  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1169  * @page: Page defining the wait queue of interest
1170  * @waiter: Waiter to add to the queue
1171  *
1172  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1173  */
1174 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1175 {
1176         wait_queue_head_t *q = page_waitqueue(page);
1177         unsigned long flags;
1178
1179         spin_lock_irqsave(&q->lock, flags);
1180         __add_wait_queue_entry_tail(q, waiter);
1181         SetPageWaiters(page);
1182         spin_unlock_irqrestore(&q->lock, flags);
1183 }
1184 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1185
1186 #ifndef clear_bit_unlock_is_negative_byte
1187
1188 /*
1189  * PG_waiters is the high bit in the same byte as PG_lock.
1190  *
1191  * On x86 (and on many other architectures), we can clear PG_lock and
1192  * test the sign bit at the same time. But if the architecture does
1193  * not support that special operation, we just do this all by hand
1194  * instead.
1195  *
1196  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1197  * being cleared, but a memory barrier should be unneccssary since it is
1198  * in the same byte as PG_locked.
1199  */
1200 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1201 {
1202         clear_bit_unlock(nr, mem);
1203         /* smp_mb__after_atomic(); */
1204         return test_bit(PG_waiters, mem);
1205 }
1206
1207 #endif
1208
1209 /**
1210  * unlock_page - unlock a locked page
1211  * @page: the page
1212  *
1213  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1214  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1215  * mechanism between PageLocked pages and PageWriteback pages is shared.
1216  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1217  *
1218  * Note that this depends on PG_waiters being the sign bit in the byte
1219  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1220  * clear the PG_locked bit and test PG_waiters at the same time fairly
1221  * portably (architectures that do LL/SC can test any bit, while x86 can
1222  * test the sign bit).
1223  */
1224 void unlock_page(struct page *page)
1225 {
1226         BUILD_BUG_ON(PG_waiters != 7);
1227         page = compound_head(page);
1228         VM_BUG_ON_PAGE(!PageLocked(page), page);
1229         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1230                 wake_up_page_bit(page, PG_locked);
1231 }
1232 EXPORT_SYMBOL(unlock_page);
1233
1234 /**
1235  * end_page_writeback - end writeback against a page
1236  * @page: the page
1237  */
1238 void end_page_writeback(struct page *page)
1239 {
1240         /*
1241          * TestClearPageReclaim could be used here but it is an atomic
1242          * operation and overkill in this particular case. Failing to
1243          * shuffle a page marked for immediate reclaim is too mild to
1244          * justify taking an atomic operation penalty at the end of
1245          * ever page writeback.
1246          */
1247         if (PageReclaim(page)) {
1248                 ClearPageReclaim(page);
1249                 rotate_reclaimable_page(page);
1250         }
1251
1252         if (!test_clear_page_writeback(page))
1253                 BUG();
1254
1255         smp_mb__after_atomic();
1256         wake_up_page(page, PG_writeback);
1257 }
1258 EXPORT_SYMBOL(end_page_writeback);
1259
1260 /*
1261  * After completing I/O on a page, call this routine to update the page
1262  * flags appropriately
1263  */
1264 void page_endio(struct page *page, bool is_write, int err)
1265 {
1266         if (!is_write) {
1267                 if (!err) {
1268                         SetPageUptodate(page);
1269                 } else {
1270                         ClearPageUptodate(page);
1271                         SetPageError(page);
1272                 }
1273                 unlock_page(page);
1274         } else {
1275                 if (err) {
1276                         struct address_space *mapping;
1277
1278                         SetPageError(page);
1279                         mapping = page_mapping(page);
1280                         if (mapping)
1281                                 mapping_set_error(mapping, err);
1282                 }
1283                 end_page_writeback(page);
1284         }
1285 }
1286 EXPORT_SYMBOL_GPL(page_endio);
1287
1288 /**
1289  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1290  * @__page: the page to lock
1291  */
1292 void __lock_page(struct page *__page)
1293 {
1294         struct page *page = compound_head(__page);
1295         wait_queue_head_t *q = page_waitqueue(page);
1296         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1297 }
1298 EXPORT_SYMBOL(__lock_page);
1299
1300 int __lock_page_killable(struct page *__page)
1301 {
1302         struct page *page = compound_head(__page);
1303         wait_queue_head_t *q = page_waitqueue(page);
1304         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1305 }
1306 EXPORT_SYMBOL_GPL(__lock_page_killable);
1307
1308 /*
1309  * Return values:
1310  * 1 - page is locked; mmap_sem is still held.
1311  * 0 - page is not locked.
1312  *     mmap_sem has been released (up_read()), unless flags had both
1313  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1314  *     which case mmap_sem is still held.
1315  *
1316  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1317  * with the page locked and the mmap_sem unperturbed.
1318  */
1319 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1320                          unsigned int flags)
1321 {
1322         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1323                 /*
1324                  * CAUTION! In this case, mmap_sem is not released
1325                  * even though return 0.
1326                  */
1327                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1328                         return 0;
1329
1330                 up_read(&mm->mmap_sem);
1331                 if (flags & FAULT_FLAG_KILLABLE)
1332                         wait_on_page_locked_killable(page);
1333                 else
1334                         wait_on_page_locked(page);
1335                 return 0;
1336         } else {
1337                 if (flags & FAULT_FLAG_KILLABLE) {
1338                         int ret;
1339
1340                         ret = __lock_page_killable(page);
1341                         if (ret) {
1342                                 up_read(&mm->mmap_sem);
1343                                 return 0;
1344                         }
1345                 } else
1346                         __lock_page(page);
1347                 return 1;
1348         }
1349 }
1350
1351 /**
1352  * page_cache_next_hole - find the next hole (not-present entry)
1353  * @mapping: mapping
1354  * @index: index
1355  * @max_scan: maximum range to search
1356  *
1357  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1358  * lowest indexed hole.
1359  *
1360  * Returns: the index of the hole if found, otherwise returns an index
1361  * outside of the set specified (in which case 'return - index >=
1362  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1363  * be returned.
1364  *
1365  * page_cache_next_hole may be called under rcu_read_lock. However,
1366  * like radix_tree_gang_lookup, this will not atomically search a
1367  * snapshot of the tree at a single point in time. For example, if a
1368  * hole is created at index 5, then subsequently a hole is created at
1369  * index 10, page_cache_next_hole covering both indexes may return 10
1370  * if called under rcu_read_lock.
1371  */
1372 pgoff_t page_cache_next_hole(struct address_space *mapping,
1373                              pgoff_t index, unsigned long max_scan)
1374 {
1375         unsigned long i;
1376
1377         for (i = 0; i < max_scan; i++) {
1378                 struct page *page;
1379
1380                 page = radix_tree_lookup(&mapping->i_pages, index);
1381                 if (!page || radix_tree_exceptional_entry(page))
1382                         break;
1383                 index++;
1384                 if (index == 0)
1385                         break;
1386         }
1387
1388         return index;
1389 }
1390 EXPORT_SYMBOL(page_cache_next_hole);
1391
1392 /**
1393  * page_cache_prev_hole - find the prev hole (not-present entry)
1394  * @mapping: mapping
1395  * @index: index
1396  * @max_scan: maximum range to search
1397  *
1398  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1399  * the first hole.
1400  *
1401  * Returns: the index of the hole if found, otherwise returns an index
1402  * outside of the set specified (in which case 'index - return >=
1403  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1404  * will be returned.
1405  *
1406  * page_cache_prev_hole may be called under rcu_read_lock. However,
1407  * like radix_tree_gang_lookup, this will not atomically search a
1408  * snapshot of the tree at a single point in time. For example, if a
1409  * hole is created at index 10, then subsequently a hole is created at
1410  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1411  * called under rcu_read_lock.
1412  */
1413 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1414                              pgoff_t index, unsigned long max_scan)
1415 {
1416         unsigned long i;
1417
1418         for (i = 0; i < max_scan; i++) {
1419                 struct page *page;
1420
1421                 page = radix_tree_lookup(&mapping->i_pages, index);
1422                 if (!page || radix_tree_exceptional_entry(page))
1423                         break;
1424                 index--;
1425                 if (index == ULONG_MAX)
1426                         break;
1427         }
1428
1429         return index;
1430 }
1431 EXPORT_SYMBOL(page_cache_prev_hole);
1432
1433 /**
1434  * find_get_entry - find and get a page cache entry
1435  * @mapping: the address_space to search
1436  * @offset: the page cache index
1437  *
1438  * Looks up the page cache slot at @mapping & @offset.  If there is a
1439  * page cache page, it is returned with an increased refcount.
1440  *
1441  * If the slot holds a shadow entry of a previously evicted page, or a
1442  * swap entry from shmem/tmpfs, it is returned.
1443  *
1444  * Otherwise, %NULL is returned.
