2 * linux/mm/memory_hotplug.c
7 #include <linux/stddef.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memremap.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/bootmem.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
39 #include <asm/tlbflush.h>
44 * online_page_callback contains pointer to current page onlining function.
45 * Initially it is generic_online_page(). If it is required it could be
46 * changed by calling set_online_page_callback() for callback registration
47 * and restore_online_page_callback() for generic callback restore.
50 static void generic_online_page(struct page *page);
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
55 /* The same as the cpu_hotplug lock, but for memory hotplug. */
57 struct task_struct *active_writer;
58 struct mutex lock; /* Synchronizes accesses to refcount, */
60 * Also blocks the new readers during
61 * an ongoing mem hotplug operation.
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 struct lockdep_map dep_map;
69 .active_writer = NULL,
70 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
72 #ifdef CONFIG_DEBUG_LOCK_ALLOC
73 .dep_map = {.name = "mem_hotplug.lock" },
77 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
78 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
79 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map)
80 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map)
82 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
83 bool memhp_auto_online;
85 bool memhp_auto_online = true;
87 EXPORT_SYMBOL_GPL(memhp_auto_online);
89 static int __init setup_memhp_default_state(char *str)
91 if (!strcmp(str, "online"))
92 memhp_auto_online = true;
93 else if (!strcmp(str, "offline"))
94 memhp_auto_online = false;
98 __setup("memhp_default_state=", setup_memhp_default_state);
100 void get_online_mems(void)
103 if (mem_hotplug.active_writer == current)
105 memhp_lock_acquire_read();
106 mutex_lock(&mem_hotplug.lock);
107 mem_hotplug.refcount++;
108 mutex_unlock(&mem_hotplug.lock);
112 void put_online_mems(void)
114 if (mem_hotplug.active_writer == current)
116 mutex_lock(&mem_hotplug.lock);
118 if (WARN_ON(!mem_hotplug.refcount))
119 mem_hotplug.refcount++; /* try to fix things up */
121 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
122 wake_up_process(mem_hotplug.active_writer);
123 mutex_unlock(&mem_hotplug.lock);
124 memhp_lock_release();
128 void mem_hotplug_begin(void)
130 mem_hotplug.active_writer = current;
132 memhp_lock_acquire();
134 mutex_lock(&mem_hotplug.lock);
135 if (likely(!mem_hotplug.refcount))
137 __set_current_state(TASK_UNINTERRUPTIBLE);
138 mutex_unlock(&mem_hotplug.lock);
143 void mem_hotplug_done(void)
145 mem_hotplug.active_writer = NULL;
146 mutex_unlock(&mem_hotplug.lock);
147 memhp_lock_release();
150 /* add this memory to iomem resource */
151 static struct resource *register_memory_resource(u64 start, u64 size)
153 struct resource *res;
154 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
156 return ERR_PTR(-ENOMEM);
158 res->name = "System RAM";
160 res->end = start + size - 1;
161 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
162 if (request_resource(&iomem_resource, res) < 0) {
163 pr_debug("System RAM resource %pR cannot be added\n", res);
165 return ERR_PTR(-EEXIST);
170 static void release_memory_resource(struct resource *res)
174 release_resource(res);
179 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
180 void get_page_bootmem(unsigned long info, struct page *page,
183 page->freelist = (void *)type;
184 SetPagePrivate(page);
185 set_page_private(page, info);
189 void put_page_bootmem(struct page *page)
193 type = (unsigned long) page->freelist;
194 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
195 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
197 if (page_ref_dec_return(page) == 1) {
198 page->freelist = NULL;
199 ClearPagePrivate(page);
200 set_page_private(page, 0);
201 INIT_LIST_HEAD(&page->lru);
202 free_reserved_page(page);
206 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
207 #ifndef CONFIG_SPARSEMEM_VMEMMAP
208 static void register_page_bootmem_info_section(unsigned long start_pfn)
210 unsigned long *usemap, mapsize, section_nr, i;
211 struct mem_section *ms;
212 struct page *page, *memmap;
214 section_nr = pfn_to_section_nr(start_pfn);
215 ms = __nr_to_section(section_nr);
217 /* Get section's memmap address */
218 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
221 * Get page for the memmap's phys address
222 * XXX: need more consideration for sparse_vmemmap...
224 page = virt_to_page(memmap);
225 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
226 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
228 /* remember memmap's page */
229 for (i = 0; i < mapsize; i++, page++)
230 get_page_bootmem(section_nr, page, SECTION_INFO);
232 usemap = __nr_to_section(section_nr)->pageblock_flags;
233 page = virt_to_page(usemap);
235 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
237 for (i = 0; i < mapsize; i++, page++)
238 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
241 #else /* CONFIG_SPARSEMEM_VMEMMAP */
242 static void register_page_bootmem_info_section(unsigned long start_pfn)
244 unsigned long *usemap, mapsize, section_nr, i;
245 struct mem_section *ms;
246 struct page *page, *memmap;
248 if (!pfn_valid(start_pfn))
251 section_nr = pfn_to_section_nr(start_pfn);
252 ms = __nr_to_section(section_nr);
254 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
256 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
258 usemap = __nr_to_section(section_nr)->pageblock_flags;
259 page = virt_to_page(usemap);
261 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
263 for (i = 0; i < mapsize; i++, page++)
264 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
266 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
268 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
270 unsigned long i, pfn, end_pfn, nr_pages;
271 int node = pgdat->node_id;
274 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
275 page = virt_to_page(pgdat);
277 for (i = 0; i < nr_pages; i++, page++)
278 get_page_bootmem(node, page, NODE_INFO);
280 pfn = pgdat->node_start_pfn;
281 end_pfn = pgdat_end_pfn(pgdat);
283 /* register section info */
284 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
286 * Some platforms can assign the same pfn to multiple nodes - on
287 * node0 as well as nodeN. To avoid registering a pfn against
288 * multiple nodes we check that this pfn does not already
289 * reside in some other nodes.
