7497a789d002ebd7b223275264ee4e414a122b38
[releases.git] / mballoc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6
7
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 #include <kunit/static_stub.h>
22
23 /*
24  * MUSTDO:
25  *   - test ext4_ext_search_left() and ext4_ext_search_right()
26  *   - search for metadata in few groups
27  *
28  * TODO v4:
29  *   - normalization should take into account whether file is still open
30  *   - discard preallocations if no free space left (policy?)
31  *   - don't normalize tails
32  *   - quota
33  *   - reservation for superuser
34  *
35  * TODO v3:
36  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
37  *   - track min/max extents in each group for better group selection
38  *   - mb_mark_used() may allocate chunk right after splitting buddy
39  *   - tree of groups sorted by number of free blocks
40  *   - error handling
41  */
42
43 /*
44  * The allocation request involve request for multiple number of blocks
45  * near to the goal(block) value specified.
46  *
47  * During initialization phase of the allocator we decide to use the
48  * group preallocation or inode preallocation depending on the size of
49  * the file. The size of the file could be the resulting file size we
50  * would have after allocation, or the current file size, which ever
51  * is larger. If the size is less than sbi->s_mb_stream_request we
52  * select to use the group preallocation. The default value of
53  * s_mb_stream_request is 16 blocks. This can also be tuned via
54  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55  * terms of number of blocks.
56  *
57  * The main motivation for having small file use group preallocation is to
58  * ensure that we have small files closer together on the disk.
59  *
60  * First stage the allocator looks at the inode prealloc list,
61  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62  * spaces for this particular inode. The inode prealloc space is
63  * represented as:
64  *
65  * pa_lstart -> the logical start block for this prealloc space
66  * pa_pstart -> the physical start block for this prealloc space
67  * pa_len    -> length for this prealloc space (in clusters)
68  * pa_free   ->  free space available in this prealloc space (in clusters)
69  *
70  * The inode preallocation space is used looking at the _logical_ start
71  * block. If only the logical file block falls within the range of prealloc
72  * space we will consume the particular prealloc space. This makes sure that
73  * we have contiguous physical blocks representing the file blocks
74  *
75  * The important thing to be noted in case of inode prealloc space is that
76  * we don't modify the values associated to inode prealloc space except
77  * pa_free.
78  *
79  * If we are not able to find blocks in the inode prealloc space and if we
80  * have the group allocation flag set then we look at the locality group
81  * prealloc space. These are per CPU prealloc list represented as
82  *
83  * ext4_sb_info.s_locality_groups[smp_processor_id()]
84  *
85  * The reason for having a per cpu locality group is to reduce the contention
86  * between CPUs. It is possible to get scheduled at this point.
87  *
88  * The locality group prealloc space is used looking at whether we have
89  * enough free space (pa_free) within the prealloc space.
90  *
91  * If we can't allocate blocks via inode prealloc or/and locality group
92  * prealloc then we look at the buddy cache. The buddy cache is represented
93  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94  * mapped to the buddy and bitmap information regarding different
95  * groups. The buddy information is attached to buddy cache inode so that
96  * we can access them through the page cache. The information regarding
97  * each group is loaded via ext4_mb_load_buddy.  The information involve
98  * block bitmap and buddy information. The information are stored in the
99  * inode as:
100  *
101  *  {                        page                        }
102  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103  *
104  *
105  * one block each for bitmap and buddy information.  So for each group we
106  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107  * blocksize) blocks.  So it can have information regarding groups_per_page
108  * which is blocks_per_page/2
109  *
110  * The buddy cache inode is not stored on disk. The inode is thrown
111  * away when the filesystem is unmounted.
112  *
113  * We look for count number of blocks in the buddy cache. If we were able
114  * to locate that many free blocks we return with additional information
115  * regarding rest of the contiguous physical block available
116  *
117  * Before allocating blocks via buddy cache we normalize the request
118  * blocks. This ensure we ask for more blocks that we needed. The extra
119  * blocks that we get after allocation is added to the respective prealloc
120  * list. In case of inode preallocation we follow a list of heuristics
121  * based on file size. This can be found in ext4_mb_normalize_request. If
122  * we are doing a group prealloc we try to normalize the request to
123  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
124  * dependent on the cluster size; for non-bigalloc file systems, it is
125  * 512 blocks. This can be tuned via
126  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * smallest multiple of the stripe value (sbi->s_stripe) which is
130  * greater than the default mb_group_prealloc.
131  *
132  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133  * structures in two data structures:
134  *
135  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136  *
137  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138  *
139  *    This is an array of lists where the index in the array represents the
140  *    largest free order in the buddy bitmap of the participating group infos of
141  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142  *    number of buddy bitmap orders possible) number of lists. Group-infos are
143  *    placed in appropriate lists.
144  *
145  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146  *
147  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148  *
149  *    This is an array of lists where in the i-th list there are groups with
150  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
151  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152  *    Note that we don't bother with a special list for completely empty groups
153  *    so we only have MB_NUM_ORDERS(sb) lists.
154  *
155  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156  * structures to decide the order in which groups are to be traversed for
157  * fulfilling an allocation request.
158  *
159  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160  * >= the order of the request. We directly look at the largest free order list
161  * in the data structure (1) above where largest_free_order = order of the
162  * request. If that list is empty, we look at remaining list in the increasing
163  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164  * lookup in O(1) time.
165  *
166  * At CR_GOAL_LEN_FAST, we only consider groups where
167  * average fragment size > request size. So, we lookup a group which has average
168  * fragment size just above or equal to request size using our average fragment
169  * size group lists (data structure 2) in O(1) time.
170  *
171  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174  * fragment size > goal length. So before falling to the slower
175  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177  * enough average fragment size. This increases the chances of finding a
178  * suitable block group in O(1) time and results in faster allocation at the
179  * cost of reduced size of allocation.
180  *
181  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183  * CR_GOAL_LEN_FAST phase.
184  *
185  * The regular allocator (using the buddy cache) supports a few tunables.
186  *
187  * /sys/fs/ext4/<partition>/mb_min_to_scan
188  * /sys/fs/ext4/<partition>/mb_max_to_scan
189  * /sys/fs/ext4/<partition>/mb_order2_req
190  * /sys/fs/ext4/<partition>/mb_linear_limit
191  *
192  * The regular allocator uses buddy scan only if the request len is power of
193  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194  * value of s_mb_order2_reqs can be tuned via
195  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
196  * stripe size (sbi->s_stripe), we try to search for contiguous block in
197  * stripe size. This should result in better allocation on RAID setups. If
198  * not, we search in the specific group using bitmap for best extents. The
199  * tunable min_to_scan and max_to_scan control the behaviour here.
200  * min_to_scan indicate how long the mballoc __must__ look for a best
201  * extent and max_to_scan indicates how long the mballoc __can__ look for a
202  * best extent in the found extents. Searching for the blocks starts with
203  * the group specified as the goal value in allocation context via
204  * ac_g_ex. Each group is first checked based on the criteria whether it
205  * can be used for allocation. ext4_mb_good_group explains how the groups are
206  * checked.
207  *
208  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209  * get traversed linearly. That may result in subsequent allocations being not
210  * close to each other. And so, the underlying device may get filled up in a
211  * non-linear fashion. While that may not matter on non-rotational devices, for
212  * rotational devices that may result in higher seek times. "mb_linear_limit"
213  * tells mballoc how many groups mballoc should search linearly before
214  * performing consulting above data structures for more efficient lookups. For
215  * non rotational devices, this value defaults to 0 and for rotational devices
216  * this is set to MB_DEFAULT_LINEAR_LIMIT.
217  *
218  * Both the prealloc space are getting populated as above. So for the first
219  * request we will hit the buddy cache which will result in this prealloc
220  * space getting filled. The prealloc space is then later used for the
221  * subsequent request.
222  */
223
224 /*
225  * mballoc operates on the following data:
226  *  - on-disk bitmap
227  *  - in-core buddy (actually includes buddy and bitmap)
228  *  - preallocation descriptors (PAs)
229  *
230  * there are two types of preallocations:
231  *  - inode
232  *    assiged to specific inode and can be used for this inode only.
233  *    it describes part of inode's space preallocated to specific
234  *    physical blocks. any block from that preallocated can be used
235  *    independent. the descriptor just tracks number of blocks left
236  *    unused. so, before taking some block from descriptor, one must
237  *    make sure corresponded logical block isn't allocated yet. this
238  *    also means that freeing any block within descriptor's range
239  *    must discard all preallocated blocks.
240  *  - locality group
241  *    assigned to specific locality group which does not translate to
242  *    permanent set of inodes: inode can join and leave group. space
243  *    from this type of preallocation can be used for any inode. thus
244  *    it's consumed from the beginning to the end.
245  *
246  * relation between them can be expressed as:
247  *    in-core buddy = on-disk bitmap + preallocation descriptors
248  *
249  * this mean blocks mballoc considers used are:
250  *  - allocated blocks (persistent)
251  *  - preallocated blocks (non-persistent)
252  *
253  * consistency in mballoc world means that at any time a block is either
254  * free or used in ALL structures. notice: "any time" should not be read
255  * literally -- time is discrete and delimited by locks.
256  *
257  *  to keep it simple, we don't use block numbers, instead we count number of
258  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259  *
260  * all operations can be expressed as:
261  *  - init buddy:                       buddy = on-disk + PAs
262  *  - new PA:                           buddy += N; PA = N
263  *  - use inode PA:                     on-disk += N; PA -= N
264  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
265  *  - use locality group PA             on-disk += N; PA -= N
266  *  - discard locality group PA         buddy -= PA; PA = 0
267  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268  *        is used in real operation because we can't know actual used
269  *        bits from PA, only from on-disk bitmap
270  *
271  * if we follow this strict logic, then all operations above should be atomic.
272  * given some of them can block, we'd have to use something like semaphores
273  * killing performance on high-end SMP hardware. let's try to relax it using
274  * the following knowledge:
275  *  1) if buddy is referenced, it's already initialized
276  *  2) while block is used in buddy and the buddy is referenced,
277  *     nobody can re-allocate that block
278  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
280  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281  *     block
282  *
283  * so, now we're building a concurrency table:
284  *  - init buddy vs.
285  *    - new PA
286  *      blocks for PA are allocated in the buddy, buddy must be referenced
287  *      until PA is linked to allocation group to avoid concurrent buddy init
288  *    - use inode PA
289  *      we need to make sure that either on-disk bitmap or PA has uptodate data
290  *      given (3) we care that PA-=N operation doesn't interfere with init
291  *    - discard inode PA
292  *      the simplest way would be to have buddy initialized by the discard
293  *    - use locality group PA
294  *      again PA-=N must be serialized with init
295  *    - discard locality group PA
296  *      the simplest way would be to have buddy initialized by the discard
297  *  - new PA vs.
298  *    - use inode PA
299  *      i_data_sem serializes them
300  *    - discard inode PA
301  *      discard process must wait until PA isn't used by another process
302  *    - use locality group PA
303  *      some mutex should serialize them
304  *    - discard locality group PA
305  *      discard process must wait until PA isn't used by another process
306  *  - use inode PA
307  *    - use inode PA
308  *      i_data_sem or another mutex should serializes them
309  *    - discard inode PA
310  *      discard process must wait until PA isn't used by another process
311  *    - use locality group PA
312  *      nothing wrong here -- they're different PAs covering different blocks
313  *    - discard locality group PA
314  *      discard process must wait until PA isn't used by another process
315  *
316  * now we're ready to make few consequences:
317  *  - PA is referenced and while it is no discard is possible
318  *  - PA is referenced until block isn't marked in on-disk bitmap
319  *  - PA changes only after on-disk bitmap
320  *  - discard must not compete with init. either init is done before
321  *    any discard or they're serialized somehow
322  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
323  *
324  * a special case when we've used PA to emptiness. no need to modify buddy
325  * in this case, but we should care about concurrent init
326  *
327  */
328
329  /*
330  * Logic in few words:
331  *
332  *  - allocation:
333  *    load group
334  *    find blocks
335  *    mark bits in on-disk bitmap
336  *    release group
337  *
338  *  - use preallocation:
339  *    find proper PA (per-inode or group)
340  *    load group
341  *    mark bits in on-disk bitmap
342  *    release group
343  *    release PA
344  *
345  *  - free:
346  *    load group
347  *    mark bits in on-disk bitmap
348  *    release group
349  *
350  *  - discard preallocations in group:
351  *    mark PAs deleted
352  *    move them onto local list
353  *    load on-disk bitmap
354  *    load group
355  *    remove PA from object (inode or locality group)
356  *    mark free blocks in-core
357  *
358  *  - discard inode's preallocations:
359  */
360
361 /*
362  * Locking rules
363  *
364  * Locks:
365  *  - bitlock on a group        (group)
366  *  - object (inode/locality)   (object)
367  *  - per-pa lock               (pa)
368  *  - cr_power2_aligned lists lock      (cr_power2_aligned)
369  *  - cr_goal_len_fast lists lock       (cr_goal_len_fast)
370  *
371  * Paths:
372  *  - new pa
373  *    object
374  *    group
375  *
376  *  - find and use pa:
377  *    pa
378  *
379  *  - release consumed pa:
380  *    pa
381  *    group
382  *    object
383  *
384  *  - generate in-core bitmap:
385  *    group
386  *        pa
387  *
388  *  - discard all for given object (inode, locality group):
389  *    object
390  *        pa
391  *    group
392  *
393  *  - discard all for given group:
394  *    group
395  *        pa
396  *    group
397  *        object
398  *
399  *  - allocation path (ext4_mb_regular_allocator)
400  *    group
401  *    cr_power2_aligned/cr_goal_len_fast
402  */
403 static struct kmem_cache *ext4_pspace_cachep;
404 static struct kmem_cache *ext4_ac_cachep;
405 static struct kmem_cache *ext4_free_data_cachep;
406
407 /* We create slab caches for groupinfo data structures based on the
408  * superblock block size.  There will be one per mounted filesystem for
409  * each unique s_blocksize_bits */
410 #define NR_GRPINFO_CACHES 8
411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412
413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414         "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415         "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416         "ext4_groupinfo_64k", "ext4_groupinfo_128k"
417 };
418
419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420                                         ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424                                ext4_group_t group, enum criteria cr);
425
426 static int ext4_try_to_trim_range(struct super_block *sb,
427                 struct ext4_buddy *e4b, ext4_grpblk_t start,
428                 ext4_grpblk_t max, ext4_grpblk_t minblocks);
429
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451         int __cpu;
452         u64 __seq = 0;
453
454         for_each_possible_cpu(__cpu)
455                 __seq += per_cpu(discard_pa_seq, __cpu);
456         return __seq;
457 }
458
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462         *bit += ((unsigned long) addr & 7UL) << 3;
463         addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465         *bit += ((unsigned long) addr & 3UL) << 3;
466         addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470         return addr;
471 }
472
473 static inline int mb_test_bit(int bit, void *addr)
474 {
475         /*
476          * ext4_test_bit on architecture like powerpc
477          * needs unsigned long aligned address
478          */
479         addr = mb_correct_addr_and_bit(&bit, addr);
480         return ext4_test_bit(bit, addr);
481 }
482
483 static inline void mb_set_bit(int bit, void *addr)
484 {
485         addr = mb_correct_addr_and_bit(&bit, addr);
486         ext4_set_bit(bit, addr);
487 }
488
489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491         addr = mb_correct_addr_and_bit(&bit, addr);
492         ext4_clear_bit(bit, addr);
493 }
494
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497         addr = mb_correct_addr_and_bit(&bit, addr);
498         return ext4_test_and_clear_bit(bit, addr);
499 }
500
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503         int fix = 0, ret, tmpmax;
504         addr = mb_correct_addr_and_bit(&fix, addr);
505         tmpmax = max + fix;
506         start += fix;
507
508         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509         if (ret > max)
510                 return max;
511         return ret;
512 }
513
514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516         int fix = 0, ret, tmpmax;
517         addr = mb_correct_addr_and_bit(&fix, addr);
518         tmpmax = max + fix;
519         start += fix;
520
521         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522         if (ret > max)
523                 return max;
524         return ret;
525 }
526
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529         char *bb;
530
531         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532         BUG_ON(max == NULL);
533
534         if (order > e4b->bd_blkbits + 1) {
535                 *max = 0;
536                 return NULL;
537         }
538
539         /* at order 0 we see each particular block */
540         if (order == 0) {
541                 *max = 1 << (e4b->bd_blkbits + 3);
542                 return e4b->bd_bitmap;
543         }
544
545         bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547
548         return bb;
549 }
550
551 #ifdef DOUBLE_CHECK
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553                            int first, int count)
554 {
555         int i;
556         struct super_block *sb = e4b->bd_sb;
557
558         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559                 return;
560         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561         for (i = 0; i < count; i++) {
562                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563                         ext4_fsblk_t blocknr;
564
565                         blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566                         blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567                         ext4_grp_locked_error(sb, e4b->bd_group,
568                                               inode ? inode->i_ino : 0,
569                                               blocknr,
570                                               "freeing block already freed "
571                                               "(bit %u)",
572                                               first + i);
573                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
574                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
575                 }
576                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577         }
578 }
579
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582         int i;
583
584         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585                 return;
586         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587         for (i = 0; i < count; i++) {
588                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590         }
591 }
592
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596                 return;
597         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598                 unsigned char *b1, *b2;
599                 int i;
600                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601                 b2 = (unsigned char *) bitmap;
602                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603                         if (b1[i] != b2[i]) {
604                                 ext4_msg(e4b->bd_sb, KERN_ERR,
605                                          "corruption in group %u "
606                                          "at byte %u(%u): %x in copy != %x "
607                                          "on disk/prealloc",
608                                          e4b->bd_group, i, i * 8, b1[i], b2[i]);
609                                 BUG();
610                         }
611                 }
612         }
613 }
614
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616                         struct ext4_group_info *grp, ext4_group_t group)
617 {
618         struct buffer_head *bh;
619
620         grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621         if (!grp->bb_bitmap)
622                 return;
623
624         bh = ext4_read_block_bitmap(sb, group);
625         if (IS_ERR_OR_NULL(bh)) {
626                 kfree(grp->bb_bitmap);
627                 grp->bb_bitmap = NULL;
628                 return;
629         }
630
631         memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632         put_bh(bh);
633 }
634
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637         kfree(grp->bb_bitmap);
638 }
639
640 #else
641 static inline void mb_free_blocks_double(struct inode *inode,
642                                 struct ext4_buddy *e4b, int first, int count)
643 {
644         return;
645 }
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647                                                 int first, int count)
648 {
649         return;
650 }
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653         return;
654 }
655
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657                         struct ext4_group_info *grp, ext4_group_t group)
658 {
659         return;
660 }
661
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664         return;
665 }
666 #endif
667
668 #ifdef AGGRESSIVE_CHECK
669
670 #define MB_CHECK_ASSERT(assert)                                         \
671 do {                                                                    \
672         if (!(assert)) {                                                \
673                 printk(KERN_EMERG                                       \
674                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
675                         function, file, line, # assert);                \
676                 BUG();                                                  \
677         }                                                               \
678 } while (0)
679
680 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681                                 const char *function, int line)
682 {
683         struct super_block *sb = e4b->bd_sb;
684         int order = e4b->bd_blkbits + 1;
685         int max;
686         int max2;
687         int i;
688         int j;
689         int k;
690         int count;
691         struct ext4_group_info *grp;
692         int fragments = 0;
693         int fstart;
694         struct list_head *cur;
695         void *buddy;
696         void *buddy2;
697
698         if (e4b->bd_info->bb_check_counter++ % 10)
699                 return 0;
700
701         while (order > 1) {
702                 buddy = mb_find_buddy(e4b, order, &max);
703                 MB_CHECK_ASSERT(buddy);
704                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705                 MB_CHECK_ASSERT(buddy2);
706                 MB_CHECK_ASSERT(buddy != buddy2);
707                 MB_CHECK_ASSERT(max * 2 == max2);
708
709                 count = 0;
710                 for (i = 0; i < max; i++) {
711
712                         if (mb_test_bit(i, buddy)) {
713                                 /* only single bit in buddy2 may be 0 */
714                                 if (!mb_test_bit(i << 1, buddy2)) {
715                                         MB_CHECK_ASSERT(
716                                                 mb_test_bit((i<<1)+1, buddy2));
717                                 }
718                                 continue;
719                         }
720
721                         /* both bits in buddy2 must be 1 */
722                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724
725                         for (j = 0; j < (1 << order); j++) {
726                                 k = (i * (1 << order)) + j;
727                                 MB_CHECK_ASSERT(
728                                         !mb_test_bit(k, e4b->bd_bitmap));
729                         }
730                         count++;
731                 }
732                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733                 order--;
734         }
735
736         fstart = -1;
737         buddy = mb_find_buddy(e4b, 0, &max);
738         for (i = 0; i < max; i++) {
739                 if (!mb_test_bit(i, buddy)) {
740                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741                         if (fstart == -1) {
742                                 fragments++;
743                                 fstart = i;
744                         }
745                         continue;
746                 }
747                 fstart = -1;
748                 /* check used bits only */
749                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750                         buddy2 = mb_find_buddy(e4b, j, &max2);
751                         k = i >> j;
752                         MB_CHECK_ASSERT(k < max2);
753                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754                 }
755         }
756         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758
759         grp = ext4_get_group_info(sb, e4b->bd_group);
760         if (!grp)
761                 return NULL;
762         list_for_each(cur, &grp->bb_prealloc_list) {
763                 ext4_group_t groupnr;
764                 struct ext4_prealloc_space *pa;
765                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768                 for (i = 0; i < pa->pa_len; i++)
769                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770         }
771         return 0;
772 }
773 #undef MB_CHECK_ASSERT
774 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
775                                         __FILE__, __func__, __LINE__)
776 #else
777 #define mb_check_buddy(e4b)
778 #endif
779
780 /*
781  * Divide blocks started from @first with length @len into
782  * smaller chunks with power of 2 blocks.
783  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
784  * then increase bb_counters[] for corresponded chunk size.
785  */
786 static void ext4_mb_mark_free_simple(struct super_block *sb,
787                                 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
788                                         struct ext4_group_info *grp)
789 {
790         struct ext4_sb_info *sbi = EXT4_SB(sb);
791         ext4_grpblk_t min;
792         ext4_grpblk_t max;
793         ext4_grpblk_t chunk;
794         unsigned int border;
795
796         BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
797
798         border = 2 << sb->s_blocksize_bits;
799
800         while (len > 0) {
801                 /* find how many blocks can be covered since this position */
802                 max = ffs(first | border) - 1;
803
804                 /* find how many blocks of power 2 we need to mark */
805                 min = fls(len) - 1;
806
807                 if (max < min)
808                         min = max;
809                 chunk = 1 << min;
810
811                 /* mark multiblock chunks only */
812                 grp->bb_counters[min]++;
813                 if (min > 0)
814                         mb_clear_bit(first >> min,
815                                      buddy + sbi->s_mb_offsets[min]);
816
817                 len -= chunk;
818                 first += chunk;
819         }
820 }
821
822 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
823 {
824         int order;
825
826         /*
827          * We don't bother with a special lists groups with only 1 block free
828          * extents and for completely empty groups.
829          */
830         order = fls(len) - 2;
831         if (order < 0)
832                 return 0;
833         if (order == MB_NUM_ORDERS(sb))
834                 order--;
835         return order;
836 }
837
838 /* Move group to appropriate avg_fragment_size list */
839 static void
840 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
841 {
842         struct ext4_sb_info *sbi = EXT4_SB(sb);
843         int new_order;
844
845         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
846                 return;
847
848         new_order = mb_avg_fragment_size_order(sb,
849                                         grp->bb_free / grp->bb_fragments);
850         if (new_order == grp->bb_avg_fragment_size_order)
851                 return;
852
853         if (grp->bb_avg_fragment_size_order != -1) {
854                 write_lock(&sbi->s_mb_avg_fragment_size_locks[
855                                         grp->bb_avg_fragment_size_order]);
856                 list_del(&grp->bb_avg_fragment_size_node);
857                 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
858                                         grp->bb_avg_fragment_size_order]);
859         }
860         grp->bb_avg_fragment_size_order = new_order;
861         write_lock(&sbi->s_mb_avg_fragment_size_locks[
862                                         grp->bb_avg_fragment_size_order]);
863         list_add_tail(&grp->bb_avg_fragment_size_node,
864                 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
865         write_unlock(&sbi->s_mb_avg_fragment_size_locks[
866                                         grp->bb_avg_fragment_size_order]);
867 }
868
869 /*
870  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
871  * cr level needs an update.
872  */
873 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
874                         enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
875 {
876         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
877         struct ext4_group_info *iter;
878         int i;
879
880         if (ac->ac_status == AC_STATUS_FOUND)
881                 return;
882
883         if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
884                 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
885
886         for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
887                 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
888                         continue;
889                 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
890                 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
891                         read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
892                         continue;
893                 }
894                 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
895                                     bb_largest_free_order_node) {
896                         if (sbi->s_mb_stats)
897                                 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
898                         if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
899                                 *group = iter->bb_group;
900                                 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
901                                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
902                                 return;
903                         }
904                 }
905                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
906         }
907
908         /* Increment cr and search again if no group is found */
909         *new_cr = CR_GOAL_LEN_FAST;
910 }
911
912 /*
913  * Find a suitable group of given order from the average fragments list.
914  */
915 static struct ext4_group_info *
916 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
917 {
918         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
919         struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
920         rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
921         struct ext4_group_info *grp = NULL, *iter;
922         enum criteria cr = ac->ac_criteria;
923
924         if (list_empty(frag_list))
925                 return NULL;
926         read_lock(frag_list_lock);
927         if (list_empty(frag_list)) {
928                 read_unlock(frag_list_lock);
929                 return NULL;
930         }
931         list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
932                 if (sbi->s_mb_stats)
933                         atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
934                 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
935                         grp = iter;
936                         break;
937                 }
938         }
939         read_unlock(frag_list_lock);
940         return grp;
941 }
942
943 /*
944  * Choose next group by traversing average fragment size list of suitable
945  * order. Updates *new_cr if cr level needs an update.
946  */
947 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
948                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
949 {
950         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
951         struct ext4_group_info *grp = NULL;
952         int i;
953
954         if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
955                 if (sbi->s_mb_stats)
956                         atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
957         }
958
959         for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
960              i < MB_NUM_ORDERS(ac->ac_sb); i++) {
961                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
962                 if (grp) {
963                         *group = grp->bb_group;
964                         ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
965                         return;
966                 }
967         }
968
969         /*
970          * CR_BEST_AVAIL_LEN works based on the concept that we have
971          * a larger normalized goal len request which can be trimmed to
972          * a smaller goal len such that it can still satisfy original
973          * request len. However, allocation request for non-regular
974          * files never gets normalized.
975          * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
976          */
977         if (ac->ac_flags & EXT4_MB_HINT_DATA)
978                 *new_cr = CR_BEST_AVAIL_LEN;
979         else
980                 *new_cr = CR_GOAL_LEN_SLOW;
981 }
982
983 /*
984  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
985  * order we have and proactively trim the goal request length to that order to
986  * find a suitable group faster.
