arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71         struct page *page, *next;
72         unsigned long high_pfn = 0;
73
74         list_for_each_entry_safe(page, next, freelist, lru) {
75                 unsigned long pfn = page_to_pfn(page);
76                 list_del(&page->lru);
77                 __free_page(page);
78                 if (pfn > high_pfn)
79                         high_pfn = pfn;
80         }
81
82         return high_pfn;
83 }
84
85 static void split_map_pages(struct list_head *list)
86 {
87         unsigned int i, order, nr_pages;
88         struct page *page, *next;
89         LIST_HEAD(tmp_list);
90
91         list_for_each_entry_safe(page, next, list, lru) {
92                 list_del(&page->lru);
93
94                 order = page_private(page);
95                 nr_pages = 1 << order;
96
97                 post_alloc_hook(page, order, __GFP_MOVABLE);
98                 if (order)
99                         split_page(page, order);
100
101                 for (i = 0; i < nr_pages; i++) {
102                         list_add(&page->lru, &tmp_list);
103                         page++;
104                 }
105         }
106
107         list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113         const struct movable_operations *mops;
114
115         VM_BUG_ON_PAGE(!PageLocked(page), page);
116         if (!__PageMovable(page))
117                 return false;
118
119         mops = page_movable_ops(page);
120         if (mops)
121                 return true;
122
123         return false;
124 }
125
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128         VM_BUG_ON_PAGE(!PageLocked(page), page);
129         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
134 void __ClearPageMovable(struct page *page)
135 {
136         VM_BUG_ON_PAGE(!PageMovable(page), page);
137         /*
138          * This page still has the type of a movable page, but it's
139          * actually not movable any more.
140          */
141         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155         zone->compact_considered = 0;
156         zone->compact_defer_shift++;
157
158         if (order < zone->compact_order_failed)
159                 zone->compact_order_failed = order;
160
161         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164         trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172         if (order < zone->compact_order_failed)
173                 return false;
174
175         /* Avoid possible overflow */
176         if (++zone->compact_considered >= defer_limit) {
177                 zone->compact_considered = defer_limit;
178                 return false;
179         }
180
181         trace_mm_compaction_deferred(zone, order);
182
183         return true;
184 }
185
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192                 bool alloc_success)
193 {
194         if (alloc_success) {
195                 zone->compact_considered = 0;
196                 zone->compact_defer_shift = 0;
197         }
198         if (order >= zone->compact_order_failed)
199                 zone->compact_order_failed = order + 1;
200
201         trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207         if (order < zone->compact_order_failed)
208                 return false;
209
210         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216                                         struct page *page)
217 {
218         if (cc->ignore_skip_hint)
219                 return true;
220
221         return !get_pageblock_skip(page);
222 }
223
224 static void reset_cached_positions(struct zone *zone)
225 {
226         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228         zone->compact_cached_free_pfn =
229                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 #ifdef CONFIG_SPARSEMEM
233 /*
234  * If the PFN falls into an offline section, return the start PFN of the
235  * next online section. If the PFN falls into an online section or if
236  * there is no next online section, return 0.
237  */
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240         unsigned long start_nr = pfn_to_section_nr(start_pfn);
241
242         if (online_section_nr(start_nr))
243                 return 0;
244
245         while (++start_nr <= __highest_present_section_nr) {
246                 if (online_section_nr(start_nr))
247                         return section_nr_to_pfn(start_nr);
248         }
249
250         return 0;
251 }
252
253 /*
254  * If the PFN falls into an offline section, return the end PFN of the
255  * next online section in reverse. If the PFN falls into an online section
256  * or if there is no next online section in reverse, return 0.
257  */
258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259 {
260         unsigned long start_nr = pfn_to_section_nr(start_pfn);
261
262         if (!start_nr || online_section_nr(start_nr))
263                 return 0;
264
265         while (start_nr-- > 0) {
266                 if (online_section_nr(start_nr))
267                         return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268         }
269
270         return 0;
271 }
272 #else
273 static unsigned long skip_offline_sections(unsigned long start_pfn)
274 {
275         return 0;
276 }
277
278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279 {
280         return 0;
281 }
282 #endif
283
284 /*
285  * Compound pages of >= pageblock_order should consistently be skipped until
286  * released. It is always pointless to compact pages of such order (if they are
287  * migratable), and the pageblocks they occupy cannot contain any free pages.
288  */
289 static bool pageblock_skip_persistent(struct page *page)
290 {
291         if (!PageCompound(page))
292                 return false;
293
294         page = compound_head(page);
295
296         if (compound_order(page) >= pageblock_order)
297                 return true;
298
299         return false;
300 }
301
302 static bool
303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304                                                         bool check_target)
305 {
306         struct page *page = pfn_to_online_page(pfn);
307         struct page *block_page;
308         struct page *end_page;
309         unsigned long block_pfn;
310
311         if (!page)
312                 return false;
313         if (zone != page_zone(page))
314                 return false;
315         if (pageblock_skip_persistent(page))
316                 return false;
317
318         /*
319          * If skip is already cleared do no further checking once the
320          * restart points have been set.
321          */
322         if (check_source && check_target && !get_pageblock_skip(page))
323                 return true;
324
325         /*
326          * If clearing skip for the target scanner, do not select a
327          * non-movable pageblock as the starting point.
328          */
329         if (!check_source && check_target &&
330             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331                 return false;
332
333         /* Ensure the start of the pageblock or zone is online and valid */
334         block_pfn = pageblock_start_pfn(pfn);
335         block_pfn = max(block_pfn, zone->zone_start_pfn);
336         block_page = pfn_to_online_page(block_pfn);
337         if (block_page) {
338                 page = block_page;
339                 pfn = block_pfn;
340         }
341
342         /* Ensure the end of the pageblock or zone is online and valid */
343         block_pfn = pageblock_end_pfn(pfn) - 1;
344         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345         end_page = pfn_to_online_page(block_pfn);
346         if (!end_page)
347                 return false;
348
349         /*
350          * Only clear the hint if a sample indicates there is either a
351          * free page or an LRU page in the block. One or other condition
352          * is necessary for the block to be a migration source/target.
353          */
354         do {
355                 if (check_source && PageLRU(page)) {
356                         clear_pageblock_skip(page);
357                         return true;
358                 }
359
360                 if (check_target && PageBuddy(page)) {
361                         clear_pageblock_skip(page);
362                         return true;
363                 }
364
365                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366         } while (page <= end_page);
367
368         return false;
369 }
370
371 /*
372  * This function is called to clear all cached information on pageblocks that
373  * should be skipped for page isolation when the migrate and free page scanner
374  * meet.
375  */
376 static void __reset_isolation_suitable(struct zone *zone)
377 {
378         unsigned long migrate_pfn = zone->zone_start_pfn;
379         unsigned long free_pfn = zone_end_pfn(zone) - 1;
380         unsigned long reset_migrate = free_pfn;
381         unsigned long reset_free = migrate_pfn;
382         bool source_set = false;
383         bool free_set = false;
384
385         /* Only flush if a full compaction finished recently */
386         if (!zone->compact_blockskip_flush)
387                 return;
388
389         zone->compact_blockskip_flush = false;
390
391         /*
392          * Walk the zone and update pageblock skip information. Source looks
393          * for PageLRU while target looks for PageBuddy. When the scanner
394          * is found, both PageBuddy and PageLRU are checked as the pageblock
395          * is suitable as both source and target.
396          */
397         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
398                                         free_pfn -= pageblock_nr_pages) {
399                 cond_resched();
400
401                 /* Update the migrate PFN */
402                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
403                     migrate_pfn < reset_migrate) {
404                         source_set = true;
405                         reset_migrate = migrate_pfn;
406                         zone->compact_init_migrate_pfn = reset_migrate;
407                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
408                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
409                 }
410
411                 /* Update the free PFN */
412                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
413                     free_pfn > reset_free) {
414                         free_set = true;
415                         reset_free = free_pfn;
416                         zone->compact_init_free_pfn = reset_free;
417                         zone->compact_cached_free_pfn = reset_free;
418                 }
419         }
420
421         /* Leave no distance if no suitable block was reset */
422         if (reset_migrate >= reset_free) {
423                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
424                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
425                 zone->compact_cached_free_pfn = free_pfn;
426         }
427 }
428
429 void reset_isolation_suitable(pg_data_t *pgdat)
430 {
431         int zoneid;
432
433         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
434                 struct zone *zone = &pgdat->node_zones[zoneid];
435                 if (!populated_zone(zone))
436                         continue;
437
438                 __reset_isolation_suitable(zone);
439         }
440 }
441
442 /*
443  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
444  * locks are not required for read/writers. Returns true if it was already set.
445  */
446 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
447 {
448         bool skip;
449
450         /* Do not update if skip hint is being ignored */
451         if (cc->ignore_skip_hint)
452                 return false;
453
454         skip = get_pageblock_skip(page);
455         if (!skip && !cc->no_set_skip_hint)
456                 set_pageblock_skip(page);
457
458         return skip;
459 }
460
461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462 {
463         struct zone *zone = cc->zone;
464
465         /* Set for isolation rather than compaction */
466         if (cc->no_set_skip_hint)
467                 return;
468
469         pfn = pageblock_end_pfn(pfn);
470
471         /* Update where async and sync compaction should restart */
472         if (pfn > zone->compact_cached_migrate_pfn[0])
473                 zone->compact_cached_migrate_pfn[0] = pfn;
474         if (cc->mode != MIGRATE_ASYNC &&
475             pfn > zone->compact_cached_migrate_pfn[1])
476                 zone->compact_cached_migrate_pfn[1] = pfn;
477 }
478
479 /*
480  * If no pages were isolated then mark this pageblock to be skipped in the
481  * future. The information is later cleared by __reset_isolation_suitable().
482  */
483 static void update_pageblock_skip(struct compact_control *cc,
484                         struct page *page, unsigned long pfn)
485 {
486         struct zone *zone = cc->zone;
487
488         if (cc->no_set_skip_hint)
489                 return;
490
491         set_pageblock_skip(page);
492
493         if (pfn < zone->compact_cached_free_pfn)
494                 zone->compact_cached_free_pfn = pfn;
495 }
496 #else
497 static inline bool isolation_suitable(struct compact_control *cc,
498                                         struct page *page)
499 {
500         return true;
501 }
502
503 static inline bool pageblock_skip_persistent(struct page *page)
504 {
505         return false;
506 }
507
508 static inline void update_pageblock_skip(struct compact_control *cc,
509                         struct page *page, unsigned long pfn)
510 {
511 }
512
513 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
514 {
515 }
516
517 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
518 {
519         return false;
520 }
521 #endif /* CONFIG_COMPACTION */
522
523 /*
524  * Compaction requires the taking of some coarse locks that are potentially
525  * very heavily contended. For async compaction, trylock and record if the
526  * lock is contended. The lock will still be acquired but compaction will
527  * abort when the current block is finished regardless of success rate.
528  * Sync compaction acquires the lock.
529  *
530  * Always returns true which makes it easier to track lock state in callers.
531  */
532 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
533                                                 struct compact_control *cc)
534         __acquires(lock)
535 {
536         /* Track if the lock is contended in async mode */
537         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
538                 if (spin_trylock_irqsave(lock, *flags))
539                         return true;
540
541                 cc->contended = true;
542         }
543
544         spin_lock_irqsave(lock, *flags);
545         return true;
546 }
547
548 /*
549  * Compaction requires the taking of some coarse locks that are potentially
550  * very heavily contended. The lock should be periodically unlocked to avoid
551  * having disabled IRQs for a long time, even when there is nobody waiting on
552  * the lock. It might also be that allowing the IRQs will result in
553  * need_resched() becoming true. If scheduling is needed, compaction schedules.
554  * Either compaction type will also abort if a fatal signal is pending.
555  * In either case if the lock was locked, it is dropped and not regained.
556  *
557  * Returns true if compaction should abort due to fatal signal pending.
558  * Returns false when compaction can continue.
559  */
560 static bool compact_unlock_should_abort(spinlock_t *lock,
561                 unsigned long flags, bool *locked, struct compact_control *cc)
562 {
563         if (*locked) {
564                 spin_unlock_irqrestore(lock, flags);
565                 *locked = false;
566         }
567
568         if (fatal_signal_pending(current)) {
569                 cc->contended = true;
570                 return true;
571         }
572
573         cond_resched();
574
575         return false;
576 }
577
578 /*
579  * Isolate free pages onto a private freelist. If @strict is true, will abort
580  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
581  * (even though it may still end up isolating some pages).
