Mention branches and keyring.
[releases.git] / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58
59 #include <asm/sections.h>
60
61 #include "lockdep_internals.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82
83 static __always_inline bool lockdep_enabled(void)
84 {
85         if (!debug_locks)
86                 return false;
87
88         if (this_cpu_read(lockdep_recursion))
89                 return false;
90
91         if (current->lockdep_recursion)
92                 return false;
93
94         return true;
95 }
96
97 /*
98  * lockdep_lock: protects the lockdep graph, the hashes and the
99  *               class/list/hash allocators.
100  *
101  * This is one of the rare exceptions where it's justified
102  * to use a raw spinlock - we really dont want the spinlock
103  * code to recurse back into the lockdep code...
104  */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107
108 static inline void lockdep_lock(void)
109 {
110         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111
112         __this_cpu_inc(lockdep_recursion);
113         arch_spin_lock(&__lock);
114         __owner = current;
115 }
116
117 static inline void lockdep_unlock(void)
118 {
119         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120
121         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122                 return;
123
124         __owner = NULL;
125         arch_spin_unlock(&__lock);
126         __this_cpu_dec(lockdep_recursion);
127 }
128
129 static inline bool lockdep_assert_locked(void)
130 {
131         return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133
134 static struct task_struct *lockdep_selftest_task_struct;
135
136
137 static int graph_lock(void)
138 {
139         lockdep_lock();
140         /*
141          * Make sure that if another CPU detected a bug while
142          * walking the graph we dont change it (while the other
143          * CPU is busy printing out stuff with the graph lock
144          * dropped already)
145          */
146         if (!debug_locks) {
147                 lockdep_unlock();
148                 return 0;
149         }
150         return 1;
151 }
152
153 static inline void graph_unlock(void)
154 {
155         lockdep_unlock();
156 }
157
158 /*
159  * Turn lock debugging off and return with 0 if it was off already,
160  * and also release the graph lock:
161  */
162 static inline int debug_locks_off_graph_unlock(void)
163 {
164         int ret = debug_locks_off();
165
166         lockdep_unlock();
167
168         return ret;
169 }
170
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174
175 /*
176  * All data structures here are protected by the global debug_lock.
177  *
178  * nr_lock_classes is the number of elements of lock_classes[] that is
179  * in use.
180  */
181 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 #ifndef CONFIG_DEBUG_LOCKDEP
187 static
188 #endif
189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
191
192 static inline struct lock_class *hlock_class(struct held_lock *hlock)
193 {
194         unsigned int class_idx = hlock->class_idx;
195
196         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
197         barrier();
198
199         if (!test_bit(class_idx, lock_classes_in_use)) {
200                 /*
201                  * Someone passed in garbage, we give up.
202                  */
203                 DEBUG_LOCKS_WARN_ON(1);
204                 return NULL;
205         }
206
207         /*
208          * At this point, if the passed hlock->class_idx is still garbage,
209          * we just have to live with it
210          */
211         return lock_classes + class_idx;
212 }
213
214 #ifdef CONFIG_LOCK_STAT
215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
216
217 static inline u64 lockstat_clock(void)
218 {
219         return local_clock();
220 }
221
222 static int lock_point(unsigned long points[], unsigned long ip)
223 {
224         int i;
225
226         for (i = 0; i < LOCKSTAT_POINTS; i++) {
227                 if (points[i] == 0) {
228                         points[i] = ip;
229                         break;
230                 }
231                 if (points[i] == ip)
232                         break;
233         }
234
235         return i;
236 }
237
238 static void lock_time_inc(struct lock_time *lt, u64 time)
239 {
240         if (time > lt->max)
241                 lt->max = time;
242
243         if (time < lt->min || !lt->nr)
244                 lt->min = time;
245
246         lt->total += time;
247         lt->nr++;
248 }
249
250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
251 {
252         if (!src->nr)
253                 return;
254
255         if (src->max > dst->max)
256                 dst->max = src->max;
257
258         if (src->min < dst->min || !dst->nr)
259                 dst->min = src->min;
260
261         dst->total += src->total;
262         dst->nr += src->nr;
263 }
264
265 struct lock_class_stats lock_stats(struct lock_class *class)
266 {
267         struct lock_class_stats stats;
268         int cpu, i;
269
270         memset(&stats, 0, sizeof(struct lock_class_stats));
271         for_each_possible_cpu(cpu) {
272                 struct lock_class_stats *pcs =
273                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
274
275                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
276                         stats.contention_point[i] += pcs->contention_point[i];
277
278                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
279                         stats.contending_point[i] += pcs->contending_point[i];
280
281                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
282                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
283
284                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
285                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
286
287                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
288                         stats.bounces[i] += pcs->bounces[i];
289         }
290
291         return stats;
292 }
293
294 void clear_lock_stats(struct lock_class *class)
295 {
296         int cpu;
297
298         for_each_possible_cpu(cpu) {
299                 struct lock_class_stats *cpu_stats =
300                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
301
302                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
303         }
304         memset(class->contention_point, 0, sizeof(class->contention_point));
305         memset(class->contending_point, 0, sizeof(class->contending_point));
306 }
307
308 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
309 {
310         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
311 }
312
313 static void lock_release_holdtime(struct held_lock *hlock)
314 {
315         struct lock_class_stats *stats;
316         u64 holdtime;
317
318         if (!lock_stat)
319                 return;
320
321         holdtime = lockstat_clock() - hlock->holdtime_stamp;
322
323         stats = get_lock_stats(hlock_class(hlock));
324         if (hlock->read)
325                 lock_time_inc(&stats->read_holdtime, holdtime);
326         else
327                 lock_time_inc(&stats->write_holdtime, holdtime);
328 }
329 #else
330 static inline void lock_release_holdtime(struct held_lock *hlock)
331 {
332 }
333 #endif
334
335 /*
336  * We keep a global list of all lock classes. The list is only accessed with
337  * the lockdep spinlock lock held. free_lock_classes is a list with free
338  * elements. These elements are linked together by the lock_entry member in
339  * struct lock_class.
340  */
341 LIST_HEAD(all_lock_classes);
342 static LIST_HEAD(free_lock_classes);
343
344 /**
345  * struct pending_free - information about data structures about to be freed
346  * @zapped: Head of a list with struct lock_class elements.
347  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
348  *      are about to be freed.
349  */
350 struct pending_free {
351         struct list_head zapped;
352         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
353 };
354
355 /**
356  * struct delayed_free - data structures used for delayed freeing
357  *
358  * A data structure for delayed freeing of data structures that may be
359  * accessed by RCU readers at the time these were freed.
360  *
361  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
362  * @index:     Index of @pf to which freed data structures are added.
363  * @scheduled: Whether or not an RCU callback has been scheduled.
364  * @pf:        Array with information about data structures about to be freed.
365  */
366 static struct delayed_free {
367         struct rcu_head         rcu_head;
368         int                     index;
369         int                     scheduled;
370         struct pending_free     pf[2];
371 } delayed_free;
372
373 /*
374  * The lockdep classes are in a hash-table as well, for fast lookup:
375  */
376 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
377 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
378 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
379 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
380
381 static struct hlist_head classhash_table[CLASSHASH_SIZE];
382
383 /*
384  * We put the lock dependency chains into a hash-table as well, to cache
385  * their existence:
386  */
387 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
388 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
389 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
390 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
391
392 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
393
394 /*
395  * the id of held_lock
396  */
397 static inline u16 hlock_id(struct held_lock *hlock)
398 {
399         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
400
401         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
402 }
403
404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
405 {
406         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
407 }
408
409 /*
410  * The hash key of the lock dependency chains is a hash itself too:
411  * it's a hash of all locks taken up to that lock, including that lock.
412  * It's a 64-bit hash, because it's important for the keys to be
413  * unique.
414  */
415 static inline u64 iterate_chain_key(u64 key, u32 idx)
416 {
417         u32 k0 = key, k1 = key >> 32;
418
419         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
420
421         return k0 | (u64)k1 << 32;
422 }
423
424 void lockdep_init_task(struct task_struct *task)
425 {
426         task->lockdep_depth = 0; /* no locks held yet */
427         task->curr_chain_key = INITIAL_CHAIN_KEY;
428         task->lockdep_recursion = 0;
429 }
430
431 static __always_inline void lockdep_recursion_inc(void)
432 {
433         __this_cpu_inc(lockdep_recursion);
434 }
435
436 static __always_inline void lockdep_recursion_finish(void)
437 {
438         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
439                 __this_cpu_write(lockdep_recursion, 0);
440 }
441
442 void lockdep_set_selftest_task(struct task_struct *task)
443 {
444         lockdep_selftest_task_struct = task;
445 }
446
447 /*
448  * Debugging switches:
449  */
450
451 #define VERBOSE                 0
452 #define VERY_VERBOSE            0
453
454 #if VERBOSE
455 # define HARDIRQ_VERBOSE        1
456 # define SOFTIRQ_VERBOSE        1
457 #else
458 # define HARDIRQ_VERBOSE        0
459 # define SOFTIRQ_VERBOSE        0
460 #endif
461
462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
463 /*
464  * Quick filtering for interesting events:
465  */
466 static int class_filter(struct lock_class *class)
467 {
468 #if 0
469         /* Example */
470         if (class->name_version == 1 &&
471                         !strcmp(class->name, "lockname"))
472                 return 1;
473         if (class->name_version == 1 &&
474                         !strcmp(class->name, "&struct->lockfield"))
475                 return 1;
476 #endif
477         /* Filter everything else. 1 would be to allow everything else */
478         return 0;
479 }
480 #endif
481
482 static int verbose(struct lock_class *class)
483 {
484 #if VERBOSE
485         return class_filter(class);
486 #endif
487         return 0;
488 }
489
490 static void print_lockdep_off(const char *bug_msg)
491 {
492         printk(KERN_DEBUG "%s\n", bug_msg);
493         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
494 #ifdef CONFIG_LOCK_STAT
495         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
496 #endif
497 }
498
499 unsigned long nr_stack_trace_entries;
500
501 #ifdef CONFIG_PROVE_LOCKING
502 /**
503  * struct lock_trace - single stack backtrace
504  * @hash_entry: Entry in a stack_trace_hash[] list.
505  * @hash:       jhash() of @entries.
506  * @nr_entries: Number of entries in @entries.
507  * @entries:    Actual stack backtrace.
508  */
509 struct lock_trace {
510         struct hlist_node       hash_entry;
511         u32                     hash;
512         u32                     nr_entries;
513         unsigned long           entries[] __aligned(sizeof(unsigned long));
514 };
515 #define LOCK_TRACE_SIZE_IN_LONGS                                \
516         (sizeof(struct lock_trace) / sizeof(unsigned long))
517 /*
518  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
519  */
520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
522
523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
524 {
525         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
526                 memcmp(t1->entries, t2->entries,
527                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
528 }
529
530 static struct lock_trace *save_trace(void)
531 {
532         struct lock_trace *trace, *t2;
533         struct hlist_head *hash_head;
534         u32 hash;
535         int max_entries;
536
537         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
538         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
539
540         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
541         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
542                 LOCK_TRACE_SIZE_IN_LONGS;
543
544         if (max_entries <= 0) {
545                 if (!debug_locks_off_graph_unlock())
546                         return NULL;
547
548                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
549                 dump_stack();
550
551                 return NULL;
552         }
553         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
554
555         hash = jhash(trace->entries, trace->nr_entries *
556                      sizeof(trace->entries[0]), 0);
557         trace->hash = hash;
558         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
559         hlist_for_each_entry(t2, hash_head, hash_entry) {
560                 if (traces_identical(trace, t2))
561                         return t2;
562         }
563         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
564         hlist_add_head(&trace->hash_entry, hash_head);
565
566         return trace;
567 }
568
569 /* Return the number of stack traces in the stack_trace[] array. */
570 u64 lockdep_stack_trace_count(void)
571 {
572         struct lock_trace *trace;
573         u64 c = 0;
574         int i;
575
576         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
577                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
578                         c++;
579                 }
580         }
581
582         return c;
583 }
584
585 /* Return the number of stack hash chains that have at least one stack trace. */
586 u64 lockdep_stack_hash_count(void)
587 {
588         u64 c = 0;
589         int i;
590
591         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
592                 if (!hlist_empty(&stack_trace_hash[i]))
593                         c++;
594
595         return c;
596 }
597 #endif
598
599 unsigned int nr_hardirq_chains;
600 unsigned int nr_softirq_chains;
601 unsigned int nr_process_chains;
602 unsigned int max_lockdep_depth;
603
604 #ifdef CONFIG_DEBUG_LOCKDEP
605 /*
606  * Various lockdep statistics:
607  */
608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
609 #endif
610
611 #ifdef CONFIG_PROVE_LOCKING
612 /*
613  * Locking printouts:
614  */
615
616 #define __USAGE(__STATE)                                                \
617         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
618         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
619         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
620         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
621
622 static const char *usage_str[] =
623 {
624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
625 #include "lockdep_states.h"
626 #undef LOCKDEP_STATE
627         [LOCK_USED] = "INITIAL USE",
628         [LOCK_USED_READ] = "INITIAL READ USE",
629         /* abused as string storage for verify_lock_unused() */
630         [LOCK_USAGE_STATES] = "IN-NMI",
631 };
632 #endif
633
634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
635 {
636         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
637 }
638
639 static inline unsigned long lock_flag(enum lock_usage_bit bit)
640 {
641         return 1UL << bit;
642 }
643
644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
645 {
646         /*
647          * The usage character defaults to '.' (i.e., irqs disabled and not in
648          * irq context), which is the safest usage category.
649          */
650         char c = '.';
651
652         /*
653          * The order of the following usage checks matters, which will
654          * result in the outcome character as follows:
655          *
656          * - '+': irq is enabled and not in irq context
657          * - '-': in irq context and irq is disabled
658          * - '?': in irq context and irq is enabled
659          */
660         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
661                 c = '+';
662                 if (class->usage_mask & lock_flag(bit))
663                         c = '?';
664         } else if (class->usage_mask & lock_flag(bit))
665                 c = '-';
666
667         return c;
668 }
669
670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
671 {
672         int i = 0;
673
674 #define LOCKDEP_STATE(__STATE)                                          \
675         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
676         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
677 #include "lockdep_states.h"
678 #undef LOCKDEP_STATE
679
680         usage[i] = '\0';
681 }
682
683 static void __print_lock_name(struct lock_class *class)
684 {
685         char str[KSYM_NAME_LEN];
686         const char *name;
687
688         name = class->name;
689         if (!name) {
690                 name = __get_key_name(class->key, str);
691                 printk(KERN_CONT "%s", name);
692         } else {
693                 printk(KERN_CONT "%s", name);
694                 if (class->name_version > 1)
695                         printk(KERN_CONT "#%d", class->name_version);
696                 if (class->subclass)
697                         printk(KERN_CONT "/%d", class->subclass);
698         }
699 }
700
701 static void print_lock_name(struct lock_class *class)
702 {
703         char usage[LOCK_USAGE_CHARS];
704
705         get_usage_chars(class, usage);
706
707         printk(KERN_CONT " (");
708         __print_lock_name(class);
709         printk(KERN_CONT "){%s}-{%d:%d}", usage,
710                         class->wait_type_outer ?: class->wait_type_inner,
711                         class->wait_type_inner);
712 }
713
714 static void print_lockdep_cache(struct lockdep_map *lock)
715 {
716         const char *name;
717         char str[KSYM_NAME_LEN];
718
719         name = lock->name;
720         if (!name)
721                 name = __get_key_name(lock->key->subkeys, str);
722
723         printk(KERN_CONT "%s", name);
724 }
725
726 static void print_lock(struct held_lock *hlock)
727 {
728         /*
729          * We can be called locklessly through debug_show_all_locks() so be
730          * extra careful, the hlock might have been released and cleared.
731          *
732          * If this indeed happens, lets pretend it does not hurt to continue
733          * to print the lock unless the hlock class_idx does not point to a
734          * registered class. The rationale here is: since we don't attempt
735          * to distinguish whether we are in this situation, if it just
736          * happened we can't count on class_idx to tell either.
737          */
738         struct lock_class *lock = hlock_class(hlock);
739
740         if (!lock) {
741                 printk(KERN_CONT "<RELEASED>\n");
742                 return;
743         }
744
745         printk(KERN_CONT "%px", hlock->instance);
746         print_lock_name(lock);
747         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
748 }
749
750 static void lockdep_print_held_locks(struct task_struct *p)
751 {
752         int i, depth = READ_ONCE(p->lockdep_depth);
753
754         if (!depth)
755                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
756         else
757                 printk("%d lock%s held by %s/%d:\n", depth,
758                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
759         /*
760          * It's not reliable to print a task's held locks if it's not sleeping
761          * and it's not the current task.
762          */
763         if (p->state == TASK_RUNNING && p != current)
764                 return;
765         for (i = 0; i < depth; i++) {
766                 printk(" #%d: ", i);
767                 print_lock(p->held_locks + i);
768         }
769 }
770
771 static void print_kernel_ident(void)
772 {
773         printk("%s %.*s %s\n", init_utsname()->release,
774                 (int)strcspn(init_utsname()->version, " "),
775                 init_utsname()->version,
776                 print_tainted());
777 }
778
779 static int very_verbose(struct lock_class *class)
780 {
781 #if VERY_VERBOSE
782         return class_filter(class);
783 #endif
784         return 0;
785 }
786
787 /*
788  * Is this the address of a static object:
789  */
790 #ifdef __KERNEL__
791 static int static_obj(const void *obj)
792 {
793         unsigned long start = (unsigned long) &_stext,
794                       end   = (unsigned long) &_end,
795                       addr  = (unsigned long) obj;
796
797         if (arch_is_kernel_initmem_freed(addr))
798                 return 0;
799
800         /*
801          * static variable?
802          */
803         if ((addr >= start) && (addr < end))
804                 return 1;
805
806         if (arch_is_kernel_data(addr))
807                 return 1;
808
809         /*
810          * in-kernel percpu var?
811          */
812         if (is_kernel_percpu_address(addr))
813                 return 1;
814
815         /*
816          * module static or percpu var?
817          */
818         return is_module_address(addr) || is_module_percpu_address(addr);
819 }
820 #endif
821
822 /*
823  * To make lock name printouts unique, we calculate a unique
824  * class->name_version generation counter. The caller must hold the graph
825  * lock.
826  */
827 static int count_matching_names(struct lock_class *new_class)
828 {
829         struct lock_class *class;
830         int count = 0;
831
832         if (!new_class->name)
833                 return 0;
834
835         list_for_each_entry(class, &all_lock_classes, lock_entry) {
836                 if (new_class->key - new_class->subclass == class->key)
837                         return class->name_version;
838                 if (class->name && !strcmp(class->name, new_class->name))
839                         count = max(count, class->name_version);
840         }
841
842         return count + 1;
843 }
844
845 /* used from NMI context -- must be lockless */
846 static noinstr struct lock_class *
847 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
848 {
849         struct lockdep_subclass_key *key;
850         struct hlist_head *hash_head;
851         struct lock_class *class;
852
853         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
854                 instrumentation_begin();
855                 debug_locks_off();
856                 printk(KERN_ERR
857                         "BUG: looking up invalid subclass: %u\n", subclass);
858                 printk(KERN_ERR
859                         "turning off the locking correctness validator.\n");
860                 dump_stack();
861                 instrumentation_end();
862                 return NULL;
863         }
864
865         /*
866          * If it is not initialised then it has never been locked,
867          * so it won't be present in the hash table.
868          */
869         if (unlikely(!lock->key))
870                 return NULL;
871
872         /*
873          * NOTE: the class-key must be unique. For dynamic locks, a static
874          * lock_class_key variable is passed in through the mutex_init()
875          * (or spin_lock_init()) call - which acts as the key. For static
876          * locks we use the lock object itself as the key.
877          */
878         BUILD_BUG_ON(sizeof(struct lock_class_key) >
879                         sizeof(struct lockdep_map));
880
881         key = lock->key->subkeys + subclass;
882
883         hash_head = classhashentry(key);
884
885         /*
886          * We do an RCU walk of the hash, see lockdep_free_key_range().
887          */
888         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
889                 return NULL;
890
891         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
892                 if (class->key == key) {
893                         /*
894                          * Huh! same key, different name? Did someone trample
895                          * on some memory? We're most confused.
896                          */
897                         WARN_ON_ONCE(class->name != lock->name &&
898                                      lock->key != &__lockdep_no_validate__);
899                         return class;
900                 }
901         }
902
903         return NULL;
904 }
905
906 /*
907  * Static locks do not have their class-keys yet - for them the key is
908  * the lock object itself. If the lock is in the per cpu area, the
909  * canonical address of the lock (per cpu offset removed) is used.
910  */
911 static bool assign_lock_key(struct lockdep_map *lock)
912 {
913         unsigned long can_addr, addr = (unsigned long)lock;
914
915 #ifdef __KERNEL__
916         /*
917          * lockdep_free_key_range() assumes that struct lock_class_key
918          * objects do not overlap. Since we use the address of lock
919          * objects as class key for static objects, check whether the
920          * size of lock_class_key objects does not exceed the size of
921          * the smallest lock object.
922          */
923         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
924 #endif
925
926         if (__is_kernel_percpu_address(addr, &can_addr))
927                 lock->key = (void *)can_addr;
928         else if (__is_module_percpu_address(addr, &can_addr))
929                 lock->key = (void *)can_addr;
930         else if (static_obj(lock))
931                 lock->key = (void *)lock;
932         else {
933                 /* Debug-check: all keys must be persistent! */
934                 debug_locks_off();
935                 pr_err("INFO: trying to register non-static key.\n");
936                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
937                 pr_err("you didn't initialize this object before use?\n");
938                 pr_err("turning off the locking correctness validator.\n");
939                 dump_stack();
940                 return false;
941         }
942
943         return true;
944 }
945
946 #ifdef CONFIG_DEBUG_LOCKDEP
947
948 /* Check whether element @e occurs in list @h */
949 static bool in_list(struct list_head *e, struct list_head *h)
950 {
951         struct list_head *f;
952
953         list_for_each(f, h) {
954                 if (e == f)
955                         return true;
956         }
957
958         return false;
959 }
960
961 /*
962  * Check whether entry @e occurs in any of the locks_after or locks_before
963  * lists.
964  */
965 static bool in_any_class_list(struct list_head *e)
966 {
967         struct lock_class *class;
968         int i;
969
970         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
971                 class = &lock_classes[i];
972                 if (in_list(e, &class->locks_after) ||
973                     in_list(e, &class->locks_before))
974                         return true;
975         }
976         return false;
977 }
978
979 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
980 {
981         struct lock_list *e;
982
983         list_for_each_entry(e, h, entry) {
984                 if (e->links_to != c) {
985                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
986                                c->name ? : "(?)",
987                                (unsigned long)(e - list_entries),
988                                e->links_to && e->links_to->name ?
989                                e->links_to->name : "(?)",
990                                e->class && e->class->name ? e->class->name :
991                                "(?)");
992                         return false;
993                 }
994         }
995         return true;
996 }
997
998 #ifdef CONFIG_PROVE_LOCKING
999 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1000 #endif
1001
1002 static bool check_lock_chain_key(struct lock_chain *chain)
1003 {
1004 #ifdef CONFIG_PROVE_LOCKING
1005         u64 chain_key = INITIAL_CHAIN_KEY;
1006         int i;
1007
1008         for (i = chain->base; i < chain->base + chain->depth; i++)
1009                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1010         /*
1011          * The 'unsigned long long' casts avoid that a compiler warning
1012          * is reported when building tools/lib/lockdep.
