GNU Linux-libre 5.10.153-gnu1
[releases.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <net/checksum.h>
13 #include <linux/scatterlist.h>
14 #include <linux/instrumented.h>
15
16 #define PIPE_PARANOIA /* for now */
17
18 #define iterate_iovec(i, n, __v, __p, skip, STEP) {     \
19         size_t left;                                    \
20         size_t wanted = n;                              \
21         __p = i->iov;                                   \
22         __v.iov_len = min(n, __p->iov_len - skip);      \
23         if (likely(__v.iov_len)) {                      \
24                 __v.iov_base = __p->iov_base + skip;    \
25                 left = (STEP);                          \
26                 __v.iov_len -= left;                    \
27                 skip += __v.iov_len;                    \
28                 n -= __v.iov_len;                       \
29         } else {                                        \
30                 left = 0;                               \
31         }                                               \
32         while (unlikely(!left && n)) {                  \
33                 __p++;                                  \
34                 __v.iov_len = min(n, __p->iov_len);     \
35                 if (unlikely(!__v.iov_len))             \
36                         continue;                       \
37                 __v.iov_base = __p->iov_base;           \
38                 left = (STEP);                          \
39                 __v.iov_len -= left;                    \
40                 skip = __v.iov_len;                     \
41                 n -= __v.iov_len;                       \
42         }                                               \
43         n = wanted - n;                                 \
44 }
45
46 #define iterate_kvec(i, n, __v, __p, skip, STEP) {      \
47         size_t wanted = n;                              \
48         __p = i->kvec;                                  \
49         __v.iov_len = min(n, __p->iov_len - skip);      \
50         if (likely(__v.iov_len)) {                      \
51                 __v.iov_base = __p->iov_base + skip;    \
52                 (void)(STEP);                           \
53                 skip += __v.iov_len;                    \
54                 n -= __v.iov_len;                       \
55         }                                               \
56         while (unlikely(n)) {                           \
57                 __p++;                                  \
58                 __v.iov_len = min(n, __p->iov_len);     \
59                 if (unlikely(!__v.iov_len))             \
60                         continue;                       \
61                 __v.iov_base = __p->iov_base;           \
62                 (void)(STEP);                           \
63                 skip = __v.iov_len;                     \
64                 n -= __v.iov_len;                       \
65         }                                               \
66         n = wanted;                                     \
67 }
68
69 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {     \
70         struct bvec_iter __start;                       \
71         __start.bi_size = n;                            \
72         __start.bi_bvec_done = skip;                    \
73         __start.bi_idx = 0;                             \
74         for_each_bvec(__v, i->bvec, __bi, __start) {    \
75                 if (!__v.bv_len)                        \
76                         continue;                       \
77                 (void)(STEP);                           \
78         }                                               \
79 }
80
81 #define iterate_all_kinds(i, n, v, I, B, K) {                   \
82         if (likely(n)) {                                        \
83                 size_t skip = i->iov_offset;                    \
84                 if (unlikely(i->type & ITER_BVEC)) {            \
85                         struct bio_vec v;                       \
86                         struct bvec_iter __bi;                  \
87                         iterate_bvec(i, n, v, __bi, skip, (B))  \
88                 } else if (unlikely(i->type & ITER_KVEC)) {     \
89                         const struct kvec *kvec;                \
90                         struct kvec v;                          \
91                         iterate_kvec(i, n, v, kvec, skip, (K))  \
92                 } else if (unlikely(i->type & ITER_DISCARD)) {  \
93                 } else {                                        \
94                         const struct iovec *iov;                \
95                         struct iovec v;                         \
96                         iterate_iovec(i, n, v, iov, skip, (I))  \
97                 }                                               \
98         }                                                       \
99 }
100
101 #define iterate_and_advance(i, n, v, I, B, K) {                 \
102         if (unlikely(i->count < n))                             \
103                 n = i->count;                                   \
104         if (i->count) {                                         \
105                 size_t skip = i->iov_offset;                    \
106                 if (unlikely(i->type & ITER_BVEC)) {            \
107                         const struct bio_vec *bvec = i->bvec;   \
108                         struct bio_vec v;                       \
109                         struct bvec_iter __bi;                  \
110                         iterate_bvec(i, n, v, __bi, skip, (B))  \
111                         i->bvec = __bvec_iter_bvec(i->bvec, __bi);      \
112                         i->nr_segs -= i->bvec - bvec;           \
113                         skip = __bi.bi_bvec_done;               \
114                 } else if (unlikely(i->type & ITER_KVEC)) {     \
115                         const struct kvec *kvec;                \
116                         struct kvec v;                          \
117                         iterate_kvec(i, n, v, kvec, skip, (K))  \
118                         if (skip == kvec->iov_len) {            \
119                                 kvec++;                         \
120                                 skip = 0;                       \
121                         }                                       \
122                         i->nr_segs -= kvec - i->kvec;           \
123                         i->kvec = kvec;                         \
124                 } else if (unlikely(i->type & ITER_DISCARD)) {  \
125                         skip += n;                              \
126                 } else {                                        \
127                         const struct iovec *iov;                \
128                         struct iovec v;                         \
129                         iterate_iovec(i, n, v, iov, skip, (I))  \
130                         if (skip == iov->iov_len) {             \
131                                 iov++;                          \
132                                 skip = 0;                       \
133                         }                                       \
134                         i->nr_segs -= iov - i->iov;             \
135                         i->iov = iov;                           \
136                 }                                               \
137                 i->count -= n;                                  \
138                 i->iov_offset = skip;                           \
139         }                                                       \
140 }
141
142 static int copyout(void __user *to, const void *from, size_t n)
143 {
144         if (should_fail_usercopy())
145                 return n;
146         if (access_ok(to, n)) {
147                 instrument_copy_to_user(to, from, n);
148                 n = raw_copy_to_user(to, from, n);
149         }
150         return n;
151 }
152
153 static int copyin(void *to, const void __user *from, size_t n)
154 {
155         if (should_fail_usercopy())
156                 return n;
157         if (access_ok(from, n)) {
158                 instrument_copy_from_user(to, from, n);
159                 n = raw_copy_from_user(to, from, n);
160         }
161         return n;
162 }
163
164 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
165                          struct iov_iter *i)
166 {
167         size_t skip, copy, left, wanted;
168         const struct iovec *iov;
169         char __user *buf;
170         void *kaddr, *from;
171
172         if (unlikely(bytes > i->count))
173                 bytes = i->count;