1445  */
1446 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1447 {
1448         void **pagep;
1449         struct page *head, *page;
1450
1451         rcu_read_lock();
1452 repeat:
1453         page = NULL;
1454         pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1455         if (pagep) {
1456                 page = radix_tree_deref_slot(pagep);
1457                 if (unlikely(!page))
1458                         goto out;
1459                 if (radix_tree_exception(page)) {
1460                         if (radix_tree_deref_retry(page))
1461                                 goto repeat;
1462                         /*
1463                          * A shadow entry of a recently evicted page,
1464                          * or a swap entry from shmem/tmpfs.  Return
1465                          * it without attempting to raise page count.
1466                          */
1467                         goto out;
1468                 }
1469
1470                 head = compound_head(page);
1471                 if (!page_cache_get_speculative(head))
1472                         goto repeat;
1473
1474                 /* The page was split under us? */
1475                 if (compound_head(page) != head) {
1476                         put_page(head);
1477                         goto repeat;
1478                 }
1479
1480                 /*
1481                  * Has the page moved?
1482                  * This is part of the lockless pagecache protocol. See
1483                  * include/linux/pagemap.h for details.
1484                  */
1485                 if (unlikely(page != *pagep)) {
1486                         put_page(head);
1487                         goto repeat;
1488                 }
1489         }
1490 out:
1491         rcu_read_unlock();
1492
1493         return page;
1494 }
1495 EXPORT_SYMBOL(find_get_entry);
1496
1497 /**
1498  * find_lock_entry - locate, pin and lock a page cache entry
1499  * @mapping: the address_space to search
1500  * @offset: the page cache index
1501  *
1502  * Looks up the page cache slot at @mapping & @offset.  If there is a
1503  * page cache page, it is returned locked and with an increased
1504  * refcount.
1505  *
1506  * If the slot holds a shadow entry of a previously evicted page, or a
1507  * swap entry from shmem/tmpfs, it is returned.
1508  *
1509  * Otherwise, %NULL is returned.
1510  *
1511  * find_lock_entry() may sleep.
1512  */
1513 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1514 {
1515         struct page *page;
1516
1517 repeat:
1518         page = find_get_entry(mapping, offset);
1519         if (page && !radix_tree_exception(page)) {
1520                 lock_page(page);
1521                 /* Has the page been truncated? */
1522                 if (unlikely(page_mapping(page) != mapping)) {
1523                         unlock_page(page);
1524                         put_page(page);
1525                         goto repeat;
1526                 }
1527                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1528         }
1529         return page;
1530 }
1531 EXPORT_SYMBOL(find_lock_entry);
1532
1533 /**
1534  * pagecache_get_page - find and get a page reference
1535  * @mapping: the address_space to search
1536  * @offset: the page index
1537  * @fgp_flags: PCG flags
1538  * @gfp_mask: gfp mask to use for the page cache data page allocation
1539  *
1540  * Looks up the page cache slot at @mapping & @offset.
1541  *
1542  * PCG flags modify how the page is returned.
1543  *
1544  * @fgp_flags can be:
1545  *
1546  * - FGP_ACCESSED: the page will be marked accessed
1547  * - FGP_LOCK: Page is return locked
1548  * - FGP_CREAT: If page is not present then a new page is allocated using
1549  *   @gfp_mask and added to the page cache and the VM's LRU
1550  *   list. The page is returned locked and with an increased
1551  *   refcount. Otherwise, NULL is returned.
1552  *
1553  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1554  * if the GFP flags specified for FGP_CREAT are atomic.
1555  *
1556  * If there is a page cache page, it is returned with an increased refcount.
1557  */
1558 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1559         int fgp_flags, gfp_t gfp_mask)
1560 {
1561         struct page *page;
1562
1563 repeat:
1564         page = find_get_entry(mapping, offset);
1565         if (radix_tree_exceptional_entry(page))
1566                 page = NULL;
1567         if (!page)
1568                 goto no_page;
1569
1570         if (fgp_flags & FGP_LOCK) {
1571                 if (fgp_flags & FGP_NOWAIT) {
1572                         if (!trylock_page(page)) {
1573                                 put_page(page);
1574                                 return NULL;
1575                         }
1576                 } else {
1577                         lock_page(page);
1578                 }
1579
1580                 /* Has the page been truncated? */
1581                 if (unlikely(page->mapping != mapping)) {
1582                         unlock_page(page);
1583                         put_page(page);
1584                         goto repeat;
1585                 }
1586                 VM_BUG_ON_PAGE(page->index != offset, page);
1587         }
1588
1589         if (page && (fgp_flags & FGP_ACCESSED))
1590                 mark_page_accessed(page);
1591
1592 no_page:
1593         if (!page && (fgp_flags & FGP_CREAT)) {
1594                 int err;
1595                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1596                         gfp_mask |= __GFP_WRITE;
1597                 if (fgp_flags & FGP_NOFS)
1598                         gfp_mask &= ~__GFP_FS;
1599
1600                 page = __page_cache_alloc(gfp_mask);
1601                 if (!page)
1602                         return NULL;
1603
1604                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1605                         fgp_flags |= FGP_LOCK;
1606
1607                 /* Init accessed so avoid atomic mark_page_accessed later */
1608                 if (fgp_flags & FGP_ACCESSED)
1609                         __SetPageReferenced(page);
1610
1611                 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1612                 if (unlikely(err)) {
1613                         put_page(page);
1614                         page = NULL;
1615                         if (err == -EEXIST)
1616                                 goto repeat;
1617                 }
1618         }
1619
1620         return page;
1621 }
1622 EXPORT_SYMBOL(pagecache_get_page);
1623
1624 /**
1625  * find_get_entries - gang pagecache lookup
1626  * @mapping:    The address_space to search
1627  * @start:      The starting page cache index
1628  * @nr_entries: The maximum number of entries
1629  * @entries:    Where the resulting entries are placed
1630  * @indices:    The cache indices corresponding to the entries in @entries
1631  *
1632  * find_get_entries() will search for and return a group of up to
1633  * @nr_entries entries in the mapping.  The entries are placed at
1634  * @entries.  find_get_entries() takes a reference against any actual
1635  * pages it returns.
1636  *
1637  * The search returns a group of mapping-contiguous page cache entries
1638  * with ascending indexes.  There may be holes in the indices due to
1639  * not-present pages.
1640  *
1641  * Any shadow entries of evicted pages, or swap entries from
1642  * shmem/tmpfs, are included in the returned array.
1643  *
1644  * find_get_entries() returns the number of pages and shadow entries
1645  * which were found.
1646  */
1647 unsigned find_get_entries(struct address_space *mapping,
1648                           pgoff_t start, unsigned int nr_entries,
1649                           struct page **entries, pgoff_t *indices)
1650 {
1651         void **slot;
1652         unsigned int ret = 0;
1653         struct radix_tree_iter iter;
1654
1655         if (!nr_entries)
1656                 return 0;
1657
1658         rcu_read_lock();
1659         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1660                 struct page *head, *page;
1661 repeat:
1662                 page = radix_tree_deref_slot(slot);
1663                 if (unlikely(!page))
1664                         continue;
1665                 if (radix_tree_exception(page)) {
1666                         if (radix_tree_deref_retry(page)) {
1667                                 slot = radix_tree_iter_retry(&iter);
1668                                 continue;
1669                         }
1670                         /*
1671                          * A shadow entry of a recently evicted page, a swap
1672                          * entry from shmem/tmpfs or a DAX entry.  Return it
1673                          * without attempting to raise page count.
1674                          */
1675                         goto export;
1676                 }
1677
1678                 head = compound_head(page);
1679                 if (!page_cache_get_speculative(head))
1680                         goto repeat;
1681
1682                 /* The page was split under us? */
1683                 if (compound_head(page) != head) {
1684                         put_page(head);
1685                         goto repeat;
1686                 }
1687
1688                 /* Has the page moved? */
1689                 if (unlikely(page != *slot)) {
1690                         put_page(head);
1691                         goto repeat;
1692                 }
1693 export:
1694                 indices[ret] = iter.index;
1695                 entries[ret] = page;
1696                 if (++ret == nr_entries)
1697                         break;
1698         }
1699         rcu_read_unlock();
1700         return ret;
1701 }
1702
1703 /**
1704  * find_get_pages_range - gang pagecache lookup
1705  * @mapping:    The address_space to search
1706  * @start:      The starting page index
1707  * @end:        The final page index (inclusive)
1708  * @nr_pages:   The maximum number of pages
1709  * @pages:      Where the resulting pages are placed
1710  *
1711  * find_get_pages_range() will search for and return a group of up to @nr_pages
1712  * pages in the mapping starting at index @start and up to index @end
1713  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1714  * a reference against the returned pages.
1715  *
1716  * The search returns a group of mapping-contiguous pages with ascending
1717  * indexes.  There may be holes in the indices due to not-present pages.
1718  * We also update @start to index the next page for the traversal.
1719  *
1720  * find_get_pages_range() returns the number of pages which were found. If this
1721  * number is smaller than @nr_pages, the end of specified range has been
1722  * reached.