291 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
292 register_page_bootmem_info_section(pfn);
295 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
297 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
298 unsigned long end_pfn)
300 unsigned long old_zone_end_pfn;
302 zone_span_writelock(zone);
304 old_zone_end_pfn = zone_end_pfn(zone);
305 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
306 zone->zone_start_pfn = start_pfn;
308 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
309 zone->zone_start_pfn;
311 zone_span_writeunlock(zone);
314 static void resize_zone(struct zone *zone, unsigned long start_pfn,
315 unsigned long end_pfn)
317 zone_span_writelock(zone);
319 if (end_pfn - start_pfn) {
320 zone->zone_start_pfn = start_pfn;
321 zone->spanned_pages = end_pfn - start_pfn;
324 * make it consist as free_area_init_core(),
325 * if spanned_pages = 0, then keep start_pfn = 0
327 zone->zone_start_pfn = 0;
328 zone->spanned_pages = 0;
331 zone_span_writeunlock(zone);
334 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
335 unsigned long end_pfn)
337 enum zone_type zid = zone_idx(zone);
338 int nid = zone->zone_pgdat->node_id;
341 for (pfn = start_pfn; pfn < end_pfn; pfn++)
342 set_page_links(pfn_to_page(pfn), zid, nid, pfn);
345 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
346 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
347 static int __ref ensure_zone_is_initialized(struct zone *zone,
348 unsigned long start_pfn, unsigned long num_pages)
350 if (!zone_is_initialized(zone))
351 return init_currently_empty_zone(zone, start_pfn, num_pages);
356 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
357 unsigned long start_pfn, unsigned long end_pfn)
361 unsigned long z1_start_pfn;
363 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
367 pgdat_resize_lock(z1->zone_pgdat, &flags);
369 /* can't move pfns which are higher than @z2 */
370 if (end_pfn > zone_end_pfn(z2))
372 /* the move out part must be at the left most of @z2 */
373 if (start_pfn > z2->zone_start_pfn)
375 /* must included/overlap */
376 if (end_pfn <= z2->zone_start_pfn)
379 /* use start_pfn for z1's start_pfn if z1 is empty */
380 if (!zone_is_empty(z1))
381 z1_start_pfn = z1->zone_start_pfn;
383 z1_start_pfn = start_pfn;
385 resize_zone(z1, z1_start_pfn, end_pfn);
386 resize_zone(z2, end_pfn, zone_end_pfn(z2));
388 pgdat_resize_unlock(z1->zone_pgdat, &flags);
390 fix_zone_id(z1, start_pfn, end_pfn);
394 pgdat_resize_unlock(z1->zone_pgdat, &flags);
398 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
399 unsigned long start_pfn, unsigned long end_pfn)
403 unsigned long z2_end_pfn;
405 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
409 pgdat_resize_lock(z1->zone_pgdat, &flags);
411 /* can't move pfns which are lower than @z1 */
412 if (z1->zone_start_pfn > start_pfn)
414 /* the move out part mast at the right most of @z1 */
415 if (zone_end_pfn(z1) > end_pfn)
417 /* must included/overlap */
418 if (start_pfn >= zone_end_pfn(z1))
421 /* use end_pfn for z2's end_pfn if z2 is empty */
422 if (!zone_is_empty(z2))
423 z2_end_pfn = zone_end_pfn(z2);
425 z2_end_pfn = end_pfn;
427 resize_zone(z1, z1->zone_start_pfn, start_pfn);
428 resize_zone(z2, start_pfn, z2_end_pfn);
430 pgdat_resize_unlock(z1->zone_pgdat, &flags);
432 fix_zone_id(z2, start_pfn, end_pfn);
436 pgdat_resize_unlock(z1->zone_pgdat, &flags);
440 static struct zone * __meminit move_pfn_range(int zone_shift,
441 unsigned long start_pfn, unsigned long end_pfn)
443 struct zone *zone = page_zone(pfn_to_page(start_pfn));
447 ret = move_pfn_range_left(zone + zone_shift, zone,
450 ret = move_pfn_range_right(zone, zone + zone_shift,
456 return zone + zone_shift;
459 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
460 unsigned long end_pfn)
462 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
464 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
465 pgdat->node_start_pfn = start_pfn;
467 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
468 pgdat->node_start_pfn;
471 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
473 struct pglist_data *pgdat = zone->zone_pgdat;
474 int nr_pages = PAGES_PER_SECTION;
475 int nid = pgdat->node_id;
477 unsigned long flags, pfn;
480 zone_type = zone - pgdat->node_zones;
481 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
485 pgdat_resize_lock(zone->zone_pgdat, &flags);
486 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
487 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
488 phys_start_pfn + nr_pages);
489 pgdat_resize_unlock(zone->zone_pgdat, &flags);
490 memmap_init_zone(nr_pages, nid, zone_type,
491 phys_start_pfn, MEMMAP_HOTPLUG);
493 /* online_page_range is called later and expects pages reserved */
494 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
498 SetPageReserved(pfn_to_page(pfn));
503 static int __meminit __add_section(int nid, struct zone *zone,
504 unsigned long phys_start_pfn)
508 if (pfn_valid(phys_start_pfn))
511 ret = sparse_add_one_section(zone, phys_start_pfn);
516 ret = __add_zone(zone, phys_start_pfn);
521 return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
525 * Reasonably generic function for adding memory. It is
526 * expected that archs that support memory hotplug will
527 * call this function after deciding the zone to which to
530 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
531 unsigned long nr_pages)
535 int start_sec, end_sec;
536 struct vmem_altmap *altmap;
538 clear_zone_contiguous(zone);
540 /* during initialize mem_map, align hot-added range to section */
541 start_sec = pfn_to_section_nr(phys_start_pfn);
542 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
544 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
547 * Validate altmap is within bounds of the total request
549 if (altmap->base_pfn != phys_start_pfn
550 || vmem_altmap_offset(altmap) > nr_pages) {
551 pr_warn_once("memory add fail, invalid altmap\n");
558 for (i = start_sec; i <= end_sec; i++) {
559 err = __add_section(nid, zone, section_nr_to_pfn(i));
562 * EEXIST is finally dealt with by ioresource collision
563 * check. see add_memory() => register_memory_resource()
564 * Warning will be printed if there is collision.