174
175         if (unlikely(!bytes))
176                 return 0;
177
178         might_fault();
179         wanted = bytes;
180         iov = i->iov;
181         skip = i->iov_offset;
182         buf = iov->iov_base + skip;
183         copy = min(bytes, iov->iov_len - skip);
184
185         if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
186                 kaddr = kmap_atomic(page);
187                 from = kaddr + offset;
188
189                 /* first chunk, usually the only one */
190                 left = copyout(buf, from, copy);
191                 copy -= left;
192                 skip += copy;
193                 from += copy;
194                 bytes -= copy;
195
196                 while (unlikely(!left && bytes)) {
197                         iov++;
198                         buf = iov->iov_base;
199                         copy = min(bytes, iov->iov_len);
200                         left = copyout(buf, from, copy);
201                         copy -= left;
202                         skip = copy;
203                         from += copy;
204                         bytes -= copy;
205                 }
206                 if (likely(!bytes)) {
207                         kunmap_atomic(kaddr);
208                         goto done;
209                 }
210                 offset = from - kaddr;
211                 buf += copy;
212                 kunmap_atomic(kaddr);
213                 copy = min(bytes, iov->iov_len - skip);
214         }
215         /* Too bad - revert to non-atomic kmap */
216
217         kaddr = kmap(page);
218         from = kaddr + offset;
219         left = copyout(buf, from, copy);
220         copy -= left;
221         skip += copy;
222         from += copy;
223         bytes -= copy;
224         while (unlikely(!left && bytes)) {
225                 iov++;
226                 buf = iov->iov_base;
227                 copy = min(bytes, iov->iov_len);
228                 left = copyout(buf, from, copy);
229                 copy -= left;
230                 skip = copy;
231                 from += copy;
232                 bytes -= copy;
233         }
234         kunmap(page);
235
236 done:
237         if (skip == iov->iov_len) {
238                 iov++;
239                 skip = 0;
240         }
241         i->count -= wanted - bytes;
242         i->nr_segs -= iov - i->iov;
243         i->iov = iov;
244         i->iov_offset = skip;
245         return wanted - bytes;
246 }
247
248 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
249                          struct iov_iter *i)
250 {
251         size_t skip, copy, left, wanted;
252         const struct iovec *iov;
253         char __user *buf;
254         void *kaddr, *to;
255
256         if (unlikely(bytes > i->count))
257                 bytes = i->count;
258
259         if (unlikely(!bytes))
260                 return 0;
261
262         might_fault();
263         wanted = bytes;
264         iov = i->iov;
265         skip = i->iov_offset;
266         buf = iov->iov_base + skip;
267         copy = min(bytes, iov->iov_len - skip);
268
269         if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
270                 kaddr = kmap_atomic(page);
271                 to = kaddr + offset;
272
273                 /* first chunk, usually the only one */
274                 left = copyin(to, buf, copy);
275                 copy -= left;
276                 skip += copy;
277                 to += copy;
278                 bytes -= copy;
279
280                 while (unlikely(!left && bytes)) {
281                         iov++;
282                         buf = iov->iov_base;
283                         copy = min(bytes, iov->iov_len);
284                         left = copyin(to, buf, copy);
285                         copy -= left;
286                         skip = copy;
287                         to += copy;
288                         bytes -= copy;
289                 }
290                 if (likely(!bytes)) {
291                         kunmap_atomic(kaddr);
292                         goto done;
293                 }
294                 offset = to - kaddr;
295                 buf += copy;
296                 kunmap_atomic(kaddr);
297                 copy = min(bytes, iov->iov_len - skip);
298         }
299         /* Too bad - revert to non-atomic kmap */
300
301         kaddr = kmap(page);
302         to = kaddr + offset;
303         left = copyin(to, buf, copy);
304         copy -= left;
305         skip += copy;
306         to += copy;
307         bytes -= copy;
308         while (unlikely(!left && bytes)) {
309                 iov++;
310                 buf = iov->iov_base;
311                 copy = min(bytes, iov->iov_len);
312                 left = copyin(to, buf, copy);
313                 copy -= left;
314                 skip = copy;
315                 to += copy;
316                 bytes -= copy;
317         }
318         kunmap(page);
319
320 done:
321         if (skip == iov->iov_len) {
322                 iov++;
323                 skip = 0;
324         }
325         i->count -= wanted - bytes;
326         i->nr_segs -= iov - i->iov;
327         i->iov = iov;
328         i->iov_offset = skip;
329         return wanted - bytes;
330 }
331
332 #ifdef PIPE_PARANOIA
333 static bool sanity(const struct iov_iter *i)
334 {
335         struct pipe_inode_info *pipe = i->pipe;
336         unsigned int p_head = pipe->head;
337         unsigned int p_tail = pipe->tail;
338         unsigned int p_mask = pipe->ring_size - 1;
339         unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
340         unsigned int i_head = i->head;
341         unsigned int idx;
342
343         if (i->iov_offset) {
344                 struct pipe_buffer *p;
345                 if (unlikely(p_occupancy == 0))
346                         goto Bad;       // pipe must be non-empty
347                 if (unlikely(i_head != p_head - 1))
348                         goto Bad;       // must be at the last buffer...
349
350                 p = &pipe->bufs[i_head & p_mask];
351                 if (unlikely(p->offset + p->len != i->iov_offset))
352                         goto Bad;       // ... at the end of segment
353         } else {
354                 if (i_head != p_head)
355                         goto Bad;       // must be right after the last buffer
356         }
357         return true;
358 Bad:
359         printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
360         printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
361                         p_head, p_tail, pipe->ring_size);
362         for (idx = 0; idx < pipe->ring_size; idx++)
363                 printk(KERN_ERR "[%p %p %d %d]\n",
364                         pipe->bufs[idx].ops,
365                         pipe->bufs[idx].page,
366                         pipe->bufs[idx].offset,
367                         pipe->bufs[idx].len);
368         WARN_ON(1);
369         return false;
370 }
371 #else
372 #define sanity(i) true
373 #endif
374
375 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
376                          struct iov_iter *i)
377 {
378         struct pipe_inode_info *pipe = i->pipe;
379         struct pipe_buffer *buf;
380         unsigned int p_tail = pipe->tail;
381         unsigned int p_mask = pipe->ring_size - 1;
382         unsigned int i_head = i->head;
383         size_t off;
384
385         if (unlikely(bytes > i->count))
386                 bytes = i->count;
387
388         if (unlikely(!bytes))
389                 return 0;
390
391         if (!sanity(i))
392                 return 0;
393
394         off = i->iov_offset;
395         buf = &pipe->bufs[i_head & p_mask];
396         if (off) {
397                 if (offset == off && buf->page == page) {
398                         /* merge with the last one */
399                         buf->len += bytes;
400                         i->iov_offset += bytes;
401                         goto out;
402                 }
403                 i_head++;
404                 buf = &pipe->bufs[i_head & p_mask];
405         }
406         if (pipe_full(i_head, p_tail, pipe->max_usage))
407                 return 0;
408
409         buf->ops = &page_cache_pipe_buf_ops;
410         buf->flags = 0;
411         get_page(page);
412         buf->page = page;
413         buf->offset = offset;
414         buf->len = bytes;
415
416         pipe->head = i_head + 1;
417         i->iov_offset = offset + bytes;
418         i->head = i_head;
419 out:
420         i->count -= bytes;
421         return bytes;
422 }
423
424 /*
425  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
426  * bytes.  For each iovec, fault in each page that constitutes the iovec.