987  *
988  * This optimizes allocation speed at the cost of slightly reduced
989  * preallocations. However, we make sure that we don't trim the request too
990  * much and fall to CR_GOAL_LEN_SLOW in that case.
991  */
992 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
993                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
994 {
995         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
996         struct ext4_group_info *grp = NULL;
997         int i, order, min_order;
998         unsigned long num_stripe_clusters = 0;
999
1000         if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1001                 if (sbi->s_mb_stats)
1002                         atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1003         }
1004
1005         /*
1006          * mb_avg_fragment_size_order() returns order in a way that makes
1007          * retrieving back the length using (1 << order) inaccurate. Hence, use
1008          * fls() instead since we need to know the actual length while modifying
1009          * goal length.
1010          */
1011         order = fls(ac->ac_g_ex.fe_len) - 1;
1012         min_order = order - sbi->s_mb_best_avail_max_trim_order;
1013         if (min_order < 0)
1014                 min_order = 0;
1015
1016         if (sbi->s_stripe > 0) {
1017                 /*
1018                  * We are assuming that stripe size is always a multiple of
1019                  * cluster ratio otherwise __ext4_fill_super exists early.
1020                  */
1021                 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1022                 if (1 << min_order < num_stripe_clusters)
1023                         /*
1024                          * We consider 1 order less because later we round
1025                          * up the goal len to num_stripe_clusters
1026                          */
1027                         min_order = fls(num_stripe_clusters) - 1;
1028         }
1029
1030         if (1 << min_order < ac->ac_o_ex.fe_len)
1031                 min_order = fls(ac->ac_o_ex.fe_len);
1032
1033         for (i = order; i >= min_order; i--) {
1034                 int frag_order;
1035                 /*
1036                  * Scale down goal len to make sure we find something
1037                  * in the free fragments list. Basically, reduce
1038                  * preallocations.
1039                  */
1040                 ac->ac_g_ex.fe_len = 1 << i;
1041
1042                 if (num_stripe_clusters > 0) {
1043                         /*
1044                          * Try to round up the adjusted goal length to
1045                          * stripe size (in cluster units) multiple for
1046                          * efficiency.
1047                          */
1048                         ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1049                                                      num_stripe_clusters);
1050                 }
1051
1052                 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1053                                                         ac->ac_g_ex.fe_len);
1054
1055                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1056                 if (grp) {
1057                         *group = grp->bb_group;
1058                         ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1059                         return;
1060                 }
1061         }
1062
1063         /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1064         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1065         *new_cr = CR_GOAL_LEN_SLOW;
1066 }
1067
1068 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1069 {
1070         if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1071                 return 0;
1072         if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1073                 return 0;
1074         if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1075                 return 0;
1076         return 1;
1077 }
1078
1079 /*
1080  * Return next linear group for allocation. If linear traversal should not be
1081  * performed, this function just returns the same group
1082  */
1083 static ext4_group_t
1084 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1085                   ext4_group_t ngroups)
1086 {
1087         if (!should_optimize_scan(ac))
1088                 goto inc_and_return;
1089
1090         if (ac->ac_groups_linear_remaining) {
1091                 ac->ac_groups_linear_remaining--;
1092                 goto inc_and_return;
1093         }
1094
1095         return group;
1096 inc_and_return:
1097         /*
1098          * Artificially restricted ngroups for non-extent
1099          * files makes group > ngroups possible on first loop.
1100          */
1101         return group + 1 >= ngroups ? 0 : group + 1;
1102 }
1103
1104 /*
1105  * ext4_mb_choose_next_group: choose next group for allocation.
1106  *
1107  * @ac        Allocation Context
1108  * @new_cr    This is an output parameter. If the there is no good group
1109  *            available at current CR level, this field is updated to indicate
1110  *            the new cr level that should be used.
1111  * @group     This is an input / output parameter. As an input it indicates the
1112  *            next group that the allocator intends to use for allocation. As
1113  *            output, this field indicates the next group that should be used as
1114  *            determined by the optimization functions.
1115  * @ngroups   Total number of groups
1116  */
1117 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1118                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1119 {
1120         *new_cr = ac->ac_criteria;
1121
1122         if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1123                 *group = next_linear_group(ac, *group, ngroups);
1124                 return;
1125         }
1126
1127         if (*new_cr == CR_POWER2_ALIGNED) {
1128                 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1129         } else if (*new_cr == CR_GOAL_LEN_FAST) {
1130                 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1131         } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1132                 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1133         } else {
1134                 /*
1135                  * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1136                  * bb_free. But until that happens, we should never come here.
1137                  */
1138                 WARN_ON(1);
1139         }
1140 }
1141
1142 /*
1143  * Cache the order of the largest free extent we have available in this block
1144  * group.
1145  */
1146 static void
1147 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1148 {
1149         struct ext4_sb_info *sbi = EXT4_SB(sb);
1150         int i;
1151
1152         for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1153                 if (grp->bb_counters[i] > 0)
1154                         break;
1155         /* No need to move between order lists? */
1156         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1157             i == grp->bb_largest_free_order) {
1158                 grp->bb_largest_free_order = i;
1159                 return;
1160         }
1161
1162         if (grp->bb_largest_free_order >= 0) {
1163                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1164                                               grp->bb_largest_free_order]);
1165                 list_del_init(&grp->bb_largest_free_order_node);
1166                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1167                                               grp->bb_largest_free_order]);
1168         }
1169         grp->bb_largest_free_order = i;
1170         if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1171                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1172                                               grp->bb_largest_free_order]);
1173                 list_add_tail(&grp->bb_largest_free_order_node,
1174                       &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1175                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1176                                               grp->bb_largest_free_order]);
1177         }
1178 }
1179
1180 static noinline_for_stack
1181 void ext4_mb_generate_buddy(struct super_block *sb,
1182                             void *buddy, void *bitmap, ext4_group_t group,
1183                             struct ext4_group_info *grp)
1184 {
1185         struct ext4_sb_info *sbi = EXT4_SB(sb);
1186         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1187         ext4_grpblk_t i = 0;
1188         ext4_grpblk_t first;
1189         ext4_grpblk_t len;
1190         unsigned free = 0;
1191         unsigned fragments = 0;
1192         unsigned long long period = get_cycles();
1193
1194         /* initialize buddy from bitmap which is aggregation
1195          * of on-disk bitmap and preallocations */
1196         i = mb_find_next_zero_bit(bitmap, max, 0);
1197         grp->bb_first_free = i;
1198         while (i < max) {
1199                 fragments++;
1200                 first = i;
1201                 i = mb_find_next_bit(bitmap, max, i);
1202                 len = i - first;
1203                 free += len;
1204                 if (len > 1)
1205                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1206                 else
1207                         grp->bb_counters[0]++;
1208                 if (i < max)
1209                         i = mb_find_next_zero_bit(bitmap, max, i);
1210         }
1211         grp->bb_fragments = fragments;
1212
1213         if (free != grp->bb_free) {
1214                 ext4_grp_locked_error(sb, group, 0, 0,
1215                                       "block bitmap and bg descriptor "
1216                                       "inconsistent: %u vs %u free clusters",
1217                                       free, grp->bb_free);
1218                 /*
1219                  * If we intend to continue, we consider group descriptor
1220                  * corrupt and update bb_free using bitmap value
1221                  */
1222                 grp->bb_free = free;
1223                 ext4_mark_group_bitmap_corrupted(sb, group,
1224                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1225         }
1226         mb_set_largest_free_order(sb, grp);
1227         mb_update_avg_fragment_size(sb, grp);
1228
1229         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1230
1231         period = get_cycles() - period;
1232         atomic_inc(&sbi->s_mb_buddies_generated);
1233         atomic64_add(period, &sbi->s_mb_generation_time);
1234 }
1235
1236 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1237 {
1238         int count;
1239         int order = 1;
1240         void *buddy;
1241
1242         while ((buddy = mb_find_buddy(e4b, order++, &count)))
1243                 mb_set_bits(buddy, 0, count);
1244
1245         e4b->bd_info->bb_fragments = 0;
1246         memset(e4b->bd_info->bb_counters, 0,
1247                 sizeof(*e4b->bd_info->bb_counters) *
1248                 (e4b->bd_sb->s_blocksize_bits + 2));
1249
1250         ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1251                 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1252 }
1253
1254 /* The buddy information is attached the buddy cache inode
1255  * for convenience. The information regarding each group
1256  * is loaded via ext4_mb_load_buddy. The information involve
1257  * block bitmap and buddy information. The information are
1258  * stored in the inode as
1259  *
1260  * {                        page                        }
1261  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1262  *
1263  *
1264  * one block each for bitmap and buddy information.
1265  * So for each group we take up 2 blocks. A page can
1266  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1267  * So it can have information regarding groups_per_page which
1268  * is blocks_per_page/2
1269  *
1270  * Locking note:  This routine takes the block group lock of all groups
1271  * for this page; do not hold this lock when calling this routine!
1272  */
1273
1274 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1275 {
1276         ext4_group_t ngroups;
1277         unsigned int blocksize;
1278         int blocks_per_page;
1279         int groups_per_page;
1280         int err = 0;
1281         int i;
1282         ext4_group_t first_group, group;
1283         int first_block;
1284         struct super_block *sb;
1285         struct buffer_head *bhs;
1286         struct buffer_head **bh = NULL;
1287         struct inode *inode;
1288         char *data;
1289         char *bitmap;
1290         struct ext4_group_info *grinfo;
1291
1292         inode = page->mapping->host;
1293         sb = inode->i_sb;
1294         ngroups = ext4_get_groups_count(sb);
1295         blocksize = i_blocksize(inode);
1296         blocks_per_page = PAGE_SIZE / blocksize;
1297
1298         mb_debug(sb, "init page %lu\n", page->index);
1299
1300         groups_per_page = blocks_per_page >> 1;
1301         if (groups_per_page == 0)
1302                 groups_per_page = 1;
1303
1304         /* allocate buffer_heads to read bitmaps */
1305         if (groups_per_page > 1) {
1306                 i = sizeof(struct buffer_head *) * groups_per_page;
1307                 bh = kzalloc(i, gfp);
1308                 if (bh == NULL)
1309                         return -ENOMEM;
1310         } else
1311                 bh = &bhs;
1312
1313         first_group = page->index * blocks_per_page / 2;
1314
1315         /* read all groups the page covers into the cache */
1316         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1317                 if (group >= ngroups)
1318                         break;
1319
1320                 grinfo = ext4_get_group_info(sb, group);
1321                 if (!grinfo)
1322                         continue;
1323                 /*
1324                  * If page is uptodate then we came here after online resize
1325                  * which added some new uninitialized group info structs, so
1326                  * we must skip all initialized uptodate buddies on the page,
1327                  * which may be currently in use by an allocating task.
1328                  */
1329                 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1330                         bh[i] = NULL;
1331                         continue;
1332                 }
1333                 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1334                 if (IS_ERR(bh[i])) {
1335                         err = PTR_ERR(bh[i]);
1336                         bh[i] = NULL;
1337                         goto out;
1338                 }
1339                 mb_debug(sb, "read bitmap for group %u\n", group);
1340         }
1341
1342         /* wait for I/O completion */
1343         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1344                 int err2;
1345
1346                 if (!bh[i])
1347                         continue;
1348                 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1349                 if (!err)
1350                         err = err2;
1351         }
1352
1353         first_block = page->index * blocks_per_page;
1354         for (i = 0; i < blocks_per_page; i++) {
1355                 group = (first_block + i) >> 1;
1356                 if (group >= ngroups)
1357                         break;
1358
1359                 if (!bh[group - first_group])
1360                         /* skip initialized uptodate buddy */
1361                         continue;
1362
1363                 if (!buffer_verified(bh[group - first_group]))
1364                         /* Skip faulty bitmaps */
1365                         continue;
1366                 err = 0;
1367
1368                 /*
1369                  * data carry information regarding this
1370                  * particular group in the format specified
1371                  * above
1372                  *
1373                  */
1374                 data = page_address(page) + (i * blocksize);
1375                 bitmap = bh[group - first_group]->b_data;
1376
1377                 /*
1378                  * We place the buddy block and bitmap block
1379                  * close together
1380                  */
1381                 grinfo = ext4_get_group_info(sb, group);
1382                 if (!grinfo) {
1383                         err = -EFSCORRUPTED;
1384                         goto out;
1385                 }
1386                 if ((first_block + i) & 1) {
1387                         /* this is block of buddy */
1388                         BUG_ON(incore == NULL);
1389                         mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1390                                 group, page->index, i * blocksize);
1391                         trace_ext4_mb_buddy_bitmap_load(sb, group);
1392                         grinfo->bb_fragments = 0;
1393                         memset(grinfo->bb_counters, 0,
1394                                sizeof(*grinfo->bb_counters) *
1395                                (MB_NUM_ORDERS(sb)));
1396                         /*
1397                          * incore got set to the group block bitmap below
1398                          */
1399                         ext4_lock_group(sb, group);
1400                         /* init the buddy */
1401                         memset(data, 0xff, blocksize);
1402                         ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1403                         ext4_unlock_group(sb, group);
1404                         incore = NULL;
1405                 } else {
1406                         /* this is block of bitmap */
1407                         BUG_ON(incore != NULL);
1408                         mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1409                                 group, page->index, i * blocksize);
1410                         trace_ext4_mb_bitmap_load(sb, group);
1411
1412                         /* see comments in ext4_mb_put_pa() */
1413                         ext4_lock_group(sb, group);
1414                         memcpy(data, bitmap, blocksize);
1415
1416                         /* mark all preallocated blks used in in-core bitmap */
1417                         ext4_mb_generate_from_pa(sb, data, group);
1418                         WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1419                         ext4_unlock_group(sb, group);
1420
1421                         /* set incore so that the buddy information can be
1422                          * generated using this
1423                          */
1424                         incore = data;
1425                 }
1426         }
1427         SetPageUptodate(page);
1428
1429 out:
1430         if (bh) {
1431                 for (i = 0; i < groups_per_page; i++)
1432                         brelse(bh[i]);
1433                 if (bh != &bhs)
1434                         kfree(bh);
1435         }
1436         return err;
1437 }
1438
1439 /*
1440  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1441  * on the same buddy page doesn't happen whild holding the buddy page lock.
1442  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1443  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1444  */
1445 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1446                 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1447 {
1448         struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1449         int block, pnum, poff;
1450         int blocks_per_page;
1451         struct page *page;
1452
1453         e4b->bd_buddy_page = NULL;
1454         e4b->bd_bitmap_page = NULL;
1455
1456         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1457         /*
1458          * the buddy cache inode stores the block bitmap
1459          * and buddy information in consecutive blocks.
1460          * So for each group we need two blocks.
1461          */
1462         block = group * 2;
1463         pnum = block / blocks_per_page;
1464         poff = block % blocks_per_page;
1465         page = find_or_create_page(inode->i_mapping, pnum, gfp);
1466         if (!page)
1467                 return -ENOMEM;
1468         BUG_ON(page->mapping != inode->i_mapping);
1469         e4b->bd_bitmap_page = page;
1470         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1471
1472         if (blocks_per_page >= 2) {
1473                 /* buddy and bitmap are on the same page */
1474                 return 0;
1475         }
1476
1477         block++;
1478         pnum = block / blocks_per_page;
1479         page = find_or_create_page(inode->i_mapping, pnum, gfp);
1480         if (!page)
1481                 return -ENOMEM;
1482         BUG_ON(page->mapping != inode->i_mapping);
1483         e4b->bd_buddy_page = page;
1484         return 0;
1485 }
1486
1487 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1488 {
1489         if (e4b->bd_bitmap_page) {
1490                 unlock_page(e4b->bd_bitmap_page);
1491                 put_page(e4b->bd_bitmap_page);
1492         }
1493         if (e4b->bd_buddy_page) {
1494                 unlock_page(e4b->bd_buddy_page);
1495                 put_page(e4b->bd_buddy_page);
1496         }
1497 }
1498
1499 /*
1500  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1501  * block group lock of all groups for this page; do not hold the BG lock when
1502  * calling this routine!
1503  */
1504 static noinline_for_stack
1505 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1506 {
1507
1508         struct ext4_group_info *this_grp;
1509         struct ext4_buddy e4b;
1510         struct page *page;
1511         int ret = 0;
1512
1513         might_sleep();
1514         mb_debug(sb, "init group %u\n", group);
1515         this_grp = ext4_get_group_info(sb, group);
1516         if (!this_grp)
1517                 return -EFSCORRUPTED;
1518
1519         /*
1520          * This ensures that we don't reinit the buddy cache
1521          * page which map to the group from which we are already
1522          * allocating. If we are looking at the buddy cache we would
1523          * have taken a reference using ext4_mb_load_buddy and that
1524          * would have pinned buddy page to page cache.
1525          * The call to ext4_mb_get_buddy_page_lock will mark the
1526          * page accessed.
1527          */
1528         ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1529         if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1530                 /*
1531                  * somebody initialized the group
1532                  * return without doing anything
1533                  */
1534                 goto err;
1535         }
1536
1537         page = e4b.bd_bitmap_page;
1538         ret = ext4_mb_init_cache(page, NULL, gfp);
1539         if (ret)
1540                 goto err;
1541         if (!PageUptodate(page)) {
1542                 ret = -EIO;
1543                 goto err;
1544         }
1545
1546         if (e4b.bd_buddy_page == NULL) {
1547                 /*
1548                  * If both the bitmap and buddy are in
1549                  * the same page we don't need to force
1550                  * init the buddy
1551                  */
1552                 ret = 0;
1553                 goto err;
1554         }
1555         /* init buddy cache */
1556         page = e4b.bd_buddy_page;
1557         ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1558         if (ret)
1559                 goto err;
1560         if (!PageUptodate(page)) {
1561                 ret = -EIO;
1562                 goto err;
1563         }
1564 err:
1565         ext4_mb_put_buddy_page_lock(&e4b);
1566         return ret;
1567 }
1568
1569 /*
1570  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1571  * block group lock of all groups for this page; do not hold the BG lock when
1572  * calling this routine!
1573  */
1574 static noinline_for_stack int
1575 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1576                        struct ext4_buddy *e4b, gfp_t gfp)
1577 {
1578         int blocks_per_page;
1579         int block;
1580         int pnum;
1581         int poff;
1582         struct page *page;
1583         int ret;
1584         struct ext4_group_info *grp;
1585         struct ext4_sb_info *sbi = EXT4_SB(sb);
1586         struct inode *inode = sbi->s_buddy_cache;
1587
1588         might_sleep();
1589         mb_debug(sb, "load group %u\n", group);
1590
1591         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1592         grp = ext4_get_group_info(sb, group);
1593         if (!grp)
1594                 return -EFSCORRUPTED;
1595
1596         e4b->bd_blkbits = sb->s_blocksize_bits;
1597         e4b->bd_info = grp;
1598         e4b->bd_sb = sb;
1599         e4b->bd_group = group;
1600         e4b->bd_buddy_page = NULL;
1601         e4b->bd_bitmap_page = NULL;
1602
1603         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1604                 /*
1605                  * we need full data about the group
1606                  * to make a good selection
1607                  */
1608                 ret = ext4_mb_init_group(sb, group, gfp);
1609                 if (ret)
1610                         return ret;
1611         }
1612
1613         /*
1614          * the buddy cache inode stores the block bitmap
1615          * and buddy information in consecutive blocks.
1616          * So for each group we need two blocks.
1617          */
1618         block = group * 2;
1619         pnum = block / blocks_per_page;
1620         poff = block % blocks_per_page;
1621
1622         /* we could use find_or_create_page(), but it locks page
1623          * what we'd like to avoid in fast path ... */
1624         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1625         if (page == NULL || !PageUptodate(page)) {
1626                 if (page)
1627                         /*
1628                          * drop the page reference and try
1629                          * to get the page with lock. If we
1630                          * are not uptodate that implies
1631                          * somebody just created the page but
1632                          * is yet to initialize the same. So
1633                          * wait for it to initialize.
1634                          */
1635                         put_page(page);
1636                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1637                 if (page) {
1638                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1639         "ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1640                                 /* should never happen */
1641                                 unlock_page(page);
1642                                 ret = -EINVAL;
1643                                 goto err;
1644                         }
1645                         if (!PageUptodate(page)) {
1646                                 ret = ext4_mb_init_cache(page, NULL, gfp);
1647                                 if (ret) {
1648                                         unlock_page(page);
1649                                         goto err;
1650                                 }
1651                                 mb_cmp_bitmaps(e4b, page_address(page) +
1652                                                (poff * sb->s_blocksize));
1653                         }
1654                         unlock_page(page);
1655                 }
1656         }
1657         if (page == NULL) {
1658                 ret = -ENOMEM;
1659                 goto err;
1660         }
1661         if (!PageUptodate(page)) {
1662                 ret = -EIO;
1663                 goto err;
1664         }
1665
1666         /* Pages marked accessed already */
1667         e4b->bd_bitmap_page = page;
1668         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1669
1670         block++;
1671         pnum = block / blocks_per_page;
1672         poff = block % blocks_per_page;
1673
1674         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1675         if (page == NULL || !PageUptodate(page)) {
1676                 if (page)
1677                         put_page(page);
1678                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1679                 if (page) {
1680                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1681         "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1682                                 /* should never happen */
1683                                 unlock_page(page);
1684                                 ret = -EINVAL;
1685                                 goto err;
1686                         }
1687                         if (!PageUptodate(page)) {
1688                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1689                                                          gfp);
1690                                 if (ret) {
1691                                         unlock_page(page);
1692                                         goto err;
1693                                 }
1694                         }
1695                         unlock_page(page);
1696                 }
1697         }
1698         if (page == NULL) {
1699                 ret = -ENOMEM;
1700                 goto err;
1701         }
1702         if (!PageUptodate(page)) {
1703                 ret = -EIO;
1704                 goto err;
1705         }
1706
1707         /* Pages marked accessed already */
1708         e4b->bd_buddy_page = page;
1709         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1710
1711         return 0;
1712
1713 err:
1714         if (page)
1715                 put_page(page);
1716         if (e4b->bd_bitmap_page)
1717                 put_page(e4b->bd_bitmap_page);
1718
1719         e4b->bd_buddy = NULL;
1720         e4b->bd_bitmap = NULL;
1721         return ret;
1722 }
1723
1724 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1725                               struct ext4_buddy *e4b)
1726 {
1727         return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1728 }
1729
1730 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1731 {
1732         if (e4b->bd_bitmap_page)
1733                 put_page(e4b->bd_bitmap_page);
1734         if (e4b->bd_buddy_page)
1735                 put_page(e4b->bd_buddy_page);
1736 }
1737
1738
1739 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1740 {
1741         int order = 1, max;
1742         void *bb;
1743
1744         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1745         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1746
1747         while (order <= e4b->bd_blkbits + 1) {
1748                 bb = mb_find_buddy(e4b, order, &max);
1749                 if (!mb_test_bit(block >> order, bb)) {
1750                         /* this block is part of buddy of order 'order' */
1751                         return order;
1752                 }
1753                 order++;
1754         }
1755         return 0;
1756 }
1757
1758 static void mb_clear_bits(void *bm, int cur, int len)
1759 {
1760         __u32 *addr;
1761
1762         len = cur + len;
1763         while (cur < len) {
1764                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1765                         /* fast path: clear whole word at once */
1766                         addr = bm + (cur >> 3);
1767                         *addr = 0;
1768                         cur += 32;
1769                         continue;
1770                 }
1771                 mb_clear_bit(cur, bm);
1772                 cur++;
1773         }
1774 }
1775
1776 /* clear bits in given range
1777  * will return first found zero bit if any, -1 otherwise
1778  */
1779 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1780 {
1781         __u32 *addr;
1782         int zero_bit = -1;
1783
1784         len = cur + len;
1785         while (cur < len) {
1786                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1787                         /* fast path: clear whole word at once */
1788                         addr = bm + (cur >> 3);
1789                         if (*addr != (__u32)(-1) && zero_bit == -1)
1790                                 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1791                         *addr = 0;
1792                         cur += 32;
1793                         continue;
1794                 }
1795                 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1796                         zero_bit = cur;
1797                 cur++;
1798         }
1799
1800         return zero_bit;
1801 }
1802
1803 void mb_set_bits(void *bm, int cur, int len)
1804 {
1805         __u32 *addr;
1806
1807         len = cur + len;
1808         while (cur < len) {
1809                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1810                         /* fast path: set whole word at once */
1811                         addr = bm + (cur >> 3);
1812                         *addr = 0xffffffff;
1813                         cur += 32;
1814                         continue;
1815                 }
1816                 mb_set_bit(cur, bm);
1817                 cur++;
1818         }
1819 }
1820
1821 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1822 {
1823         if (mb_test_bit(*bit + side, bitmap)) {
1824                 mb_clear_bit(*bit, bitmap);
1825                 (*bit) -= side;
1826                 return 1;
1827         }
1828         else {
1829                 (*bit) += side;
1830                 mb_set_bit(*bit, bitmap);
1831                 return -1;
1832         }
1833 }
1834
1835 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1836 {
1837         int max;
1838         int order = 1;
1839         void *buddy = mb_find_buddy(e4b, order, &max);
1840
1841         while (buddy) {
1842                 void *buddy2;
1843
1844                 /* Bits in range [first; last] are known to be set since
1845                  * corresponding blocks were allocated. Bits in range
1846                  * (first; last) will stay set because they form buddies on
1847                  * upper layer. We just deal with borders if they don't
1848                  * align with upper layer and then go up.
1849                  * Releasing entire group is all about clearing
1850                  * single bit of highest order buddy.
1851                  */
1852
1853                 /* Example:
1854                  * ---------------------------------
1855                  * |   1   |   1   |   1   |   1   |
1856                  * ---------------------------------
1857                  * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1858                  * ---------------------------------
1859                  *   0   1   2   3   4   5   6   7
1860                  *      \_____________________/
1861                  *
1862                  * Neither [1] nor [6] is aligned to above layer.
1863                  * Left neighbour [0] is free, so mark it busy,
1864                  * decrease bb_counters and extend range to
1865                  * [0; 6]
1866                  * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1867                  * mark [6] free, increase bb_counters and shrink range to
1868                  * [0; 5].
1869                  * Then shift range to [0; 2], go up and do the same.
1870                  */
1871
1872
1873                 if (first & 1)
1874                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1875                 if (!(last & 1))
1876                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1877                 if (first > last)
1878                         break;
1879                 order++;
1880
1881                 buddy2 = mb_find_buddy(e4b, order, &max);
1882                 if (!buddy2) {
1883                         mb_clear_bits(buddy, first, last - first + 1);
1884                         e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1885                         break;
1886                 }
1887                 first >>= 1;
1888                 last >>= 1;
1889                 buddy = buddy2;
1890         }
1891 }
1892
1893 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1894                            int first, int count)
1895 {
1896         int left_is_free = 0;
1897         int right_is_free = 0;
1898         int block;
1899         int last = first + count - 1;
1900         struct super_block *sb = e4b->bd_sb;
1901
1902         if (WARN_ON(count == 0))
1903                 return;
1904         BUG_ON(last >= (sb->s_blocksize << 3));
1905         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1906         /* Don't bother if the block group is corrupt. */
1907         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1908                 return;
1909
1910         mb_check_buddy(e4b);
1911         mb_free_blocks_double(inode, e4b, first, count);
1912
1913         /* access memory sequentially: check left neighbour,
1914          * clear range and then check right neighbour
1915          */
1916         if (first != 0)
1917                 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1918         block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1919         if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1920                 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1921
1922         if (unlikely(block != -1)) {
1923                 struct ext4_sb_info *sbi = EXT4_SB(sb);
1924                 ext4_fsblk_t blocknr;
1925
1926                 /*
1927                  * Fastcommit replay can free already freed blocks which
1928                  * corrupts allocation info. Regenerate it.