582  */
583 static unsigned long isolate_freepages_block(struct compact_control *cc,
584                                 unsigned long *start_pfn,
585                                 unsigned long end_pfn,
586                                 struct list_head *freelist,
587                                 unsigned int stride,
588                                 bool strict)
589 {
590         int nr_scanned = 0, total_isolated = 0;
591         struct page *page;
592         unsigned long flags = 0;
593         bool locked = false;
594         unsigned long blockpfn = *start_pfn;
595         unsigned int order;
596
597         /* Strict mode is for isolation, speed is secondary */
598         if (strict)
599                 stride = 1;
600
601         page = pfn_to_page(blockpfn);
602
603         /* Isolate free pages. */
604         for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
605                 int isolated;
606
607                 /*
608                  * Periodically drop the lock (if held) regardless of its
609                  * contention, to give chance to IRQs. Abort if fatal signal
610                  * pending.
611                  */
612                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
613                     && compact_unlock_should_abort(&cc->zone->lock, flags,
614                                                                 &locked, cc))
615                         break;
616
617                 nr_scanned++;
618
619                 /*
620                  * For compound pages such as THP and hugetlbfs, we can save
621                  * potentially a lot of iterations if we skip them at once.
622                  * The check is racy, but we can consider only valid values
623                  * and the only danger is skipping too much.
624                  */
625                 if (PageCompound(page)) {
626                         const unsigned int order = compound_order(page);
627
628                         if (blockpfn + (1UL << order) <= end_pfn) {
629                                 blockpfn += (1UL << order) - 1;
630                                 page += (1UL << order) - 1;
631                                 nr_scanned += (1UL << order) - 1;
632                         }
633
634                         goto isolate_fail;
635                 }
636
637                 if (!PageBuddy(page))
638                         goto isolate_fail;
639
640                 /* If we already hold the lock, we can skip some rechecking. */
641                 if (!locked) {
642                         locked = compact_lock_irqsave(&cc->zone->lock,
643                                                                 &flags, cc);
644
645                         /* Recheck this is a buddy page under lock */
646                         if (!PageBuddy(page))
647                                 goto isolate_fail;
648                 }
649
650                 /* Found a free page, will break it into order-0 pages */
651                 order = buddy_order(page);
652                 isolated = __isolate_free_page(page, order);
653                 if (!isolated)
654                         break;
655                 set_page_private(page, order);
656
657                 nr_scanned += isolated - 1;
658                 total_isolated += isolated;
659                 cc->nr_freepages += isolated;
660                 list_add_tail(&page->lru, freelist);
661
662                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663                         blockpfn += isolated;
664                         break;
665                 }
666                 /* Advance to the end of split page */
667                 blockpfn += isolated - 1;
668                 page += isolated - 1;
669                 continue;
670
671 isolate_fail:
672                 if (strict)
673                         break;
674
675         }
676
677         if (locked)
678                 spin_unlock_irqrestore(&cc->zone->lock, flags);
679
680         /*
681          * Be careful to not go outside of the pageblock.
682          */
683         if (unlikely(blockpfn > end_pfn))
684                 blockpfn = end_pfn;
685
686         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
687                                         nr_scanned, total_isolated);
688
689         /* Record how far we have got within the block */
690         *start_pfn = blockpfn;
691
692         /*
693          * If strict isolation is requested by CMA then check that all the
694          * pages requested were isolated. If there were any failures, 0 is
695          * returned and CMA will fail.
696          */
697         if (strict && blockpfn < end_pfn)
698                 total_isolated = 0;
699
700         cc->total_free_scanned += nr_scanned;
701         if (total_isolated)
702                 count_compact_events(COMPACTISOLATED, total_isolated);
703         return total_isolated;
704 }
705
706 /**
707  * isolate_freepages_range() - isolate free pages.
708  * @cc:        Compaction control structure.
709  * @start_pfn: The first PFN to start isolating.
710  * @end_pfn:   The one-past-last PFN.
711  *
712  * Non-free pages, invalid PFNs, or zone boundaries within the
713  * [start_pfn, end_pfn) range are considered errors, cause function to
714  * undo its actions and return zero.
715  *
716  * Otherwise, function returns one-past-the-last PFN of isolated page
717  * (which may be greater then end_pfn if end fell in a middle of
718  * a free page).
719  */
720 unsigned long
721 isolate_freepages_range(struct compact_control *cc,
722                         unsigned long start_pfn, unsigned long end_pfn)
723 {
724         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
725         LIST_HEAD(freelist);
726
727         pfn = start_pfn;
728         block_start_pfn = pageblock_start_pfn(pfn);
729         if (block_start_pfn < cc->zone->zone_start_pfn)
730                 block_start_pfn = cc->zone->zone_start_pfn;
731         block_end_pfn = pageblock_end_pfn(pfn);
732
733         for (; pfn < end_pfn; pfn += isolated,
734                                 block_start_pfn = block_end_pfn,
735                                 block_end_pfn += pageblock_nr_pages) {
736                 /* Protect pfn from changing by isolate_freepages_block */
737                 unsigned long isolate_start_pfn = pfn;
738
739                 /*
740                  * pfn could pass the block_end_pfn if isolated freepage
741                  * is more than pageblock order. In this case, we adjust
742                  * scanning range to right one.
743                  */
744                 if (pfn >= block_end_pfn) {
745                         block_start_pfn = pageblock_start_pfn(pfn);
746                         block_end_pfn = pageblock_end_pfn(pfn);
747                 }
748
749                 block_end_pfn = min(block_end_pfn, end_pfn);
750
751                 if (!pageblock_pfn_to_page(block_start_pfn,
752                                         block_end_pfn, cc->zone))
753                         break;
754
755                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
756                                         block_end_pfn, &freelist, 0, true);
757
758                 /*
759                  * In strict mode, isolate_freepages_block() returns 0 if
760                  * there are any holes in the block (ie. invalid PFNs or
761                  * non-free pages).
762                  */
763                 if (!isolated)
764                         break;
765
766                 /*
767                  * If we managed to isolate pages, it is always (1 << n) *
768                  * pageblock_nr_pages for some non-negative n.  (Max order
769                  * page may span two pageblocks).
770                  */
771         }
772
773         /* __isolate_free_page() does not map the pages */
774         split_map_pages(&freelist);
775
776         if (pfn < end_pfn) {
777                 /* Loop terminated early, cleanup. */
778                 release_freepages(&freelist);
779                 return 0;
780         }
781
782         /* We don't use freelists for anything. */
783         return pfn;
784 }
785
786 /* Similar to reclaim, but different enough that they don't share logic */
787 static bool too_many_isolated(struct compact_control *cc)
788 {
789         pg_data_t *pgdat = cc->zone->zone_pgdat;
790         bool too_many;
791
792         unsigned long active, inactive, isolated;
793
794         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
795                         node_page_state(pgdat, NR_INACTIVE_ANON);
796         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
797                         node_page_state(pgdat, NR_ACTIVE_ANON);
798         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
799                         node_page_state(pgdat, NR_ISOLATED_ANON);
800
801         /*
802          * Allow GFP_NOFS to isolate past the limit set for regular
803          * compaction runs. This prevents an ABBA deadlock when other
804          * compactors have already isolated to the limit, but are
805          * blocked on filesystem locks held by the GFP_NOFS thread.
806          */
807         if (cc->gfp_mask & __GFP_FS) {
808                 inactive >>= 3;
809                 active >>= 3;
810         }
811
812         too_many = isolated > (inactive + active) / 2;
813         if (!too_many)
814                 wake_throttle_isolated(pgdat);
815
816         return too_many;
817 }
818
819 /**
820  * isolate_migratepages_block() - isolate all migrate-able pages within
821  *                                a single pageblock
822  * @cc:         Compaction control structure.
823  * @low_pfn:    The first PFN to isolate
824  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
825  * @mode:       Isolation mode to be used.
826  *
827  * Isolate all pages that can be migrated from the range specified by
828  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
829  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
830  * -ENOMEM in case we could not allocate a page, or 0.
831  * cc->migrate_pfn will contain the next pfn to scan.
832  *
833  * The pages are isolated on cc->migratepages list (not required to be empty),
834  * and cc->nr_migratepages is updated accordingly.
835  */
836 static int
837 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
838                         unsigned long end_pfn, isolate_mode_t mode)
839 {
840         pg_data_t *pgdat = cc->zone->zone_pgdat;
841         unsigned long nr_scanned = 0, nr_isolated = 0;
842         struct lruvec *lruvec;
843         unsigned long flags = 0;
844         struct lruvec *locked = NULL;
845         struct folio *folio = NULL;
846         struct page *page = NULL, *valid_page = NULL;
847         struct address_space *mapping;
848         unsigned long start_pfn = low_pfn;
849         bool skip_on_failure = false;
850         unsigned long next_skip_pfn = 0;
851         bool skip_updated = false;
852         int ret = 0;
853
854         cc->migrate_pfn = low_pfn;
855
856         /*
857          * Ensure that there are not too many pages isolated from the LRU
858          * list by either parallel reclaimers or compaction. If there are,
859          * delay for some time until fewer pages are isolated
860          */
861         while (unlikely(too_many_isolated(cc))) {
862                 /* stop isolation if there are still pages not migrated */
863                 if (cc->nr_migratepages)
864                         return -EAGAIN;
865
866                 /* async migration should just abort */
867                 if (cc->mode == MIGRATE_ASYNC)
868                         return -EAGAIN;
869
870                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
871
872                 if (fatal_signal_pending(current))
873                         return -EINTR;
874         }
875
876         cond_resched();
877
878         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
879                 skip_on_failure = true;
880                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
881         }
882
883         /* Time to isolate some pages for migration */
884         for (; low_pfn < end_pfn; low_pfn++) {
885
886                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
887                         /*
888                          * We have isolated all migration candidates in the
889                          * previous order-aligned block, and did not skip it due
890                          * to failure. We should migrate the pages now and
891                          * hopefully succeed compaction.
892                          */
893                         if (nr_isolated)
894                                 break;
895
896                         /*
897                          * We failed to isolate in the previous order-aligned
898                          * block. Set the new boundary to the end of the
899                          * current block. Note we can't simply increase
900                          * next_skip_pfn by 1 << order, as low_pfn might have
901                          * been incremented by a higher number due to skipping
902                          * a compound or a high-order buddy page in the
903                          * previous loop iteration.
904                          */
905                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
906                 }
907
908                 /*
909                  * Periodically drop the lock (if held) regardless of its
910                  * contention, to give chance to IRQs. Abort completely if
911                  * a fatal signal is pending.
912                  */
913                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
914                         if (locked) {
915                                 unlock_page_lruvec_irqrestore(locked, flags);
916                                 locked = NULL;
917                         }
918
919                         if (fatal_signal_pending(current)) {
920                                 cc->contended = true;
921                                 ret = -EINTR;
922
923                                 goto fatal_pending;
924                         }
925
926                         cond_resched();
927                 }
928
929                 nr_scanned++;
930
931                 page = pfn_to_page(low_pfn);
932
933                 /*
934                  * Check if the pageblock has already been marked skipped.
935                  * Only the first PFN is checked as the caller isolates
936                  * COMPACT_CLUSTER_MAX at a time so the second call must
937                  * not falsely conclude that the block should be skipped.
938                  */
939                 if (!valid_page && (pageblock_aligned(low_pfn) ||
940                                     low_pfn == cc->zone->zone_start_pfn)) {
941                         if (!isolation_suitable(cc, page)) {
942                                 low_pfn = end_pfn;
943                                 folio = NULL;
944                                 goto isolate_abort;
945                         }
946                         valid_page = page;
947                 }
948
949                 if (PageHuge(page) && cc->alloc_contig) {
950                         if (locked) {
951                                 unlock_page_lruvec_irqrestore(locked, flags);
952                                 locked = NULL;
953                         }
954
955                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
956
957                         /*
958                          * Fail isolation in case isolate_or_dissolve_huge_page()
959                          * reports an error. In case of -ENOMEM, abort right away.