1013          */
1014         if (chain->chain_key != chain_key) {
1015                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1016                        (unsigned long long)(chain - lock_chains),
1017                        (unsigned long long)chain->chain_key,
1018                        (unsigned long long)chain_key);
1019                 return false;
1020         }
1021 #endif
1022         return true;
1023 }
1024
1025 static bool in_any_zapped_class_list(struct lock_class *class)
1026 {
1027         struct pending_free *pf;
1028         int i;
1029
1030         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1031                 if (in_list(&class->lock_entry, &pf->zapped))
1032                         return true;
1033         }
1034
1035         return false;
1036 }
1037
1038 static bool __check_data_structures(void)
1039 {
1040         struct lock_class *class;
1041         struct lock_chain *chain;
1042         struct hlist_head *head;
1043         struct lock_list *e;
1044         int i;
1045
1046         /* Check whether all classes occur in a lock list. */
1047         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1048                 class = &lock_classes[i];
1049                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1050                     !in_list(&class->lock_entry, &free_lock_classes) &&
1051                     !in_any_zapped_class_list(class)) {
1052                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1053                                class, class->name ? : "(?)");
1054                         return false;
1055                 }
1056         }
1057
1058         /* Check whether all classes have valid lock lists. */
1059         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1060                 class = &lock_classes[i];
1061                 if (!class_lock_list_valid(class, &class->locks_before))
1062                         return false;
1063                 if (!class_lock_list_valid(class, &class->locks_after))
1064                         return false;
1065         }
1066
1067         /* Check the chain_key of all lock chains. */
1068         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1069                 head = chainhash_table + i;
1070                 hlist_for_each_entry_rcu(chain, head, entry) {
1071                         if (!check_lock_chain_key(chain))
1072                                 return false;
1073                 }
1074         }
1075
1076         /*
1077          * Check whether all list entries that are in use occur in a class
1078          * lock list.
1079          */
1080         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1081                 e = list_entries + i;
1082                 if (!in_any_class_list(&e->entry)) {
1083                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1084                                (unsigned int)(e - list_entries),
1085                                e->class->name ? : "(?)",
1086                                e->links_to->name ? : "(?)");
1087                         return false;
1088                 }
1089         }
1090
1091         /*
1092          * Check whether all list entries that are not in use do not occur in
1093          * a class lock list.
1094          */
1095         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1096                 e = list_entries + i;
1097                 if (in_any_class_list(&e->entry)) {
1098                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1099                                (unsigned int)(e - list_entries),
1100                                e->class && e->class->name ? e->class->name :
1101                                "(?)",
1102                                e->links_to && e->links_to->name ?
1103                                e->links_to->name : "(?)");
1104                         return false;
1105                 }
1106         }
1107
1108         return true;
1109 }
1110
1111 int check_consistency = 0;
1112 module_param(check_consistency, int, 0644);
1113
1114 static void check_data_structures(void)
1115 {
1116         static bool once = false;
1117
1118         if (check_consistency && !once) {
1119                 if (!__check_data_structures()) {
1120                         once = true;
1121                         WARN_ON(once);
1122                 }
1123         }
1124 }
1125
1126 #else /* CONFIG_DEBUG_LOCKDEP */
1127
1128 static inline void check_data_structures(void) { }
1129
1130 #endif /* CONFIG_DEBUG_LOCKDEP */
1131
1132 static void init_chain_block_buckets(void);
1133
1134 /*
1135  * Initialize the lock_classes[] array elements, the free_lock_classes list
1136  * and also the delayed_free structure.
1137  */
1138 static void init_data_structures_once(void)
1139 {
1140         static bool __read_mostly ds_initialized, rcu_head_initialized;
1141         int i;
1142
1143         if (likely(rcu_head_initialized))
1144                 return;
1145
1146         if (system_state >= SYSTEM_SCHEDULING) {
1147                 init_rcu_head(&delayed_free.rcu_head);
1148                 rcu_head_initialized = true;
1149         }
1150
1151         if (ds_initialized)
1152                 return;
1153
1154         ds_initialized = true;
1155
1156         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1157         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1158
1159         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1160                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1161                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1162                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1163         }
1164         init_chain_block_buckets();
1165 }
1166
1167 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1168 {
1169         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1170
1171         return lock_keys_hash + hash;
1172 }
1173
1174 /* Register a dynamically allocated key. */
1175 void lockdep_register_key(struct lock_class_key *key)
1176 {
1177         struct hlist_head *hash_head;
1178         struct lock_class_key *k;
1179         unsigned long flags;
1180
1181         if (WARN_ON_ONCE(static_obj(key)))
1182                 return;
1183         hash_head = keyhashentry(key);
1184
1185         raw_local_irq_save(flags);
1186         if (!graph_lock())
1187                 goto restore_irqs;
1188         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1189                 if (WARN_ON_ONCE(k == key))
1190                         goto out_unlock;
1191         }
1192         hlist_add_head_rcu(&key->hash_entry, hash_head);
1193 out_unlock:
1194         graph_unlock();
1195 restore_irqs:
1196         raw_local_irq_restore(flags);
1197 }
1198 EXPORT_SYMBOL_GPL(lockdep_register_key);
1199
1200 /* Check whether a key has been registered as a dynamic key. */
1201 static bool is_dynamic_key(const struct lock_class_key *key)
1202 {
1203         struct hlist_head *hash_head;
1204         struct lock_class_key *k;
1205         bool found = false;
1206
1207         if (WARN_ON_ONCE(static_obj(key)))
1208                 return false;
1209
1210         /*
1211          * If lock debugging is disabled lock_keys_hash[] may contain
1212          * pointers to memory that has already been freed. Avoid triggering
1213          * a use-after-free in that case by returning early.
1214          */
1215         if (!debug_locks)
1216                 return true;
1217
1218         hash_head = keyhashentry(key);
1219
1220         rcu_read_lock();
1221         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1222                 if (k == key) {
1223                         found = true;
1224                         break;
1225                 }
1226         }
1227         rcu_read_unlock();
1228
1229         return found;
1230 }
1231
1232 /*
1233  * Register a lock's class in the hash-table, if the class is not present
1234  * yet. Otherwise we look it up. We cache the result in the lock object
1235  * itself, so actual lookup of the hash should be once per lock object.
1236  */
1237 static struct lock_class *
1238 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1239 {
1240         struct lockdep_subclass_key *key;
1241         struct hlist_head *hash_head;
1242         struct lock_class *class;
1243
1244         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1245
1246         class = look_up_lock_class(lock, subclass);
1247         if (likely(class))
1248                 goto out_set_class_cache;
1249
1250         if (!lock->key) {
1251                 if (!assign_lock_key(lock))
1252                         return NULL;
1253         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1254                 return NULL;
1255         }
1256
1257         key = lock->key->subkeys + subclass;
1258         hash_head = classhashentry(key);
1259
1260         if (!graph_lock()) {
1261                 return NULL;
1262         }
1263         /*
1264          * We have to do the hash-walk again, to avoid races
1265          * with another CPU:
1266          */
1267         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1268                 if (class->key == key)
1269                         goto out_unlock_set;
1270         }
1271
1272         init_data_structures_once();
1273
1274         /* Allocate a new lock class and add it to the hash. */
1275         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1276                                          lock_entry);
1277         if (!class) {
1278                 if (!debug_locks_off_graph_unlock()) {
1279                         return NULL;
1280                 }
1281
1282                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1283                 dump_stack();
1284                 return NULL;
1285         }
1286         nr_lock_classes++;
1287         __set_bit(class - lock_classes, lock_classes_in_use);
1288         debug_atomic_inc(nr_unused_locks);
1289         class->key = key;
1290         class->name = lock->name;
1291         class->subclass = subclass;
1292         WARN_ON_ONCE(!list_empty(&class->locks_before));
1293         WARN_ON_ONCE(!list_empty(&class->locks_after));
1294         class->name_version = count_matching_names(class);
1295         class->wait_type_inner = lock->wait_type_inner;
1296         class->wait_type_outer = lock->wait_type_outer;
1297         class->lock_type = lock->lock_type;
1298         /*
1299          * We use RCU's safe list-add method to make
1300          * parallel walking of the hash-list safe:
1301          */
1302         hlist_add_head_rcu(&class->hash_entry, hash_head);
1303         /*
1304          * Remove the class from the free list and add it to the global list
1305          * of classes.
1306          */
1307         list_move_tail(&class->lock_entry, &all_lock_classes);
1308
1309         if (verbose(class)) {
1310                 graph_unlock();
1311
1312                 printk("\nnew class %px: %s", class->key, class->name);
1313                 if (class->name_version > 1)
1314                         printk(KERN_CONT "#%d", class->name_version);
1315                 printk(KERN_CONT "\n");
1316                 dump_stack();
1317
1318                 if (!graph_lock()) {
1319                         return NULL;
1320                 }
1321         }
1322 out_unlock_set:
1323         graph_unlock();
1324
1325 out_set_class_cache:
1326         if (!subclass || force)
1327                 lock->class_cache[0] = class;
1328         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1329                 lock->class_cache[subclass] = class;
1330
1331         /*
1332          * Hash collision, did we smoke some? We found a class with a matching
1333          * hash but the subclass -- which is hashed in -- didn't match.
1334          */
1335         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1336                 return NULL;
1337
1338         return class;
1339 }
1340
1341 #ifdef CONFIG_PROVE_LOCKING
1342 /*
1343  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1344  * with NULL on failure)
1345  */
1346 static struct lock_list *alloc_list_entry(void)
1347 {
1348         int idx = find_first_zero_bit(list_entries_in_use,
1349                                       ARRAY_SIZE(list_entries));
1350
1351         if (idx >= ARRAY_SIZE(list_entries)) {
1352                 if (!debug_locks_off_graph_unlock())
1353                         return NULL;
1354
1355                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1356                 dump_stack();
1357                 return NULL;
1358         }
1359         nr_list_entries++;
1360         __set_bit(idx, list_entries_in_use);
1361         return list_entries + idx;
1362 }
1363
1364 /*
1365  * Add a new dependency to the head of the list:
1366  */
1367 static int add_lock_to_list(struct lock_class *this,
1368                             struct lock_class *links_to, struct list_head *head,
1369                             unsigned long ip, u16 distance, u8 dep,
1370                             const struct lock_trace *trace)
1371 {
1372         struct lock_list *entry;
1373         /*
1374          * Lock not present yet - get a new dependency struct and
1375          * add it to the list:
1376          */
1377         entry = alloc_list_entry();
1378         if (!entry)
1379                 return 0;
1380
1381         entry->class = this;
1382         entry->links_to = links_to;
1383         entry->dep = dep;
1384         entry->distance = distance;
1385         entry->trace = trace;
1386         /*
1387          * Both allocation and removal are done under the graph lock; but
1388          * iteration is under RCU-sched; see look_up_lock_class() and
1389          * lockdep_free_key_range().
1390          */
1391         list_add_tail_rcu(&entry->entry, head);
1392
1393         return 1;
1394 }
1395
1396 /*
1397  * For good efficiency of modular, we use power of 2
1398  */
1399 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1400 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1401
1402 /*
1403  * The circular_queue and helpers are used to implement graph
1404  * breadth-first search (BFS) algorithm, by which we can determine
1405  * whether there is a path from a lock to another. In deadlock checks,
1406  * a path from the next lock to be acquired to a previous held lock
1407  * indicates that adding the <prev> -> <next> lock dependency will
1408  * produce a circle in the graph. Breadth-first search instead of
1409  * depth-first search is used in order to find the shortest (circular)
1410  * path.
1411  */
1412 struct circular_queue {
1413         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1414         unsigned int  front, rear;
1415 };
1416
1417 static struct circular_queue lock_cq;
1418
1419 unsigned int max_bfs_queue_depth;
1420
1421 static unsigned int lockdep_dependency_gen_id;
1422
1423 static inline void __cq_init(struct circular_queue *cq)
1424 {
1425         cq->front = cq->rear = 0;
1426         lockdep_dependency_gen_id++;
1427 }
1428
1429 static inline int __cq_empty(struct circular_queue *cq)
1430 {
1431         return (cq->front == cq->rear);
1432 }
1433
1434 static inline int __cq_full(struct circular_queue *cq)
1435 {
1436         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1437 }
1438
1439 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1440 {
1441         if (__cq_full(cq))
1442                 return -1;
1443
1444         cq->element[cq->rear] = elem;
1445         cq->rear = (cq->rear + 1) & CQ_MASK;
1446         return 0;
1447 }
1448
1449 /*
1450  * Dequeue an element from the circular_queue, return a lock_list if
1451  * the queue is not empty, or NULL if otherwise.
1452  */
1453 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1454 {
1455         struct lock_list * lock;
1456
1457         if (__cq_empty(cq))
1458                 return NULL;
1459
1460         lock = cq->element[cq->front];
1461         cq->front = (cq->front + 1) & CQ_MASK;
1462
1463         return lock;
1464 }
1465
1466 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1467 {
1468         return (cq->rear - cq->front) & CQ_MASK;
1469 }
1470
1471 static inline void mark_lock_accessed(struct lock_list *lock)
1472 {
1473         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1474 }
1475
1476 static inline void visit_lock_entry(struct lock_list *lock,
1477                                     struct lock_list *parent)
1478 {
1479         lock->parent = parent;
1480 }
1481
1482 static inline unsigned long lock_accessed(struct lock_list *lock)
1483 {
1484         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1485 }
1486
1487 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1488 {
1489         return child->parent;
1490 }
1491
1492 static inline int get_lock_depth(struct lock_list *child)
1493 {
1494         int depth = 0;
1495         struct lock_list *parent;
1496
1497         while ((parent = get_lock_parent(child))) {
1498                 child = parent;
1499                 depth++;
1500         }
1501         return depth;
1502 }
1503
1504 /*
1505  * Return the forward or backward dependency list.
1506  *
1507  * @lock:   the lock_list to get its class's dependency list
1508  * @offset: the offset to struct lock_class to determine whether it is
1509  *          locks_after or locks_before
1510  */
1511 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1512 {
1513         void *lock_class = lock->class;
1514
1515         return lock_class + offset;
1516 }
1517 /*
1518  * Return values of a bfs search:
1519  *
1520  * BFS_E* indicates an error
1521  * BFS_R* indicates a result (match or not)
1522  *
1523  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1524  *
1525  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1526  *
1527  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1528  *             *@target_entry.
1529  *
1530  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1531  *               _unchanged_.
1532  */
1533 enum bfs_result {
1534         BFS_EINVALIDNODE = -2,
1535         BFS_EQUEUEFULL = -1,
1536         BFS_RMATCH = 0,
1537         BFS_RNOMATCH = 1,
1538 };
1539
1540 /*
1541  * bfs_result < 0 means error
1542  */
1543 static inline bool bfs_error(enum bfs_result res)
1544 {
1545         return res < 0;
1546 }
1547
1548 /*
1549  * DEP_*_BIT in lock_list::dep
1550  *
1551  * For dependency @prev -> @next:
1552  *
1553  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1554  *       (->read == 2)
1555  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1556  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1557  *   EN: @prev is exclusive locker and @next is non-recursive locker
1558  *
1559  * Note that we define the value of DEP_*_BITs so that:
1560  *   bit0 is prev->read == 0
1561  *   bit1 is next->read != 2
1562  */
1563 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1564 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1565 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1566 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1567
1568 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1569 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1570 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1571 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1572
1573 static inline unsigned int
1574 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1575 {
1576         return (prev->read == 0) + ((next->read != 2) << 1);
1577 }
1578
1579 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1580 {
1581         return 1U << __calc_dep_bit(prev, next);
1582 }
1583
1584 /*
1585  * calculate the dep_bit for backwards edges. We care about whether @prev is
1586  * shared and whether @next is recursive.
1587  */
1588 static inline unsigned int
1589 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1590 {
1591         return (next->read != 2) + ((prev->read == 0) << 1);
1592 }
1593
1594 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1595 {
1596         return 1U << __calc_dep_bitb(prev, next);
1597 }
1598
1599 /*
1600  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1601  * search.
1602  */
1603 static inline void __bfs_init_root(struct lock_list *lock,
1604                                    struct lock_class *class)
1605 {
1606         lock->class = class;
1607         lock->parent = NULL;
1608         lock->only_xr = 0;
1609 }
1610
1611 /*
1612  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1613  * root for a BFS search.
1614  *
1615  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1616  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1617  * and -(S*)->.
1618  */
1619 static inline void bfs_init_root(struct lock_list *lock,
1620                                  struct held_lock *hlock)
1621 {
1622         __bfs_init_root(lock, hlock_class(hlock));
1623         lock->only_xr = (hlock->read == 2);
1624 }
1625
1626 /*
1627  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1628  *
1629  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1630  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1631  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1632  */
1633 static inline void bfs_init_rootb(struct lock_list *lock,
1634                                   struct held_lock *hlock)
1635 {
1636         __bfs_init_root(lock, hlock_class(hlock));
1637         lock->only_xr = (hlock->read != 0);
1638 }
1639
1640 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1641 {
1642         if (!lock || !lock->parent)
1643                 return NULL;
1644
1645         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1646                                      &lock->entry, struct lock_list, entry);
1647 }
1648
1649 /*
1650  * Breadth-First Search to find a strong path in the dependency graph.
1651  *
1652  * @source_entry: the source of the path we are searching for.
1653  * @data: data used for the second parameter of @match function
1654  * @match: match function for the search
1655  * @target_entry: pointer to the target of a matched path
1656  * @offset: the offset to struct lock_class to determine whether it is
1657  *          locks_after or locks_before
1658  *
1659  * We may have multiple edges (considering different kinds of dependencies,
1660  * e.g. ER and SN) between two nodes in the dependency graph. But
1661  * only the strong dependency path in the graph is relevant to deadlocks. A
1662  * strong dependency path is a dependency path that doesn't have two adjacent
1663  * dependencies as -(*R)-> -(S*)->, please see:
1664  *
1665  *         Documentation/locking/lockdep-design.rst
1666  *
1667  * for more explanation of the definition of strong dependency paths
1668  *
1669  * In __bfs(), we only traverse in the strong dependency path:
1670  *
1671  *     In lock_list::only_xr, we record whether the previous dependency only
1672  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1673  *     filter out any -(S*)-> in the current dependency and after that, the
1674  *     ->only_xr is set according to whether we only have -(*R)-> left.
1675  */
1676 static enum bfs_result __bfs(struct lock_list *source_entry,
1677                              void *data,
1678                              bool (*match)(struct lock_list *entry, void *data),
1679                              bool (*skip)(struct lock_list *entry, void *data),
1680                              struct lock_list **target_entry,
1681                              int offset)
1682 {
1683         struct circular_queue *cq = &lock_cq;
1684         struct lock_list *lock = NULL;
1685         struct lock_list *entry;
1686         struct list_head *head;
1687         unsigned int cq_depth;
1688         bool first;
1689
1690         lockdep_assert_locked();
1691
1692         __cq_init(cq);
1693         __cq_enqueue(cq, source_entry);
1694
1695         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1696                 if (!lock->class)
1697                         return BFS_EINVALIDNODE;
1698
1699                 /*
1700                  * Step 1: check whether we already finish on this one.
1701                  *
1702                  * If we have visited all the dependencies from this @lock to
1703                  * others (iow, if we have visited all lock_list entries in
1704                  * @lock->class->locks_{after,before}) we skip, otherwise go
1705                  * and visit all the dependencies in the list and mark this
1706                  * list accessed.
1707                  */
1708                 if (lock_accessed(lock))
1709                         continue;
1710                 else
1711                         mark_lock_accessed(lock);
1712
1713                 /*
1714                  * Step 2: check whether prev dependency and this form a strong
1715                  *         dependency path.
1716                  */
1717                 if (lock->parent) { /* Parent exists, check prev dependency */
1718                         u8 dep = lock->dep;
1719                         bool prev_only_xr = lock->parent->only_xr;
1720
1721                         /*
1722                          * Mask out all -(S*)-> if we only have *R in previous
1723                          * step, because -(*R)-> -(S*)-> don't make up a strong
1724                          * dependency.
1725                          */
1726                         if (prev_only_xr)
1727                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1728
1729                         /* If nothing left, we skip */
1730                         if (!dep)
1731                                 continue;
1732
1733                         /* If there are only -(*R)-> left, set that for the next step */
1734                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1735                 }
1736
1737                 /*
1738                  * Step 3: we haven't visited this and there is a strong
1739                  *         dependency path to this, so check with @match.
1740                  *         If @skip is provide and returns true, we skip this
1741                  *         lock (and any path this lock is in).
1742                  */
1743                 if (skip && skip(lock, data))
1744                         continue;
1745
1746                 if (match(lock, data)) {
1747                         *target_entry = lock;
1748                         return BFS_RMATCH;
1749                 }
1750
1751                 /*
1752                  * Step 4: if not match, expand the path by adding the
1753                  *         forward or backwards dependencies in the search
1754                  *
1755                  */
1756                 first = true;
1757                 head = get_dep_list(lock, offset);
1758                 list_for_each_entry_rcu(entry, head, entry) {
1759                         visit_lock_entry(entry, lock);
1760
1761                         /*
1762                          * Note we only enqueue the first of the list into the
1763                          * queue, because we can always find a sibling
1764                          * dependency from one (see __bfs_next()), as a result
1765                          * the space of queue is saved.
1766                          */
1767                         if (!first)
1768                                 continue;
1769
1770                         first = false;
1771
1772                         if (__cq_enqueue(cq, entry))
1773                                 return BFS_EQUEUEFULL;
1774
1775                         cq_depth = __cq_get_elem_count(cq);
1776                         if (max_bfs_queue_depth < cq_depth)
1777                                 max_bfs_queue_depth = cq_depth;
1778                 }
1779         }
1780
1781         return BFS_RNOMATCH;
1782 }
1783
1784 static inline enum bfs_result
1785 __bfs_forwards(struct lock_list *src_entry,
1786                void *data,
1787                bool (*match)(struct lock_list *entry, void *data),
1788                bool (*skip)(struct lock_list *entry, void *data),
1789                struct lock_list **target_entry)
1790 {
1791         return __bfs(src_entry, data, match, skip, target_entry,
1792                      offsetof(struct lock_class, locks_after));
1793
1794 }
1795
1796 static inline enum bfs_result
1797 __bfs_backwards(struct lock_list *src_entry,
1798                 void *data,
1799                 bool (*match)(struct lock_list *entry, void *data),
1800                bool (*skip)(struct lock_list *entry, void *data),
1801                 struct lock_list **target_entry)
1802 {
1803         return __bfs(src_entry, data, match, skip, target_entry,
1804                      offsetof(struct lock_class, locks_before));
1805
1806 }
1807
1808 static void print_lock_trace(const struct lock_trace *trace,
1809                              unsigned int spaces)
1810 {
1811         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1812 }
1813
1814 /*
1815  * Print a dependency chain entry (this is only done when a deadlock
1816  * has been detected):
1817  */
1818 static noinline void
1819 print_circular_bug_entry(struct lock_list *target, int depth)
1820 {
1821         if (debug_locks_silent)
1822                 return;
1823         printk("\n-> #%u", depth);
1824         print_lock_name(target->class);
1825         printk(KERN_CONT ":\n");
1826         print_lock_trace(target->trace, 6);
1827 }
1828
1829 static void
1830 print_circular_lock_scenario(struct held_lock *src,
1831                              struct held_lock *tgt,
1832                              struct lock_list *prt)
1833 {
1834         struct lock_class *source = hlock_class(src);
1835         struct lock_class *target = hlock_class(tgt);
1836         struct lock_class *parent = prt->class;
1837
1838         /*
1839          * A direct locking problem where unsafe_class lock is taken
1840          * directly by safe_class lock, then all we need to show
1841          * is the deadlock scenario, as it is obvious that the
1842          * unsafe lock is taken under the safe lock.