1929                  */
1930                 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1931                         mb_regenerate_buddy(e4b);
1932                         goto check;
1933                 }
1934
1935                 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1936                 blocknr += EXT4_C2B(sbi, block);
1937                 ext4_grp_locked_error(sb, e4b->bd_group,
1938                                       inode ? inode->i_ino : 0, blocknr,
1939                                       "freeing already freed block (bit %u); block bitmap corrupt.",
1940                                       block);
1941                 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1942                                 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1943                 return;
1944         }
1945
1946         this_cpu_inc(discard_pa_seq);
1947         e4b->bd_info->bb_free += count;
1948         if (first < e4b->bd_info->bb_first_free)
1949                 e4b->bd_info->bb_first_free = first;
1950
1951         /* let's maintain fragments counter */
1952         if (left_is_free && right_is_free)
1953                 e4b->bd_info->bb_fragments--;
1954         else if (!left_is_free && !right_is_free)
1955                 e4b->bd_info->bb_fragments++;
1956
1957         /* buddy[0] == bd_bitmap is a special case, so handle
1958          * it right away and let mb_buddy_mark_free stay free of
1959          * zero order checks.
1960          * Check if neighbours are to be coaleasced,
1961          * adjust bitmap bb_counters and borders appropriately.
1962          */
1963         if (first & 1) {
1964                 first += !left_is_free;
1965                 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1966         }
1967         if (!(last & 1)) {
1968                 last -= !right_is_free;
1969                 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1970         }
1971
1972         if (first <= last)
1973                 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1974
1975         mb_set_largest_free_order(sb, e4b->bd_info);
1976         mb_update_avg_fragment_size(sb, e4b->bd_info);
1977 check:
1978         mb_check_buddy(e4b);
1979 }
1980
1981 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1982                                 int needed, struct ext4_free_extent *ex)
1983 {
1984         int next = block;
1985         int max, order;
1986         void *buddy;
1987
1988         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1989         BUG_ON(ex == NULL);
1990
1991         buddy = mb_find_buddy(e4b, 0, &max);
1992         BUG_ON(buddy == NULL);
1993         BUG_ON(block >= max);
1994         if (mb_test_bit(block, buddy)) {
1995                 ex->fe_len = 0;
1996                 ex->fe_start = 0;
1997                 ex->fe_group = 0;
1998                 return 0;
1999         }
2000
2001         /* find actual order */
2002         order = mb_find_order_for_block(e4b, block);
2003         block = block >> order;
2004
2005         ex->fe_len = 1 << order;
2006         ex->fe_start = block << order;
2007         ex->fe_group = e4b->bd_group;
2008
2009         /* calc difference from given start */
2010         next = next - ex->fe_start;
2011         ex->fe_len -= next;
2012         ex->fe_start += next;
2013
2014         while (needed > ex->fe_len &&
2015                mb_find_buddy(e4b, order, &max)) {
2016
2017                 if (block + 1 >= max)
2018                         break;
2019
2020                 next = (block + 1) * (1 << order);
2021                 if (mb_test_bit(next, e4b->bd_bitmap))
2022                         break;
2023
2024                 order = mb_find_order_for_block(e4b, next);
2025
2026                 block = next >> order;
2027                 ex->fe_len += 1 << order;
2028         }
2029
2030         if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2031                 /* Should never happen! (but apparently sometimes does?!?) */
2032                 WARN_ON(1);
2033                 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2034                         "corruption or bug in mb_find_extent "
2035                         "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2036                         block, order, needed, ex->fe_group, ex->fe_start,
2037                         ex->fe_len, ex->fe_logical);
2038                 ex->fe_len = 0;
2039                 ex->fe_start = 0;
2040                 ex->fe_group = 0;
2041         }
2042         return ex->fe_len;
2043 }
2044
2045 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2046 {
2047         int ord;
2048         int mlen = 0;
2049         int max = 0;
2050         int cur;
2051         int start = ex->fe_start;
2052         int len = ex->fe_len;
2053         unsigned ret = 0;
2054         int len0 = len;
2055         void *buddy;
2056         bool split = false;
2057
2058         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2059         BUG_ON(e4b->bd_group != ex->fe_group);
2060         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2061         mb_check_buddy(e4b);
2062         mb_mark_used_double(e4b, start, len);
2063
2064         this_cpu_inc(discard_pa_seq);
2065         e4b->bd_info->bb_free -= len;
2066         if (e4b->bd_info->bb_first_free == start)
2067                 e4b->bd_info->bb_first_free += len;
2068
2069         /* let's maintain fragments counter */
2070         if (start != 0)
2071                 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2072         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2073                 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2074         if (mlen && max)
2075                 e4b->bd_info->bb_fragments++;
2076         else if (!mlen && !max)
2077                 e4b->bd_info->bb_fragments--;
2078
2079         /* let's maintain buddy itself */
2080         while (len) {
2081                 if (!split)
2082                         ord = mb_find_order_for_block(e4b, start);
2083
2084                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2085                         /* the whole chunk may be allocated at once! */
2086                         mlen = 1 << ord;
2087                         if (!split)
2088                                 buddy = mb_find_buddy(e4b, ord, &max);
2089                         else
2090                                 split = false;
2091                         BUG_ON((start >> ord) >= max);
2092                         mb_set_bit(start >> ord, buddy);
2093                         e4b->bd_info->bb_counters[ord]--;
2094                         start += mlen;
2095                         len -= mlen;
2096                         BUG_ON(len < 0);
2097                         continue;
2098                 }
2099
2100                 /* store for history */
2101                 if (ret == 0)
2102                         ret = len | (ord << 16);
2103
2104                 /* we have to split large buddy */
2105                 BUG_ON(ord <= 0);
2106                 buddy = mb_find_buddy(e4b, ord, &max);
2107                 mb_set_bit(start >> ord, buddy);
2108                 e4b->bd_info->bb_counters[ord]--;
2109
2110                 ord--;
2111                 cur = (start >> ord) & ~1U;
2112                 buddy = mb_find_buddy(e4b, ord, &max);
2113                 mb_clear_bit(cur, buddy);
2114                 mb_clear_bit(cur + 1, buddy);
2115                 e4b->bd_info->bb_counters[ord]++;
2116                 e4b->bd_info->bb_counters[ord]++;
2117                 split = true;
2118         }
2119         mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2120
2121         mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2122         mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2123         mb_check_buddy(e4b);
2124
2125         return ret;
2126 }
2127
2128 /*
2129  * Must be called under group lock!
2130  */
2131 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2132                                         struct ext4_buddy *e4b)
2133 {
2134         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2135         int ret;
2136
2137         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2138         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2139
2140         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2141         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2142         ret = mb_mark_used(e4b, &ac->ac_b_ex);
2143
2144         /* preallocation can change ac_b_ex, thus we store actually
2145          * allocated blocks for history */
2146         ac->ac_f_ex = ac->ac_b_ex;
2147
2148         ac->ac_status = AC_STATUS_FOUND;
2149         ac->ac_tail = ret & 0xffff;
2150         ac->ac_buddy = ret >> 16;
2151
2152         /*
2153          * take the page reference. We want the page to be pinned
2154          * so that we don't get a ext4_mb_init_cache_call for this
2155          * group until we update the bitmap. That would mean we
2156          * double allocate blocks. The reference is dropped
2157          * in ext4_mb_release_context
2158          */
2159         ac->ac_bitmap_page = e4b->bd_bitmap_page;
2160         get_page(ac->ac_bitmap_page);
2161         ac->ac_buddy_page = e4b->bd_buddy_page;
2162         get_page(ac->ac_buddy_page);
2163         /* store last allocated for subsequent stream allocation */
2164         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2165                 spin_lock(&sbi->s_md_lock);
2166                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2167                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2168                 spin_unlock(&sbi->s_md_lock);
2169         }
2170         /*
2171          * As we've just preallocated more space than
2172          * user requested originally, we store allocated
2173          * space in a special descriptor.
2174          */
2175         if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2176                 ext4_mb_new_preallocation(ac);
2177
2178 }
2179
2180 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2181                                         struct ext4_buddy *e4b,
2182                                         int finish_group)
2183 {
2184         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2185         struct ext4_free_extent *bex = &ac->ac_b_ex;
2186         struct ext4_free_extent *gex = &ac->ac_g_ex;
2187
2188         if (ac->ac_status == AC_STATUS_FOUND)
2189                 return;
2190         /*
2191          * We don't want to scan for a whole year
2192          */
2193         if (ac->ac_found > sbi->s_mb_max_to_scan &&
2194                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2195                 ac->ac_status = AC_STATUS_BREAK;
2196                 return;
2197         }
2198
2199         /*
2200          * Haven't found good chunk so far, let's continue
2201          */
2202         if (bex->fe_len < gex->fe_len)
2203                 return;
2204
2205         if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2206                 ext4_mb_use_best_found(ac, e4b);
2207 }
2208
2209 /*
2210  * The routine checks whether found extent is good enough. If it is,
2211  * then the extent gets marked used and flag is set to the context
2212  * to stop scanning. Otherwise, the extent is compared with the
2213  * previous found extent and if new one is better, then it's stored
2214  * in the context. Later, the best found extent will be used, if
2215  * mballoc can't find good enough extent.
2216  *
2217  * The algorithm used is roughly as follows:
2218  *
2219  * * If free extent found is exactly as big as goal, then
2220  *   stop the scan and use it immediately
2221  *
2222  * * If free extent found is smaller than goal, then keep retrying
2223  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2224  *   that stop scanning and use whatever we have.
2225  *
2226  * * If free extent found is bigger than goal, then keep retrying
2227  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2228  *   stopping the scan and using the extent.
2229  *
2230  *
2231  * FIXME: real allocation policy is to be designed yet!
2232  */
2233 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2234                                         struct ext4_free_extent *ex,
2235                                         struct ext4_buddy *e4b)
2236 {
2237         struct ext4_free_extent *bex = &ac->ac_b_ex;
2238         struct ext4_free_extent *gex = &ac->ac_g_ex;
2239
2240         BUG_ON(ex->fe_len <= 0);
2241         BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2242         BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2243         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2244
2245         ac->ac_found++;
2246         ac->ac_cX_found[ac->ac_criteria]++;
2247
2248         /*
2249          * The special case - take what you catch first
2250          */
2251         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2252                 *bex = *ex;
2253                 ext4_mb_use_best_found(ac, e4b);
2254                 return;
2255         }
2256
2257         /*
2258          * Let's check whether the chuck is good enough
2259          */
2260         if (ex->fe_len == gex->fe_len) {
2261                 *bex = *ex;
2262                 ext4_mb_use_best_found(ac, e4b);
2263                 return;
2264         }
2265
2266         /*
2267          * If this is first found extent, just store it in the context
2268          */
2269         if (bex->fe_len == 0) {
2270                 *bex = *ex;
2271                 return;
2272         }
2273
2274         /*
2275          * If new found extent is better, store it in the context
2276          */
2277         if (bex->fe_len < gex->fe_len) {
2278                 /* if the request isn't satisfied, any found extent
2279                  * larger than previous best one is better */
2280                 if (ex->fe_len > bex->fe_len)
2281                         *bex = *ex;
2282         } else if (ex->fe_len > gex->fe_len) {
2283                 /* if the request is satisfied, then we try to find
2284                  * an extent that still satisfy the request, but is
2285                  * smaller than previous one */
2286                 if (ex->fe_len < bex->fe_len)
2287                         *bex = *ex;
2288         }
2289
2290         ext4_mb_check_limits(ac, e4b, 0);
2291 }
2292
2293 static noinline_for_stack
2294 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2295                                         struct ext4_buddy *e4b)
2296 {
2297         struct ext4_free_extent ex = ac->ac_b_ex;
2298         ext4_group_t group = ex.fe_group;
2299         int max;
2300         int err;
2301
2302         BUG_ON(ex.fe_len <= 0);
2303         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2304         if (err)
2305                 return;
2306
2307         ext4_lock_group(ac->ac_sb, group);
2308         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2309                 goto out;
2310
2311         max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2312
2313         if (max > 0) {
2314                 ac->ac_b_ex = ex;
2315                 ext4_mb_use_best_found(ac, e4b);
2316         }
2317
2318 out:
2319         ext4_unlock_group(ac->ac_sb, group);
2320         ext4_mb_unload_buddy(e4b);
2321 }
2322
2323 static noinline_for_stack
2324 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2325                                 struct ext4_buddy *e4b)
2326 {
2327         ext4_group_t group = ac->ac_g_ex.fe_group;
2328         int max;
2329         int err;
2330         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2331         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2332         struct ext4_free_extent ex;
2333
2334         if (!grp)
2335                 return -EFSCORRUPTED;
2336         if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2337                 return 0;
2338         if (grp->bb_free == 0)
2339                 return 0;
2340
2341         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2342         if (err)
2343                 return err;
2344
2345         ext4_lock_group(ac->ac_sb, group);
2346         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2347                 goto out;
2348
2349         max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2350                              ac->ac_g_ex.fe_len, &ex);
2351         ex.fe_logical = 0xDEADFA11; /* debug value */
2352
2353         if (max >= ac->ac_g_ex.fe_len &&
2354             ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2355                 ext4_fsblk_t start;
2356
2357                 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2358                 /* use do_div to get remainder (would be 64-bit modulo) */
2359                 if (do_div(start, sbi->s_stripe) == 0) {
2360                         ac->ac_found++;
2361                         ac->ac_b_ex = ex;
2362                         ext4_mb_use_best_found(ac, e4b);
2363                 }
2364         } else if (max >= ac->ac_g_ex.fe_len) {
2365                 BUG_ON(ex.fe_len <= 0);
2366                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2367                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2368                 ac->ac_found++;
2369                 ac->ac_b_ex = ex;
2370                 ext4_mb_use_best_found(ac, e4b);
2371         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2372                 /* Sometimes, caller may want to merge even small
2373                  * number of blocks to an existing extent */
2374                 BUG_ON(ex.fe_len <= 0);
2375                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2376                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2377                 ac->ac_found++;
2378                 ac->ac_b_ex = ex;
2379                 ext4_mb_use_best_found(ac, e4b);
2380         }
2381 out:
2382         ext4_unlock_group(ac->ac_sb, group);
2383         ext4_mb_unload_buddy(e4b);
2384
2385         return 0;
2386 }
2387
2388 /*
2389  * The routine scans buddy structures (not bitmap!) from given order
2390  * to max order and tries to find big enough chunk to satisfy the req
2391  */
2392 static noinline_for_stack
2393 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2394                                         struct ext4_buddy *e4b)
2395 {
2396         struct super_block *sb = ac->ac_sb;
2397         struct ext4_group_info *grp = e4b->bd_info;
2398         void *buddy;
2399         int i;
2400         int k;
2401         int max;
2402
2403         BUG_ON(ac->ac_2order <= 0);
2404         for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2405                 if (grp->bb_counters[i] == 0)
2406                         continue;
2407
2408                 buddy = mb_find_buddy(e4b, i, &max);
2409                 if (WARN_RATELIMIT(buddy == NULL,
2410                          "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2411                         continue;
2412
2413                 k = mb_find_next_zero_bit(buddy, max, 0);
2414                 if (k >= max) {
2415                         ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2416                                 "%d free clusters of order %d. But found 0",
2417                                 grp->bb_counters[i], i);
2418                         ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2419                                          e4b->bd_group,
2420                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2421                         break;
2422                 }
2423                 ac->ac_found++;
2424                 ac->ac_cX_found[ac->ac_criteria]++;
2425
2426                 ac->ac_b_ex.fe_len = 1 << i;
2427                 ac->ac_b_ex.fe_start = k << i;
2428                 ac->ac_b_ex.fe_group = e4b->bd_group;
2429
2430                 ext4_mb_use_best_found(ac, e4b);
2431
2432                 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2433
2434                 if (EXT4_SB(sb)->s_mb_stats)
2435                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2436
2437                 break;
2438         }
2439 }
2440
2441 /*
2442  * The routine scans the group and measures all found extents.
2443  * In order to optimize scanning, caller must pass number of
2444  * free blocks in the group, so the routine can know upper limit.
2445  */
2446 static noinline_for_stack
2447 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2448                                         struct ext4_buddy *e4b)
2449 {
2450         struct super_block *sb = ac->ac_sb;
2451         void *bitmap = e4b->bd_bitmap;
2452         struct ext4_free_extent ex;
2453         int i, j, freelen;
2454         int free;
2455
2456         free = e4b->bd_info->bb_free;
2457         if (WARN_ON(free <= 0))
2458                 return;
2459
2460         i = e4b->bd_info->bb_first_free;
2461
2462         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2463                 i = mb_find_next_zero_bit(bitmap,
2464                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2465                 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2466                         /*
2467                          * IF we have corrupt bitmap, we won't find any
2468                          * free blocks even though group info says we
2469                          * have free blocks
2470                          */
2471                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2472                                         "%d free clusters as per "
2473                                         "group info. But bitmap says 0",
2474                                         free);
2475                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2476                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2477                         break;
2478                 }
2479
2480                 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2481                         /*
2482                          * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2483                          * sure that this group will have a large enough
2484                          * continuous free extent, so skip over the smaller free
2485                          * extents
2486                          */
2487                         j = mb_find_next_bit(bitmap,
2488                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2489                         freelen = j - i;
2490
2491                         if (freelen < ac->ac_g_ex.fe_len) {
2492                                 i = j;
2493                                 free -= freelen;
2494                                 continue;
2495                         }
2496                 }
2497
2498                 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2499                 if (WARN_ON(ex.fe_len <= 0))
2500                         break;
2501                 if (free < ex.fe_len) {
2502                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2503                                         "%d free clusters as per "
2504                                         "group info. But got %d blocks",
2505                                         free, ex.fe_len);
2506                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2507                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2508                         /*
2509                          * The number of free blocks differs. This mostly
2510                          * indicate that the bitmap is corrupt. So exit
2511                          * without claiming the space.
2512                          */
2513                         break;
2514                 }
2515                 ex.fe_logical = 0xDEADC0DE; /* debug value */
2516                 ext4_mb_measure_extent(ac, &ex, e4b);
2517
2518                 i += ex.fe_len;
2519                 free -= ex.fe_len;
2520         }
2521
2522         ext4_mb_check_limits(ac, e4b, 1);
2523 }
2524
2525 /*
2526  * This is a special case for storages like raid5
2527  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2528  */
2529 static noinline_for_stack
2530 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2531                                  struct ext4_buddy *e4b)
2532 {
2533         struct super_block *sb = ac->ac_sb;
2534         struct ext4_sb_info *sbi = EXT4_SB(sb);
2535         void *bitmap = e4b->bd_bitmap;
2536         struct ext4_free_extent ex;
2537         ext4_fsblk_t first_group_block;
2538         ext4_fsblk_t a;
2539         ext4_grpblk_t i, stripe;
2540         int max;
2541
2542         BUG_ON(sbi->s_stripe == 0);
2543
2544         /* find first stripe-aligned block in group */
2545         first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2546
2547         a = first_group_block + sbi->s_stripe - 1;
2548         do_div(a, sbi->s_stripe);
2549         i = (a * sbi->s_stripe) - first_group_block;
2550
2551         stripe = EXT4_B2C(sbi, sbi->s_stripe);
2552         i = EXT4_B2C(sbi, i);
2553         while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2554                 if (!mb_test_bit(i, bitmap)) {
2555                         max = mb_find_extent(e4b, i, stripe, &ex);
2556                         if (max >= stripe) {
2557                                 ac->ac_found++;
2558                                 ac->ac_cX_found[ac->ac_criteria]++;
2559                                 ex.fe_logical = 0xDEADF00D; /* debug value */
2560                                 ac->ac_b_ex = ex;
2561                                 ext4_mb_use_best_found(ac, e4b);
2562                                 break;
2563                         }
2564                 }
2565                 i += stripe;
2566         }
2567 }
2568
2569 /*
2570  * This is also called BEFORE we load the buddy bitmap.
2571  * Returns either 1 or 0 indicating that the group is either suitable
2572  * for the allocation or not.
2573  */
2574 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2575                                 ext4_group_t group, enum criteria cr)
2576 {
2577         ext4_grpblk_t free, fragments;
2578         int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2579         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2580
2581         BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2582
2583         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2584                 return false;
2585
2586         free = grp->bb_free;
2587         if (free == 0)
2588                 return false;
2589
2590         fragments = grp->bb_fragments;
2591         if (fragments == 0)
2592                 return false;
2593
2594         switch (cr) {
2595         case CR_POWER2_ALIGNED:
2596                 BUG_ON(ac->ac_2order == 0);
2597
2598                 /* Avoid using the first bg of a flexgroup for data files */
2599                 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2600                     (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2601                     ((group % flex_size) == 0))
2602                         return false;
2603
2604                 if (free < ac->ac_g_ex.fe_len)
2605                         return false;
2606
2607                 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2608                         return true;
2609
2610                 if (grp->bb_largest_free_order < ac->ac_2order)
2611                         return false;
2612
2613                 return true;
2614         case CR_GOAL_LEN_FAST:
2615         case CR_BEST_AVAIL_LEN:
2616                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2617                         return true;
2618                 break;
2619         case CR_GOAL_LEN_SLOW:
2620                 if (free >= ac->ac_g_ex.fe_len)
2621                         return true;
2622                 break;
2623         case CR_ANY_FREE:
2624                 return true;
2625         default:
2626                 BUG();
2627         }
2628
2629         return false;
2630 }
2631
2632 /*
2633  * This could return negative error code if something goes wrong
2634  * during ext4_mb_init_group(). This should not be called with
2635  * ext4_lock_group() held.
2636  *
2637  * Note: because we are conditionally operating with the group lock in
2638  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2639  * function using __acquire and __release.  This means we need to be
2640  * super careful before messing with the error path handling via "goto
2641  * out"!
2642  */
2643 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2644                                      ext4_group_t group, enum criteria cr)
2645 {
2646         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2647         struct super_block *sb = ac->ac_sb;
2648         struct ext4_sb_info *sbi = EXT4_SB(sb);
2649         bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2650         ext4_grpblk_t free;
2651         int ret = 0;
2652
2653         if (!grp)
2654                 return -EFSCORRUPTED;
2655         if (sbi->s_mb_stats)
2656                 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2657         if (should_lock) {
2658                 ext4_lock_group(sb, group);
2659                 __release(ext4_group_lock_ptr(sb, group));
2660         }
2661         free = grp->bb_free;
2662         if (free == 0)
2663                 goto out;
2664         /*
2665          * In all criterias except CR_ANY_FREE we try to avoid groups that
2666          * can't possibly satisfy the full goal request due to insufficient
2667          * free blocks.
2668          */
2669         if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2670                 goto out;
2671         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2672                 goto out;
2673         if (should_lock) {
2674                 __acquire(ext4_group_lock_ptr(sb, group));
2675                 ext4_unlock_group(sb, group);
2676         }
2677
2678         /* We only do this if the grp has never been initialized */
2679         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2680                 struct ext4_group_desc *gdp =
2681                         ext4_get_group_desc(sb, group, NULL);
2682                 int ret;
2683
2684                 /*
2685                  * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2686                  * search to find large good chunks almost for free. If buddy
2687                  * data is not ready, then this optimization makes no sense. But
2688                  * we never skip the first block group in a flex_bg, since this
2689                  * gets used for metadata block allocation, and we want to make
2690                  * sure we locate metadata blocks in the first block group in
2691                  * the flex_bg if possible.
2692                  */
2693                 if (!ext4_mb_cr_expensive(cr) &&
2694                     (!sbi->s_log_groups_per_flex ||
2695                      ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2696                     !(ext4_has_group_desc_csum(sb) &&
2697                       (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2698                         return 0;
2699                 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2700                 if (ret)
2701                         return ret;
2702         }
2703
2704         if (should_lock) {
2705                 ext4_lock_group(sb, group);
2706                 __release(ext4_group_lock_ptr(sb, group));
2707         }
2708         ret = ext4_mb_good_group(ac, group, cr);
2709 out:
2710         if (should_lock) {
2711                 __acquire(ext4_group_lock_ptr(sb, group));
2712                 ext4_unlock_group(sb, group);
2713         }
2714         return ret;
2715 }
2716
2717 /*
2718  * Start prefetching @nr block bitmaps starting at @group.
2719  * Return the next group which needs to be prefetched.
2720  */
2721 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2722                               unsigned int nr, int *cnt)
2723 {
2724         ext4_group_t ngroups = ext4_get_groups_count(sb);
2725         struct buffer_head *bh;
2726         struct blk_plug plug;
2727
2728         blk_start_plug(&plug);
2729         while (nr-- > 0) {
2730                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2731                                                                   NULL);
2732                 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2733
2734                 /*
2735                  * Prefetch block groups with free blocks; but don't
2736                  * bother if it is marked uninitialized on disk, since
2737                  * it won't require I/O to read.  Also only try to
2738                  * prefetch once, so we avoid getblk() call, which can
2739                  * be expensive.
2740                  */
2741                 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2742                     EXT4_MB_GRP_NEED_INIT(grp) &&
2743                     ext4_free_group_clusters(sb, gdp) > 0 ) {
2744                         bh = ext4_read_block_bitmap_nowait(sb, group, true);
2745                         if (bh && !IS_ERR(bh)) {
2746                                 if (!buffer_uptodate(bh) && cnt)
2747                                         (*cnt)++;
2748                                 brelse(bh);
2749                         }
2750                 }
2751                 if (++group >= ngroups)
2752                         group = 0;
2753         }
2754         blk_finish_plug(&plug);
2755         return group;
2756 }
2757
2758 /*
2759  * Prefetching reads the block bitmap into the buffer cache; but we
2760  * need to make sure that the buddy bitmap in the page cache has been
2761  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2762  * is not yet completed, or indeed if it was not initiated by
2763  * ext4_mb_prefetch did not start the I/O.