427  *
428  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
429  * because it is an invalid address).
430  */
431 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
432 {
433         size_t skip = i->iov_offset;
434         const struct iovec *iov;
435         int err;
436         struct iovec v;
437
438         if (iter_is_iovec(i)) {
439                 iterate_iovec(i, bytes, v, iov, skip, ({
440                         err = fault_in_pages_readable(v.iov_base, v.iov_len);
441                         if (unlikely(err))
442                         return err;
443                 0;}))
444         }
445         return 0;
446 }
447 EXPORT_SYMBOL(iov_iter_fault_in_readable);
448
449 void iov_iter_init(struct iov_iter *i, unsigned int direction,
450                         const struct iovec *iov, unsigned long nr_segs,
451                         size_t count)
452 {
453         WARN_ON(direction & ~(READ | WRITE));
454         direction &= READ | WRITE;
455
456         /* It will get better.  Eventually... */
457         if (uaccess_kernel()) {
458                 i->type = ITER_KVEC | direction;
459                 i->kvec = (struct kvec *)iov;
460         } else {
461                 i->type = ITER_IOVEC | direction;
462                 i->iov = iov;
463         }
464         i->nr_segs = nr_segs;
465         i->iov_offset = 0;
466         i->count = count;
467 }
468 EXPORT_SYMBOL(iov_iter_init);
469
470 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
471 {
472         char *from = kmap_atomic(page);
473         memcpy(to, from + offset, len);
474         kunmap_atomic(from);
475 }
476
477 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
478 {
479         char *to = kmap_atomic(page);
480         memcpy(to + offset, from, len);
481         kunmap_atomic(to);
482 }
483
484 static void memzero_page(struct page *page, size_t offset, size_t len)
485 {
486         char *addr = kmap_atomic(page);
487         memset(addr + offset, 0, len);
488         kunmap_atomic(addr);
489 }
490
491 static inline bool allocated(struct pipe_buffer *buf)
492 {
493         return buf->ops == &default_pipe_buf_ops;
494 }
495
496 static inline void data_start(const struct iov_iter *i,
497                               unsigned int *iter_headp, size_t *offp)
498 {
499         unsigned int p_mask = i->pipe->ring_size - 1;
500         unsigned int iter_head = i->head;
501         size_t off = i->iov_offset;
502
503         if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
504                     off == PAGE_SIZE)) {
505                 iter_head++;
506                 off = 0;
507         }
508         *iter_headp = iter_head;
509         *offp = off;
510 }
511
512 static size_t push_pipe(struct iov_iter *i, size_t size,
513                         int *iter_headp, size_t *offp)
514 {
515         struct pipe_inode_info *pipe = i->pipe;
516         unsigned int p_tail = pipe->tail;
517         unsigned int p_mask = pipe->ring_size - 1;
518         unsigned int iter_head;
519         size_t off;
520         ssize_t left;
521
522         if (unlikely(size > i->count))
523                 size = i->count;
524         if (unlikely(!size))
525                 return 0;
526
527         left = size;
528         data_start(i, &iter_head, &off);
529         *iter_headp = iter_head;
530         *offp = off;
531         if (off) {
532                 left -= PAGE_SIZE - off;
533                 if (left <= 0) {
534                         pipe->bufs[iter_head & p_mask].len += size;
535                         return size;
536                 }
537                 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
538                 iter_head++;
539         }
540         while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
541                 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
542                 struct page *page = alloc_page(GFP_USER);
543                 if (!page)
544                         break;
545
546                 buf->ops = &default_pipe_buf_ops;
547                 buf->flags = 0;
548                 buf->page = page;
549                 buf->offset = 0;
550                 buf->len = min_t(ssize_t, left, PAGE_SIZE);
551                 left -= buf->len;
552                 iter_head++;
553                 pipe->head = iter_head;
554
555                 if (left == 0)
556                         return size;
557         }
558         return size - left;
559 }
560
561 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
562                                 struct iov_iter *i)
563 {
564         struct pipe_inode_info *pipe = i->pipe;
565         unsigned int p_mask = pipe->ring_size - 1;
566         unsigned int i_head;
567         size_t n, off;
568
569         if (!sanity(i))
570                 return 0;
571
572         bytes = n = push_pipe(i, bytes, &i_head, &off);
573         if (unlikely(!n))
574                 return 0;
575         do {
576                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
577                 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
578                 i->head = i_head;
579                 i->iov_offset = off + chunk;
580                 n -= chunk;
581                 addr += chunk;
582                 off = 0;
583                 i_head++;
584         } while (n);
585         i->count -= bytes;
586         return bytes;
587 }
588
589 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
590                               __wsum sum, size_t off)
591 {
592         __wsum next = csum_partial_copy_nocheck(from, to, len);
593         return csum_block_add(sum, next, off);
594 }
595
596 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
597                                          struct csum_state *csstate,
598                                          struct iov_iter *i)
599 {
600         struct pipe_inode_info *pipe = i->pipe;
601         unsigned int p_mask = pipe->ring_size - 1;
602         __wsum sum = csstate->csum;
603         size_t off = csstate->off;
604         unsigned int i_head;
605         size_t n, r;
606
607         if (!sanity(i))
608                 return 0;
609
610         bytes = n = push_pipe(i, bytes, &i_head, &r);
611         if (unlikely(!n))
612                 return 0;
613         do {
614                 size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
615                 char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
616                 sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
617                 kunmap_atomic(p);
618                 i->head = i_head;
619                 i->iov_offset = r + chunk;
620                 n -= chunk;
621                 off += chunk;
622                 addr += chunk;
623                 r = 0;
624                 i_head++;
625         } while (n);
626         i->count -= bytes;
627         csstate->csum = sum;
628         csstate->off = off;
629         return bytes;
630 }
631
632 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
633 {
634         const char *from = addr;
635         if (unlikely(iov_iter_is_pipe(i)))
636                 return copy_pipe_to_iter(addr, bytes, i);
637         if (iter_is_iovec(i))
638                 might_fault();
639         iterate_and_advance(i, bytes, v,
640                 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
641                 memcpy_to_page(v.bv_page, v.bv_offset,
642                                (from += v.bv_len) - v.bv_len, v.bv_len),