1723  */
1724 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1725                               pgoff_t end, unsigned int nr_pages,
1726                               struct page **pages)
1727 {
1728         struct radix_tree_iter iter;
1729         void **slot;
1730         unsigned ret = 0;
1731
1732         if (unlikely(!nr_pages))
1733                 return 0;
1734
1735         rcu_read_lock();
1736         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1737                 struct page *head, *page;
1738
1739                 if (iter.index > end)
1740                         break;
1741 repeat:
1742                 page = radix_tree_deref_slot(slot);
1743                 if (unlikely(!page))
1744                         continue;
1745
1746                 if (radix_tree_exception(page)) {
1747                         if (radix_tree_deref_retry(page)) {
1748                                 slot = radix_tree_iter_retry(&iter);
1749                                 continue;
1750                         }
1751                         /*
1752                          * A shadow entry of a recently evicted page,
1753                          * or a swap entry from shmem/tmpfs.  Skip
1754                          * over it.
1755                          */
1756                         continue;
1757                 }
1758
1759                 head = compound_head(page);
1760                 if (!page_cache_get_speculative(head))
1761                         goto repeat;
1762
1763                 /* The page was split under us? */
1764                 if (compound_head(page) != head) {
1765                         put_page(head);
1766                         goto repeat;
1767                 }
1768
1769                 /* Has the page moved? */
1770                 if (unlikely(page != *slot)) {
1771                         put_page(head);
1772                         goto repeat;
1773                 }
1774
1775                 pages[ret] = page;
1776                 if (++ret == nr_pages) {
1777                         *start = pages[ret - 1]->index + 1;
1778                         goto out;
1779                 }
1780         }
1781
1782         /*
1783          * We come here when there is no page beyond @end. We take care to not
1784          * overflow the index @start as it confuses some of the callers. This
1785          * breaks the iteration when there is page at index -1 but that is
1786          * already broken anyway.
1787          */
1788         if (end == (pgoff_t)-1)
1789                 *start = (pgoff_t)-1;
1790         else
1791                 *start = end + 1;
1792 out:
1793         rcu_read_unlock();
1794
1795         return ret;
1796 }
1797
1798 /**
1799  * find_get_pages_contig - gang contiguous pagecache lookup
1800  * @mapping:    The address_space to search
1801  * @index:      The starting page index
1802  * @nr_pages:   The maximum number of pages
1803  * @pages:      Where the resulting pages are placed
1804  *
1805  * find_get_pages_contig() works exactly like find_get_pages(), except
1806  * that the returned number of pages are guaranteed to be contiguous.
1807  *
1808  * find_get_pages_contig() returns the number of pages which were found.
1809  */
1810 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1811                                unsigned int nr_pages, struct page **pages)
1812 {
1813         struct radix_tree_iter iter;
1814         void **slot;
1815         unsigned int ret = 0;
1816
1817         if (unlikely(!nr_pages))
1818                 return 0;
1819
1820         rcu_read_lock();
1821         radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1822                 struct page *head, *page;
1823 repeat:
1824                 page = radix_tree_deref_slot(slot);
1825                 /* The hole, there no reason to continue */
1826                 if (unlikely(!page))
1827                         break;
1828
1829                 if (radix_tree_exception(page)) {
1830                         if (radix_tree_deref_retry(page)) {
1831                                 slot = radix_tree_iter_retry(&iter);
1832                                 continue;
1833                         }
1834                         /*
1835                          * A shadow entry of a recently evicted page,
1836                          * or a swap entry from shmem/tmpfs.  Stop
1837                          * looking for contiguous pages.
1838                          */
1839                         break;
1840                 }
1841
1842                 head = compound_head(page);
1843                 if (!page_cache_get_speculative(head))
1844                         goto repeat;
1845
1846                 /* The page was split under us? */
1847                 if (compound_head(page) != head) {
1848                         put_page(head);
1849                         goto repeat;
1850                 }
1851
1852                 /* Has the page moved? */
1853                 if (unlikely(page != *slot)) {
1854                         put_page(head);
1855                         goto repeat;
1856                 }
1857
1858                 /*
1859                  * must check mapping and index after taking the ref.
1860                  * otherwise we can get both false positives and false
1861                  * negatives, which is just confusing to the caller.
1862                  */
1863                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1864                         put_page(page);
1865                         break;
1866                 }
1867
1868                 pages[ret] = page;
1869                 if (++ret == nr_pages)
1870                         break;
1871         }
1872         rcu_read_unlock();
1873         return ret;
1874 }
1875 EXPORT_SYMBOL(find_get_pages_contig);
1876
1877 /**
1878  * find_get_pages_range_tag - find and return pages in given range matching @tag
1879  * @mapping:    the address_space to search
1880  * @index:      the starting page index
1881  * @end:        The final page index (inclusive)
1882  * @tag:        the tag index
1883  * @nr_pages:   the maximum number of pages
1884  * @pages:      where the resulting pages are placed
1885  *
1886  * Like find_get_pages, except we only return pages which are tagged with
1887  * @tag.   We update @index to index the next page for the traversal.
1888  */
1889 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1890                         pgoff_t end, int tag, unsigned int nr_pages,
1891                         struct page **pages)
1892 {
1893         struct radix_tree_iter iter;
1894         void **slot;
1895         unsigned ret = 0;
1896
1897         if (unlikely(!nr_pages))
1898                 return 0;
1899
1900         rcu_read_lock();
1901         radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1902                 struct page *head, *page;
1903
1904                 if (iter.index > end)
1905                         break;
1906 repeat:
1907                 page = radix_tree_deref_slot(slot);
1908                 if (unlikely(!page))
1909                         continue;
1910
1911                 if (radix_tree_exception(page)) {
1912                         if (radix_tree_deref_retry(page)) {
1913                                 slot = radix_tree_iter_retry(&iter);
1914                                 continue;
1915                         }
1916                         /*
1917                          * A shadow entry of a recently evicted page.
1918                          *
1919                          * Those entries should never be tagged, but
1920                          * this tree walk is lockless and the tags are
1921                          * looked up in bulk, one radix tree node at a
1922                          * time, so there is a sizable window for page
1923                          * reclaim to evict a page we saw tagged.
1924                          *
1925                          * Skip over it.
1926                          */
1927                         continue;
1928                 }
1929
1930                 head = compound_head(page);
1931                 if (!page_cache_get_speculative(head))
1932                         goto repeat;
1933
1934                 /* The page was split under us? */
1935                 if (compound_head(page) != head) {
1936                         put_page(head);
1937                         goto repeat;
1938                 }
1939
1940                 /* Has the page moved? */
1941                 if (unlikely(page != *slot)) {
1942                         put_page(head);
1943                         goto repeat;
1944                 }
1945
1946                 pages[ret] = page;
1947                 if (++ret == nr_pages) {
1948                         *index = pages[ret - 1]->index + 1;
1949                         goto out;
1950                 }
1951         }
1952
1953         /*
1954          * We come here when we got at @end. We take care to not overflow the
1955          * index @index as it confuses some of the callers. This breaks the
1956          * iteration when there is page at index -1 but that is already broken
1957          * anyway.
1958          */
1959         if (end == (pgoff_t)-1)
1960                 *index = (pgoff_t)-1;
1961         else
1962                 *index = end + 1;
1963 out:
1964         rcu_read_unlock();
1965
1966         return ret;
1967 }
1968 EXPORT_SYMBOL(find_get_pages_range_tag);
1969
1970 /**
1971  * find_get_entries_tag - find and return entries that match @tag
1972  * @mapping:    the address_space to search
1973  * @start:      the starting page cache index
1974  * @tag:        the tag index
1975  * @nr_entries: the maximum number of entries
1976  * @entries:    where the resulting entries are placed
1977  * @indices:    the cache indices corresponding to the entries in @entries
1978  *
1979  * Like find_get_entries, except we only return entries which are tagged with
1980  * @tag.
1981  */
1982 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1983                         int tag, unsigned int nr_entries,
1984                         struct page **entries, pgoff_t *indices)
1985 {
1986         void **slot;
1987         unsigned int ret = 0;
1988         struct radix_tree_iter iter;
1989
1990         if (!nr_entries)
1991                 return 0;
1992
1993         rcu_read_lock();
1994         radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1995                 struct page *head, *page;
1996 repeat:
1997                 page = radix_tree_deref_slot(slot);
1998                 if (unlikely(!page))
1999                         continue;
2000                 if (radix_tree_exception(page)) {
2001                         if (radix_tree_deref_retry(page)) {
2002                                 slot = radix_tree_iter_retry(&iter);
2003                                 continue;
2004                         }
2005
2006                         /*
2007                          * A shadow entry of a recently evicted page, a swap
2008                          * entry from shmem/tmpfs or a DAX entry.  Return it
2009                          * without attempting to raise page count.