960                          */
961                         if (ret < 0) {
962                                  /* Do not report -EBUSY down the chain */
963                                 if (ret == -EBUSY)
964                                         ret = 0;
965                                 low_pfn += compound_nr(page) - 1;
966                                 nr_scanned += compound_nr(page) - 1;
967                                 goto isolate_fail;
968                         }
969
970                         if (PageHuge(page)) {
971                                 /*
972                                  * Hugepage was successfully isolated and placed
973                                  * on the cc->migratepages list.
974                                  */
975                                 folio = page_folio(page);
976                                 low_pfn += folio_nr_pages(folio) - 1;
977                                 goto isolate_success_no_list;
978                         }
979
980                         /*
981                          * Ok, the hugepage was dissolved. Now these pages are
982                          * Buddy and cannot be re-allocated because they are
983                          * isolated. Fall-through as the check below handles
984                          * Buddy pages.
985                          */
986                 }
987
988                 /*
989                  * Skip if free. We read page order here without zone lock
990                  * which is generally unsafe, but the race window is small and
991                  * the worst thing that can happen is that we skip some
992                  * potential isolation targets.
993                  */
994                 if (PageBuddy(page)) {
995                         unsigned long freepage_order = buddy_order_unsafe(page);
996
997                         /*
998                          * Without lock, we cannot be sure that what we got is
999                          * a valid page order. Consider only values in the
1000                          * valid order range to prevent low_pfn overflow.
1001                          */
1002                         if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
1003                                 low_pfn += (1UL << freepage_order) - 1;
1004                                 nr_scanned += (1UL << freepage_order) - 1;
1005                         }
1006                         continue;
1007                 }
1008
1009                 /*
1010                  * Regardless of being on LRU, compound pages such as THP and
1011                  * hugetlbfs are not to be compacted unless we are attempting
1012                  * an allocation much larger than the huge page size (eg CMA).
1013                  * We can potentially save a lot of iterations if we skip them
1014                  * at once. The check is racy, but we can consider only valid
1015                  * values and the only danger is skipping too much.
1016                  */
1017                 if (PageCompound(page) && !cc->alloc_contig) {
1018                         const unsigned int order = compound_order(page);
1019
1020                         if (likely(order <= MAX_ORDER)) {
1021                                 low_pfn += (1UL << order) - 1;
1022                                 nr_scanned += (1UL << order) - 1;
1023                         }
1024                         goto isolate_fail;
1025                 }
1026
1027                 /*
1028                  * Check may be lockless but that's ok as we recheck later.
1029                  * It's possible to migrate LRU and non-lru movable pages.
1030                  * Skip any other type of page
1031                  */
1032                 if (!PageLRU(page)) {
1033                         /*
1034                          * __PageMovable can return false positive so we need
1035                          * to verify it under page_lock.
1036                          */
1037                         if (unlikely(__PageMovable(page)) &&
1038                                         !PageIsolated(page)) {
1039                                 if (locked) {
1040                                         unlock_page_lruvec_irqrestore(locked, flags);
1041                                         locked = NULL;
1042                                 }
1043
1044                                 if (isolate_movable_page(page, mode)) {
1045                                         folio = page_folio(page);
1046                                         goto isolate_success;
1047                                 }
1048                         }
1049
1050                         goto isolate_fail;
1051                 }
1052
1053                 /*
1054                  * Be careful not to clear PageLRU until after we're
1055                  * sure the page is not being freed elsewhere -- the
1056                  * page release code relies on it.
1057                  */
1058                 folio = folio_get_nontail_page(page);
1059                 if (unlikely(!folio))
1060                         goto isolate_fail;
1061
1062                 /*
1063                  * Migration will fail if an anonymous page is pinned in memory,
1064                  * so avoid taking lru_lock and isolating it unnecessarily in an
1065                  * admittedly racy check.
1066                  */
1067                 mapping = folio_mapping(folio);
1068                 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1069                         goto isolate_fail_put;
1070
1071                 /*
1072                  * Only allow to migrate anonymous pages in GFP_NOFS context
1073                  * because those do not depend on fs locks.
1074                  */
1075                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1076                         goto isolate_fail_put;
1077
1078                 /* Only take pages on LRU: a check now makes later tests safe */
1079                 if (!folio_test_lru(folio))
1080                         goto isolate_fail_put;
1081
1082                 /* Compaction might skip unevictable pages but CMA takes them */
1083                 if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
1084                         goto isolate_fail_put;
1085
1086                 /*
1087                  * To minimise LRU disruption, the caller can indicate with
1088                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1089                  * it will be able to migrate without blocking - clean pages
1090                  * for the most part.  PageWriteback would require blocking.
1091                  */
1092                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1093                         goto isolate_fail_put;
1094
1095                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
1096                         bool migrate_dirty;
1097
1098                         /*
1099                          * Only folios without mappings or that have
1100                          * a ->migrate_folio callback are possible to
1101                          * migrate without blocking.  However, we may
1102                          * be racing with truncation, which can free
1103                          * the mapping.  Truncation holds the folio lock
1104                          * until after the folio is removed from the page
1105                          * cache so holding it ourselves is sufficient.
1106                          */
1107                         if (!folio_trylock(folio))
1108                                 goto isolate_fail_put;
1109
1110                         mapping = folio_mapping(folio);
1111                         migrate_dirty = !mapping ||
1112                                         mapping->a_ops->migrate_folio;
1113                         folio_unlock(folio);
1114                         if (!migrate_dirty)
1115                                 goto isolate_fail_put;
1116                 }
1117
1118                 /* Try isolate the folio */
1119                 if (!folio_test_clear_lru(folio))
1120                         goto isolate_fail_put;
1121
1122                 lruvec = folio_lruvec(folio);
1123
1124                 /* If we already hold the lock, we can skip some rechecking */
1125                 if (lruvec != locked) {
1126                         if (locked)
1127                                 unlock_page_lruvec_irqrestore(locked, flags);
1128
1129                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1130                         locked = lruvec;
1131
1132                         lruvec_memcg_debug(lruvec, folio);
1133
1134                         /*
1135                          * Try get exclusive access under lock. If marked for
1136                          * skip, the scan is aborted unless the current context
1137                          * is a rescan to reach the end of the pageblock.
1138                          */
1139                         if (!skip_updated && valid_page) {
1140                                 skip_updated = true;
1141                                 if (test_and_set_skip(cc, valid_page) &&
1142                                     !cc->finish_pageblock) {
1143                                         low_pfn = end_pfn;
1144                                         goto isolate_abort;
1145                                 }
1146                         }
1147
1148                         /*
1149                          * folio become large since the non-locked check,
1150                          * and it's on LRU.
1151                          */
1152                         if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1153                                 low_pfn += folio_nr_pages(folio) - 1;
1154                                 nr_scanned += folio_nr_pages(folio) - 1;
1155                                 folio_set_lru(folio);
1156                                 goto isolate_fail_put;
1157                         }
1158                 }
1159
1160                 /* The folio is taken off the LRU */
1161                 if (folio_test_large(folio))
1162                         low_pfn += folio_nr_pages(folio) - 1;
1163
1164                 /* Successfully isolated */
1165                 lruvec_del_folio(lruvec, folio);
1166                 node_stat_mod_folio(folio,
1167                                 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1168                                 folio_nr_pages(folio));
1169
1170 isolate_success:
1171                 list_add(&folio->lru, &cc->migratepages);
1172 isolate_success_no_list:
1173                 cc->nr_migratepages += folio_nr_pages(folio);
1174                 nr_isolated += folio_nr_pages(folio);
1175                 nr_scanned += folio_nr_pages(folio) - 1;
1176
1177                 /*
1178                  * Avoid isolating too much unless this block is being
1179                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1180                  * or a lock is contended. For contention, isolate quickly to
1181                  * potentially remove one source of contention.
1182                  */
1183                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1184                     !cc->finish_pageblock && !cc->contended) {
1185                         ++low_pfn;
1186                         break;
1187                 }
1188
1189                 continue;
1190
1191 isolate_fail_put:
1192                 /* Avoid potential deadlock in freeing page under lru_lock */
1193                 if (locked) {
1194                         unlock_page_lruvec_irqrestore(locked, flags);
1195                         locked = NULL;
1196                 }
1197                 folio_put(folio);
1198
1199 isolate_fail:
1200                 if (!skip_on_failure && ret != -ENOMEM)
1201                         continue;
1202
1203                 /*
1204                  * We have isolated some pages, but then failed. Release them
1205                  * instead of migrating, as we cannot form the cc->order buddy
1206                  * page anyway.
1207                  */
1208                 if (nr_isolated) {
1209                         if (locked) {
1210                                 unlock_page_lruvec_irqrestore(locked, flags);
1211                                 locked = NULL;
1212                         }
1213                         putback_movable_pages(&cc->migratepages);
1214                         cc->nr_migratepages = 0;
1215                         nr_isolated = 0;
1216                 }
1217
1218                 if (low_pfn < next_skip_pfn) {
1219                         low_pfn = next_skip_pfn - 1;
1220                         /*
1221                          * The check near the loop beginning would have updated
1222                          * next_skip_pfn too, but this is a bit simpler.
1223                          */
1224                         next_skip_pfn += 1UL << cc->order;
1225                 }
1226
1227                 if (ret == -ENOMEM)
1228                         break;
1229         }
1230
1231         /*
1232          * The PageBuddy() check could have potentially brought us outside
1233          * the range to be scanned.
1234          */
1235         if (unlikely(low_pfn > end_pfn))
1236                 low_pfn = end_pfn;
1237
1238         folio = NULL;
1239
1240 isolate_abort:
1241         if (locked)
1242                 unlock_page_lruvec_irqrestore(locked, flags);
1243         if (folio) {
1244                 folio_set_lru(folio);
1245                 folio_put(folio);
1246         }
1247
1248         /*
1249          * Update the cached scanner pfn once the pageblock has been scanned.
1250          * Pages will either be migrated in which case there is no point
1251          * scanning in the near future or migration failed in which case the
1252          * failure reason may persist. The block is marked for skipping if
1253          * there were no pages isolated in the block or if the block is
1254          * rescanned twice in a row.
1255          */
1256         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1257                 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1258                         set_pageblock_skip(valid_page);
1259                 update_cached_migrate(cc, low_pfn);
1260         }
1261
1262         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1263                                                 nr_scanned, nr_isolated);
1264
1265 fatal_pending:
1266         cc->total_migrate_scanned += nr_scanned;
1267         if (nr_isolated)
1268                 count_compact_events(COMPACTISOLATED, nr_isolated);
1269
1270         cc->migrate_pfn = low_pfn;
1271
1272         return ret;
1273 }
1274
1275 /**
1276  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1277  * @cc:        Compaction control structure.
1278  * @start_pfn: The first PFN to start isolating.
1279  * @end_pfn:   The one-past-last PFN.
1280  *
1281  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1282  * in case we could not allocate a page, or 0.
1283  */
1284 int
1285 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1286                                                         unsigned long end_pfn)
1287 {
1288         unsigned long pfn, block_start_pfn, block_end_pfn;
1289         int ret = 0;
1290
1291         /* Scan block by block. First and last block may be incomplete */
1292         pfn = start_pfn;
1293         block_start_pfn = pageblock_start_pfn(pfn);
1294         if (block_start_pfn < cc->zone->zone_start_pfn)
1295                 block_start_pfn = cc->zone->zone_start_pfn;
1296         block_end_pfn = pageblock_end_pfn(pfn);
1297
1298         for (; pfn < end_pfn; pfn = block_end_pfn,
1299                                 block_start_pfn = block_end_pfn,
1300                                 block_end_pfn += pageblock_nr_pages) {
1301
1302                 block_end_pfn = min(block_end_pfn, end_pfn);
1303
1304                 if (!pageblock_pfn_to_page(block_start_pfn,
1305                                         block_end_pfn, cc->zone))
1306                         continue;
1307
1308                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1309                                                  ISOLATE_UNEVICTABLE);
1310
1311                 if (ret)
1312                         break;
1313
1314                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1315                         break;
1316         }
1317
1318         return ret;
1319 }
1320
1321 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1322 #ifdef CONFIG_COMPACTION
1323
1324 static bool suitable_migration_source(struct compact_control *cc,
1325                                                         struct page *page)
1326 {
1327         int block_mt;
1328
1329         if (pageblock_skip_persistent(page))
1330                 return false;
1331
1332         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1333                 return true;
1334
1335         block_mt = get_pageblock_migratetype(page);
1336
1337         if (cc->migratetype == MIGRATE_MOVABLE)
1338                 return is_migrate_movable(block_mt);
1339         else
1340                 return block_mt == cc->migratetype;
1341 }
1342
1343 /* Returns true if the page is within a block suitable for migration to */
1344 static bool suitable_migration_target(struct compact_control *cc,
1345                                                         struct page *page)
1346 {
1347         /* If the page is a large free page, then disallow migration */
1348         if (PageBuddy(page)) {
1349                 /*
1350                  * We are checking page_order without zone->lock taken. But
1351                  * the only small danger is that we skip a potentially suitable
1352                  * pageblock, so it's not worth to check order for valid range.