2764  *
2765  * TODO: We should actually kick off the buddy bitmap setup in a work
2766  * queue when the buffer I/O is completed, so that we don't block
2767  * waiting for the block allocation bitmap read to finish when
2768  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2769  */
2770 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2771                            unsigned int nr)
2772 {
2773         struct ext4_group_desc *gdp;
2774         struct ext4_group_info *grp;
2775
2776         while (nr-- > 0) {
2777                 if (!group)
2778                         group = ext4_get_groups_count(sb);
2779                 group--;
2780                 gdp = ext4_get_group_desc(sb, group, NULL);
2781                 grp = ext4_get_group_info(sb, group);
2782
2783                 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2784                     ext4_free_group_clusters(sb, gdp) > 0) {
2785                         if (ext4_mb_init_group(sb, group, GFP_NOFS))
2786                                 break;
2787                 }
2788         }
2789 }
2790
2791 static noinline_for_stack int
2792 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2793 {
2794         ext4_group_t prefetch_grp = 0, ngroups, group, i;
2795         enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2796         int err = 0, first_err = 0;
2797         unsigned int nr = 0, prefetch_ios = 0;
2798         struct ext4_sb_info *sbi;
2799         struct super_block *sb;
2800         struct ext4_buddy e4b;
2801         int lost;
2802
2803         sb = ac->ac_sb;
2804         sbi = EXT4_SB(sb);
2805         ngroups = ext4_get_groups_count(sb);
2806         /* non-extent files are limited to low blocks/groups */
2807         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2808                 ngroups = sbi->s_blockfile_groups;
2809
2810         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2811
2812         /* first, try the goal */
2813         err = ext4_mb_find_by_goal(ac, &e4b);
2814         if (err || ac->ac_status == AC_STATUS_FOUND)
2815                 goto out;
2816
2817         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2818                 goto out;
2819
2820         /*
2821          * ac->ac_2order is set only if the fe_len is a power of 2
2822          * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2823          * so that we try exact allocation using buddy.
2824          */
2825         i = fls(ac->ac_g_ex.fe_len);
2826         ac->ac_2order = 0;
2827         /*
2828          * We search using buddy data only if the order of the request
2829          * is greater than equal to the sbi_s_mb_order2_reqs
2830          * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2831          * We also support searching for power-of-two requests only for
2832          * requests upto maximum buddy size we have constructed.
2833          */
2834         if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2835                 if (is_power_of_2(ac->ac_g_ex.fe_len))
2836                         ac->ac_2order = array_index_nospec(i - 1,
2837                                                            MB_NUM_ORDERS(sb));
2838         }
2839
2840         /* if stream allocation is enabled, use global goal */
2841         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2842                 /* TBD: may be hot point */
2843                 spin_lock(&sbi->s_md_lock);
2844                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2845                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2846                 spin_unlock(&sbi->s_md_lock);
2847         }
2848
2849         /*
2850          * Let's just scan groups to find more-less suitable blocks We
2851          * start with CR_GOAL_LEN_FAST, unless it is power of 2
2852          * aligned, in which case let's do that faster approach first.
2853          */
2854         if (ac->ac_2order)
2855                 cr = CR_POWER2_ALIGNED;
2856 repeat:
2857         for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2858                 ac->ac_criteria = cr;
2859                 /*
2860                  * searching for the right group start
2861                  * from the goal value specified
2862                  */
2863                 group = ac->ac_g_ex.fe_group;
2864                 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2865                 prefetch_grp = group;
2866
2867                 for (i = 0, new_cr = cr; i < ngroups; i++,
2868                      ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2869                         int ret = 0;
2870
2871                         cond_resched();
2872                         if (new_cr != cr) {
2873                                 cr = new_cr;
2874                                 goto repeat;
2875                         }
2876
2877                         /*
2878                          * Batch reads of the block allocation bitmaps
2879                          * to get multiple READs in flight; limit
2880                          * prefetching at inexpensive CR, otherwise mballoc
2881                          * can spend a lot of time loading imperfect groups
2882                          */
2883                         if ((prefetch_grp == group) &&
2884                             (ext4_mb_cr_expensive(cr) ||
2885                              prefetch_ios < sbi->s_mb_prefetch_limit)) {
2886                                 nr = sbi->s_mb_prefetch;
2887                                 if (ext4_has_feature_flex_bg(sb)) {
2888                                         nr = 1 << sbi->s_log_groups_per_flex;
2889                                         nr -= group & (nr - 1);
2890                                         nr = min(nr, sbi->s_mb_prefetch);
2891                                 }
2892                                 prefetch_grp = ext4_mb_prefetch(sb, group,
2893                                                         nr, &prefetch_ios);
2894                         }
2895
2896                         /* This now checks without needing the buddy page */
2897                         ret = ext4_mb_good_group_nolock(ac, group, cr);
2898                         if (ret <= 0) {
2899                                 if (!first_err)
2900                                         first_err = ret;
2901                                 continue;
2902                         }
2903
2904                         err = ext4_mb_load_buddy(sb, group, &e4b);
2905                         if (err)
2906                                 goto out;
2907
2908                         ext4_lock_group(sb, group);
2909
2910                         /*
2911                          * We need to check again after locking the
2912                          * block group
2913                          */
2914                         ret = ext4_mb_good_group(ac, group, cr);
2915                         if (ret == 0) {
2916                                 ext4_unlock_group(sb, group);
2917                                 ext4_mb_unload_buddy(&e4b);
2918                                 continue;
2919                         }
2920
2921                         ac->ac_groups_scanned++;
2922                         if (cr == CR_POWER2_ALIGNED)
2923                                 ext4_mb_simple_scan_group(ac, &e4b);
2924                         else if ((cr == CR_GOAL_LEN_FAST ||
2925                                  cr == CR_BEST_AVAIL_LEN) &&
2926                                  sbi->s_stripe &&
2927                                  !(ac->ac_g_ex.fe_len %
2928                                  EXT4_B2C(sbi, sbi->s_stripe)))
2929                                 ext4_mb_scan_aligned(ac, &e4b);
2930                         else
2931                                 ext4_mb_complex_scan_group(ac, &e4b);
2932
2933                         ext4_unlock_group(sb, group);
2934                         ext4_mb_unload_buddy(&e4b);
2935
2936                         if (ac->ac_status != AC_STATUS_CONTINUE)
2937                                 break;
2938                 }
2939                 /* Processed all groups and haven't found blocks */
2940                 if (sbi->s_mb_stats && i == ngroups)
2941                         atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2942
2943                 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2944                         /* Reset goal length to original goal length before
2945                          * falling into CR_GOAL_LEN_SLOW */
2946                         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2947         }
2948
2949         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2950             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2951                 /*
2952                  * We've been searching too long. Let's try to allocate
2953                  * the best chunk we've found so far
2954                  */
2955                 ext4_mb_try_best_found(ac, &e4b);
2956                 if (ac->ac_status != AC_STATUS_FOUND) {
2957                         /*
2958                          * Someone more lucky has already allocated it.
2959                          * The only thing we can do is just take first
2960                          * found block(s)
2961                          */
2962                         lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2963                         mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2964                                  ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2965                                  ac->ac_b_ex.fe_len, lost);
2966
2967                         ac->ac_b_ex.fe_group = 0;
2968                         ac->ac_b_ex.fe_start = 0;
2969                         ac->ac_b_ex.fe_len = 0;
2970                         ac->ac_status = AC_STATUS_CONTINUE;
2971                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2972                         cr = CR_ANY_FREE;
2973                         goto repeat;
2974                 }
2975         }
2976
2977         if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2978                 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2979 out:
2980         if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2981                 err = first_err;
2982
2983         mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2984                  ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2985                  ac->ac_flags, cr, err);
2986
2987         if (nr)
2988                 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2989
2990         return err;
2991 }
2992
2993 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2994 {
2995         struct super_block *sb = pde_data(file_inode(seq->file));
2996         ext4_group_t group;
2997
2998         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2999                 return NULL;
3000         group = *pos + 1;
3001         return (void *) ((unsigned long) group);
3002 }
3003
3004 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3005 {
3006         struct super_block *sb = pde_data(file_inode(seq->file));
3007         ext4_group_t group;
3008
3009         ++*pos;
3010         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3011                 return NULL;
3012         group = *pos + 1;
3013         return (void *) ((unsigned long) group);
3014 }
3015
3016 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3017 {
3018         struct super_block *sb = pde_data(file_inode(seq->file));
3019         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3020         int i;
3021         int err, buddy_loaded = 0;
3022         struct ext4_buddy e4b;
3023         struct ext4_group_info *grinfo;
3024         unsigned char blocksize_bits = min_t(unsigned char,
3025                                              sb->s_blocksize_bits,
3026                                              EXT4_MAX_BLOCK_LOG_SIZE);
3027         struct sg {
3028                 struct ext4_group_info info;
3029                 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3030         } sg;
3031
3032         group--;
3033         if (group == 0)
3034                 seq_puts(seq, "#group: free  frags first ["
3035                               " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3036                               " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3037
3038         i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3039                 sizeof(struct ext4_group_info);
3040
3041         grinfo = ext4_get_group_info(sb, group);
3042         if (!grinfo)
3043                 return 0;
3044         /* Load the group info in memory only if not already loaded. */
3045         if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3046                 err = ext4_mb_load_buddy(sb, group, &e4b);
3047                 if (err) {
3048                         seq_printf(seq, "#%-5u: I/O error\n", group);
3049                         return 0;
3050                 }
3051                 buddy_loaded = 1;
3052         }
3053
3054         memcpy(&sg, grinfo, i);
3055
3056         if (buddy_loaded)
3057                 ext4_mb_unload_buddy(&e4b);
3058
3059         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3060                         sg.info.bb_fragments, sg.info.bb_first_free);
3061         for (i = 0; i <= 13; i++)
3062                 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3063                                 sg.info.bb_counters[i] : 0);
3064         seq_puts(seq, " ]\n");
3065
3066         return 0;
3067 }
3068
3069 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3070 {
3071 }
3072
3073 const struct seq_operations ext4_mb_seq_groups_ops = {
3074         .start  = ext4_mb_seq_groups_start,
3075         .next   = ext4_mb_seq_groups_next,
3076         .stop   = ext4_mb_seq_groups_stop,
3077         .show   = ext4_mb_seq_groups_show,
3078 };
3079
3080 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3081 {
3082         struct super_block *sb = seq->private;
3083         struct ext4_sb_info *sbi = EXT4_SB(sb);
3084
3085         seq_puts(seq, "mballoc:\n");
3086         if (!sbi->s_mb_stats) {
3087                 seq_puts(seq, "\tmb stats collection turned off.\n");
3088                 seq_puts(
3089                         seq,
3090                         "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3091                 return 0;
3092         }
3093         seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3094         seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3095
3096         seq_printf(seq, "\tgroups_scanned: %u\n",
3097                    atomic_read(&sbi->s_bal_groups_scanned));
3098
3099         /* CR_POWER2_ALIGNED stats */
3100         seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3101         seq_printf(seq, "\t\thits: %llu\n",
3102                    atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3103         seq_printf(
3104                 seq, "\t\tgroups_considered: %llu\n",
3105                 atomic64_read(
3106                         &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3107         seq_printf(seq, "\t\textents_scanned: %u\n",
3108                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3109         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3110                    atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3111         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3112                    atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3113
3114         /* CR_GOAL_LEN_FAST stats */
3115         seq_puts(seq, "\tcr_goal_fast_stats:\n");
3116         seq_printf(seq, "\t\thits: %llu\n",
3117                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3118         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3119                    atomic64_read(
3120                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3121         seq_printf(seq, "\t\textents_scanned: %u\n",
3122                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3123         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3124                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3125         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3126                    atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3127
3128         /* CR_BEST_AVAIL_LEN stats */
3129         seq_puts(seq, "\tcr_best_avail_stats:\n");
3130         seq_printf(seq, "\t\thits: %llu\n",
3131                    atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3132         seq_printf(
3133                 seq, "\t\tgroups_considered: %llu\n",
3134                 atomic64_read(
3135                         &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3136         seq_printf(seq, "\t\textents_scanned: %u\n",
3137                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3138         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3139                    atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3140         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3141                    atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3142
3143         /* CR_GOAL_LEN_SLOW stats */
3144         seq_puts(seq, "\tcr_goal_slow_stats:\n");
3145         seq_printf(seq, "\t\thits: %llu\n",
3146                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3147         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3148                    atomic64_read(
3149                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3150         seq_printf(seq, "\t\textents_scanned: %u\n",
3151                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3152         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3153                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3154
3155         /* CR_ANY_FREE stats */
3156         seq_puts(seq, "\tcr_any_free_stats:\n");
3157         seq_printf(seq, "\t\thits: %llu\n",
3158                    atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3159         seq_printf(
3160                 seq, "\t\tgroups_considered: %llu\n",
3161                 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3162         seq_printf(seq, "\t\textents_scanned: %u\n",
3163                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3164         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3165                    atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3166
3167         /* Aggregates */
3168         seq_printf(seq, "\textents_scanned: %u\n",
3169                    atomic_read(&sbi->s_bal_ex_scanned));
3170         seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3171         seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3172                    atomic_read(&sbi->s_bal_len_goals));
3173         seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3174         seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3175         seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3176         seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3177                    atomic_read(&sbi->s_mb_buddies_generated),
3178                    ext4_get_groups_count(sb));
3179         seq_printf(seq, "\tbuddies_time_used: %llu\n",
3180                    atomic64_read(&sbi->s_mb_generation_time));
3181         seq_printf(seq, "\tpreallocated: %u\n",
3182                    atomic_read(&sbi->s_mb_preallocated));
3183         seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3184         return 0;
3185 }
3186
3187 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3188 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3189 {
3190         struct super_block *sb = pde_data(file_inode(seq->file));
3191         unsigned long position;
3192
3193         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3194                 return NULL;
3195         position = *pos + 1;
3196         return (void *) ((unsigned long) position);
3197 }
3198
3199 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3200 {
3201         struct super_block *sb = pde_data(file_inode(seq->file));
3202         unsigned long position;
3203
3204         ++*pos;
3205         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3206                 return NULL;
3207         position = *pos + 1;
3208         return (void *) ((unsigned long) position);
3209 }
3210
3211 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3212 {
3213         struct super_block *sb = pde_data(file_inode(seq->file));
3214         struct ext4_sb_info *sbi = EXT4_SB(sb);
3215         unsigned long position = ((unsigned long) v);
3216         struct ext4_group_info *grp;
3217         unsigned int count;
3218
3219         position--;
3220         if (position >= MB_NUM_ORDERS(sb)) {
3221                 position -= MB_NUM_ORDERS(sb);
3222                 if (position == 0)
3223                         seq_puts(seq, "avg_fragment_size_lists:\n");
3224
3225                 count = 0;
3226                 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3227                 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3228                                     bb_avg_fragment_size_node)
3229                         count++;
3230                 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3231                 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3232                                         (unsigned int)position, count);
3233                 return 0;
3234         }
3235
3236         if (position == 0) {
3237                 seq_printf(seq, "optimize_scan: %d\n",
3238                            test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3239                 seq_puts(seq, "max_free_order_lists:\n");
3240         }
3241         count = 0;
3242         read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3243         list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3244                             bb_largest_free_order_node)
3245                 count++;
3246         read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3247         seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3248                    (unsigned int)position, count);
3249
3250         return 0;
3251 }
3252
3253 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3254 {
3255 }
3256
3257 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3258         .start  = ext4_mb_seq_structs_summary_start,
3259         .next   = ext4_mb_seq_structs_summary_next,
3260         .stop   = ext4_mb_seq_structs_summary_stop,
3261         .show   = ext4_mb_seq_structs_summary_show,
3262 };
3263
3264 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3265 {
3266         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3267         struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3268
3269         BUG_ON(!cachep);
3270         return cachep;
3271 }
3272
3273 /*
3274  * Allocate the top-level s_group_info array for the specified number
3275  * of groups
3276  */
3277 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3278 {
3279         struct ext4_sb_info *sbi = EXT4_SB(sb);
3280         unsigned size;
3281         struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3282
3283         size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3284                 EXT4_DESC_PER_BLOCK_BITS(sb);
3285         if (size <= sbi->s_group_info_size)
3286                 return 0;
3287
3288         size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3289         new_groupinfo = kvzalloc(size, GFP_KERNEL);
3290         if (!new_groupinfo) {
3291                 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3292                 return -ENOMEM;
3293         }
3294         rcu_read_lock();
3295         old_groupinfo = rcu_dereference(sbi->s_group_info);
3296         if (old_groupinfo)
3297                 memcpy(new_groupinfo, old_groupinfo,
3298                        sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3299         rcu_read_unlock();
3300         rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3301         sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3302         if (old_groupinfo)
3303                 ext4_kvfree_array_rcu(old_groupinfo);
3304         ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3305                    sbi->s_group_info_size);
3306         return 0;
3307 }
3308
3309 /* Create and initialize ext4_group_info data for the given group. */
3310 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3311                           struct ext4_group_desc *desc)
3312 {
3313         int i;
3314         int metalen = 0;
3315         int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3316         struct ext4_sb_info *sbi = EXT4_SB(sb);
3317         struct ext4_group_info **meta_group_info;
3318         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3319
3320         /*
3321          * First check if this group is the first of a reserved block.
3322          * If it's true, we have to allocate a new table of pointers
3323          * to ext4_group_info structures
3324          */
3325         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3326                 metalen = sizeof(*meta_group_info) <<
3327                         EXT4_DESC_PER_BLOCK_BITS(sb);
3328                 meta_group_info = kmalloc(metalen, GFP_NOFS);
3329                 if (meta_group_info == NULL) {
3330                         ext4_msg(sb, KERN_ERR, "can't allocate mem "
3331                                  "for a buddy group");
3332                         return -ENOMEM;
3333                 }
3334                 rcu_read_lock();
3335                 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3336                 rcu_read_unlock();
3337         }
3338
3339         meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3340         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3341
3342         meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3343         if (meta_group_info[i] == NULL) {
3344                 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3345                 goto exit_group_info;
3346         }
3347         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3348                 &(meta_group_info[i]->bb_state));
3349
3350         /*
3351          * initialize bb_free to be able to skip
3352          * empty groups without initialization
3353          */
3354         if (ext4_has_group_desc_csum(sb) &&
3355             (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3356                 meta_group_info[i]->bb_free =
3357                         ext4_free_clusters_after_init(sb, group, desc);
3358         } else {
3359                 meta_group_info[i]->bb_free =
3360                         ext4_free_group_clusters(sb, desc);
3361         }
3362
3363         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3364         init_rwsem(&meta_group_info[i]->alloc_sem);
3365         meta_group_info[i]->bb_free_root = RB_ROOT;
3366         INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3367         INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3368         meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3369         meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3370         meta_group_info[i]->bb_group = group;
3371
3372         mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3373         return 0;
3374
3375 exit_group_info:
3376         /* If a meta_group_info table has been allocated, release it now */
3377         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3378                 struct ext4_group_info ***group_info;
3379
3380                 rcu_read_lock();
3381                 group_info = rcu_dereference(sbi->s_group_info);
3382                 kfree(group_info[idx]);
3383                 group_info[idx] = NULL;
3384                 rcu_read_unlock();
3385         }
3386         return -ENOMEM;
3387 } /* ext4_mb_add_groupinfo */
3388
3389 static int ext4_mb_init_backend(struct super_block *sb)
3390 {
3391         ext4_group_t ngroups = ext4_get_groups_count(sb);
3392         ext4_group_t i;
3393         struct ext4_sb_info *sbi = EXT4_SB(sb);
3394         int err;
3395         struct ext4_group_desc *desc;
3396         struct ext4_group_info ***group_info;
3397         struct kmem_cache *cachep;
3398
3399         err = ext4_mb_alloc_groupinfo(sb, ngroups);
3400         if (err)
3401                 return err;
3402
3403         sbi->s_buddy_cache = new_inode(sb);
3404         if (sbi->s_buddy_cache == NULL) {
3405                 ext4_msg(sb, KERN_ERR, "can't get new inode");
3406                 goto err_freesgi;
3407         }
3408         /* To avoid potentially colliding with an valid on-disk inode number,
3409          * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3410          * not in the inode hash, so it should never be found by iget(), but
3411          * this will avoid confusion if it ever shows up during debugging. */
3412         sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3413         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3414         for (i = 0; i < ngroups; i++) {
3415                 cond_resched();
3416                 desc = ext4_get_group_desc(sb, i, NULL);
3417                 if (desc == NULL) {
3418                         ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3419                         goto err_freebuddy;
3420                 }
3421                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3422                         goto err_freebuddy;
3423         }
3424
3425         if (ext4_has_feature_flex_bg(sb)) {
3426                 /* a single flex group is supposed to be read by a single IO.
3427                  * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3428                  * unsigned integer, so the maximum shift is 32.
3429                  */
3430                 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3431                         ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3432                         goto err_freebuddy;
3433                 }
3434                 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3435                         BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3436                 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3437         } else {
3438                 sbi->s_mb_prefetch = 32;
3439         }
3440         if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3441                 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3442         /* now many real IOs to prefetch within a single allocation at cr=0
3443          * given cr=0 is an CPU-related optimization we shouldn't try to
3444          * load too many groups, at some point we should start to use what
3445          * we've got in memory.
3446          * with an average random access time 5ms, it'd take a second to get
3447          * 200 groups (* N with flex_bg), so let's make this limit 4
3448          */
3449         sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3450         if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3451                 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3452
3453         return 0;
3454
3455 err_freebuddy:
3456         cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3457         while (i-- > 0) {
3458                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3459
3460                 if (grp)
3461                         kmem_cache_free(cachep, grp);
3462         }
3463         i = sbi->s_group_info_size;
3464         rcu_read_lock();
3465         group_info = rcu_dereference(sbi->s_group_info);
3466         while (i-- > 0)
3467                 kfree(group_info[i]);
3468         rcu_read_unlock();
3469         iput(sbi->s_buddy_cache);
3470 err_freesgi:
3471         rcu_read_lock();
3472         kvfree(rcu_dereference(sbi->s_group_info));
3473         rcu_read_unlock();
3474         return -ENOMEM;
3475 }
3476
3477 static void ext4_groupinfo_destroy_slabs(void)
3478 {
3479         int i;
3480
3481         for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3482                 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3483                 ext4_groupinfo_caches[i] = NULL;
3484         }
3485 }
3486
3487 static int ext4_groupinfo_create_slab(size_t size)
3488 {
3489         static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3490         int slab_size;
3491         int blocksize_bits = order_base_2(size);
3492         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3493         struct kmem_cache *cachep;
3494
3495         if (cache_index >= NR_GRPINFO_CACHES)
3496                 return -EINVAL;
3497
3498         if (unlikely(cache_index < 0))
3499                 cache_index = 0;
3500
3501         mutex_lock(&ext4_grpinfo_slab_create_mutex);
3502         if (ext4_groupinfo_caches[cache_index]) {
3503                 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3504                 return 0;       /* Already created */
3505         }
3506
3507         slab_size = offsetof(struct ext4_group_info,
3508                                 bb_counters[blocksize_bits + 2]);
3509
3510         cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3511                                         slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3512                                         NULL);
3513
3514         ext4_groupinfo_caches[cache_index] = cachep;
3515
3516         mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3517         if (!cachep) {
3518                 printk(KERN_EMERG
3519                        "EXT4-fs: no memory for groupinfo slab cache\n");
3520                 return -ENOMEM;
3521         }
3522
3523         return 0;
3524 }
3525
3526 static void ext4_discard_work(struct work_struct *work)
3527 {
3528         struct ext4_sb_info *sbi = container_of(work,
3529                         struct ext4_sb_info, s_discard_work);
3530         struct super_block *sb = sbi->s_sb;
3531         struct ext4_free_data *fd, *nfd;
3532         struct ext4_buddy e4b;
3533         LIST_HEAD(discard_list);
3534         ext4_group_t grp, load_grp;
3535         int err = 0;
3536
3537         spin_lock(&sbi->s_md_lock);
3538         list_splice_init(&sbi->s_discard_list, &discard_list);
3539         spin_unlock(&sbi->s_md_lock);
3540
3541         load_grp = UINT_MAX;
3542         list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3543                 /*
3544                  * If filesystem is umounting or no memory or suffering
3545                  * from no space, give up the discard
3546                  */
3547                 if ((sb->s_flags & SB_ACTIVE) && !err &&
3548                     !atomic_read(&sbi->s_retry_alloc_pending)) {
3549                         grp = fd->efd_group;
3550                         if (grp != load_grp) {
3551                                 if (load_grp != UINT_MAX)
3552                                         ext4_mb_unload_buddy(&e4b);
3553
3554                                 err = ext4_mb_load_buddy(sb, grp, &e4b);
3555                                 if (err) {
3556                                         kmem_cache_free(ext4_free_data_cachep, fd);
3557                                         load_grp = UINT_MAX;
3558                                         continue;
3559                                 } else {
3560                                         load_grp = grp;
3561                                 }
3562                         }
3563
3564                         ext4_lock_group(sb, grp);
3565                         ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3566                                                 fd->efd_start_cluster + fd->efd_count - 1, 1);
3567                         ext4_unlock_group(sb, grp);
3568                 }
3569                 kmem_cache_free(ext4_free_data_cachep, fd);
3570         }
3571
3572         if (load_grp != UINT_MAX)
3573                 ext4_mb_unload_buddy(&e4b);
3574 }
3575
3576 int ext4_mb_init(struct super_block *sb)
3577 {
3578         struct ext4_sb_info *sbi = EXT4_SB(sb);
3579         unsigned i, j;
3580         unsigned offset, offset_incr;
3581         unsigned max;
3582         int ret;
3583
3584         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3585
3586         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3587         if (sbi->s_mb_offsets == NULL) {
3588                 ret = -ENOMEM;
3589                 goto out;
3590         }
3591
3592         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3593         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3594         if (sbi->s_mb_maxs == NULL) {
3595                 ret = -ENOMEM;
3596                 goto out;
3597         }
3598
3599         ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3600         if (ret < 0)
3601                 goto out;
3602
3603         /* order 0 is regular bitmap */
3604         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3605         sbi->s_mb_offsets[0] = 0;
3606
3607         i = 1;
3608         offset = 0;
3609         offset_incr = 1 << (sb->s_blocksize_bits - 1);
3610         max = sb->s_blocksize << 2;
3611         do {
3612                 sbi->s_mb_offsets[i] = offset;
3613                 sbi->s_mb_maxs[i] = max;
3614                 offset += offset_incr;
3615                 offset_incr = offset_incr >> 1;
3616                 max = max >> 1;
3617                 i++;
3618         } while (i < MB_NUM_ORDERS(sb));
3619
3620         sbi->s_mb_avg_fragment_size =
3621                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3622                         GFP_KERNEL);
3623         if (!sbi->s_mb_avg_fragment_size) {
3624                 ret = -ENOMEM;
3625                 goto out;
3626         }
3627         sbi->s_mb_avg_fragment_size_locks =
3628                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3629                         GFP_KERNEL);
3630         if (!sbi->s_mb_avg_fragment_size_locks) {
3631                 ret = -ENOMEM;
3632                 goto out;
3633         }
3634         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3635                 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3636                 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3637         }
3638         sbi->s_mb_largest_free_orders =
3639                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3640                         GFP_KERNEL);
3641         if (!sbi->s_mb_largest_free_orders) {
3642                 ret = -ENOMEM;
3643                 goto out;
3644         }
3645         sbi->s_mb_largest_free_orders_locks =
3646                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3647                         GFP_KERNEL);
3648         if (!sbi->s_mb_largest_free_orders_locks) {
3649                 ret = -ENOMEM;
3650                 goto out;
3651         }
3652         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3653                 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3654                 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3655         }
3656
3657         spin_lock_init(&sbi->s_md_lock);
3658         sbi->s_mb_free_pending = 0;
3659         INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3660         INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3661         INIT_LIST_HEAD(&sbi->s_discard_list);
3662         INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3663         atomic_set(&sbi->s_retry_alloc_pending, 0);
3664
3665         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3666         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3667         sbi->s_mb_stats = MB_DEFAULT_STATS;
3668         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3669         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3670         sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3671
3672         /*
3673          * The default group preallocation is 512, which for 4k block
3674          * sizes translates to 2 megabytes.  However for bigalloc file
3675          * systems, this is probably too big (i.e, if the cluster size
3676          * is 1 megabyte, then group preallocation size becomes half a
3677          * gigabyte!).  As a default, we will keep a two megabyte
3678          * group pralloc size for cluster sizes up to 64k, and after
3679          * that, we will force a minimum group preallocation size of
3680          * 32 clusters.  This translates to 8 megs when the cluster
3681          * size is 256k, and 32 megs when the cluster size is 1 meg,
3682          * which seems reasonable as a default.