566 if (err && (err != -EEXIST))
570 vmemmap_populate_print_last();
572 set_zone_contiguous(zone);
575 EXPORT_SYMBOL_GPL(__add_pages);
577 #ifdef CONFIG_MEMORY_HOTREMOVE
578 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
579 static int find_smallest_section_pfn(int nid, struct zone *zone,
580 unsigned long start_pfn,
581 unsigned long end_pfn)
583 struct mem_section *ms;
585 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
586 ms = __pfn_to_section(start_pfn);
588 if (unlikely(!valid_section(ms)))
591 if (unlikely(pfn_to_nid(start_pfn) != nid))
594 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
603 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
604 static int find_biggest_section_pfn(int nid, struct zone *zone,
605 unsigned long start_pfn,
606 unsigned long end_pfn)
608 struct mem_section *ms;
611 /* pfn is the end pfn of a memory section. */
613 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
614 ms = __pfn_to_section(pfn);
616 if (unlikely(!valid_section(ms)))
619 if (unlikely(pfn_to_nid(pfn) != nid))
622 if (zone && zone != page_zone(pfn_to_page(pfn)))
631 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
632 unsigned long end_pfn)
634 unsigned long zone_start_pfn = zone->zone_start_pfn;
635 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
636 unsigned long zone_end_pfn = z;
638 struct mem_section *ms;
639 int nid = zone_to_nid(zone);
641 zone_span_writelock(zone);
642 if (zone_start_pfn == start_pfn) {
644 * If the section is smallest section in the zone, it need
645 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
646 * In this case, we find second smallest valid mem_section
647 * for shrinking zone.
649 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
652 zone->zone_start_pfn = pfn;
653 zone->spanned_pages = zone_end_pfn - pfn;
655 } else if (zone_end_pfn == end_pfn) {
657 * If the section is biggest section in the zone, it need
658 * shrink zone->spanned_pages.
659 * In this case, we find second biggest valid mem_section for
662 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
665 zone->spanned_pages = pfn - zone_start_pfn + 1;
669 * The section is not biggest or smallest mem_section in the zone, it
670 * only creates a hole in the zone. So in this case, we need not
671 * change the zone. But perhaps, the zone has only hole data. Thus
672 * it check the zone has only hole or not.
674 pfn = zone_start_pfn;
675 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
676 ms = __pfn_to_section(pfn);
678 if (unlikely(!valid_section(ms)))
681 if (page_zone(pfn_to_page(pfn)) != zone)
684 /* If the section is current section, it continues the loop */
685 if (start_pfn == pfn)
688 /* If we find valid section, we have nothing to do */
689 zone_span_writeunlock(zone);
693 /* The zone has no valid section */
694 zone->zone_start_pfn = 0;
695 zone->spanned_pages = 0;
696 zone_span_writeunlock(zone);
699 static void shrink_pgdat_span(struct pglist_data *pgdat,
700 unsigned long start_pfn, unsigned long end_pfn)
702 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
703 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
704 unsigned long pgdat_end_pfn = p;
706 struct mem_section *ms;
707 int nid = pgdat->node_id;
709 if (pgdat_start_pfn == start_pfn) {
711 * If the section is smallest section in the pgdat, it need
712 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
713 * In this case, we find second smallest valid mem_section
714 * for shrinking zone.
716 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
719 pgdat->node_start_pfn = pfn;
720 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
722 } else if (pgdat_end_pfn == end_pfn) {
724 * If the section is biggest section in the pgdat, it need
725 * shrink pgdat->node_spanned_pages.
726 * In this case, we find second biggest valid mem_section for
729 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
732 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
736 * If the section is not biggest or smallest mem_section in the pgdat,
737 * it only creates a hole in the pgdat. So in this case, we need not
739 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
740 * has only hole or not.
742 pfn = pgdat_start_pfn;
743 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
744 ms = __pfn_to_section(pfn);
746 if (unlikely(!valid_section(ms)))
749 if (pfn_to_nid(pfn) != nid)
752 /* If the section is current section, it continues the loop */
753 if (start_pfn == pfn)
756 /* If we find valid section, we have nothing to do */
760 /* The pgdat has no valid section */
761 pgdat->node_start_pfn = 0;
762 pgdat->node_spanned_pages = 0;
765 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
767 struct pglist_data *pgdat = zone->zone_pgdat;
768 int nr_pages = PAGES_PER_SECTION;
772 zone_type = zone - pgdat->node_zones;
774 pgdat_resize_lock(zone->zone_pgdat, &flags);
775 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
776 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
777 pgdat_resize_unlock(zone->zone_pgdat, &flags);
780 static int __remove_section(struct zone *zone, struct mem_section *ms,
781 unsigned long map_offset)
783 unsigned long start_pfn;
787 if (!valid_section(ms))
790 ret = unregister_memory_section(ms);
794 scn_nr = __section_nr(ms);
795 start_pfn = section_nr_to_pfn(scn_nr);
796 __remove_zone(zone, start_pfn);
798 sparse_remove_one_section(zone, ms, map_offset);
803 * __remove_pages() - remove sections of pages from a zone
804 * @zone: zone from which pages need to be removed
805 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
806 * @nr_pages: number of pages to remove (must be multiple of section size)
808 * Generic helper function to remove section mappings and sysfs entries
809 * for the section of the memory we are removing. Caller needs to make
810 * sure that pages are marked reserved and zones are adjust properly by
811 * calling offline_pages().