1353                  */
1354                 if (buddy_order_unsafe(page) >= pageblock_order)
1355                         return false;
1356         }
1357
1358         if (cc->ignore_block_suitable)
1359                 return true;
1360
1361         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1362         if (is_migrate_movable(get_pageblock_migratetype(page)))
1363                 return true;
1364
1365         /* Otherwise skip the block */
1366         return false;
1367 }
1368
1369 static inline unsigned int
1370 freelist_scan_limit(struct compact_control *cc)
1371 {
1372         unsigned short shift = BITS_PER_LONG - 1;
1373
1374         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1375 }
1376
1377 /*
1378  * Test whether the free scanner has reached the same or lower pageblock than
1379  * the migration scanner, and compaction should thus terminate.
1380  */
1381 static inline bool compact_scanners_met(struct compact_control *cc)
1382 {
1383         return (cc->free_pfn >> pageblock_order)
1384                 <= (cc->migrate_pfn >> pageblock_order);
1385 }
1386
1387 /*
1388  * Used when scanning for a suitable migration target which scans freelists
1389  * in reverse. Reorders the list such as the unscanned pages are scanned
1390  * first on the next iteration of the free scanner
1391  */
1392 static void
1393 move_freelist_head(struct list_head *freelist, struct page *freepage)
1394 {
1395         LIST_HEAD(sublist);
1396
1397         if (!list_is_first(&freepage->buddy_list, freelist)) {
1398                 list_cut_before(&sublist, freelist, &freepage->buddy_list);
1399                 list_splice_tail(&sublist, freelist);
1400         }
1401 }
1402
1403 /*
1404  * Similar to move_freelist_head except used by the migration scanner
1405  * when scanning forward. It's possible for these list operations to
1406  * move against each other if they search the free list exactly in
1407  * lockstep.
1408  */
1409 static void
1410 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1411 {
1412         LIST_HEAD(sublist);
1413
1414         if (!list_is_last(&freepage->buddy_list, freelist)) {
1415                 list_cut_position(&sublist, freelist, &freepage->buddy_list);
1416                 list_splice_tail(&sublist, freelist);
1417         }
1418 }
1419
1420 static void
1421 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1422 {
1423         unsigned long start_pfn, end_pfn;
1424         struct page *page;
1425
1426         /* Do not search around if there are enough pages already */
1427         if (cc->nr_freepages >= cc->nr_migratepages)
1428                 return;
1429
1430         /* Minimise scanning during async compaction */
1431         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1432                 return;
1433
1434         /* Pageblock boundaries */
1435         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1436         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1437
1438         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1439         if (!page)
1440                 return;
1441
1442         isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1443
1444         /* Skip this pageblock in the future as it's full or nearly full */
1445         if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1446                 set_pageblock_skip(page);
1447 }
1448
1449 /* Search orders in round-robin fashion */
1450 static int next_search_order(struct compact_control *cc, int order)
1451 {
1452         order--;
1453         if (order < 0)
1454                 order = cc->order - 1;
1455
1456         /* Search wrapped around? */
1457         if (order == cc->search_order) {
1458                 cc->search_order--;
1459                 if (cc->search_order < 0)
1460                         cc->search_order = cc->order - 1;
1461                 return -1;
1462         }
1463
1464         return order;
1465 }
1466
1467 static void fast_isolate_freepages(struct compact_control *cc)
1468 {
1469         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1470         unsigned int nr_scanned = 0, total_isolated = 0;
1471         unsigned long low_pfn, min_pfn, highest = 0;
1472         unsigned long nr_isolated = 0;
1473         unsigned long distance;
1474         struct page *page = NULL;
1475         bool scan_start = false;
1476         int order;
1477
1478         /* Full compaction passes in a negative order */
1479         if (cc->order <= 0)
1480                 return;
1481
1482         /*
1483          * If starting the scan, use a deeper search and use the highest
1484          * PFN found if a suitable one is not found.
1485          */
1486         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1487                 limit = pageblock_nr_pages >> 1;
1488                 scan_start = true;
1489         }
1490
1491         /*
1492          * Preferred point is in the top quarter of the scan space but take
1493          * a pfn from the top half if the search is problematic.
1494          */
1495         distance = (cc->free_pfn - cc->migrate_pfn);
1496         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1497         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1498
1499         if (WARN_ON_ONCE(min_pfn > low_pfn))
1500                 low_pfn = min_pfn;
1501
1502         /*
1503          * Search starts from the last successful isolation order or the next
1504          * order to search after a previous failure
1505          */
1506         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1507
1508         for (order = cc->search_order;
1509              !page && order >= 0;
1510              order = next_search_order(cc, order)) {
1511                 struct free_area *area = &cc->zone->free_area[order];
1512                 struct list_head *freelist;
1513                 struct page *freepage;
1514                 unsigned long flags;
1515                 unsigned int order_scanned = 0;
1516                 unsigned long high_pfn = 0;
1517
1518                 if (!area->nr_free)
1519                         continue;
1520
1521                 spin_lock_irqsave(&cc->zone->lock, flags);
1522                 freelist = &area->free_list[MIGRATE_MOVABLE];
1523                 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1524                         unsigned long pfn;
1525
1526                         order_scanned++;
1527                         nr_scanned++;
1528                         pfn = page_to_pfn(freepage);
1529
1530                         if (pfn >= highest)
1531                                 highest = max(pageblock_start_pfn(pfn),
1532                                               cc->zone->zone_start_pfn);
1533
1534                         if (pfn >= low_pfn) {
1535                                 cc->fast_search_fail = 0;
1536                                 cc->search_order = order;
1537                                 page = freepage;
1538                                 break;
1539                         }
1540
1541                         if (pfn >= min_pfn && pfn > high_pfn) {
1542                                 high_pfn = pfn;
1543
1544                                 /* Shorten the scan if a candidate is found */
1545                                 limit >>= 1;
1546                         }
1547
1548                         if (order_scanned >= limit)
1549                                 break;
1550                 }
1551
1552                 /* Use a maximum candidate pfn if a preferred one was not found */
1553                 if (!page && high_pfn) {
1554                         page = pfn_to_page(high_pfn);
1555
1556                         /* Update freepage for the list reorder below */
1557                         freepage = page;
1558                 }
1559
1560                 /* Reorder to so a future search skips recent pages */
1561                 move_freelist_head(freelist, freepage);
1562
1563                 /* Isolate the page if available */
1564                 if (page) {
1565                         if (__isolate_free_page(page, order)) {
1566                                 set_page_private(page, order);
1567                                 nr_isolated = 1 << order;
1568                                 nr_scanned += nr_isolated - 1;
1569                                 total_isolated += nr_isolated;
1570                                 cc->nr_freepages += nr_isolated;
1571                                 list_add_tail(&page->lru, &cc->freepages);
1572                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1573                         } else {
1574                                 /* If isolation fails, abort the search */
1575                                 order = cc->search_order + 1;
1576                                 page = NULL;
1577                         }
1578                 }
1579
1580                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1581
1582                 /* Skip fast search if enough freepages isolated */
1583                 if (cc->nr_freepages >= cc->nr_migratepages)
1584                         break;
1585
1586                 /*
1587                  * Smaller scan on next order so the total scan is related
1588                  * to freelist_scan_limit.
1589                  */
1590                 if (order_scanned >= limit)
1591                         limit = max(1U, limit >> 1);
1592         }
1593
1594         trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1595                                                    nr_scanned, total_isolated);
1596
1597         if (!page) {
1598                 cc->fast_search_fail++;
1599                 if (scan_start) {
1600                         /*
1601                          * Use the highest PFN found above min. If one was
1602                          * not found, be pessimistic for direct compaction
1603                          * and use the min mark.
1604                          */
1605                         if (highest >= min_pfn) {
1606                                 page = pfn_to_page(highest);
1607                                 cc->free_pfn = highest;
1608                         } else {
1609                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1610                                         page = pageblock_pfn_to_page(min_pfn,
1611                                                 min(pageblock_end_pfn(min_pfn),
1612                                                     zone_end_pfn(cc->zone)),
1613                                                 cc->zone);
1614                                         cc->free_pfn = min_pfn;
1615                                 }
1616                         }
1617                 }
1618         }
1619
1620         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1621                 highest -= pageblock_nr_pages;
1622                 cc->zone->compact_cached_free_pfn = highest;
1623         }
1624
1625         cc->total_free_scanned += nr_scanned;
1626         if (!page)
1627                 return;
1628
1629         low_pfn = page_to_pfn(page);
1630         fast_isolate_around(cc, low_pfn);
1631 }
1632
1633 /*
1634  * Based on information in the current compact_control, find blocks
1635  * suitable for isolating free pages from and then isolate them.
1636  */
1637 static void isolate_freepages(struct compact_control *cc)
1638 {
1639         struct zone *zone = cc->zone;
1640         struct page *page;
1641         unsigned long block_start_pfn;  /* start of current pageblock */
1642         unsigned long isolate_start_pfn; /* exact pfn we start at */
1643         unsigned long block_end_pfn;    /* end of current pageblock */
1644         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1645         struct list_head *freelist = &cc->freepages;
1646         unsigned int stride;
1647
1648         /* Try a small search of the free lists for a candidate */
1649         fast_isolate_freepages(cc);
1650         if (cc->nr_freepages)
1651                 goto splitmap;
1652
1653         /*
1654          * Initialise the free scanner. The starting point is where we last
1655          * successfully isolated from, zone-cached value, or the end of the
1656          * zone when isolating for the first time. For looping we also need
1657          * this pfn aligned down to the pageblock boundary, because we do
1658          * block_start_pfn -= pageblock_nr_pages in the for loop.
1659          * For ending point, take care when isolating in last pageblock of a
1660          * zone which ends in the middle of a pageblock.
1661          * The low boundary is the end of the pageblock the migration scanner
1662          * is using.
1663          */
1664         isolate_start_pfn = cc->free_pfn;
1665         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1666         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1667                                                 zone_end_pfn(zone));
1668         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1669         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1670
1671         /*
1672          * Isolate free pages until enough are available to migrate the
1673          * pages on cc->migratepages. We stop searching if the migrate
1674          * and free page scanners meet or enough free pages are isolated.
1675          */
1676         for (; block_start_pfn >= low_pfn;
1677                                 block_end_pfn = block_start_pfn,
1678                                 block_start_pfn -= pageblock_nr_pages,
1679                                 isolate_start_pfn = block_start_pfn) {
1680                 unsigned long nr_isolated;
1681
1682                 /*
1683                  * This can iterate a massively long zone without finding any
1684                  * suitable migration targets, so periodically check resched.
1685                  */
1686                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1687                         cond_resched();
1688
1689                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1690                                                                         zone);
1691                 if (!page) {
1692                         unsigned long next_pfn;
1693
1694                         next_pfn = skip_offline_sections_reverse(block_start_pfn);
1695                         if (next_pfn)
1696                                 block_start_pfn = max(next_pfn, low_pfn);
1697
1698                         continue;
1699                 }
1700
1701                 /* Check the block is suitable for migration */
1702                 if (!suitable_migration_target(cc, page))
1703                         continue;
1704
1705                 /* If isolation recently failed, do not retry */
1706                 if (!isolation_suitable(cc, page))
1707                         continue;
1708
1709                 /* Found a block suitable for isolating free pages from. */
1710                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1711                                         block_end_pfn, freelist, stride, false);
1712
1713                 /* Update the skip hint if the full pageblock was scanned */
1714                 if (isolate_start_pfn == block_end_pfn)
1715                         update_pageblock_skip(cc, page, block_start_pfn -
1716                                               pageblock_nr_pages);
1717
1718                 /* Are enough freepages isolated? */
1719                 if (cc->nr_freepages >= cc->nr_migratepages) {
1720                         if (isolate_start_pfn >= block_end_pfn) {
1721                                 /*
1722                                  * Restart at previous pageblock if more
1723                                  * freepages can be isolated next time.