1843          *
1844          * But if there is a chain instead, where the safe lock takes
1845          * an intermediate lock (middle_class) where this lock is
1846          * not the same as the safe lock, then the lock chain is
1847          * used to describe the problem. Otherwise we would need
1848          * to show a different CPU case for each link in the chain
1849          * from the safe_class lock to the unsafe_class lock.
1850          */
1851         if (parent != source) {
1852                 printk("Chain exists of:\n  ");
1853                 __print_lock_name(source);
1854                 printk(KERN_CONT " --> ");
1855                 __print_lock_name(parent);
1856                 printk(KERN_CONT " --> ");
1857                 __print_lock_name(target);
1858                 printk(KERN_CONT "\n\n");
1859         }
1860
1861         printk(" Possible unsafe locking scenario:\n\n");
1862         printk("       CPU0                    CPU1\n");
1863         printk("       ----                    ----\n");
1864         printk("  lock(");
1865         __print_lock_name(target);
1866         printk(KERN_CONT ");\n");
1867         printk("                               lock(");
1868         __print_lock_name(parent);
1869         printk(KERN_CONT ");\n");
1870         printk("                               lock(");
1871         __print_lock_name(target);
1872         printk(KERN_CONT ");\n");
1873         printk("  lock(");
1874         __print_lock_name(source);
1875         printk(KERN_CONT ");\n");
1876         printk("\n *** DEADLOCK ***\n\n");
1877 }
1878
1879 /*
1880  * When a circular dependency is detected, print the
1881  * header first:
1882  */
1883 static noinline void
1884 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1885                         struct held_lock *check_src,
1886                         struct held_lock *check_tgt)
1887 {
1888         struct task_struct *curr = current;
1889
1890         if (debug_locks_silent)
1891                 return;
1892
1893         pr_warn("\n");
1894         pr_warn("======================================================\n");
1895         pr_warn("WARNING: possible circular locking dependency detected\n");
1896         print_kernel_ident();
1897         pr_warn("------------------------------------------------------\n");
1898         pr_warn("%s/%d is trying to acquire lock:\n",
1899                 curr->comm, task_pid_nr(curr));
1900         print_lock(check_src);
1901
1902         pr_warn("\nbut task is already holding lock:\n");
1903
1904         print_lock(check_tgt);
1905         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1906         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1907
1908         print_circular_bug_entry(entry, depth);
1909 }
1910
1911 /*
1912  * We are about to add A -> B into the dependency graph, and in __bfs() a
1913  * strong dependency path A -> .. -> B is found: hlock_class equals
1914  * entry->class.
1915  *
1916  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1917  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1918  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1919  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1920  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1921  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1922  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1923  *
1924  * We need to make sure both the start and the end of A -> .. -> B is not
1925  * weaker than A -> B. For the start part, please see the comment in
1926  * check_redundant(). For the end part, we need:
1927  *
1928  * Either
1929  *
1930  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1931  *
1932  * or
1933  *
1934  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1935  *
1936  */
1937 static inline bool hlock_equal(struct lock_list *entry, void *data)
1938 {
1939         struct held_lock *hlock = (struct held_lock *)data;
1940
1941         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1942                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1943                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1944 }
1945
1946 /*
1947  * We are about to add B -> A into the dependency graph, and in __bfs() a
1948  * strong dependency path A -> .. -> B is found: hlock_class equals
1949  * entry->class.
1950  *
1951  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1952  * dependency cycle, that means:
1953  *
1954  * Either
1955  *
1956  *     a) B -> A is -(E*)->
1957  *
1958  * or
1959  *
1960  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1961  *
1962  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1963  */
1964 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1965 {
1966         struct held_lock *hlock = (struct held_lock *)data;
1967
1968         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1969                (hlock->read == 0 || /* B -> A is -(E*)-> */
1970                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1971 }
1972
1973 static noinline void print_circular_bug(struct lock_list *this,
1974                                 struct lock_list *target,
1975                                 struct held_lock *check_src,
1976                                 struct held_lock *check_tgt)
1977 {
1978         struct task_struct *curr = current;
1979         struct lock_list *parent;
1980         struct lock_list *first_parent;
1981         int depth;
1982
1983         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1984                 return;
1985
1986         this->trace = save_trace();
1987         if (!this->trace)
1988                 return;
1989
1990         depth = get_lock_depth(target);
1991
1992         print_circular_bug_header(target, depth, check_src, check_tgt);
1993
1994         parent = get_lock_parent(target);
1995         first_parent = parent;
1996
1997         while (parent) {
1998                 print_circular_bug_entry(parent, --depth);
1999                 parent = get_lock_parent(parent);
2000         }
2001
2002         printk("\nother info that might help us debug this:\n\n");
2003         print_circular_lock_scenario(check_src, check_tgt,
2004                                      first_parent);
2005
2006         lockdep_print_held_locks(curr);
2007
2008         printk("\nstack backtrace:\n");
2009         dump_stack();
2010 }
2011
2012 static noinline void print_bfs_bug(int ret)
2013 {
2014         if (!debug_locks_off_graph_unlock())
2015                 return;
2016
2017         /*
2018          * Breadth-first-search failed, graph got corrupted?
2019          */
2020         WARN(1, "lockdep bfs error:%d\n", ret);
2021 }
2022
2023 static bool noop_count(struct lock_list *entry, void *data)
2024 {
2025         (*(unsigned long *)data)++;
2026         return false;
2027 }
2028
2029 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2030 {
2031         unsigned long  count = 0;
2032         struct lock_list *target_entry;
2033
2034         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2035
2036         return count;
2037 }
2038 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2039 {
2040         unsigned long ret, flags;
2041         struct lock_list this;
2042
2043         __bfs_init_root(&this, class);
2044
2045         raw_local_irq_save(flags);
2046         lockdep_lock();
2047         ret = __lockdep_count_forward_deps(&this);
2048         lockdep_unlock();
2049         raw_local_irq_restore(flags);
2050
2051         return ret;
2052 }
2053
2054 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2055 {
2056         unsigned long  count = 0;
2057         struct lock_list *target_entry;
2058
2059         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2060
2061         return count;
2062 }
2063
2064 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2065 {
2066         unsigned long ret, flags;
2067         struct lock_list this;
2068
2069         __bfs_init_root(&this, class);
2070
2071         raw_local_irq_save(flags);
2072         lockdep_lock();
2073         ret = __lockdep_count_backward_deps(&this);
2074         lockdep_unlock();
2075         raw_local_irq_restore(flags);
2076
2077         return ret;
2078 }
2079
2080 /*
2081  * Check that the dependency graph starting at <src> can lead to
2082  * <target> or not.
2083  */
2084 static noinline enum bfs_result
2085 check_path(struct held_lock *target, struct lock_list *src_entry,
2086            bool (*match)(struct lock_list *entry, void *data),
2087            bool (*skip)(struct lock_list *entry, void *data),
2088            struct lock_list **target_entry)
2089 {
2090         enum bfs_result ret;
2091
2092         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2093
2094         if (unlikely(bfs_error(ret)))
2095                 print_bfs_bug(ret);
2096
2097         return ret;
2098 }
2099
2100 /*
2101  * Prove that the dependency graph starting at <src> can not
2102  * lead to <target>. If it can, there is a circle when adding
2103  * <target> -> <src> dependency.
2104  *
2105  * Print an error and return BFS_RMATCH if it does.
2106  */
2107 static noinline enum bfs_result
2108 check_noncircular(struct held_lock *src, struct held_lock *target,
2109                   struct lock_trace **const trace)
2110 {
2111         enum bfs_result ret;
2112         struct lock_list *target_entry;
2113         struct lock_list src_entry;
2114
2115         bfs_init_root(&src_entry, src);
2116
2117         debug_atomic_inc(nr_cyclic_checks);
2118
2119         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2120
2121         if (unlikely(ret == BFS_RMATCH)) {
2122                 if (!*trace) {
2123                         /*
2124                          * If save_trace fails here, the printing might
2125                          * trigger a WARN but because of the !nr_entries it
2126                          * should not do bad things.
2127                          */
2128                         *trace = save_trace();
2129                 }
2130
2131                 print_circular_bug(&src_entry, target_entry, src, target);
2132         }
2133
2134         return ret;
2135 }
2136
2137 #ifdef CONFIG_TRACE_IRQFLAGS
2138
2139 /*
2140  * Forwards and backwards subgraph searching, for the purposes of
2141  * proving that two subgraphs can be connected by a new dependency
2142  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2143  *
2144  * A irq safe->unsafe deadlock happens with the following conditions:
2145  *
2146  * 1) We have a strong dependency path A -> ... -> B
2147  *
2148  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2149  *    irq can create a new dependency B -> A (consider the case that a holder
2150  *    of B gets interrupted by an irq whose handler will try to acquire A).
2151  *
2152  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2153  *    strong circle:
2154  *
2155  *      For the usage bits of B:
2156  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2157  *           ENABLED_IRQ usage suffices.
2158  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2159  *           ENABLED_IRQ_*_READ usage suffices.
2160  *
2161  *      For the usage bits of A:
2162  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2163  *           USED_IN_IRQ usage suffices.
2164  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2165  *           USED_IN_IRQ_*_READ usage suffices.
2166  */
2167
2168 /*
2169  * There is a strong dependency path in the dependency graph: A -> B, and now
2170  * we need to decide which usage bit of A should be accumulated to detect
2171  * safe->unsafe bugs.
2172  *
2173  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2174  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2175  *
2176  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2177  * path, any usage of A should be considered. Otherwise, we should only
2178  * consider _READ usage.
2179  */
2180 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2181 {
2182         if (!entry->only_xr)
2183                 *(unsigned long *)mask |= entry->class->usage_mask;
2184         else /* Mask out _READ usage bits */
2185                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2186
2187         return false;
2188 }
2189
2190 /*
2191  * There is a strong dependency path in the dependency graph: A -> B, and now
2192  * we need to decide which usage bit of B conflicts with the usage bits of A,
2193  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2194  *
2195  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2196  * path, any usage of B should be considered. Otherwise, we should only
2197  * consider _READ usage.
2198  */
2199 static inline bool usage_match(struct lock_list *entry, void *mask)
2200 {
2201         if (!entry->only_xr)
2202                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2203         else /* Mask out _READ usage bits */
2204                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2205 }
2206
2207 static inline bool usage_skip(struct lock_list *entry, void *mask)
2208 {
2209         /*
2210          * Skip local_lock() for irq inversion detection.
2211          *
2212          * For !RT, local_lock() is not a real lock, so it won't carry any
2213          * dependency.
2214          *
2215          * For RT, an irq inversion happens when we have lock A and B, and on
2216          * some CPU we can have:
2217          *
2218          *      lock(A);
2219          *      <interrupted>
2220          *        lock(B);
2221          *
2222          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2223          *
2224          * Now we prove local_lock() cannot exist in that dependency. First we
2225          * have the observation for any lock chain L1 -> ... -> Ln, for any
2226          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2227          * wait context check will complain. And since B is not a sleep lock,
2228          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2229          * local_lock() is 3, which is greater than 2, therefore there is no
2230          * way the local_lock() exists in the dependency B -> ... -> A.
2231          *
2232          * As a result, we will skip local_lock(), when we search for irq
2233          * inversion bugs.
2234          */
2235         if (entry->class->lock_type == LD_LOCK_PERCPU) {
2236                 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2237                         return false;
2238
2239                 return true;
2240         }
2241
2242         return false;
2243 }
2244
2245 /*
2246  * Find a node in the forwards-direction dependency sub-graph starting
2247  * at @root->class that matches @bit.
2248  *
2249  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2250  * into *@target_entry.
2251  */
2252 static enum bfs_result
2253 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2254                         struct lock_list **target_entry)
2255 {
2256         enum bfs_result result;
2257
2258         debug_atomic_inc(nr_find_usage_forwards_checks);
2259
2260         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2261
2262         return result;
2263 }
2264
2265 /*
2266  * Find a node in the backwards-direction dependency sub-graph starting
2267  * at @root->class that matches @bit.
2268  */
2269 static enum bfs_result
2270 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2271                         struct lock_list **target_entry)
2272 {
2273         enum bfs_result result;
2274
2275         debug_atomic_inc(nr_find_usage_backwards_checks);
2276
2277         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2278
2279         return result;
2280 }
2281
2282 static void print_lock_class_header(struct lock_class *class, int depth)
2283 {
2284         int bit;
2285
2286         printk("%*s->", depth, "");
2287         print_lock_name(class);
2288 #ifdef CONFIG_DEBUG_LOCKDEP
2289         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2290 #endif
2291         printk(KERN_CONT " {\n");
2292
2293         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2294                 if (class->usage_mask & (1 << bit)) {
2295                         int len = depth;
2296
2297                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2298                         len += printk(KERN_CONT " at:\n");
2299                         print_lock_trace(class->usage_traces[bit], len);
2300                 }
2301         }
2302         printk("%*s }\n", depth, "");
2303
2304         printk("%*s ... key      at: [<%px>] %pS\n",
2305                 depth, "", class->key, class->key);
2306 }
2307
2308 /*
2309  * Dependency path printing:
2310  *
2311  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2312  * printing out each lock in the dependency path will help on understanding how
2313  * the deadlock could happen. Here are some details about dependency path
2314  * printing:
2315  *
2316  * 1)   A lock_list can be either forwards or backwards for a lock dependency,
2317  *      for a lock dependency A -> B, there are two lock_lists:
2318  *
2319  *      a)      lock_list in the ->locks_after list of A, whose ->class is B and
2320  *              ->links_to is A. In this case, we can say the lock_list is
2321  *              "A -> B" (forwards case).
2322  *
2323  *      b)      lock_list in the ->locks_before list of B, whose ->class is A
2324  *              and ->links_to is B. In this case, we can say the lock_list is
2325  *              "B <- A" (bacwards case).
2326  *
2327  *      The ->trace of both a) and b) point to the call trace where B was
2328  *      acquired with A held.
2329  *
2330  * 2)   A "helper" lock_list is introduced during BFS, this lock_list doesn't
2331  *      represent a certain lock dependency, it only provides an initial entry
2332  *      for BFS. For example, BFS may introduce a "helper" lock_list whose
2333  *      ->class is A, as a result BFS will search all dependencies starting with
2334  *      A, e.g. A -> B or A -> C.
2335  *
2336  *      The notation of a forwards helper lock_list is like "-> A", which means
2337  *      we should search the forwards dependencies starting with "A", e.g A -> B
2338  *      or A -> C.
2339  *
2340  *      The notation of a bacwards helper lock_list is like "<- B", which means
2341  *      we should search the backwards dependencies ending with "B", e.g.
2342  *      B <- A or B <- C.
2343  */
2344
2345 /*
2346  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2347  *
2348  * We have a lock dependency path as follow:
2349  *
2350  *    @root                                                                 @leaf
2351  *      |                                                                     |
2352  *      V                                                                     V
2353  *                ->parent                                   ->parent
2354  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2355  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2356  *
2357  * , so it's natural that we start from @leaf and print every ->class and
2358  * ->trace until we reach the @root.
2359  */
2360 static void __used
2361 print_shortest_lock_dependencies(struct lock_list *leaf,
2362                                  struct lock_list *root)
2363 {
2364         struct lock_list *entry = leaf;
2365         int depth;
2366
2367         /*compute depth from generated tree by BFS*/
2368         depth = get_lock_depth(leaf);
2369
2370         do {
2371                 print_lock_class_header(entry->class, depth);
2372                 printk("%*s ... acquired at:\n", depth, "");
2373                 print_lock_trace(entry->trace, 2);
2374                 printk("\n");
2375
2376                 if (depth == 0 && (entry != root)) {
2377                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2378                         break;
2379                 }
2380
2381                 entry = get_lock_parent(entry);
2382                 depth--;
2383         } while (entry && (depth >= 0));
2384 }
2385
2386 /*
2387  * printk the shortest lock dependencies from @leaf to @root.
2388  *
2389  * We have a lock dependency path (from a backwards search) as follow:
2390  *
2391  *    @leaf                                                                 @root
2392  *      |                                                                     |
2393  *      V                                                                     V
2394  *                ->parent                                   ->parent
2395  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2396  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2397  *
2398  * , so when we iterate from @leaf to @root, we actually print the lock
2399  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2400  *
2401  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2402  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2403  * trace of L1 in the dependency path, which is alright, because most of the
2404  * time we can figure out where L1 is held from the call trace of L2.
2405  */
2406 static void __used
2407 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2408                                            struct lock_list *root)
2409 {
2410         struct lock_list *entry = leaf;
2411         const struct lock_trace *trace = NULL;
2412         int depth;
2413
2414         /*compute depth from generated tree by BFS*/
2415         depth = get_lock_depth(leaf);
2416
2417         do {
2418                 print_lock_class_header(entry->class, depth);
2419                 if (trace) {
2420                         printk("%*s ... acquired at:\n", depth, "");
2421                         print_lock_trace(trace, 2);
2422                         printk("\n");
2423                 }
2424
2425                 /*
2426                  * Record the pointer to the trace for the next lock_list
2427                  * entry, see the comments for the function.
2428                  */
2429                 trace = entry->trace;
2430
2431                 if (depth == 0 && (entry != root)) {
2432                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2433                         break;
2434                 }
2435
2436                 entry = get_lock_parent(entry);
2437                 depth--;
2438         } while (entry && (depth >= 0));
2439 }
2440
2441 static void
2442 print_irq_lock_scenario(struct lock_list *safe_entry,
2443                         struct lock_list *unsafe_entry,
2444                         struct lock_class *prev_class,
2445                         struct lock_class *next_class)
2446 {
2447         struct lock_class *safe_class = safe_entry->class;
2448         struct lock_class *unsafe_class = unsafe_entry->class;
2449         struct lock_class *middle_class = prev_class;
2450
2451         if (middle_class == safe_class)
2452                 middle_class = next_class;
2453
2454         /*
2455          * A direct locking problem where unsafe_class lock is taken
2456          * directly by safe_class lock, then all we need to show
2457          * is the deadlock scenario, as it is obvious that the
2458          * unsafe lock is taken under the safe lock.
2459          *
2460          * But if there is a chain instead, where the safe lock takes
2461          * an intermediate lock (middle_class) where this lock is
2462          * not the same as the safe lock, then the lock chain is
2463          * used to describe the problem. Otherwise we would need
2464          * to show a different CPU case for each link in the chain
2465          * from the safe_class lock to the unsafe_class lock.
2466          */
2467         if (middle_class != unsafe_class) {
2468                 printk("Chain exists of:\n  ");
2469                 __print_lock_name(safe_class);
2470                 printk(KERN_CONT " --> ");
2471                 __print_lock_name(middle_class);
2472                 printk(KERN_CONT " --> ");
2473                 __print_lock_name(unsafe_class);
2474                 printk(KERN_CONT "\n\n");
2475         }
2476
2477         printk(" Possible interrupt unsafe locking scenario:\n\n");
2478         printk("       CPU0                    CPU1\n");
2479         printk("       ----                    ----\n");
2480         printk("  lock(");
2481         __print_lock_name(unsafe_class);
2482         printk(KERN_CONT ");\n");
2483         printk("                               local_irq_disable();\n");
2484         printk("                               lock(");
2485         __print_lock_name(safe_class);
2486         printk(KERN_CONT ");\n");
2487         printk("                               lock(");
2488         __print_lock_name(middle_class);
2489         printk(KERN_CONT ");\n");
2490         printk("  <Interrupt>\n");
2491         printk("    lock(");
2492         __print_lock_name(safe_class);
2493         printk(KERN_CONT ");\n");
2494         printk("\n *** DEADLOCK ***\n\n");
2495 }
2496
2497 static void
2498 print_bad_irq_dependency(struct task_struct *curr,
2499                          struct lock_list *prev_root,
2500                          struct lock_list *next_root,
2501                          struct lock_list *backwards_entry,
2502                          struct lock_list *forwards_entry,
2503                          struct held_lock *prev,
2504                          struct held_lock *next,
2505                          enum lock_usage_bit bit1,
2506                          enum lock_usage_bit bit2,
2507                          const char *irqclass)
2508 {
2509         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2510                 return;
2511
2512         pr_warn("\n");
2513         pr_warn("=====================================================\n");
2514         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2515                 irqclass, irqclass);
2516         print_kernel_ident();
2517         pr_warn("-----------------------------------------------------\n");
2518         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2519                 curr->comm, task_pid_nr(curr),
2520                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2521                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2522                 lockdep_hardirqs_enabled(),
2523                 curr->softirqs_enabled);
2524         print_lock(next);
2525
2526         pr_warn("\nand this task is already holding:\n");
2527         print_lock(prev);
2528         pr_warn("which would create a new lock dependency:\n");
2529         print_lock_name(hlock_class(prev));
2530         pr_cont(" ->");
2531         print_lock_name(hlock_class(next));
2532         pr_cont("\n");
2533
2534         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2535                 irqclass);
2536         print_lock_name(backwards_entry->class);
2537         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2538
2539         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2540
2541         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2542         print_lock_name(forwards_entry->class);
2543         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2544         pr_warn("...");
2545
2546         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2547
2548         pr_warn("\nother info that might help us debug this:\n\n");
2549         print_irq_lock_scenario(backwards_entry, forwards_entry,
2550                                 hlock_class(prev), hlock_class(next));
2551
2552         lockdep_print_held_locks(curr);
2553
2554         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2555         prev_root->trace = save_trace();
2556         if (!prev_root->trace)
2557                 return;
2558         print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2559
2560         pr_warn("\nthe dependencies between the lock to be acquired");
2561         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2562         next_root->trace = save_trace();
2563         if (!next_root->trace)
2564                 return;
2565         print_shortest_lock_dependencies(forwards_entry, next_root);
2566
2567         pr_warn("\nstack backtrace:\n");
2568         dump_stack();
2569 }
2570
2571 static const char *state_names[] = {
2572 #define LOCKDEP_STATE(__STATE) \
2573         __stringify(__STATE),
2574 #include "lockdep_states.h"
2575 #undef LOCKDEP_STATE
2576 };
2577
2578 static const char *state_rnames[] = {
2579 #define LOCKDEP_STATE(__STATE) \
2580         __stringify(__STATE)"-READ",
2581 #include "lockdep_states.h"
2582 #undef LOCKDEP_STATE
2583 };
2584
2585 static inline const char *state_name(enum lock_usage_bit bit)
2586 {
2587         if (bit & LOCK_USAGE_READ_MASK)
2588                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2589         else
2590                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2591 }
2592
2593 /*
2594  * The bit number is encoded like:
2595  *
2596  *  bit0: 0 exclusive, 1 read lock
2597  *  bit1: 0 used in irq, 1 irq enabled
2598  *  bit2-n: state
2599  */
2600 static int exclusive_bit(int new_bit)
2601 {
2602         int state = new_bit & LOCK_USAGE_STATE_MASK;
2603         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2604
2605         /*
2606          * keep state, bit flip the direction and strip read.