813 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
814 unsigned long nr_pages)
817 unsigned long map_offset = 0;
818 int sections_to_remove, ret = 0;
820 /* In the ZONE_DEVICE case device driver owns the memory region */
821 if (is_dev_zone(zone)) {
822 struct page *page = pfn_to_page(phys_start_pfn);
823 struct vmem_altmap *altmap;
825 altmap = to_vmem_altmap((unsigned long) page);
827 map_offset = vmem_altmap_offset(altmap);
829 resource_size_t start, size;
831 start = phys_start_pfn << PAGE_SHIFT;
832 size = nr_pages * PAGE_SIZE;
834 ret = release_mem_region_adjustable(&iomem_resource, start,
837 resource_size_t endres = start + size - 1;
839 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
840 &start, &endres, ret);
844 clear_zone_contiguous(zone);
847 * We can only remove entire sections
849 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
850 BUG_ON(nr_pages % PAGES_PER_SECTION);
852 sections_to_remove = nr_pages / PAGES_PER_SECTION;
853 for (i = 0; i < sections_to_remove; i++) {
854 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
856 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
862 set_zone_contiguous(zone);
866 EXPORT_SYMBOL_GPL(__remove_pages);
867 #endif /* CONFIG_MEMORY_HOTREMOVE */
869 int set_online_page_callback(online_page_callback_t callback)
874 mutex_lock(&online_page_callback_lock);
876 if (online_page_callback == generic_online_page) {
877 online_page_callback = callback;
881 mutex_unlock(&online_page_callback_lock);
886 EXPORT_SYMBOL_GPL(set_online_page_callback);
888 int restore_online_page_callback(online_page_callback_t callback)
893 mutex_lock(&online_page_callback_lock);
895 if (online_page_callback == callback) {
896 online_page_callback = generic_online_page;
900 mutex_unlock(&online_page_callback_lock);
905 EXPORT_SYMBOL_GPL(restore_online_page_callback);
907 void __online_page_set_limits(struct page *page)
910 EXPORT_SYMBOL_GPL(__online_page_set_limits);
912 void __online_page_increment_counters(struct page *page)
914 adjust_managed_page_count(page, 1);
916 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
918 void __online_page_free(struct page *page)
920 __free_reserved_page(page);
922 EXPORT_SYMBOL_GPL(__online_page_free);
924 static void generic_online_page(struct page *page)
926 __online_page_set_limits(page);
927 __online_page_increment_counters(page);
928 __online_page_free(page);
931 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
935 unsigned long onlined_pages = *(unsigned long *)arg;
937 if (PageReserved(pfn_to_page(start_pfn)))
938 for (i = 0; i < nr_pages; i++) {
939 page = pfn_to_page(start_pfn + i);
940 (*online_page_callback)(page);
943 *(unsigned long *)arg = onlined_pages;
947 #ifdef CONFIG_MOVABLE_NODE
949 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
952 static bool can_online_high_movable(struct zone *zone)
956 #else /* CONFIG_MOVABLE_NODE */
957 /* ensure every online node has NORMAL memory */
958 static bool can_online_high_movable(struct zone *zone)
960 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
962 #endif /* CONFIG_MOVABLE_NODE */
964 /* check which state of node_states will be changed when online memory */
965 static void node_states_check_changes_online(unsigned long nr_pages,
966 struct zone *zone, struct memory_notify *arg)
968 int nid = zone_to_nid(zone);
969 enum zone_type zone_last = ZONE_NORMAL;
972 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
973 * contains nodes which have zones of 0...ZONE_NORMAL,
974 * set zone_last to ZONE_NORMAL.
976 * If we don't have HIGHMEM nor movable node,
977 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
978 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
980 if (N_MEMORY == N_NORMAL_MEMORY)
981 zone_last = ZONE_MOVABLE;
984 * if the memory to be online is in a zone of 0...zone_last, and
985 * the zones of 0...zone_last don't have memory before online, we will
986 * need to set the node to node_states[N_NORMAL_MEMORY] after
987 * the memory is online.
989 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
990 arg->status_change_nid_normal = nid;
992 arg->status_change_nid_normal = -1;
994 #ifdef CONFIG_HIGHMEM
996 * If we have movable node, node_states[N_HIGH_MEMORY]
997 * contains nodes which have zones of 0...ZONE_HIGHMEM,
998 * set zone_last to ZONE_HIGHMEM.
1000 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1001 * contains nodes which have zones of 0...ZONE_MOVABLE,
1002 * set zone_last to ZONE_MOVABLE.
1004 zone_last = ZONE_HIGHMEM;
1005 if (N_MEMORY == N_HIGH_MEMORY)
1006 zone_last = ZONE_MOVABLE;
1008 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
1009 arg->status_change_nid_high = nid;
1011 arg->status_change_nid_high = -1;
1013 arg->status_change_nid_high = arg->status_change_nid_normal;
1017 * if the node don't have memory befor online, we will need to
1018 * set the node to node_states[N_MEMORY] after the memory
1021 if (!node_state(nid, N_MEMORY))
1022 arg->status_change_nid = nid;
1024 arg->status_change_nid = -1;
1027 static void node_states_set_node(int node, struct memory_notify *arg)
1029 if (arg->status_change_nid_normal >= 0)
1030 node_set_state(node, N_NORMAL_MEMORY);
1032 if (arg->status_change_nid_high >= 0)
1033 node_set_state(node, N_HIGH_MEMORY);
1035 node_set_state(node, N_MEMORY);
1038 bool zone_can_shift(unsigned long pfn, unsigned long nr_pages,
1039 enum zone_type target, int *zone_shift)
1041 struct zone *zone = page_zone(pfn_to_page(pfn));
1042 enum zone_type idx = zone_idx(zone);
1048 /* pages must be at end of current zone */
1049 if (pfn + nr_pages != zone_end_pfn(zone))
1052 /* no zones in use between current zone and target */
1053 for (i = idx + 1; i < target; i++)
1054 if (zone_is_initialized(zone - idx + i))
1059 /* pages must be at beginning of current zone */
1060 if (pfn != zone->zone_start_pfn)
1063 /* no zones in use between current zone and target */
1064 for (i = target + 1; i < idx; i++)
1065 if (zone_is_initialized(zone - idx + i))
1069 *zone_shift = target - idx;
1073 /* Must be protected by mem_hotplug_begin() */
1074 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1076 unsigned long flags;
1077 unsigned long onlined_pages = 0;
1079 int need_zonelists_rebuild = 0;
1082 struct memory_notify arg;
1086 * This doesn't need a lock to do pfn_to_page().
1087 * The section can't be removed here because of the
1088 * memory_block->state_mutex.
1090 zone = page_zone(pfn_to_page(pfn));
1092 if ((zone_idx(zone) > ZONE_NORMAL ||
1093 online_type == MMOP_ONLINE_MOVABLE) &&
1094 !can_online_high_movable(zone))
1097 if (online_type == MMOP_ONLINE_KERNEL) {
1098 if (!zone_can_shift(pfn, nr_pages, ZONE_NORMAL, &zone_shift))
1100 } else if (online_type == MMOP_ONLINE_MOVABLE) {
1101 if (!zone_can_shift(pfn, nr_pages, ZONE_MOVABLE, &zone_shift))
1105 zone = move_pfn_range(zone_shift, pfn, pfn + nr_pages);
1109 arg.start_pfn = pfn;
1110 arg.nr_pages = nr_pages;
1111 node_states_check_changes_online(nr_pages, zone, &arg);
1113 nid = zone_to_nid(zone);
1115 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1116 ret = notifier_to_errno(ret);
1118 goto failed_addition;
1121 * If this zone is not populated, then it is not in zonelist.
1122 * This means the page allocator ignores this zone.
1123 * So, zonelist must be updated after online.