3683          */
3684         sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3685                                        sbi->s_cluster_bits, 32);
3686         /*
3687          * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3688          * to the lowest multiple of s_stripe which is bigger than
3689          * the s_mb_group_prealloc as determined above. We want
3690          * the preallocation size to be an exact multiple of the
3691          * RAID stripe size so that preallocations don't fragment
3692          * the stripes.
3693          */
3694         if (sbi->s_stripe > 1) {
3695                 sbi->s_mb_group_prealloc = roundup(
3696                         sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3697         }
3698
3699         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3700         if (sbi->s_locality_groups == NULL) {
3701                 ret = -ENOMEM;
3702                 goto out;
3703         }
3704         for_each_possible_cpu(i) {
3705                 struct ext4_locality_group *lg;
3706                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3707                 mutex_init(&lg->lg_mutex);
3708                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3709                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3710                 spin_lock_init(&lg->lg_prealloc_lock);
3711         }
3712
3713         if (bdev_nonrot(sb->s_bdev))
3714                 sbi->s_mb_max_linear_groups = 0;
3715         else
3716                 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3717         /* init file for buddy data */
3718         ret = ext4_mb_init_backend(sb);
3719         if (ret != 0)
3720                 goto out_free_locality_groups;
3721
3722         return 0;
3723
3724 out_free_locality_groups:
3725         free_percpu(sbi->s_locality_groups);
3726         sbi->s_locality_groups = NULL;
3727 out:
3728         kfree(sbi->s_mb_avg_fragment_size);
3729         kfree(sbi->s_mb_avg_fragment_size_locks);
3730         kfree(sbi->s_mb_largest_free_orders);
3731         kfree(sbi->s_mb_largest_free_orders_locks);
3732         kfree(sbi->s_mb_offsets);
3733         sbi->s_mb_offsets = NULL;
3734         kfree(sbi->s_mb_maxs);
3735         sbi->s_mb_maxs = NULL;
3736         return ret;
3737 }
3738
3739 /* need to called with the ext4 group lock held */
3740 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3741 {
3742         struct ext4_prealloc_space *pa;
3743         struct list_head *cur, *tmp;
3744         int count = 0;
3745
3746         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3747                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3748                 list_del(&pa->pa_group_list);
3749                 count++;
3750                 kmem_cache_free(ext4_pspace_cachep, pa);
3751         }
3752         return count;
3753 }
3754
3755 int ext4_mb_release(struct super_block *sb)
3756 {
3757         ext4_group_t ngroups = ext4_get_groups_count(sb);
3758         ext4_group_t i;
3759         int num_meta_group_infos;
3760         struct ext4_group_info *grinfo, ***group_info;
3761         struct ext4_sb_info *sbi = EXT4_SB(sb);
3762         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3763         int count;
3764
3765         if (test_opt(sb, DISCARD)) {
3766                 /*
3767                  * wait the discard work to drain all of ext4_free_data
3768                  */
3769                 flush_work(&sbi->s_discard_work);
3770                 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3771         }
3772
3773         if (sbi->s_group_info) {
3774                 for (i = 0; i < ngroups; i++) {
3775                         cond_resched();
3776                         grinfo = ext4_get_group_info(sb, i);
3777                         if (!grinfo)
3778                                 continue;
3779                         mb_group_bb_bitmap_free(grinfo);
3780                         ext4_lock_group(sb, i);
3781                         count = ext4_mb_cleanup_pa(grinfo);
3782                         if (count)
3783                                 mb_debug(sb, "mballoc: %d PAs left\n",
3784                                          count);
3785                         ext4_unlock_group(sb, i);
3786                         kmem_cache_free(cachep, grinfo);
3787                 }
3788                 num_meta_group_infos = (ngroups +
3789                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3790                         EXT4_DESC_PER_BLOCK_BITS(sb);
3791                 rcu_read_lock();
3792                 group_info = rcu_dereference(sbi->s_group_info);
3793                 for (i = 0; i < num_meta_group_infos; i++)
3794                         kfree(group_info[i]);
3795                 kvfree(group_info);
3796                 rcu_read_unlock();
3797         }
3798         kfree(sbi->s_mb_avg_fragment_size);
3799         kfree(sbi->s_mb_avg_fragment_size_locks);
3800         kfree(sbi->s_mb_largest_free_orders);
3801         kfree(sbi->s_mb_largest_free_orders_locks);
3802         kfree(sbi->s_mb_offsets);
3803         kfree(sbi->s_mb_maxs);
3804         iput(sbi->s_buddy_cache);
3805         if (sbi->s_mb_stats) {
3806                 ext4_msg(sb, KERN_INFO,
3807                        "mballoc: %u blocks %u reqs (%u success)",
3808                                 atomic_read(&sbi->s_bal_allocated),
3809                                 atomic_read(&sbi->s_bal_reqs),
3810                                 atomic_read(&sbi->s_bal_success));
3811                 ext4_msg(sb, KERN_INFO,
3812                       "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3813                                 "%u 2^N hits, %u breaks, %u lost",
3814                                 atomic_read(&sbi->s_bal_ex_scanned),
3815                                 atomic_read(&sbi->s_bal_groups_scanned),
3816                                 atomic_read(&sbi->s_bal_goals),
3817                                 atomic_read(&sbi->s_bal_2orders),
3818                                 atomic_read(&sbi->s_bal_breaks),
3819                                 atomic_read(&sbi->s_mb_lost_chunks));
3820                 ext4_msg(sb, KERN_INFO,
3821                        "mballoc: %u generated and it took %llu",
3822                                 atomic_read(&sbi->s_mb_buddies_generated),
3823                                 atomic64_read(&sbi->s_mb_generation_time));
3824                 ext4_msg(sb, KERN_INFO,
3825                        "mballoc: %u preallocated, %u discarded",
3826                                 atomic_read(&sbi->s_mb_preallocated),
3827                                 atomic_read(&sbi->s_mb_discarded));
3828         }
3829
3830         free_percpu(sbi->s_locality_groups);
3831
3832         return 0;
3833 }
3834
3835 static inline int ext4_issue_discard(struct super_block *sb,
3836                 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3837                 struct bio **biop)
3838 {
3839         ext4_fsblk_t discard_block;
3840
3841         discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3842                          ext4_group_first_block_no(sb, block_group));
3843         count = EXT4_C2B(EXT4_SB(sb), count);
3844         trace_ext4_discard_blocks(sb,
3845                         (unsigned long long) discard_block, count);
3846         if (biop) {
3847                 return __blkdev_issue_discard(sb->s_bdev,
3848                         (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3849                         (sector_t)count << (sb->s_blocksize_bits - 9),
3850                         GFP_NOFS, biop);
3851         } else
3852                 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3853 }
3854
3855 static void ext4_free_data_in_buddy(struct super_block *sb,
3856                                     struct ext4_free_data *entry)
3857 {
3858         struct ext4_buddy e4b;
3859         struct ext4_group_info *db;
3860         int err, count = 0;
3861
3862         mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3863                  entry->efd_count, entry->efd_group, entry);
3864
3865         err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3866         /* we expect to find existing buddy because it's pinned */
3867         BUG_ON(err != 0);
3868
3869         spin_lock(&EXT4_SB(sb)->s_md_lock);
3870         EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3871         spin_unlock(&EXT4_SB(sb)->s_md_lock);
3872
3873         db = e4b.bd_info;
3874         /* there are blocks to put in buddy to make them really free */
3875         count += entry->efd_count;
3876         ext4_lock_group(sb, entry->efd_group);
3877         /* Take it out of per group rb tree */
3878         rb_erase(&entry->efd_node, &(db->bb_free_root));
3879         mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3880
3881         /*
3882          * Clear the trimmed flag for the group so that the next
3883          * ext4_trim_fs can trim it.
3884          * If the volume is mounted with -o discard, online discard
3885          * is supported and the free blocks will be trimmed online.
3886          */
3887         if (!test_opt(sb, DISCARD))
3888                 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3889
3890         if (!db->bb_free_root.rb_node) {
3891                 /* No more items in the per group rb tree
3892                  * balance refcounts from ext4_mb_free_metadata()
3893                  */
3894                 put_page(e4b.bd_buddy_page);
3895                 put_page(e4b.bd_bitmap_page);
3896         }
3897         ext4_unlock_group(sb, entry->efd_group);
3898         ext4_mb_unload_buddy(&e4b);
3899
3900         mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3901 }
3902
3903 /*
3904  * This function is called by the jbd2 layer once the commit has finished,
3905  * so we know we can free the blocks that were released with that commit.
3906  */
3907 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3908 {
3909         struct ext4_sb_info *sbi = EXT4_SB(sb);
3910         struct ext4_free_data *entry, *tmp;
3911         LIST_HEAD(freed_data_list);
3912         struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3913         bool wake;
3914
3915         list_replace_init(s_freed_head, &freed_data_list);
3916
3917         list_for_each_entry(entry, &freed_data_list, efd_list)
3918                 ext4_free_data_in_buddy(sb, entry);
3919
3920         if (test_opt(sb, DISCARD)) {
3921                 spin_lock(&sbi->s_md_lock);
3922                 wake = list_empty(&sbi->s_discard_list);
3923                 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3924                 spin_unlock(&sbi->s_md_lock);
3925                 if (wake)
3926                         queue_work(system_unbound_wq, &sbi->s_discard_work);
3927         } else {
3928                 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3929                         kmem_cache_free(ext4_free_data_cachep, entry);
3930         }
3931 }
3932
3933 int __init ext4_init_mballoc(void)
3934 {
3935         ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3936                                         SLAB_RECLAIM_ACCOUNT);
3937         if (ext4_pspace_cachep == NULL)
3938                 goto out;
3939
3940         ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3941                                     SLAB_RECLAIM_ACCOUNT);
3942         if (ext4_ac_cachep == NULL)
3943                 goto out_pa_free;
3944
3945         ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3946                                            SLAB_RECLAIM_ACCOUNT);
3947         if (ext4_free_data_cachep == NULL)
3948                 goto out_ac_free;
3949
3950         return 0;
3951
3952 out_ac_free:
3953         kmem_cache_destroy(ext4_ac_cachep);
3954 out_pa_free:
3955         kmem_cache_destroy(ext4_pspace_cachep);
3956 out:
3957         return -ENOMEM;
3958 }
3959
3960 void ext4_exit_mballoc(void)
3961 {
3962         /*
3963          * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3964          * before destroying the slab cache.
3965          */
3966         rcu_barrier();
3967         kmem_cache_destroy(ext4_pspace_cachep);
3968         kmem_cache_destroy(ext4_ac_cachep);
3969         kmem_cache_destroy(ext4_free_data_cachep);
3970         ext4_groupinfo_destroy_slabs();
3971 }
3972
3973 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3974 #define EXT4_MB_SYNC_UPDATE 0x0002
3975 static int
3976 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3977                      ext4_group_t group, ext4_grpblk_t blkoff,
3978                      ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3979 {
3980         struct ext4_sb_info *sbi = EXT4_SB(sb);
3981         struct buffer_head *bitmap_bh = NULL;
3982         struct ext4_group_desc *gdp;
3983         struct buffer_head *gdp_bh;
3984         int err;
3985         unsigned int i, already, changed = len;
3986
3987         KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3988                                    handle, sb, state, group, blkoff, len,
3989                                    flags, ret_changed);
3990
3991         if (ret_changed)
3992                 *ret_changed = 0;
3993         bitmap_bh = ext4_read_block_bitmap(sb, group);
3994         if (IS_ERR(bitmap_bh))
3995                 return PTR_ERR(bitmap_bh);
3996
3997         if (handle) {
3998                 BUFFER_TRACE(bitmap_bh, "getting write access");
3999                 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
4000                                                     EXT4_JTR_NONE);
4001                 if (err)
4002                         goto out_err;
4003         }
4004
4005         err = -EIO;
4006         gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4007         if (!gdp)
4008                 goto out_err;
4009
4010         if (handle) {
4011                 BUFFER_TRACE(gdp_bh, "get_write_access");
4012                 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4013                                                     EXT4_JTR_NONE);
4014                 if (err)
4015                         goto out_err;
4016         }
4017
4018         ext4_lock_group(sb, group);
4019         if (ext4_has_group_desc_csum(sb) &&
4020             (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4021                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4022                 ext4_free_group_clusters_set(sb, gdp,
4023                         ext4_free_clusters_after_init(sb, group, gdp));
4024         }
4025
4026         if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4027                 already = 0;
4028                 for (i = 0; i < len; i++)
4029                         if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4030                                         state)
4031                                 already++;
4032                 changed = len - already;
4033         }
4034
4035         if (state) {
4036                 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4037                 ext4_free_group_clusters_set(sb, gdp,
4038                         ext4_free_group_clusters(sb, gdp) - changed);
4039         } else {
4040                 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4041                 ext4_free_group_clusters_set(sb, gdp,
4042                         ext4_free_group_clusters(sb, gdp) + changed);
4043         }
4044
4045         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4046         ext4_group_desc_csum_set(sb, group, gdp);
4047         ext4_unlock_group(sb, group);
4048         if (ret_changed)
4049                 *ret_changed = changed;
4050
4051         if (sbi->s_log_groups_per_flex) {
4052                 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4053                 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4054                                            s_flex_groups, flex_group);
4055
4056                 if (state)
4057                         atomic64_sub(changed, &fg->free_clusters);
4058                 else
4059                         atomic64_add(changed, &fg->free_clusters);
4060         }
4061
4062         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4063         if (err)
4064                 goto out_err;
4065         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4066         if (err)
4067                 goto out_err;
4068
4069         if (flags & EXT4_MB_SYNC_UPDATE) {
4070                 sync_dirty_buffer(bitmap_bh);
4071                 sync_dirty_buffer(gdp_bh);
4072         }
4073
4074 out_err:
4075         brelse(bitmap_bh);
4076         return err;
4077 }
4078
4079 /*
4080  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4081  * Returns 0 if success or error code
4082  */
4083 static noinline_for_stack int
4084 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4085                                 handle_t *handle, unsigned int reserv_clstrs)
4086 {
4087         struct ext4_group_desc *gdp;
4088         struct ext4_sb_info *sbi;
4089         struct super_block *sb;
4090         ext4_fsblk_t block;
4091         int err, len;
4092         int flags = 0;
4093         ext4_grpblk_t changed;
4094
4095         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4096         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4097
4098         sb = ac->ac_sb;
4099         sbi = EXT4_SB(sb);
4100
4101         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4102         if (!gdp)
4103                 return -EIO;
4104         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4105                         ext4_free_group_clusters(sb, gdp));
4106
4107         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4108         len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4109         if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4110                 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4111                            "fs metadata", block, block+len);
4112                 /* File system mounted not to panic on error
4113                  * Fix the bitmap and return EFSCORRUPTED
4114                  * We leak some of the blocks here.
4115                  */
4116                 err = ext4_mb_mark_context(handle, sb, true,
4117                                            ac->ac_b_ex.fe_group,
4118                                            ac->ac_b_ex.fe_start,
4119                                            ac->ac_b_ex.fe_len,
4120                                            0, NULL);
4121                 if (!err)
4122                         err = -EFSCORRUPTED;
4123                 return err;
4124         }
4125
4126 #ifdef AGGRESSIVE_CHECK
4127         flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4128 #endif
4129         err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4130                                    ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4131                                    flags, &changed);
4132
4133         if (err && changed == 0)
4134                 return err;
4135
4136 #ifdef AGGRESSIVE_CHECK
4137         BUG_ON(changed != ac->ac_b_ex.fe_len);
4138 #endif
4139         percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4140         /*
4141          * Now reduce the dirty block count also. Should not go negative
4142          */
4143         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4144                 /* release all the reserved blocks if non delalloc */
4145                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4146                                    reserv_clstrs);
4147
4148         return err;
4149 }
4150
4151 /*
4152  * Idempotent helper for Ext4 fast commit replay path to set the state of
4153  * blocks in bitmaps and update counters.
4154  */
4155 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4156                      int len, bool state)
4157 {
4158         struct ext4_sb_info *sbi = EXT4_SB(sb);
4159         ext4_group_t group;
4160         ext4_grpblk_t blkoff;
4161         int err = 0;
4162         unsigned int clen, thisgrp_len;
4163
4164         while (len > 0) {
4165                 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4166
4167                 /*
4168                  * Check to see if we are freeing blocks across a group
4169                  * boundary.
4170                  * In case of flex_bg, this can happen that (block, len) may
4171                  * span across more than one group. In that case we need to
4172                  * get the corresponding group metadata to work with.
4173                  * For this we have goto again loop.
4174                  */
4175                 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4176                         EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4177                 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4178
4179                 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4180                         ext4_error(sb, "Marking blocks in system zone - "
4181                                    "Block = %llu, len = %u",
4182                                    block, thisgrp_len);
4183                         break;
4184                 }
4185
4186                 err = ext4_mb_mark_context(NULL, sb, state,
4187                                            group, blkoff, clen,
4188                                            EXT4_MB_BITMAP_MARKED_CHECK |
4189                                            EXT4_MB_SYNC_UPDATE,
4190                                            NULL);
4191                 if (err)
4192                         break;
4193
4194                 block += thisgrp_len;
4195                 len -= thisgrp_len;
4196                 BUG_ON(len < 0);
4197         }
4198 }
4199
4200 /*
4201  * here we normalize request for locality group
4202  * Group request are normalized to s_mb_group_prealloc, which goes to
4203  * s_strip if we set the same via mount option.
4204  * s_mb_group_prealloc can be configured via
4205  * /sys/fs/ext4/<partition>/mb_group_prealloc
4206  *
4207  * XXX: should we try to preallocate more than the group has now?
4208  */
4209 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4210 {
4211         struct super_block *sb = ac->ac_sb;
4212         struct ext4_locality_group *lg = ac->ac_lg;
4213
4214         BUG_ON(lg == NULL);
4215         ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4216         mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4217 }
4218
4219 /*
4220  * This function returns the next element to look at during inode
4221  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4222  * (ei->i_prealloc_lock)
4223  *
4224  * new_start    The start of the range we want to compare
4225  * cur_start    The existing start that we are comparing against
4226  * node The node of the rb_tree
4227  */
4228 static inline struct rb_node*
4229 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4230 {
4231         if (new_start < cur_start)
4232                 return node->rb_left;
4233         else
4234                 return node->rb_right;
4235 }
4236
4237 static inline void
4238 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4239                           ext4_lblk_t start, loff_t end)
4240 {
4241         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4242         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4243         struct ext4_prealloc_space *tmp_pa;
4244         ext4_lblk_t tmp_pa_start;
4245         loff_t tmp_pa_end;
4246         struct rb_node *iter;
4247
4248         read_lock(&ei->i_prealloc_lock);
4249         for (iter = ei->i_prealloc_node.rb_node; iter;
4250              iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4251                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4252                                   pa_node.inode_node);
4253                 tmp_pa_start = tmp_pa->pa_lstart;
4254                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4255
4256                 spin_lock(&tmp_pa->pa_lock);
4257                 if (tmp_pa->pa_deleted == 0)
4258                         BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4259                 spin_unlock(&tmp_pa->pa_lock);
4260         }
4261         read_unlock(&ei->i_prealloc_lock);
4262 }
4263
4264 /*
4265  * Given an allocation context "ac" and a range "start", "end", check
4266  * and adjust boundaries if the range overlaps with any of the existing
4267  * preallocatoins stored in the corresponding inode of the allocation context.
4268  *
4269  * Parameters:
4270  *      ac                      allocation context
4271  *      start                   start of the new range
4272  *      end                     end of the new range
4273  */
4274 static inline void
4275 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4276                           ext4_lblk_t *start, loff_t *end)
4277 {
4278         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4279         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4280         struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4281         struct rb_node *iter;
4282         ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4283         loff_t new_end, tmp_pa_end, left_pa_end = -1;
4284
4285         new_start = *start;
4286         new_end = *end;
4287
4288         /*
4289          * Adjust the normalized range so that it doesn't overlap with any
4290          * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4291          * so it doesn't change underneath us.
4292          */
4293         read_lock(&ei->i_prealloc_lock);
4294
4295         /* Step 1: find any one immediate neighboring PA of the normalized range */
4296         for (iter = ei->i_prealloc_node.rb_node; iter;
4297              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4298                                             tmp_pa_start, iter)) {
4299                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4300                                   pa_node.inode_node);
4301                 tmp_pa_start = tmp_pa->pa_lstart;
4302                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4303
4304                 /* PA must not overlap original request */
4305                 spin_lock(&tmp_pa->pa_lock);
4306                 if (tmp_pa->pa_deleted == 0)
4307                         BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4308                                  ac->ac_o_ex.fe_logical < tmp_pa_start));
4309                 spin_unlock(&tmp_pa->pa_lock);
4310         }
4311
4312         /*
4313          * Step 2: check if the found PA is left or right neighbor and
4314          * get the other neighbor
4315          */
4316         if (tmp_pa) {
4317                 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4318                         struct rb_node *tmp;
4319
4320                         left_pa = tmp_pa;
4321                         tmp = rb_next(&left_pa->pa_node.inode_node);
4322                         if (tmp) {
4323                                 right_pa = rb_entry(tmp,
4324                                                     struct ext4_prealloc_space,
4325                                                     pa_node.inode_node);
4326                         }
4327                 } else {
4328                         struct rb_node *tmp;
4329
4330                         right_pa = tmp_pa;
4331                         tmp = rb_prev(&right_pa->pa_node.inode_node);
4332                         if (tmp) {
4333                                 left_pa = rb_entry(tmp,
4334                                                    struct ext4_prealloc_space,
4335                                                    pa_node.inode_node);
4336                         }
4337                 }
4338         }
4339
4340         /* Step 3: get the non deleted neighbors */
4341         if (left_pa) {
4342                 for (iter = &left_pa->pa_node.inode_node;;
4343                      iter = rb_prev(iter)) {
4344                         if (!iter) {
4345                                 left_pa = NULL;
4346                                 break;
4347                         }
4348
4349                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4350                                           pa_node.inode_node);
4351                         left_pa = tmp_pa;
4352                         spin_lock(&tmp_pa->pa_lock);
4353                         if (tmp_pa->pa_deleted == 0) {
4354                                 spin_unlock(&tmp_pa->pa_lock);
4355                                 break;
4356                         }
4357                         spin_unlock(&tmp_pa->pa_lock);
4358                 }
4359         }
4360
4361         if (right_pa) {
4362                 for (iter = &right_pa->pa_node.inode_node;;
4363                      iter = rb_next(iter)) {
4364                         if (!iter) {
4365                                 right_pa = NULL;
4366                                 break;
4367                         }
4368
4369                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4370                                           pa_node.inode_node);
4371                         right_pa = tmp_pa;
4372                         spin_lock(&tmp_pa->pa_lock);
4373                         if (tmp_pa->pa_deleted == 0) {
4374                                 spin_unlock(&tmp_pa->pa_lock);
4375                                 break;
4376                         }
4377                         spin_unlock(&tmp_pa->pa_lock);
4378                 }
4379         }
4380
4381         if (left_pa) {
4382                 left_pa_end = pa_logical_end(sbi, left_pa);
4383                 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4384         }
4385
4386         if (right_pa) {
4387                 right_pa_start = right_pa->pa_lstart;
4388                 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4389         }
4390
4391         /* Step 4: trim our normalized range to not overlap with the neighbors */
4392         if (left_pa) {
4393                 if (left_pa_end > new_start)
4394                         new_start = left_pa_end;
4395         }
4396
4397         if (right_pa) {
4398                 if (right_pa_start < new_end)
4399                         new_end = right_pa_start;
4400         }
4401         read_unlock(&ei->i_prealloc_lock);
4402
4403         /* XXX: extra loop to check we really don't overlap preallocations */
4404         ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4405
4406         *start = new_start;
4407         *end = new_end;
4408 }
4409
4410 /*
4411  * Normalization means making request better in terms of
4412  * size and alignment
4413  */
4414 static noinline_for_stack void
4415 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4416                                 struct ext4_allocation_request *ar)
4417 {
4418         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4419         struct ext4_super_block *es = sbi->s_es;
4420         int bsbits, max;
4421         loff_t size, start_off, end;
4422         loff_t orig_size __maybe_unused;
4423         ext4_lblk_t start;
4424
4425         /* do normalize only data requests, metadata requests
4426            do not need preallocation */
4427         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4428                 return;
4429
4430         /* sometime caller may want exact blocks */
4431         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4432                 return;
4433
4434         /* caller may indicate that preallocation isn't
4435          * required (it's a tail, for example) */
4436         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4437                 return;
4438
4439         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4440                 ext4_mb_normalize_group_request(ac);
4441                 return ;
4442         }
4443
4444         bsbits = ac->ac_sb->s_blocksize_bits;
4445
4446         /* first, let's learn actual file size
4447          * given current request is allocated */
4448         size = extent_logical_end(sbi, &ac->ac_o_ex);
4449         size = size << bsbits;
4450         if (size < i_size_read(ac->ac_inode))
4451                 size = i_size_read(ac->ac_inode);
4452         orig_size = size;
4453
4454         /* max size of free chunks */
4455         max = 2 << bsbits;
4456
4457 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
4458                 (req <= (size) || max <= (chunk_size))
4459
4460         /* first, try to predict filesize */
4461         /* XXX: should this table be tunable? */
4462         start_off = 0;
4463         if (size <= 16 * 1024) {
4464                 size = 16 * 1024;
4465         } else if (size <= 32 * 1024) {
4466                 size = 32 * 1024;
4467         } else if (size <= 64 * 1024) {
4468                 size = 64 * 1024;
4469         } else if (size <= 128 * 1024) {
4470                 size = 128 * 1024;
4471         } else if (size <= 256 * 1024) {
4472                 size = 256 * 1024;
4473         } else if (size <= 512 * 1024) {
4474                 size = 512 * 1024;
4475         } else if (size <= 1024 * 1024) {
4476                 size = 1024 * 1024;
4477         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4478                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4479                                                 (21 - bsbits)) << 21;
4480                 size = 2 * 1024 * 1024;
4481         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4482                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4483                                                         (22 - bsbits)) << 22;
4484                 size = 4 * 1024 * 1024;
4485         } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4486                                         (8<<20)>>bsbits, max, 8 * 1024)) {
4487                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4488                                                         (23 - bsbits)) << 23;
4489                 size = 8 * 1024 * 1024;
4490         } else {
4491                 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4492                 size      = (loff_t) EXT4_C2B(sbi,
4493                                               ac->ac_o_ex.fe_len) << bsbits;
4494         }
4495         size = size >> bsbits;
4496         start = start_off >> bsbits;
4497
4498         /*
4499          * For tiny groups (smaller than 8MB) the chosen allocation
4500          * alignment may be larger than group size. Make sure the
4501          * alignment does not move allocation to a different group which
4502          * makes mballoc fail assertions later.