2607          */
2608         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2609 }
2610
2611 /*
2612  * Observe that when given a bitmask where each bitnr is encoded as above, a
2613  * right shift of the mask transforms the individual bitnrs as -1 and
2614  * conversely, a left shift transforms into +1 for the individual bitnrs.
2615  *
2616  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2617  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2618  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2619  *
2620  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2621  *
2622  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2623  * all bits set) and recompose with bitnr1 flipped.
2624  */
2625 static unsigned long invert_dir_mask(unsigned long mask)
2626 {
2627         unsigned long excl = 0;
2628
2629         /* Invert dir */
2630         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2631         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2632
2633         return excl;
2634 }
2635
2636 /*
2637  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2638  * usage may cause deadlock too, for example:
2639  *
2640  * P1                           P2
2641  * <irq disabled>
2642  * write_lock(l1);              <irq enabled>
2643  *                              read_lock(l2);
2644  * write_lock(l2);
2645  *                              <in irq>
2646  *                              read_lock(l1);
2647  *
2648  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2649  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2650  * deadlock.
2651  *
2652  * In fact, all of the following cases may cause deadlocks:
2653  *
2654  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2655  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2656  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2657  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2658  *
2659  * As a result, to calculate the "exclusive mask", first we invert the
2660  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2661  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2662  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2663  */
2664 static unsigned long exclusive_mask(unsigned long mask)
2665 {
2666         unsigned long excl = invert_dir_mask(mask);
2667
2668         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2669         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2670
2671         return excl;
2672 }
2673
2674 /*
2675  * Retrieve the _possible_ original mask to which @mask is
2676  * exclusive. Ie: this is the opposite of exclusive_mask().
2677  * Note that 2 possible original bits can match an exclusive
2678  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2679  * cleared. So both are returned for each exclusive bit.
2680  */
2681 static unsigned long original_mask(unsigned long mask)
2682 {
2683         unsigned long excl = invert_dir_mask(mask);
2684
2685         /* Include read in existing usages */
2686         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2687         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2688
2689         return excl;
2690 }
2691
2692 /*
2693  * Find the first pair of bit match between an original
2694  * usage mask and an exclusive usage mask.
2695  */
2696 static int find_exclusive_match(unsigned long mask,
2697                                 unsigned long excl_mask,
2698                                 enum lock_usage_bit *bitp,
2699                                 enum lock_usage_bit *excl_bitp)
2700 {
2701         int bit, excl, excl_read;
2702
2703         for_each_set_bit(bit, &mask, LOCK_USED) {
2704                 /*
2705                  * exclusive_bit() strips the read bit, however,
2706                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2707                  * to search excl | LOCK_USAGE_READ_MASK as well.
2708                  */
2709                 excl = exclusive_bit(bit);
2710                 excl_read = excl | LOCK_USAGE_READ_MASK;
2711                 if (excl_mask & lock_flag(excl)) {
2712                         *bitp = bit;
2713                         *excl_bitp = excl;
2714                         return 0;
2715                 } else if (excl_mask & lock_flag(excl_read)) {
2716                         *bitp = bit;
2717                         *excl_bitp = excl_read;
2718                         return 0;
2719                 }
2720         }
2721         return -1;
2722 }
2723
2724 /*
2725  * Prove that the new dependency does not connect a hardirq-safe(-read)
2726  * lock with a hardirq-unsafe lock - to achieve this we search
2727  * the backwards-subgraph starting at <prev>, and the
2728  * forwards-subgraph starting at <next>:
2729  */
2730 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2731                            struct held_lock *next)
2732 {
2733         unsigned long usage_mask = 0, forward_mask, backward_mask;
2734         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2735         struct lock_list *target_entry1;
2736         struct lock_list *target_entry;
2737         struct lock_list this, that;
2738         enum bfs_result ret;
2739
2740         /*
2741          * Step 1: gather all hard/soft IRQs usages backward in an
2742          * accumulated usage mask.
2743          */
2744         bfs_init_rootb(&this, prev);
2745
2746         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2747         if (bfs_error(ret)) {
2748                 print_bfs_bug(ret);
2749                 return 0;
2750         }
2751
2752         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2753         if (!usage_mask)
2754                 return 1;
2755
2756         /*
2757          * Step 2: find exclusive uses forward that match the previous
2758          * backward accumulated mask.
2759          */
2760         forward_mask = exclusive_mask(usage_mask);
2761
2762         bfs_init_root(&that, next);
2763
2764         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2765         if (bfs_error(ret)) {
2766                 print_bfs_bug(ret);
2767                 return 0;
2768         }
2769         if (ret == BFS_RNOMATCH)
2770                 return 1;
2771
2772         /*
2773          * Step 3: we found a bad match! Now retrieve a lock from the backward
2774          * list whose usage mask matches the exclusive usage mask from the
2775          * lock found on the forward list.
2776          *
2777          * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2778          * the follow case:
2779          *
2780          * When trying to add A -> B to the graph, we find that there is a
2781          * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2782          * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2783          * invert bits of M's usage_mask, we will find another lock N that is
2784          * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2785          * cause a inversion deadlock.
2786          */
2787         backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2788
2789         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2790         if (bfs_error(ret)) {
2791                 print_bfs_bug(ret);
2792                 return 0;
2793         }
2794         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2795                 return 1;
2796
2797         /*
2798          * Step 4: narrow down to a pair of incompatible usage bits
2799          * and report it.
2800          */
2801         ret = find_exclusive_match(target_entry->class->usage_mask,
2802                                    target_entry1->class->usage_mask,
2803                                    &backward_bit, &forward_bit);
2804         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2805                 return 1;
2806
2807         print_bad_irq_dependency(curr, &this, &that,
2808                                  target_entry, target_entry1,
2809                                  prev, next,
2810                                  backward_bit, forward_bit,
2811                                  state_name(backward_bit));
2812
2813         return 0;
2814 }
2815
2816 #else
2817
2818 static inline int check_irq_usage(struct task_struct *curr,
2819                                   struct held_lock *prev, struct held_lock *next)
2820 {
2821         return 1;
2822 }
2823
2824 static inline bool usage_skip(struct lock_list *entry, void *mask)
2825 {
2826         return false;
2827 }
2828
2829 #endif /* CONFIG_TRACE_IRQFLAGS */
2830
2831 #ifdef CONFIG_LOCKDEP_SMALL
2832 /*
2833  * Check that the dependency graph starting at <src> can lead to
2834  * <target> or not. If it can, <src> -> <target> dependency is already
2835  * in the graph.
2836  *
2837  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2838  * any error appears in the bfs search.
2839  */
2840 static noinline enum bfs_result
2841 check_redundant(struct held_lock *src, struct held_lock *target)
2842 {
2843         enum bfs_result ret;
2844         struct lock_list *target_entry;
2845         struct lock_list src_entry;
2846
2847         bfs_init_root(&src_entry, src);
2848         /*
2849          * Special setup for check_redundant().
2850          *
2851          * To report redundant, we need to find a strong dependency path that
2852          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2853          * we need to let __bfs() only search for a path starting at a -(E*)->,
2854          * we achieve this by setting the initial node's ->only_xr to true in
2855          * that case. And if <prev> is S, we set initial ->only_xr to false
2856          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2857          */
2858         src_entry.only_xr = src->read == 0;
2859
2860         debug_atomic_inc(nr_redundant_checks);
2861
2862         /*
2863          * Note: we skip local_lock() for redundant check, because as the
2864          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2865          * the same.
2866          */
2867         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2868
2869         if (ret == BFS_RMATCH)
2870                 debug_atomic_inc(nr_redundant);
2871
2872         return ret;
2873 }
2874
2875 #else
2876
2877 static inline enum bfs_result
2878 check_redundant(struct held_lock *src, struct held_lock *target)
2879 {
2880         return BFS_RNOMATCH;
2881 }
2882
2883 #endif
2884
2885 static void inc_chains(int irq_context)
2886 {
2887         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2888                 nr_hardirq_chains++;
2889         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2890                 nr_softirq_chains++;
2891         else
2892                 nr_process_chains++;
2893 }
2894
2895 static void dec_chains(int irq_context)
2896 {
2897         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2898                 nr_hardirq_chains--;
2899         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2900                 nr_softirq_chains--;
2901         else
2902                 nr_process_chains--;
2903 }
2904
2905 static void
2906 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2907 {
2908         struct lock_class *next = hlock_class(nxt);
2909         struct lock_class *prev = hlock_class(prv);
2910
2911         printk(" Possible unsafe locking scenario:\n\n");
2912         printk("       CPU0\n");
2913         printk("       ----\n");
2914         printk("  lock(");
2915         __print_lock_name(prev);
2916         printk(KERN_CONT ");\n");
2917         printk("  lock(");
2918         __print_lock_name(next);
2919         printk(KERN_CONT ");\n");
2920         printk("\n *** DEADLOCK ***\n\n");
2921         printk(" May be due to missing lock nesting notation\n\n");
2922 }
2923
2924 static void
2925 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2926                    struct held_lock *next)
2927 {
2928         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2929                 return;
2930
2931         pr_warn("\n");
2932         pr_warn("============================================\n");
2933         pr_warn("WARNING: possible recursive locking detected\n");
2934         print_kernel_ident();
2935         pr_warn("--------------------------------------------\n");
2936         pr_warn("%s/%d is trying to acquire lock:\n",
2937                 curr->comm, task_pid_nr(curr));
2938         print_lock(next);
2939         pr_warn("\nbut task is already holding lock:\n");
2940         print_lock(prev);
2941
2942         pr_warn("\nother info that might help us debug this:\n");
2943         print_deadlock_scenario(next, prev);
2944         lockdep_print_held_locks(curr);
2945
2946         pr_warn("\nstack backtrace:\n");
2947         dump_stack();
2948 }
2949
2950 /*
2951  * Check whether we are holding such a class already.
2952  *
2953  * (Note that this has to be done separately, because the graph cannot
2954  * detect such classes of deadlocks.)
2955  *
2956  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2957  * lock class is held but nest_lock is also held, i.e. we rely on the
2958  * nest_lock to avoid the deadlock.
2959  */
2960 static int
2961 check_deadlock(struct task_struct *curr, struct held_lock *next)
2962 {
2963         struct held_lock *prev;
2964         struct held_lock *nest = NULL;
2965         int i;
2966
2967         for (i = 0; i < curr->lockdep_depth; i++) {
2968                 prev = curr->held_locks + i;
2969
2970                 if (prev->instance == next->nest_lock)
2971                         nest = prev;
2972
2973                 if (hlock_class(prev) != hlock_class(next))
2974                         continue;
2975
2976                 /*
2977                  * Allow read-after-read recursion of the same
2978                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
2979                  */
2980                 if ((next->read == 2) && prev->read)
2981                         continue;
2982
2983                 /*
2984                  * We're holding the nest_lock, which serializes this lock's
2985                  * nesting behaviour.
2986                  */
2987                 if (nest)
2988                         return 2;
2989
2990                 print_deadlock_bug(curr, prev, next);
2991                 return 0;
2992         }
2993         return 1;
2994 }
2995
2996 /*
2997  * There was a chain-cache miss, and we are about to add a new dependency
2998  * to a previous lock. We validate the following rules:
2999  *
3000  *  - would the adding of the <prev> -> <next> dependency create a
3001  *    circular dependency in the graph? [== circular deadlock]
3002  *
3003  *  - does the new prev->next dependency connect any hardirq-safe lock
3004  *    (in the full backwards-subgraph starting at <prev>) with any
3005  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3006  *    <next>)? [== illegal lock inversion with hardirq contexts]
3007  *
3008  *  - does the new prev->next dependency connect any softirq-safe lock
3009  *    (in the full backwards-subgraph starting at <prev>) with any
3010  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3011  *    <next>)? [== illegal lock inversion with softirq contexts]
3012  *
3013  * any of these scenarios could lead to a deadlock.
3014  *
3015  * Then if all the validations pass, we add the forwards and backwards
3016  * dependency.
3017  */
3018 static int
3019 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3020                struct held_lock *next, u16 distance,
3021                struct lock_trace **const trace)
3022 {
3023         struct lock_list *entry;
3024         enum bfs_result ret;
3025
3026         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3027                 /*
3028                  * The warning statements below may trigger a use-after-free
3029                  * of the class name. It is better to trigger a use-after free
3030                  * and to have the class name most of the time instead of not
3031                  * having the class name available.
3032                  */
3033                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3034                           "Detected use-after-free of lock class %px/%s\n",
3035                           hlock_class(prev),
3036                           hlock_class(prev)->name);
3037                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3038                           "Detected use-after-free of lock class %px/%s\n",
3039                           hlock_class(next),
3040                           hlock_class(next)->name);
3041                 return 2;
3042         }
3043
3044         /*
3045          * Prove that the new <prev> -> <next> dependency would not
3046          * create a circular dependency in the graph. (We do this by
3047          * a breadth-first search into the graph starting at <next>,
3048          * and check whether we can reach <prev>.)
3049          *
3050          * The search is limited by the size of the circular queue (i.e.,
3051          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3052          * in the graph whose neighbours are to be checked.
3053          */
3054         ret = check_noncircular(next, prev, trace);
3055         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3056                 return 0;
3057
3058         if (!check_irq_usage(curr, prev, next))
3059                 return 0;
3060
3061         /*
3062          * Is the <prev> -> <next> dependency already present?
3063          *
3064          * (this may occur even though this is a new chain: consider
3065          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3066          *  chains - the second one will be new, but L1 already has
3067          *  L2 added to its dependency list, due to the first chain.)
3068          */
3069         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3070                 if (entry->class == hlock_class(next)) {
3071                         if (distance == 1)
3072                                 entry->distance = 1;
3073                         entry->dep |= calc_dep(prev, next);
3074
3075                         /*
3076                          * Also, update the reverse dependency in @next's
3077                          * ->locks_before list.
3078                          *
3079                          *  Here we reuse @entry as the cursor, which is fine
3080                          *  because we won't go to the next iteration of the
3081                          *  outer loop:
3082                          *
3083                          *  For normal cases, we return in the inner loop.
3084                          *
3085                          *  If we fail to return, we have inconsistency, i.e.
3086                          *  <prev>::locks_after contains <next> while
3087                          *  <next>::locks_before doesn't contain <prev>. In
3088                          *  that case, we return after the inner and indicate
3089                          *  something is wrong.
3090                          */
3091                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3092                                 if (entry->class == hlock_class(prev)) {
3093                                         if (distance == 1)
3094                                                 entry->distance = 1;
3095                                         entry->dep |= calc_depb(prev, next);
3096                                         return 1;
3097                                 }
3098                         }
3099
3100                         /* <prev> is not found in <next>::locks_before */
3101                         return 0;
3102                 }
3103         }
3104
3105         /*
3106          * Is the <prev> -> <next> link redundant?
3107          */
3108         ret = check_redundant(prev, next);
3109         if (bfs_error(ret))
3110                 return 0;
3111         else if (ret == BFS_RMATCH)
3112                 return 2;
3113
3114         if (!*trace) {
3115                 *trace = save_trace();
3116                 if (!*trace)
3117                         return 0;
3118         }
3119
3120         /*
3121          * Ok, all validations passed, add the new lock
3122          * to the previous lock's dependency list:
3123          */
3124         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3125                                &hlock_class(prev)->locks_after,
3126                                next->acquire_ip, distance,
3127                                calc_dep(prev, next),
3128                                *trace);
3129
3130         if (!ret)
3131                 return 0;
3132
3133         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3134                                &hlock_class(next)->locks_before,
3135                                next->acquire_ip, distance,
3136                                calc_depb(prev, next),
3137                                *trace);
3138         if (!ret)
3139                 return 0;
3140
3141         return 2;
3142 }
3143
3144 /*
3145  * Add the dependency to all directly-previous locks that are 'relevant'.
3146  * The ones that are relevant are (in increasing distance from curr):
3147  * all consecutive trylock entries and the final non-trylock entry - or
3148  * the end of this context's lock-chain - whichever comes first.
3149  */
3150 static int
3151 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3152 {
3153         struct lock_trace *trace = NULL;
3154         int depth = curr->lockdep_depth;
3155         struct held_lock *hlock;
3156
3157         /*
3158          * Debugging checks.
3159          *
3160          * Depth must not be zero for a non-head lock:
3161          */
3162         if (!depth)
3163                 goto out_bug;
3164         /*
3165          * At least two relevant locks must exist for this
3166          * to be a head:
3167          */
3168         if (curr->held_locks[depth].irq_context !=
3169                         curr->held_locks[depth-1].irq_context)
3170                 goto out_bug;
3171
3172         for (;;) {
3173                 u16 distance = curr->lockdep_depth - depth + 1;
3174                 hlock = curr->held_locks + depth - 1;
3175
3176                 if (hlock->check) {
3177                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3178                         if (!ret)
3179                                 return 0;
3180
3181                         /*
3182                          * Stop after the first non-trylock entry,
3183                          * as non-trylock entries have added their
3184                          * own direct dependencies already, so this
3185                          * lock is connected to them indirectly:
3186                          */
3187                         if (!hlock->trylock)
3188                                 break;
3189                 }
3190
3191                 depth--;
3192                 /*
3193                  * End of lock-stack?
3194                  */
3195                 if (!depth)
3196                         break;
3197                 /*
3198                  * Stop the search if we cross into another context:
3199                  */
3200                 if (curr->held_locks[depth].irq_context !=
3201                                 curr->held_locks[depth-1].irq_context)
3202                         break;
3203         }
3204         return 1;
3205 out_bug:
3206         if (!debug_locks_off_graph_unlock())
3207                 return 0;
3208
3209         /*
3210          * Clearly we all shouldn't be here, but since we made it we
3211          * can reliable say we messed up our state. See the above two
3212          * gotos for reasons why we could possibly end up here.
3213          */
3214         WARN_ON(1);
3215
3216         return 0;
3217 }
3218
3219 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3220 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3221 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3222 unsigned long nr_zapped_lock_chains;
3223 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3224 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3225 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3226
3227 /*
3228  * The first 2 chain_hlocks entries in the chain block in the bucket
3229  * list contains the following meta data:
3230  *
3231  *   entry[0]:
3232  *     Bit    15 - always set to 1 (it is not a class index)
3233  *     Bits 0-14 - upper 15 bits of the next block index
3234  *   entry[1]    - lower 16 bits of next block index
3235  *
3236  * A next block index of all 1 bits means it is the end of the list.
3237  *
3238  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3239  * the chain block size:
3240  *
3241  *   entry[2] - upper 16 bits of the chain block size
3242  *   entry[3] - lower 16 bits of the chain block size
3243  */
3244 #define MAX_CHAIN_BUCKETS       16
3245 #define CHAIN_BLK_FLAG          (1U << 15)
3246 #define CHAIN_BLK_LIST_END      0xFFFFU
3247
3248 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3249
3250 static inline int size_to_bucket(int size)
3251 {
3252         if (size > MAX_CHAIN_BUCKETS)
3253                 return 0;
3254
3255         return size - 1;
3256 }
3257
3258 /*
3259  * Iterate all the chain blocks in a bucket.
3260  */
3261 #define for_each_chain_block(bucket, prev, curr)                \
3262         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3263              (curr) >= 0;                                       \
3264              (prev) = (curr), (curr) = chain_block_next(curr))
3265
3266 /*
3267  * next block or -1
3268  */
3269 static inline int chain_block_next(int offset)
3270 {
3271         int next = chain_hlocks[offset];
3272
3273         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3274
3275         if (next == CHAIN_BLK_LIST_END)
3276                 return -1;
3277
3278         next &= ~CHAIN_BLK_FLAG;
3279         next <<= 16;
3280         next |= chain_hlocks[offset + 1];
3281
3282         return next;
3283 }
3284
3285 /*
3286  * bucket-0 only
3287  */
3288 static inline int chain_block_size(int offset)
3289 {
3290         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3291 }
3292
3293 static inline void init_chain_block(int offset, int next, int bucket, int size)
3294 {
3295         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3296         chain_hlocks[offset + 1] = (u16)next;
3297
3298         if (size && !bucket) {
3299                 chain_hlocks[offset + 2] = size >> 16;
3300                 chain_hlocks[offset + 3] = (u16)size;
3301         }
3302 }
3303
3304 static inline void add_chain_block(int offset, int size)
3305 {
3306         int bucket = size_to_bucket(size);
3307         int next = chain_block_buckets[bucket];
3308         int prev, curr;
3309
3310         if (unlikely(size < 2)) {
3311                 /*
3312                  * We can't store single entries on the freelist. Leak them.
3313                  *
3314                  * One possible way out would be to uniquely mark them, other
3315                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3316                  * the block before it is re-added.
3317                  */
3318                 if (size)
3319                         nr_lost_chain_hlocks++;
3320                 return;
3321         }
3322
3323         nr_free_chain_hlocks += size;
3324         if (!bucket) {
3325                 nr_large_chain_blocks++;
3326
3327                 /*
3328                  * Variable sized, sort large to small.
3329                  */
3330                 for_each_chain_block(0, prev, curr) {
3331                         if (size >= chain_block_size(curr))
3332                                 break;
3333                 }
3334                 init_chain_block(offset, curr, 0, size);
3335                 if (prev < 0)
3336                         chain_block_buckets[0] = offset;
3337                 else
3338                         init_chain_block(prev, offset, 0, 0);
3339                 return;
3340         }
3341         /*
3342          * Fixed size, add to head.
3343          */
3344         init_chain_block(offset, next, bucket, size);
3345         chain_block_buckets[bucket] = offset;
3346 }
3347
3348 /*
3349  * Only the first block in the list can be deleted.
3350  *
3351  * For the variable size bucket[0], the first block (the largest one) is
3352  * returned, broken up and put back into the pool. So if a chain block of
3353  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3354  * queued up after the primordial chain block and never be used until the
3355  * hlock entries in the primordial chain block is almost used up. That
3356  * causes fragmentation and reduce allocation efficiency. That can be
3357  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3358  */
3359 static inline void del_chain_block(int bucket, int size, int next)
3360 {
3361         nr_free_chain_hlocks -= size;
3362         chain_block_buckets[bucket] = next;
3363
3364         if (!bucket)
3365                 nr_large_chain_blocks--;
3366 }
3367
3368 static void init_chain_block_buckets(void)
3369 {
3370         int i;
3371
3372         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3373                 chain_block_buckets[i] = -1;
3374
3375         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3376 }
3377
3378 /*
3379  * Return offset of a chain block of the right size or -1 if not found.
3380  *
3381  * Fairly simple worst-fit allocator with the addition of a number of size
3382  * specific free lists.
3383  */
3384 static int alloc_chain_hlocks(int req)
3385 {
3386         int bucket, curr, size;
3387
3388         /*
3389          * We rely on the MSB to act as an escape bit to denote freelist
3390          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3391          */
3392         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3393
3394         init_data_structures_once();
3395
3396         if (nr_free_chain_hlocks < req)
3397                 return -1;
3398
3399         /*
3400          * We require a minimum of 2 (u16) entries to encode a freelist
3401          * 'pointer'.
