GNU Linux-libre 5.10.217-gnu1
[releases.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <net/checksum.h>
13 #include <linux/scatterlist.h>
14 #include <linux/instrumented.h>
15
16 #define PIPE_PARANOIA /* for now */
17
18 #define iterate_iovec(i, n, __v, __p, skip, STEP) {     \
19         size_t left;                                    \
20         size_t wanted = n;                              \
21         __p = i->iov;                                   \
22         __v.iov_len = min(n, __p->iov_len - skip);      \
23         if (likely(__v.iov_len)) {                      \
24                 __v.iov_base = __p->iov_base + skip;    \
25                 left = (STEP);                          \
26                 __v.iov_len -= left;                    \
27                 skip += __v.iov_len;                    \
28                 n -= __v.iov_len;                       \
29         } else {                                        \
30                 left = 0;                               \
31         }                                               \
32         while (unlikely(!left && n)) {                  \
33                 __p++;                                  \
34                 __v.iov_len = min(n, __p->iov_len);     \
35                 if (unlikely(!__v.iov_len))             \
36                         continue;                       \
37                 __v.iov_base = __p->iov_base;           \
38                 left = (STEP);                          \
39                 __v.iov_len -= left;                    \
40                 skip = __v.iov_len;                     \
41                 n -= __v.iov_len;                       \
42         }                                               \
43         n = wanted - n;                                 \
44 }
45
46 #define iterate_kvec(i, n, __v, __p, skip, STEP) {      \
47         size_t wanted = n;                              \
48         __p = i->kvec;                                  \
49         __v.iov_len = min(n, __p->iov_len - skip);      \
50         if (likely(__v.iov_len)) {                      \
51                 __v.iov_base = __p->iov_base + skip;    \
52                 (void)(STEP);                           \
53                 skip += __v.iov_len;                    \
54                 n -= __v.iov_len;                       \
55         }                                               \
56         while (unlikely(n)) {                           \
57                 __p++;                                  \
58                 __v.iov_len = min(n, __p->iov_len);     \
59                 if (unlikely(!__v.iov_len))             \
60                         continue;                       \
61                 __v.iov_base = __p->iov_base;           \
62                 (void)(STEP);                           \
63                 skip = __v.iov_len;                     \
64                 n -= __v.iov_len;                       \
65         }                                               \
66         n = wanted;                                     \
67 }
68
69 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {     \
70         struct bvec_iter __start;                       \
71         __start.bi_size = n;                            \
72         __start.bi_bvec_done = skip;                    \
73         __start.bi_idx = 0;                             \
74         for_each_bvec(__v, i->bvec, __bi, __start) {    \
75                 if (!__v.bv_len)                        \
76                         continue;                       \
77                 (void)(STEP);                           \
78         }                                               \
79 }
80
81 #define iterate_all_kinds(i, n, v, I, B, K) {                   \
82         if (likely(n)) {                                        \
83                 size_t skip = i->iov_offset;                    \
84                 if (unlikely(i->type & ITER_BVEC)) {            \
85                         struct bio_vec v;                       \
86                         struct bvec_iter __bi;                  \
87                         iterate_bvec(i, n, v, __bi, skip, (B))  \
88                 } else if (unlikely(i->type & ITER_KVEC)) {     \
89                         const struct kvec *kvec;                \
90                         struct kvec v;                          \
91                         iterate_kvec(i, n, v, kvec, skip, (K))  \
92                 } else if (unlikely(i->type & ITER_DISCARD)) {  \
93                 } else {                                        \
94                         const struct iovec *iov;                \
95                         struct iovec v;                         \
96                         iterate_iovec(i, n, v, iov, skip, (I))  \
97                 }                                               \
98         }                                                       \
99 }
100
101 #define iterate_and_advance(i, n, v, I, B, K) {                 \
102         if (unlikely(i->count < n))                             \
103                 n = i->count;                                   \
104         if (i->count) {                                         \
105                 size_t skip = i->iov_offset;                    \
106                 if (unlikely(i->type & ITER_BVEC)) {            \
107                         const struct bio_vec *bvec = i->bvec;   \
108                         struct bio_vec v;                       \
109                         struct bvec_iter __bi;                  \
110                         iterate_bvec(i, n, v, __bi, skip, (B))  \
111                         i->bvec = __bvec_iter_bvec(i->bvec, __bi);      \
112                         i->nr_segs -= i->bvec - bvec;           \
113                         skip = __bi.bi_bvec_done;               \
114                 } else if (unlikely(i->type & ITER_KVEC)) {     \
115                         const struct kvec *kvec;                \
116                         struct kvec v;                          \
117                         iterate_kvec(i, n, v, kvec, skip, (K))  \
118                         if (skip == kvec->iov_len) {            \
119                                 kvec++;                         \
120                                 skip = 0;                       \
121                         }                                       \
122                         i->nr_segs -= kvec - i->kvec;           \
123                         i->kvec = kvec;                         \
124                 } else if (unlikely(i->type & ITER_DISCARD)) {  \
125                         skip += n;                              \
126                 } else {                                        \
127                         const struct iovec *iov;                \
128                         struct iovec v;                         \
129                         iterate_iovec(i, n, v, iov, skip, (I))  \
130                         if (skip == iov->iov_len) {             \
131                                 iov++;                          \
132                                 skip = 0;                       \
133                         }                                       \
134                         i->nr_segs -= iov - i->iov;             \
135                         i->iov = iov;                           \
136                 }                                               \
137                 i->count -= n;                                  \
138                 i->iov_offset = skip;                           \
139         }                                                       \
140 }
141
142 static int copyout(void __user *to, const void *from, size_t n)
143 {
144         if (should_fail_usercopy())
145                 return n;
146         if (access_ok(to, n)) {
147                 instrument_copy_to_user(to, from, n);
148                 n = raw_copy_to_user(to, from, n);
149         }
150         return n;
151 }
152
153 static int copyin(void *to, const void __user *from, size_t n)
154 {
155         if (should_fail_usercopy())
156                 return n;
157         if (access_ok(from, n)) {
158                 instrument_copy_from_user(to, from, n);
159                 n = raw_copy_from_user(to, from, n);
160         }
161         return n;
162 }
163
164 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
165                          struct iov_iter *i)
166 {
167         size_t skip, copy, left, wanted;
168         const struct iovec *iov;
169         char __user *buf;
170         void *kaddr, *from;
171
172         if (unlikely(bytes > i->count))
173                 bytes = i->count;
174
175         if (unlikely(!bytes))