4503          */
4504         start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4505                         (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4506
4507         /* avoid unnecessary preallocation that may trigger assertions */
4508         if (start + size > EXT_MAX_BLOCKS)
4509                 size = EXT_MAX_BLOCKS - start;
4510
4511         /* don't cover already allocated blocks in selected range */
4512         if (ar->pleft && start <= ar->lleft) {
4513                 size -= ar->lleft + 1 - start;
4514                 start = ar->lleft + 1;
4515         }
4516         if (ar->pright && start + size - 1 >= ar->lright)
4517                 size -= start + size - ar->lright;
4518
4519         /*
4520          * Trim allocation request for filesystems with artificially small
4521          * groups.
4522          */
4523         if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4524                 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4525
4526         end = start + size;
4527
4528         ext4_mb_pa_adjust_overlap(ac, &start, &end);
4529
4530         size = end - start;
4531
4532         /*
4533          * In this function "start" and "size" are normalized for better
4534          * alignment and length such that we could preallocate more blocks.
4535          * This normalization is done such that original request of
4536          * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4537          * "size" boundaries.
4538          * (Note fe_len can be relaxed since FS block allocation API does not
4539          * provide gurantee on number of contiguous blocks allocation since that
4540          * depends upon free space left, etc).
4541          * In case of inode pa, later we use the allocated blocks
4542          * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4543          * range of goal/best blocks [start, size] to put it at the
4544          * ac_o_ex.fe_logical extent of this inode.
4545          * (See ext4_mb_use_inode_pa() for more details)
4546          */
4547         if (start + size <= ac->ac_o_ex.fe_logical ||
4548                         start > ac->ac_o_ex.fe_logical) {
4549                 ext4_msg(ac->ac_sb, KERN_ERR,
4550                          "start %lu, size %lu, fe_logical %lu",
4551                          (unsigned long) start, (unsigned long) size,
4552                          (unsigned long) ac->ac_o_ex.fe_logical);
4553                 BUG();
4554         }
4555         BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4556
4557         /* now prepare goal request */
4558
4559         /* XXX: is it better to align blocks WRT to logical
4560          * placement or satisfy big request as is */
4561         ac->ac_g_ex.fe_logical = start;
4562         ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4563         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4564
4565         /* define goal start in order to merge */
4566         if (ar->pright && (ar->lright == (start + size)) &&
4567             ar->pright >= size &&
4568             ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4569                 /* merge to the right */
4570                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4571                                                 &ac->ac_g_ex.fe_group,
4572                                                 &ac->ac_g_ex.fe_start);
4573                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4574         }
4575         if (ar->pleft && (ar->lleft + 1 == start) &&
4576             ar->pleft + 1 < ext4_blocks_count(es)) {
4577                 /* merge to the left */
4578                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4579                                                 &ac->ac_g_ex.fe_group,
4580                                                 &ac->ac_g_ex.fe_start);
4581                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4582         }
4583
4584         mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4585                  orig_size, start);
4586 }
4587
4588 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4589 {
4590         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4591
4592         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4593                 atomic_inc(&sbi->s_bal_reqs);
4594                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4595                 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4596                         atomic_inc(&sbi->s_bal_success);
4597
4598                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4599                 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4600                         atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4601                 }
4602
4603                 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4604                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4605                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4606                         atomic_inc(&sbi->s_bal_goals);
4607                 /* did we allocate as much as normalizer originally wanted? */
4608                 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4609                         atomic_inc(&sbi->s_bal_len_goals);
4610
4611                 if (ac->ac_found > sbi->s_mb_max_to_scan)
4612                         atomic_inc(&sbi->s_bal_breaks);
4613         }
4614
4615         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4616                 trace_ext4_mballoc_alloc(ac);
4617         else
4618                 trace_ext4_mballoc_prealloc(ac);
4619 }
4620
4621 /*
4622  * Called on failure; free up any blocks from the inode PA for this
4623  * context.  We don't need this for MB_GROUP_PA because we only change
4624  * pa_free in ext4_mb_release_context(), but on failure, we've already
4625  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4626  */
4627 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4628 {
4629         struct ext4_prealloc_space *pa = ac->ac_pa;
4630         struct ext4_buddy e4b;
4631         int err;
4632
4633         if (pa == NULL) {
4634                 if (ac->ac_f_ex.fe_len == 0)
4635                         return;
4636                 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4637                 if (WARN_RATELIMIT(err,
4638                                    "ext4: mb_load_buddy failed (%d)", err))
4639                         /*
4640                          * This should never happen since we pin the
4641                          * pages in the ext4_allocation_context so
4642                          * ext4_mb_load_buddy() should never fail.
4643                          */
4644                         return;
4645                 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4646                 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4647                                ac->ac_f_ex.fe_len);
4648                 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4649                 ext4_mb_unload_buddy(&e4b);
4650                 return;
4651         }
4652         if (pa->pa_type == MB_INODE_PA) {
4653                 spin_lock(&pa->pa_lock);
4654                 pa->pa_free += ac->ac_b_ex.fe_len;
4655                 spin_unlock(&pa->pa_lock);
4656         }
4657 }
4658
4659 /*
4660  * use blocks preallocated to inode
4661  */
4662 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4663                                 struct ext4_prealloc_space *pa)
4664 {
4665         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4666         ext4_fsblk_t start;
4667         ext4_fsblk_t end;
4668         int len;
4669
4670         /* found preallocated blocks, use them */
4671         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4672         end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4673                   start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4674         len = EXT4_NUM_B2C(sbi, end - start);
4675         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4676                                         &ac->ac_b_ex.fe_start);
4677         ac->ac_b_ex.fe_len = len;
4678         ac->ac_status = AC_STATUS_FOUND;
4679         ac->ac_pa = pa;
4680
4681         BUG_ON(start < pa->pa_pstart);
4682         BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4683         BUG_ON(pa->pa_free < len);
4684         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4685         pa->pa_free -= len;
4686
4687         mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4688 }
4689
4690 /*
4691  * use blocks preallocated to locality group
4692  */
4693 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4694                                 struct ext4_prealloc_space *pa)
4695 {
4696         unsigned int len = ac->ac_o_ex.fe_len;
4697
4698         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4699                                         &ac->ac_b_ex.fe_group,
4700                                         &ac->ac_b_ex.fe_start);
4701         ac->ac_b_ex.fe_len = len;
4702         ac->ac_status = AC_STATUS_FOUND;
4703         ac->ac_pa = pa;
4704
4705         /* we don't correct pa_pstart or pa_len here to avoid
4706          * possible race when the group is being loaded concurrently
4707          * instead we correct pa later, after blocks are marked
4708          * in on-disk bitmap -- see ext4_mb_release_context()
4709          * Other CPUs are prevented from allocating from this pa by lg_mutex
4710          */
4711         mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4712                  pa->pa_lstart, len, pa);
4713 }
4714
4715 /*
4716  * Return the prealloc space that have minimal distance
4717  * from the goal block. @cpa is the prealloc
4718  * space that is having currently known minimal distance
4719  * from the goal block.
4720  */
4721 static struct ext4_prealloc_space *
4722 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4723                         struct ext4_prealloc_space *pa,
4724                         struct ext4_prealloc_space *cpa)
4725 {
4726         ext4_fsblk_t cur_distance, new_distance;
4727
4728         if (cpa == NULL) {
4729                 atomic_inc(&pa->pa_count);
4730                 return pa;
4731         }
4732         cur_distance = abs(goal_block - cpa->pa_pstart);
4733         new_distance = abs(goal_block - pa->pa_pstart);
4734
4735         if (cur_distance <= new_distance)
4736                 return cpa;
4737
4738         /* drop the previous reference */
4739         atomic_dec(&cpa->pa_count);
4740         atomic_inc(&pa->pa_count);
4741         return pa;
4742 }
4743
4744 /*
4745  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4746  */
4747 static bool
4748 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4749                       struct ext4_prealloc_space *pa)
4750 {
4751         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4752         ext4_fsblk_t start;
4753
4754         if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4755                 return true;
4756
4757         /*
4758          * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4759          * in ext4_mb_normalize_request and will keep same with ac_o_ex
4760          * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4761          * consistent with ext4_mb_find_by_goal.
4762          */
4763         start = pa->pa_pstart +
4764                 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4765         if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4766                 return false;
4767
4768         if (ac->ac_g_ex.fe_len > pa->pa_len -
4769             EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4770                 return false;
4771
4772         return true;
4773 }
4774
4775 /*
4776  * search goal blocks in preallocated space
4777  */
4778 static noinline_for_stack bool
4779 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4780 {
4781         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4782         int order, i;
4783         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4784         struct ext4_locality_group *lg;
4785         struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4786         struct rb_node *iter;
4787         ext4_fsblk_t goal_block;
4788
4789         /* only data can be preallocated */
4790         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4791                 return false;
4792
4793         /*
4794          * first, try per-file preallocation by searching the inode pa rbtree.
4795          *
4796          * Here, we can't do a direct traversal of the tree because
4797          * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4798          * deleted and that can cause direct traversal to skip some entries.
4799          */
4800         read_lock(&ei->i_prealloc_lock);
4801
4802         if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4803                 goto try_group_pa;
4804         }
4805
4806         /*
4807          * Step 1: Find a pa with logical start immediately adjacent to the
4808          * original logical start. This could be on the left or right.
4809          *
4810          * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4811          */
4812         for (iter = ei->i_prealloc_node.rb_node; iter;
4813              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4814                                             tmp_pa->pa_lstart, iter)) {
4815                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4816                                   pa_node.inode_node);
4817         }
4818
4819         /*
4820          * Step 2: The adjacent pa might be to the right of logical start, find
4821          * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4822          * logical start is towards the left of original request's logical start
4823          */
4824         if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4825                 struct rb_node *tmp;
4826                 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4827
4828                 if (tmp) {
4829                         tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4830                                             pa_node.inode_node);
4831                 } else {
4832                         /*
4833                          * If there is no adjacent pa to the left then finding
4834                          * an overlapping pa is not possible hence stop searching
4835                          * inode pa tree
4836                          */
4837                         goto try_group_pa;
4838                 }
4839         }
4840
4841         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4842
4843         /*
4844          * Step 3: If the left adjacent pa is deleted, keep moving left to find
4845          * the first non deleted adjacent pa. After this step we should have a
4846          * valid tmp_pa which is guaranteed to be non deleted.
4847          */
4848         for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4849                 if (!iter) {
4850                         /*
4851                          * no non deleted left adjacent pa, so stop searching
4852                          * inode pa tree
4853                          */
4854                         goto try_group_pa;
4855                 }
4856                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4857                                   pa_node.inode_node);
4858                 spin_lock(&tmp_pa->pa_lock);
4859                 if (tmp_pa->pa_deleted == 0) {
4860                         /*
4861                          * We will keep holding the pa_lock from
4862                          * this point on because we don't want group discard
4863                          * to delete this pa underneath us. Since group
4864                          * discard is anyways an ENOSPC operation it
4865                          * should be okay for it to wait a few more cycles.
4866                          */
4867                         break;
4868                 } else {
4869                         spin_unlock(&tmp_pa->pa_lock);
4870                 }
4871         }
4872
4873         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4874         BUG_ON(tmp_pa->pa_deleted == 1);
4875
4876         /*
4877          * Step 4: We now have the non deleted left adjacent pa. Only this
4878          * pa can possibly satisfy the request hence check if it overlaps
4879          * original logical start and stop searching if it doesn't.
4880          */
4881         if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4882                 spin_unlock(&tmp_pa->pa_lock);
4883                 goto try_group_pa;
4884         }
4885
4886         /* non-extent files can't have physical blocks past 2^32 */
4887         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4888             (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4889              EXT4_MAX_BLOCK_FILE_PHYS)) {
4890                 /*
4891                  * Since PAs don't overlap, we won't find any other PA to
4892                  * satisfy this.
4893                  */
4894                 spin_unlock(&tmp_pa->pa_lock);
4895                 goto try_group_pa;
4896         }
4897
4898         if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4899                 atomic_inc(&tmp_pa->pa_count);
4900                 ext4_mb_use_inode_pa(ac, tmp_pa);
4901                 spin_unlock(&tmp_pa->pa_lock);
4902                 read_unlock(&ei->i_prealloc_lock);
4903                 return true;
4904         } else {
4905                 /*
4906                  * We found a valid overlapping pa but couldn't use it because
4907                  * it had no free blocks. This should ideally never happen
4908                  * because:
4909                  *
4910                  * 1. When a new inode pa is added to rbtree it must have
4911                  *    pa_free > 0 since otherwise we won't actually need
4912                  *    preallocation.
4913                  *
4914                  * 2. An inode pa that is in the rbtree can only have it's
4915                  *    pa_free become zero when another thread calls:
4916                  *      ext4_mb_new_blocks
4917                  *       ext4_mb_use_preallocated
4918                  *        ext4_mb_use_inode_pa
4919                  *
4920                  * 3. Further, after the above calls make pa_free == 0, we will
4921                  *    immediately remove it from the rbtree in:
4922                  *      ext4_mb_new_blocks
4923                  *       ext4_mb_release_context
4924                  *        ext4_mb_put_pa
4925                  *
4926                  * 4. Since the pa_free becoming 0 and pa_free getting removed
4927                  * from tree both happen in ext4_mb_new_blocks, which is always
4928                  * called with i_data_sem held for data allocations, we can be
4929                  * sure that another process will never see a pa in rbtree with
4930                  * pa_free == 0.
4931                  */
4932                 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4933         }
4934         spin_unlock(&tmp_pa->pa_lock);
4935 try_group_pa:
4936         read_unlock(&ei->i_prealloc_lock);
4937
4938         /* can we use group allocation? */
4939         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4940                 return false;
4941
4942         /* inode may have no locality group for some reason */
4943         lg = ac->ac_lg;
4944         if (lg == NULL)
4945                 return false;
4946         order  = fls(ac->ac_o_ex.fe_len) - 1;
4947         if (order > PREALLOC_TB_SIZE - 1)
4948                 /* The max size of hash table is PREALLOC_TB_SIZE */
4949                 order = PREALLOC_TB_SIZE - 1;
4950
4951         goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4952         /*
4953          * search for the prealloc space that is having
4954          * minimal distance from the goal block.
4955          */
4956         for (i = order; i < PREALLOC_TB_SIZE; i++) {
4957                 rcu_read_lock();
4958                 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4959                                         pa_node.lg_list) {
4960                         spin_lock(&tmp_pa->pa_lock);
4961                         if (tmp_pa->pa_deleted == 0 &&
4962                                         tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4963
4964                                 cpa = ext4_mb_check_group_pa(goal_block,
4965                                                                 tmp_pa, cpa);
4966                         }
4967                         spin_unlock(&tmp_pa->pa_lock);
4968                 }
4969                 rcu_read_unlock();
4970         }
4971         if (cpa) {
4972                 ext4_mb_use_group_pa(ac, cpa);
4973                 return true;
4974         }
4975         return false;
4976 }
4977
4978 /*
4979  * the function goes through all preallocation in this group and marks them
4980  * used in in-core bitmap. buddy must be generated from this bitmap
4981  * Need to be called with ext4 group lock held
4982  */
4983 static noinline_for_stack
4984 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4985                                         ext4_group_t group)
4986 {
4987         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4988         struct ext4_prealloc_space *pa;
4989         struct list_head *cur;
4990         ext4_group_t groupnr;
4991         ext4_grpblk_t start;
4992         int preallocated = 0;
4993         int len;
4994
4995         if (!grp)
4996                 return;
4997
4998         /* all form of preallocation discards first load group,
4999          * so the only competing code is preallocation use.
5000          * we don't need any locking here
5001          * notice we do NOT ignore preallocations with pa_deleted
5002          * otherwise we could leave used blocks available for
5003          * allocation in buddy when concurrent ext4_mb_put_pa()
5004          * is dropping preallocation
5005          */
5006         list_for_each(cur, &grp->bb_prealloc_list) {
5007                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5008                 spin_lock(&pa->pa_lock);
5009                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5010                                              &groupnr, &start);
5011                 len = pa->pa_len;
5012                 spin_unlock(&pa->pa_lock);
5013                 if (unlikely(len == 0))
5014                         continue;
5015                 BUG_ON(groupnr != group);
5016                 mb_set_bits(bitmap, start, len);
5017                 preallocated += len;
5018         }
5019         mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5020 }
5021
5022 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5023                                     struct ext4_prealloc_space *pa)
5024 {
5025         struct ext4_inode_info *ei;
5026
5027         if (pa->pa_deleted) {
5028                 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5029                              pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5030                              pa->pa_len);
5031                 return;
5032         }
5033
5034         pa->pa_deleted = 1;
5035
5036         if (pa->pa_type == MB_INODE_PA) {
5037                 ei = EXT4_I(pa->pa_inode);
5038                 atomic_dec(&ei->i_prealloc_active);
5039         }
5040 }
5041
5042 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5043 {
5044         BUG_ON(!pa);
5045         BUG_ON(atomic_read(&pa->pa_count));
5046         BUG_ON(pa->pa_deleted == 0);
5047         kmem_cache_free(ext4_pspace_cachep, pa);
5048 }
5049
5050 static void ext4_mb_pa_callback(struct rcu_head *head)
5051 {
5052         struct ext4_prealloc_space *pa;
5053
5054         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5055         ext4_mb_pa_free(pa);
5056 }
5057
5058 /*
5059  * drops a reference to preallocated space descriptor
5060  * if this was the last reference and the space is consumed
5061  */
5062 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5063                         struct super_block *sb, struct ext4_prealloc_space *pa)
5064 {
5065         ext4_group_t grp;
5066         ext4_fsblk_t grp_blk;
5067         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5068
5069         /* in this short window concurrent discard can set pa_deleted */
5070         spin_lock(&pa->pa_lock);
5071         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5072                 spin_unlock(&pa->pa_lock);
5073                 return;
5074         }
5075
5076         if (pa->pa_deleted == 1) {
5077                 spin_unlock(&pa->pa_lock);
5078                 return;
5079         }
5080
5081         ext4_mb_mark_pa_deleted(sb, pa);
5082         spin_unlock(&pa->pa_lock);
5083
5084         grp_blk = pa->pa_pstart;
5085         /*
5086          * If doing group-based preallocation, pa_pstart may be in the
5087          * next group when pa is used up
5088          */
5089         if (pa->pa_type == MB_GROUP_PA)
5090                 grp_blk--;
5091
5092         grp = ext4_get_group_number(sb, grp_blk);
5093
5094         /*
5095          * possible race:
5096          *
5097          *  P1 (buddy init)                     P2 (regular allocation)
5098          *                                      find block B in PA
5099          *  copy on-disk bitmap to buddy
5100          *                                      mark B in on-disk bitmap
5101          *                                      drop PA from group
5102          *  mark all PAs in buddy
5103          *
5104          * thus, P1 initializes buddy with B available. to prevent this
5105          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5106          * against that pair
5107          */
5108         ext4_lock_group(sb, grp);
5109         list_del(&pa->pa_group_list);
5110         ext4_unlock_group(sb, grp);
5111
5112         if (pa->pa_type == MB_INODE_PA) {
5113                 write_lock(pa->pa_node_lock.inode_lock);
5114                 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5115                 write_unlock(pa->pa_node_lock.inode_lock);
5116                 ext4_mb_pa_free(pa);
5117         } else {
5118                 spin_lock(pa->pa_node_lock.lg_lock);
5119                 list_del_rcu(&pa->pa_node.lg_list);
5120                 spin_unlock(pa->pa_node_lock.lg_lock);
5121                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5122         }
5123 }
5124
5125 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5126 {
5127         struct rb_node **iter = &root->rb_node, *parent = NULL;
5128         struct ext4_prealloc_space *iter_pa, *new_pa;
5129         ext4_lblk_t iter_start, new_start;
5130
5131         while (*iter) {
5132                 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5133                                    pa_node.inode_node);
5134                 new_pa = rb_entry(new, struct ext4_prealloc_space,
5135                                    pa_node.inode_node);
5136                 iter_start = iter_pa->pa_lstart;
5137                 new_start = new_pa->pa_lstart;
5138
5139                 parent = *iter;
5140                 if (new_start < iter_start)
5141                         iter = &((*iter)->rb_left);
5142                 else
5143                         iter = &((*iter)->rb_right);
5144         }
5145
5146         rb_link_node(new, parent, iter);
5147         rb_insert_color(new, root);
5148 }
5149
5150 /*
5151  * creates new preallocated space for given inode
5152  */
5153 static noinline_for_stack void
5154 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5155 {
5156         struct super_block *sb = ac->ac_sb;
5157         struct ext4_sb_info *sbi = EXT4_SB(sb);
5158         struct ext4_prealloc_space *pa;
5159         struct ext4_group_info *grp;
5160         struct ext4_inode_info *ei;
5161
5162         /* preallocate only when found space is larger then requested */
5163         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5164         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5165         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5166         BUG_ON(ac->ac_pa == NULL);
5167
5168         pa = ac->ac_pa;
5169
5170         if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5171                 struct ext4_free_extent ex = {
5172                         .fe_logical = ac->ac_g_ex.fe_logical,
5173                         .fe_len = ac->ac_orig_goal_len,
5174                 };
5175                 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5176
5177                 /* we can't allocate as much as normalizer wants.
5178                  * so, found space must get proper lstart
5179                  * to cover original request */
5180                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5181                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5182
5183                 /*
5184                  * Use the below logic for adjusting best extent as it keeps
5185                  * fragmentation in check while ensuring logical range of best
5186                  * extent doesn't overflow out of goal extent:
5187                  *
5188                  * 1. Check if best ex can be kept at end of goal (before
5189                  *    cr_best_avail trimmed it) and still cover original start
5190                  * 2. Else, check if best ex can be kept at start of goal and
5191                  *    still cover original start
5192                  * 3. Else, keep the best ex at start of original request.
5193                  */
5194                 ex.fe_len = ac->ac_b_ex.fe_len;
5195
5196                 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5197                 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5198                         goto adjust_bex;
5199
5200                 ex.fe_logical = ac->ac_g_ex.fe_logical;
5201                 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex))
5202                         goto adjust_bex;
5203
5204                 ex.fe_logical = ac->ac_o_ex.fe_logical;
5205 adjust_bex:
5206                 ac->ac_b_ex.fe_logical = ex.fe_logical;
5207
5208                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5209                 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5210                 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5211         }
5212
5213         pa->pa_lstart = ac->ac_b_ex.fe_logical;
5214         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5215         pa->pa_len = ac->ac_b_ex.fe_len;
5216         pa->pa_free = pa->pa_len;
5217         spin_lock_init(&pa->pa_lock);
5218         INIT_LIST_HEAD(&pa->pa_group_list);
5219         pa->pa_deleted = 0;
5220         pa->pa_type = MB_INODE_PA;
5221
5222         mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5223                  pa->pa_len, pa->pa_lstart);
5224         trace_ext4_mb_new_inode_pa(ac, pa);
5225
5226         atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5227         ext4_mb_use_inode_pa(ac, pa);
5228
5229         ei = EXT4_I(ac->ac_inode);
5230         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5231         if (!grp)
5232                 return;
5233
5234         pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5235         pa->pa_inode = ac->ac_inode;
5236
5237         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5238
5239         write_lock(pa->pa_node_lock.inode_lock);
5240         ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5241         write_unlock(pa->pa_node_lock.inode_lock);
5242         atomic_inc(&ei->i_prealloc_active);
5243 }
5244
5245 /*
5246  * creates new preallocated space for locality group inodes belongs to
5247  */
5248 static noinline_for_stack void
5249 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5250 {
5251         struct super_block *sb = ac->ac_sb;
5252         struct ext4_locality_group *lg;
5253         struct ext4_prealloc_space *pa;
5254         struct ext4_group_info *grp;
5255
5256         /* preallocate only when found space is larger then requested */
5257         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5258         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5259         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5260         BUG_ON(ac->ac_pa == NULL);
5261
5262         pa = ac->ac_pa;
5263
5264         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5265         pa->pa_lstart = pa->pa_pstart;
5266         pa->pa_len = ac->ac_b_ex.fe_len;
5267         pa->pa_free = pa->pa_len;
5268         spin_lock_init(&pa->pa_lock);
5269         INIT_LIST_HEAD(&pa->pa_node.lg_list);
5270         INIT_LIST_HEAD(&pa->pa_group_list);
5271         pa->pa_deleted = 0;
5272         pa->pa_type = MB_GROUP_PA;
5273
5274         mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5275                  pa->pa_len, pa->pa_lstart);
5276         trace_ext4_mb_new_group_pa(ac, pa);
5277
5278         ext4_mb_use_group_pa(ac, pa);
5279         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5280
5281         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5282         if (!grp)
5283                 return;
5284         lg = ac->ac_lg;
5285         BUG_ON(lg == NULL);
5286
5287         pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5288         pa->pa_inode = NULL;
5289
5290         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5291
5292         /*
5293          * We will later add the new pa to the right bucket
5294          * after updating the pa_free in ext4_mb_release_context
5295          */
5296 }
5297
5298 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5299 {
5300         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5301                 ext4_mb_new_group_pa(ac);
5302         else
5303                 ext4_mb_new_inode_pa(ac);
5304 }
5305
5306 /*
5307  * finds all unused blocks in on-disk bitmap, frees them in
5308  * in-core bitmap and buddy.
5309  * @pa must be unlinked from inode and group lists, so that
5310  * nobody else can find/use it.
5311  * the caller MUST hold group/inode locks.
5312  * TODO: optimize the case when there are no in-core structures yet
5313  */
5314 static noinline_for_stack int
5315 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5316                         struct ext4_prealloc_space *pa)
5317 {
5318         struct super_block *sb = e4b->bd_sb;
5319         struct ext4_sb_info *sbi = EXT4_SB(sb);
5320         unsigned int end;
5321         unsigned int next;
5322         ext4_group_t group;
5323         ext4_grpblk_t bit;
5324         unsigned long long grp_blk_start;
5325         int free = 0;
5326
5327         BUG_ON(pa->pa_deleted == 0);
5328         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5329         grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5330         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5331         end = bit + pa->pa_len;
5332
5333         while (bit < end) {
5334                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5335                 if (bit >= end)
5336                         break;
5337                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5338                 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5339                          (unsigned) ext4_group_first_block_no(sb, group) + bit,
5340                          (unsigned) next - bit, (unsigned) group);
5341                 free += next - bit;
5342
5343                 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5344                 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5345                                                     EXT4_C2B(sbi, bit)),
5346                                                next - bit);
5347                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5348                 bit = next + 1;
5349         }
5350         if (free != pa->pa_free) {
5351                 ext4_msg(e4b->bd_sb, KERN_CRIT,
5352                          "pa %p: logic %lu, phys. %lu, len %d",
5353                          pa, (unsigned long) pa->pa_lstart,
5354                          (unsigned long) pa->pa_pstart,
5355                          pa->pa_len);
5356                 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5357                                         free, pa->pa_free);
5358                 /*
5359                  * pa is already deleted so we use the value obtained
5360                  * from the bitmap and continue.