3402          */
3403         req = max(req, 2);
3404         bucket = size_to_bucket(req);
3405         curr = chain_block_buckets[bucket];
3406
3407         if (bucket) {
3408                 if (curr >= 0) {
3409                         del_chain_block(bucket, req, chain_block_next(curr));
3410                         return curr;
3411                 }
3412                 /* Try bucket 0 */
3413                 curr = chain_block_buckets[0];
3414         }
3415
3416         /*
3417          * The variable sized freelist is sorted by size; the first entry is
3418          * the largest. Use it if it fits.
3419          */
3420         if (curr >= 0) {
3421                 size = chain_block_size(curr);
3422                 if (likely(size >= req)) {
3423                         del_chain_block(0, size, chain_block_next(curr));
3424                         add_chain_block(curr + req, size - req);
3425                         return curr;
3426                 }
3427         }
3428
3429         /*
3430          * Last resort, split a block in a larger sized bucket.
3431          */
3432         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3433                 bucket = size_to_bucket(size);
3434                 curr = chain_block_buckets[bucket];
3435                 if (curr < 0)
3436                         continue;
3437
3438                 del_chain_block(bucket, size, chain_block_next(curr));
3439                 add_chain_block(curr + req, size - req);
3440                 return curr;
3441         }
3442
3443         return -1;
3444 }
3445
3446 static inline void free_chain_hlocks(int base, int size)
3447 {
3448         add_chain_block(base, max(size, 2));
3449 }
3450
3451 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3452 {
3453         u16 chain_hlock = chain_hlocks[chain->base + i];
3454         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3455
3456         return lock_classes + class_idx - 1;
3457 }
3458
3459 /*
3460  * Returns the index of the first held_lock of the current chain
3461  */
3462 static inline int get_first_held_lock(struct task_struct *curr,
3463                                         struct held_lock *hlock)
3464 {
3465         int i;
3466         struct held_lock *hlock_curr;
3467
3468         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3469                 hlock_curr = curr->held_locks + i;
3470                 if (hlock_curr->irq_context != hlock->irq_context)
3471                         break;
3472
3473         }
3474
3475         return ++i;
3476 }
3477
3478 #ifdef CONFIG_DEBUG_LOCKDEP
3479 /*
3480  * Returns the next chain_key iteration
3481  */
3482 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3483 {
3484         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3485
3486         printk(" hlock_id:%d -> chain_key:%016Lx",
3487                 (unsigned int)hlock_id,
3488                 (unsigned long long)new_chain_key);
3489         return new_chain_key;
3490 }
3491
3492 static void
3493 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3494 {
3495         struct held_lock *hlock;
3496         u64 chain_key = INITIAL_CHAIN_KEY;
3497         int depth = curr->lockdep_depth;
3498         int i = get_first_held_lock(curr, hlock_next);
3499
3500         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3501                 hlock_next->irq_context);
3502         for (; i < depth; i++) {
3503                 hlock = curr->held_locks + i;
3504                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3505
3506                 print_lock(hlock);
3507         }
3508
3509         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3510         print_lock(hlock_next);
3511 }
3512
3513 static void print_chain_keys_chain(struct lock_chain *chain)
3514 {
3515         int i;
3516         u64 chain_key = INITIAL_CHAIN_KEY;
3517         u16 hlock_id;
3518
3519         printk("depth: %u\n", chain->depth);
3520         for (i = 0; i < chain->depth; i++) {
3521                 hlock_id = chain_hlocks[chain->base + i];
3522                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3523
3524                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3525                 printk("\n");
3526         }
3527 }
3528
3529 static void print_collision(struct task_struct *curr,
3530                         struct held_lock *hlock_next,
3531                         struct lock_chain *chain)
3532 {
3533         pr_warn("\n");
3534         pr_warn("============================\n");
3535         pr_warn("WARNING: chain_key collision\n");
3536         print_kernel_ident();
3537         pr_warn("----------------------------\n");
3538         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3539         pr_warn("Hash chain already cached but the contents don't match!\n");
3540
3541         pr_warn("Held locks:");
3542         print_chain_keys_held_locks(curr, hlock_next);
3543
3544         pr_warn("Locks in cached chain:");
3545         print_chain_keys_chain(chain);
3546
3547         pr_warn("\nstack backtrace:\n");
3548         dump_stack();
3549 }
3550 #endif
3551
3552 /*
3553  * Checks whether the chain and the current held locks are consistent
3554  * in depth and also in content. If they are not it most likely means
3555  * that there was a collision during the calculation of the chain_key.
3556  * Returns: 0 not passed, 1 passed
3557  */
3558 static int check_no_collision(struct task_struct *curr,
3559                         struct held_lock *hlock,
3560                         struct lock_chain *chain)
3561 {
3562 #ifdef CONFIG_DEBUG_LOCKDEP
3563         int i, j, id;
3564
3565         i = get_first_held_lock(curr, hlock);
3566
3567         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3568                 print_collision(curr, hlock, chain);
3569                 return 0;
3570         }
3571
3572         for (j = 0; j < chain->depth - 1; j++, i++) {
3573                 id = hlock_id(&curr->held_locks[i]);
3574
3575                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3576                         print_collision(curr, hlock, chain);
3577                         return 0;
3578                 }
3579         }
3580 #endif
3581         return 1;
3582 }
3583
3584 /*
3585  * Given an index that is >= -1, return the index of the next lock chain.
3586  * Return -2 if there is no next lock chain.
3587  */
3588 long lockdep_next_lockchain(long i)
3589 {
3590         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3591         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3592 }
3593
3594 unsigned long lock_chain_count(void)
3595 {
3596         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3597 }
3598
3599 /* Must be called with the graph lock held. */
3600 static struct lock_chain *alloc_lock_chain(void)
3601 {
3602         int idx = find_first_zero_bit(lock_chains_in_use,
3603                                       ARRAY_SIZE(lock_chains));
3604
3605         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3606                 return NULL;
3607         __set_bit(idx, lock_chains_in_use);
3608         return lock_chains + idx;
3609 }
3610
3611 /*
3612  * Adds a dependency chain into chain hashtable. And must be called with
3613  * graph_lock held.
3614  *
3615  * Return 0 if fail, and graph_lock is released.
3616  * Return 1 if succeed, with graph_lock held.
3617  */
3618 static inline int add_chain_cache(struct task_struct *curr,
3619                                   struct held_lock *hlock,
3620                                   u64 chain_key)
3621 {
3622         struct hlist_head *hash_head = chainhashentry(chain_key);
3623         struct lock_chain *chain;
3624         int i, j;
3625
3626         /*
3627          * The caller must hold the graph lock, ensure we've got IRQs
3628          * disabled to make this an IRQ-safe lock.. for recursion reasons
3629          * lockdep won't complain about its own locking errors.
3630          */
3631         if (lockdep_assert_locked())
3632                 return 0;
3633
3634         chain = alloc_lock_chain();
3635         if (!chain) {
3636                 if (!debug_locks_off_graph_unlock())
3637                         return 0;
3638
3639                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3640                 dump_stack();
3641                 return 0;
3642         }
3643         chain->chain_key = chain_key;
3644         chain->irq_context = hlock->irq_context;
3645         i = get_first_held_lock(curr, hlock);
3646         chain->depth = curr->lockdep_depth + 1 - i;
3647
3648         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3649         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3650         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3651
3652         j = alloc_chain_hlocks(chain->depth);
3653         if (j < 0) {
3654                 if (!debug_locks_off_graph_unlock())
3655                         return 0;
3656
3657                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3658                 dump_stack();
3659                 return 0;
3660         }
3661
3662         chain->base = j;
3663         for (j = 0; j < chain->depth - 1; j++, i++) {
3664                 int lock_id = hlock_id(curr->held_locks + i);
3665
3666                 chain_hlocks[chain->base + j] = lock_id;
3667         }
3668         chain_hlocks[chain->base + j] = hlock_id(hlock);
3669         hlist_add_head_rcu(&chain->entry, hash_head);
3670         debug_atomic_inc(chain_lookup_misses);
3671         inc_chains(chain->irq_context);
3672
3673         return 1;
3674 }
3675
3676 /*
3677  * Look up a dependency chain. Must be called with either the graph lock or
3678  * the RCU read lock held.
3679  */
3680 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3681 {
3682         struct hlist_head *hash_head = chainhashentry(chain_key);
3683         struct lock_chain *chain;
3684
3685         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3686                 if (READ_ONCE(chain->chain_key) == chain_key) {
3687                         debug_atomic_inc(chain_lookup_hits);
3688                         return chain;
3689                 }
3690         }
3691         return NULL;
3692 }
3693
3694 /*
3695  * If the key is not present yet in dependency chain cache then
3696  * add it and return 1 - in this case the new dependency chain is
3697  * validated. If the key is already hashed, return 0.
3698  * (On return with 1 graph_lock is held.)
3699  */
3700 static inline int lookup_chain_cache_add(struct task_struct *curr,
3701                                          struct held_lock *hlock,
3702                                          u64 chain_key)
3703 {
3704         struct lock_class *class = hlock_class(hlock);
3705         struct lock_chain *chain = lookup_chain_cache(chain_key);
3706
3707         if (chain) {
3708 cache_hit:
3709                 if (!check_no_collision(curr, hlock, chain))
3710                         return 0;
3711
3712                 if (very_verbose(class)) {
3713                         printk("\nhash chain already cached, key: "
3714                                         "%016Lx tail class: [%px] %s\n",
3715                                         (unsigned long long)chain_key,
3716                                         class->key, class->name);
3717                 }
3718
3719                 return 0;
3720         }
3721
3722         if (very_verbose(class)) {
3723                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3724                         (unsigned long long)chain_key, class->key, class->name);
3725         }
3726
3727         if (!graph_lock())
3728                 return 0;
3729
3730         /*
3731          * We have to walk the chain again locked - to avoid duplicates:
3732          */
3733         chain = lookup_chain_cache(chain_key);
3734         if (chain) {
3735                 graph_unlock();
3736                 goto cache_hit;
3737         }
3738
3739         if (!add_chain_cache(curr, hlock, chain_key))
3740                 return 0;
3741
3742         return 1;
3743 }
3744
3745 static int validate_chain(struct task_struct *curr,
3746                           struct held_lock *hlock,
3747                           int chain_head, u64 chain_key)
3748 {
3749         /*
3750          * Trylock needs to maintain the stack of held locks, but it
3751          * does not add new dependencies, because trylock can be done
3752          * in any order.
3753          *
3754          * We look up the chain_key and do the O(N^2) check and update of
3755          * the dependencies only if this is a new dependency chain.
3756          * (If lookup_chain_cache_add() return with 1 it acquires
3757          * graph_lock for us)
3758          */
3759         if (!hlock->trylock && hlock->check &&
3760             lookup_chain_cache_add(curr, hlock, chain_key)) {
3761                 /*
3762                  * Check whether last held lock:
3763                  *
3764                  * - is irq-safe, if this lock is irq-unsafe
3765                  * - is softirq-safe, if this lock is hardirq-unsafe
3766                  *
3767                  * And check whether the new lock's dependency graph
3768                  * could lead back to the previous lock:
3769                  *
3770                  * - within the current held-lock stack
3771                  * - across our accumulated lock dependency records
3772                  *
3773                  * any of these scenarios could lead to a deadlock.
3774                  */
3775                 /*
3776                  * The simple case: does the current hold the same lock
3777                  * already?
3778                  */
3779                 int ret = check_deadlock(curr, hlock);
3780
3781                 if (!ret)
3782                         return 0;
3783                 /*
3784                  * Add dependency only if this lock is not the head
3785                  * of the chain, and if the new lock introduces no more
3786                  * lock dependency (because we already hold a lock with the
3787                  * same lock class) nor deadlock (because the nest_lock
3788                  * serializes nesting locks), see the comments for
3789                  * check_deadlock().
3790                  */
3791                 if (!chain_head && ret != 2) {
3792                         if (!check_prevs_add(curr, hlock))
3793                                 return 0;
3794                 }
3795
3796                 graph_unlock();
3797         } else {
3798                 /* after lookup_chain_cache_add(): */
3799                 if (unlikely(!debug_locks))
3800                         return 0;
3801         }
3802
3803         return 1;
3804 }
3805 #else
3806 static inline int validate_chain(struct task_struct *curr,
3807                                  struct held_lock *hlock,
3808                                  int chain_head, u64 chain_key)
3809 {
3810         return 1;
3811 }
3812
3813 static void init_chain_block_buckets(void)      { }
3814 #endif /* CONFIG_PROVE_LOCKING */
3815
3816 /*
3817  * We are building curr_chain_key incrementally, so double-check
3818  * it from scratch, to make sure that it's done correctly:
3819  */
3820 static void check_chain_key(struct task_struct *curr)
3821 {
3822 #ifdef CONFIG_DEBUG_LOCKDEP
3823         struct held_lock *hlock, *prev_hlock = NULL;
3824         unsigned int i;
3825         u64 chain_key = INITIAL_CHAIN_KEY;
3826
3827         for (i = 0; i < curr->lockdep_depth; i++) {
3828                 hlock = curr->held_locks + i;
3829                 if (chain_key != hlock->prev_chain_key) {
3830                         debug_locks_off();
3831                         /*
3832                          * We got mighty confused, our chain keys don't match
3833                          * with what we expect, someone trample on our task state?
3834                          */
3835                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3836                                 curr->lockdep_depth, i,
3837                                 (unsigned long long)chain_key,
3838                                 (unsigned long long)hlock->prev_chain_key);
3839                         return;
3840                 }
3841
3842                 /*
3843                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3844                  * it registered lock class index?
3845                  */
3846                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3847                         return;
3848
3849                 if (prev_hlock && (prev_hlock->irq_context !=
3850                                                         hlock->irq_context))
3851                         chain_key = INITIAL_CHAIN_KEY;
3852                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3853                 prev_hlock = hlock;
3854         }
3855         if (chain_key != curr->curr_chain_key) {
3856                 debug_locks_off();
3857                 /*
3858                  * More smoking hash instead of calculating it, damn see these
3859                  * numbers float.. I bet that a pink elephant stepped on my memory.
3860                  */
3861                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3862                         curr->lockdep_depth, i,
3863                         (unsigned long long)chain_key,
3864                         (unsigned long long)curr->curr_chain_key);
3865         }
3866 #endif
3867 }
3868
3869 #ifdef CONFIG_PROVE_LOCKING
3870 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3871                      enum lock_usage_bit new_bit);
3872
3873 static void print_usage_bug_scenario(struct held_lock *lock)
3874 {
3875         struct lock_class *class = hlock_class(lock);
3876
3877         printk(" Possible unsafe locking scenario:\n\n");
3878         printk("       CPU0\n");
3879         printk("       ----\n");
3880         printk("  lock(");
3881         __print_lock_name(class);
3882         printk(KERN_CONT ");\n");
3883         printk("  <Interrupt>\n");
3884         printk("    lock(");
3885         __print_lock_name(class);
3886         printk(KERN_CONT ");\n");
3887         printk("\n *** DEADLOCK ***\n\n");
3888 }
3889
3890 static void
3891 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3892                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3893 {
3894         if (!debug_locks_off() || debug_locks_silent)
3895                 return;
3896
3897         pr_warn("\n");
3898         pr_warn("================================\n");
3899         pr_warn("WARNING: inconsistent lock state\n");
3900         print_kernel_ident();
3901         pr_warn("--------------------------------\n");
3902
3903         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3904                 usage_str[prev_bit], usage_str[new_bit]);
3905
3906         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3907                 curr->comm, task_pid_nr(curr),
3908                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3909                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3910                 lockdep_hardirqs_enabled(),
3911                 lockdep_softirqs_enabled(curr));
3912         print_lock(this);
3913
3914         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3915         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3916
3917         print_irqtrace_events(curr);
3918         pr_warn("\nother info that might help us debug this:\n");
3919         print_usage_bug_scenario(this);
3920
3921         lockdep_print_held_locks(curr);
3922
3923         pr_warn("\nstack backtrace:\n");
3924         dump_stack();
3925 }
3926
3927 /*
3928  * Print out an error if an invalid bit is set:
3929  */
3930 static inline int
3931 valid_state(struct task_struct *curr, struct held_lock *this,
3932             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3933 {
3934         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3935                 graph_unlock();
3936                 print_usage_bug(curr, this, bad_bit, new_bit);
3937                 return 0;
3938         }
3939         return 1;
3940 }
3941
3942
3943 /*
3944  * print irq inversion bug:
3945  */
3946 static void
3947 print_irq_inversion_bug(struct task_struct *curr,
3948                         struct lock_list *root, struct lock_list *other,
3949                         struct held_lock *this, int forwards,
3950                         const char *irqclass)
3951 {
3952         struct lock_list *entry = other;
3953         struct lock_list *middle = NULL;
3954         int depth;
3955
3956         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3957                 return;
3958
3959         pr_warn("\n");
3960         pr_warn("========================================================\n");
3961         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3962         print_kernel_ident();
3963         pr_warn("--------------------------------------------------------\n");
3964         pr_warn("%s/%d just changed the state of lock:\n",
3965                 curr->comm, task_pid_nr(curr));
3966         print_lock(this);
3967         if (forwards)
3968                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3969         else
3970                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3971         print_lock_name(other->class);
3972         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3973
3974         pr_warn("\nother info that might help us debug this:\n");
3975
3976         /* Find a middle lock (if one exists) */
3977         depth = get_lock_depth(other);
3978         do {
3979                 if (depth == 0 && (entry != root)) {
3980                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3981                         break;
3982                 }
3983                 middle = entry;
3984                 entry = get_lock_parent(entry);
3985                 depth--;
3986         } while (entry && entry != root && (depth >= 0));
3987         if (forwards)
3988                 print_irq_lock_scenario(root, other,
3989                         middle ? middle->class : root->class, other->class);
3990         else
3991                 print_irq_lock_scenario(other, root,
3992                         middle ? middle->class : other->class, root->class);
3993
3994         lockdep_print_held_locks(curr);
3995
3996         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3997         root->trace = save_trace();
3998         if (!root->trace)
3999                 return;
4000         print_shortest_lock_dependencies(other, root);
4001
4002         pr_warn("\nstack backtrace:\n");
4003         dump_stack();
4004 }
4005
4006 /*
4007  * Prove that in the forwards-direction subgraph starting at <this>
4008  * there is no lock matching <mask>:
4009  */
4010 static int
4011 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4012                      enum lock_usage_bit bit)
4013 {
4014         enum bfs_result ret;
4015         struct lock_list root;
4016         struct lock_list *target_entry;
4017         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4018         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4019
4020         bfs_init_root(&root, this);
4021         ret = find_usage_forwards(&root, usage_mask, &target_entry);
4022         if (bfs_error(ret)) {
4023                 print_bfs_bug(ret);
4024                 return 0;
4025         }
4026         if (ret == BFS_RNOMATCH)
4027                 return 1;
4028
4029         /* Check whether write or read usage is the match */
4030         if (target_entry->class->usage_mask & lock_flag(bit)) {
4031                 print_irq_inversion_bug(curr, &root, target_entry,
4032                                         this, 1, state_name(bit));
4033         } else {
4034                 print_irq_inversion_bug(curr, &root, target_entry,
4035                                         this, 1, state_name(read_bit));
4036         }
4037
4038         return 0;
4039 }
4040
4041 /*
4042  * Prove that in the backwards-direction subgraph starting at <this>
4043  * there is no lock matching <mask>:
4044  */
4045 static int
4046 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4047                       enum lock_usage_bit bit)
4048 {
4049         enum bfs_result ret;
4050         struct lock_list root;
4051         struct lock_list *target_entry;
4052         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4053         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4054
4055         bfs_init_rootb(&root, this);
4056         ret = find_usage_backwards(&root, usage_mask, &target_entry);
4057         if (bfs_error(ret)) {
4058                 print_bfs_bug(ret);
4059                 return 0;
4060         }
4061         if (ret == BFS_RNOMATCH)
4062                 return 1;
4063
4064         /* Check whether write or read usage is the match */
4065         if (target_entry->class->usage_mask & lock_flag(bit)) {
4066                 print_irq_inversion_bug(curr, &root, target_entry,
4067                                         this, 0, state_name(bit));
4068         } else {
4069                 print_irq_inversion_bug(curr, &root, target_entry,
4070                                         this, 0, state_name(read_bit));
4071         }
4072
4073         return 0;
4074 }
4075
4076 void print_irqtrace_events(struct task_struct *curr)
4077 {
4078         const struct irqtrace_events *trace = &curr->irqtrace;
4079
4080         printk("irq event stamp: %u\n", trace->irq_events);
4081         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4082                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4083                 (void *)trace->hardirq_enable_ip);
4084         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4085                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4086                 (void *)trace->hardirq_disable_ip);
4087         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4088                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4089                 (void *)trace->softirq_enable_ip);
4090         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4091                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4092                 (void *)trace->softirq_disable_ip);
4093 }
4094
4095 static int HARDIRQ_verbose(struct lock_class *class)
4096 {
4097 #if HARDIRQ_VERBOSE
4098         return class_filter(class);
4099 #endif
4100         return 0;
4101 }
4102
4103 static int SOFTIRQ_verbose(struct lock_class *class)
4104 {
4105 #if SOFTIRQ_VERBOSE
4106         return class_filter(class);
4107 #endif
4108         return 0;
4109 }
4110
4111 static int (*state_verbose_f[])(struct lock_class *class) = {
4112 #define LOCKDEP_STATE(__STATE) \
4113         __STATE##_verbose,
4114 #include "lockdep_states.h"
4115 #undef LOCKDEP_STATE
4116 };
4117
4118 static inline int state_verbose(enum lock_usage_bit bit,
4119                                 struct lock_class *class)
4120 {
4121         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4122 }
4123
4124 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4125                              enum lock_usage_bit bit, const char *name);
4126
4127 static int
4128 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4129                 enum lock_usage_bit new_bit)
4130 {
4131         int excl_bit = exclusive_bit(new_bit);
4132         int read = new_bit & LOCK_USAGE_READ_MASK;
4133         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4134
4135         /*
4136          * Validate that this particular lock does not have conflicting
4137          * usage states.
4138          */
4139         if (!valid_state(curr, this, new_bit, excl_bit))
4140                 return 0;
4141
4142         /*
4143          * Check for read in write conflicts
4144          */
4145         if (!read && !valid_state(curr, this, new_bit,
4146                                   excl_bit + LOCK_USAGE_READ_MASK))
4147                 return 0;
4148
4149
4150         /*
4151          * Validate that the lock dependencies don't have conflicting usage
4152          * states.
4153          */
4154         if (dir) {
4155                 /*
4156                  * mark ENABLED has to look backwards -- to ensure no dependee
4157                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4158                  */
4159                 if (!check_usage_backwards(curr, this, excl_bit))
4160                         return 0;
4161         } else {
4162                 /*
4163                  * mark USED_IN has to look forwards -- to ensure no dependency
4164                  * has ENABLED state, which would allow recursion deadlocks.