176                 return 0;
177
178         might_fault();
179         wanted = bytes;
180         iov = i->iov;
181         skip = i->iov_offset;
182         buf = iov->iov_base + skip;
183         copy = min(bytes, iov->iov_len - skip);
184
185         if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
186                 kaddr = kmap_atomic(page);
187                 from = kaddr + offset;
188
189                 /* first chunk, usually the only one */
190                 left = copyout(buf, from, copy);
191                 copy -= left;
192                 skip += copy;
193                 from += copy;
194                 bytes -= copy;
195
196                 while (unlikely(!left && bytes)) {
197                         iov++;
198                         buf = iov->iov_base;
199                         copy = min(bytes, iov->iov_len);
200                         left = copyout(buf, from, copy);
201                         copy -= left;
202                         skip = copy;
203                         from += copy;
204                         bytes -= copy;
205                 }
206                 if (likely(!bytes)) {
207                         kunmap_atomic(kaddr);
208                         goto done;
209                 }
210                 offset = from - kaddr;
211                 buf += copy;
212                 kunmap_atomic(kaddr);
213                 copy = min(bytes, iov->iov_len - skip);
214         }
215         /* Too bad - revert to non-atomic kmap */
216
217         kaddr = kmap(page);
218         from = kaddr + offset;
219         left = copyout(buf, from, copy);
220         copy -= left;
221         skip += copy;
222         from += copy;
223         bytes -= copy;
224         while (unlikely(!left && bytes)) {
225                 iov++;
226                 buf = iov->iov_base;
227                 copy = min(bytes, iov->iov_len);
228                 left = copyout(buf, from, copy);
229                 copy -= left;
230                 skip = copy;
231                 from += copy;
232                 bytes -= copy;
233         }
234         kunmap(page);
235
236 done:
237         if (skip == iov->iov_len) {
238                 iov++;
239                 skip = 0;
240         }
241         i->count -= wanted - bytes;
242         i->nr_segs -= iov - i->iov;
243         i->iov = iov;
244         i->iov_offset = skip;
245         return wanted - bytes;
246 }
247
248 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
249                          struct iov_iter *i)
250 {
251         size_t skip, copy, left, wanted;
252         const struct iovec *iov;
253         char __user *buf;
254         void *kaddr, *to;
255
256         if (unlikely(bytes > i->count))
257                 bytes = i->count;
258
259         if (unlikely(!bytes))
260                 return 0;
261
262         might_fault();
263         wanted = bytes;
264         iov = i->iov;
265         skip = i->iov_offset;
266         buf = iov->iov_base + skip;
267         copy = min(bytes, iov->iov_len - skip);
268
269         if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
270                 kaddr = kmap_atomic(page);
271                 to = kaddr + offset;
272
273                 /* first chunk, usually the only one */
274                 left = copyin(to, buf, copy);
275                 copy -= left;
276                 skip += copy;
277                 to += copy;
278                 bytes -= copy;
279
280                 while (unlikely(!left && bytes)) {
281                         iov++;
282                         buf = iov->iov_base;
283                         copy = min(bytes, iov->iov_len);
284                         left = copyin(to, buf, copy);
285                         copy -= left;
286                         skip = copy;
287                         to += copy;
288                         bytes -= copy;
289                 }
290                 if (likely(!bytes)) {
291                         kunmap_atomic(kaddr);
292                         goto done;
293                 }
294                 offset = to - kaddr;
295                 buf += copy;
296                 kunmap_atomic(kaddr);
297                 copy = min(bytes, iov->iov_len - skip);
298         }
299         /* Too bad - revert to non-atomic kmap */
300
301         kaddr = kmap(page);
302         to = kaddr + offset;
303         left = copyin(to, buf, copy);
304         copy -= left;
305         skip += copy;
306         to += copy;
307         bytes -= copy;
308         while (unlikely(!left && bytes)) {
309                 iov++;
310                 buf = iov->iov_base;
311                 copy = min(bytes, iov->iov_len);
312                 left = copyin(to, buf, copy);
313                 copy -= left;
314                 skip = copy;
315                 to += copy;
316                 bytes -= copy;
317         }
318         kunmap(page);
319
320 done:
321         if (skip == iov->iov_len) {
322                 iov++;
323                 skip = 0;
324         }
325         i->count -= wanted - bytes;
326         i->nr_segs -= iov - i->iov;
327         i->iov = iov;
328         i->iov_offset = skip;
329         return wanted - bytes;
330 }
331
332 #ifdef PIPE_PARANOIA
333 static bool sanity(const struct iov_iter *i)
334 {
335         struct pipe_inode_info *pipe = i->pipe;
336         unsigned int p_head = pipe->head;
337         unsigned int p_tail = pipe->tail;
338         unsigned int p_mask = pipe->ring_size - 1;
339         unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
340         unsigned int i_head = i->head;
341         unsigned int idx;
342
343         if (i->iov_offset) {
344                 struct pipe_buffer *p;
345                 if (unlikely(p_occupancy == 0))
346                         goto Bad;       // pipe must be non-empty
347                 if (unlikely(i_head != p_head - 1))
348                         goto Bad;       // must be at the last buffer...
349
350                 p = &pipe->bufs[i_head & p_mask];
351                 if (unlikely(p->offset + p->len != i->iov_offset))
352                         goto Bad;       // ... at the end of segment
353         } else {
354                 if (i_head != p_head)
355                         goto Bad;       // must be right after the last buffer
356         }
357         return true;
358 Bad:
359         printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
360         printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
361                         p_head, p_tail, pipe->ring_size);
362         for (idx = 0; idx < pipe->ring_size; idx++)
363                 printk(KERN_ERR "[%p %p %d %d]\n",
364                         pipe->bufs[idx].ops,
365                         pipe->bufs[idx].page,
366                         pipe->bufs[idx].offset,
367                         pipe->bufs[idx].len);
368         WARN_ON(1);
369         return false;
370 }
371 #else
372 #define sanity(i) true
373 #endif
374
375 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
376                          struct iov_iter *i)
377 {
378         struct pipe_inode_info *pipe = i->pipe;
379         struct pipe_buffer *buf;
380         unsigned int p_tail = pipe->tail;
381         unsigned int p_mask = pipe->ring_size - 1;
382         unsigned int i_head = i->head;
383         size_t off;
384
385         if (unlikely(bytes > i->count))
386                 bytes = i->count;
387
388         if (unlikely(!bytes))
389                 return 0;
390
391         if (!sanity(i))
392                 return 0;
393
394         off = i->iov_offset;
395         buf = &pipe->bufs[i_head & p_mask];
396         if (off) {
397                 if (offset == off && buf->page == page) {
398                         /* merge with the last one */
399                         buf->len += bytes;
400                         i->iov_offset += bytes;
401                         goto out;
402                 }
403                 i_head++;
404                 buf = &pipe->bufs[i_head & p_mask];
405         }
406         if (pipe_full(i_head, p_tail, pipe->max_usage))
407                 return 0;
408
409         buf->ops = &page_cache_pipe_buf_ops;
410         buf->flags = 0;
411         get_page(page);
412         buf->page = page;
413         buf->offset = offset;
414         buf->len = bytes;
415
416         pipe->head = i_head + 1;
417         i->iov_offset = offset + bytes;
418         i->head = i_head;
419 out:
420         i->count -= bytes;
421         return bytes;
422 }
423
424 /*
425  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
426  * bytes.  For each iovec, fault in each page that constitutes the iovec.
427  *
428  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
429  * because it is an invalid address).