5361                  */
5362         }
5363         atomic_add(free, &sbi->s_mb_discarded);
5364
5365         return 0;
5366 }
5367
5368 static noinline_for_stack int
5369 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5370                                 struct ext4_prealloc_space *pa)
5371 {
5372         struct super_block *sb = e4b->bd_sb;
5373         ext4_group_t group;
5374         ext4_grpblk_t bit;
5375
5376         trace_ext4_mb_release_group_pa(sb, pa);
5377         BUG_ON(pa->pa_deleted == 0);
5378         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5379         if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5380                 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5381                              e4b->bd_group, group, pa->pa_pstart);
5382                 return 0;
5383         }
5384         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5385         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5386         trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5387
5388         return 0;
5389 }
5390
5391 /*
5392  * releases all preallocations in given group
5393  *
5394  * first, we need to decide discard policy:
5395  * - when do we discard
5396  *   1) ENOSPC
5397  * - how many do we discard
5398  *   1) how many requested
5399  */
5400 static noinline_for_stack int
5401 ext4_mb_discard_group_preallocations(struct super_block *sb,
5402                                      ext4_group_t group, int *busy)
5403 {
5404         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5405         struct buffer_head *bitmap_bh = NULL;
5406         struct ext4_prealloc_space *pa, *tmp;
5407         LIST_HEAD(list);
5408         struct ext4_buddy e4b;
5409         struct ext4_inode_info *ei;
5410         int err;
5411         int free = 0;
5412
5413         if (!grp)
5414                 return 0;
5415         mb_debug(sb, "discard preallocation for group %u\n", group);
5416         if (list_empty(&grp->bb_prealloc_list))
5417                 goto out_dbg;
5418
5419         bitmap_bh = ext4_read_block_bitmap(sb, group);
5420         if (IS_ERR(bitmap_bh)) {
5421                 err = PTR_ERR(bitmap_bh);
5422                 ext4_error_err(sb, -err,
5423                                "Error %d reading block bitmap for %u",
5424                                err, group);
5425                 goto out_dbg;
5426         }
5427
5428         err = ext4_mb_load_buddy(sb, group, &e4b);
5429         if (err) {
5430                 ext4_warning(sb, "Error %d loading buddy information for %u",
5431                              err, group);
5432                 put_bh(bitmap_bh);
5433                 goto out_dbg;
5434         }
5435
5436         ext4_lock_group(sb, group);
5437         list_for_each_entry_safe(pa, tmp,
5438                                 &grp->bb_prealloc_list, pa_group_list) {
5439                 spin_lock(&pa->pa_lock);
5440                 if (atomic_read(&pa->pa_count)) {
5441                         spin_unlock(&pa->pa_lock);
5442                         *busy = 1;
5443                         continue;
5444                 }
5445                 if (pa->pa_deleted) {
5446                         spin_unlock(&pa->pa_lock);
5447                         continue;
5448                 }
5449
5450                 /* seems this one can be freed ... */
5451                 ext4_mb_mark_pa_deleted(sb, pa);
5452
5453                 if (!free)
5454                         this_cpu_inc(discard_pa_seq);
5455
5456                 /* we can trust pa_free ... */
5457                 free += pa->pa_free;
5458
5459                 spin_unlock(&pa->pa_lock);
5460
5461                 list_del(&pa->pa_group_list);
5462                 list_add(&pa->u.pa_tmp_list, &list);
5463         }
5464
5465         /* now free all selected PAs */
5466         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5467
5468                 /* remove from object (inode or locality group) */
5469                 if (pa->pa_type == MB_GROUP_PA) {
5470                         spin_lock(pa->pa_node_lock.lg_lock);
5471                         list_del_rcu(&pa->pa_node.lg_list);
5472                         spin_unlock(pa->pa_node_lock.lg_lock);
5473                 } else {
5474                         write_lock(pa->pa_node_lock.inode_lock);
5475                         ei = EXT4_I(pa->pa_inode);
5476                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5477                         write_unlock(pa->pa_node_lock.inode_lock);
5478                 }
5479
5480                 list_del(&pa->u.pa_tmp_list);
5481
5482                 if (pa->pa_type == MB_GROUP_PA) {
5483                         ext4_mb_release_group_pa(&e4b, pa);
5484                         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5485                 } else {
5486                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5487                         ext4_mb_pa_free(pa);
5488                 }
5489         }
5490
5491         ext4_unlock_group(sb, group);
5492         ext4_mb_unload_buddy(&e4b);
5493         put_bh(bitmap_bh);
5494 out_dbg:
5495         mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5496                  free, group, grp->bb_free);
5497         return free;
5498 }
5499
5500 /*
5501  * releases all non-used preallocated blocks for given inode
5502  *
5503  * It's important to discard preallocations under i_data_sem
5504  * We don't want another block to be served from the prealloc
5505  * space when we are discarding the inode prealloc space.
5506  *
5507  * FIXME!! Make sure it is valid at all the call sites
5508  */
5509 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5510 {
5511         struct ext4_inode_info *ei = EXT4_I(inode);
5512         struct super_block *sb = inode->i_sb;
5513         struct buffer_head *bitmap_bh = NULL;
5514         struct ext4_prealloc_space *pa, *tmp;
5515         ext4_group_t group = 0;
5516         LIST_HEAD(list);
5517         struct ext4_buddy e4b;
5518         struct rb_node *iter;
5519         int err;
5520
5521         if (!S_ISREG(inode->i_mode)) {
5522                 return;
5523         }
5524
5525         if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5526                 return;
5527
5528         mb_debug(sb, "discard preallocation for inode %lu\n",
5529                  inode->i_ino);
5530         trace_ext4_discard_preallocations(inode,
5531                         atomic_read(&ei->i_prealloc_active), needed);
5532
5533         if (needed == 0)
5534                 needed = UINT_MAX;
5535
5536 repeat:
5537         /* first, collect all pa's in the inode */
5538         write_lock(&ei->i_prealloc_lock);
5539         for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5540              iter = rb_next(iter)) {
5541                 pa = rb_entry(iter, struct ext4_prealloc_space,
5542                               pa_node.inode_node);
5543                 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5544
5545                 spin_lock(&pa->pa_lock);
5546                 if (atomic_read(&pa->pa_count)) {
5547                         /* this shouldn't happen often - nobody should
5548                          * use preallocation while we're discarding it */
5549                         spin_unlock(&pa->pa_lock);
5550                         write_unlock(&ei->i_prealloc_lock);
5551                         ext4_msg(sb, KERN_ERR,
5552                                  "uh-oh! used pa while discarding");
5553                         WARN_ON(1);
5554                         schedule_timeout_uninterruptible(HZ);
5555                         goto repeat;
5556
5557                 }
5558                 if (pa->pa_deleted == 0) {
5559                         ext4_mb_mark_pa_deleted(sb, pa);
5560                         spin_unlock(&pa->pa_lock);
5561                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5562                         list_add(&pa->u.pa_tmp_list, &list);
5563                         needed--;
5564                         continue;
5565                 }
5566
5567                 /* someone is deleting pa right now */
5568                 spin_unlock(&pa->pa_lock);
5569                 write_unlock(&ei->i_prealloc_lock);
5570
5571                 /* we have to wait here because pa_deleted
5572                  * doesn't mean pa is already unlinked from
5573                  * the list. as we might be called from
5574                  * ->clear_inode() the inode will get freed
5575                  * and concurrent thread which is unlinking
5576                  * pa from inode's list may access already
5577                  * freed memory, bad-bad-bad */
5578
5579                 /* XXX: if this happens too often, we can
5580                  * add a flag to force wait only in case
5581                  * of ->clear_inode(), but not in case of
5582                  * regular truncate */
5583                 schedule_timeout_uninterruptible(HZ);
5584                 goto repeat;
5585         }
5586         write_unlock(&ei->i_prealloc_lock);
5587
5588         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5589                 BUG_ON(pa->pa_type != MB_INODE_PA);
5590                 group = ext4_get_group_number(sb, pa->pa_pstart);
5591
5592                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5593                                              GFP_NOFS|__GFP_NOFAIL);
5594                 if (err) {
5595                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5596                                        err, group);
5597                         continue;
5598                 }
5599
5600                 bitmap_bh = ext4_read_block_bitmap(sb, group);
5601                 if (IS_ERR(bitmap_bh)) {
5602                         err = PTR_ERR(bitmap_bh);
5603                         ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5604                                        err, group);
5605                         ext4_mb_unload_buddy(&e4b);
5606                         continue;
5607                 }
5608
5609                 ext4_lock_group(sb, group);
5610                 list_del(&pa->pa_group_list);
5611                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5612                 ext4_unlock_group(sb, group);
5613
5614                 ext4_mb_unload_buddy(&e4b);
5615                 put_bh(bitmap_bh);
5616
5617                 list_del(&pa->u.pa_tmp_list);
5618                 ext4_mb_pa_free(pa);
5619         }
5620 }
5621
5622 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5623 {
5624         struct ext4_prealloc_space *pa;
5625
5626         BUG_ON(ext4_pspace_cachep == NULL);
5627         pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5628         if (!pa)
5629                 return -ENOMEM;
5630         atomic_set(&pa->pa_count, 1);
5631         ac->ac_pa = pa;
5632         return 0;
5633 }
5634
5635 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5636 {
5637         struct ext4_prealloc_space *pa = ac->ac_pa;
5638
5639         BUG_ON(!pa);
5640         ac->ac_pa = NULL;
5641         WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5642         /*
5643          * current function is only called due to an error or due to
5644          * len of found blocks < len of requested blocks hence the PA has not
5645          * been added to grp->bb_prealloc_list. So we don't need to lock it
5646          */
5647         pa->pa_deleted = 1;
5648         ext4_mb_pa_free(pa);
5649 }
5650
5651 #ifdef CONFIG_EXT4_DEBUG
5652 static inline void ext4_mb_show_pa(struct super_block *sb)
5653 {
5654         ext4_group_t i, ngroups;
5655
5656         if (ext4_forced_shutdown(sb))
5657                 return;
5658
5659         ngroups = ext4_get_groups_count(sb);
5660         mb_debug(sb, "groups: ");
5661         for (i = 0; i < ngroups; i++) {
5662                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5663                 struct ext4_prealloc_space *pa;
5664                 ext4_grpblk_t start;
5665                 struct list_head *cur;
5666
5667                 if (!grp)
5668                         continue;
5669                 ext4_lock_group(sb, i);
5670                 list_for_each(cur, &grp->bb_prealloc_list) {
5671                         pa = list_entry(cur, struct ext4_prealloc_space,
5672                                         pa_group_list);
5673                         spin_lock(&pa->pa_lock);
5674                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5675                                                      NULL, &start);
5676                         spin_unlock(&pa->pa_lock);
5677                         mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5678                                  pa->pa_len);
5679                 }
5680                 ext4_unlock_group(sb, i);
5681                 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5682                          grp->bb_fragments);
5683         }
5684 }
5685
5686 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5687 {
5688         struct super_block *sb = ac->ac_sb;
5689
5690         if (ext4_forced_shutdown(sb))
5691                 return;
5692
5693         mb_debug(sb, "Can't allocate:"
5694                         " Allocation context details:");
5695         mb_debug(sb, "status %u flags 0x%x",
5696                         ac->ac_status, ac->ac_flags);
5697         mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5698                         "goal %lu/%lu/%lu@%lu, "
5699                         "best %lu/%lu/%lu@%lu cr %d",
5700                         (unsigned long)ac->ac_o_ex.fe_group,
5701                         (unsigned long)ac->ac_o_ex.fe_start,
5702                         (unsigned long)ac->ac_o_ex.fe_len,
5703                         (unsigned long)ac->ac_o_ex.fe_logical,
5704                         (unsigned long)ac->ac_g_ex.fe_group,
5705                         (unsigned long)ac->ac_g_ex.fe_start,
5706                         (unsigned long)ac->ac_g_ex.fe_len,
5707                         (unsigned long)ac->ac_g_ex.fe_logical,
5708                         (unsigned long)ac->ac_b_ex.fe_group,
5709                         (unsigned long)ac->ac_b_ex.fe_start,
5710                         (unsigned long)ac->ac_b_ex.fe_len,
5711                         (unsigned long)ac->ac_b_ex.fe_logical,
5712                         (int)ac->ac_criteria);
5713         mb_debug(sb, "%u found", ac->ac_found);
5714         mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5715         if (ac->ac_pa)
5716                 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5717                          "group pa" : "inode pa");
5718         ext4_mb_show_pa(sb);
5719 }
5720 #else
5721 static inline void ext4_mb_show_pa(struct super_block *sb)
5722 {
5723 }
5724 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5725 {
5726         ext4_mb_show_pa(ac->ac_sb);
5727 }
5728 #endif
5729
5730 /*
5731  * We use locality group preallocation for small size file. The size of the
5732  * file is determined by the current size or the resulting size after
5733  * allocation which ever is larger
5734  *
5735  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5736  */
5737 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5738 {
5739         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5740         int bsbits = ac->ac_sb->s_blocksize_bits;
5741         loff_t size, isize;
5742         bool inode_pa_eligible, group_pa_eligible;
5743
5744         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5745                 return;
5746
5747         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5748                 return;
5749
5750         group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5751         inode_pa_eligible = true;
5752         size = extent_logical_end(sbi, &ac->ac_o_ex);
5753         isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5754                 >> bsbits;
5755
5756         /* No point in using inode preallocation for closed files */
5757         if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5758             !inode_is_open_for_write(ac->ac_inode))
5759                 inode_pa_eligible = false;
5760
5761         size = max(size, isize);
5762         /* Don't use group allocation for large files */
5763         if (size > sbi->s_mb_stream_request)
5764                 group_pa_eligible = false;
5765
5766         if (!group_pa_eligible) {
5767                 if (inode_pa_eligible)
5768                         ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5769                 else
5770                         ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5771                 return;
5772         }
5773
5774         BUG_ON(ac->ac_lg != NULL);
5775         /*
5776          * locality group prealloc space are per cpu. The reason for having
5777          * per cpu locality group is to reduce the contention between block
5778          * request from multiple CPUs.
5779          */
5780         ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5781
5782         /* we're going to use group allocation */
5783         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5784
5785         /* serialize all allocations in the group */
5786         mutex_lock(&ac->ac_lg->lg_mutex);
5787 }
5788
5789 static noinline_for_stack void
5790 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5791                                 struct ext4_allocation_request *ar)
5792 {
5793         struct super_block *sb = ar->inode->i_sb;
5794         struct ext4_sb_info *sbi = EXT4_SB(sb);
5795         struct ext4_super_block *es = sbi->s_es;
5796         ext4_group_t group;
5797         unsigned int len;
5798         ext4_fsblk_t goal;
5799         ext4_grpblk_t block;
5800
5801         /* we can't allocate > group size */
5802         len = ar->len;
5803
5804         /* just a dirty hack to filter too big requests  */
5805         if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5806                 len = EXT4_CLUSTERS_PER_GROUP(sb);
5807
5808         /* start searching from the goal */
5809         goal = ar->goal;
5810         if (goal < le32_to_cpu(es->s_first_data_block) ||
5811                         goal >= ext4_blocks_count(es))
5812                 goal = le32_to_cpu(es->s_first_data_block);
5813         ext4_get_group_no_and_offset(sb, goal, &group, &block);
5814
5815         /* set up allocation goals */
5816         ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5817         ac->ac_status = AC_STATUS_CONTINUE;
5818         ac->ac_sb = sb;
5819         ac->ac_inode = ar->inode;
5820         ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5821         ac->ac_o_ex.fe_group = group;
5822         ac->ac_o_ex.fe_start = block;
5823         ac->ac_o_ex.fe_len = len;
5824         ac->ac_g_ex = ac->ac_o_ex;
5825         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5826         ac->ac_flags = ar->flags;
5827
5828         /* we have to define context: we'll work with a file or
5829          * locality group. this is a policy, actually */
5830         ext4_mb_group_or_file(ac);
5831
5832         mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5833                         "left: %u/%u, right %u/%u to %swritable\n",
5834                         (unsigned) ar->len, (unsigned) ar->logical,
5835                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5836                         (unsigned) ar->lleft, (unsigned) ar->pleft,
5837                         (unsigned) ar->lright, (unsigned) ar->pright,
5838                         inode_is_open_for_write(ar->inode) ? "" : "non-");
5839 }
5840
5841 static noinline_for_stack void
5842 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5843                                         struct ext4_locality_group *lg,
5844                                         int order, int total_entries)
5845 {
5846         ext4_group_t group = 0;
5847         struct ext4_buddy e4b;
5848         LIST_HEAD(discard_list);
5849         struct ext4_prealloc_space *pa, *tmp;
5850
5851         mb_debug(sb, "discard locality group preallocation\n");
5852
5853         spin_lock(&lg->lg_prealloc_lock);
5854         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5855                                 pa_node.lg_list,
5856                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5857                 spin_lock(&pa->pa_lock);
5858                 if (atomic_read(&pa->pa_count)) {
5859                         /*
5860                          * This is the pa that we just used
5861                          * for block allocation. So don't
5862                          * free that
5863                          */
5864                         spin_unlock(&pa->pa_lock);
5865                         continue;
5866                 }
5867                 if (pa->pa_deleted) {
5868                         spin_unlock(&pa->pa_lock);
5869                         continue;
5870                 }
5871                 /* only lg prealloc space */
5872                 BUG_ON(pa->pa_type != MB_GROUP_PA);
5873
5874                 /* seems this one can be freed ... */
5875                 ext4_mb_mark_pa_deleted(sb, pa);
5876                 spin_unlock(&pa->pa_lock);
5877
5878                 list_del_rcu(&pa->pa_node.lg_list);
5879                 list_add(&pa->u.pa_tmp_list, &discard_list);
5880
5881                 total_entries--;
5882                 if (total_entries <= 5) {
5883                         /*
5884                          * we want to keep only 5 entries
5885                          * allowing it to grow to 8. This
5886                          * mak sure we don't call discard
5887                          * soon for this list.
5888                          */
5889                         break;
5890                 }
5891         }
5892         spin_unlock(&lg->lg_prealloc_lock);
5893
5894         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5895                 int err;
5896
5897                 group = ext4_get_group_number(sb, pa->pa_pstart);
5898                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5899                                              GFP_NOFS|__GFP_NOFAIL);
5900                 if (err) {
5901                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5902                                        err, group);
5903                         continue;
5904                 }
5905                 ext4_lock_group(sb, group);
5906                 list_del(&pa->pa_group_list);
5907                 ext4_mb_release_group_pa(&e4b, pa);
5908                 ext4_unlock_group(sb, group);
5909
5910                 ext4_mb_unload_buddy(&e4b);
5911                 list_del(&pa->u.pa_tmp_list);
5912                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5913         }
5914 }
5915
5916 /*
5917  * We have incremented pa_count. So it cannot be freed at this
5918  * point. Also we hold lg_mutex. So no parallel allocation is
5919  * possible from this lg. That means pa_free cannot be updated.
5920  *
5921  * A parallel ext4_mb_discard_group_preallocations is possible.
5922  * which can cause the lg_prealloc_list to be updated.
5923  */
5924
5925 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5926 {
5927         int order, added = 0, lg_prealloc_count = 1;
5928         struct super_block *sb = ac->ac_sb;
5929         struct ext4_locality_group *lg = ac->ac_lg;
5930         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5931
5932         order = fls(pa->pa_free) - 1;
5933         if (order > PREALLOC_TB_SIZE - 1)
5934                 /* The max size of hash table is PREALLOC_TB_SIZE */
5935                 order = PREALLOC_TB_SIZE - 1;
5936         /* Add the prealloc space to lg */
5937         spin_lock(&lg->lg_prealloc_lock);
5938         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5939                                 pa_node.lg_list,
5940                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5941                 spin_lock(&tmp_pa->pa_lock);
5942                 if (tmp_pa->pa_deleted) {
5943                         spin_unlock(&tmp_pa->pa_lock);
5944                         continue;
5945                 }
5946                 if (!added && pa->pa_free < tmp_pa->pa_free) {
5947                         /* Add to the tail of the previous entry */
5948                         list_add_tail_rcu(&pa->pa_node.lg_list,
5949                                                 &tmp_pa->pa_node.lg_list);
5950                         added = 1;
5951                         /*
5952                          * we want to count the total
5953                          * number of entries in the list
5954                          */
5955                 }
5956                 spin_unlock(&tmp_pa->pa_lock);
5957                 lg_prealloc_count++;
5958         }
5959         if (!added)
5960                 list_add_tail_rcu(&pa->pa_node.lg_list,
5961                                         &lg->lg_prealloc_list[order]);
5962         spin_unlock(&lg->lg_prealloc_lock);
5963
5964         /* Now trim the list to be not more than 8 elements */
5965         if (lg_prealloc_count > 8)
5966                 ext4_mb_discard_lg_preallocations(sb, lg,
5967                                                   order, lg_prealloc_count);
5968 }
5969
5970 /*
5971  * release all resource we used in allocation
5972  */
5973 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5974 {
5975         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5976         struct ext4_prealloc_space *pa = ac->ac_pa;
5977         if (pa) {
5978                 if (pa->pa_type == MB_GROUP_PA) {
5979                         /* see comment in ext4_mb_use_group_pa() */
5980                         spin_lock(&pa->pa_lock);
5981                         pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5982                         pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5983                         pa->pa_free -= ac->ac_b_ex.fe_len;
5984                         pa->pa_len -= ac->ac_b_ex.fe_len;
5985                         spin_unlock(&pa->pa_lock);
5986
5987                         /*
5988                          * We want to add the pa to the right bucket.
5989                          * Remove it from the list and while adding
5990                          * make sure the list to which we are adding
5991                          * doesn't grow big.
5992                          */
5993                         if (likely(pa->pa_free)) {
5994                                 spin_lock(pa->pa_node_lock.lg_lock);
5995                                 list_del_rcu(&pa->pa_node.lg_list);
5996                                 spin_unlock(pa->pa_node_lock.lg_lock);
5997                                 ext4_mb_add_n_trim(ac);
5998                         }
5999                 }
6000
6001                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
6002         }
6003         if (ac->ac_bitmap_page)
6004                 put_page(ac->ac_bitmap_page);
6005         if (ac->ac_buddy_page)
6006                 put_page(ac->ac_buddy_page);
6007         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6008                 mutex_unlock(&ac->ac_lg->lg_mutex);
6009         ext4_mb_collect_stats(ac);
6010         return 0;
6011 }
6012
6013 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6014 {
6015         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6016         int ret;
6017         int freed = 0, busy = 0;
6018         int retry = 0;
6019
6020         trace_ext4_mb_discard_preallocations(sb, needed);
6021
6022         if (needed == 0)
6023                 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6024  repeat:
6025         for (i = 0; i < ngroups && needed > 0; i++) {
6026                 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6027                 freed += ret;
6028                 needed -= ret;
6029                 cond_resched();
6030         }
6031
6032         if (needed > 0 && busy && ++retry < 3) {
6033                 busy = 0;
6034                 goto repeat;
6035         }
6036
6037         return freed;
6038 }
6039
6040 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6041                         struct ext4_allocation_context *ac, u64 *seq)
6042 {
6043         int freed;
6044         u64 seq_retry = 0;
6045         bool ret = false;
6046
6047         freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6048         if (freed) {
6049                 ret = true;
6050                 goto out_dbg;
6051         }
6052         seq_retry = ext4_get_discard_pa_seq_sum();
6053         if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6054                 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6055                 *seq = seq_retry;
6056                 ret = true;
6057         }
6058
6059 out_dbg:
6060         mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6061         return ret;
6062 }
6063
6064 /*
6065  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6066  * linearly starting at the goal block and also excludes the blocks which
6067  * are going to be in use after fast commit replay.
6068  */
6069 static ext4_fsblk_t
6070 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6071 {
6072         struct buffer_head *bitmap_bh;
6073         struct super_block *sb = ar->inode->i_sb;
6074         struct ext4_sb_info *sbi = EXT4_SB(sb);
6075         ext4_group_t group, nr;
6076         ext4_grpblk_t blkoff;
6077         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6078         ext4_grpblk_t i = 0;
6079         ext4_fsblk_t goal, block;
6080         struct ext4_super_block *es = sbi->s_es;
6081
6082         goal = ar->goal;
6083         if (goal < le32_to_cpu(es->s_first_data_block) ||
6084                         goal >= ext4_blocks_count(es))
6085                 goal = le32_to_cpu(es->s_first_data_block);
6086
6087         ar->len = 0;
6088         ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6089         for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6090                 bitmap_bh = ext4_read_block_bitmap(sb, group);
6091                 if (IS_ERR(bitmap_bh)) {
6092                         *errp = PTR_ERR(bitmap_bh);
6093                         pr_warn("Failed to read block bitmap\n");
6094                         return 0;
6095                 }
6096
6097                 while (1) {
6098                         i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6099                                                 blkoff);
6100                         if (i >= max)
6101                                 break;
6102                         if (ext4_fc_replay_check_excluded(sb,
6103                                 ext4_group_first_block_no(sb, group) +
6104                                 EXT4_C2B(sbi, i))) {
6105                                 blkoff = i + 1;
6106                         } else
6107                                 break;
6108                 }
6109                 brelse(bitmap_bh);
6110                 if (i < max)
6111                         break;
6112
6113                 if (++group >= ext4_get_groups_count(sb))
6114                         group = 0;
6115
6116                 blkoff = 0;
6117         }
6118
6119         if (i >= max) {
6120                 *errp = -ENOSPC;
6121                 return 0;
6122         }
6123
6124         block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6125         ext4_mb_mark_bb(sb, block, 1, true);
6126         ar->len = 1;
6127
6128         return block;
6129 }
6130
6131 /*
6132  * Main entry point into mballoc to allocate blocks
6133  * it tries to use preallocation first, then falls back
6134  * to usual allocation
6135  */
6136 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6137                                 struct ext4_allocation_request *ar, int *errp)
6138 {
6139         struct ext4_allocation_context *ac = NULL;
6140         struct ext4_sb_info *sbi;
6141         struct super_block *sb;
6142         ext4_fsblk_t block = 0;
6143         unsigned int inquota = 0;
6144         unsigned int reserv_clstrs = 0;
6145         int retries = 0;
6146         u64 seq;
6147
6148         might_sleep();
6149         sb = ar->inode->i_sb;
6150         sbi = EXT4_SB(sb);
6151
6152         trace_ext4_request_blocks(ar);
6153         if (sbi->s_mount_state & EXT4_FC_REPLAY)
6154                 return ext4_mb_new_blocks_simple(ar, errp);
6155
6156         /* Allow to use superuser reservation for quota file */
6157         if (ext4_is_quota_file(ar->inode))
6158                 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6159
6160         if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6161                 /* Without delayed allocation we need to verify
6162                  * there is enough free blocks to do block allocation
6163                  * and verify allocation doesn't exceed the quota limits.