4165                  */
4166                 if (!check_usage_forwards(curr, this, excl_bit))
4167                         return 0;
4168         }
4169
4170         if (state_verbose(new_bit, hlock_class(this)))
4171                 return 2;
4172
4173         return 1;
4174 }
4175
4176 /*
4177  * Mark all held locks with a usage bit:
4178  */
4179 static int
4180 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4181 {
4182         struct held_lock *hlock;
4183         int i;
4184
4185         for (i = 0; i < curr->lockdep_depth; i++) {
4186                 enum lock_usage_bit hlock_bit = base_bit;
4187                 hlock = curr->held_locks + i;
4188
4189                 if (hlock->read)
4190                         hlock_bit += LOCK_USAGE_READ_MASK;
4191
4192                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4193
4194                 if (!hlock->check)
4195                         continue;
4196
4197                 if (!mark_lock(curr, hlock, hlock_bit))
4198                         return 0;
4199         }
4200
4201         return 1;
4202 }
4203
4204 /*
4205  * Hardirqs will be enabled:
4206  */
4207 static void __trace_hardirqs_on_caller(void)
4208 {
4209         struct task_struct *curr = current;
4210
4211         /*
4212          * We are going to turn hardirqs on, so set the
4213          * usage bit for all held locks:
4214          */
4215         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4216                 return;
4217         /*
4218          * If we have softirqs enabled, then set the usage
4219          * bit for all held locks. (disabled hardirqs prevented
4220          * this bit from being set before)
4221          */
4222         if (curr->softirqs_enabled)
4223                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4224 }
4225
4226 /**
4227  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4228  * @ip:         Caller address
4229  *
4230  * Invoked before a possible transition to RCU idle from exit to user or
4231  * guest mode. This ensures that all RCU operations are done before RCU
4232  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4233  * invoked to set the final state.
4234  */
4235 void lockdep_hardirqs_on_prepare(unsigned long ip)
4236 {
4237         if (unlikely(!debug_locks))
4238                 return;
4239
4240         /*
4241          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4242          */
4243         if (unlikely(in_nmi()))
4244                 return;
4245
4246         if (unlikely(this_cpu_read(lockdep_recursion)))
4247                 return;
4248
4249         if (unlikely(lockdep_hardirqs_enabled())) {
4250                 /*
4251                  * Neither irq nor preemption are disabled here
4252                  * so this is racy by nature but losing one hit
4253                  * in a stat is not a big deal.
4254                  */
4255                 __debug_atomic_inc(redundant_hardirqs_on);
4256                 return;
4257         }
4258
4259         /*
4260          * We're enabling irqs and according to our state above irqs weren't
4261          * already enabled, yet we find the hardware thinks they are in fact
4262          * enabled.. someone messed up their IRQ state tracing.
4263          */
4264         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4265                 return;
4266
4267         /*
4268          * See the fine text that goes along with this variable definition.
4269          */
4270         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4271                 return;
4272
4273         /*
4274          * Can't allow enabling interrupts while in an interrupt handler,
4275          * that's general bad form and such. Recursion, limited stack etc..
4276          */
4277         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4278                 return;
4279
4280         current->hardirq_chain_key = current->curr_chain_key;
4281
4282         lockdep_recursion_inc();
4283         __trace_hardirqs_on_caller();
4284         lockdep_recursion_finish();
4285 }
4286 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4287
4288 void noinstr lockdep_hardirqs_on(unsigned long ip)
4289 {
4290         struct irqtrace_events *trace = &current->irqtrace;
4291
4292         if (unlikely(!debug_locks))
4293                 return;
4294
4295         /*
4296          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4297          * tracking state and hardware state are out of sync.
4298          *
4299          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4300          * and not rely on hardware state like normal interrupts.
4301          */
4302         if (unlikely(in_nmi())) {
4303                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4304                         return;
4305
4306                 /*
4307                  * Skip:
4308                  *  - recursion check, because NMI can hit lockdep;
4309                  *  - hardware state check, because above;
4310                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4311                  */
4312                 goto skip_checks;
4313         }
4314
4315         if (unlikely(this_cpu_read(lockdep_recursion)))
4316                 return;
4317
4318         if (lockdep_hardirqs_enabled()) {
4319                 /*
4320                  * Neither irq nor preemption are disabled here
4321                  * so this is racy by nature but losing one hit
4322                  * in a stat is not a big deal.
4323                  */
4324                 __debug_atomic_inc(redundant_hardirqs_on);
4325                 return;
4326         }
4327
4328         /*
4329          * We're enabling irqs and according to our state above irqs weren't
4330          * already enabled, yet we find the hardware thinks they are in fact
4331          * enabled.. someone messed up their IRQ state tracing.
4332          */
4333         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4334                 return;
4335
4336         /*
4337          * Ensure the lock stack remained unchanged between
4338          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4339          */
4340         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4341                             current->curr_chain_key);
4342
4343 skip_checks:
4344         /* we'll do an OFF -> ON transition: */
4345         __this_cpu_write(hardirqs_enabled, 1);
4346         trace->hardirq_enable_ip = ip;
4347         trace->hardirq_enable_event = ++trace->irq_events;
4348         debug_atomic_inc(hardirqs_on_events);
4349 }
4350 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4351
4352 /*
4353  * Hardirqs were disabled:
4354  */
4355 void noinstr lockdep_hardirqs_off(unsigned long ip)
4356 {
4357         if (unlikely(!debug_locks))
4358                 return;
4359
4360         /*
4361          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4362          * they will restore the software state. This ensures the software
4363          * state is consistent inside NMIs as well.
4364          */
4365         if (in_nmi()) {
4366                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4367                         return;
4368         } else if (__this_cpu_read(lockdep_recursion))
4369                 return;
4370
4371         /*
4372          * So we're supposed to get called after you mask local IRQs, but for
4373          * some reason the hardware doesn't quite think you did a proper job.
4374          */
4375         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4376                 return;
4377
4378         if (lockdep_hardirqs_enabled()) {
4379                 struct irqtrace_events *trace = &current->irqtrace;
4380
4381                 /*
4382                  * We have done an ON -> OFF transition:
4383                  */
4384                 __this_cpu_write(hardirqs_enabled, 0);
4385                 trace->hardirq_disable_ip = ip;
4386                 trace->hardirq_disable_event = ++trace->irq_events;
4387                 debug_atomic_inc(hardirqs_off_events);
4388         } else {
4389                 debug_atomic_inc(redundant_hardirqs_off);
4390         }
4391 }
4392 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4393
4394 /*
4395  * Softirqs will be enabled:
4396  */
4397 void lockdep_softirqs_on(unsigned long ip)
4398 {
4399         struct irqtrace_events *trace = &current->irqtrace;
4400
4401         if (unlikely(!lockdep_enabled()))
4402                 return;
4403
4404         /*
4405          * We fancy IRQs being disabled here, see softirq.c, avoids
4406          * funny state and nesting things.
4407          */
4408         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4409                 return;
4410
4411         if (current->softirqs_enabled) {
4412                 debug_atomic_inc(redundant_softirqs_on);
4413                 return;
4414         }
4415
4416         lockdep_recursion_inc();
4417         /*
4418          * We'll do an OFF -> ON transition:
4419          */
4420         current->softirqs_enabled = 1;
4421         trace->softirq_enable_ip = ip;
4422         trace->softirq_enable_event = ++trace->irq_events;
4423         debug_atomic_inc(softirqs_on_events);
4424         /*
4425          * We are going to turn softirqs on, so set the
4426          * usage bit for all held locks, if hardirqs are
4427          * enabled too:
4428          */
4429         if (lockdep_hardirqs_enabled())
4430                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4431         lockdep_recursion_finish();
4432 }
4433
4434 /*
4435  * Softirqs were disabled:
4436  */
4437 void lockdep_softirqs_off(unsigned long ip)
4438 {
4439         if (unlikely(!lockdep_enabled()))
4440                 return;
4441
4442         /*
4443          * We fancy IRQs being disabled here, see softirq.c
4444          */
4445         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4446                 return;
4447
4448         if (current->softirqs_enabled) {
4449                 struct irqtrace_events *trace = &current->irqtrace;
4450
4451                 /*
4452                  * We have done an ON -> OFF transition:
4453                  */
4454                 current->softirqs_enabled = 0;
4455                 trace->softirq_disable_ip = ip;
4456                 trace->softirq_disable_event = ++trace->irq_events;
4457                 debug_atomic_inc(softirqs_off_events);
4458                 /*
4459                  * Whoops, we wanted softirqs off, so why aren't they?
4460                  */
4461                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4462         } else
4463                 debug_atomic_inc(redundant_softirqs_off);
4464 }
4465
4466 static int
4467 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4468 {
4469         if (!check)
4470                 goto lock_used;
4471
4472         /*
4473          * If non-trylock use in a hardirq or softirq context, then
4474          * mark the lock as used in these contexts:
4475          */
4476         if (!hlock->trylock) {
4477                 if (hlock->read) {
4478                         if (lockdep_hardirq_context())
4479                                 if (!mark_lock(curr, hlock,
4480                                                 LOCK_USED_IN_HARDIRQ_READ))
4481                                         return 0;
4482                         if (curr->softirq_context)
4483                                 if (!mark_lock(curr, hlock,
4484                                                 LOCK_USED_IN_SOFTIRQ_READ))
4485                                         return 0;
4486                 } else {
4487                         if (lockdep_hardirq_context())
4488                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4489                                         return 0;
4490                         if (curr->softirq_context)
4491                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4492                                         return 0;
4493                 }
4494         }
4495         if (!hlock->hardirqs_off) {
4496                 if (hlock->read) {
4497                         if (!mark_lock(curr, hlock,
4498                                         LOCK_ENABLED_HARDIRQ_READ))
4499                                 return 0;
4500                         if (curr->softirqs_enabled)
4501                                 if (!mark_lock(curr, hlock,
4502                                                 LOCK_ENABLED_SOFTIRQ_READ))
4503                                         return 0;
4504                 } else {
4505                         if (!mark_lock(curr, hlock,
4506                                         LOCK_ENABLED_HARDIRQ))
4507                                 return 0;
4508                         if (curr->softirqs_enabled)
4509                                 if (!mark_lock(curr, hlock,
4510                                                 LOCK_ENABLED_SOFTIRQ))
4511                                         return 0;
4512                 }
4513         }
4514
4515 lock_used:
4516         /* mark it as used: */
4517         if (!mark_lock(curr, hlock, LOCK_USED))
4518                 return 0;
4519
4520         return 1;
4521 }
4522
4523 static inline unsigned int task_irq_context(struct task_struct *task)
4524 {
4525         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4526                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4527 }
4528
4529 static int separate_irq_context(struct task_struct *curr,
4530                 struct held_lock *hlock)
4531 {
4532         unsigned int depth = curr->lockdep_depth;
4533
4534         /*
4535          * Keep track of points where we cross into an interrupt context:
4536          */
4537         if (depth) {
4538                 struct held_lock *prev_hlock;
4539
4540                 prev_hlock = curr->held_locks + depth-1;
4541                 /*
4542                  * If we cross into another context, reset the
4543                  * hash key (this also prevents the checking and the
4544                  * adding of the dependency to 'prev'):
4545                  */
4546                 if (prev_hlock->irq_context != hlock->irq_context)
4547                         return 1;
4548         }
4549         return 0;
4550 }
4551
4552 /*
4553  * Mark a lock with a usage bit, and validate the state transition:
4554  */
4555 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4556                              enum lock_usage_bit new_bit)
4557 {
4558         unsigned int new_mask, ret = 1;
4559
4560         if (new_bit >= LOCK_USAGE_STATES) {
4561                 DEBUG_LOCKS_WARN_ON(1);
4562                 return 0;
4563         }
4564
4565         if (new_bit == LOCK_USED && this->read)
4566                 new_bit = LOCK_USED_READ;
4567
4568         new_mask = 1 << new_bit;
4569
4570         /*
4571          * If already set then do not dirty the cacheline,
4572          * nor do any checks:
4573          */
4574         if (likely(hlock_class(this)->usage_mask & new_mask))
4575                 return 1;
4576
4577         if (!graph_lock())
4578                 return 0;
4579         /*
4580          * Make sure we didn't race:
4581          */
4582         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4583                 goto unlock;
4584
4585         if (!hlock_class(this)->usage_mask)
4586                 debug_atomic_dec(nr_unused_locks);
4587
4588         hlock_class(this)->usage_mask |= new_mask;
4589
4590         if (new_bit < LOCK_TRACE_STATES) {
4591                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4592                         return 0;
4593         }
4594
4595         if (new_bit < LOCK_USED) {
4596                 ret = mark_lock_irq(curr, this, new_bit);
4597                 if (!ret)
4598                         return 0;
4599         }
4600
4601 unlock:
4602         graph_unlock();
4603
4604         /*
4605          * We must printk outside of the graph_lock:
4606          */
4607         if (ret == 2) {
4608                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4609                 print_lock(this);
4610                 print_irqtrace_events(curr);
4611                 dump_stack();
4612         }
4613
4614         return ret;
4615 }
4616
4617 static inline short task_wait_context(struct task_struct *curr)
4618 {
4619         /*
4620          * Set appropriate wait type for the context; for IRQs we have to take
4621          * into account force_irqthread as that is implied by PREEMPT_RT.
4622          */
4623         if (lockdep_hardirq_context()) {
4624                 /*
4625                  * Check if force_irqthreads will run us threaded.
4626                  */
4627                 if (curr->hardirq_threaded || curr->irq_config)
4628                         return LD_WAIT_CONFIG;
4629
4630                 return LD_WAIT_SPIN;
4631         } else if (curr->softirq_context) {
4632                 /*
4633                  * Softirqs are always threaded.
4634                  */
4635                 return LD_WAIT_CONFIG;
4636         }
4637
4638         return LD_WAIT_MAX;
4639 }
4640
4641 static int
4642 print_lock_invalid_wait_context(struct task_struct *curr,
4643                                 struct held_lock *hlock)
4644 {
4645         short curr_inner;
4646
4647         if (!debug_locks_off())
4648                 return 0;
4649         if (debug_locks_silent)
4650                 return 0;
4651
4652         pr_warn("\n");
4653         pr_warn("=============================\n");
4654         pr_warn("[ BUG: Invalid wait context ]\n");
4655         print_kernel_ident();
4656         pr_warn("-----------------------------\n");
4657
4658         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4659         print_lock(hlock);
4660
4661         pr_warn("other info that might help us debug this:\n");
4662
4663         curr_inner = task_wait_context(curr);
4664         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4665
4666         lockdep_print_held_locks(curr);
4667
4668         pr_warn("stack backtrace:\n");
4669         dump_stack();
4670
4671         return 0;
4672 }
4673
4674 /*
4675  * Verify the wait_type context.
4676  *
4677  * This check validates we takes locks in the right wait-type order; that is it
4678  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4679  * acquire spinlocks inside raw_spinlocks and the sort.
4680  *
4681  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4682  * can be taken from (pretty much) any context but also has constraints.
4683  * However when taken in a stricter environment the RCU lock does not loosen
4684  * the constraints.
4685  *
4686  * Therefore we must look for the strictest environment in the lock stack and
4687  * compare that to the lock we're trying to acquire.
4688  */
4689 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4690 {
4691         u8 next_inner = hlock_class(next)->wait_type_inner;
4692         u8 next_outer = hlock_class(next)->wait_type_outer;
4693         u8 curr_inner;
4694         int depth;
4695
4696         if (!next_inner || next->trylock)
4697                 return 0;
4698
4699         if (!next_outer)
4700                 next_outer = next_inner;
4701
4702         /*
4703          * Find start of current irq_context..
4704          */
4705         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4706                 struct held_lock *prev = curr->held_locks + depth;
4707                 if (prev->irq_context != next->irq_context)
4708                         break;
4709         }
4710         depth++;
4711
4712         curr_inner = task_wait_context(curr);
4713
4714         for (; depth < curr->lockdep_depth; depth++) {
4715                 struct held_lock *prev = curr->held_locks + depth;
4716                 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4717
4718                 if (prev_inner) {
4719                         /*
4720                          * We can have a bigger inner than a previous one
4721                          * when outer is smaller than inner, as with RCU.
4722                          *
4723                          * Also due to trylocks.
4724                          */
4725                         curr_inner = min(curr_inner, prev_inner);
4726                 }
4727         }
4728
4729         if (next_outer > curr_inner)
4730                 return print_lock_invalid_wait_context(curr, next);
4731
4732         return 0;
4733 }
4734
4735 #else /* CONFIG_PROVE_LOCKING */
4736
4737 static inline int
4738 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4739 {
4740         return 1;
4741 }
4742
4743 static inline unsigned int task_irq_context(struct task_struct *task)
4744 {
4745         return 0;
4746 }
4747
4748 static inline int separate_irq_context(struct task_struct *curr,
4749                 struct held_lock *hlock)
4750 {
4751         return 0;
4752 }
4753
4754 static inline int check_wait_context(struct task_struct *curr,
4755                                      struct held_lock *next)
4756 {
4757         return 0;
4758 }
4759
4760 #endif /* CONFIG_PROVE_LOCKING */
4761
4762 /*
4763  * Initialize a lock instance's lock-class mapping info:
4764  */
4765 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4766                             struct lock_class_key *key, int subclass,
4767                             u8 inner, u8 outer, u8 lock_type)
4768 {
4769         int i;
4770
4771         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4772                 lock->class_cache[i] = NULL;
4773
4774 #ifdef CONFIG_LOCK_STAT
4775         lock->cpu = raw_smp_processor_id();
4776 #endif
4777
4778         /*
4779          * Can't be having no nameless bastards around this place!
4780          */
4781         if (DEBUG_LOCKS_WARN_ON(!name)) {
4782                 lock->name = "NULL";
4783                 return;
4784         }
4785
4786         lock->name = name;
4787
4788         lock->wait_type_outer = outer;
4789         lock->wait_type_inner = inner;
4790         lock->lock_type = lock_type;
4791
4792         /*
4793          * No key, no joy, we need to hash something.
4794          */
4795         if (DEBUG_LOCKS_WARN_ON(!key))
4796                 return;
4797         /*
4798          * Sanity check, the lock-class key must either have been allocated
4799          * statically or must have been registered as a dynamic key.
4800          */
4801         if (!static_obj(key) && !is_dynamic_key(key)) {
4802                 if (debug_locks)
4803                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4804                 DEBUG_LOCKS_WARN_ON(1);
4805                 return;
4806         }
4807         lock->key = key;
4808
4809         if (unlikely(!debug_locks))
4810                 return;
4811
4812         if (subclass) {
4813                 unsigned long flags;
4814
4815                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4816                         return;
4817
4818                 raw_local_irq_save(flags);
4819                 lockdep_recursion_inc();
4820                 register_lock_class(lock, subclass, 1);
4821                 lockdep_recursion_finish();
4822                 raw_local_irq_restore(flags);
4823         }
4824 }
4825 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4826
4827 struct lock_class_key __lockdep_no_validate__;
4828 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4829
4830 static void
4831 print_lock_nested_lock_not_held(struct task_struct *curr,
4832                                 struct held_lock *hlock,
4833                                 unsigned long ip)
4834 {
4835         if (!debug_locks_off())
4836                 return;
4837         if (debug_locks_silent)
4838                 return;
4839
4840         pr_warn("\n");
4841         pr_warn("==================================\n");
4842         pr_warn("WARNING: Nested lock was not taken\n");
4843         print_kernel_ident();
4844         pr_warn("----------------------------------\n");
4845
4846         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4847         print_lock(hlock);
4848
4849         pr_warn("\nbut this task is not holding:\n");
4850         pr_warn("%s\n", hlock->nest_lock->name);
4851
4852         pr_warn("\nstack backtrace:\n");
4853         dump_stack();
4854
4855         pr_warn("\nother info that might help us debug this:\n");
4856         lockdep_print_held_locks(curr);
4857
4858         pr_warn("\nstack backtrace:\n");
4859         dump_stack();
4860 }
4861
4862 static int __lock_is_held(const struct lockdep_map *lock, int read);
4863
4864 /*
4865  * This gets called for every mutex_lock*()/spin_lock*() operation.
4866  * We maintain the dependency maps and validate the locking attempt:
4867  *
4868  * The callers must make sure that IRQs are disabled before calling it,
4869  * otherwise we could get an interrupt which would want to take locks,
4870  * which would end up in lockdep again.
4871  */
4872 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4873                           int trylock, int read, int check, int hardirqs_off,
4874                           struct lockdep_map *nest_lock, unsigned long ip,
4875                           int references, int pin_count)
4876 {
4877         struct task_struct *curr = current;
4878         struct lock_class *class = NULL;
4879         struct held_lock *hlock;
4880         unsigned int depth;
4881         int chain_head = 0;
4882         int class_idx;
4883         u64 chain_key;
4884
4885         if (unlikely(!debug_locks))
4886                 return 0;
4887
4888         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4889                 check = 0;
4890
4891         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4892                 class = lock->class_cache[subclass];
4893         /*
4894          * Not cached?
4895          */
4896         if (unlikely(!class)) {
4897                 class = register_lock_class(lock, subclass, 0);
4898                 if (!class)
4899                         return 0;
4900         }
4901
4902         debug_class_ops_inc(class);
4903
4904         if (very_verbose(class)) {
4905                 printk("\nacquire class [%px] %s", class->key, class->name);
4906                 if (class->name_version > 1)
4907                         printk(KERN_CONT "#%d", class->name_version);
4908                 printk(KERN_CONT "\n");
4909                 dump_stack();
4910         }
4911
4912         /*
4913          * Add the lock to the list of currently held locks.
4914          * (we dont increase the depth just yet, up until the
4915          * dependency checks are done)
4916          */
4917         depth = curr->lockdep_depth;
4918         /*
4919          * Ran out of static storage for our per-task lock stack again have we?
4920          */
4921         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4922                 return 0;
4923
4924         class_idx = class - lock_classes;
4925
4926         if (depth) { /* we're holding locks */
4927                 hlock = curr->held_locks + depth - 1;
4928                 if (hlock->class_idx == class_idx && nest_lock) {
4929                         if (!references)
4930                                 references++;
4931
4932                         if (!hlock->references)
4933                                 hlock->references++;
4934
4935                         hlock->references += references;
4936
4937                         /* Overflow */
4938                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4939                                 return 0;
4940
4941                         return 2;
4942                 }
4943         }
4944
4945         hlock = curr->held_locks + depth;
4946         /*
4947          * Plain impossible, we just registered it and checked it weren't no
4948          * NULL like.. I bet this mushroom I ate was good!
4949          */
4950         if (DEBUG_LOCKS_WARN_ON(!class))
4951                 return 0;
4952         hlock->class_idx = class_idx;
4953         hlock->acquire_ip = ip;
4954         hlock->instance = lock;
4955         hlock->nest_lock = nest_lock;
4956         hlock->irq_context = task_irq_context(curr);
4957         hlock->trylock = trylock;
4958         hlock->read = read;
4959         hlock->check = check;
4960         hlock->hardirqs_off = !!hardirqs_off;
4961         hlock->references = references;
4962 #ifdef CONFIG_LOCK_STAT
4963         hlock->waittime_stamp = 0;
4964         hlock->holdtime_stamp = lockstat_clock();
4965 #endif
4966         hlock->pin_count = pin_count;
4967
4968         if (check_wait_context(curr, hlock))
4969                 return 0;
4970
4971         /* Initialize the lock usage bit */
4972         if (!mark_usage(curr, hlock, check))
4973                 return 0;
4974
4975         /*
4976          * Calculate the chain hash: it's the combined hash of all the
4977          * lock keys along the dependency chain. We save the hash value
4978          * at every step so that we can get the current hash easily
4979          * after unlock. The chain hash is then used to cache dependency
4980          * results.
4981          *
4982          * The 'key ID' is what is the most compact key value to drive
4983          * the hash, not class->key.
4984          */
4985         /*
4986          * Whoops, we did it again.. class_idx is invalid.