2010                          */
2011                         goto export;
2012                 }
2013
2014                 head = compound_head(page);
2015                 if (!page_cache_get_speculative(head))
2016                         goto repeat;
2017
2018                 /* The page was split under us? */
2019                 if (compound_head(page) != head) {
2020                         put_page(head);
2021                         goto repeat;
2022                 }
2023
2024                 /* Has the page moved? */
2025                 if (unlikely(page != *slot)) {
2026                         put_page(head);
2027                         goto repeat;
2028                 }
2029 export:
2030                 indices[ret] = iter.index;
2031                 entries[ret] = page;
2032                 if (++ret == nr_entries)
2033                         break;
2034         }
2035         rcu_read_unlock();
2036         return ret;
2037 }
2038 EXPORT_SYMBOL(find_get_entries_tag);
2039
2040 /*
2041  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2042  * a _large_ part of the i/o request. Imagine the worst scenario:
2043  *
2044  *      ---R__________________________________________B__________
2045  *         ^ reading here                             ^ bad block(assume 4k)
2046  *
2047  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2048  * => failing the whole request => read(R) => read(R+1) =>
2049  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2050  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2051  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2052  *
2053  * It is going insane. Fix it by quickly scaling down the readahead size.
2054  */
2055 static void shrink_readahead_size_eio(struct file *filp,
2056                                         struct file_ra_state *ra)
2057 {
2058         ra->ra_pages /= 4;
2059 }
2060
2061 /**
2062  * generic_file_buffered_read - generic file read routine
2063  * @iocb:       the iocb to read
2064  * @iter:       data destination
2065  * @written:    already copied
2066  *
2067  * This is a generic file read routine, and uses the
2068  * mapping->a_ops->readpage() function for the actual low-level stuff.
2069  *
2070  * This is really ugly. But the goto's actually try to clarify some
2071  * of the logic when it comes to error handling etc.
2072  */
2073 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2074                 struct iov_iter *iter, ssize_t written)
2075 {
2076         struct file *filp = iocb->ki_filp;
2077         struct address_space *mapping = filp->f_mapping;
2078         struct inode *inode = mapping->host;
2079         struct file_ra_state *ra = &filp->f_ra;
2080         loff_t *ppos = &iocb->ki_pos;
2081         pgoff_t index;
2082         pgoff_t last_index;
2083         pgoff_t prev_index;
2084         unsigned long offset;      /* offset into pagecache page */
2085         unsigned int prev_offset;
2086         int error = 0;
2087
2088         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2089                 return 0;
2090         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2091
2092         index = *ppos >> PAGE_SHIFT;
2093         prev_index = ra->prev_pos >> PAGE_SHIFT;
2094         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2095         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2096         offset = *ppos & ~PAGE_MASK;
2097
2098         for (;;) {
2099                 struct page *page;
2100                 pgoff_t end_index;
2101                 loff_t isize;
2102                 unsigned long nr, ret;
2103
2104                 cond_resched();
2105 find_page:
2106                 if (fatal_signal_pending(current)) {
2107                         error = -EINTR;
2108                         goto out;
2109                 }
2110
2111                 page = find_get_page(mapping, index);
2112                 if (!page) {
2113                         if (iocb->ki_flags & IOCB_NOWAIT)
2114                                 goto would_block;
2115                         page_cache_sync_readahead(mapping,
2116                                         ra, filp,
2117                                         index, last_index - index);
2118                         page = find_get_page(mapping, index);
2119                         if (unlikely(page == NULL))
2120                                 goto no_cached_page;
2121                 }
2122                 if (PageReadahead(page)) {
2123                         page_cache_async_readahead(mapping,
2124                                         ra, filp, page,
2125                                         index, last_index - index);
2126                 }
2127                 if (!PageUptodate(page)) {
2128                         if (iocb->ki_flags & IOCB_NOWAIT) {
2129                                 put_page(page);
2130                                 goto would_block;
2131                         }
2132
2133                         /*
2134                          * See comment in do_read_cache_page on why
2135                          * wait_on_page_locked is used to avoid unnecessarily
2136                          * serialisations and why it's safe.
2137                          */
2138                         error = wait_on_page_locked_killable(page);
2139                         if (unlikely(error))
2140                                 goto readpage_error;
2141                         if (PageUptodate(page))
2142                                 goto page_ok;
2143
2144                         if (inode->i_blkbits == PAGE_SHIFT ||
2145                                         !mapping->a_ops->is_partially_uptodate)
2146                                 goto page_not_up_to_date;
2147                         /* pipes can't handle partially uptodate pages */
2148                         if (unlikely(iter->type & ITER_PIPE))
2149                                 goto page_not_up_to_date;
2150                         if (!trylock_page(page))
2151                                 goto page_not_up_to_date;
2152                         /* Did it get truncated before we got the lock? */
2153                         if (!page->mapping)
2154                                 goto page_not_up_to_date_locked;
2155                         if (!mapping->a_ops->is_partially_uptodate(page,
2156                                                         offset, iter->count))
2157                                 goto page_not_up_to_date_locked;
2158                         unlock_page(page);
2159                 }
2160 page_ok:
2161                 /*
2162                  * i_size must be checked after we know the page is Uptodate.
2163                  *
2164                  * Checking i_size after the check allows us to calculate
2165                  * the correct value for "nr", which means the zero-filled
2166                  * part of the page is not copied back to userspace (unless
2167                  * another truncate extends the file - this is desired though).
2168                  */
2169
2170                 isize = i_size_read(inode);
2171                 end_index = (isize - 1) >> PAGE_SHIFT;
2172                 if (unlikely(!isize || index > end_index)) {
2173                         put_page(page);
2174                         goto out;
2175                 }
2176
2177                 /* nr is the maximum number of bytes to copy from this page */
2178                 nr = PAGE_SIZE;
2179                 if (index == end_index) {
2180                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
2181                         if (nr <= offset) {
2182                                 put_page(page);
2183                                 goto out;
2184                         }
2185                 }
2186                 nr = nr - offset;
2187
2188                 /* If users can be writing to this page using arbitrary
2189                  * virtual addresses, take care about potential aliasing
2190                  * before reading the page on the kernel side.
2191                  */
2192                 if (mapping_writably_mapped(mapping))
2193                         flush_dcache_page(page);
2194
2195                 /*
2196                  * When a sequential read accesses a page several times,
2197                  * only mark it as accessed the first time.
2198                  */
2199                 if (prev_index != index || offset != prev_offset)
2200                         mark_page_accessed(page);
2201                 prev_index = index;
2202
2203                 /*
2204                  * Ok, we have the page, and it's up-to-date, so
2205                  * now we can copy it to user space...
2206                  */
2207
2208                 ret = copy_page_to_iter(page, offset, nr, iter);
2209                 offset += ret;
2210                 index += offset >> PAGE_SHIFT;
2211                 offset &= ~PAGE_MASK;
2212                 prev_offset = offset;
2213
2214                 put_page(page);
2215                 written += ret;
2216                 if (!iov_iter_count(iter))
2217                         goto out;
2218                 if (ret < nr) {
2219                         error = -EFAULT;
2220                         goto out;
2221                 }
2222                 continue;
2223
2224 page_not_up_to_date:
2225                 /* Get exclusive access to the page ... */
2226                 error = lock_page_killable(page);
2227                 if (unlikely(error))
2228                         goto readpage_error;
2229
2230 page_not_up_to_date_locked:
2231                 /* Did it get truncated before we got the lock? */
2232                 if (!page->mapping) {
2233                         unlock_page(page);
2234                         put_page(page);
2235                         continue;
2236                 }
2237
2238                 /* Did somebody else fill it already? */
2239                 if (PageUptodate(page)) {
2240                         unlock_page(page);
2241                         goto page_ok;
2242                 }
2243
2244 readpage:
2245                 /*
2246                  * A previous I/O error may have been due to temporary
2247                  * failures, eg. multipath errors.
2248                  * PG_error will be set again if readpage fails.
2249                  */
2250                 ClearPageError(page);
2251                 /* Start the actual read. The read will unlock the page. */
2252                 error = mapping->a_ops->readpage(filp, page);
2253
2254                 if (unlikely(error)) {
2255                         if (error == AOP_TRUNCATED_PAGE) {
2256                                 put_page(page);
2257                                 error = 0;
2258                                 goto find_page;
2259                         }
2260                         goto readpage_error;
2261                 }
2262
2263                 if (!PageUptodate(page)) {
2264                         error = lock_page_killable(page);
2265                         if (unlikely(error))
2266                                 goto readpage_error;
2267                         if (!PageUptodate(page)) {
2268                                 if (page->mapping == NULL) {
2269                                         /*
2270                                          * invalidate_mapping_pages got it
2271                                          */
2272                                         unlock_page(page);
2273                                         put_page(page);
2274                                         goto find_page;
2275                                 }
2276                                 unlock_page(page);
2277                                 shrink_readahead_size_eio(filp, ra);
2278                                 error = -EIO;
2279                                 goto readpage_error;
2280                         }
2281                         unlock_page(page);
2282                 }
2283
2284                 goto page_ok;
2285
2286 readpage_error:
2287                 /* UHHUH! A synchronous read error occurred. Report it */
2288                 put_page(page);
2289                 goto out;
2290
2291 no_cached_page:
2292                 /*
2293                  * Ok, it wasn't cached, so we need to create a new
2294                  * page..