6164                  */
6165                 while (ar->len &&
6166                         ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6167
6168                         /* let others to free the space */
6169                         cond_resched();
6170                         ar->len = ar->len >> 1;
6171                 }
6172                 if (!ar->len) {
6173                         ext4_mb_show_pa(sb);
6174                         *errp = -ENOSPC;
6175                         return 0;
6176                 }
6177                 reserv_clstrs = ar->len;
6178                 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6179                         dquot_alloc_block_nofail(ar->inode,
6180                                                  EXT4_C2B(sbi, ar->len));
6181                 } else {
6182                         while (ar->len &&
6183                                 dquot_alloc_block(ar->inode,
6184                                                   EXT4_C2B(sbi, ar->len))) {
6185
6186                                 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6187                                 ar->len--;
6188                         }
6189                 }
6190                 inquota = ar->len;
6191                 if (ar->len == 0) {
6192                         *errp = -EDQUOT;
6193                         goto out;
6194                 }
6195         }
6196
6197         ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6198         if (!ac) {
6199                 ar->len = 0;
6200                 *errp = -ENOMEM;
6201                 goto out;
6202         }
6203
6204         ext4_mb_initialize_context(ac, ar);
6205
6206         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6207         seq = this_cpu_read(discard_pa_seq);
6208         if (!ext4_mb_use_preallocated(ac)) {
6209                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6210                 ext4_mb_normalize_request(ac, ar);
6211
6212                 *errp = ext4_mb_pa_alloc(ac);
6213                 if (*errp)
6214                         goto errout;
6215 repeat:
6216                 /* allocate space in core */
6217                 *errp = ext4_mb_regular_allocator(ac);
6218                 /*
6219                  * pa allocated above is added to grp->bb_prealloc_list only
6220                  * when we were able to allocate some block i.e. when
6221                  * ac->ac_status == AC_STATUS_FOUND.
6222                  * And error from above mean ac->ac_status != AC_STATUS_FOUND
6223                  * So we have to free this pa here itself.
6224                  */
6225                 if (*errp) {
6226                         ext4_mb_pa_put_free(ac);
6227                         ext4_discard_allocated_blocks(ac);
6228                         goto errout;
6229                 }
6230                 if (ac->ac_status == AC_STATUS_FOUND &&
6231                         ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6232                         ext4_mb_pa_put_free(ac);
6233         }
6234         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6235                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6236                 if (*errp) {
6237                         ext4_discard_allocated_blocks(ac);
6238                         goto errout;
6239                 } else {
6240                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6241                         ar->len = ac->ac_b_ex.fe_len;
6242                 }
6243         } else {
6244                 if (++retries < 3 &&
6245                     ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6246                         goto repeat;
6247                 /*
6248                  * If block allocation fails then the pa allocated above
6249                  * needs to be freed here itself.
6250                  */
6251                 ext4_mb_pa_put_free(ac);
6252                 *errp = -ENOSPC;
6253         }
6254
6255         if (*errp) {
6256 errout:
6257                 ac->ac_b_ex.fe_len = 0;
6258                 ar->len = 0;
6259                 ext4_mb_show_ac(ac);
6260         }
6261         ext4_mb_release_context(ac);
6262         kmem_cache_free(ext4_ac_cachep, ac);
6263 out:
6264         if (inquota && ar->len < inquota)
6265                 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6266         if (!ar->len) {
6267                 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6268                         /* release all the reserved blocks if non delalloc */
6269                         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6270                                                 reserv_clstrs);
6271         }
6272
6273         trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6274
6275         return block;
6276 }
6277
6278 /*
6279  * We can merge two free data extents only if the physical blocks
6280  * are contiguous, AND the extents were freed by the same transaction,
6281  * AND the blocks are associated with the same group.
6282  */
6283 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6284                                         struct ext4_free_data *entry,
6285                                         struct ext4_free_data *new_entry,
6286                                         struct rb_root *entry_rb_root)
6287 {
6288         if ((entry->efd_tid != new_entry->efd_tid) ||
6289             (entry->efd_group != new_entry->efd_group))
6290                 return;
6291         if (entry->efd_start_cluster + entry->efd_count ==
6292             new_entry->efd_start_cluster) {
6293                 new_entry->efd_start_cluster = entry->efd_start_cluster;
6294                 new_entry->efd_count += entry->efd_count;
6295         } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6296                    entry->efd_start_cluster) {
6297                 new_entry->efd_count += entry->efd_count;
6298         } else
6299                 return;
6300         spin_lock(&sbi->s_md_lock);
6301         list_del(&entry->efd_list);
6302         spin_unlock(&sbi->s_md_lock);
6303         rb_erase(&entry->efd_node, entry_rb_root);
6304         kmem_cache_free(ext4_free_data_cachep, entry);
6305 }
6306
6307 static noinline_for_stack void
6308 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6309                       struct ext4_free_data *new_entry)
6310 {
6311         ext4_group_t group = e4b->bd_group;
6312         ext4_grpblk_t cluster;
6313         ext4_grpblk_t clusters = new_entry->efd_count;
6314         struct ext4_free_data *entry;
6315         struct ext4_group_info *db = e4b->bd_info;
6316         struct super_block *sb = e4b->bd_sb;
6317         struct ext4_sb_info *sbi = EXT4_SB(sb);
6318         struct rb_node **n = &db->bb_free_root.rb_node, *node;
6319         struct rb_node *parent = NULL, *new_node;
6320
6321         BUG_ON(!ext4_handle_valid(handle));
6322         BUG_ON(e4b->bd_bitmap_page == NULL);
6323         BUG_ON(e4b->bd_buddy_page == NULL);
6324
6325         new_node = &new_entry->efd_node;
6326         cluster = new_entry->efd_start_cluster;
6327
6328         if (!*n) {
6329                 /* first free block exent. We need to
6330                    protect buddy cache from being freed,
6331                  * otherwise we'll refresh it from
6332                  * on-disk bitmap and lose not-yet-available
6333                  * blocks */
6334                 get_page(e4b->bd_buddy_page);
6335                 get_page(e4b->bd_bitmap_page);
6336         }
6337         while (*n) {
6338                 parent = *n;
6339                 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6340                 if (cluster < entry->efd_start_cluster)
6341                         n = &(*n)->rb_left;
6342                 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6343                         n = &(*n)->rb_right;
6344                 else {
6345                         ext4_grp_locked_error(sb, group, 0,
6346                                 ext4_group_first_block_no(sb, group) +
6347                                 EXT4_C2B(sbi, cluster),
6348                                 "Block already on to-be-freed list");
6349                         kmem_cache_free(ext4_free_data_cachep, new_entry);
6350                         return;
6351                 }
6352         }
6353
6354         rb_link_node(new_node, parent, n);
6355         rb_insert_color(new_node, &db->bb_free_root);
6356
6357         /* Now try to see the extent can be merged to left and right */
6358         node = rb_prev(new_node);
6359         if (node) {
6360                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6361                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6362                                             &(db->bb_free_root));
6363         }
6364
6365         node = rb_next(new_node);
6366         if (node) {
6367                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6368                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6369                                             &(db->bb_free_root));
6370         }
6371
6372         spin_lock(&sbi->s_md_lock);
6373         list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6374         sbi->s_mb_free_pending += clusters;
6375         spin_unlock(&sbi->s_md_lock);
6376 }
6377
6378 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6379                                         unsigned long count)
6380 {
6381         struct super_block *sb = inode->i_sb;
6382         ext4_group_t group;
6383         ext4_grpblk_t blkoff;
6384
6385         ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6386         ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6387                              EXT4_MB_BITMAP_MARKED_CHECK |
6388                              EXT4_MB_SYNC_UPDATE,
6389                              NULL);
6390 }
6391
6392 /**
6393  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6394  *                      Used by ext4_free_blocks()
6395  * @handle:             handle for this transaction
6396  * @inode:              inode
6397  * @block:              starting physical block to be freed
6398  * @count:              number of blocks to be freed
6399  * @flags:              flags used by ext4_free_blocks
6400  */
6401 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6402                                ext4_fsblk_t block, unsigned long count,
6403                                int flags)
6404 {
6405         struct super_block *sb = inode->i_sb;
6406         struct ext4_group_info *grp;
6407         unsigned int overflow;
6408         ext4_grpblk_t bit;
6409         ext4_group_t block_group;
6410         struct ext4_sb_info *sbi;
6411         struct ext4_buddy e4b;
6412         unsigned int count_clusters;
6413         int err = 0;
6414         int mark_flags = 0;
6415         ext4_grpblk_t changed;
6416
6417         sbi = EXT4_SB(sb);
6418
6419         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6420             !ext4_inode_block_valid(inode, block, count)) {
6421                 ext4_error(sb, "Freeing blocks in system zone - "
6422                            "Block = %llu, count = %lu", block, count);
6423                 /* err = 0. ext4_std_error should be a no op */
6424                 goto error_out;
6425         }
6426         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6427
6428 do_more:
6429         overflow = 0;
6430         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6431
6432         grp = ext4_get_group_info(sb, block_group);
6433         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6434                 return;
6435
6436         /*
6437          * Check to see if we are freeing blocks across a group
6438          * boundary.
6439          */
6440         if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6441                 overflow = EXT4_C2B(sbi, bit) + count -
6442                         EXT4_BLOCKS_PER_GROUP(sb);
6443                 count -= overflow;
6444                 /* The range changed so it's no longer validated */
6445                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6446         }
6447         count_clusters = EXT4_NUM_B2C(sbi, count);
6448         trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6449
6450         /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6451         err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6452                                      GFP_NOFS|__GFP_NOFAIL);
6453         if (err)
6454                 goto error_out;
6455
6456         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6457             !ext4_inode_block_valid(inode, block, count)) {
6458                 ext4_error(sb, "Freeing blocks in system zone - "
6459                            "Block = %llu, count = %lu", block, count);
6460                 /* err = 0. ext4_std_error should be a no op */
6461                 goto error_clean;
6462         }
6463
6464 #ifdef AGGRESSIVE_CHECK
6465         mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6466 #endif
6467         err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6468                                    count_clusters, mark_flags, &changed);
6469
6470
6471         if (err && changed == 0)
6472                 goto error_clean;
6473
6474 #ifdef AGGRESSIVE_CHECK
6475         BUG_ON(changed != count_clusters);
6476 #endif
6477
6478         /*
6479          * We need to make sure we don't reuse the freed block until after the
6480          * transaction is committed. We make an exception if the inode is to be
6481          * written in writeback mode since writeback mode has weak data
6482          * consistency guarantees.
6483          */
6484         if (ext4_handle_valid(handle) &&
6485             ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6486              !ext4_should_writeback_data(inode))) {
6487                 struct ext4_free_data *new_entry;
6488                 /*
6489                  * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6490                  * to fail.
6491                  */
6492                 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6493                                 GFP_NOFS|__GFP_NOFAIL);
6494                 new_entry->efd_start_cluster = bit;
6495                 new_entry->efd_group = block_group;
6496                 new_entry->efd_count = count_clusters;
6497                 new_entry->efd_tid = handle->h_transaction->t_tid;
6498
6499                 ext4_lock_group(sb, block_group);
6500                 ext4_mb_free_metadata(handle, &e4b, new_entry);
6501         } else {
6502                 if (test_opt(sb, DISCARD)) {
6503                         err = ext4_issue_discard(sb, block_group, bit,
6504                                                  count_clusters, NULL);
6505                         if (err && err != -EOPNOTSUPP)
6506                                 ext4_msg(sb, KERN_WARNING, "discard request in"
6507                                          " group:%u block:%d count:%lu failed"
6508                                          " with %d", block_group, bit, count,
6509                                          err);
6510                 } else
6511                         EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6512
6513                 ext4_lock_group(sb, block_group);
6514                 mb_free_blocks(inode, &e4b, bit, count_clusters);
6515         }
6516
6517         ext4_unlock_group(sb, block_group);
6518
6519         /*
6520          * on a bigalloc file system, defer the s_freeclusters_counter
6521          * update to the caller (ext4_remove_space and friends) so they
6522          * can determine if a cluster freed here should be rereserved
6523          */
6524         if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6525                 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6526                         dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6527                 percpu_counter_add(&sbi->s_freeclusters_counter,
6528                                    count_clusters);
6529         }
6530
6531         if (overflow && !err) {
6532                 block += count;
6533                 count = overflow;
6534                 ext4_mb_unload_buddy(&e4b);
6535                 /* The range changed so it's no longer validated */
6536                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6537                 goto do_more;
6538         }
6539
6540 error_clean:
6541         ext4_mb_unload_buddy(&e4b);
6542 error_out:
6543         ext4_std_error(sb, err);
6544 }
6545
6546 /**
6547  * ext4_free_blocks() -- Free given blocks and update quota
6548  * @handle:             handle for this transaction
6549  * @inode:              inode
6550  * @bh:                 optional buffer of the block to be freed
6551  * @block:              starting physical block to be freed
6552  * @count:              number of blocks to be freed
6553  * @flags:              flags used by ext4_free_blocks
6554  */
6555 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6556                       struct buffer_head *bh, ext4_fsblk_t block,
6557                       unsigned long count, int flags)
6558 {
6559         struct super_block *sb = inode->i_sb;
6560         unsigned int overflow;
6561         struct ext4_sb_info *sbi;
6562
6563         sbi = EXT4_SB(sb);
6564
6565         if (bh) {
6566                 if (block)
6567                         BUG_ON(block != bh->b_blocknr);
6568                 else
6569                         block = bh->b_blocknr;
6570         }
6571
6572         if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6573                 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6574                 return;
6575         }
6576
6577         might_sleep();
6578
6579         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6580             !ext4_inode_block_valid(inode, block, count)) {
6581                 ext4_error(sb, "Freeing blocks not in datazone - "
6582                            "block = %llu, count = %lu", block, count);
6583                 return;
6584         }
6585         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6586
6587         ext4_debug("freeing block %llu\n", block);
6588         trace_ext4_free_blocks(inode, block, count, flags);
6589
6590         if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6591                 BUG_ON(count > 1);
6592
6593                 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6594                             inode, bh, block);
6595         }
6596
6597         /*
6598          * If the extent to be freed does not begin on a cluster
6599          * boundary, we need to deal with partial clusters at the
6600          * beginning and end of the extent.  Normally we will free
6601          * blocks at the beginning or the end unless we are explicitly
6602          * requested to avoid doing so.
6603          */
6604         overflow = EXT4_PBLK_COFF(sbi, block);
6605         if (overflow) {
6606                 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6607                         overflow = sbi->s_cluster_ratio - overflow;
6608                         block += overflow;
6609                         if (count > overflow)
6610                                 count -= overflow;
6611                         else
6612                                 return;
6613                 } else {
6614                         block -= overflow;
6615                         count += overflow;
6616                 }
6617                 /* The range changed so it's no longer validated */
6618                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6619         }
6620         overflow = EXT4_LBLK_COFF(sbi, count);
6621         if (overflow) {
6622                 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6623                         if (count > overflow)
6624                                 count -= overflow;
6625                         else
6626                                 return;
6627                 } else
6628                         count += sbi->s_cluster_ratio - overflow;
6629                 /* The range changed so it's no longer validated */
6630                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6631         }
6632
6633         if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6634                 int i;
6635                 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6636
6637                 for (i = 0; i < count; i++) {
6638                         cond_resched();
6639                         if (is_metadata)
6640                                 bh = sb_find_get_block(inode->i_sb, block + i);
6641                         ext4_forget(handle, is_metadata, inode, bh, block + i);
6642                 }
6643         }
6644
6645         ext4_mb_clear_bb(handle, inode, block, count, flags);
6646 }
6647
6648 /**
6649  * ext4_group_add_blocks() -- Add given blocks to an existing group
6650  * @handle:                     handle to this transaction
6651  * @sb:                         super block
6652  * @block:                      start physical block to add to the block group
6653  * @count:                      number of blocks to free
6654  *
6655  * This marks the blocks as free in the bitmap and buddy.
6656  */
6657 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6658                          ext4_fsblk_t block, unsigned long count)
6659 {
6660         ext4_group_t block_group;
6661         ext4_grpblk_t bit;
6662         struct ext4_sb_info *sbi = EXT4_SB(sb);
6663         struct ext4_buddy e4b;
6664         int err = 0;
6665         ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6666         ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6667         unsigned long cluster_count = last_cluster - first_cluster + 1;
6668         ext4_grpblk_t changed;
6669
6670         ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6671
6672         if (cluster_count == 0)
6673                 return 0;
6674
6675         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6676         /*
6677          * Check to see if we are freeing blocks across a group
6678          * boundary.
6679          */
6680         if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6681                 ext4_warning(sb, "too many blocks added to group %u",
6682                              block_group);
6683                 err = -EINVAL;
6684                 goto error_out;
6685         }
6686
6687         err = ext4_mb_load_buddy(sb, block_group, &e4b);
6688         if (err)
6689                 goto error_out;
6690
6691         if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6692                 ext4_error(sb, "Adding blocks in system zones - "
6693                            "Block = %llu, count = %lu",
6694                            block, count);
6695                 err = -EINVAL;
6696                 goto error_clean;
6697         }
6698
6699         err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6700                                    cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6701                                    &changed);
6702         if (err && changed == 0)
6703                 goto error_clean;
6704
6705         if (changed != cluster_count)
6706                 ext4_error(sb, "bit already cleared in group %u", block_group);
6707
6708         ext4_lock_group(sb, block_group);
6709         mb_free_blocks(NULL, &e4b, bit, cluster_count);
6710         ext4_unlock_group(sb, block_group);
6711         percpu_counter_add(&sbi->s_freeclusters_counter,
6712                            changed);
6713
6714 error_clean:
6715         ext4_mb_unload_buddy(&e4b);
6716 error_out:
6717         ext4_std_error(sb, err);
6718         return err;
6719 }
6720
6721 /**
6722  * ext4_trim_extent -- function to TRIM one single free extent in the group
6723  * @sb:         super block for the file system
6724  * @start:      starting block of the free extent in the alloc. group
6725  * @count:      number of blocks to TRIM
6726  * @e4b:        ext4 buddy for the group
6727  *
6728  * Trim "count" blocks starting at "start" in the "group". To assure that no
6729  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6730  * be called with under the group lock.
6731  */
6732 static int ext4_trim_extent(struct super_block *sb,
6733                 int start, int count, struct ext4_buddy *e4b)
6734 __releases(bitlock)
6735 __acquires(bitlock)
6736 {
6737         struct ext4_free_extent ex;
6738         ext4_group_t group = e4b->bd_group;
6739         int ret = 0;
6740
6741         trace_ext4_trim_extent(sb, group, start, count);
6742
6743         assert_spin_locked(ext4_group_lock_ptr(sb, group));
6744
6745         ex.fe_start = start;
6746         ex.fe_group = group;
6747         ex.fe_len = count;
6748
6749         /*
6750          * Mark blocks used, so no one can reuse them while
6751          * being trimmed.
6752          */
6753         mb_mark_used(e4b, &ex);
6754         ext4_unlock_group(sb, group);
6755         ret = ext4_issue_discard(sb, group, start, count, NULL);
6756         ext4_lock_group(sb, group);
6757         mb_free_blocks(NULL, e4b, start, ex.fe_len);
6758         return ret;
6759 }
6760
6761 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6762                                            ext4_group_t grp)
6763 {
6764         unsigned long nr_clusters_in_group;
6765
6766         if (grp < (ext4_get_groups_count(sb) - 1))
6767                 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6768         else
6769                 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6770                                         ext4_group_first_block_no(sb, grp))
6771                                        >> EXT4_CLUSTER_BITS(sb);
6772
6773         return nr_clusters_in_group - 1;
6774 }
6775
6776 static bool ext4_trim_interrupted(void)
6777 {
6778         return fatal_signal_pending(current) || freezing(current);
6779 }
6780
6781 static int ext4_try_to_trim_range(struct super_block *sb,
6782                 struct ext4_buddy *e4b, ext4_grpblk_t start,
6783                 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6784 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6785 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6786 {
6787         ext4_grpblk_t next, count, free_count, last, origin_start;
6788         bool set_trimmed = false;
6789         void *bitmap;
6790
6791         last = ext4_last_grp_cluster(sb, e4b->bd_group);
6792         bitmap = e4b->bd_bitmap;
6793         if (start == 0 && max >= last)
6794                 set_trimmed = true;
6795         origin_start = start;
6796         start = max(e4b->bd_info->bb_first_free, start);
6797         count = 0;
6798         free_count = 0;
6799
6800         while (start <= max) {
6801                 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6802                 if (start > max)
6803                         break;
6804
6805                 next = mb_find_next_bit(bitmap, last + 1, start);
6806                 if (origin_start == 0 && next >= last)
6807                         set_trimmed = true;
6808
6809                 if ((next - start) >= minblocks) {
6810                         int ret = ext4_trim_extent(sb, start, next - start, e4b);
6811
6812                         if (ret && ret != -EOPNOTSUPP)
6813                                 return count;
6814                         count += next - start;
6815                 }
6816                 free_count += next - start;
6817                 start = next + 1;
6818
6819                 if (ext4_trim_interrupted())
6820                         return count;
6821
6822                 if (need_resched()) {
6823                         ext4_unlock_group(sb, e4b->bd_group);
6824                         cond_resched();
6825                         ext4_lock_group(sb, e4b->bd_group);
6826                 }
6827
6828                 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6829                         break;
6830         }
6831
6832         if (set_trimmed)
6833                 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6834
6835         return count;
6836 }
6837
6838 /**
6839  * ext4_trim_all_free -- function to trim all free space in alloc. group
6840  * @sb:                 super block for file system
6841  * @group:              group to be trimmed
6842  * @start:              first group block to examine
6843  * @max:                last group block to examine
6844  * @minblocks:          minimum extent block count
6845  *
6846  * ext4_trim_all_free walks through group's block bitmap searching for free
6847  * extents. When the free extent is found, mark it as used in group buddy
6848  * bitmap. Then issue a TRIM command on this extent and free the extent in
6849  * the group buddy bitmap.
6850  */
6851 static ext4_grpblk_t
6852 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6853                    ext4_grpblk_t start, ext4_grpblk_t max,
6854                    ext4_grpblk_t minblocks)
6855 {
6856         struct ext4_buddy e4b;
6857         int ret;
6858
6859         trace_ext4_trim_all_free(sb, group, start, max);
6860
6861         ret = ext4_mb_load_buddy(sb, group, &e4b);
6862         if (ret) {
6863                 ext4_warning(sb, "Error %d loading buddy information for %u",
6864                              ret, group);
6865                 return ret;
6866         }
6867
6868         ext4_lock_group(sb, group);
6869
6870         if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6871             minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6872                 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6873         else
6874                 ret = 0;
6875
6876         ext4_unlock_group(sb, group);
6877         ext4_mb_unload_buddy(&e4b);
6878
6879         ext4_debug("trimmed %d blocks in the group %d\n",
6880                 ret, group);
6881
6882         return ret;
6883 }
6884
6885 /**
6886  * ext4_trim_fs() -- trim ioctl handle function
6887  * @sb:                 superblock for filesystem
6888  * @range:              fstrim_range structure
6889  *
6890  * start:       First Byte to trim
6891  * len:         number of Bytes to trim from start
6892  * minlen:      minimum extent length in Bytes
6893  * ext4_trim_fs goes through all allocation groups containing Bytes from
6894  * start to start+len. For each such a group ext4_trim_all_free function
6895  * is invoked to trim all free space.
6896  */
6897 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6898 {
6899         unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6900         struct ext4_group_info *grp;
6901         ext4_group_t group, first_group, last_group;
6902         ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6903         uint64_t start, end, minlen, trimmed = 0;
6904         ext4_fsblk_t first_data_blk =
6905                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6906         ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6907         int ret = 0;
6908
6909         start = range->start >> sb->s_blocksize_bits;
6910         end = start + (range->len >> sb->s_blocksize_bits) - 1;
6911         minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6912                               range->minlen >> sb->s_blocksize_bits);
6913
6914         if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6915             start >= max_blks ||
6916             range->len < sb->s_blocksize)
6917                 return -EINVAL;
6918         /* No point to try to trim less than discard granularity */
6919         if (range->minlen < discard_granularity) {
6920                 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6921                                 discard_granularity >> sb->s_blocksize_bits);
6922                 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6923                         goto out;
6924         }
6925         if (end >= max_blks - 1)
6926                 end = max_blks - 1;
6927         if (end <= first_data_blk)
6928                 goto out;
6929         if (start < first_data_blk)
6930                 start = first_data_blk;
6931
6932         /* Determine first and last group to examine based on start and end */
6933         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6934                                      &first_group, &first_cluster);
6935         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6936                                      &last_group, &last_cluster);
6937
6938         /* end now represents the last cluster to discard in this group */
6939         end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6940
6941         for (group = first_group; group <= last_group; group++) {
6942                 if (ext4_trim_interrupted())
6943                         break;
6944                 grp = ext4_get_group_info(sb, group);
6945                 if (!grp)
6946                         continue;
6947                 /* We only do this if the grp has never been initialized */
6948                 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6949                         ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6950                         if (ret)
6951                                 break;
6952                 }
6953
6954                 /*
6955                  * For all the groups except the last one, last cluster will
6956                  * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6957                  * change it for the last group, note that last_cluster is
6958                  * already computed earlier by ext4_get_group_no_and_offset()
6959                  */
6960                 if (group == last_group)
6961                         end = last_cluster;
6962                 if (grp->bb_free >= minlen) {
6963                         cnt = ext4_trim_all_free(sb, group, first_cluster,
6964                                                  end, minlen);
6965                         if (cnt < 0) {
6966                                 ret = cnt;
6967                                 break;
6968                         }
6969                         trimmed += cnt;
6970                 }
6971
6972                 /*
6973                  * For every group except the first one, we are sure
6974                  * that the first cluster to discard will be cluster #0.
6975                  */
6976                 first_cluster = 0;
6977         }
6978
6979         if (!ret)
6980                 EXT4_SB(sb)->s_last_trim_minblks = minlen;
6981
6982 out:
6983         range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6984         return ret;
6985 }
6986
6987 /* Iterate all the free extents in the group. */
6988 int
6989 ext4_mballoc_query_range(
6990         struct super_block              *sb,
6991         ext4_group_t                    group,
6992         ext4_grpblk_t                   start,
6993         ext4_grpblk_t                   end,
6994         ext4_mballoc_query_range_fn     formatter,
6995         void                            *priv)
6996 {
6997         void                            *bitmap;
6998         ext4_grpblk_t                   next;
6999         struct ext4_buddy               e4b;
7000         int                             error;
7001
7002         error = ext4_mb_load_buddy(sb, group, &e4b);
7003         if (error)
7004                 return error;
7005         bitmap = e4b.bd_bitmap;
7006
7007         ext4_lock_group(sb, group);
7008
7009         start = max(e4b.bd_info->bb_first_free, start);
7010         if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7011                 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7012
7013         while (start <= end) {
7014                 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7015                 if (start > end)
7016                         break;
7017                 next = mb_find_next_bit(bitmap, end + 1, start);
7018
7019                 ext4_unlock_group(sb, group);
7020                 error = formatter(sb, group, start, next - start, priv);
7021                 if (error)
7022                         goto out_unload;
7023                 ext4_lock_group(sb, group);
7024
7025                 start = next + 1;
7026         }
7027
7028         ext4_unlock_group(sb, group);
7029 out_unload:
7030         ext4_mb_unload_buddy(&e4b);
7031
7032         return error;
7033 }
7034
7035 #ifdef CONFIG_EXT4_KUNIT_TESTS
7036 #include "mballoc-test.c"
7037 #endif