643                 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
644         )
645
646         return bytes;
647 }
648 EXPORT_SYMBOL(_copy_to_iter);
649
650 #ifdef CONFIG_ARCH_HAS_COPY_MC
651 static int copyout_mc(void __user *to, const void *from, size_t n)
652 {
653         if (access_ok(to, n)) {
654                 instrument_copy_to_user(to, from, n);
655                 n = copy_mc_to_user((__force void *) to, from, n);
656         }
657         return n;
658 }
659
660 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
661                 const char *from, size_t len)
662 {
663         unsigned long ret;
664         char *to;
665
666         to = kmap_atomic(page);
667         ret = copy_mc_to_kernel(to + offset, from, len);
668         kunmap_atomic(to);
669
670         return ret;
671 }
672
673 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
674                                 struct iov_iter *i)
675 {
676         struct pipe_inode_info *pipe = i->pipe;
677         unsigned int p_mask = pipe->ring_size - 1;
678         unsigned int i_head;
679         size_t n, off, xfer = 0;
680
681         if (!sanity(i))
682                 return 0;
683
684         bytes = n = push_pipe(i, bytes, &i_head, &off);
685         if (unlikely(!n))
686                 return 0;
687         do {
688                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
689                 unsigned long rem;
690
691                 rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
692                                             off, addr, chunk);
693                 i->head = i_head;
694                 i->iov_offset = off + chunk - rem;
695                 xfer += chunk - rem;
696                 if (rem)
697                         break;
698                 n -= chunk;
699                 addr += chunk;
700                 off = 0;
701                 i_head++;
702         } while (n);
703         i->count -= xfer;
704         return xfer;
705 }
706
707 /**
708  * _copy_mc_to_iter - copy to iter with source memory error exception handling
709  * @addr: source kernel address
710  * @bytes: total transfer length
711  * @iter: destination iterator
712  *
713  * The pmem driver deploys this for the dax operation
714  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
715  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
716  * successfully copied.
717  *
718  * The main differences between this and typical _copy_to_iter().
719  *
720  * * Typical tail/residue handling after a fault retries the copy
721  *   byte-by-byte until the fault happens again. Re-triggering machine
722  *   checks is potentially fatal so the implementation uses source
723  *   alignment and poison alignment assumptions to avoid re-triggering
724  *   hardware exceptions.
725  *
726  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
727  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
728  *   a short copy.
729  */
730 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
731 {
732         const char *from = addr;
733         unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
734
735         if (unlikely(iov_iter_is_pipe(i)))
736                 return copy_mc_pipe_to_iter(addr, bytes, i);
737         if (iter_is_iovec(i))
738                 might_fault();
739         iterate_and_advance(i, bytes, v,
740                 copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
741                            v.iov_len),
742                 ({
743                 rem = copy_mc_to_page(v.bv_page, v.bv_offset,
744                                       (from += v.bv_len) - v.bv_len, v.bv_len);
745                 if (rem) {
746                         curr_addr = (unsigned long) from;
747                         bytes = curr_addr - s_addr - rem;
748                         return bytes;
749                 }
750                 }),
751                 ({
752                 rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
753                                         - v.iov_len, v.iov_len);
754                 if (rem) {
755                         curr_addr = (unsigned long) from;
756                         bytes = curr_addr - s_addr - rem;
757                         return bytes;
758                 }
759                 })
760         )
761
762         return bytes;
763 }
764 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
765 #endif /* CONFIG_ARCH_HAS_COPY_MC */
766
767 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
768 {
769         char *to = addr;
770         if (unlikely(iov_iter_is_pipe(i))) {
771                 WARN_ON(1);
772                 return 0;
773         }
774         if (iter_is_iovec(i))
775                 might_fault();
776         iterate_and_advance(i, bytes, v,
777                 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
778                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
779                                  v.bv_offset, v.bv_len),
780                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
781         )
782
783         return bytes;
784 }
785 EXPORT_SYMBOL(_copy_from_iter);
786
787 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
788 {
789         char *to = addr;
790         if (unlikely(iov_iter_is_pipe(i))) {
791                 WARN_ON(1);
792                 return false;
793         }
794         if (unlikely(i->count < bytes))
795                 return false;
796
797         if (iter_is_iovec(i))
798                 might_fault();
799         iterate_all_kinds(i, bytes, v, ({
800                 if (copyin((to += v.iov_len) - v.iov_len,
801                                       v.iov_base, v.iov_len))
802                         return false;
803                 0;}),
804                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
805                                  v.bv_offset, v.bv_len),
806                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
807         )
808
809         iov_iter_advance(i, bytes);
810         return true;
811 }
812 EXPORT_SYMBOL(_copy_from_iter_full);
813
814 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
815 {
816         char *to = addr;
817         if (unlikely(iov_iter_is_pipe(i))) {
818                 WARN_ON(1);
819                 return 0;
820         }
821         iterate_and_advance(i, bytes, v,
822                 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
823                                          v.iov_base, v.iov_len),
824                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
825                                  v.bv_offset, v.bv_len),
826                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
827         )
828
829         return bytes;
830 }
831 EXPORT_SYMBOL(_copy_from_iter_nocache);
832
833 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
834 /**
835  * _copy_from_iter_flushcache - write destination through cpu cache
836  * @addr: destination kernel address
837  * @bytes: total transfer length
838  * @iter: source iterator
839  *
840  * The pmem driver arranges for filesystem-dax to use this facility via
841  * dax_copy_from_iter() for ensuring that writes to persistent memory
842  * are flushed through the CPU cache. It is differentiated from
843  * _copy_from_iter_nocache() in that guarantees all data is flushed for
844  * all iterator types. The _copy_from_iter_nocache() only attempts to
845  * bypass the cache for the ITER_IOVEC case, and on some archs may use
846  * instructions that strand dirty-data in the cache.