1724                                  */
1725                                 isolate_start_pfn =
1726                                         block_start_pfn - pageblock_nr_pages;
1727                         }
1728                         break;
1729                 } else if (isolate_start_pfn < block_end_pfn) {
1730                         /*
1731                          * If isolation failed early, do not continue
1732                          * needlessly.
1733                          */
1734                         break;
1735                 }
1736
1737                 /* Adjust stride depending on isolation */
1738                 if (nr_isolated) {
1739                         stride = 1;
1740                         continue;
1741                 }
1742                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1743         }
1744
1745         /*
1746          * Record where the free scanner will restart next time. Either we
1747          * broke from the loop and set isolate_start_pfn based on the last
1748          * call to isolate_freepages_block(), or we met the migration scanner
1749          * and the loop terminated due to isolate_start_pfn < low_pfn
1750          */
1751         cc->free_pfn = isolate_start_pfn;
1752
1753 splitmap:
1754         /* __isolate_free_page() does not map the pages */
1755         split_map_pages(freelist);
1756 }
1757
1758 /*
1759  * This is a migrate-callback that "allocates" freepages by taking pages
1760  * from the isolated freelists in the block we are migrating to.
1761  */
1762 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1763 {
1764         struct compact_control *cc = (struct compact_control *)data;
1765         struct folio *dst;
1766
1767         if (list_empty(&cc->freepages)) {
1768                 isolate_freepages(cc);
1769
1770                 if (list_empty(&cc->freepages))
1771                         return NULL;
1772         }
1773
1774         dst = list_entry(cc->freepages.next, struct folio, lru);
1775         list_del(&dst->lru);
1776         cc->nr_freepages--;
1777
1778         return dst;
1779 }
1780
1781 /*
1782  * This is a migrate-callback that "frees" freepages back to the isolated
1783  * freelist.  All pages on the freelist are from the same zone, so there is no
1784  * special handling needed for NUMA.
1785  */
1786 static void compaction_free(struct folio *dst, unsigned long data)
1787 {
1788         struct compact_control *cc = (struct compact_control *)data;
1789
1790         list_add(&dst->lru, &cc->freepages);
1791         cc->nr_freepages++;
1792 }
1793
1794 /* possible outcome of isolate_migratepages */
1795 typedef enum {
1796         ISOLATE_ABORT,          /* Abort compaction now */
1797         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1798         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1799 } isolate_migrate_t;
1800
1801 /*
1802  * Allow userspace to control policy on scanning the unevictable LRU for
1803  * compactable pages.
1804  */
1805 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1806 /*
1807  * Tunable for proactive compaction. It determines how
1808  * aggressively the kernel should compact memory in the
1809  * background. It takes values in the range [0, 100].
1810  */
1811 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1812 static int sysctl_extfrag_threshold = 500;
1813 static int __read_mostly sysctl_compact_memory;
1814
1815 static inline void
1816 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1817 {
1818         if (cc->fast_start_pfn == ULONG_MAX)
1819                 return;
1820
1821         if (!cc->fast_start_pfn)
1822                 cc->fast_start_pfn = pfn;
1823
1824         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1825 }
1826
1827 static inline unsigned long
1828 reinit_migrate_pfn(struct compact_control *cc)
1829 {
1830         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1831                 return cc->migrate_pfn;
1832
1833         cc->migrate_pfn = cc->fast_start_pfn;
1834         cc->fast_start_pfn = ULONG_MAX;
1835
1836         return cc->migrate_pfn;
1837 }
1838
1839 /*
1840  * Briefly search the free lists for a migration source that already has
1841  * some free pages to reduce the number of pages that need migration
1842  * before a pageblock is free.
1843  */
1844 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1845 {
1846         unsigned int limit = freelist_scan_limit(cc);
1847         unsigned int nr_scanned = 0;
1848         unsigned long distance;
1849         unsigned long pfn = cc->migrate_pfn;
1850         unsigned long high_pfn;
1851         int order;
1852         bool found_block = false;
1853
1854         /* Skip hints are relied on to avoid repeats on the fast search */
1855         if (cc->ignore_skip_hint)
1856                 return pfn;
1857
1858         /*
1859          * If the pageblock should be finished then do not select a different
1860          * pageblock.
1861          */
1862         if (cc->finish_pageblock)
1863                 return pfn;
1864
1865         /*
1866          * If the migrate_pfn is not at the start of a zone or the start
1867          * of a pageblock then assume this is a continuation of a previous
1868          * scan restarted due to COMPACT_CLUSTER_MAX.
1869          */
1870         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1871                 return pfn;
1872
1873         /*
1874          * For smaller orders, just linearly scan as the number of pages
1875          * to migrate should be relatively small and does not necessarily
1876          * justify freeing up a large block for a small allocation.
1877          */
1878         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1879                 return pfn;
1880
1881         /*
1882          * Only allow kcompactd and direct requests for movable pages to
1883          * quickly clear out a MOVABLE pageblock for allocation. This
1884          * reduces the risk that a large movable pageblock is freed for
1885          * an unmovable/reclaimable small allocation.
1886          */
1887         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1888                 return pfn;
1889
1890         /*
1891          * When starting the migration scanner, pick any pageblock within the
1892          * first half of the search space. Otherwise try and pick a pageblock
1893          * within the first eighth to reduce the chances that a migration
1894          * target later becomes a source.
1895          */
1896         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1897         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1898                 distance >>= 2;
1899         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1900
1901         for (order = cc->order - 1;
1902              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1903              order--) {
1904                 struct free_area *area = &cc->zone->free_area[order];
1905                 struct list_head *freelist;
1906                 unsigned long flags;
1907                 struct page *freepage;
1908
1909                 if (!area->nr_free)
1910                         continue;
1911
1912                 spin_lock_irqsave(&cc->zone->lock, flags);
1913                 freelist = &area->free_list[MIGRATE_MOVABLE];
1914                 list_for_each_entry(freepage, freelist, buddy_list) {
1915                         unsigned long free_pfn;
1916
1917                         if (nr_scanned++ >= limit) {
1918                                 move_freelist_tail(freelist, freepage);
1919                                 break;
1920                         }
1921
1922                         free_pfn = page_to_pfn(freepage);
1923                         if (free_pfn < high_pfn) {
1924                                 /*
1925                                  * Avoid if skipped recently. Ideally it would
1926                                  * move to the tail but even safe iteration of
1927                                  * the list assumes an entry is deleted, not
1928                                  * reordered.
1929                                  */
1930                                 if (get_pageblock_skip(freepage))
1931                                         continue;
1932
1933                                 /* Reorder to so a future search skips recent pages */
1934                                 move_freelist_tail(freelist, freepage);
1935
1936                                 update_fast_start_pfn(cc, free_pfn);
1937                                 pfn = pageblock_start_pfn(free_pfn);
1938                                 if (pfn < cc->zone->zone_start_pfn)
1939                                         pfn = cc->zone->zone_start_pfn;
1940                                 cc->fast_search_fail = 0;
1941                                 found_block = true;
1942                                 break;
1943                         }
1944                 }
1945                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1946         }
1947
1948         cc->total_migrate_scanned += nr_scanned;
1949
1950         /*
1951          * If fast scanning failed then use a cached entry for a page block
1952          * that had free pages as the basis for starting a linear scan.
1953          */
1954         if (!found_block) {
1955                 cc->fast_search_fail++;
1956                 pfn = reinit_migrate_pfn(cc);
1957         }
1958         return pfn;
1959 }
1960
1961 /*
1962  * Isolate all pages that can be migrated from the first suitable block,
1963  * starting at the block pointed to by the migrate scanner pfn within
1964  * compact_control.
1965  */
1966 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1967 {
1968         unsigned long block_start_pfn;
1969         unsigned long block_end_pfn;
1970         unsigned long low_pfn;
1971         struct page *page;
1972         const isolate_mode_t isolate_mode =
1973                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1974                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1975         bool fast_find_block;
1976
1977         /*
1978          * Start at where we last stopped, or beginning of the zone as
1979          * initialized by compact_zone(). The first failure will use
1980          * the lowest PFN as the starting point for linear scanning.
1981          */
1982         low_pfn = fast_find_migrateblock(cc);
1983         block_start_pfn = pageblock_start_pfn(low_pfn);
1984         if (block_start_pfn < cc->zone->zone_start_pfn)
1985                 block_start_pfn = cc->zone->zone_start_pfn;
1986
1987         /*
1988          * fast_find_migrateblock() has already ensured the pageblock is not
1989          * set with a skipped flag, so to avoid the isolation_suitable check
1990          * below again, check whether the fast search was successful.
1991          */
1992         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1993
1994         /* Only scan within a pageblock boundary */
1995         block_end_pfn = pageblock_end_pfn(low_pfn);
1996
1997         /*
1998          * Iterate over whole pageblocks until we find the first suitable.
1999          * Do not cross the free scanner.
2000          */
2001         for (; block_end_pfn <= cc->free_pfn;
2002                         fast_find_block = false,
2003                         cc->migrate_pfn = low_pfn = block_end_pfn,
2004                         block_start_pfn = block_end_pfn,
2005                         block_end_pfn += pageblock_nr_pages) {
2006
2007                 /*
2008                  * This can potentially iterate a massively long zone with
2009                  * many pageblocks unsuitable, so periodically check if we
2010                  * need to schedule.
2011                  */
2012                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2013                         cond_resched();
2014
2015                 page = pageblock_pfn_to_page(block_start_pfn,
2016                                                 block_end_pfn, cc->zone);
2017                 if (!page) {
2018                         unsigned long next_pfn;
2019
2020                         next_pfn = skip_offline_sections(block_start_pfn);
2021                         if (next_pfn)
2022                                 block_end_pfn = min(next_pfn, cc->free_pfn);
2023                         continue;
2024                 }
2025
2026                 /*
2027                  * If isolation recently failed, do not retry. Only check the
2028                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2029                  * to be visited multiple times. Assume skip was checked
2030                  * before making it "skip" so other compaction instances do
2031                  * not scan the same block.
2032                  */
2033                 if ((pageblock_aligned(low_pfn) ||
2034                      low_pfn == cc->zone->zone_start_pfn) &&
2035                     !fast_find_block && !isolation_suitable(cc, page))
2036                         continue;
2037
2038                 /*
2039                  * For async direct compaction, only scan the pageblocks of the
2040                  * same migratetype without huge pages. Async direct compaction
2041                  * is optimistic to see if the minimum amount of work satisfies
2042                  * the allocation. The cached PFN is updated as it's possible
2043                  * that all remaining blocks between source and target are
2044                  * unsuitable and the compaction scanners fail to meet.
2045                  */
2046                 if (!suitable_migration_source(cc, page)) {
2047                         update_cached_migrate(cc, block_end_pfn);
2048                         continue;
2049                 }
2050
2051                 /* Perform the isolation */
2052                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2053                                                 isolate_mode))
2054                         return ISOLATE_ABORT;
2055
2056                 /*
2057                  * Either we isolated something and proceed with migration. Or
2058                  * we failed and compact_zone should decide if we should
2059                  * continue or not.
2060                  */
2061                 break;
2062         }
2063
2064         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2065 }
2066
2067 /*
2068  * order == -1 is expected when compacting proactively via
2069  * 1. /proc/sys/vm/compact_memory
2070  * 2. /sys/devices/system/node/nodex/compact
2071  * 3. /proc/sys/vm/compaction_proactiveness
2072  */
2073 static inline bool is_via_compact_memory(int order)
2074 {
2075         return order == -1;
2076 }
2077
2078 /*
2079  * Determine whether kswapd is (or recently was!) running on this node.
2080  *
2081  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2082  * zero it.