430  */
431 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
432 {
433         size_t skip = i->iov_offset;
434         const struct iovec *iov;
435         int err;
436         struct iovec v;
437
438         if (iter_is_iovec(i)) {
439                 iterate_iovec(i, bytes, v, iov, skip, ({
440                         err = fault_in_pages_readable(v.iov_base, v.iov_len);
441                         if (unlikely(err))
442                         return err;
443                 0;}))
444         }
445         return 0;
446 }
447 EXPORT_SYMBOL(iov_iter_fault_in_readable);
448
449 void iov_iter_init(struct iov_iter *i, unsigned int direction,
450                         const struct iovec *iov, unsigned long nr_segs,
451                         size_t count)
452 {
453         WARN_ON(direction & ~(READ | WRITE));
454         direction &= READ | WRITE;
455
456         /* It will get better.  Eventually... */
457         if (uaccess_kernel()) {
458                 i->type = ITER_KVEC | direction;
459                 i->kvec = (struct kvec *)iov;
460         } else {
461                 i->type = ITER_IOVEC | direction;
462                 i->iov = iov;
463         }
464         i->nr_segs = nr_segs;
465         i->iov_offset = 0;
466         i->count = count;
467 }
468 EXPORT_SYMBOL(iov_iter_init);
469
470 static void memzero_page(struct page *page, size_t offset, size_t len)
471 {
472         char *addr = kmap_atomic(page);
473         memset(addr + offset, 0, len);
474         kunmap_atomic(addr);
475 }
476
477 static inline bool allocated(struct pipe_buffer *buf)
478 {
479         return buf->ops == &default_pipe_buf_ops;
480 }
481
482 static inline void data_start(const struct iov_iter *i,
483                               unsigned int *iter_headp, size_t *offp)
484 {
485         unsigned int p_mask = i->pipe->ring_size - 1;
486         unsigned int iter_head = i->head;
487         size_t off = i->iov_offset;
488
489         if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
490                     off == PAGE_SIZE)) {
491                 iter_head++;
492                 off = 0;
493         }
494         *iter_headp = iter_head;
495         *offp = off;
496 }
497
498 static size_t push_pipe(struct iov_iter *i, size_t size,
499                         int *iter_headp, size_t *offp)
500 {
501         struct pipe_inode_info *pipe = i->pipe;
502         unsigned int p_tail = pipe->tail;
503         unsigned int p_mask = pipe->ring_size - 1;
504         unsigned int iter_head;
505         size_t off;
506         ssize_t left;
507
508         if (unlikely(size > i->count))
509                 size = i->count;
510         if (unlikely(!size))
511                 return 0;
512
513         left = size;
514         data_start(i, &iter_head, &off);
515         *iter_headp = iter_head;
516         *offp = off;
517         if (off) {
518                 left -= PAGE_SIZE - off;
519                 if (left <= 0) {
520                         pipe->bufs[iter_head & p_mask].len += size;
521                         return size;
522                 }
523                 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
524                 iter_head++;
525         }
526         while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
527                 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
528                 struct page *page = alloc_page(GFP_USER);
529                 if (!page)
530                         break;
531
532                 buf->ops = &default_pipe_buf_ops;
533                 buf->flags = 0;
534                 buf->page = page;
535                 buf->offset = 0;
536                 buf->len = min_t(ssize_t, left, PAGE_SIZE);
537                 left -= buf->len;
538                 iter_head++;
539                 pipe->head = iter_head;
540
541                 if (left == 0)
542                         return size;
543         }
544         return size - left;
545 }
546
547 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
548                                 struct iov_iter *i)
549 {
550         struct pipe_inode_info *pipe = i->pipe;
551         unsigned int p_mask = pipe->ring_size - 1;
552         unsigned int i_head;
553         size_t n, off;
554
555         if (!sanity(i))
556                 return 0;
557
558         bytes = n = push_pipe(i, bytes, &i_head, &off);
559         if (unlikely(!n))
560                 return 0;
561         do {
562                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
563                 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
564                 i->head = i_head;
565                 i->iov_offset = off + chunk;
566                 n -= chunk;
567                 addr += chunk;
568                 off = 0;
569                 i_head++;
570         } while (n);
571         i->count -= bytes;
572         return bytes;
573 }
574
575 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
576                               __wsum sum, size_t off)
577 {
578         __wsum next = csum_partial_copy_nocheck(from, to, len);
579         return csum_block_add(sum, next, off);
580 }
581
582 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
583                                          struct csum_state *csstate,
584                                          struct iov_iter *i)
585 {
586         struct pipe_inode_info *pipe = i->pipe;
587         unsigned int p_mask = pipe->ring_size - 1;
588         __wsum sum = csstate->csum;
589         size_t off = csstate->off;
590         unsigned int i_head;
591         size_t n, r;
592
593         if (!sanity(i))
594                 return 0;
595
596         bytes = n = push_pipe(i, bytes, &i_head, &r);
597         if (unlikely(!n))
598                 return 0;
599         do {
600                 size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
601                 char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
602                 sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
603                 kunmap_atomic(p);
604                 i->head = i_head;
605                 i->iov_offset = r + chunk;
606                 n -= chunk;
607                 off += chunk;
608                 addr += chunk;
609                 r = 0;
610                 i_head++;
611         } while (n);
612         i->count -= bytes;
613         csstate->csum = sum;
614         csstate->off = off;
615         return bytes;
616 }
617
618 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
619 {
620         const char *from = addr;
621         if (unlikely(iov_iter_is_pipe(i)))
622                 return copy_pipe_to_iter(addr, bytes, i);
623         if (iter_is_iovec(i))
624                 might_fault();
625         iterate_and_advance(i, bytes, v,
626                 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
627                 memcpy_to_page(v.bv_page, v.bv_offset,
628                                (from += v.bv_len) - v.bv_len, v.bv_len),
629                 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
630         )
631
632         return bytes;
633 }
634 EXPORT_SYMBOL(_copy_to_iter);
635
636 #ifdef CONFIG_ARCH_HAS_COPY_MC
637 static int copyout_mc(void __user *to, const void *from, size_t n)
638 {
639         if (access_ok(to, n)) {
640                 instrument_copy_to_user(to, from, n);
641                 n = copy_mc_to_user((__force void *) to, from, n);
642         }
643         return n;
644 }
645
646 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
647                 const char *from, size_t len)
648 {
649         unsigned long ret;
650         char *to;
651
652         to = kmap_atomic(page);
653         ret = copy_mc_to_kernel(to + offset, from, len);
654         kunmap_atomic(to);
655
656         return ret;
657 }
658
659 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
660                                 struct iov_iter *i)
661 {
662         struct pipe_inode_info *pipe = i->pipe;
663         unsigned int p_mask = pipe->ring_size - 1;
664         unsigned int i_head;
665         size_t n, off, xfer = 0;
666
667         if (!sanity(i))
668                 return 0;
669
670         bytes = n = push_pipe(i, bytes, &i_head, &off);
671         if (unlikely(!n))
672                 return 0;
673         do {
674                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
675                 unsigned long rem;
676
677                 rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
678                                             off, addr, chunk);
679                 i->head = i_head;
680                 i->iov_offset = off + chunk - rem;
681                 xfer += chunk - rem;
682                 if (rem)
683                         break;
684                 n -= chunk;
685                 addr += chunk;
686                 off = 0;
687                 i_head++;
688         } while (n);
689         i->count -= xfer;
690         return xfer;
691 }
692
693 /**
694  * _copy_mc_to_iter - copy to iter with source memory error exception handling
695  * @addr: source kernel address
696  * @bytes: total transfer length
697  * @iter: destination iterator
698  *
699  * The pmem driver deploys this for the dax operation
700  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
701  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
702  * successfully copied.
703  *
704  * The main differences between this and typical _copy_to_iter().
