1 // SPDX-License-Identifier: GPL-2.0
3 * Generic Reed Solomon encoder / decoder library
5 * Copyright 2002, Phil Karn, KA9Q
6 * May be used under the terms of the GNU General Public License (GPL)
8 * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
10 * Generic data width independent code which is included by the wrappers.
13 struct rs_codec *rs = rsc->codec;
14 int deg_lambda, el, deg_omega;
17 int nroots = rs->nroots;
20 int iprim = rs->iprim;
21 uint16_t *alpha_to = rs->alpha_to;
22 uint16_t *index_of = rs->index_of;
23 uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;
25 uint16_t msk = (uint16_t) rs->nn;
28 * The decoder buffers are in the rs control struct. They are
29 * arrays sized [nroots + 1]
31 uint16_t *lambda = rsc->buffers + RS_DECODE_LAMBDA * (nroots + 1);
32 uint16_t *syn = rsc->buffers + RS_DECODE_SYN * (nroots + 1);
33 uint16_t *b = rsc->buffers + RS_DECODE_B * (nroots + 1);
34 uint16_t *t = rsc->buffers + RS_DECODE_T * (nroots + 1);
35 uint16_t *omega = rsc->buffers + RS_DECODE_OMEGA * (nroots + 1);
36 uint16_t *root = rsc->buffers + RS_DECODE_ROOT * (nroots + 1);
37 uint16_t *reg = rsc->buffers + RS_DECODE_REG * (nroots + 1);
38 uint16_t *loc = rsc->buffers + RS_DECODE_LOC * (nroots + 1);
40 /* Check length parameter for validity */
41 pad = nn - nroots - len;
42 BUG_ON(pad < 0 || pad >= nn);
44 /* Does the caller provide the syndrome ? */
46 for (i = 0; i < nroots; i++) {
47 /* The syndrome is in index form,
48 * so nn represents zero
54 /* syndrome is zero, no errors to correct */
58 /* form the syndromes; i.e., evaluate data(x) at roots of
60 for (i = 0; i < nroots; i++)
61 syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
63 for (j = 1; j < len; j++) {
64 for (i = 0; i < nroots; i++) {
66 syn[i] = (((uint16_t) data[j]) ^
69 syn[i] = ((((uint16_t) data[j]) ^
71 alpha_to[rs_modnn(rs, index_of[syn[i]] +
77 for (j = 0; j < nroots; j++) {
78 for (i = 0; i < nroots; i++) {
80 syn[i] = ((uint16_t) par[j]) & msk;
82 syn[i] = (((uint16_t) par[j]) & msk) ^
83 alpha_to[rs_modnn(rs, index_of[syn[i]] +
90 /* Convert syndromes to index form, checking for nonzero condition */
92 for (i = 0; i < nroots; i++) {
94 s[i] = index_of[s[i]];
98 /* if syndrome is zero, data[] is a codeword and there are no
99 * errors to correct. So return data[] unmodified
106 memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
110 /* Init lambda to be the erasure locator polynomial */
111 lambda[1] = alpha_to[rs_modnn(rs,
112 prim * (nn - 1 - (eras_pos[0] + pad)))];
113 for (i = 1; i < no_eras; i++) {
114 u = rs_modnn(rs, prim * (nn - 1 - (eras_pos[i] + pad)));
115 for (j = i + 1; j > 0; j--) {
116 tmp = index_of[lambda[j - 1]];
119 alpha_to[rs_modnn(rs, u + tmp)];
125 for (i = 0; i < nroots + 1; i++)
126 b[i] = index_of[lambda[i]];
129 * Begin Berlekamp-Massey algorithm to determine error+erasure
134 while (++r <= nroots) { /* r is the step number */
135 /* Compute discrepancy at the r-th step in poly-form */
137 for (i = 0; i < r; i++) {
138 if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
140 alpha_to[rs_modnn(rs,
141 index_of[lambda[i]] +
145 discr_r = index_of[discr_r]; /* Index form */
147 /* 2 lines below: B(x) <-- x*B(x) */
148 memmove (&b[1], b, nroots * sizeof (b[0]));
151 /* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
153 for (i = 0; i < nroots; i++) {
155 t[i + 1] = lambda[i + 1] ^
156 alpha_to[rs_modnn(rs, discr_r +
159 t[i + 1] = lambda[i + 1];
161 if (2 * el <= r + no_eras - 1) {
162 el = r + no_eras - el;
164 * 2 lines below: B(x) <-- inv(discr_r) *
167 for (i = 0; i <= nroots; i++) {
168 b[i] = (lambda[i] == 0) ? nn :
169 rs_modnn(rs, index_of[lambda[i]]
173 /* 2 lines below: B(x) <-- x*B(x) */
174 memmove(&b[1], b, nroots * sizeof(b[0]));
177 memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));
181 /* Convert lambda to index form and compute deg(lambda(x)) */
183 for (i = 0; i < nroots + 1; i++) {
184 lambda[i] = index_of[lambda[i]];
188 /* Find roots of error+erasure locator polynomial by Chien search */
189 memcpy(®[1], &lambda[1], nroots * sizeof(reg[0]));
190 count = 0; /* Number of roots of lambda(x) */
191 for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
192 q = 1; /* lambda[0] is always 0 */
193 for (j = deg_lambda; j > 0; j--) {
195 reg[j] = rs_modnn(rs, reg[j] + j);
196 q ^= alpha_to[reg[j]];
200 continue; /* Not a root */
201 /* store root (index-form) and error location number */
204 /* If we've already found max possible roots,
205 * abort the search to save time
207 if (++count == deg_lambda)
210 if (deg_lambda != count) {
212 * deg(lambda) unequal to number of roots => uncorrectable
219 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
220 * x**nroots). in index form. Also find deg(omega).
222 deg_omega = deg_lambda - 1;
223 for (i = 0; i <= deg_omega; i++) {
225 for (j = i; j >= 0; j--) {
226 if ((s[i - j] != nn) && (lambda[j] != nn))
228 alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
230 omega[i] = index_of[tmp];
234 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
235 * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
237 for (j = count - 1; j >= 0; j--) {
239 for (i = deg_omega; i >= 0; i--) {
241 num1 ^= alpha_to[rs_modnn(rs, omega[i] +
244 num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
247 /* lambda[i+1] for i even is the formal derivative
248 * lambda_pr of lambda[i] */
249 for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
250 if (lambda[i + 1] != nn) {
251 den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
255 /* Apply error to data */
256 if (num1 != 0 && loc[j] >= pad) {
257 uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +
259 nn - index_of[den])];
260 /* Store the error correction pattern, if a
261 * correction buffer is available */
265 /* If a data buffer is given and the
266 * error is inside the message,
268 if (data && (loc[j] < (nn - nroots)))
269 data[loc[j] - pad] ^= cor;
275 if (eras_pos != NULL) {
276 for (i = 0; i < count; i++)
277 eras_pos[i] = loc[i] - pad;