2083  */
2084 static bool kswapd_is_running(pg_data_t *pgdat)
2085 {
2086         bool running;
2087
2088         pgdat_kswapd_lock(pgdat);
2089         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2090         pgdat_kswapd_unlock(pgdat);
2091
2092         return running;
2093 }
2094
2095 /*
2096  * A zone's fragmentation score is the external fragmentation wrt to the
2097  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2098  */
2099 static unsigned int fragmentation_score_zone(struct zone *zone)
2100 {
2101         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2102 }
2103
2104 /*
2105  * A weighted zone's fragmentation score is the external fragmentation
2106  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2107  * returns a value in the range [0, 100].
2108  *
2109  * The scaling factor ensures that proactive compaction focuses on larger
2110  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2111  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2112  * and thus never exceeds the high threshold for proactive compaction.
2113  */
2114 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2115 {
2116         unsigned long score;
2117
2118         score = zone->present_pages * fragmentation_score_zone(zone);
2119         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2120 }
2121
2122 /*
2123  * The per-node proactive (background) compaction process is started by its
2124  * corresponding kcompactd thread when the node's fragmentation score
2125  * exceeds the high threshold. The compaction process remains active till
2126  * the node's score falls below the low threshold, or one of the back-off
2127  * conditions is met.
2128  */
2129 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2130 {
2131         unsigned int score = 0;
2132         int zoneid;
2133
2134         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2135                 struct zone *zone;
2136
2137                 zone = &pgdat->node_zones[zoneid];
2138                 if (!populated_zone(zone))
2139                         continue;
2140                 score += fragmentation_score_zone_weighted(zone);
2141         }
2142
2143         return score;
2144 }
2145
2146 static unsigned int fragmentation_score_wmark(bool low)
2147 {
2148         unsigned int wmark_low;
2149
2150         /*
2151          * Cap the low watermark to avoid excessive compaction
2152          * activity in case a user sets the proactiveness tunable
2153          * close to 100 (maximum).
2154          */
2155         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2156         return low ? wmark_low : min(wmark_low + 10, 100U);
2157 }
2158
2159 static bool should_proactive_compact_node(pg_data_t *pgdat)
2160 {
2161         int wmark_high;
2162
2163         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2164                 return false;
2165
2166         wmark_high = fragmentation_score_wmark(false);
2167         return fragmentation_score_node(pgdat) > wmark_high;
2168 }
2169
2170 static enum compact_result __compact_finished(struct compact_control *cc)
2171 {
2172         unsigned int order;
2173         const int migratetype = cc->migratetype;
2174         int ret;
2175
2176         /* Compaction run completes if the migrate and free scanner meet */
2177         if (compact_scanners_met(cc)) {
2178                 /* Let the next compaction start anew. */
2179                 reset_cached_positions(cc->zone);
2180
2181                 /*
2182                  * Mark that the PG_migrate_skip information should be cleared
2183                  * by kswapd when it goes to sleep. kcompactd does not set the
2184                  * flag itself as the decision to be clear should be directly
2185                  * based on an allocation request.
2186                  */
2187                 if (cc->direct_compaction)
2188                         cc->zone->compact_blockskip_flush = true;
2189
2190                 if (cc->whole_zone)
2191                         return COMPACT_COMPLETE;
2192                 else
2193                         return COMPACT_PARTIAL_SKIPPED;
2194         }
2195
2196         if (cc->proactive_compaction) {
2197                 int score, wmark_low;
2198                 pg_data_t *pgdat;
2199
2200                 pgdat = cc->zone->zone_pgdat;
2201                 if (kswapd_is_running(pgdat))
2202                         return COMPACT_PARTIAL_SKIPPED;
2203
2204                 score = fragmentation_score_zone(cc->zone);
2205                 wmark_low = fragmentation_score_wmark(true);
2206
2207                 if (score > wmark_low)
2208                         ret = COMPACT_CONTINUE;
2209                 else
2210                         ret = COMPACT_SUCCESS;
2211
2212                 goto out;
2213         }
2214
2215         if (is_via_compact_memory(cc->order))
2216                 return COMPACT_CONTINUE;
2217
2218         /*
2219          * Always finish scanning a pageblock to reduce the possibility of
2220          * fallbacks in the future. This is particularly important when
2221          * migration source is unmovable/reclaimable but it's not worth
2222          * special casing.
2223          */
2224         if (!pageblock_aligned(cc->migrate_pfn))
2225                 return COMPACT_CONTINUE;
2226
2227         /* Direct compactor: Is a suitable page free? */
2228         ret = COMPACT_NO_SUITABLE_PAGE;
2229         for (order = cc->order; order <= MAX_ORDER; order++) {
2230                 struct free_area *area = &cc->zone->free_area[order];
2231                 bool can_steal;
2232
2233                 /* Job done if page is free of the right migratetype */
2234                 if (!free_area_empty(area, migratetype))
2235                         return COMPACT_SUCCESS;
2236
2237 #ifdef CONFIG_CMA
2238                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2239                 if (migratetype == MIGRATE_MOVABLE &&
2240                         !free_area_empty(area, MIGRATE_CMA))
2241                         return COMPACT_SUCCESS;
2242 #endif
2243                 /*
2244                  * Job done if allocation would steal freepages from
2245                  * other migratetype buddy lists.
2246                  */
2247                 if (find_suitable_fallback(area, order, migratetype,
2248                                                 true, &can_steal) != -1)
2249                         /*
2250                          * Movable pages are OK in any pageblock. If we are
2251                          * stealing for a non-movable allocation, make sure
2252                          * we finish compacting the current pageblock first
2253                          * (which is assured by the above migrate_pfn align
2254                          * check) so it is as free as possible and we won't
2255                          * have to steal another one soon.
2256                          */
2257                         return COMPACT_SUCCESS;
2258         }
2259
2260 out:
2261         if (cc->contended || fatal_signal_pending(current))
2262                 ret = COMPACT_CONTENDED;
2263
2264         return ret;
2265 }
2266
2267 static enum compact_result compact_finished(struct compact_control *cc)
2268 {
2269         int ret;
2270
2271         ret = __compact_finished(cc);
2272         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2273         if (ret == COMPACT_NO_SUITABLE_PAGE)
2274                 ret = COMPACT_CONTINUE;
2275
2276         return ret;
2277 }
2278
2279 static bool __compaction_suitable(struct zone *zone, int order,
2280                                   int highest_zoneidx,
2281                                   unsigned long wmark_target)
2282 {
2283         unsigned long watermark;
2284         /*
2285          * Watermarks for order-0 must be met for compaction to be able to
2286          * isolate free pages for migration targets. This means that the
2287          * watermark and alloc_flags have to match, or be more pessimistic than
2288          * the check in __isolate_free_page(). We don't use the direct
2289          * compactor's alloc_flags, as they are not relevant for freepage
2290          * isolation. We however do use the direct compactor's highest_zoneidx
2291          * to skip over zones where lowmem reserves would prevent allocation
2292          * even if compaction succeeds.
2293          * For costly orders, we require low watermark instead of min for
2294          * compaction to proceed to increase its chances.
2295          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2296          * suitable migration targets
2297          */
2298         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2299                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2300         watermark += compact_gap(order);
2301         return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2302                                    ALLOC_CMA, wmark_target);
2303 }
2304
2305 /*
2306  * compaction_suitable: Is this suitable to run compaction on this zone now?
2307  */
2308 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2309 {
2310         enum compact_result compact_result;
2311         bool suitable;
2312
2313         suitable = __compaction_suitable(zone, order, highest_zoneidx,
2314                                          zone_page_state(zone, NR_FREE_PAGES));
2315         /*
2316          * fragmentation index determines if allocation failures are due to
2317          * low memory or external fragmentation
2318          *
2319          * index of -1000 would imply allocations might succeed depending on
2320          * watermarks, but we already failed the high-order watermark check
2321          * index towards 0 implies failure is due to lack of memory
2322          * index towards 1000 implies failure is due to fragmentation
2323          *
2324          * Only compact if a failure would be due to fragmentation. Also
2325          * ignore fragindex for non-costly orders where the alternative to
2326          * a successful reclaim/compaction is OOM. Fragindex and the
2327          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2328          * excessive compaction for costly orders, but it should not be at the
2329          * expense of system stability.
2330          */
2331         if (suitable) {
2332                 compact_result = COMPACT_CONTINUE;
2333                 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2334                         int fragindex = fragmentation_index(zone, order);
2335
2336                         if (fragindex >= 0 &&
2337                             fragindex <= sysctl_extfrag_threshold) {
2338                                 suitable = false;
2339                                 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2340                         }
2341                 }
2342         } else {
2343                 compact_result = COMPACT_SKIPPED;
2344         }
2345
2346         trace_mm_compaction_suitable(zone, order, compact_result);
2347
2348         return suitable;
2349 }
2350
2351 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2352                 int alloc_flags)
2353 {
2354         struct zone *zone;
2355         struct zoneref *z;
2356
2357         /*
2358          * Make sure at least one zone would pass __compaction_suitable if we continue
2359          * retrying the reclaim.
2360          */
2361         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2362                                 ac->highest_zoneidx, ac->nodemask) {
2363                 unsigned long available;
2364
2365                 /*
2366                  * Do not consider all the reclaimable memory because we do not
2367                  * want to trash just for a single high order allocation which
2368                  * is even not guaranteed to appear even if __compaction_suitable
2369                  * is happy about the watermark check.
2370                  */
2371                 available = zone_reclaimable_pages(zone) / order;
2372                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2373                 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2374                                           available))
2375                         return true;
2376         }
2377
2378         return false;
2379 }
2380
2381 /*
2382  * Should we do compaction for target allocation order.
2383  * Return COMPACT_SUCCESS if allocation for target order can be already
2384  * satisfied
2385  * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2386  * Return COMPACT_CONTINUE if compaction for target order should be ran
2387  */
2388 static enum compact_result
2389 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2390                                  int highest_zoneidx, unsigned int alloc_flags)
2391 {
2392         unsigned long watermark;
2393
2394         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2395         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2396                               alloc_flags))
2397                 return COMPACT_SUCCESS;
2398
2399         if (!compaction_suitable(zone, order, highest_zoneidx))
2400                 return COMPACT_SKIPPED;
2401
2402         return COMPACT_CONTINUE;
2403 }
2404
2405 static enum compact_result
2406 compact_zone(struct compact_control *cc, struct capture_control *capc)
2407 {
2408         enum compact_result ret;
2409         unsigned long start_pfn = cc->zone->zone_start_pfn;
2410         unsigned long end_pfn = zone_end_pfn(cc->zone);
2411         unsigned long last_migrated_pfn;
2412         const bool sync = cc->mode != MIGRATE_ASYNC;
2413         bool update_cached;
2414         unsigned int nr_succeeded = 0;
2415
2416         /*
2417          * These counters track activities during zone compaction.  Initialize
2418          * them before compacting a new zone.
2419          */
2420         cc->total_migrate_scanned = 0;
2421         cc->total_free_scanned = 0;
2422         cc->nr_migratepages = 0;
2423         cc->nr_freepages = 0;
2424         INIT_LIST_HEAD(&cc->freepages);
2425         INIT_LIST_HEAD(&cc->migratepages);
2426
2427         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2428
2429         if (!is_via_compact_memory(cc->order)) {
2430                 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2431                                                        cc->highest_zoneidx,
2432                                                        cc->alloc_flags);
2433                 if (ret != COMPACT_CONTINUE)
2434                         return ret;
2435         }
2436
2437         /*
2438          * Clear pageblock skip if there were failures recently and compaction
2439          * is about to be retried after being deferred.
2440          */
2441         if (compaction_restarting(cc->zone, cc->order))
2442                 __reset_isolation_suitable(cc->zone);
2443
2444         /*
2445          * Setup to move all movable pages to the end of the zone. Used cached
2446          * information on where the scanners should start (unless we explicitly
2447          * want to compact the whole zone), but check that it is initialised
2448          * by ensuring the values are within zone boundaries.
2449          */
2450         cc->fast_start_pfn = 0;
2451         if (cc->whole_zone) {
2452                 cc->migrate_pfn = start_pfn;
2453                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2454         } else {
2455                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2456                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2457                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2458                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2459                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2460                 }
2461                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2462                         cc->migrate_pfn = start_pfn;
2463                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2464                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2465                 }
2466
2467                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2468                         cc->whole_zone = true;
2469         }
2470
2471         last_migrated_pfn = 0;
2472
2473         /*
2474          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2475          * the basis that some migrations will fail in ASYNC mode. However,
2476          * if the cached PFNs match and pageblocks are skipped due to having
2477          * no isolation candidates, then the sync state does not matter.