705  *
706  * * Typical tail/residue handling after a fault retries the copy
707  *   byte-by-byte until the fault happens again. Re-triggering machine
708  *   checks is potentially fatal so the implementation uses source
709  *   alignment and poison alignment assumptions to avoid re-triggering
710  *   hardware exceptions.
711  *
712  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
713  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
714  *   a short copy.
715  */
716 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
717 {
718         const char *from = addr;
719         unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
720
721         if (unlikely(iov_iter_is_pipe(i)))
722                 return copy_mc_pipe_to_iter(addr, bytes, i);
723         if (iter_is_iovec(i))
724                 might_fault();
725         iterate_and_advance(i, bytes, v,
726                 copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
727                            v.iov_len),
728                 ({
729                 rem = copy_mc_to_page(v.bv_page, v.bv_offset,
730                                       (from += v.bv_len) - v.bv_len, v.bv_len);
731                 if (rem) {
732                         curr_addr = (unsigned long) from;
733                         bytes = curr_addr - s_addr - rem;
734                         return bytes;
735                 }
736                 }),
737                 ({
738                 rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
739                                         - v.iov_len, v.iov_len);
740                 if (rem) {
741                         curr_addr = (unsigned long) from;
742                         bytes = curr_addr - s_addr - rem;
743                         return bytes;
744                 }
745                 })
746         )
747
748         return bytes;
749 }
750 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
751 #endif /* CONFIG_ARCH_HAS_COPY_MC */
752
753 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
754 {
755         char *to = addr;
756         if (unlikely(iov_iter_is_pipe(i))) {
757                 WARN_ON(1);
758                 return 0;
759         }
760         if (iter_is_iovec(i))
761                 might_fault();
762         iterate_and_advance(i, bytes, v,
763                 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
764                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
765                                  v.bv_offset, v.bv_len),
766                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
767         )
768
769         return bytes;
770 }
771 EXPORT_SYMBOL(_copy_from_iter);
772
773 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
774 {
775         char *to = addr;
776         if (unlikely(iov_iter_is_pipe(i))) {
777                 WARN_ON(1);
778                 return false;
779         }
780         if (unlikely(i->count < bytes))
781                 return false;
782
783         if (iter_is_iovec(i))
784                 might_fault();
785         iterate_all_kinds(i, bytes, v, ({
786                 if (copyin((to += v.iov_len) - v.iov_len,
787                                       v.iov_base, v.iov_len))
788                         return false;
789                 0;}),
790                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
791                                  v.bv_offset, v.bv_len),
792                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
793         )
794
795         iov_iter_advance(i, bytes);
796         return true;
797 }
798 EXPORT_SYMBOL(_copy_from_iter_full);
799
800 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
801 {
802         char *to = addr;
803         if (unlikely(iov_iter_is_pipe(i))) {
804                 WARN_ON(1);
805                 return 0;
806         }
807         iterate_and_advance(i, bytes, v,
808                 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
809                                          v.iov_base, v.iov_len),
810                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
811                                  v.bv_offset, v.bv_len),
812                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
813         )
814
815         return bytes;
816 }
817 EXPORT_SYMBOL(_copy_from_iter_nocache);
818
819 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
820 /**
821  * _copy_from_iter_flushcache - write destination through cpu cache
822  * @addr: destination kernel address
823  * @bytes: total transfer length
824  * @iter: source iterator
825  *
826  * The pmem driver arranges for filesystem-dax to use this facility via
827  * dax_copy_from_iter() for ensuring that writes to persistent memory
828  * are flushed through the CPU cache. It is differentiated from
829  * _copy_from_iter_nocache() in that guarantees all data is flushed for
830  * all iterator types. The _copy_from_iter_nocache() only attempts to
831  * bypass the cache for the ITER_IOVEC case, and on some archs may use
832  * instructions that strand dirty-data in the cache.
833  */
834 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
835 {
836         char *to = addr;
837         if (unlikely(iov_iter_is_pipe(i))) {
838                 WARN_ON(1);
839                 return 0;
840         }
841         iterate_and_advance(i, bytes, v,
842                 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
843                                          v.iov_base, v.iov_len),
844                 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
845                                  v.bv_offset, v.bv_len),
846                 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
847                         v.iov_len)
848         )
849
850         return bytes;
851 }
852 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
853 #endif
854
855 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
856 {
857         char *to = addr;
858         if (unlikely(iov_iter_is_pipe(i))) {
859                 WARN_ON(1);
860                 return false;
861         }
862         if (unlikely(i->count < bytes))
863                 return false;
864         iterate_all_kinds(i, bytes, v, ({
865                 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
866                                              v.iov_base, v.iov_len))
867                         return false;
868                 0;}),
869                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
870                                  v.bv_offset, v.bv_len),
871                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
872         )
873
874         iov_iter_advance(i, bytes);
875         return true;
876 }
877 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
878
879 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
880 {
881         struct page *head;
882         size_t v = n + offset;
883
884         /*
885          * The general case needs to access the page order in order
886          * to compute the page size.
887          * However, we mostly deal with order-0 pages and thus can
888          * avoid a possible cache line miss for requests that fit all
889          * page orders.