1125 mutex_lock(&zonelists_mutex);
1126 if (!populated_zone(zone)) {
1127 need_zonelists_rebuild = 1;
1128 build_all_zonelists(NULL, zone, true);
1131 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1132 online_pages_range);
1134 if (need_zonelists_rebuild)
1135 zone_pcp_reset(zone);
1136 mutex_unlock(&zonelists_mutex);
1137 goto failed_addition;
1140 zone->present_pages += onlined_pages;
1142 pgdat_resize_lock(zone->zone_pgdat, &flags);
1143 zone->zone_pgdat->node_present_pages += onlined_pages;
1144 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1146 if (onlined_pages) {
1147 node_states_set_node(nid, &arg);
1148 if (need_zonelists_rebuild)
1149 build_all_zonelists(NULL, NULL, true);
1151 zone_pcp_update(zone);
1154 mutex_unlock(&zonelists_mutex);
1156 init_per_zone_wmark_min();
1158 if (onlined_pages) {
1163 vm_total_pages = nr_free_pagecache_pages();
1165 writeback_set_ratelimit();
1168 memory_notify(MEM_ONLINE, &arg);
1172 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1173 (unsigned long long) pfn << PAGE_SHIFT,
1174 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1175 memory_notify(MEM_CANCEL_ONLINE, &arg);
1178 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1180 static void reset_node_present_pages(pg_data_t *pgdat)
1184 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1185 z->present_pages = 0;
1187 pgdat->node_present_pages = 0;
1190 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1191 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1193 struct pglist_data *pgdat;
1194 unsigned long zones_size[MAX_NR_ZONES] = {0};
1195 unsigned long zholes_size[MAX_NR_ZONES] = {0};
1196 unsigned long start_pfn = PFN_DOWN(start);
1198 pgdat = NODE_DATA(nid);
1200 pgdat = arch_alloc_nodedata(nid);
1204 arch_refresh_nodedata(nid, pgdat);
1206 /* Reset the nr_zones, order and classzone_idx before reuse */
1207 pgdat->nr_zones = 0;
1208 pgdat->kswapd_order = 0;
1209 pgdat->kswapd_classzone_idx = 0;
1212 /* we can use NODE_DATA(nid) from here */
1214 /* init node's zones as empty zones, we don't have any present pages.*/
1215 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1216 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1219 * The node we allocated has no zone fallback lists. For avoiding
1220 * to access not-initialized zonelist, build here.
1222 mutex_lock(&zonelists_mutex);
1223 build_all_zonelists(pgdat, NULL, true);
1224 mutex_unlock(&zonelists_mutex);
1227 * zone->managed_pages is set to an approximate value in
1228 * free_area_init_core(), which will cause
1229 * /sys/device/system/node/nodeX/meminfo has wrong data.
1230 * So reset it to 0 before any memory is onlined.
1232 reset_node_managed_pages(pgdat);
1235 * When memory is hot-added, all the memory is in offline state. So
1236 * clear all zones' present_pages because they will be updated in
1237 * online_pages() and offline_pages().
1239 reset_node_present_pages(pgdat);
1244 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1246 arch_refresh_nodedata(nid, NULL);
1247 free_percpu(pgdat->per_cpu_nodestats);
1248 arch_free_nodedata(pgdat);
1254 * try_online_node - online a node if offlined
1256 * called by cpu_up() to online a node without onlined memory.
1258 int try_online_node(int nid)
1263 if (node_online(nid))
1266 mem_hotplug_begin();
1267 pgdat = hotadd_new_pgdat(nid, 0);
1269 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1273 node_set_online(nid);
1274 ret = register_one_node(nid);
1277 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1278 mutex_lock(&zonelists_mutex);
1279 build_all_zonelists(NULL, NULL, true);
1280 mutex_unlock(&zonelists_mutex);
1288 static int check_hotplug_memory_range(u64 start, u64 size)
1290 u64 start_pfn = PFN_DOWN(start);
1291 u64 nr_pages = size >> PAGE_SHIFT;
1293 /* Memory range must be aligned with section */
1294 if ((start_pfn & ~PAGE_SECTION_MASK) ||
1295 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1296 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1297 (unsigned long long)start,
1298 (unsigned long long)size);
1306 * If movable zone has already been setup, newly added memory should be check.
1307 * If its address is higher than movable zone, it should be added as movable.
1308 * Without this check, movable zone may overlap with other zone.
1310 static int should_add_memory_movable(int nid, u64 start, u64 size)
1312 unsigned long start_pfn = start >> PAGE_SHIFT;
1313 pg_data_t *pgdat = NODE_DATA(nid);
1314 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1316 if (zone_is_empty(movable_zone))
1319 if (movable_zone->zone_start_pfn <= start_pfn)
1325 int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1328 #ifdef CONFIG_ZONE_DEVICE
1332 if (should_add_memory_movable(nid, start, size))
1333 return ZONE_MOVABLE;
1335 return zone_default;
1338 static int online_memory_block(struct memory_block *mem, void *arg)
1340 return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
1344 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1345 * and online/offline operations (triggered e.g. by sysfs).
1347 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1349 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1352 pg_data_t *pgdat = NULL;
1358 size = resource_size(res);
1360 ret = check_hotplug_memory_range(start, size);
1364 { /* Stupid hack to suppress address-never-null warning */
1365 void *p = NODE_DATA(nid);
1369 mem_hotplug_begin();
1372 * Add new range to memblock so that when hotadd_new_pgdat() is called
1373 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1374 * this new range and calculate total pages correctly. The range will
1375 * be removed at hot-remove time.
1377 memblock_add_node(start, size, nid);
1379 new_node = !node_online(nid);
1381 pgdat = hotadd_new_pgdat(nid, start);
1387 /* call arch's memory hotadd */
1388 ret = arch_add_memory(nid, start, size, false);
1393 /* we online node here. we can't roll back from here. */
1394 node_set_online(nid);
1397 ret = register_one_node(nid);
1399 * If sysfs file of new node can't create, cpu on the node
1400 * can't be hot-added. There is no rollback way now.
1401 * So, check by BUG_ON() to catch it reluctantly..
1406 /* create new memmap entry */
1407 firmware_map_add_hotplug(start, start + size, "System RAM");
1409 /* online pages if requested */
1411 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1412 NULL, online_memory_block);
1417 /* rollback pgdat allocation and others */
1419 rollback_node_hotadd(nid, pgdat);
1420 memblock_remove(start, size);
1427 /* requires device_hotplug_lock, see add_memory_resource() */
1428 int __ref __add_memory(int nid, u64 start, u64 size)
1430 struct resource *res;
1433 res = register_memory_resource(start, size);
1435 return PTR_ERR(res);
1437 ret = add_memory_resource(nid, res, memhp_auto_online);
1439 release_memory_resource(res);
1443 int add_memory(int nid, u64 start, u64 size)
1447 lock_device_hotplug();
1448 rc = __add_memory(nid, start, size);
1449 unlock_device_hotplug();
1453 EXPORT_SYMBOL_GPL(add_memory);
1455 #ifdef CONFIG_MEMORY_HOTREMOVE
1457 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1458 * set and the size of the free page is given by page_order(). Using this,
1459 * the function determines if the pageblock contains only free pages.