2478          * Until a pageblock with isolation candidates is found, keep the
2479          * cached PFNs in sync to avoid revisiting the same blocks.
2480          */
2481         update_cached = !sync &&
2482                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2483
2484         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2485
2486         /* lru_add_drain_all could be expensive with involving other CPUs */
2487         lru_add_drain();
2488
2489         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2490                 int err;
2491                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2492
2493                 /*
2494                  * Avoid multiple rescans of the same pageblock which can
2495                  * happen if a page cannot be isolated (dirty/writeback in
2496                  * async mode) or if the migrated pages are being allocated
2497                  * before the pageblock is cleared.  The first rescan will
2498                  * capture the entire pageblock for migration. If it fails,
2499                  * it'll be marked skip and scanning will proceed as normal.
2500                  */
2501                 cc->finish_pageblock = false;
2502                 if (pageblock_start_pfn(last_migrated_pfn) ==
2503                     pageblock_start_pfn(iteration_start_pfn)) {
2504                         cc->finish_pageblock = true;
2505                 }
2506
2507 rescan:
2508                 switch (isolate_migratepages(cc)) {
2509                 case ISOLATE_ABORT:
2510                         ret = COMPACT_CONTENDED;
2511                         putback_movable_pages(&cc->migratepages);
2512                         cc->nr_migratepages = 0;
2513                         goto out;
2514                 case ISOLATE_NONE:
2515                         if (update_cached) {
2516                                 cc->zone->compact_cached_migrate_pfn[1] =
2517                                         cc->zone->compact_cached_migrate_pfn[0];
2518                         }
2519
2520                         /*
2521                          * We haven't isolated and migrated anything, but
2522                          * there might still be unflushed migrations from
2523                          * previous cc->order aligned block.
2524                          */
2525                         goto check_drain;
2526                 case ISOLATE_SUCCESS:
2527                         update_cached = false;
2528                         last_migrated_pfn = max(cc->zone->zone_start_pfn,
2529                                 pageblock_start_pfn(cc->migrate_pfn - 1));
2530                 }
2531
2532                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2533                                 compaction_free, (unsigned long)cc, cc->mode,
2534                                 MR_COMPACTION, &nr_succeeded);
2535
2536                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2537
2538                 /* All pages were either migrated or will be released */
2539                 cc->nr_migratepages = 0;
2540                 if (err) {
2541                         putback_movable_pages(&cc->migratepages);
2542                         /*
2543                          * migrate_pages() may return -ENOMEM when scanners meet
2544                          * and we want compact_finished() to detect it
2545                          */
2546                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2547                                 ret = COMPACT_CONTENDED;
2548                                 goto out;
2549                         }
2550                         /*
2551                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2552                          * within the pageblock_order-aligned block and
2553                          * fast_find_migrateblock may be used then scan the
2554                          * remainder of the pageblock. This will mark the
2555                          * pageblock "skip" to avoid rescanning in the near
2556                          * future. This will isolate more pages than necessary
2557                          * for the request but avoid loops due to
2558                          * fast_find_migrateblock revisiting blocks that were
2559                          * recently partially scanned.
2560                          */
2561                         if (!pageblock_aligned(cc->migrate_pfn) &&
2562                             !cc->ignore_skip_hint && !cc->finish_pageblock &&
2563                             (cc->mode < MIGRATE_SYNC)) {
2564                                 cc->finish_pageblock = true;
2565
2566                                 /*
2567                                  * Draining pcplists does not help THP if
2568                                  * any page failed to migrate. Even after
2569                                  * drain, the pageblock will not be free.
2570                                  */
2571                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2572                                         last_migrated_pfn = 0;
2573
2574                                 goto rescan;
2575                         }
2576                 }
2577
2578                 /* Stop if a page has been captured */
2579                 if (capc && capc->page) {
2580                         ret = COMPACT_SUCCESS;
2581                         break;
2582                 }
2583
2584 check_drain:
2585                 /*
2586                  * Has the migration scanner moved away from the previous
2587                  * cc->order aligned block where we migrated from? If yes,
2588                  * flush the pages that were freed, so that they can merge and
2589                  * compact_finished() can detect immediately if allocation
2590                  * would succeed.
2591                  */
2592                 if (cc->order > 0 && last_migrated_pfn) {
2593                         unsigned long current_block_start =
2594                                 block_start_pfn(cc->migrate_pfn, cc->order);
2595
2596                         if (last_migrated_pfn < current_block_start) {
2597                                 lru_add_drain_cpu_zone(cc->zone);
2598                                 /* No more flushing until we migrate again */
2599                                 last_migrated_pfn = 0;
2600                         }
2601                 }
2602         }
2603
2604 out:
2605         /*
2606          * Release free pages and update where the free scanner should restart,
2607          * so we don't leave any returned pages behind in the next attempt.
2608          */
2609         if (cc->nr_freepages > 0) {
2610                 unsigned long free_pfn = release_freepages(&cc->freepages);
2611
2612                 cc->nr_freepages = 0;
2613                 VM_BUG_ON(free_pfn == 0);
2614                 /* The cached pfn is always the first in a pageblock */
2615                 free_pfn = pageblock_start_pfn(free_pfn);
2616                 /*
2617                  * Only go back, not forward. The cached pfn might have been
2618                  * already reset to zone end in compact_finished()
2619                  */
2620                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2621                         cc->zone->compact_cached_free_pfn = free_pfn;
2622         }
2623
2624         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2625         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2626
2627         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2628
2629         VM_BUG_ON(!list_empty(&cc->freepages));
2630         VM_BUG_ON(!list_empty(&cc->migratepages));
2631
2632         return ret;
2633 }
2634
2635 static enum compact_result compact_zone_order(struct zone *zone, int order,
2636                 gfp_t gfp_mask, enum compact_priority prio,
2637                 unsigned int alloc_flags, int highest_zoneidx,
2638                 struct page **capture)
2639 {
2640         enum compact_result ret;
2641         struct compact_control cc = {
2642                 .order = order,
2643                 .search_order = order,
2644                 .gfp_mask = gfp_mask,
2645                 .zone = zone,
2646                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2647                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2648                 .alloc_flags = alloc_flags,
2649                 .highest_zoneidx = highest_zoneidx,
2650                 .direct_compaction = true,
2651                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2652                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2653                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2654         };
2655         struct capture_control capc = {
2656                 .cc = &cc,
2657                 .page = NULL,
2658         };
2659
2660         /*
2661          * Make sure the structs are really initialized before we expose the
2662          * capture control, in case we are interrupted and the interrupt handler
2663          * frees a page.
2664          */
2665         barrier();
2666         WRITE_ONCE(current->capture_control, &capc);
2667
2668         ret = compact_zone(&cc, &capc);
2669
2670         /*
2671          * Make sure we hide capture control first before we read the captured
2672          * page pointer, otherwise an interrupt could free and capture a page
2673          * and we would leak it.
2674          */
2675         WRITE_ONCE(current->capture_control, NULL);
2676         *capture = READ_ONCE(capc.page);
2677         /*
2678          * Technically, it is also possible that compaction is skipped but
2679          * the page is still captured out of luck(IRQ came and freed the page).
2680          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2681          * the COMPACT[STALL|FAIL] when compaction is skipped.
2682          */
2683         if (*capture)
2684                 ret = COMPACT_SUCCESS;
2685
2686         return ret;
2687 }
2688
2689 /**
2690  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2691  * @gfp_mask: The GFP mask of the current allocation
2692  * @order: The order of the current allocation
2693  * @alloc_flags: The allocation flags of the current allocation
2694  * @ac: The context of current allocation
2695  * @prio: Determines how hard direct compaction should try to succeed
2696  * @capture: Pointer to free page created by compaction will be stored here
2697  *
2698  * This is the main entry point for direct page compaction.
2699  */
2700 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2701                 unsigned int alloc_flags, const struct alloc_context *ac,
2702                 enum compact_priority prio, struct page **capture)
2703 {
2704         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2705         struct zoneref *z;
2706         struct zone *zone;
2707         enum compact_result rc = COMPACT_SKIPPED;
2708
2709         /*
2710          * Check if the GFP flags allow compaction - GFP_NOIO is really
2711          * tricky context because the migration might require IO
2712          */
2713         if (!may_perform_io)
2714                 return COMPACT_SKIPPED;
2715
2716         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2717
2718         /* Compact each zone in the list */
2719         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2720                                         ac->highest_zoneidx, ac->nodemask) {
2721                 enum compact_result status;
2722
2723                 if (prio > MIN_COMPACT_PRIORITY
2724                                         && compaction_deferred(zone, order)) {
2725                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2726                         continue;
2727                 }
2728
2729                 status = compact_zone_order(zone, order, gfp_mask, prio,
2730                                 alloc_flags, ac->highest_zoneidx, capture);
2731                 rc = max(status, rc);
2732
2733                 /* The allocation should succeed, stop compacting */
2734                 if (status == COMPACT_SUCCESS) {
2735                         /*
2736                          * We think the allocation will succeed in this zone,
2737                          * but it is not certain, hence the false. The caller
2738                          * will repeat this with true if allocation indeed
2739                          * succeeds in this zone.
2740                          */
2741                         compaction_defer_reset(zone, order, false);
2742
2743                         break;
2744                 }
2745
2746                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2747                                         status == COMPACT_PARTIAL_SKIPPED))
2748                         /*
2749                          * We think that allocation won't succeed in this zone
2750                          * so we defer compaction there. If it ends up
2751                          * succeeding after all, it will be reset.
2752                          */
2753                         defer_compaction(zone, order);
2754
2755                 /*
2756                  * We might have stopped compacting due to need_resched() in
2757                  * async compaction, or due to a fatal signal detected. In that
2758                  * case do not try further zones
2759                  */
2760                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2761                                         || fatal_signal_pending(current))
2762                         break;
2763         }
2764
2765         return rc;
2766 }
2767
2768 /*
2769  * Compact all zones within a node till each zone's fragmentation score
2770  * reaches within proactive compaction thresholds (as determined by the
2771  * proactiveness tunable).
2772  *
2773  * It is possible that the function returns before reaching score targets
2774  * due to various back-off conditions, such as, contention on per-node or
2775  * per-zone locks.