890          */
891         if (n <= v && v <= PAGE_SIZE)
892                 return true;
893
894         head = compound_head(page);
895         v += (page - head) << PAGE_SHIFT;
896
897         if (likely(n <= v && v <= (page_size(head))))
898                 return true;
899         WARN_ON(1);
900         return false;
901 }
902
903 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
904                          struct iov_iter *i)
905 {
906         if (unlikely(!page_copy_sane(page, offset, bytes)))
907                 return 0;
908         if (i->type & (ITER_BVEC|ITER_KVEC)) {
909                 void *kaddr = kmap_atomic(page);
910                 size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
911                 kunmap_atomic(kaddr);
912                 return wanted;
913         } else if (unlikely(iov_iter_is_discard(i))) {
914                 if (unlikely(i->count < bytes))
915                         bytes = i->count;
916                 i->count -= bytes;
917                 return bytes;
918         } else if (likely(!iov_iter_is_pipe(i)))
919                 return copy_page_to_iter_iovec(page, offset, bytes, i);
920         else
921                 return copy_page_to_iter_pipe(page, offset, bytes, i);
922 }
923 EXPORT_SYMBOL(copy_page_to_iter);
924
925 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
926                          struct iov_iter *i)
927 {
928         if (unlikely(!page_copy_sane(page, offset, bytes)))
929                 return 0;
930         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
931                 WARN_ON(1);
932                 return 0;
933         }
934         if (i->type & (ITER_BVEC|ITER_KVEC)) {
935                 void *kaddr = kmap_atomic(page);
936                 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
937                 kunmap_atomic(kaddr);
938                 return wanted;
939         } else
940                 return copy_page_from_iter_iovec(page, offset, bytes, i);
941 }
942 EXPORT_SYMBOL(copy_page_from_iter);
943
944 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
945 {
946         struct pipe_inode_info *pipe = i->pipe;
947         unsigned int p_mask = pipe->ring_size - 1;
948         unsigned int i_head;
949         size_t n, off;
950
951         if (!sanity(i))
952                 return 0;
953
954         bytes = n = push_pipe(i, bytes, &i_head, &off);
955         if (unlikely(!n))
956                 return 0;
957
958         do {
959                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
960                 memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
961                 i->head = i_head;
962                 i->iov_offset = off + chunk;
963                 n -= chunk;
964                 off = 0;
965                 i_head++;
966         } while (n);
967         i->count -= bytes;
968         return bytes;
969 }
970
971 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
972 {
973         if (unlikely(iov_iter_is_pipe(i)))
974                 return pipe_zero(bytes, i);
975         iterate_and_advance(i, bytes, v,
976                 clear_user(v.iov_base, v.iov_len),
977                 memzero_page(v.bv_page, v.bv_offset, v.bv_len),
978                 memset(v.iov_base, 0, v.iov_len)
979         )
980
981         return bytes;
982 }
983 EXPORT_SYMBOL(iov_iter_zero);
984
985 size_t iov_iter_copy_from_user_atomic(struct page *page,
986                 struct iov_iter *i, unsigned long offset, size_t bytes)
987 {
988         char *kaddr = kmap_atomic(page), *p = kaddr + offset;
989         if (unlikely(!page_copy_sane(page, offset, bytes))) {
990                 kunmap_atomic(kaddr);
991                 return 0;
992         }
993         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
994                 kunmap_atomic(kaddr);
995                 WARN_ON(1);
996                 return 0;
997         }
998         iterate_all_kinds(i, bytes, v,
999                 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1000                 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1001                                  v.bv_offset, v.bv_len),
1002                 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1003         )
1004         kunmap_atomic(kaddr);
1005         return bytes;
1006 }
1007 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1008
1009 static inline void pipe_truncate(struct iov_iter *i)
1010 {
1011         struct pipe_inode_info *pipe = i->pipe;
1012         unsigned int p_tail = pipe->tail;
1013         unsigned int p_head = pipe->head;
1014         unsigned int p_mask = pipe->ring_size - 1;
1015
1016         if (!pipe_empty(p_head, p_tail)) {
1017                 struct pipe_buffer *buf;
1018                 unsigned int i_head = i->head;
1019                 size_t off = i->iov_offset;
1020
1021                 if (off) {
1022                         buf = &pipe->bufs[i_head & p_mask];
1023                         buf->len = off - buf->offset;
1024                         i_head++;
1025                 }
1026                 while (p_head != i_head) {
1027                         p_head--;
1028                         pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1029                 }
1030
1031                 pipe->head = p_head;
1032         }
1033 }
1034
1035 static void pipe_advance(struct iov_iter *i, size_t size)
1036 {
1037         struct pipe_inode_info *pipe = i->pipe;
1038         if (unlikely(i->count < size))
1039                 size = i->count;
1040         if (size) {
1041                 struct pipe_buffer *buf;
1042                 unsigned int p_mask = pipe->ring_size - 1;
1043                 unsigned int i_head = i->head;
1044                 size_t off = i->iov_offset, left = size;
1045
1046                 if (off) /* make it relative to the beginning of buffer */
1047                         left += off - pipe->bufs[i_head & p_mask].offset;
1048                 while (1) {
1049                         buf = &pipe->bufs[i_head & p_mask];
1050                         if (left <= buf->len)
1051                                 break;
1052                         left -= buf->len;
1053                         i_head++;
1054                 }
1055                 i->head = i_head;
1056                 i->iov_offset = buf->offset + left;
1057         }
1058         i->count -= size;
1059         /* ... and discard everything past that point */
1060         pipe_truncate(i);
1061 }
1062
1063 void iov_iter_advance(struct iov_iter *i, size_t size)
1064 {
1065         if (unlikely(iov_iter_is_pipe(i))) {
1066                 pipe_advance(i, size);
1067                 return;
1068         }
1069         if (unlikely(iov_iter_is_discard(i))) {
1070                 i->count -= size;
1071                 return;
1072         }
1073         iterate_and_advance(i, size, v, 0, 0, 0)
1074 }
1075 EXPORT_SYMBOL(iov_iter_advance);
1076
1077 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1078 {
1079         if (!unroll)
1080                 return;
1081         if (WARN_ON(unroll > MAX_RW_COUNT))
1082                 return;
1083         i->count += unroll;
1084         if (unlikely(iov_iter_is_pipe(i))) {
1085                 struct pipe_inode_info *pipe = i->pipe;
1086                 unsigned int p_mask = pipe->ring_size - 1;
1087                 unsigned int i_head = i->head;
1088                 size_t off = i->iov_offset;
1089                 while (1) {
1090                         struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1091                         size_t n = off - b->offset;
1092                         if (unroll < n) {
1093                                 off -= unroll;
1094                                 break;
1095                         }
1096                         unroll -= n;
1097                         if (!unroll && i_head == i->start_head) {
1098                                 off = 0;
1099                                 break;
1100                         }
1101                         i_head--;
1102                         b = &pipe->bufs[i_head & p_mask];
1103                         off = b->offset + b->len;
1104                 }
1105                 i->iov_offset = off;
1106                 i->head = i_head;
1107                 pipe_truncate(i);
1108                 return;
1109         }
1110         if (unlikely(iov_iter_is_discard(i)))
1111                 return;
1112         if (unroll <= i->iov_offset) {
1113                 i->iov_offset -= unroll;
1114                 return;
1115         }
1116         unroll -= i->iov_offset;
1117         if (iov_iter_is_bvec(i)) {
1118                 const struct bio_vec *bvec = i->bvec;
1119                 while (1) {
1120                         size_t n = (--bvec)->bv_len;
1121                         i->nr_segs++;
1122                         if (unroll <= n) {
1123                                 i->bvec = bvec;
1124                                 i->iov_offset = n - unroll;
1125                                 return;
1126                         }
1127                         unroll -= n;
1128                 }
1129         } else { /* same logics for iovec and kvec */
1130                 const struct iovec *iov = i->iov;
1131                 while (1) {
1132                         size_t n = (--iov)->iov_len;
1133                         i->nr_segs++;
1134                         if (unroll <= n) {
1135                                 i->iov = iov;
1136                                 i->iov_offset = n - unroll;
1137                                 return;
1138                         }
1139                         unroll -= n;
1140                 }
1141         }
1142 }
1143 EXPORT_SYMBOL(iov_iter_revert);
1144
1145 /*
1146  * Return the count of just the current iov_iter segment.