2295                  */
2296                 page = page_cache_alloc(mapping);
2297                 if (!page) {
2298                         error = -ENOMEM;
2299                         goto out;
2300                 }
2301                 error = add_to_page_cache_lru(page, mapping, index,
2302                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2303                 if (error) {
2304                         put_page(page);
2305                         if (error == -EEXIST) {
2306                                 error = 0;
2307                                 goto find_page;
2308                         }
2309                         goto out;
2310                 }
2311                 goto readpage;
2312         }
2313
2314 would_block:
2315         error = -EAGAIN;
2316 out:
2317         ra->prev_pos = prev_index;
2318         ra->prev_pos <<= PAGE_SHIFT;
2319         ra->prev_pos |= prev_offset;
2320
2321         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2322         file_accessed(filp);
2323         return written ? written : error;
2324 }
2325
2326 /**
2327  * generic_file_read_iter - generic filesystem read routine
2328  * @iocb:       kernel I/O control block
2329  * @iter:       destination for the data read
2330  *
2331  * This is the "read_iter()" routine for all filesystems
2332  * that can use the page cache directly.
2333  */
2334 ssize_t
2335 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2336 {
2337         size_t count = iov_iter_count(iter);
2338         ssize_t retval = 0;
2339
2340         if (!count)
2341                 goto out; /* skip atime */
2342
2343         if (iocb->ki_flags & IOCB_DIRECT) {
2344                 struct file *file = iocb->ki_filp;
2345                 struct address_space *mapping = file->f_mapping;
2346                 struct inode *inode = mapping->host;
2347                 loff_t size;
2348
2349                 size = i_size_read(inode);
2350                 if (iocb->ki_flags & IOCB_NOWAIT) {
2351                         if (filemap_range_has_page(mapping, iocb->ki_pos,
2352                                                    iocb->ki_pos + count - 1))
2353                                 return -EAGAIN;
2354                 } else {
2355                         retval = filemap_write_and_wait_range(mapping,
2356                                                 iocb->ki_pos,
2357                                                 iocb->ki_pos + count - 1);
2358                         if (retval < 0)
2359                                 goto out;
2360                 }
2361
2362                 file_accessed(file);
2363
2364                 retval = mapping->a_ops->direct_IO(iocb, iter);
2365                 if (retval >= 0) {
2366                         iocb->ki_pos += retval;
2367                         count -= retval;
2368                 }
2369                 iov_iter_revert(iter, count - iov_iter_count(iter));
2370
2371                 /*
2372                  * Btrfs can have a short DIO read if we encounter
2373                  * compressed extents, so if there was an error, or if
2374                  * we've already read everything we wanted to, or if
2375                  * there was a short read because we hit EOF, go ahead
2376                  * and return.  Otherwise fallthrough to buffered io for
2377                  * the rest of the read.  Buffered reads will not work for
2378                  * DAX files, so don't bother trying.
2379                  */
2380                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2381                     IS_DAX(inode))
2382                         goto out;
2383         }
2384
2385         retval = generic_file_buffered_read(iocb, iter, retval);
2386 out:
2387         return retval;
2388 }
2389 EXPORT_SYMBOL(generic_file_read_iter);
2390
2391 #ifdef CONFIG_MMU
2392 /**
2393  * page_cache_read - adds requested page to the page cache if not already there
2394  * @file:       file to read
2395  * @offset:     page index
2396  * @gfp_mask:   memory allocation flags
2397  *
2398  * This adds the requested page to the page cache if it isn't already there,
2399  * and schedules an I/O to read in its contents from disk.
2400  */
2401 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2402 {
2403         struct address_space *mapping = file->f_mapping;
2404         struct page *page;
2405         int ret;
2406
2407         do {
2408                 page = __page_cache_alloc(gfp_mask);
2409                 if (!page)
2410                         return -ENOMEM;
2411
2412                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2413                 if (ret == 0)
2414                         ret = mapping->a_ops->readpage(file, page);
2415                 else if (ret == -EEXIST)
2416                         ret = 0; /* losing race to add is OK */
2417
2418                 put_page(page);
2419
2420         } while (ret == AOP_TRUNCATED_PAGE);
2421
2422         return ret;
2423 }
2424
2425 #define MMAP_LOTSAMISS  (100)
2426
2427 /*
2428  * Synchronous readahead happens when we don't even find
2429  * a page in the page cache at all.
2430  */
2431 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2432                                    struct file_ra_state *ra,
2433                                    struct file *file,
2434                                    pgoff_t offset)
2435 {
2436         struct address_space *mapping = file->f_mapping;
2437
2438         /* If we don't want any read-ahead, don't bother */
2439         if (vma->vm_flags & VM_RAND_READ)
2440                 return;
2441         if (!ra->ra_pages)
2442                 return;
2443
2444         if (vma->vm_flags & VM_SEQ_READ) {
2445                 page_cache_sync_readahead(mapping, ra, file, offset,
2446                                           ra->ra_pages);
2447                 return;
2448         }
2449
2450         /* Avoid banging the cache line if not needed */
2451         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2452                 ra->mmap_miss++;
2453
2454         /*
2455          * Do we miss much more than hit in this file? If so,
2456          * stop bothering with read-ahead. It will only hurt.
2457          */
2458         if (ra->mmap_miss > MMAP_LOTSAMISS)
2459                 return;
2460
2461         /*
2462          * mmap read-around
2463          */
2464         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2465         ra->size = ra->ra_pages;
2466         ra->async_size = ra->ra_pages / 4;
2467         ra_submit(ra, mapping, file);
2468 }
2469
2470 /*
2471  * Asynchronous readahead happens when we find the page and PG_readahead,
2472  * so we want to possibly extend the readahead further..
2473  */
2474 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2475                                     struct file_ra_state *ra,
2476                                     struct file *file,
2477                                     struct page *page,
2478                                     pgoff_t offset)
2479 {
2480         struct address_space *mapping = file->f_mapping;
2481
2482         /* If we don't want any read-ahead, don't bother */
2483         if (vma->vm_flags & VM_RAND_READ)
2484                 return;
2485         if (ra->mmap_miss > 0)
2486                 ra->mmap_miss--;
2487         if (PageReadahead(page))
2488                 page_cache_async_readahead(mapping, ra, file,
2489                                            page, offset, ra->ra_pages);
2490 }
2491
2492 /**
2493  * filemap_fault - read in file data for page fault handling
2494  * @vmf:        struct vm_fault containing details of the fault
2495  *
2496  * filemap_fault() is invoked via the vma operations vector for a
2497  * mapped memory region to read in file data during a page fault.
2498  *
2499  * The goto's are kind of ugly, but this streamlines the normal case of having
2500  * it in the page cache, and handles the special cases reasonably without
2501  * having a lot of duplicated code.
2502  *
2503  * vma->vm_mm->mmap_sem must be held on entry.
2504  *
2505  * If our return value has VM_FAULT_RETRY set, it's because
2506  * lock_page_or_retry() returned 0.
2507  * The mmap_sem has usually been released in this case.
2508  * See __lock_page_or_retry() for the exception.
2509  *
2510  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2511  * has not been released.
2512  *
2513  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2514  */
2515 vm_fault_t filemap_fault(struct vm_fault *vmf)
2516 {
2517         int error;
2518         struct file *file = vmf->vma->vm_file;
2519         struct address_space *mapping = file->f_mapping;
2520         struct file_ra_state *ra = &file->f_ra;
2521         struct inode *inode = mapping->host;
2522         pgoff_t offset = vmf->pgoff;
2523         pgoff_t max_off;
2524         struct page *page;
2525         vm_fault_t ret = 0;
2526
2527         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2528         if (unlikely(offset >= max_off))
2529                 return VM_FAULT_SIGBUS;
2530
2531         /*
2532          * Do we have something in the page cache already?
2533          */
2534         page = find_get_page(mapping, offset);
2535         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2536                 /*
2537                  * We found the page, so try async readahead before
2538                  * waiting for the lock.
2539                  */
2540                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2541         } else if (!page) {
2542                 /* No page in the page cache at all */
2543                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2544                 count_vm_event(PGMAJFAULT);
2545                 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2546                 ret = VM_FAULT_MAJOR;
2547 retry_find:
2548                 page = find_get_page(mapping, offset);
2549                 if (!page)
2550                         goto no_cached_page;
2551         }
2552
2553         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2554                 put_page(page);
2555                 return ret | VM_FAULT_RETRY;
2556         }
2557
2558         /* Did it get truncated? */
2559         if (unlikely(page->mapping != mapping)) {
2560                 unlock_page(page);
2561                 put_page(page);
2562                 goto retry_find;
2563         }
2564         VM_BUG_ON_PAGE(page->index != offset, page);
2565
2566         /*
2567          * We have a locked page in the page cache, now we need to check
2568          * that it's up-to-date. If not, it is going to be due to an error.