847  */
848 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
849 {
850         char *to = addr;
851         if (unlikely(iov_iter_is_pipe(i))) {
852                 WARN_ON(1);
853                 return 0;
854         }
855         iterate_and_advance(i, bytes, v,
856                 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
857                                          v.iov_base, v.iov_len),
858                 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
859                                  v.bv_offset, v.bv_len),
860                 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
861                         v.iov_len)
862         )
863
864         return bytes;
865 }
866 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
867 #endif
868
869 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
870 {
871         char *to = addr;
872         if (unlikely(iov_iter_is_pipe(i))) {
873                 WARN_ON(1);
874                 return false;
875         }
876         if (unlikely(i->count < bytes))
877                 return false;
878         iterate_all_kinds(i, bytes, v, ({
879                 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
880                                              v.iov_base, v.iov_len))
881                         return false;
882                 0;}),
883                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
884                                  v.bv_offset, v.bv_len),
885                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
886         )
887
888         iov_iter_advance(i, bytes);
889         return true;
890 }
891 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
892
893 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
894 {
895         struct page *head;
896         size_t v = n + offset;
897
898         /*
899          * The general case needs to access the page order in order
900          * to compute the page size.
901          * However, we mostly deal with order-0 pages and thus can
902          * avoid a possible cache line miss for requests that fit all
903          * page orders.
904          */
905         if (n <= v && v <= PAGE_SIZE)
906                 return true;
907
908         head = compound_head(page);
909         v += (page - head) << PAGE_SHIFT;
910
911         if (likely(n <= v && v <= (page_size(head))))
912                 return true;
913         WARN_ON(1);
914         return false;
915 }
916
917 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
918                          struct iov_iter *i)
919 {
920         if (unlikely(!page_copy_sane(page, offset, bytes)))
921                 return 0;
922         if (i->type & (ITER_BVEC|ITER_KVEC)) {
923                 void *kaddr = kmap_atomic(page);
924                 size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
925                 kunmap_atomic(kaddr);
926                 return wanted;
927         } else if (unlikely(iov_iter_is_discard(i))) {
928                 if (unlikely(i->count < bytes))
929                         bytes = i->count;
930                 i->count -= bytes;
931                 return bytes;
932         } else if (likely(!iov_iter_is_pipe(i)))
933                 return copy_page_to_iter_iovec(page, offset, bytes, i);
934         else
935                 return copy_page_to_iter_pipe(page, offset, bytes, i);
936 }
937 EXPORT_SYMBOL(copy_page_to_iter);
938
939 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
940                          struct iov_iter *i)
941 {
942         if (unlikely(!page_copy_sane(page, offset, bytes)))
943                 return 0;
944         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
945                 WARN_ON(1);
946                 return 0;
947         }
948         if (i->type & (ITER_BVEC|ITER_KVEC)) {
949                 void *kaddr = kmap_atomic(page);
950                 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
951                 kunmap_atomic(kaddr);
952                 return wanted;
953         } else
954                 return copy_page_from_iter_iovec(page, offset, bytes, i);
955 }
956 EXPORT_SYMBOL(copy_page_from_iter);
957
958 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
959 {
960         struct pipe_inode_info *pipe = i->pipe;
961         unsigned int p_mask = pipe->ring_size - 1;
962         unsigned int i_head;
963         size_t n, off;
964
965         if (!sanity(i))
966                 return 0;
967
968         bytes = n = push_pipe(i, bytes, &i_head, &off);
969         if (unlikely(!n))
970                 return 0;
971
972         do {
973                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
974                 memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
975                 i->head = i_head;
976                 i->iov_offset = off + chunk;
977                 n -= chunk;
978                 off = 0;
979                 i_head++;
980         } while (n);
981         i->count -= bytes;
982         return bytes;
983 }
984
985 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
986 {
987         if (unlikely(iov_iter_is_pipe(i)))
988                 return pipe_zero(bytes, i);
989         iterate_and_advance(i, bytes, v,
990                 clear_user(v.iov_base, v.iov_len),
991                 memzero_page(v.bv_page, v.bv_offset, v.bv_len),
992                 memset(v.iov_base, 0, v.iov_len)
993         )
994
995         return bytes;
996 }
997 EXPORT_SYMBOL(iov_iter_zero);
998
999 size_t iov_iter_copy_from_user_atomic(struct page *page,
1000                 struct iov_iter *i, unsigned long offset, size_t bytes)
1001 {
1002         char *kaddr = kmap_atomic(page), *p = kaddr + offset;
1003         if (unlikely(!page_copy_sane(page, offset, bytes))) {
1004                 kunmap_atomic(kaddr);
1005                 return 0;
1006         }
1007         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1008                 kunmap_atomic(kaddr);
1009                 WARN_ON(1);
1010                 return 0;
1011         }
1012         iterate_all_kinds(i, bytes, v,
1013                 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1014                 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1015                                  v.bv_offset, v.bv_len),
1016                 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1017         )
1018         kunmap_atomic(kaddr);
1019         return bytes;
1020 }
1021 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1022
1023 static inline void pipe_truncate(struct iov_iter *i)
1024 {
1025         struct pipe_inode_info *pipe = i->pipe;
1026         unsigned int p_tail = pipe->tail;
1027         unsigned int p_head = pipe->head;
1028         unsigned int p_mask = pipe->ring_size - 1;
1029
1030         if (!pipe_empty(p_head, p_tail)) {
1031                 struct pipe_buffer *buf;
1032                 unsigned int i_head = i->head;
1033                 size_t off = i->iov_offset;
1034
1035                 if (off) {
1036                         buf = &pipe->bufs[i_head & p_mask];
1037                         buf->len = off - buf->offset;
1038                         i_head++;
1039                 }