1147  */
1148 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1149 {
1150         if (unlikely(iov_iter_is_pipe(i)))
1151                 return i->count;        // it is a silly place, anyway
1152         if (i->nr_segs == 1)
1153                 return i->count;
1154         if (unlikely(iov_iter_is_discard(i)))
1155                 return i->count;
1156         else if (iov_iter_is_bvec(i))
1157                 return min(i->count, i->bvec->bv_len - i->iov_offset);
1158         else
1159                 return min(i->count, i->iov->iov_len - i->iov_offset);
1160 }
1161 EXPORT_SYMBOL(iov_iter_single_seg_count);
1162
1163 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1164                         const struct kvec *kvec, unsigned long nr_segs,
1165                         size_t count)
1166 {
1167         WARN_ON(direction & ~(READ | WRITE));
1168         i->type = ITER_KVEC | (direction & (READ | WRITE));
1169         i->kvec = kvec;
1170         i->nr_segs = nr_segs;
1171         i->iov_offset = 0;
1172         i->count = count;
1173 }
1174 EXPORT_SYMBOL(iov_iter_kvec);
1175
1176 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1177                         const struct bio_vec *bvec, unsigned long nr_segs,
1178                         size_t count)
1179 {
1180         WARN_ON(direction & ~(READ | WRITE));
1181         i->type = ITER_BVEC | (direction & (READ | WRITE));
1182         i->bvec = bvec;
1183         i->nr_segs = nr_segs;
1184         i->iov_offset = 0;
1185         i->count = count;
1186 }
1187 EXPORT_SYMBOL(iov_iter_bvec);
1188
1189 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1190                         struct pipe_inode_info *pipe,
1191                         size_t count)
1192 {
1193         BUG_ON(direction != READ);
1194         WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1195         i->type = ITER_PIPE | READ;
1196         i->pipe = pipe;
1197         i->head = pipe->head;
1198         i->iov_offset = 0;
1199         i->count = count;
1200         i->start_head = i->head;
1201 }
1202 EXPORT_SYMBOL(iov_iter_pipe);
1203
1204 /**
1205  * iov_iter_discard - Initialise an I/O iterator that discards data
1206  * @i: The iterator to initialise.
1207  * @direction: The direction of the transfer.
1208  * @count: The size of the I/O buffer in bytes.
1209  *
1210  * Set up an I/O iterator that just discards everything that's written to it.
1211  * It's only available as a READ iterator.
1212  */
1213 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1214 {
1215         BUG_ON(direction != READ);
1216         i->type = ITER_DISCARD | READ;
1217         i->count = count;
1218         i->iov_offset = 0;
1219 }
1220 EXPORT_SYMBOL(iov_iter_discard);
1221
1222 unsigned long iov_iter_alignment(const struct iov_iter *i)
1223 {
1224         unsigned long res = 0;
1225         size_t size = i->count;
1226
1227         if (unlikely(iov_iter_is_pipe(i))) {
1228                 unsigned int p_mask = i->pipe->ring_size - 1;
1229
1230                 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1231                         return size | i->iov_offset;
1232                 return size;
1233         }
1234         iterate_all_kinds(i, size, v,
1235                 (res |= (unsigned long)v.iov_base | v.iov_len, 0),
1236                 res |= v.bv_offset | v.bv_len,
1237                 res |= (unsigned long)v.iov_base | v.iov_len
1238         )
1239         return res;
1240 }
1241 EXPORT_SYMBOL(iov_iter_alignment);
1242
1243 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1244 {
1245         unsigned long res = 0;
1246         size_t size = i->count;
1247
1248         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1249                 WARN_ON(1);
1250                 return ~0U;
1251         }
1252
1253         iterate_all_kinds(i, size, v,
1254                 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1255                         (size != v.iov_len ? size : 0), 0),
1256                 (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1257                         (size != v.bv_len ? size : 0)),
1258                 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1259                         (size != v.iov_len ? size : 0))
1260                 );
1261         return res;
1262 }
1263 EXPORT_SYMBOL(iov_iter_gap_alignment);
1264
1265 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1266                                 size_t maxsize,
1267                                 struct page **pages,
1268                                 int iter_head,
1269                                 size_t *start)
1270 {
1271         struct pipe_inode_info *pipe = i->pipe;
1272         unsigned int p_mask = pipe->ring_size - 1;
1273         ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1274         if (!n)
1275                 return -EFAULT;
1276
1277         maxsize = n;
1278         n += *start;
1279         while (n > 0) {
1280                 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1281                 iter_head++;
1282                 n -= PAGE_SIZE;
1283         }
1284
1285         return maxsize;
1286 }
1287
1288 static ssize_t pipe_get_pages(struct iov_iter *i,
1289                    struct page **pages, size_t maxsize, unsigned maxpages,
1290                    size_t *start)
1291 {
1292         unsigned int iter_head, npages;
1293         size_t capacity;
1294
1295         if (!maxsize)
1296                 return 0;
1297
1298         if (!sanity(i))
1299                 return -EFAULT;
1300
1301         data_start(i, &iter_head, start);
1302         /* Amount of free space: some of this one + all after this one */
1303         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1304         capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1305
1306         return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1307 }
1308
1309 ssize_t iov_iter_get_pages(struct iov_iter *i,
1310                    struct page **pages, size_t maxsize, unsigned maxpages,
1311                    size_t *start)
1312 {
1313         if (maxsize > i->count)
1314                 maxsize = i->count;
1315
1316         if (unlikely(iov_iter_is_pipe(i)))
1317                 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1318         if (unlikely(iov_iter_is_discard(i)))
1319                 return -EFAULT;
1320
1321         iterate_all_kinds(i, maxsize, v, ({
1322                 unsigned long addr = (unsigned long)v.iov_base;
1323                 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1324                 int n;
1325                 int res;
1326
1327                 if (len > maxpages * PAGE_SIZE)
1328                         len = maxpages * PAGE_SIZE;
1329                 addr &= ~(PAGE_SIZE - 1);
1330                 n = DIV_ROUND_UP(len, PAGE_SIZE);
1331                 res = get_user_pages_fast(addr, n,
1332                                 iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1333                                 pages);
1334                 if (unlikely(res <= 0))
1335                         return res;
1336                 return (res == n ? len : res * PAGE_SIZE) - *start;
1337         0;}),({
1338                 /* can't be more than PAGE_SIZE */
1339                 *start = v.bv_offset;
1340                 get_page(*pages = v.bv_page);
1341                 return v.bv_len;
1342         }),({
1343                 return -EFAULT;
1344         })
1345         )
1346         return 0;
1347 }
1348 EXPORT_SYMBOL(iov_iter_get_pages);
1349
1350 static struct page **get_pages_array(size_t n)
1351 {
1352         return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1353 }
1354
1355 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1356                    struct page ***pages, size_t maxsize,
1357                    size_t *start)
1358 {
1359         struct page **p;
1360         unsigned int iter_head, npages;
1361         ssize_t n;
1362
1363         if (!maxsize)
1364                 return 0;
1365
1366         if (!sanity(i))
1367                 return -EFAULT;
1368
1369         data_start(i, &iter_head, start);
1370         /* Amount of free space: some of this one + all after this one */
1371         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1372         n = npages * PAGE_SIZE - *start;
1373         if (maxsize > n)
1374                 maxsize = n;
1375         else
1376                 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1377         p = get_pages_array(npages);
1378         if (!p)
1379                 return -ENOMEM;
1380         n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1381         if (n > 0)
1382                 *pages = p;
1383         else
1384                 kvfree(p);
1385         return n;
1386 }
1387
1388 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1389                    struct page ***pages, size_t maxsize,
1390                    size_t *start)
1391 {
1392         struct page **p;
1393
1394         if (maxsize > i->count)