2569          */
2570         if (unlikely(!PageUptodate(page)))
2571                 goto page_not_uptodate;
2572
2573         /*
2574          * Found the page and have a reference on it.
2575          * We must recheck i_size under page lock.
2576          */
2577         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2578         if (unlikely(offset >= max_off)) {
2579                 unlock_page(page);
2580                 put_page(page);
2581                 return VM_FAULT_SIGBUS;
2582         }
2583
2584         vmf->page = page;
2585         return ret | VM_FAULT_LOCKED;
2586
2587 no_cached_page:
2588         /*
2589          * We're only likely to ever get here if MADV_RANDOM is in
2590          * effect.
2591          */
2592         error = page_cache_read(file, offset, vmf->gfp_mask);
2593
2594         /*
2595          * The page we want has now been added to the page cache.
2596          * In the unlikely event that someone removed it in the
2597          * meantime, we'll just come back here and read it again.
2598          */
2599         if (error >= 0)
2600                 goto retry_find;
2601
2602         /*
2603          * An error return from page_cache_read can result if the
2604          * system is low on memory, or a problem occurs while trying
2605          * to schedule I/O.
2606          */
2607         if (error == -ENOMEM)
2608                 return VM_FAULT_OOM;
2609         return VM_FAULT_SIGBUS;
2610
2611 page_not_uptodate:
2612         /*
2613          * Umm, take care of errors if the page isn't up-to-date.
2614          * Try to re-read it _once_. We do this synchronously,
2615          * because there really aren't any performance issues here
2616          * and we need to check for errors.
2617          */
2618         ClearPageError(page);
2619         error = mapping->a_ops->readpage(file, page);
2620         if (!error) {
2621                 wait_on_page_locked(page);
2622                 if (!PageUptodate(page))
2623                         error = -EIO;
2624         }
2625         put_page(page);
2626
2627         if (!error || error == AOP_TRUNCATED_PAGE)
2628                 goto retry_find;
2629
2630         /* Things didn't work out. Return zero to tell the mm layer so. */
2631         shrink_readahead_size_eio(file, ra);
2632         return VM_FAULT_SIGBUS;
2633 }
2634 EXPORT_SYMBOL(filemap_fault);
2635
2636 void filemap_map_pages(struct vm_fault *vmf,
2637                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2638 {
2639         struct radix_tree_iter iter;
2640         void **slot;
2641         struct file *file = vmf->vma->vm_file;
2642         struct address_space *mapping = file->f_mapping;
2643         pgoff_t last_pgoff = start_pgoff;
2644         unsigned long max_idx;
2645         struct page *head, *page;
2646
2647         rcu_read_lock();
2648         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
2649                 if (iter.index > end_pgoff)
2650                         break;
2651 repeat:
2652                 page = radix_tree_deref_slot(slot);
2653                 if (unlikely(!page))
2654                         goto next;
2655                 if (radix_tree_exception(page)) {
2656                         if (radix_tree_deref_retry(page)) {
2657                                 slot = radix_tree_iter_retry(&iter);
2658                                 continue;
2659                         }
2660                         goto next;
2661                 }
2662
2663                 head = compound_head(page);
2664                 if (!page_cache_get_speculative(head))
2665                         goto repeat;
2666
2667                 /* The page was split under us? */
2668                 if (compound_head(page) != head) {
2669                         put_page(head);
2670                         goto repeat;
2671                 }
2672
2673                 /* Has the page moved? */
2674                 if (unlikely(page != *slot)) {
2675                         put_page(head);
2676                         goto repeat;
2677                 }
2678
2679                 if (!PageUptodate(page) ||
2680                                 PageReadahead(page) ||
2681                                 PageHWPoison(page))
2682                         goto skip;
2683                 if (!trylock_page(page))
2684                         goto skip;
2685
2686                 if (page->mapping != mapping || !PageUptodate(page))
2687                         goto unlock;
2688
2689                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2690                 if (page->index >= max_idx)
2691                         goto unlock;
2692
2693                 if (file->f_ra.mmap_miss > 0)
2694                         file->f_ra.mmap_miss--;
2695
2696                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2697                 if (vmf->pte)
2698                         vmf->pte += iter.index - last_pgoff;
2699                 last_pgoff = iter.index;
2700                 if (alloc_set_pte(vmf, NULL, page))
2701                         goto unlock;
2702                 unlock_page(page);
2703                 goto next;
2704 unlock:
2705                 unlock_page(page);
2706 skip:
2707                 put_page(page);
2708 next:
2709                 /* Huge page is mapped? No need to proceed. */
2710                 if (pmd_trans_huge(*vmf->pmd))
2711                         break;
2712                 if (iter.index == end_pgoff)
2713                         break;
2714         }
2715         rcu_read_unlock();
2716 }
2717 EXPORT_SYMBOL(filemap_map_pages);
2718
2719 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2720 {
2721         struct page *page = vmf->page;
2722         struct inode *inode = file_inode(vmf->vma->vm_file);
2723         vm_fault_t ret = VM_FAULT_LOCKED;
2724
2725         sb_start_pagefault(inode->i_sb);
2726         file_update_time(vmf->vma->vm_file);
2727         lock_page(page);
2728         if (page->mapping != inode->i_mapping) {
2729                 unlock_page(page);
2730                 ret = VM_FAULT_NOPAGE;
2731                 goto out;
2732         }
2733         /*
2734          * We mark the page dirty already here so that when freeze is in
2735          * progress, we are guaranteed that writeback during freezing will
2736          * see the dirty page and writeprotect it again.
2737          */
2738         set_page_dirty(page);
2739         wait_for_stable_page(page);
2740 out:
2741         sb_end_pagefault(inode->i_sb);
2742         return ret;
2743 }
2744
2745 const struct vm_operations_struct generic_file_vm_ops = {
2746         .fault          = filemap_fault,
2747         .map_pages      = filemap_map_pages,
2748         .page_mkwrite   = filemap_page_mkwrite,
2749 };
2750
2751 /* This is used for a general mmap of a disk file */
2752
2753 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2754 {
2755         struct address_space *mapping = file->f_mapping;
2756
2757         if (!mapping->a_ops->readpage)
2758                 return -ENOEXEC;
2759         file_accessed(file);
2760         vma->vm_ops = &generic_file_vm_ops;
2761         return 0;
2762 }
2763
2764 /*
2765  * This is for filesystems which do not implement ->writepage.
2766  */
2767 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2768 {
2769         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2770                 return -EINVAL;
2771         return generic_file_mmap(file, vma);
2772 }
2773 #else
2774 int filemap_page_mkwrite(struct vm_fault *vmf)
2775 {
2776         return -ENOSYS;
2777 }
2778 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2779 {
2780         return -ENOSYS;
2781 }
2782 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2783 {
2784         return -ENOSYS;
2785 }
2786 #endif /* CONFIG_MMU */
2787
2788 EXPORT_SYMBOL(filemap_page_mkwrite);
2789 EXPORT_SYMBOL(generic_file_mmap);
2790 EXPORT_SYMBOL(generic_file_readonly_mmap);
2791
2792 static struct page *wait_on_page_read(struct page *page)
2793 {
2794         if (!IS_ERR(page)) {
2795                 wait_on_page_locked(page);
2796                 if (!PageUptodate(page)) {
2797                         put_page(page);
2798                         page = ERR_PTR(-EIO);
2799                 }
2800         }
2801         return page;
2802 }
2803
2804 static struct page *do_read_cache_page(struct address_space *mapping,
2805                                 pgoff_t index,
2806                                 int (*filler)(void *, struct page *),
2807                                 void *data,
2808                                 gfp_t gfp)
2809 {
2810         struct page *page;
2811         int err;
2812 repeat:
2813         page = find_get_page(mapping, index);
2814         if (!page) {
2815                 page = __page_cache_alloc(gfp);
2816                 if (!page)
2817                         return ERR_PTR(-ENOMEM);
2818                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2819                 if (unlikely(err)) {
2820                         put_page(page);
2821                         if (err == -EEXIST)
2822                                 goto repeat;
2823                         /* Presumably ENOMEM for radix tree node */
2824                         return ERR_PTR(err);
2825                 }
2826
2827 filler:
2828                 err = filler(data, page);
2829                 if (err < 0) {
2830                         put_page(page);
2831                         return ERR_PTR(err);
2832                 }
2833
2834                 page = wait_on_page_read(page);
2835                 if (IS_ERR(page))
2836                         return page;
2837                 goto out;
2838         }
2839         if (PageUptodate(page))
2840                 goto out;
2841
2842         /*
2843          * Page is not up to date and may be locked due one of the following
2844          * case a: Page is being filled and the page lock is held
2845          * case b: Read/write error clearing the page uptodate status
2846          * case c: Truncation in progress (page locked)
2847          * case d: Reclaim in progress
2848          *
2849          * Case a, the page will be up to date when the page is unlocked.