1040                 while (p_head != i_head) {
1041                         p_head--;
1042                         pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1043                 }
1044
1045                 pipe->head = p_head;
1046         }
1047 }
1048
1049 static void pipe_advance(struct iov_iter *i, size_t size)
1050 {
1051         struct pipe_inode_info *pipe = i->pipe;
1052         if (unlikely(i->count < size))
1053                 size = i->count;
1054         if (size) {
1055                 struct pipe_buffer *buf;
1056                 unsigned int p_mask = pipe->ring_size - 1;
1057                 unsigned int i_head = i->head;
1058                 size_t off = i->iov_offset, left = size;
1059
1060                 if (off) /* make it relative to the beginning of buffer */
1061                         left += off - pipe->bufs[i_head & p_mask].offset;
1062                 while (1) {
1063                         buf = &pipe->bufs[i_head & p_mask];
1064                         if (left <= buf->len)
1065                                 break;
1066                         left -= buf->len;
1067                         i_head++;
1068                 }
1069                 i->head = i_head;
1070                 i->iov_offset = buf->offset + left;
1071         }
1072         i->count -= size;
1073         /* ... and discard everything past that point */
1074         pipe_truncate(i);
1075 }
1076
1077 void iov_iter_advance(struct iov_iter *i, size_t size)
1078 {
1079         if (unlikely(iov_iter_is_pipe(i))) {
1080                 pipe_advance(i, size);
1081                 return;
1082         }
1083         if (unlikely(iov_iter_is_discard(i))) {
1084                 i->count -= size;
1085                 return;
1086         }
1087         iterate_and_advance(i, size, v, 0, 0, 0)
1088 }
1089 EXPORT_SYMBOL(iov_iter_advance);
1090
1091 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1092 {
1093         if (!unroll)
1094                 return;
1095         if (WARN_ON(unroll > MAX_RW_COUNT))
1096                 return;
1097         i->count += unroll;
1098         if (unlikely(iov_iter_is_pipe(i))) {
1099                 struct pipe_inode_info *pipe = i->pipe;
1100                 unsigned int p_mask = pipe->ring_size - 1;
1101                 unsigned int i_head = i->head;
1102                 size_t off = i->iov_offset;
1103                 while (1) {
1104                         struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1105                         size_t n = off - b->offset;
1106                         if (unroll < n) {
1107                                 off -= unroll;
1108                                 break;
1109                         }
1110                         unroll -= n;
1111                         if (!unroll && i_head == i->start_head) {
1112                                 off = 0;
1113                                 break;
1114                         }
1115                         i_head--;
1116                         b = &pipe->bufs[i_head & p_mask];
1117                         off = b->offset + b->len;
1118                 }
1119                 i->iov_offset = off;
1120                 i->head = i_head;
1121                 pipe_truncate(i);
1122                 return;
1123         }
1124         if (unlikely(iov_iter_is_discard(i)))
1125                 return;
1126         if (unroll <= i->iov_offset) {
1127                 i->iov_offset -= unroll;
1128                 return;
1129         }
1130         unroll -= i->iov_offset;
1131         if (iov_iter_is_bvec(i)) {
1132                 const struct bio_vec *bvec = i->bvec;
1133                 while (1) {
1134                         size_t n = (--bvec)->bv_len;
1135                         i->nr_segs++;
1136                         if (unroll <= n) {
1137                                 i->bvec = bvec;
1138                                 i->iov_offset = n - unroll;
1139                                 return;
1140                         }
1141                         unroll -= n;
1142                 }
1143         } else { /* same logics for iovec and kvec */
1144                 const struct iovec *iov = i->iov;
1145                 while (1) {
1146                         size_t n = (--iov)->iov_len;
1147                         i->nr_segs++;
1148                         if (unroll <= n) {
1149                                 i->iov = iov;
1150                                 i->iov_offset = n - unroll;
1151                                 return;
1152                         }
1153                         unroll -= n;
1154                 }
1155         }
1156 }
1157 EXPORT_SYMBOL(iov_iter_revert);
1158
1159 /*
1160  * Return the count of just the current iov_iter segment.
1161  */
1162 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1163 {
1164         if (unlikely(iov_iter_is_pipe(i)))
1165                 return i->count;        // it is a silly place, anyway
1166         if (i->nr_segs == 1)
1167                 return i->count;
1168         if (unlikely(iov_iter_is_discard(i)))
1169                 return i->count;
1170         else if (iov_iter_is_bvec(i))
1171                 return min(i->count, i->bvec->bv_len - i->iov_offset);
1172         else
1173                 return min(i->count, i->iov->iov_len - i->iov_offset);
1174 }
1175 EXPORT_SYMBOL(iov_iter_single_seg_count);
1176
1177 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1178                         const struct kvec *kvec, unsigned long nr_segs,
1179                         size_t count)
1180 {
1181         WARN_ON(direction & ~(READ | WRITE));
1182         i->type = ITER_KVEC | (direction & (READ | WRITE));
1183         i->kvec = kvec;
1184         i->nr_segs = nr_segs;
1185         i->iov_offset = 0;
1186         i->count = count;
1187 }
1188 EXPORT_SYMBOL(iov_iter_kvec);
1189
1190 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1191                         const struct bio_vec *bvec, unsigned long nr_segs,
1192                         size_t count)
1193 {
1194         WARN_ON(direction & ~(READ | WRITE));
1195         i->type = ITER_BVEC | (direction & (READ | WRITE));
1196         i->bvec = bvec;
1197         i->nr_segs = nr_segs;
1198         i->iov_offset = 0;
1199         i->count = count;
1200 }
1201 EXPORT_SYMBOL(iov_iter_bvec);
1202
1203 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1204                         struct pipe_inode_info *pipe,
1205                         size_t count)
1206 {
1207         BUG_ON(direction != READ);
1208         WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1209         i->type = ITER_PIPE | READ;
1210         i->pipe = pipe;
1211         i->head = pipe->head;
1212         i->iov_offset = 0;
1213         i->count = count;
1214         i->start_head = i->head;
1215 }
1216 EXPORT_SYMBOL(iov_iter_pipe);
1217
1218 /**
1219  * iov_iter_discard - Initialise an I/O iterator that discards data
1220  * @i: The iterator to initialise.
1221  * @direction: The direction of the transfer.
1222  * @count: The size of the I/O buffer in bytes.
1223  *
1224  * Set up an I/O iterator that just discards everything that's written to it.
1225  * It's only available as a READ iterator.