4987          */
4988         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4989                 return 0;
4990
4991         chain_key = curr->curr_chain_key;
4992         if (!depth) {
4993                 /*
4994                  * How can we have a chain hash when we ain't got no keys?!
4995                  */
4996                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4997                         return 0;
4998                 chain_head = 1;
4999         }
5000
5001         hlock->prev_chain_key = chain_key;
5002         if (separate_irq_context(curr, hlock)) {
5003                 chain_key = INITIAL_CHAIN_KEY;
5004                 chain_head = 1;
5005         }
5006         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5007
5008         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5009                 print_lock_nested_lock_not_held(curr, hlock, ip);
5010                 return 0;
5011         }
5012
5013         if (!debug_locks_silent) {
5014                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5015                 WARN_ON_ONCE(!hlock_class(hlock)->key);
5016         }
5017
5018         if (!validate_chain(curr, hlock, chain_head, chain_key))
5019                 return 0;
5020
5021         curr->curr_chain_key = chain_key;
5022         curr->lockdep_depth++;
5023         check_chain_key(curr);
5024 #ifdef CONFIG_DEBUG_LOCKDEP
5025         if (unlikely(!debug_locks))
5026                 return 0;
5027 #endif
5028         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5029                 debug_locks_off();
5030                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5031                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5032                        curr->lockdep_depth, MAX_LOCK_DEPTH);
5033
5034                 lockdep_print_held_locks(current);
5035                 debug_show_all_locks();
5036                 dump_stack();
5037
5038                 return 0;
5039         }
5040
5041         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5042                 max_lockdep_depth = curr->lockdep_depth;
5043
5044         return 1;
5045 }
5046
5047 static void print_unlock_imbalance_bug(struct task_struct *curr,
5048                                        struct lockdep_map *lock,
5049                                        unsigned long ip)
5050 {
5051         if (!debug_locks_off())
5052                 return;
5053         if (debug_locks_silent)
5054                 return;
5055
5056         pr_warn("\n");
5057         pr_warn("=====================================\n");
5058         pr_warn("WARNING: bad unlock balance detected!\n");
5059         print_kernel_ident();
5060         pr_warn("-------------------------------------\n");
5061         pr_warn("%s/%d is trying to release lock (",
5062                 curr->comm, task_pid_nr(curr));
5063         print_lockdep_cache(lock);
5064         pr_cont(") at:\n");
5065         print_ip_sym(KERN_WARNING, ip);
5066         pr_warn("but there are no more locks to release!\n");
5067         pr_warn("\nother info that might help us debug this:\n");
5068         lockdep_print_held_locks(curr);
5069
5070         pr_warn("\nstack backtrace:\n");
5071         dump_stack();
5072 }
5073
5074 static noinstr int match_held_lock(const struct held_lock *hlock,
5075                                    const struct lockdep_map *lock)
5076 {
5077         if (hlock->instance == lock)
5078                 return 1;
5079
5080         if (hlock->references) {
5081                 const struct lock_class *class = lock->class_cache[0];
5082
5083                 if (!class)
5084                         class = look_up_lock_class(lock, 0);
5085
5086                 /*
5087                  * If look_up_lock_class() failed to find a class, we're trying
5088                  * to test if we hold a lock that has never yet been acquired.
5089                  * Clearly if the lock hasn't been acquired _ever_, we're not
5090                  * holding it either, so report failure.
5091                  */
5092                 if (!class)
5093                         return 0;
5094
5095                 /*
5096                  * References, but not a lock we're actually ref-counting?
5097                  * State got messed up, follow the sites that change ->references
5098                  * and try to make sense of it.
5099                  */
5100                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5101                         return 0;
5102
5103                 if (hlock->class_idx == class - lock_classes)
5104                         return 1;
5105         }
5106
5107         return 0;
5108 }
5109
5110 /* @depth must not be zero */
5111 static struct held_lock *find_held_lock(struct task_struct *curr,
5112                                         struct lockdep_map *lock,
5113                                         unsigned int depth, int *idx)
5114 {
5115         struct held_lock *ret, *hlock, *prev_hlock;
5116         int i;
5117
5118         i = depth - 1;
5119         hlock = curr->held_locks + i;
5120         ret = hlock;
5121         if (match_held_lock(hlock, lock))
5122                 goto out;
5123
5124         ret = NULL;
5125         for (i--, prev_hlock = hlock--;
5126              i >= 0;
5127              i--, prev_hlock = hlock--) {
5128                 /*
5129                  * We must not cross into another context:
5130                  */
5131                 if (prev_hlock->irq_context != hlock->irq_context) {
5132                         ret = NULL;
5133                         break;
5134                 }
5135                 if (match_held_lock(hlock, lock)) {
5136                         ret = hlock;
5137                         break;
5138                 }
5139         }
5140
5141 out:
5142         *idx = i;
5143         return ret;
5144 }
5145
5146 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5147                                 int idx, unsigned int *merged)
5148 {
5149         struct held_lock *hlock;
5150         int first_idx = idx;
5151
5152         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5153                 return 0;
5154
5155         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5156                 switch (__lock_acquire(hlock->instance,
5157                                     hlock_class(hlock)->subclass,
5158                                     hlock->trylock,
5159                                     hlock->read, hlock->check,
5160                                     hlock->hardirqs_off,
5161                                     hlock->nest_lock, hlock->acquire_ip,
5162                                     hlock->references, hlock->pin_count)) {
5163                 case 0:
5164                         return 1;
5165                 case 1:
5166                         break;
5167                 case 2:
5168                         *merged += (idx == first_idx);
5169                         break;
5170                 default:
5171                         WARN_ON(1);
5172                         return 0;
5173                 }
5174         }
5175         return 0;
5176 }
5177
5178 static int
5179 __lock_set_class(struct lockdep_map *lock, const char *name,
5180                  struct lock_class_key *key, unsigned int subclass,
5181                  unsigned long ip)
5182 {
5183         struct task_struct *curr = current;
5184         unsigned int depth, merged = 0;
5185         struct held_lock *hlock;
5186         struct lock_class *class;
5187         int i;
5188
5189         if (unlikely(!debug_locks))
5190                 return 0;
5191
5192         depth = curr->lockdep_depth;
5193         /*
5194          * This function is about (re)setting the class of a held lock,
5195          * yet we're not actually holding any locks. Naughty user!
5196          */
5197         if (DEBUG_LOCKS_WARN_ON(!depth))
5198                 return 0;
5199
5200         hlock = find_held_lock(curr, lock, depth, &i);
5201         if (!hlock) {
5202                 print_unlock_imbalance_bug(curr, lock, ip);
5203                 return 0;
5204         }
5205
5206         lockdep_init_map_waits(lock, name, key, 0,
5207                                lock->wait_type_inner,
5208                                lock->wait_type_outer);
5209         class = register_lock_class(lock, subclass, 0);
5210         hlock->class_idx = class - lock_classes;
5211
5212         curr->lockdep_depth = i;
5213         curr->curr_chain_key = hlock->prev_chain_key;
5214
5215         if (reacquire_held_locks(curr, depth, i, &merged))
5216                 return 0;
5217
5218         /*
5219          * I took it apart and put it back together again, except now I have
5220          * these 'spare' parts.. where shall I put them.
5221          */
5222         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5223                 return 0;
5224         return 1;
5225 }
5226
5227 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5228 {
5229         struct task_struct *curr = current;
5230         unsigned int depth, merged = 0;
5231         struct held_lock *hlock;
5232         int i;
5233
5234         if (unlikely(!debug_locks))
5235                 return 0;
5236
5237         depth = curr->lockdep_depth;
5238         /*
5239          * This function is about (re)setting the class of a held lock,
5240          * yet we're not actually holding any locks. Naughty user!
5241          */
5242         if (DEBUG_LOCKS_WARN_ON(!depth))
5243                 return 0;
5244
5245         hlock = find_held_lock(curr, lock, depth, &i);
5246         if (!hlock) {
5247                 print_unlock_imbalance_bug(curr, lock, ip);
5248                 return 0;
5249         }
5250
5251         curr->lockdep_depth = i;
5252         curr->curr_chain_key = hlock->prev_chain_key;
5253
5254         WARN(hlock->read, "downgrading a read lock");
5255         hlock->read = 1;
5256         hlock->acquire_ip = ip;
5257
5258         if (reacquire_held_locks(curr, depth, i, &merged))
5259                 return 0;
5260
5261         /* Merging can't happen with unchanged classes.. */
5262         if (DEBUG_LOCKS_WARN_ON(merged))
5263                 return 0;
5264
5265         /*
5266          * I took it apart and put it back together again, except now I have
5267          * these 'spare' parts.. where shall I put them.
5268          */
5269         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5270                 return 0;
5271
5272         return 1;
5273 }
5274
5275 /*
5276  * Remove the lock from the list of currently held locks - this gets
5277  * called on mutex_unlock()/spin_unlock*() (or on a failed
5278  * mutex_lock_interruptible()).
5279  */
5280 static int
5281 __lock_release(struct lockdep_map *lock, unsigned long ip)
5282 {
5283         struct task_struct *curr = current;
5284         unsigned int depth, merged = 1;
5285         struct held_lock *hlock;
5286         int i;
5287
5288         if (unlikely(!debug_locks))
5289                 return 0;
5290
5291         depth = curr->lockdep_depth;
5292         /*
5293          * So we're all set to release this lock.. wait what lock? We don't
5294          * own any locks, you've been drinking again?
5295          */
5296         if (depth <= 0) {
5297                 print_unlock_imbalance_bug(curr, lock, ip);
5298                 return 0;
5299         }
5300
5301         /*
5302          * Check whether the lock exists in the current stack
5303          * of held locks:
5304          */
5305         hlock = find_held_lock(curr, lock, depth, &i);
5306         if (!hlock) {
5307                 print_unlock_imbalance_bug(curr, lock, ip);
5308                 return 0;
5309         }
5310
5311         if (hlock->instance == lock)
5312                 lock_release_holdtime(hlock);
5313
5314         WARN(hlock->pin_count, "releasing a pinned lock\n");
5315
5316         if (hlock->references) {
5317                 hlock->references--;
5318                 if (hlock->references) {
5319                         /*
5320                          * We had, and after removing one, still have
5321                          * references, the current lock stack is still
5322                          * valid. We're done!
5323                          */
5324                         return 1;
5325                 }
5326         }
5327
5328         /*
5329          * We have the right lock to unlock, 'hlock' points to it.
5330          * Now we remove it from the stack, and add back the other
5331          * entries (if any), recalculating the hash along the way:
5332          */
5333
5334         curr->lockdep_depth = i;
5335         curr->curr_chain_key = hlock->prev_chain_key;
5336
5337         /*
5338          * The most likely case is when the unlock is on the innermost
5339          * lock. In this case, we are done!
5340          */
5341         if (i == depth-1)
5342                 return 1;
5343
5344         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5345                 return 0;
5346
5347         /*
5348          * We had N bottles of beer on the wall, we drank one, but now
5349          * there's not N-1 bottles of beer left on the wall...
5350          * Pouring two of the bottles together is acceptable.
5351          */
5352         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5353
5354         /*
5355          * Since reacquire_held_locks() would have called check_chain_key()
5356          * indirectly via __lock_acquire(), we don't need to do it again
5357          * on return.
5358          */
5359         return 0;
5360 }
5361
5362 static __always_inline
5363 int __lock_is_held(const struct lockdep_map *lock, int read)
5364 {
5365         struct task_struct *curr = current;
5366         int i;
5367
5368         for (i = 0; i < curr->lockdep_depth; i++) {
5369                 struct held_lock *hlock = curr->held_locks + i;
5370
5371                 if (match_held_lock(hlock, lock)) {
5372                         if (read == -1 || hlock->read == read)
5373                                 return LOCK_STATE_HELD;
5374
5375                         return LOCK_STATE_NOT_HELD;
5376                 }
5377         }
5378
5379         return LOCK_STATE_NOT_HELD;
5380 }
5381
5382 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5383 {
5384         struct pin_cookie cookie = NIL_COOKIE;
5385         struct task_struct *curr = current;
5386         int i;
5387
5388         if (unlikely(!debug_locks))
5389                 return cookie;
5390
5391         for (i = 0; i < curr->lockdep_depth; i++) {
5392                 struct held_lock *hlock = curr->held_locks + i;
5393
5394                 if (match_held_lock(hlock, lock)) {
5395                         /*
5396                          * Grab 16bits of randomness; this is sufficient to not
5397                          * be guessable and still allows some pin nesting in
5398                          * our u32 pin_count.
5399                          */
5400                         cookie.val = 1 + (prandom_u32() >> 16);
5401                         hlock->pin_count += cookie.val;
5402                         return cookie;
5403                 }
5404         }
5405
5406         WARN(1, "pinning an unheld lock\n");
5407         return cookie;
5408 }
5409
5410 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5411 {
5412         struct task_struct *curr = current;
5413         int i;
5414
5415         if (unlikely(!debug_locks))
5416                 return;
5417
5418         for (i = 0; i < curr->lockdep_depth; i++) {
5419                 struct held_lock *hlock = curr->held_locks + i;
5420
5421                 if (match_held_lock(hlock, lock)) {
5422                         hlock->pin_count += cookie.val;
5423                         return;
5424                 }
5425         }
5426
5427         WARN(1, "pinning an unheld lock\n");
5428 }
5429
5430 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5431 {
5432         struct task_struct *curr = current;
5433         int i;
5434
5435         if (unlikely(!debug_locks))
5436                 return;
5437
5438         for (i = 0; i < curr->lockdep_depth; i++) {
5439                 struct held_lock *hlock = curr->held_locks + i;
5440
5441                 if (match_held_lock(hlock, lock)) {
5442                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5443                                 return;
5444
5445                         hlock->pin_count -= cookie.val;
5446
5447                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5448                                 hlock->pin_count = 0;
5449
5450                         return;
5451                 }
5452         }
5453
5454         WARN(1, "unpinning an unheld lock\n");
5455 }
5456
5457 /*
5458  * Check whether we follow the irq-flags state precisely:
5459  */
5460 static noinstr void check_flags(unsigned long flags)
5461 {
5462 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5463         if (!debug_locks)
5464                 return;
5465
5466         /* Get the warning out..  */
5467         instrumentation_begin();
5468
5469         if (irqs_disabled_flags(flags)) {
5470                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5471                         printk("possible reason: unannotated irqs-off.\n");
5472                 }
5473         } else {
5474                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5475                         printk("possible reason: unannotated irqs-on.\n");
5476                 }
5477         }
5478
5479         /*
5480          * We dont accurately track softirq state in e.g.
5481          * hardirq contexts (such as on 4KSTACKS), so only
5482          * check if not in hardirq contexts:
5483          */
5484         if (!hardirq_count()) {
5485                 if (softirq_count()) {
5486                         /* like the above, but with softirqs */
5487                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5488                 } else {
5489                         /* lick the above, does it taste good? */
5490                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5491                 }
5492         }
5493
5494         if (!debug_locks)
5495                 print_irqtrace_events(current);
5496
5497         instrumentation_end();
5498 #endif
5499 }
5500
5501 void lock_set_class(struct lockdep_map *lock, const char *name,
5502                     struct lock_class_key *key, unsigned int subclass,
5503                     unsigned long ip)
5504 {
5505         unsigned long flags;
5506
5507         if (unlikely(!lockdep_enabled()))
5508                 return;
5509
5510         raw_local_irq_save(flags);
5511         lockdep_recursion_inc();
5512         check_flags(flags);
5513         if (__lock_set_class(lock, name, key, subclass, ip))
5514                 check_chain_key(current);
5515         lockdep_recursion_finish();
5516         raw_local_irq_restore(flags);
5517 }
5518 EXPORT_SYMBOL_GPL(lock_set_class);
5519
5520 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5521 {
5522         unsigned long flags;
5523
5524         if (unlikely(!lockdep_enabled()))
5525                 return;
5526
5527         raw_local_irq_save(flags);
5528         lockdep_recursion_inc();
5529         check_flags(flags);
5530         if (__lock_downgrade(lock, ip))
5531                 check_chain_key(current);
5532         lockdep_recursion_finish();
5533         raw_local_irq_restore(flags);
5534 }
5535 EXPORT_SYMBOL_GPL(lock_downgrade);
5536
5537 /* NMI context !!! */
5538 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5539 {
5540 #ifdef CONFIG_PROVE_LOCKING
5541         struct lock_class *class = look_up_lock_class(lock, subclass);
5542         unsigned long mask = LOCKF_USED;
5543
5544         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5545         if (!class)
5546                 return;
5547
5548         /*
5549          * READ locks only conflict with USED, such that if we only ever use
5550          * READ locks, there is no deadlock possible -- RCU.
5551          */
5552         if (!hlock->read)
5553                 mask |= LOCKF_USED_READ;
5554
5555         if (!(class->usage_mask & mask))
5556                 return;
5557
5558         hlock->class_idx = class - lock_classes;
5559
5560         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5561 #endif
5562 }
5563
5564 static bool lockdep_nmi(void)
5565 {
5566         if (raw_cpu_read(lockdep_recursion))
5567                 return false;
5568
5569         if (!in_nmi())
5570                 return false;
5571
5572         return true;
5573 }
5574
5575 /*
5576  * read_lock() is recursive if:
5577  * 1. We force lockdep think this way in selftests or
5578  * 2. The implementation is not queued read/write lock or
5579  * 3. The locker is at an in_interrupt() context.
5580  */
5581 bool read_lock_is_recursive(void)
5582 {
5583         return force_read_lock_recursive ||
5584                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5585                in_interrupt();
5586 }
5587 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5588
5589 /*
5590  * We are not always called with irqs disabled - do that here,
5591  * and also avoid lockdep recursion:
5592  */
5593 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5594                           int trylock, int read, int check,
5595                           struct lockdep_map *nest_lock, unsigned long ip)
5596 {
5597         unsigned long flags;
5598
5599         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5600
5601         if (!debug_locks)
5602                 return;
5603
5604         if (unlikely(!lockdep_enabled())) {
5605                 /* XXX allow trylock from NMI ?!? */
5606                 if (lockdep_nmi() && !trylock) {
5607                         struct held_lock hlock;
5608
5609                         hlock.acquire_ip = ip;
5610                         hlock.instance = lock;
5611                         hlock.nest_lock = nest_lock;
5612                         hlock.irq_context = 2; // XXX
5613                         hlock.trylock = trylock;
5614                         hlock.read = read;
5615                         hlock.check = check;
5616                         hlock.hardirqs_off = true;
5617                         hlock.references = 0;
5618
5619                         verify_lock_unused(lock, &hlock, subclass);
5620                 }
5621                 return;
5622         }
5623
5624         raw_local_irq_save(flags);
5625         check_flags(flags);
5626
5627         lockdep_recursion_inc();
5628         __lock_acquire(lock, subclass, trylock, read, check,
5629                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5630         lockdep_recursion_finish();
5631         raw_local_irq_restore(flags);
5632 }
5633 EXPORT_SYMBOL_GPL(lock_acquire);
5634
5635 void lock_release(struct lockdep_map *lock, unsigned long ip)
5636 {
5637         unsigned long flags;
5638
5639         trace_lock_release(lock, ip);
5640
5641         if (unlikely(!lockdep_enabled()))
5642                 return;
5643
5644         raw_local_irq_save(flags);
5645         check_flags(flags);
5646
5647         lockdep_recursion_inc();
5648         if (__lock_release(lock, ip))
5649                 check_chain_key(current);
5650         lockdep_recursion_finish();
5651         raw_local_irq_restore(flags);
5652 }
5653 EXPORT_SYMBOL_GPL(lock_release);
5654
5655 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5656 {
5657         unsigned long flags;
5658         int ret = LOCK_STATE_NOT_HELD;
5659
5660         /*
5661          * Avoid false negative lockdep_assert_held() and
5662          * lockdep_assert_not_held().
5663          */
5664         if (unlikely(!lockdep_enabled()))
5665                 return LOCK_STATE_UNKNOWN;
5666
5667         raw_local_irq_save(flags);
5668         check_flags(flags);
5669
5670         lockdep_recursion_inc();
5671         ret = __lock_is_held(lock, read);
5672         lockdep_recursion_finish();
5673         raw_local_irq_restore(flags);
5674
5675         return ret;
5676 }
5677 EXPORT_SYMBOL_GPL(lock_is_held_type);
5678 NOKPROBE_SYMBOL(lock_is_held_type);
5679
5680 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5681 {
5682         struct pin_cookie cookie = NIL_COOKIE;
5683         unsigned long flags;
5684
5685         if (unlikely(!lockdep_enabled()))
5686                 return cookie;
5687
5688         raw_local_irq_save(flags);
5689         check_flags(flags);
5690
5691         lockdep_recursion_inc();
5692         cookie = __lock_pin_lock(lock);
5693         lockdep_recursion_finish();
5694         raw_local_irq_restore(flags);
5695
5696         return cookie;
5697 }
5698 EXPORT_SYMBOL_GPL(lock_pin_lock);
5699
5700 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5701 {
5702         unsigned long flags;
5703
5704         if (unlikely(!lockdep_enabled()))
5705                 return;
5706
5707         raw_local_irq_save(flags);
5708         check_flags(flags);
5709
5710         lockdep_recursion_inc();
5711         __lock_repin_lock(lock, cookie);
5712         lockdep_recursion_finish();
5713         raw_local_irq_restore(flags);
5714 }
5715 EXPORT_SYMBOL_GPL(lock_repin_lock);
5716
5717 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5718 {
5719         unsigned long flags;
5720
5721         if (unlikely(!lockdep_enabled()))
5722                 return;
5723
5724         raw_local_irq_save(flags);
5725         check_flags(flags);
5726
5727         lockdep_recursion_inc();
5728         __lock_unpin_lock(lock, cookie);
5729         lockdep_recursion_finish();
5730         raw_local_irq_restore(flags);
5731 }
5732 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5733
5734 #ifdef CONFIG_LOCK_STAT
5735 static void print_lock_contention_bug(struct task_struct *curr,
5736                                       struct lockdep_map *lock,
5737                                       unsigned long ip)
5738 {
5739         if (!debug_locks_off())
5740                 return;
5741         if (debug_locks_silent)
5742                 return;
5743
5744         pr_warn("\n");
5745         pr_warn("=================================\n");
5746         pr_warn("WARNING: bad contention detected!\n");
5747         print_kernel_ident();
5748         pr_warn("---------------------------------\n");
5749         pr_warn("%s/%d is trying to contend lock (",
5750                 curr->comm, task_pid_nr(curr));
5751         print_lockdep_cache(lock);
5752         pr_cont(") at:\n");
5753         print_ip_sym(KERN_WARNING, ip);
5754         pr_warn("but there are no locks held!\n");
5755         pr_warn("\nother info that might help us debug this:\n");
5756         lockdep_print_held_locks(curr);
5757
5758         pr_warn("\nstack backtrace:\n");
5759         dump_stack();
5760 }
5761
5762 static void
5763 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5764 {
5765         struct task_struct *curr = current;
5766         struct held_lock *hlock;
5767         struct lock_class_stats *stats;
5768         unsigned int depth;
5769         int i, contention_point, contending_point;
5770
5771         depth = curr->lockdep_depth;
5772         /*
5773          * Whee, we contended on this lock, except it seems we're not
5774          * actually trying to acquire anything much at all..