2850          *    There is no need to serialise on the page lock here as the page
2851          *    is pinned so the lock gives no additional protection. Even if the
2852          *    the page is truncated, the data is still valid if PageUptodate as
2853          *    it's a race vs truncate race.
2854          * Case b, the page will not be up to date
2855          * Case c, the page may be truncated but in itself, the data may still
2856          *    be valid after IO completes as it's a read vs truncate race. The
2857          *    operation must restart if the page is not uptodate on unlock but
2858          *    otherwise serialising on page lock to stabilise the mapping gives
2859          *    no additional guarantees to the caller as the page lock is
2860          *    released before return.
2861          * Case d, similar to truncation. If reclaim holds the page lock, it
2862          *    will be a race with remove_mapping that determines if the mapping
2863          *    is valid on unlock but otherwise the data is valid and there is
2864          *    no need to serialise with page lock.
2865          *
2866          * As the page lock gives no additional guarantee, we optimistically
2867          * wait on the page to be unlocked and check if it's up to date and
2868          * use the page if it is. Otherwise, the page lock is required to
2869          * distinguish between the different cases. The motivation is that we
2870          * avoid spurious serialisations and wakeups when multiple processes
2871          * wait on the same page for IO to complete.
2872          */
2873         wait_on_page_locked(page);
2874         if (PageUptodate(page))
2875                 goto out;
2876
2877         /* Distinguish between all the cases under the safety of the lock */
2878         lock_page(page);
2879
2880         /* Case c or d, restart the operation */
2881         if (!page->mapping) {
2882                 unlock_page(page);
2883                 put_page(page);
2884                 goto repeat;
2885         }
2886
2887         /* Someone else locked and filled the page in a very small window */
2888         if (PageUptodate(page)) {
2889                 unlock_page(page);
2890                 goto out;
2891         }
2892
2893         /*
2894          * A previous I/O error may have been due to temporary
2895          * failures.
2896          * Clear page error before actual read, PG_error will be
2897          * set again if read page fails.
2898          */
2899         ClearPageError(page);
2900         goto filler;
2901
2902 out:
2903         mark_page_accessed(page);
2904         return page;
2905 }
2906
2907 /**
2908  * read_cache_page - read into page cache, fill it if needed
2909  * @mapping:    the page's address_space
2910  * @index:      the page index
2911  * @filler:     function to perform the read
2912  * @data:       first arg to filler(data, page) function, often left as NULL
2913  *
2914  * Read into the page cache. If a page already exists, and PageUptodate() is
2915  * not set, try to fill the page and wait for it to become unlocked.
2916  *
2917  * If the page does not get brought uptodate, return -EIO.
2918  */
2919 struct page *read_cache_page(struct address_space *mapping,
2920                                 pgoff_t index,
2921                                 int (*filler)(void *, struct page *),
2922                                 void *data)
2923 {
2924         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2925 }
2926 EXPORT_SYMBOL(read_cache_page);
2927
2928 /**
2929  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2930  * @mapping:    the page's address_space
2931  * @index:      the page index
2932  * @gfp:        the page allocator flags to use if allocating
2933  *
2934  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2935  * any new page allocations done using the specified allocation flags.
2936  *
2937  * If the page does not get brought uptodate, return -EIO.
2938  */
2939 struct page *read_cache_page_gfp(struct address_space *mapping,
2940                                 pgoff_t index,
2941                                 gfp_t gfp)
2942 {
2943         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2944
2945         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2946 }
2947 EXPORT_SYMBOL(read_cache_page_gfp);
2948
2949 /*
2950  * Performs necessary checks before doing a write
2951  *
2952  * Can adjust writing position or amount of bytes to write.
2953  * Returns appropriate error code that caller should return or
2954  * zero in case that write should be allowed.
2955  */
2956 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2957 {
2958         struct file *file = iocb->ki_filp;
2959         struct inode *inode = file->f_mapping->host;
2960         unsigned long limit = rlimit(RLIMIT_FSIZE);
2961         loff_t pos;
2962
2963         if (!iov_iter_count(from))
2964                 return 0;
2965
2966         /* FIXME: this is for backwards compatibility with 2.4 */
2967         if (iocb->ki_flags & IOCB_APPEND)
2968                 iocb->ki_pos = i_size_read(inode);
2969
2970         pos = iocb->ki_pos;
2971
2972         if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2973                 return -EINVAL;
2974
2975         if (limit != RLIM_INFINITY) {
2976                 if (iocb->ki_pos >= limit) {
2977                         send_sig(SIGXFSZ, current, 0);
2978                         return -EFBIG;
2979                 }
2980                 iov_iter_truncate(from, limit - (unsigned long)pos);
2981         }
2982
2983         /*
2984          * LFS rule
2985          */
2986         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2987                                 !(file->f_flags & O_LARGEFILE))) {
2988                 if (pos >= MAX_NON_LFS)
2989                         return -EFBIG;
2990                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2991         }
2992
2993         /*
2994          * Are we about to exceed the fs block limit ?
2995          *
2996          * If we have written data it becomes a short write.  If we have
2997          * exceeded without writing data we send a signal and return EFBIG.
2998          * Linus frestrict idea will clean these up nicely..
2999          */
3000         if (unlikely(pos >= inode->i_sb->s_maxbytes))
3001                 return -EFBIG;
3002
3003         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
3004         return iov_iter_count(from);
3005 }
3006 EXPORT_SYMBOL(generic_write_checks);
3007
3008 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3009                                 loff_t pos, unsigned len, unsigned flags,
3010                                 struct page **pagep, void **fsdata)
3011 {
3012         const struct address_space_operations *aops = mapping->a_ops;
3013
3014         return aops->write_begin(file, mapping, pos, len, flags,
3015                                                         pagep, fsdata);
3016 }
3017 EXPORT_SYMBOL(pagecache_write_begin);
3018
3019 int pagecache_write_end(struct file *file, struct address_space *mapping,
3020                                 loff_t pos, unsigned len, unsigned copied,
3021                                 struct page *page, void *fsdata)
3022 {
3023         const struct address_space_operations *aops = mapping->a_ops;
3024
3025         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3026 }
3027 EXPORT_SYMBOL(pagecache_write_end);
3028
3029 ssize_t
3030 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3031 {
3032         struct file     *file = iocb->ki_filp;
3033         struct address_space *mapping = file->f_mapping;
3034         struct inode    *inode = mapping->host;
3035         loff_t          pos = iocb->ki_pos;
3036         ssize_t         written;
3037         size_t          write_len;
3038         pgoff_t         end;
3039
3040         write_len = iov_iter_count(from);
3041         end = (pos + write_len - 1) >> PAGE_SHIFT;
3042
3043         if (iocb->ki_flags & IOCB_NOWAIT) {
3044                 /* If there are pages to writeback, return */
3045                 if (filemap_range_has_page(inode->i_mapping, pos,
3046                                            pos + iov_iter_count(from)))
3047                         return -EAGAIN;
3048         } else {
3049                 written = filemap_write_and_wait_range(mapping, pos,
3050                                                         pos + write_len - 1);
3051                 if (written)
3052                         goto out;
3053         }
3054
3055         /*
3056          * After a write we want buffered reads to be sure to go to disk to get
3057          * the new data.  We invalidate clean cached page from the region we're
3058          * about to write.  We do this *before* the write so that we can return
3059          * without clobbering -EIOCBQUEUED from ->direct_IO().
3060          */
3061         written = invalidate_inode_pages2_range(mapping,
3062                                         pos >> PAGE_SHIFT, end);
3063         /*
3064          * If a page can not be invalidated, return 0 to fall back
3065          * to buffered write.
3066          */
3067         if (written) {
3068                 if (written == -EBUSY)
3069                         return 0;
3070                 goto out;
3071         }
3072
3073         written = mapping->a_ops->direct_IO(iocb, from);
3074
3075         /*
3076          * Finally, try again to invalidate clean pages which might have been
3077          * cached by non-direct readahead, or faulted in by get_user_pages()
3078          * if the source of the write was an mmap'ed region of the file
3079          * we're writing.  Either one is a pretty crazy thing to do,
3080          * so we don't support it 100%.  If this invalidation
3081          * fails, tough, the write still worked...