1226  */
1227 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1228 {
1229         BUG_ON(direction != READ);
1230         i->type = ITER_DISCARD | READ;
1231         i->count = count;
1232         i->iov_offset = 0;
1233 }
1234 EXPORT_SYMBOL(iov_iter_discard);
1235
1236 unsigned long iov_iter_alignment(const struct iov_iter *i)
1237 {
1238         unsigned long res = 0;
1239         size_t size = i->count;
1240
1241         if (unlikely(iov_iter_is_pipe(i))) {
1242                 unsigned int p_mask = i->pipe->ring_size - 1;
1243
1244                 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1245                         return size | i->iov_offset;
1246                 return size;
1247         }
1248         iterate_all_kinds(i, size, v,
1249                 (res |= (unsigned long)v.iov_base | v.iov_len, 0),
1250                 res |= v.bv_offset | v.bv_len,
1251                 res |= (unsigned long)v.iov_base | v.iov_len
1252         )
1253         return res;
1254 }
1255 EXPORT_SYMBOL(iov_iter_alignment);
1256
1257 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1258 {
1259         unsigned long res = 0;
1260         size_t size = i->count;
1261
1262         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1263                 WARN_ON(1);
1264                 return ~0U;
1265         }
1266
1267         iterate_all_kinds(i, size, v,
1268                 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1269                         (size != v.iov_len ? size : 0), 0),
1270                 (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1271                         (size != v.bv_len ? size : 0)),
1272                 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1273                         (size != v.iov_len ? size : 0))
1274                 );
1275         return res;
1276 }
1277 EXPORT_SYMBOL(iov_iter_gap_alignment);
1278
1279 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1280                                 size_t maxsize,
1281                                 struct page **pages,
1282                                 int iter_head,
1283                                 size_t *start)
1284 {
1285         struct pipe_inode_info *pipe = i->pipe;
1286         unsigned int p_mask = pipe->ring_size - 1;
1287         ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1288         if (!n)
1289                 return -EFAULT;
1290
1291         maxsize = n;
1292         n += *start;
1293         while (n > 0) {
1294                 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1295                 iter_head++;
1296                 n -= PAGE_SIZE;
1297         }
1298
1299         return maxsize;
1300 }
1301
1302 static ssize_t pipe_get_pages(struct iov_iter *i,
1303                    struct page **pages, size_t maxsize, unsigned maxpages,
1304                    size_t *start)
1305 {
1306         unsigned int iter_head, npages;
1307         size_t capacity;
1308
1309         if (!maxsize)
1310                 return 0;
1311
1312         if (!sanity(i))
1313                 return -EFAULT;
1314
1315         data_start(i, &iter_head, start);
1316         /* Amount of free space: some of this one + all after this one */
1317         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1318         capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1319
1320         return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1321 }
1322
1323 ssize_t iov_iter_get_pages(struct iov_iter *i,
1324                    struct page **pages, size_t maxsize, unsigned maxpages,
1325                    size_t *start)
1326 {
1327         if (maxsize > i->count)
1328                 maxsize = i->count;
1329
1330         if (unlikely(iov_iter_is_pipe(i)))
1331                 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1332         if (unlikely(iov_iter_is_discard(i)))
1333                 return -EFAULT;
1334
1335         iterate_all_kinds(i, maxsize, v, ({
1336                 unsigned long addr = (unsigned long)v.iov_base;
1337                 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1338                 int n;
1339                 int res;
1340
1341                 if (len > maxpages * PAGE_SIZE)
1342                         len = maxpages * PAGE_SIZE;
1343                 addr &= ~(PAGE_SIZE - 1);
1344                 n = DIV_ROUND_UP(len, PAGE_SIZE);
1345                 res = get_user_pages_fast(addr, n,
1346                                 iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1347                                 pages);
1348                 if (unlikely(res <= 0))
1349                         return res;
1350                 return (res == n ? len : res * PAGE_SIZE) - *start;
1351         0;}),({
1352                 /* can't be more than PAGE_SIZE */
1353                 *start = v.bv_offset;
1354                 get_page(*pages = v.bv_page);
1355                 return v.bv_len;
1356         }),({
1357                 return -EFAULT;
1358         })
1359         )
1360         return 0;
1361 }
1362 EXPORT_SYMBOL(iov_iter_get_pages);
1363
1364 static struct page **get_pages_array(size_t n)
1365 {
1366         return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1367 }
1368
1369 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1370                    struct page ***pages, size_t maxsize,
1371                    size_t *start)
1372 {
1373         struct page **p;
1374         unsigned int iter_head, npages;
1375         ssize_t n;
1376
1377         if (!maxsize)
1378                 return 0;
1379
1380         if (!sanity(i))
1381                 return -EFAULT;
1382
1383         data_start(i, &iter_head, start);
1384         /* Amount of free space: some of this one + all after this one */
1385         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1386         n = npages * PAGE_SIZE - *start;
1387         if (maxsize > n)
1388                 maxsize = n;
1389         else
1390                 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1391         p = get_pages_array(npages);
1392         if (!p)
1393                 return -ENOMEM;
1394         n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1395         if (n > 0)
1396                 *pages = p;
1397         else
1398                 kvfree(p);
1399         return n;
1400 }
1401
1402 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1403                    struct page ***pages, size_t maxsize,
1404                    size_t *start)
1405 {
1406         struct page **p;
1407
1408         if (maxsize > i->count)
1409                 maxsize = i->count;
1410
1411         if (unlikely(iov_iter_is_pipe(i)))
1412                 return pipe_get_pages_alloc(i, pages, maxsize, start);
1413         if (unlikely(iov_iter_is_discard(i)))
1414                 return -EFAULT;
1415
1416         iterate_all_kinds(i, maxsize, v, ({
1417                 unsigned long addr = (unsigned long)v.iov_base;
1418                 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1419                 int n;
1420                 int res;
1421
1422                 addr &= ~(PAGE_SIZE - 1);
1423                 n = DIV_ROUND_UP(len, PAGE_SIZE);
1424                 p = get_pages_array(n);
1425                 if (!p)
1426                         return -ENOMEM;
1427                 res = get_user_pages_fast(addr, n,
1428                                 iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1429                 if (unlikely(res <= 0)) {
1430                         kvfree(p);
1431                         *pages = NULL;
1432                         return res;
1433                 }
1434                 *pages = p;
1435                 return (res == n ? len : res * PAGE_SIZE) - *start;
1436         0;}),({
1437                 /* can't be more than PAGE_SIZE */
1438                 *start = v.bv_offset;
1439                 *pages = p = get_pages_array(1);
1440                 if (!p)
1441                         return -ENOMEM;
1442                 get_page(*p = v.bv_page);
1443                 return v.bv_len;
1444         }),({
1445                 return -EFAULT;
1446         })
1447         )
1448         return 0;
1449 }
1450 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1451
1452 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1453                                struct iov_iter *i)
1454 {
1455         char *to = addr;
1456         __wsum sum, next;
1457         size_t off = 0;
1458         sum = *csum;