1395                 maxsize = i->count;
1396
1397         if (unlikely(iov_iter_is_pipe(i)))
1398                 return pipe_get_pages_alloc(i, pages, maxsize, start);
1399         if (unlikely(iov_iter_is_discard(i)))
1400                 return -EFAULT;
1401
1402         iterate_all_kinds(i, maxsize, v, ({
1403                 unsigned long addr = (unsigned long)v.iov_base;
1404                 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1405                 int n;
1406                 int res;
1407
1408                 addr &= ~(PAGE_SIZE - 1);
1409                 n = DIV_ROUND_UP(len, PAGE_SIZE);
1410                 p = get_pages_array(n);
1411                 if (!p)
1412                         return -ENOMEM;
1413                 res = get_user_pages_fast(addr, n,
1414                                 iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1415                 if (unlikely(res <= 0)) {
1416                         kvfree(p);
1417                         *pages = NULL;
1418                         return res;
1419                 }
1420                 *pages = p;
1421                 return (res == n ? len : res * PAGE_SIZE) - *start;
1422         0;}),({
1423                 /* can't be more than PAGE_SIZE */
1424                 *start = v.bv_offset;
1425                 *pages = p = get_pages_array(1);
1426                 if (!p)
1427                         return -ENOMEM;
1428                 get_page(*p = v.bv_page);
1429                 return v.bv_len;
1430         }),({
1431                 return -EFAULT;
1432         })
1433         )
1434         return 0;
1435 }
1436 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1437
1438 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1439                                struct iov_iter *i)
1440 {
1441         char *to = addr;
1442         __wsum sum, next;
1443         size_t off = 0;
1444         sum = *csum;
1445         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1446                 WARN_ON(1);
1447                 return 0;
1448         }
1449         iterate_and_advance(i, bytes, v, ({
1450                 next = csum_and_copy_from_user(v.iov_base,
1451                                                (to += v.iov_len) - v.iov_len,
1452                                                v.iov_len);
1453                 if (next) {
1454                         sum = csum_block_add(sum, next, off);
1455                         off += v.iov_len;
1456                 }
1457                 next ? 0 : v.iov_len;
1458         }), ({
1459                 char *p = kmap_atomic(v.bv_page);
1460                 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1461                                       p + v.bv_offset, v.bv_len,
1462                                       sum, off);
1463                 kunmap_atomic(p);
1464                 off += v.bv_len;
1465         }),({
1466                 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1467                                       v.iov_base, v.iov_len,
1468                                       sum, off);
1469                 off += v.iov_len;
1470         })
1471         )
1472         *csum = sum;
1473         return bytes;
1474 }
1475 EXPORT_SYMBOL(csum_and_copy_from_iter);
1476
1477 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1478                                struct iov_iter *i)
1479 {
1480         char *to = addr;
1481         __wsum sum, next;
1482         size_t off = 0;
1483         sum = *csum;
1484         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1485                 WARN_ON(1);
1486                 return false;
1487         }
1488         if (unlikely(i->count < bytes))
1489                 return false;
1490         iterate_all_kinds(i, bytes, v, ({
1491                 next = csum_and_copy_from_user(v.iov_base,
1492                                                (to += v.iov_len) - v.iov_len,
1493                                                v.iov_len);
1494                 if (!next)
1495                         return false;
1496                 sum = csum_block_add(sum, next, off);
1497                 off += v.iov_len;
1498                 0;
1499         }), ({
1500                 char *p = kmap_atomic(v.bv_page);
1501                 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1502                                       p + v.bv_offset, v.bv_len,
1503                                       sum, off);
1504                 kunmap_atomic(p);
1505                 off += v.bv_len;
1506         }),({
1507                 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1508                                       v.iov_base, v.iov_len,
1509                                       sum, off);
1510                 off += v.iov_len;
1511         })
1512         )
1513         *csum = sum;
1514         iov_iter_advance(i, bytes);
1515         return true;
1516 }
1517 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1518
1519 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1520                              struct iov_iter *i)
1521 {
1522         struct csum_state *csstate = _csstate;
1523         const char *from = addr;
1524         __wsum sum, next;
1525         size_t off;
1526
1527         if (unlikely(iov_iter_is_pipe(i)))
1528                 return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i);
1529
1530         sum = csstate->csum;
1531         off = csstate->off;
1532         if (unlikely(iov_iter_is_discard(i))) {
1533                 WARN_ON(1);     /* for now */
1534                 return 0;
1535         }
1536         iterate_and_advance(i, bytes, v, ({
1537                 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1538                                              v.iov_base,
1539                                              v.iov_len);
1540                 if (next) {
1541                         sum = csum_block_add(sum, next, off);
1542                         off += v.iov_len;
1543                 }
1544                 next ? 0 : v.iov_len;
1545         }), ({
1546                 char *p = kmap_atomic(v.bv_page);
1547                 sum = csum_and_memcpy(p + v.bv_offset,
1548                                       (from += v.bv_len) - v.bv_len,
1549                                       v.bv_len, sum, off);
1550                 kunmap_atomic(p);
1551                 off += v.bv_len;
1552         }),({
1553                 sum = csum_and_memcpy(v.iov_base,
1554                                      (from += v.iov_len) - v.iov_len,
1555                                      v.iov_len, sum, off);
1556                 off += v.iov_len;
1557         })
1558         )
1559         csstate->csum = sum;
1560         csstate->off = off;
1561         return bytes;
1562 }
1563 EXPORT_SYMBOL(csum_and_copy_to_iter);
1564
1565 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1566                 struct iov_iter *i)
1567 {
1568 #ifdef CONFIG_CRYPTO_HASH
1569         struct ahash_request *hash = hashp;
1570         struct scatterlist sg;
1571         size_t copied;
1572
1573         copied = copy_to_iter(addr, bytes, i);
1574         sg_init_one(&sg, addr, copied);
1575         ahash_request_set_crypt(hash, &sg, NULL, copied);
1576         crypto_ahash_update(hash);
1577         return copied;
1578 #else
1579         return 0;
1580 #endif
1581 }
1582 EXPORT_SYMBOL(hash_and_copy_to_iter);
1583
1584 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1585 {
1586         size_t size = i->count;
1587         int npages = 0;
1588
1589         if (!size)
1590                 return 0;
1591         if (unlikely(iov_iter_is_discard(i)))
1592                 return 0;
1593
1594         if (unlikely(iov_iter_is_pipe(i))) {
1595                 struct pipe_inode_info *pipe = i->pipe;
1596                 unsigned int iter_head;
1597                 size_t off;
1598
1599                 if (!sanity(i))
1600                         return 0;
1601
1602                 data_start(i, &iter_head, &off);
1603                 /* some of this one + all after this one */
1604                 npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1605                 if (npages >= maxpages)
1606                         return maxpages;
1607         } else iterate_all_kinds(i, size, v, ({
1608                 unsigned long p = (unsigned long)v.iov_base;
1609                 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1610                         - p / PAGE_SIZE;
1611                 if (npages >= maxpages)
1612                         return maxpages;
1613         0;}),({
1614                 npages++;
1615                 if (npages >= maxpages)
1616                         return maxpages;
1617         }),({
1618                 unsigned long p = (unsigned long)v.iov_base;
1619                 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1620                         - p / PAGE_SIZE;
1621                 if (npages >= maxpages)
1622                         return maxpages;
1623         })
1624         )