1460 * Due to buddy contraints, a free page at least the size of a pageblock will
1461 * be located at the start of the pageblock
1463 static inline int pageblock_free(struct page *page)
1465 return PageBuddy(page) && page_order(page) >= pageblock_order;
1468 /* Return the start of the next active pageblock after a given page */
1469 static struct page *next_active_pageblock(struct page *page)
1471 /* Ensure the starting page is pageblock-aligned */
1472 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1474 /* If the entire pageblock is free, move to the end of free page */
1475 if (pageblock_free(page)) {
1477 /* be careful. we don't have locks, page_order can be changed.*/
1478 order = page_order(page);
1479 if ((order < MAX_ORDER) && (order >= pageblock_order))
1480 return page + (1 << order);
1483 return page + pageblock_nr_pages;
1486 /* Checks if this range of memory is likely to be hot-removable. */
1487 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1489 struct page *page = pfn_to_page(start_pfn);
1490 unsigned long end_pfn = min(start_pfn + nr_pages, zone_end_pfn(page_zone(page)));
1491 struct page *end_page = pfn_to_page(end_pfn);
1493 /* Check the starting page of each pageblock within the range */
1494 for (; page < end_page; page = next_active_pageblock(page)) {
1495 if (!is_pageblock_removable_nolock(page))
1500 /* All pageblocks in the memory block are likely to be hot-removable */
1505 * Confirm all pages in a range [start, end) belong to the same zone.
1506 * When true, return its valid [start, end).
1508 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1509 unsigned long *valid_start, unsigned long *valid_end)
1511 unsigned long pfn, sec_end_pfn;
1512 unsigned long start, end;
1513 struct zone *zone = NULL;
1516 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1518 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1519 /* Make sure the memory section is present first */
1520 if (!present_section_nr(pfn_to_section_nr(pfn)))
1522 for (; pfn < sec_end_pfn && pfn < end_pfn;
1523 pfn += MAX_ORDER_NR_PAGES) {
1525 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1526 while ((i < MAX_ORDER_NR_PAGES) &&
1527 !pfn_valid_within(pfn + i))
1529 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1531 /* Check if we got outside of the zone */
1532 if (zone && !zone_spans_pfn(zone, pfn + i))
1534 page = pfn_to_page(pfn + i);
1535 if (zone && page_zone(page) != zone)
1539 zone = page_zone(page);
1540 end = pfn + MAX_ORDER_NR_PAGES;
1545 *valid_start = start;
1546 *valid_end = min(end, end_pfn);
1554 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1555 * and hugepages). We scan pfn because it's much easier than scanning over
1556 * linked list. This function returns the pfn of the first found movable
1557 * page if it's found, otherwise 0.
1559 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1563 for (pfn = start; pfn < end; pfn++) {
1564 if (pfn_valid(pfn)) {
1565 page = pfn_to_page(pfn);
1568 if (PageHuge(page)) {
1569 if (page_huge_active(page))
1572 pfn = round_up(pfn + 1,
1573 1 << compound_order(page)) - 1;
1580 static struct page *new_node_page(struct page *page, unsigned long private,
1583 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
1584 int nid = page_to_nid(page);
1585 nodemask_t nmask = node_states[N_MEMORY];
1586 struct page *new_page = NULL;
1589 * TODO: allocate a destination hugepage from a nearest neighbor node,
1590 * accordance with memory policy of the user process if possible. For
1591 * now as a simple work-around, we use the next node for destination.
1594 return alloc_huge_page_node(page_hstate(compound_head(page)),
1595 next_node_in(nid, nmask));
1597 node_clear(nid, nmask);
1599 if (PageHighMem(page)
1600 || (zone_idx(page_zone(page)) == ZONE_MOVABLE))
1601 gfp_mask |= __GFP_HIGHMEM;
1603 if (!nodes_empty(nmask))
1604 new_page = __alloc_pages_nodemask(gfp_mask, 0,
1605 node_zonelist(nid, gfp_mask), &nmask);
1607 new_page = __alloc_pages(gfp_mask, 0,
1608 node_zonelist(nid, gfp_mask));
1613 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1615 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1619 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1620 int not_managed = 0;
1624 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1625 if (!pfn_valid(pfn))
1627 page = pfn_to_page(pfn);
1629 if (PageHuge(page)) {
1630 struct page *head = compound_head(page);
1631 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1632 if (compound_order(head) > PFN_SECTION_SHIFT) {
1636 if (isolate_huge_page(page, &source))
1637 move_pages -= 1 << compound_order(head);
1642 * HWPoison pages have elevated reference counts so the migration would
1643 * fail on them. It also doesn't make any sense to migrate them in the
1644 * first place. Still try to unmap such a page in case it is still mapped
1645 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1646 * the unmap as the catch all safety net).
1648 if (PageHWPoison(page)) {
1649 if (WARN_ON(PageLRU(page)))
1650 isolate_lru_page(page);
1651 if (page_mapped(page))
1652 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1656 if (!get_page_unless_zero(page))
1659 * We can skip free pages. And we can only deal with pages on
1662 ret = isolate_lru_page(page);
1663 if (!ret) { /* Success */
1665 list_add_tail(&page->lru, &source);
1667 inc_node_page_state(page, NR_ISOLATED_ANON +
1668 page_is_file_cache(page));
1671 #ifdef CONFIG_DEBUG_VM
1672 pr_alert("removing pfn %lx from LRU failed\n", pfn);
1673 dump_page(page, "failed to remove from LRU");
1676 /* Because we don't have big zone->lock. we should
1677 check this again here. */
1678 if (page_count(page)) {
1685 if (!list_empty(&source)) {
1687 putback_movable_pages(&source);
1691 /* Allocate a new page from the nearest neighbor node */
1692 ret = migrate_pages(&source, new_node_page, NULL, 0,
1693 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1695 putback_movable_pages(&source);
1702 * remove from free_area[] and mark all as Reserved.