5775          */
5776         if (DEBUG_LOCKS_WARN_ON(!depth))
5777                 return;
5778
5779         hlock = find_held_lock(curr, lock, depth, &i);
5780         if (!hlock) {
5781                 print_lock_contention_bug(curr, lock, ip);
5782                 return;
5783         }
5784
5785         if (hlock->instance != lock)
5786                 return;
5787
5788         hlock->waittime_stamp = lockstat_clock();
5789
5790         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5791         contending_point = lock_point(hlock_class(hlock)->contending_point,
5792                                       lock->ip);
5793
5794         stats = get_lock_stats(hlock_class(hlock));
5795         if (contention_point < LOCKSTAT_POINTS)
5796                 stats->contention_point[contention_point]++;
5797         if (contending_point < LOCKSTAT_POINTS)
5798                 stats->contending_point[contending_point]++;
5799         if (lock->cpu != smp_processor_id())
5800                 stats->bounces[bounce_contended + !!hlock->read]++;
5801 }
5802
5803 static void
5804 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5805 {
5806         struct task_struct *curr = current;
5807         struct held_lock *hlock;
5808         struct lock_class_stats *stats;
5809         unsigned int depth;
5810         u64 now, waittime = 0;
5811         int i, cpu;
5812
5813         depth = curr->lockdep_depth;
5814         /*
5815          * Yay, we acquired ownership of this lock we didn't try to
5816          * acquire, how the heck did that happen?
5817          */
5818         if (DEBUG_LOCKS_WARN_ON(!depth))
5819                 return;
5820
5821         hlock = find_held_lock(curr, lock, depth, &i);
5822         if (!hlock) {
5823                 print_lock_contention_bug(curr, lock, _RET_IP_);
5824                 return;
5825         }
5826
5827         if (hlock->instance != lock)
5828                 return;
5829
5830         cpu = smp_processor_id();
5831         if (hlock->waittime_stamp) {
5832                 now = lockstat_clock();
5833                 waittime = now - hlock->waittime_stamp;
5834                 hlock->holdtime_stamp = now;
5835         }
5836
5837         stats = get_lock_stats(hlock_class(hlock));
5838         if (waittime) {
5839                 if (hlock->read)
5840                         lock_time_inc(&stats->read_waittime, waittime);
5841                 else
5842                         lock_time_inc(&stats->write_waittime, waittime);
5843         }
5844         if (lock->cpu != cpu)
5845                 stats->bounces[bounce_acquired + !!hlock->read]++;
5846
5847         lock->cpu = cpu;
5848         lock->ip = ip;
5849 }
5850
5851 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5852 {
5853         unsigned long flags;
5854
5855         trace_lock_contended(lock, ip);
5856
5857         if (unlikely(!lock_stat || !lockdep_enabled()))
5858                 return;
5859
5860         raw_local_irq_save(flags);
5861         check_flags(flags);
5862         lockdep_recursion_inc();
5863         __lock_contended(lock, ip);
5864         lockdep_recursion_finish();
5865         raw_local_irq_restore(flags);
5866 }
5867 EXPORT_SYMBOL_GPL(lock_contended);
5868
5869 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5870 {
5871         unsigned long flags;
5872
5873         trace_lock_acquired(lock, ip);
5874
5875         if (unlikely(!lock_stat || !lockdep_enabled()))
5876                 return;
5877
5878         raw_local_irq_save(flags);
5879         check_flags(flags);
5880         lockdep_recursion_inc();
5881         __lock_acquired(lock, ip);
5882         lockdep_recursion_finish();
5883         raw_local_irq_restore(flags);
5884 }
5885 EXPORT_SYMBOL_GPL(lock_acquired);
5886 #endif
5887
5888 /*
5889  * Used by the testsuite, sanitize the validator state
5890  * after a simulated failure:
5891  */
5892
5893 void lockdep_reset(void)
5894 {
5895         unsigned long flags;
5896         int i;
5897
5898         raw_local_irq_save(flags);
5899         lockdep_init_task(current);
5900         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5901         nr_hardirq_chains = 0;
5902         nr_softirq_chains = 0;
5903         nr_process_chains = 0;
5904         debug_locks = 1;
5905         for (i = 0; i < CHAINHASH_SIZE; i++)
5906                 INIT_HLIST_HEAD(chainhash_table + i);
5907         raw_local_irq_restore(flags);
5908 }
5909
5910 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5911 static void remove_class_from_lock_chain(struct pending_free *pf,
5912                                          struct lock_chain *chain,
5913                                          struct lock_class *class)
5914 {
5915 #ifdef CONFIG_PROVE_LOCKING
5916         int i;
5917
5918         for (i = chain->base; i < chain->base + chain->depth; i++) {
5919                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5920                         continue;
5921                 /*
5922                  * Each lock class occurs at most once in a lock chain so once
5923                  * we found a match we can break out of this loop.
5924                  */
5925                 goto free_lock_chain;
5926         }
5927         /* Since the chain has not been modified, return. */
5928         return;
5929
5930 free_lock_chain:
5931         free_chain_hlocks(chain->base, chain->depth);
5932         /* Overwrite the chain key for concurrent RCU readers. */
5933         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5934         dec_chains(chain->irq_context);
5935
5936         /*
5937          * Note: calling hlist_del_rcu() from inside a
5938          * hlist_for_each_entry_rcu() loop is safe.
5939          */
5940         hlist_del_rcu(&chain->entry);
5941         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5942         nr_zapped_lock_chains++;
5943 #endif
5944 }
5945
5946 /* Must be called with the graph lock held. */
5947 static void remove_class_from_lock_chains(struct pending_free *pf,
5948                                           struct lock_class *class)
5949 {
5950         struct lock_chain *chain;
5951         struct hlist_head *head;
5952         int i;
5953
5954         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5955                 head = chainhash_table + i;
5956                 hlist_for_each_entry_rcu(chain, head, entry) {
5957                         remove_class_from_lock_chain(pf, chain, class);
5958                 }
5959         }
5960 }
5961
5962 /*
5963  * Remove all references to a lock class. The caller must hold the graph lock.
5964  */
5965 static void zap_class(struct pending_free *pf, struct lock_class *class)
5966 {
5967         struct lock_list *entry;
5968         int i;
5969
5970         WARN_ON_ONCE(!class->key);
5971
5972         /*
5973          * Remove all dependencies this lock is
5974          * involved in:
5975          */
5976         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5977                 entry = list_entries + i;
5978                 if (entry->class != class && entry->links_to != class)
5979                         continue;
5980                 __clear_bit(i, list_entries_in_use);
5981                 nr_list_entries--;
5982                 list_del_rcu(&entry->entry);
5983         }
5984         if (list_empty(&class->locks_after) &&
5985             list_empty(&class->locks_before)) {
5986                 list_move_tail(&class->lock_entry, &pf->zapped);
5987                 hlist_del_rcu(&class->hash_entry);
5988                 WRITE_ONCE(class->key, NULL);
5989                 WRITE_ONCE(class->name, NULL);
5990                 nr_lock_classes--;
5991                 __clear_bit(class - lock_classes, lock_classes_in_use);
5992         } else {
5993                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5994                           class->name);
5995         }
5996
5997         remove_class_from_lock_chains(pf, class);
5998         nr_zapped_classes++;
5999 }
6000
6001 static void reinit_class(struct lock_class *class)
6002 {
6003         void *const p = class;
6004         const unsigned int offset = offsetof(struct lock_class, key);
6005
6006         WARN_ON_ONCE(!class->lock_entry.next);
6007         WARN_ON_ONCE(!list_empty(&class->locks_after));
6008         WARN_ON_ONCE(!list_empty(&class->locks_before));
6009         memset(p + offset, 0, sizeof(*class) - offset);
6010         WARN_ON_ONCE(!class->lock_entry.next);
6011         WARN_ON_ONCE(!list_empty(&class->locks_after));
6012         WARN_ON_ONCE(!list_empty(&class->locks_before));
6013 }
6014
6015 static inline int within(const void *addr, void *start, unsigned long size)
6016 {
6017         return addr >= start && addr < start + size;
6018 }
6019
6020 static bool inside_selftest(void)
6021 {
6022         return current == lockdep_selftest_task_struct;
6023 }
6024
6025 /* The caller must hold the graph lock. */
6026 static struct pending_free *get_pending_free(void)
6027 {
6028         return delayed_free.pf + delayed_free.index;
6029 }
6030
6031 static void free_zapped_rcu(struct rcu_head *cb);
6032
6033 /*
6034  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6035  * the graph lock held.
6036  */
6037 static void call_rcu_zapped(struct pending_free *pf)
6038 {
6039         WARN_ON_ONCE(inside_selftest());
6040
6041         if (list_empty(&pf->zapped))
6042                 return;
6043
6044         if (delayed_free.scheduled)
6045                 return;
6046
6047         delayed_free.scheduled = true;
6048
6049         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6050         delayed_free.index ^= 1;
6051
6052         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6053 }
6054
6055 /* The caller must hold the graph lock. May be called from RCU context. */
6056 static void __free_zapped_classes(struct pending_free *pf)
6057 {
6058         struct lock_class *class;
6059
6060         check_data_structures();
6061
6062         list_for_each_entry(class, &pf->zapped, lock_entry)
6063                 reinit_class(class);
6064
6065         list_splice_init(&pf->zapped, &free_lock_classes);
6066
6067 #ifdef CONFIG_PROVE_LOCKING
6068         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6069                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6070         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6071 #endif
6072 }
6073
6074 static void free_zapped_rcu(struct rcu_head *ch)
6075 {
6076         struct pending_free *pf;
6077         unsigned long flags;
6078
6079         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6080                 return;
6081
6082         raw_local_irq_save(flags);
6083         lockdep_lock();
6084
6085         /* closed head */
6086         pf = delayed_free.pf + (delayed_free.index ^ 1);
6087         __free_zapped_classes(pf);
6088         delayed_free.scheduled = false;
6089
6090         /*
6091          * If there's anything on the open list, close and start a new callback.
6092          */
6093         call_rcu_zapped(delayed_free.pf + delayed_free.index);
6094
6095         lockdep_unlock();
6096         raw_local_irq_restore(flags);
6097 }
6098
6099 /*
6100  * Remove all lock classes from the class hash table and from the
6101  * all_lock_classes list whose key or name is in the address range [start,
6102  * start + size). Move these lock classes to the zapped_classes list. Must
6103  * be called with the graph lock held.
6104  */
6105 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6106                                      unsigned long size)
6107 {
6108         struct lock_class *class;
6109         struct hlist_head *head;
6110         int i;
6111
6112         /* Unhash all classes that were created by a module. */
6113         for (i = 0; i < CLASSHASH_SIZE; i++) {
6114                 head = classhash_table + i;
6115                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6116                         if (!within(class->key, start, size) &&
6117                             !within(class->name, start, size))
6118                                 continue;
6119                         zap_class(pf, class);
6120                 }
6121         }
6122 }
6123
6124 /*
6125  * Used in module.c to remove lock classes from memory that is going to be
6126  * freed; and possibly re-used by other modules.
6127  *
6128  * We will have had one synchronize_rcu() before getting here, so we're
6129  * guaranteed nobody will look up these exact classes -- they're properly dead
6130  * but still allocated.
6131  */
6132 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6133 {
6134         struct pending_free *pf;
6135         unsigned long flags;
6136
6137         init_data_structures_once();
6138
6139         raw_local_irq_save(flags);
6140         lockdep_lock();
6141         pf = get_pending_free();
6142         __lockdep_free_key_range(pf, start, size);
6143         call_rcu_zapped(pf);
6144         lockdep_unlock();
6145         raw_local_irq_restore(flags);
6146
6147         /*
6148          * Wait for any possible iterators from look_up_lock_class() to pass
6149          * before continuing to free the memory they refer to.
6150          */
6151         synchronize_rcu();
6152 }
6153
6154 /*
6155  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6156  * Ignores debug_locks. Must only be used by the lockdep selftests.
6157  */
6158 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6159 {
6160         struct pending_free *pf = delayed_free.pf;
6161         unsigned long flags;
6162
6163         init_data_structures_once();
6164
6165         raw_local_irq_save(flags);
6166         lockdep_lock();
6167         __lockdep_free_key_range(pf, start, size);
6168         __free_zapped_classes(pf);
6169         lockdep_unlock();
6170         raw_local_irq_restore(flags);
6171 }
6172
6173 void lockdep_free_key_range(void *start, unsigned long size)
6174 {
6175         init_data_structures_once();
6176
6177         if (inside_selftest())
6178                 lockdep_free_key_range_imm(start, size);
6179         else
6180                 lockdep_free_key_range_reg(start, size);
6181 }
6182
6183 /*
6184  * Check whether any element of the @lock->class_cache[] array refers to a
6185  * registered lock class. The caller must hold either the graph lock or the
6186  * RCU read lock.
6187  */
6188 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6189 {
6190         struct lock_class *class;
6191         struct hlist_head *head;
6192         int i, j;
6193
6194         for (i = 0; i < CLASSHASH_SIZE; i++) {
6195                 head = classhash_table + i;
6196                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6197                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6198                                 if (lock->class_cache[j] == class)
6199                                         return true;
6200                 }
6201         }
6202         return false;
6203 }
6204
6205 /* The caller must hold the graph lock. Does not sleep. */
6206 static void __lockdep_reset_lock(struct pending_free *pf,
6207                                  struct lockdep_map *lock)
6208 {
6209         struct lock_class *class;
6210         int j;
6211
6212         /*
6213          * Remove all classes this lock might have:
6214          */
6215         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6216                 /*
6217                  * If the class exists we look it up and zap it:
6218                  */
6219                 class = look_up_lock_class(lock, j);
6220                 if (class)
6221                         zap_class(pf, class);
6222         }
6223         /*
6224          * Debug check: in the end all mapped classes should
6225          * be gone.
6226          */
6227         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6228                 debug_locks_off();
6229 }
6230
6231 /*
6232  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6233  * released data structures from RCU context.
6234  */
6235 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6236 {
6237         struct pending_free *pf;
6238         unsigned long flags;
6239         int locked;
6240
6241         raw_local_irq_save(flags);
6242         locked = graph_lock();
6243         if (!locked)
6244                 goto out_irq;
6245
6246         pf = get_pending_free();
6247         __lockdep_reset_lock(pf, lock);
6248         call_rcu_zapped(pf);
6249
6250         graph_unlock();
6251 out_irq:
6252         raw_local_irq_restore(flags);
6253 }
6254
6255 /*
6256  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6257  * lockdep selftests.
6258  */
6259 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6260 {
6261         struct pending_free *pf = delayed_free.pf;
6262         unsigned long flags;
6263
6264         raw_local_irq_save(flags);
6265         lockdep_lock();
6266         __lockdep_reset_lock(pf, lock);
6267         __free_zapped_classes(pf);
6268         lockdep_unlock();
6269         raw_local_irq_restore(flags);
6270 }
6271
6272 void lockdep_reset_lock(struct lockdep_map *lock)
6273 {
6274         init_data_structures_once();
6275
6276         if (inside_selftest())
6277                 lockdep_reset_lock_imm(lock);
6278         else
6279                 lockdep_reset_lock_reg(lock);
6280 }
6281
6282 /* Unregister a dynamically allocated key. */
6283 void lockdep_unregister_key(struct lock_class_key *key)
6284 {
6285         struct hlist_head *hash_head = keyhashentry(key);
6286         struct lock_class_key *k;
6287         struct pending_free *pf;
6288         unsigned long flags;
6289         bool found = false;
6290
6291         might_sleep();
6292
6293         if (WARN_ON_ONCE(static_obj(key)))
6294                 return;
6295
6296         raw_local_irq_save(flags);
6297         if (!graph_lock())
6298                 goto out_irq;
6299
6300         pf = get_pending_free();
6301         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6302                 if (k == key) {
6303                         hlist_del_rcu(&k->hash_entry);
6304                         found = true;
6305                         break;
6306                 }
6307         }
6308         WARN_ON_ONCE(!found);
6309         __lockdep_free_key_range(pf, key, 1);
6310         call_rcu_zapped(pf);
6311         graph_unlock();
6312 out_irq:
6313         raw_local_irq_restore(flags);
6314
6315         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6316         synchronize_rcu();
6317 }
6318 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6319
6320 void __init lockdep_init(void)
6321 {
6322         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6323
6324         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6325         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6326         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6327         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6328         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6329         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6330         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6331
6332         printk(" memory used by lock dependency info: %zu kB\n",
6333                (sizeof(lock_classes) +
6334                 sizeof(lock_classes_in_use) +
6335                 sizeof(classhash_table) +
6336                 sizeof(list_entries) +
6337                 sizeof(list_entries_in_use) +
6338                 sizeof(chainhash_table) +
6339                 sizeof(delayed_free)
6340 #ifdef CONFIG_PROVE_LOCKING
6341                 + sizeof(lock_cq)
6342                 + sizeof(lock_chains)
6343                 + sizeof(lock_chains_in_use)
6344                 + sizeof(chain_hlocks)
6345 #endif
6346                 ) / 1024
6347                 );
6348
6349 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6350         printk(" memory used for stack traces: %zu kB\n",
6351                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6352                );
6353 #endif
6354
6355         printk(" per task-struct memory footprint: %zu bytes\n",
6356                sizeof(((struct task_struct *)NULL)->held_locks));
6357 }
6358
6359 static void
6360 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6361                      const void *mem_to, struct held_lock *hlock)
6362 {
6363         if (!debug_locks_off())
6364                 return;
6365         if (debug_locks_silent)
6366                 return;
6367
6368         pr_warn("\n");
6369         pr_warn("=========================\n");
6370         pr_warn("WARNING: held lock freed!\n");
6371         print_kernel_ident();
6372         pr_warn("-------------------------\n");
6373         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6374                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6375         print_lock(hlock);
6376         lockdep_print_held_locks(curr);
6377
6378         pr_warn("\nstack backtrace:\n");
6379         dump_stack();
6380 }
6381
6382 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6383                                 const void* lock_from, unsigned long lock_len)
6384 {
6385         return lock_from + lock_len <= mem_from ||
6386                 mem_from + mem_len <= lock_from;
6387 }
6388
6389 /*
6390  * Called when kernel memory is freed (or unmapped), or if a lock
6391  * is destroyed or reinitialized - this code checks whether there is
6392  * any held lock in the memory range of <from> to <to>:
6393  */
6394 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6395 {
6396         struct task_struct *curr = current;
6397         struct held_lock *hlock;
6398         unsigned long flags;
6399         int i;
6400
6401         if (unlikely(!debug_locks))
6402                 return;
6403
6404         raw_local_irq_save(flags);
6405         for (i = 0; i < curr->lockdep_depth; i++) {
6406                 hlock = curr->held_locks + i;
6407
6408                 if (not_in_range(mem_from, mem_len, hlock->instance,
6409                                         sizeof(*hlock->instance)))
6410                         continue;
6411
6412                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6413                 break;
6414         }
6415         raw_local_irq_restore(flags);
6416 }
6417 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6418
6419 static void print_held_locks_bug(void)
6420 {
6421         if (!debug_locks_off())
6422                 return;
6423         if (debug_locks_silent)
6424                 return;
6425
6426         pr_warn("\n");
6427         pr_warn("====================================\n");
6428         pr_warn("WARNING: %s/%d still has locks held!\n",
6429                current->comm, task_pid_nr(current));
6430         print_kernel_ident();
6431         pr_warn("------------------------------------\n");
6432         lockdep_print_held_locks(current);
6433         pr_warn("\nstack backtrace:\n");
6434         dump_stack();
6435 }
6436
6437 void debug_check_no_locks_held(void)
6438 {
6439         if (unlikely(current->lockdep_depth > 0))
6440                 print_held_locks_bug();
6441 }
6442 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6443
6444 #ifdef __KERNEL__
6445 void debug_show_all_locks(void)
6446 {
6447         struct task_struct *g, *p;
6448
6449         if (unlikely(!debug_locks)) {
6450                 pr_warn("INFO: lockdep is turned off.\n");
6451                 return;
6452         }
6453         pr_warn("\nShowing all locks held in the system:\n");
6454
6455         rcu_read_lock();
6456         for_each_process_thread(g, p) {
6457                 if (!p->lockdep_depth)
6458                         continue;
6459                 lockdep_print_held_locks(p);
6460                 touch_nmi_watchdog();
6461                 touch_all_softlockup_watchdogs();
6462         }
6463         rcu_read_unlock();
6464
6465         pr_warn("\n");
6466         pr_warn("=============================================\n\n");
6467 }
6468 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6469 #endif
6470
6471 /*
6472  * Careful: only use this function if you are sure that
6473  * the task cannot run in parallel!
6474  */
6475 void debug_show_held_locks(struct task_struct *task)
6476 {
6477         if (unlikely(!debug_locks)) {
6478                 printk("INFO: lockdep is turned off.\n");
6479                 return;
6480         }
6481         lockdep_print_held_locks(task);
6482 }
6483 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6484
6485 asmlinkage __visible void lockdep_sys_exit(void)
6486 {
6487         struct task_struct *curr = current;
6488
6489         if (unlikely(curr->lockdep_depth)) {
6490                 if (!debug_locks_off())
6491                         return;
6492                 pr_warn("\n");
6493                 pr_warn("================================================\n");
6494                 pr_warn("WARNING: lock held when returning to user space!\n");
6495                 print_kernel_ident();
6496                 pr_warn("------------------------------------------------\n");
6497                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6498                                 curr->comm, curr->pid);
6499                 lockdep_print_held_locks(curr);
6500         }
6501
6502         /*
6503          * The lock history for each syscall should be independent. So wipe the
6504          * slate clean on return to userspace.
6505          */
6506         lockdep_invariant_state(false);
6507 }
6508
6509 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6510 {
6511         struct task_struct *curr = current;
6512
6513         /* Note: the following can be executed concurrently, so be careful. */
6514         pr_warn("\n");
6515         pr_warn("=============================\n");
6516         pr_warn("WARNING: suspicious RCU usage\n");
6517         print_kernel_ident();
6518         pr_warn("-----------------------------\n");
6519         pr_warn("%s:%d %s!\n", file, line, s);
6520         pr_warn("\nother info that might help us debug this:\n\n");
6521         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6522                !rcu_lockdep_current_cpu_online()
6523                         ? "RCU used illegally from offline CPU!\n"
6524                         : "",
6525                rcu_scheduler_active, debug_locks);
6526
6527         /*
6528          * If a CPU is in the RCU-free window in idle (ie: in the section
6529          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6530          * considers that CPU to be in an "extended quiescent state",
6531          * which means that RCU will be completely ignoring that CPU.
6532          * Therefore, rcu_read_lock() and friends have absolutely no
6533          * effect on a CPU running in that state. In other words, even if
6534          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6535          * delete data structures out from under it.  RCU really has no
6536          * choice here: we need to keep an RCU-free window in idle where
6537          * the CPU may possibly enter into low power mode. This way we can
6538          * notice an extended quiescent state to other CPUs that started a grace
6539          * period. Otherwise we would delay any grace period as long as we run
6540          * in the idle task.
6541          *
6542          * So complain bitterly if someone does call rcu_read_lock(),
6543          * rcu_read_lock_bh() and so on from extended quiescent states.
6544          */
6545         if (!rcu_is_watching())
6546                 pr_warn("RCU used illegally from extended quiescent state!\n");
6547
6548         lockdep_print_held_locks(curr);
6549         pr_warn("\nstack backtrace:\n");
6550         dump_stack();
6551 }
6552 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);