1625         return npages;
1626 }
1627 EXPORT_SYMBOL(iov_iter_npages);
1628
1629 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1630 {
1631         *new = *old;
1632         if (unlikely(iov_iter_is_pipe(new))) {
1633                 WARN_ON(1);
1634                 return NULL;
1635         }
1636         if (unlikely(iov_iter_is_discard(new)))
1637                 return NULL;
1638         if (iov_iter_is_bvec(new))
1639                 return new->bvec = kmemdup(new->bvec,
1640                                     new->nr_segs * sizeof(struct bio_vec),
1641                                     flags);
1642         else
1643                 /* iovec and kvec have identical layout */
1644                 return new->iov = kmemdup(new->iov,
1645                                    new->nr_segs * sizeof(struct iovec),
1646                                    flags);
1647 }
1648 EXPORT_SYMBOL(dup_iter);
1649
1650 static int copy_compat_iovec_from_user(struct iovec *iov,
1651                 const struct iovec __user *uvec, unsigned long nr_segs)
1652 {
1653         const struct compat_iovec __user *uiov =
1654                 (const struct compat_iovec __user *)uvec;
1655         int ret = -EFAULT, i;
1656
1657         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1658                 return -EFAULT;
1659
1660         for (i = 0; i < nr_segs; i++) {
1661                 compat_uptr_t buf;
1662                 compat_ssize_t len;
1663
1664                 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1665                 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1666
1667                 /* check for compat_size_t not fitting in compat_ssize_t .. */
1668                 if (len < 0) {
1669                         ret = -EINVAL;
1670                         goto uaccess_end;
1671                 }
1672                 iov[i].iov_base = compat_ptr(buf);
1673                 iov[i].iov_len = len;
1674         }
1675
1676         ret = 0;
1677 uaccess_end:
1678         user_access_end();
1679         return ret;
1680 }
1681
1682 static int copy_iovec_from_user(struct iovec *iov,
1683                 const struct iovec __user *uvec, unsigned long nr_segs)
1684 {
1685         unsigned long seg;
1686
1687         if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1688                 return -EFAULT;
1689         for (seg = 0; seg < nr_segs; seg++) {
1690                 if ((ssize_t)iov[seg].iov_len < 0)
1691                         return -EINVAL;
1692         }
1693
1694         return 0;
1695 }
1696
1697 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1698                 unsigned long nr_segs, unsigned long fast_segs,
1699                 struct iovec *fast_iov, bool compat)
1700 {
1701         struct iovec *iov = fast_iov;
1702         int ret;
1703
1704         /*
1705          * SuS says "The readv() function *may* fail if the iovcnt argument was
1706          * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1707          * traditionally returned zero for zero segments, so...
1708          */
1709         if (nr_segs == 0)
1710                 return iov;
1711         if (nr_segs > UIO_MAXIOV)
1712                 return ERR_PTR(-EINVAL);
1713         if (nr_segs > fast_segs) {
1714                 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1715                 if (!iov)
1716                         return ERR_PTR(-ENOMEM);
1717         }
1718
1719         if (compat)
1720                 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1721         else
1722                 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1723         if (ret) {
1724                 if (iov != fast_iov)
1725                         kfree(iov);
1726                 return ERR_PTR(ret);
1727         }
1728
1729         return iov;
1730 }
1731
1732 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1733                  unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1734                  struct iov_iter *i, bool compat)
1735 {
1736         ssize_t total_len = 0;
1737         unsigned long seg;
1738         struct iovec *iov;
1739
1740         iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1741         if (IS_ERR(iov)) {
1742                 *iovp = NULL;
1743                 return PTR_ERR(iov);
1744         }
1745
1746         /*
1747          * According to the Single Unix Specification we should return EINVAL if
1748          * an element length is < 0 when cast to ssize_t or if the total length
1749          * would overflow the ssize_t return value of the system call.
1750          *
1751          * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1752          * overflow case.
1753          */
1754         for (seg = 0; seg < nr_segs; seg++) {
1755                 ssize_t len = (ssize_t)iov[seg].iov_len;
1756
1757                 if (!access_ok(iov[seg].iov_base, len)) {
1758                         if (iov != *iovp)
1759                                 kfree(iov);
1760                         *iovp = NULL;
1761                         return -EFAULT;
1762                 }
1763
1764                 if (len > MAX_RW_COUNT - total_len) {
1765                         len = MAX_RW_COUNT - total_len;
1766                         iov[seg].iov_len = len;
1767                 }
1768                 total_len += len;
1769         }
1770
1771         iov_iter_init(i, type, iov, nr_segs, total_len);
1772         if (iov == *iovp)
1773                 *iovp = NULL;
1774         else
1775                 *iovp = iov;
1776         return total_len;
1777 }
1778
1779 /**
1780  * import_iovec() - Copy an array of &struct iovec from userspace
1781  *     into the kernel, check that it is valid, and initialize a new
1782  *     &struct iov_iter iterator to access it.
1783  *
1784  * @type: One of %READ or %WRITE.
1785  * @uvec: Pointer to the userspace array.
1786  * @nr_segs: Number of elements in userspace array.
1787  * @fast_segs: Number of elements in @iov.
1788  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1789  *     on-stack) kernel array.
1790  * @i: Pointer to iterator that will be initialized on success.
1791  *
1792  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1793  * then this function places %NULL in *@iov on return. Otherwise, a new
1794  * array will be allocated and the result placed in *@iov. This means that
1795  * the caller may call kfree() on *@iov regardless of whether the small
1796  * on-stack array was used or not (and regardless of whether this function
1797  * returns an error or not).
1798  *
1799  * Return: Negative error code on error, bytes imported on success
1800  */
1801 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1802                  unsigned nr_segs, unsigned fast_segs,
1803                  struct iovec **iovp, struct iov_iter *i)
1804 {
1805         return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1806                               in_compat_syscall());
1807 }
1808 EXPORT_SYMBOL(import_iovec);
1809
1810 int import_single_range(int rw, void __user *buf, size_t len,
1811                  struct iovec *iov, struct iov_iter *i)
1812 {
1813         if (len > MAX_RW_COUNT)
1814                 len = MAX_RW_COUNT;
1815         if (unlikely(!access_ok(buf, len)))
1816                 return -EFAULT;
1817
1818         iov->iov_base = buf;
1819         iov->iov_len = len;
1820         iov_iter_init(i, rw, iov, 1, len);
1821         return 0;
1822 }
1823 EXPORT_SYMBOL(import_single_range);
1824
1825 /**
1826  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1827  *     iov_iter_save_state() was called.
1828  *
1829  * @i: &struct iov_iter to restore
1830  * @state: state to restore from
1831  *
1832  * Used after iov_iter_save_state() to bring restore @i, if operations may
1833  * have advanced it.
1834  *
1835  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1836  */
1837 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1838 {
1839         if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1840                          !iov_iter_is_kvec(i))
1841                 return;
1842         i->iov_offset = state->iov_offset;
1843         i->count = state->count;
1844         /*
1845          * For the *vec iters, nr_segs + iov is constant - if we increment
1846          * the vec, then we also decrement the nr_segs count. Hence we don't
1847          * need to track both of these, just one is enough and we can deduct
1848          * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1849          * size, so we can just increment the iov pointer as they are unionzed.
1850          * ITER_BVEC _may_ be the same size on some archs, but on others it is
1851          * not. Be safe and handle it separately.
1852          */
1853         BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1854         if (iov_iter_is_bvec(i))
1855                 i->bvec -= state->nr_segs - i->nr_segs;
1856         else
1857                 i->iov -= state->nr_segs - i->nr_segs;
1858         i->nr_segs = state->nr_segs;
1859 }