3082          *
3083          * Most of the time we do not need this since dio_complete() will do
3084          * the invalidation for us. However there are some file systems that
3085          * do not end up with dio_complete() being called, so let's not break
3086          * them by removing it completely
3087          */
3088         if (mapping->nrpages)
3089                 invalidate_inode_pages2_range(mapping,
3090                                         pos >> PAGE_SHIFT, end);
3091
3092         if (written > 0) {
3093                 pos += written;
3094                 write_len -= written;
3095                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3096                         i_size_write(inode, pos);
3097                         mark_inode_dirty(inode);
3098                 }
3099                 iocb->ki_pos = pos;
3100         }
3101         iov_iter_revert(from, write_len - iov_iter_count(from));
3102 out:
3103         return written;
3104 }
3105 EXPORT_SYMBOL(generic_file_direct_write);
3106
3107 /*
3108  * Find or create a page at the given pagecache position. Return the locked
3109  * page. This function is specifically for buffered writes.
3110  */
3111 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3112                                         pgoff_t index, unsigned flags)
3113 {
3114         struct page *page;
3115         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3116
3117         if (flags & AOP_FLAG_NOFS)
3118                 fgp_flags |= FGP_NOFS;
3119
3120         page = pagecache_get_page(mapping, index, fgp_flags,
3121                         mapping_gfp_mask(mapping));
3122         if (page)
3123                 wait_for_stable_page(page);
3124
3125         return page;
3126 }
3127 EXPORT_SYMBOL(grab_cache_page_write_begin);
3128
3129 ssize_t generic_perform_write(struct file *file,
3130                                 struct iov_iter *i, loff_t pos)
3131 {
3132         struct address_space *mapping = file->f_mapping;
3133         const struct address_space_operations *a_ops = mapping->a_ops;
3134         long status = 0;
3135         ssize_t written = 0;
3136         unsigned int flags = 0;
3137
3138         do {
3139                 struct page *page;
3140                 unsigned long offset;   /* Offset into pagecache page */
3141                 unsigned long bytes;    /* Bytes to write to page */
3142                 size_t copied;          /* Bytes copied from user */
3143                 void *fsdata;
3144
3145                 offset = (pos & (PAGE_SIZE - 1));
3146                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3147                                                 iov_iter_count(i));
3148
3149 again:
3150                 /*
3151                  * Bring in the user page that we will copy from _first_.
3152                  * Otherwise there's a nasty deadlock on copying from the
3153                  * same page as we're writing to, without it being marked
3154                  * up-to-date.
3155                  *
3156                  * Not only is this an optimisation, but it is also required
3157                  * to check that the address is actually valid, when atomic
3158                  * usercopies are used, below.
3159                  */
3160                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3161                         status = -EFAULT;
3162                         break;
3163                 }
3164
3165                 if (fatal_signal_pending(current)) {
3166                         status = -EINTR;
3167                         break;
3168                 }
3169
3170                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3171                                                 &page, &fsdata);
3172                 if (unlikely(status < 0))
3173                         break;
3174
3175                 if (mapping_writably_mapped(mapping))
3176                         flush_dcache_page(page);
3177
3178                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3179                 flush_dcache_page(page);
3180
3181                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3182                                                 page, fsdata);
3183                 if (unlikely(status < 0))
3184                         break;
3185                 copied = status;
3186
3187                 cond_resched();
3188
3189                 iov_iter_advance(i, copied);
3190                 if (unlikely(copied == 0)) {
3191                         /*
3192                          * If we were unable to copy any data at all, we must
3193                          * fall back to a single segment length write.
3194                          *
3195                          * If we didn't fallback here, we could livelock
3196                          * because not all segments in the iov can be copied at
3197                          * once without a pagefault.
3198                          */
3199                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
3200                                                 iov_iter_single_seg_count(i));
3201                         goto again;
3202                 }
3203                 pos += copied;
3204                 written += copied;
3205
3206                 balance_dirty_pages_ratelimited(mapping);
3207         } while (iov_iter_count(i));
3208
3209         return written ? written : status;
3210 }
3211 EXPORT_SYMBOL(generic_perform_write);
3212
3213 /**
3214  * __generic_file_write_iter - write data to a file
3215  * @iocb:       IO state structure (file, offset, etc.)
3216  * @from:       iov_iter with data to write
3217  *
3218  * This function does all the work needed for actually writing data to a
3219  * file. It does all basic checks, removes SUID from the file, updates
3220  * modification times and calls proper subroutines depending on whether we
3221  * do direct IO or a standard buffered write.
3222  *
3223  * It expects i_mutex to be grabbed unless we work on a block device or similar
3224  * object which does not need locking at all.
3225  *
3226  * This function does *not* take care of syncing data in case of O_SYNC write.
3227  * A caller has to handle it. This is mainly due to the fact that we want to
3228  * avoid syncing under i_mutex.
3229  */
3230 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3231 {
3232         struct file *file = iocb->ki_filp;
3233         struct address_space * mapping = file->f_mapping;
3234         struct inode    *inode = mapping->host;
3235         ssize_t         written = 0;
3236         ssize_t         err;
3237         ssize_t         status;
3238
3239         /* We can write back this queue in page reclaim */
3240         current->backing_dev_info = inode_to_bdi(inode);
3241         err = file_remove_privs(file);
3242         if (err)
3243                 goto out;
3244
3245         err = file_update_time(file);
3246         if (err)
3247                 goto out;
3248
3249         if (iocb->ki_flags & IOCB_DIRECT) {
3250                 loff_t pos, endbyte;
3251
3252                 written = generic_file_direct_write(iocb, from);
3253                 /*
3254                  * If the write stopped short of completing, fall back to
3255                  * buffered writes.  Some filesystems do this for writes to
3256                  * holes, for example.  For DAX files, a buffered write will
3257                  * not succeed (even if it did, DAX does not handle dirty
3258                  * page-cache pages correctly).
3259                  */
3260                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3261                         goto out;
3262
3263                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3264                 /*
3265                  * If generic_perform_write() returned a synchronous error
3266                  * then we want to return the number of bytes which were
3267                  * direct-written, or the error code if that was zero.  Note
3268                  * that this differs from normal direct-io semantics, which
3269                  * will return -EFOO even if some bytes were written.
3270                  */
3271                 if (unlikely(status < 0)) {
3272                         err = status;
3273                         goto out;
3274                 }
3275                 /*
3276                  * We need to ensure that the page cache pages are written to
3277                  * disk and invalidated to preserve the expected O_DIRECT
3278                  * semantics.
3279                  */
3280                 endbyte = pos + status - 1;
3281                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3282                 if (err == 0) {
3283                         iocb->ki_pos = endbyte + 1;
3284                         written += status;
3285                         invalidate_mapping_pages(mapping,
3286                                                  pos >> PAGE_SHIFT,
3287                                                  endbyte >> PAGE_SHIFT);
3288                 } else {
3289                         /*
3290                          * We don't know how much we wrote, so just return
3291                          * the number of bytes which were direct-written
3292                          */
3293                 }
3294         } else {
3295                 written = generic_perform_write(file, from, iocb->ki_pos);
3296                 if (likely(written > 0))
3297                         iocb->ki_pos += written;
3298         }
3299 out:
3300         current->backing_dev_info = NULL;
3301         return written ? written : err;
3302 }
3303 EXPORT_SYMBOL(__generic_file_write_iter);
3304
3305 /**
3306  * generic_file_write_iter - write data to a file
3307  * @iocb:       IO state structure
3308  * @from:       iov_iter with data to write
3309  *
3310  * This is a wrapper around __generic_file_write_iter() to be used by most
3311  * filesystems. It takes care of syncing the file in case of O_SYNC file
3312  * and acquires i_mutex as needed.
3313  */
3314 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3315 {
3316         struct file *file = iocb->ki_filp;
3317         struct inode *inode = file->f_mapping->host;
3318         ssize_t ret;
3319
3320         inode_lock(inode);
3321         ret = generic_write_checks(iocb, from);
3322         if (ret > 0)
3323                 ret = __generic_file_write_iter(iocb, from);
3324         inode_unlock(inode);
3325
3326         if (ret > 0)
3327                 ret = generic_write_sync(iocb, ret);
3328         return ret;
3329 }
3330 EXPORT_SYMBOL(generic_file_write_iter);
3331
3332 /**
3333  * try_to_release_page() - release old fs-specific metadata on a page
3334  *
3335  * @page: the page which the kernel is trying to free
3336  * @gfp_mask: memory allocation flags (and I/O mode)
3337  *
3338  * The address_space is to try to release any data against the page
3339  * (presumably at page->private).  If the release was successful, return '1'.
3340  * Otherwise return zero.
3341  *
3342  * This may also be called if PG_fscache is set on a page, indicating that the
3343  * page is known to the local caching routines.
3344  *
3345  * The @gfp_mask argument specifies whether I/O may be performed to release
3346  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3347  *
3348  */
3349 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3350 {
3351         struct address_space * const mapping = page->mapping;
3352
3353         BUG_ON(!PageLocked(page));
3354         if (PageWriteback(page))
3355                 return 0;
3356
3357         if (mapping && mapping->a_ops->releasepage)
3358                 return mapping->a_ops->releasepage(page, gfp_mask);
3359         return try_to_free_buffers(page);
3360 }
3361
3362 EXPORT_SYMBOL(try_to_release_page);