1705 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1708 __offline_isolated_pages(start, start + nr_pages);
1713 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1715 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1716 offline_isolated_pages_cb);
1720 * Check all pages in range, recoreded as memory resource, are isolated.
1723 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1727 long offlined = *(long *)data;
1728 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1729 offlined = nr_pages;
1731 *(long *)data += offlined;
1736 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1741 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1742 check_pages_isolated_cb);
1744 offlined = (long)ret;
1748 #ifdef CONFIG_MOVABLE_NODE
1750 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1753 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1757 #else /* CONFIG_MOVABLE_NODE */
1758 /* ensure the node has NORMAL memory if it is still online */
1759 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1761 struct pglist_data *pgdat = zone->zone_pgdat;
1762 unsigned long present_pages = 0;
1765 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1766 present_pages += pgdat->node_zones[zt].present_pages;
1768 if (present_pages > nr_pages)
1772 for (; zt <= ZONE_MOVABLE; zt++)
1773 present_pages += pgdat->node_zones[zt].present_pages;
1776 * we can't offline the last normal memory until all
1777 * higher memory is offlined.
1779 return present_pages == 0;
1781 #endif /* CONFIG_MOVABLE_NODE */
1783 static int __init cmdline_parse_movable_node(char *p)
1785 #ifdef CONFIG_MOVABLE_NODE
1787 * Memory used by the kernel cannot be hot-removed because Linux
1788 * cannot migrate the kernel pages. When memory hotplug is
1789 * enabled, we should prevent memblock from allocating memory
1792 * ACPI SRAT records all hotpluggable memory ranges. But before
1793 * SRAT is parsed, we don't know about it.
1795 * The kernel image is loaded into memory at very early time. We
1796 * cannot prevent this anyway. So on NUMA system, we set any
1797 * node the kernel resides in as un-hotpluggable.
1799 * Since on modern servers, one node could have double-digit
1800 * gigabytes memory, we can assume the memory around the kernel
1801 * image is also un-hotpluggable. So before SRAT is parsed, just
1802 * allocate memory near the kernel image to try the best to keep
1803 * the kernel away from hotpluggable memory.
1805 memblock_set_bottom_up(true);
1806 movable_node_enabled = true;
1808 pr_warn("movable_node option not supported\n");
1812 early_param("movable_node", cmdline_parse_movable_node);
1814 /* check which state of node_states will be changed when offline memory */
1815 static void node_states_check_changes_offline(unsigned long nr_pages,
1816 struct zone *zone, struct memory_notify *arg)
1818 struct pglist_data *pgdat = zone->zone_pgdat;
1819 unsigned long present_pages = 0;
1820 enum zone_type zt, zone_last = ZONE_NORMAL;
1823 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1824 * contains nodes which have zones of 0...ZONE_NORMAL,
1825 * set zone_last to ZONE_NORMAL.
1827 * If we don't have HIGHMEM nor movable node,
1828 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1829 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1831 if (N_MEMORY == N_NORMAL_MEMORY)
1832 zone_last = ZONE_MOVABLE;
1835 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1836 * If the memory to be offline is in a zone of 0...zone_last,
1837 * and it is the last present memory, 0...zone_last will
1838 * become empty after offline , thus we can determind we will
1839 * need to clear the node from node_states[N_NORMAL_MEMORY].
1841 for (zt = 0; zt <= zone_last; zt++)
1842 present_pages += pgdat->node_zones[zt].present_pages;
1843 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1844 arg->status_change_nid_normal = zone_to_nid(zone);
1846 arg->status_change_nid_normal = -1;
1848 #ifdef CONFIG_HIGHMEM
1850 * If we have movable node, node_states[N_HIGH_MEMORY]
1851 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1852 * set zone_last to ZONE_HIGHMEM.
1854 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1855 * contains nodes which have zones of 0...ZONE_MOVABLE,
1856 * set zone_last to ZONE_MOVABLE.
1858 zone_last = ZONE_HIGHMEM;
1859 if (N_MEMORY == N_HIGH_MEMORY)
1860 zone_last = ZONE_MOVABLE;
1862 for (; zt <= zone_last; zt++)
1863 present_pages += pgdat->node_zones[zt].present_pages;
1864 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1865 arg->status_change_nid_high = zone_to_nid(zone);
1867 arg->status_change_nid_high = -1;
1869 arg->status_change_nid_high = arg->status_change_nid_normal;
1873 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1875 zone_last = ZONE_MOVABLE;
1878 * check whether node_states[N_HIGH_MEMORY] will be changed
1879 * If we try to offline the last present @nr_pages from the node,
1880 * we can determind we will need to clear the node from
1881 * node_states[N_HIGH_MEMORY].
1883 for (; zt <= zone_last; zt++)
1884 present_pages += pgdat->node_zones[zt].present_pages;
1885 if (nr_pages >= present_pages)
1886 arg->status_change_nid = zone_to_nid(zone);
1888 arg->status_change_nid = -1;
1891 static void node_states_clear_node(int node, struct memory_notify *arg)
1893 if (arg->status_change_nid_normal >= 0)
1894 node_clear_state(node, N_NORMAL_MEMORY);
1896 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1897 (arg->status_change_nid_high >= 0))
1898 node_clear_state(node, N_HIGH_MEMORY);
1900 if ((N_MEMORY != N_HIGH_MEMORY) &&
1901 (arg->status_change_nid >= 0))
1902 node_clear_state(node, N_MEMORY);
1905 static int __ref __offline_pages(unsigned long start_pfn,
1906 unsigned long end_pfn, unsigned long timeout)
1908 unsigned long pfn, nr_pages, expire;
1909 long offlined_pages;
1910 int ret, drain, retry_max, node;
1911 unsigned long flags;
1912 unsigned long valid_start, valid_end;
1914 struct memory_notify arg;
1916 /* at least, alignment against pageblock is necessary */
1917 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1919 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1921 /* This makes hotplug much easier...and readable.