2776  */
2777 static void proactive_compact_node(pg_data_t *pgdat)
2778 {
2779         int zoneid;
2780         struct zone *zone;
2781         struct compact_control cc = {
2782                 .order = -1,
2783                 .mode = MIGRATE_SYNC_LIGHT,
2784                 .ignore_skip_hint = true,
2785                 .whole_zone = true,
2786                 .gfp_mask = GFP_KERNEL,
2787                 .proactive_compaction = true,
2788         };
2789
2790         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2791                 zone = &pgdat->node_zones[zoneid];
2792                 if (!populated_zone(zone))
2793                         continue;
2794
2795                 cc.zone = zone;
2796
2797                 compact_zone(&cc, NULL);
2798
2799                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2800                                      cc.total_migrate_scanned);
2801                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2802                                      cc.total_free_scanned);
2803         }
2804 }
2805
2806 /* Compact all zones within a node */
2807 static void compact_node(int nid)
2808 {
2809         pg_data_t *pgdat = NODE_DATA(nid);
2810         int zoneid;
2811         struct zone *zone;
2812         struct compact_control cc = {
2813                 .order = -1,
2814                 .mode = MIGRATE_SYNC,
2815                 .ignore_skip_hint = true,
2816                 .whole_zone = true,
2817                 .gfp_mask = GFP_KERNEL,
2818         };
2819
2820
2821         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2822
2823                 zone = &pgdat->node_zones[zoneid];
2824                 if (!populated_zone(zone))
2825                         continue;
2826
2827                 cc.zone = zone;
2828
2829                 compact_zone(&cc, NULL);
2830         }
2831 }
2832
2833 /* Compact all nodes in the system */
2834 static void compact_nodes(void)
2835 {
2836         int nid;
2837
2838         /* Flush pending updates to the LRU lists */
2839         lru_add_drain_all();
2840
2841         for_each_online_node(nid)
2842                 compact_node(nid);
2843 }
2844
2845 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2846                 void *buffer, size_t *length, loff_t *ppos)
2847 {
2848         int rc, nid;
2849
2850         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2851         if (rc)
2852                 return rc;
2853
2854         if (write && sysctl_compaction_proactiveness) {
2855                 for_each_online_node(nid) {
2856                         pg_data_t *pgdat = NODE_DATA(nid);
2857
2858                         if (pgdat->proactive_compact_trigger)
2859                                 continue;
2860
2861                         pgdat->proactive_compact_trigger = true;
2862                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2863                                                              pgdat->nr_zones - 1);
2864                         wake_up_interruptible(&pgdat->kcompactd_wait);
2865                 }
2866         }
2867
2868         return 0;
2869 }
2870
2871 /*
2872  * This is the entry point for compacting all nodes via
2873  * /proc/sys/vm/compact_memory
2874  */
2875 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2876                         void *buffer, size_t *length, loff_t *ppos)
2877 {
2878         int ret;
2879
2880         ret = proc_dointvec(table, write, buffer, length, ppos);
2881         if (ret)
2882                 return ret;
2883
2884         if (sysctl_compact_memory != 1)
2885                 return -EINVAL;
2886
2887         if (write)
2888                 compact_nodes();
2889
2890         return 0;
2891 }
2892
2893 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2894 static ssize_t compact_store(struct device *dev,
2895                              struct device_attribute *attr,
2896                              const char *buf, size_t count)
2897 {
2898         int nid = dev->id;
2899
2900         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2901                 /* Flush pending updates to the LRU lists */
2902                 lru_add_drain_all();
2903
2904                 compact_node(nid);
2905         }
2906
2907         return count;
2908 }
2909 static DEVICE_ATTR_WO(compact);
2910
2911 int compaction_register_node(struct node *node)
2912 {
2913         return device_create_file(&node->dev, &dev_attr_compact);
2914 }
2915
2916 void compaction_unregister_node(struct node *node)
2917 {
2918         device_remove_file(&node->dev, &dev_attr_compact);
2919 }
2920 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2921
2922 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2923 {
2924         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2925                 pgdat->proactive_compact_trigger;
2926 }
2927
2928 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2929 {
2930         int zoneid;
2931         struct zone *zone;
2932         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2933         enum compact_result ret;
2934
2935         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2936                 zone = &pgdat->node_zones[zoneid];
2937
2938                 if (!populated_zone(zone))
2939                         continue;
2940
2941                 ret = compaction_suit_allocation_order(zone,
2942                                 pgdat->kcompactd_max_order,
2943                                 highest_zoneidx, ALLOC_WMARK_MIN);
2944                 if (ret == COMPACT_CONTINUE)
2945                         return true;
2946         }
2947
2948         return false;
2949 }
2950
2951 static void kcompactd_do_work(pg_data_t *pgdat)
2952 {
2953         /*
2954          * With no special task, compact all zones so that a page of requested
2955          * order is allocatable.
2956          */
2957         int zoneid;
2958         struct zone *zone;
2959         struct compact_control cc = {
2960                 .order = pgdat->kcompactd_max_order,
2961                 .search_order = pgdat->kcompactd_max_order,
2962                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2963                 .mode = MIGRATE_SYNC_LIGHT,
2964                 .ignore_skip_hint = false,
2965                 .gfp_mask = GFP_KERNEL,
2966         };
2967         enum compact_result ret;
2968
2969         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2970                                                         cc.highest_zoneidx);
2971         count_compact_event(KCOMPACTD_WAKE);
2972
2973         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2974                 int status;
2975
2976                 zone = &pgdat->node_zones[zoneid];
2977                 if (!populated_zone(zone))
2978                         continue;
2979
2980                 if (compaction_deferred(zone, cc.order))
2981                         continue;
2982
2983                 ret = compaction_suit_allocation_order(zone,
2984                                 cc.order, zoneid, ALLOC_WMARK_MIN);
2985                 if (ret != COMPACT_CONTINUE)
2986                         continue;
2987
2988                 if (kthread_should_stop())
2989                         return;
2990
2991                 cc.zone = zone;
2992                 status = compact_zone(&cc, NULL);
2993
2994                 if (status == COMPACT_SUCCESS) {
2995                         compaction_defer_reset(zone, cc.order, false);
2996                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2997                         /*
2998                          * Buddy pages may become stranded on pcps that could
2999                          * otherwise coalesce on the zone's free area for
3000                          * order >= cc.order.  This is ratelimited by the
3001                          * upcoming deferral.
3002                          */
3003                         drain_all_pages(zone);
3004
3005                         /*
3006                          * We use sync migration mode here, so we defer like
3007                          * sync direct compaction does.
3008                          */
3009                         defer_compaction(zone, cc.order);
3010                 }
3011
3012                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3013                                      cc.total_migrate_scanned);
3014                 count_compact_events(KCOMPACTD_FREE_SCANNED,
3015                                      cc.total_free_scanned);
3016         }
3017
3018         /*
3019          * Regardless of success, we are done until woken up next. But remember
3020          * the requested order/highest_zoneidx in case it was higher/tighter
3021          * than our current ones
3022          */
3023         if (pgdat->kcompactd_max_order <= cc.order)
3024                 pgdat->kcompactd_max_order = 0;
3025         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3026                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3027 }
3028
3029 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3030 {
3031         if (!order)
3032                 return;
3033
3034         if (pgdat->kcompactd_max_order < order)
3035                 pgdat->kcompactd_max_order = order;
3036
3037         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3038                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3039
3040         /*
3041          * Pairs with implicit barrier in wait_event_freezable()
3042          * such that wakeups are not missed.
3043          */
3044         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3045                 return;
3046
3047         if (!kcompactd_node_suitable(pgdat))
3048                 return;
3049
3050         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3051                                                         highest_zoneidx);
3052         wake_up_interruptible(&pgdat->kcompactd_wait);
3053 }
3054
3055 /*
3056  * The background compaction daemon, started as a kernel thread
3057  * from the init process.
3058  */
3059 static int kcompactd(void *p)
3060 {
3061         pg_data_t *pgdat = (pg_data_t *)p;
3062         struct task_struct *tsk = current;
3063         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3064         long timeout = default_timeout;
3065
3066         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3067
3068         if (!cpumask_empty(cpumask))
3069                 set_cpus_allowed_ptr(tsk, cpumask);
3070
3071         set_freezable();
3072
3073         pgdat->kcompactd_max_order = 0;
3074         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3075
3076         while (!kthread_should_stop()) {
3077                 unsigned long pflags;
3078
3079                 /*
3080                  * Avoid the unnecessary wakeup for proactive compaction
3081                  * when it is disabled.
3082                  */
3083                 if (!sysctl_compaction_proactiveness)
3084                         timeout = MAX_SCHEDULE_TIMEOUT;
3085                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3086                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3087                         kcompactd_work_requested(pgdat), timeout) &&
3088                         !pgdat->proactive_compact_trigger) {
3089
3090                         psi_memstall_enter(&pflags);
3091                         kcompactd_do_work(pgdat);
3092                         psi_memstall_leave(&pflags);
3093                         /*
3094                          * Reset the timeout value. The defer timeout from
3095                          * proactive compaction is lost here but that is fine
3096                          * as the condition of the zone changing substantionally
3097                          * then carrying on with the previous defer interval is
3098                          * not useful.
3099                          */
3100                         timeout = default_timeout;
3101                         continue;
3102                 }
3103
3104                 /*
3105                  * Start the proactive work with default timeout. Based
3106                  * on the fragmentation score, this timeout is updated.
3107                  */
3108                 timeout = default_timeout;
3109                 if (should_proactive_compact_node(pgdat)) {
3110                         unsigned int prev_score, score;
3111
3112                         prev_score = fragmentation_score_node(pgdat);
3113                         proactive_compact_node(pgdat);
3114                         score = fragmentation_score_node(pgdat);
3115                         /*
3116                          * Defer proactive compaction if the fragmentation
3117                          * score did not go down i.e. no progress made.
3118                          */
3119                         if (unlikely(score >= prev_score))
3120                                 timeout =
3121                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3122                 }
3123                 if (unlikely(pgdat->proactive_compact_trigger))
3124                         pgdat->proactive_compact_trigger = false;
3125         }
3126
3127         return 0;
3128 }
3129
3130 /*
3131  * This kcompactd start function will be called by init and node-hot-add.
3132  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3133  */
3134 void __meminit kcompactd_run(int nid)
3135 {
3136         pg_data_t *pgdat = NODE_DATA(nid);
3137
3138         if (pgdat->kcompactd)
3139                 return;
3140
3141         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3142         if (IS_ERR(pgdat->kcompactd)) {
3143                 pr_err("Failed to start kcompactd on node %d\n", nid);
3144                 pgdat->kcompactd = NULL;
3145         }
3146 }
3147
3148 /*
3149  * Called by memory hotplug when all memory in a node is offlined. Caller must
3150  * be holding mem_hotplug_begin/done().
3151  */
3152 void __meminit kcompactd_stop(int nid)
3153 {
3154         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3155
3156         if (kcompactd) {
3157                 kthread_stop(kcompactd);
3158                 NODE_DATA(nid)->kcompactd = NULL;
3159         }
3160 }
3161
3162 /*
3163  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3164  * not required for correctness. So if the last cpu in a node goes
3165  * away, we get changed to run anywhere: as the first one comes back,
3166  * restore their cpu bindings.
3167  */
3168 static int kcompactd_cpu_online(unsigned int cpu)
3169 {
3170         int nid;
3171
3172         for_each_node_state(nid, N_MEMORY) {
3173                 pg_data_t *pgdat = NODE_DATA(nid);
3174                 const struct cpumask *mask;
3175
3176                 mask = cpumask_of_node(pgdat->node_id);
3177
3178                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3179                         /* One of our CPUs online: restore mask */
3180                         if (pgdat->kcompactd)
3181                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3182         }
3183         return 0;
3184 }
3185
3186 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3187                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3188 {
3189         int ret, old;
3190
3191         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3192                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3193
3194         old = *(int *)table->data;
3195         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3196         if (ret)
3197                 return ret;
3198         if (old != *(int *)table->data)
3199                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3200                              table->procname, current->comm,
3201                              task_pid_nr(current));
3202         return ret;
3203 }
3204
3205 static struct ctl_table vm_compaction[] = {
3206         {
3207                 .procname       = "compact_memory",
3208                 .data           = &sysctl_compact_memory,
3209                 .maxlen         = sizeof(int),
3210                 .mode           = 0200,
3211                 .proc_handler   = sysctl_compaction_handler,
3212         },
3213         {
3214                 .procname       = "compaction_proactiveness",
3215                 .data           = &sysctl_compaction_proactiveness,
3216                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3217                 .mode           = 0644,
3218                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3219                 .extra1         = SYSCTL_ZERO,
3220                 .extra2         = SYSCTL_ONE_HUNDRED,
3221         },
3222         {
3223                 .procname       = "extfrag_threshold",
3224                 .data           = &sysctl_extfrag_threshold,
3225                 .maxlen         = sizeof(int),
3226                 .mode           = 0644,
3227                 .proc_handler   = proc_dointvec_minmax,
3228                 .extra1         = SYSCTL_ZERO,
3229                 .extra2         = SYSCTL_ONE_THOUSAND,
3230         },
3231         {
3232                 .procname       = "compact_unevictable_allowed",
3233                 .data           = &sysctl_compact_unevictable_allowed,
3234                 .maxlen         = sizeof(int),
3235                 .mode           = 0644,
3236                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3237                 .extra1         = SYSCTL_ZERO,
3238                 .extra2         = SYSCTL_ONE,
3239         },
3240         { }
3241 };
3242
3243 static int __init kcompactd_init(void)
3244 {
3245         int nid;
3246         int ret;
3247
3248         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3249                                         "mm/compaction:online",
3250                                         kcompactd_cpu_online, NULL);
3251         if (ret < 0) {
3252                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3253                 return ret;
3254         }
3255
3256         for_each_node_state(nid, N_MEMORY)
3257                 kcompactd_run(nid);
3258         register_sysctl_init("vm", vm_compaction);
3259         return 0;
3260 }
3261 subsys_initcall(kcompactd_init)
3262
3263 #endif /* CONFIG_COMPACTION */