1922 we assume this for now. .*/
1923 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1926 zone = page_zone(pfn_to_page(valid_start));
1927 node = zone_to_nid(zone);
1928 nr_pages = end_pfn - start_pfn;
1930 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1933 /* set above range as isolated */
1934 ret = start_isolate_page_range(start_pfn, end_pfn,
1935 MIGRATE_MOVABLE, true);
1939 arg.start_pfn = start_pfn;
1940 arg.nr_pages = nr_pages;
1941 node_states_check_changes_offline(nr_pages, zone, &arg);
1943 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1944 ret = notifier_to_errno(ret);
1946 goto failed_removal;
1949 expire = jiffies + timeout;
1953 /* start memory hot removal */
1955 if (time_after(jiffies, expire))
1956 goto failed_removal;
1958 if (signal_pending(current))
1959 goto failed_removal;
1962 lru_add_drain_all();
1964 drain_all_pages(zone);
1967 pfn = scan_movable_pages(start_pfn, end_pfn);
1968 if (pfn) { /* We have movable pages */
1969 ret = do_migrate_range(pfn, end_pfn);
1975 if (--retry_max == 0)
1976 goto failed_removal;
1982 /* drain all zone's lru pagevec, this is asynchronous... */
1983 lru_add_drain_all();
1985 /* drain pcp pages, this is synchronous. */
1986 drain_all_pages(zone);
1988 * dissolve free hugepages in the memory block before doing offlining
1989 * actually in order to make hugetlbfs's object counting consistent.
1991 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1993 goto failed_removal;
1995 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1996 if (offlined_pages < 0) {
1998 goto failed_removal;
2000 pr_info("Offlined Pages %ld\n", offlined_pages);
2001 /* Ok, all of our target is isolated.
2002 We cannot do rollback at this point. */
2003 offline_isolated_pages(start_pfn, end_pfn);
2004 /* reset pagetype flags and makes migrate type to be MOVABLE */
2005 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2006 /* removal success */
2007 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
2008 zone->present_pages -= offlined_pages;
2010 pgdat_resize_lock(zone->zone_pgdat, &flags);
2011 zone->zone_pgdat->node_present_pages -= offlined_pages;
2012 pgdat_resize_unlock(zone->zone_pgdat, &flags);
2014 init_per_zone_wmark_min();
2016 if (!populated_zone(zone)) {
2017 zone_pcp_reset(zone);
2018 mutex_lock(&zonelists_mutex);
2019 build_all_zonelists(NULL, NULL, true);
2020 mutex_unlock(&zonelists_mutex);
2022 zone_pcp_update(zone);
2024 node_states_clear_node(node, &arg);
2025 if (arg.status_change_nid >= 0) {
2027 kcompactd_stop(node);
2030 vm_total_pages = nr_free_pagecache_pages();
2031 writeback_set_ratelimit();
2033 memory_notify(MEM_OFFLINE, &arg);
2037 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
2038 (unsigned long long) start_pfn << PAGE_SHIFT,
2039 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
2040 memory_notify(MEM_CANCEL_OFFLINE, &arg);
2041 /* pushback to free area */
2042 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2046 /* Must be protected by mem_hotplug_begin() */
2047 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
2049 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
2051 #endif /* CONFIG_MEMORY_HOTREMOVE */
2054 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
2055 * @start_pfn: start pfn of the memory range
2056 * @end_pfn: end pfn of the memory range
2057 * @arg: argument passed to func
2058 * @func: callback for each memory section walked
2060 * This function walks through all present mem sections in range
2061 * [start_pfn, end_pfn) and call func on each mem section.
2063 * Returns the return value of func.
2065 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
2066 void *arg, int (*func)(struct memory_block *, void *))
2068 struct memory_block *mem = NULL;
2069 struct mem_section *section;
2070 unsigned long pfn, section_nr;
2073 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2074 section_nr = pfn_to_section_nr(pfn);
2075 if (!present_section_nr(section_nr))
2078 section = __nr_to_section(section_nr);
2079 /* same memblock? */
2081 if ((section_nr >= mem->start_section_nr) &&
2082 (section_nr <= mem->end_section_nr))
2085 mem = find_memory_block_hinted(section, mem);
2089 ret = func(mem, arg);
2091 kobject_put(&mem->dev.kobj);
2097 kobject_put(&mem->dev.kobj);
2102 #ifdef CONFIG_MEMORY_HOTREMOVE
2103 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2105 int ret = !is_memblock_offlined(mem);
2107 if (unlikely(ret)) {
2108 phys_addr_t beginpa, endpa;
2110 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2111 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
2112 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2119 static int check_cpu_on_node(pg_data_t *pgdat)
2123 for_each_present_cpu(cpu) {
2124 if (cpu_to_node(cpu) == pgdat->node_id)
2126 * the cpu on this node isn't removed, and we can't
2127 * offline this node.
2135 static void unmap_cpu_on_node(pg_data_t *pgdat)
2137 #ifdef CONFIG_ACPI_NUMA
2140 for_each_possible_cpu(cpu)
2141 if (cpu_to_node(cpu) == pgdat->node_id)
2142 numa_clear_node(cpu);
2146 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2150 ret = check_cpu_on_node(pgdat);
2155 * the node will be offlined when we come here, so we can clear
2156 * the cpu_to_node() now.
2159 unmap_cpu_on_node(pgdat);
2166 * Offline a node if all memory sections and cpus of the node are removed.
2168 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2169 * and online/offline operations before this call.
2171 void try_offline_node(int nid)
2173 pg_data_t *pgdat = NODE_DATA(nid);
2174 unsigned long start_pfn = pgdat->node_start_pfn;
2175 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2178 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2179 unsigned long section_nr = pfn_to_section_nr(pfn);
2181 if (!present_section_nr(section_nr))
2184 if (pfn_to_nid(pfn) != nid)
2188 * some memory sections of this node are not removed, and we
2189 * can't offline node now.
2194 if (check_and_unmap_cpu_on_node(pgdat))
2198 * all memory/cpu of this node are removed, we can offline this
2201 node_set_offline(nid);
2202 unregister_one_node(nid);
2204 EXPORT_SYMBOL(try_offline_node);
2209 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2210 * and online/offline operations before this call, as required by
2211 * try_offline_node().
2213 void __ref remove_memory(int nid, u64 start, u64 size)
2217 BUG_ON(check_hotplug_memory_range(start, size));
2219 mem_hotplug_begin();
2222 * All memory blocks must be offlined before removing memory. Check
2223 * whether all memory blocks in question are offline and trigger a BUG()
2224 * if this is not the case.
2226 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2227 check_memblock_offlined_cb);
2231 /* remove memmap entry */
2232 firmware_map_remove(start, start + size, "System RAM");
2233 memblock_free(start, size);
2234 memblock_remove(start, size);
2236 arch_remove_memory(start, size);
2238 try_offline_node(nid);
2242 EXPORT_SYMBOL_GPL(remove_memory);
2243 #endif /* CONFIG_MEMORY_HOTREMOVE */