1459         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1460                 WARN_ON(1);
1461                 return 0;
1462         }
1463         iterate_and_advance(i, bytes, v, ({
1464                 next = csum_and_copy_from_user(v.iov_base,
1465                                                (to += v.iov_len) - v.iov_len,
1466                                                v.iov_len);
1467                 if (next) {
1468                         sum = csum_block_add(sum, next, off);
1469                         off += v.iov_len;
1470                 }
1471                 next ? 0 : v.iov_len;
1472         }), ({
1473                 char *p = kmap_atomic(v.bv_page);
1474                 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1475                                       p + v.bv_offset, v.bv_len,
1476                                       sum, off);
1477                 kunmap_atomic(p);
1478                 off += v.bv_len;
1479         }),({
1480                 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1481                                       v.iov_base, v.iov_len,
1482                                       sum, off);
1483                 off += v.iov_len;
1484         })
1485         )
1486         *csum = sum;
1487         return bytes;
1488 }
1489 EXPORT_SYMBOL(csum_and_copy_from_iter);
1490
1491 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1492                                struct iov_iter *i)
1493 {
1494         char *to = addr;
1495         __wsum sum, next;
1496         size_t off = 0;
1497         sum = *csum;
1498         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1499                 WARN_ON(1);
1500                 return false;
1501         }
1502         if (unlikely(i->count < bytes))
1503                 return false;
1504         iterate_all_kinds(i, bytes, v, ({
1505                 next = csum_and_copy_from_user(v.iov_base,
1506                                                (to += v.iov_len) - v.iov_len,
1507                                                v.iov_len);
1508                 if (!next)
1509                         return false;
1510                 sum = csum_block_add(sum, next, off);
1511                 off += v.iov_len;
1512                 0;
1513         }), ({
1514                 char *p = kmap_atomic(v.bv_page);
1515                 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1516                                       p + v.bv_offset, v.bv_len,
1517                                       sum, off);
1518                 kunmap_atomic(p);
1519                 off += v.bv_len;
1520         }),({
1521                 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1522                                       v.iov_base, v.iov_len,
1523                                       sum, off);
1524                 off += v.iov_len;
1525         })
1526         )
1527         *csum = sum;
1528         iov_iter_advance(i, bytes);
1529         return true;
1530 }
1531 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1532
1533 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1534                              struct iov_iter *i)
1535 {
1536         struct csum_state *csstate = _csstate;
1537         const char *from = addr;
1538         __wsum sum, next;
1539         size_t off;
1540
1541         if (unlikely(iov_iter_is_pipe(i)))
1542                 return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i);
1543
1544         sum = csstate->csum;
1545         off = csstate->off;
1546         if (unlikely(iov_iter_is_discard(i))) {
1547                 WARN_ON(1);     /* for now */
1548                 return 0;
1549         }
1550         iterate_and_advance(i, bytes, v, ({
1551                 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1552                                              v.iov_base,
1553                                              v.iov_len);
1554                 if (next) {
1555                         sum = csum_block_add(sum, next, off);
1556                         off += v.iov_len;
1557                 }
1558                 next ? 0 : v.iov_len;
1559         }), ({
1560                 char *p = kmap_atomic(v.bv_page);
1561                 sum = csum_and_memcpy(p + v.bv_offset,
1562                                       (from += v.bv_len) - v.bv_len,
1563                                       v.bv_len, sum, off);
1564                 kunmap_atomic(p);
1565                 off += v.bv_len;
1566         }),({
1567                 sum = csum_and_memcpy(v.iov_base,
1568                                      (from += v.iov_len) - v.iov_len,
1569                                      v.iov_len, sum, off);
1570                 off += v.iov_len;
1571         })
1572         )
1573         csstate->csum = sum;
1574         csstate->off = off;
1575         return bytes;
1576 }
1577 EXPORT_SYMBOL(csum_and_copy_to_iter);
1578
1579 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1580                 struct iov_iter *i)
1581 {
1582 #ifdef CONFIG_CRYPTO_HASH
1583         struct ahash_request *hash = hashp;
1584         struct scatterlist sg;
1585         size_t copied;
1586
1587         copied = copy_to_iter(addr, bytes, i);
1588         sg_init_one(&sg, addr, copied);
1589         ahash_request_set_crypt(hash, &sg, NULL, copied);
1590         crypto_ahash_update(hash);
1591         return copied;
1592 #else
1593         return 0;
1594 #endif
1595 }
1596 EXPORT_SYMBOL(hash_and_copy_to_iter);
1597
1598 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1599 {
1600         size_t size = i->count;
1601         int npages = 0;
1602
1603         if (!size)
1604                 return 0;
1605         if (unlikely(iov_iter_is_discard(i)))
1606                 return 0;
1607
1608         if (unlikely(iov_iter_is_pipe(i))) {
1609                 struct pipe_inode_info *pipe = i->pipe;
1610                 unsigned int iter_head;
1611                 size_t off;
1612
1613                 if (!sanity(i))
1614                         return 0;
1615
1616                 data_start(i, &iter_head, &off);
1617                 /* some of this one + all after this one */
1618                 npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1619                 if (npages >= maxpages)
1620                         return maxpages;
1621         } else iterate_all_kinds(i, size, v, ({
1622                 unsigned long p = (unsigned long)v.iov_base;
1623                 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1624                         - p / PAGE_SIZE;
1625                 if (npages >= maxpages)
1626                         return maxpages;
1627         0;}),({
1628                 npages++;
1629                 if (npages >= maxpages)
1630                         return maxpages;
1631         }),({
1632                 unsigned long p = (unsigned long)v.iov_base;
1633                 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1634                         - p / PAGE_SIZE;
1635                 if (npages >= maxpages)
1636                         return maxpages;
1637         })
1638         )
1639         return npages;
1640 }
1641 EXPORT_SYMBOL(iov_iter_npages);
1642
1643 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1644 {
1645         *new = *old;
1646         if (unlikely(iov_iter_is_pipe(new))) {
1647                 WARN_ON(1);
1648                 return NULL;
1649         }
1650         if (unlikely(iov_iter_is_discard(new)))
1651                 return NULL;
1652         if (iov_iter_is_bvec(new))
1653                 return new->bvec = kmemdup(new->bvec,
1654                                     new->nr_segs * sizeof(struct bio_vec),
1655                                     flags);
1656         else
1657                 /* iovec and kvec have identical layout */
1658                 return new->iov = kmemdup(new->iov,
1659                                    new->nr_segs * sizeof(struct iovec),
1660                                    flags);
1661 }
1662 EXPORT_SYMBOL(dup_iter);
1663
1664 static int copy_compat_iovec_from_user(struct iovec *iov,
1665                 const struct iovec __user *uvec, unsigned long nr_segs)
1666 {
1667         const struct compat_iovec __user *uiov =
1668                 (const struct compat_iovec __user *)uvec;
1669         int ret = -EFAULT, i;
1670
1671         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1672                 return -EFAULT;
1673
1674         for (i = 0; i < nr_segs; i++) {
1675                 compat_uptr_t buf;
1676                 compat_ssize_t len;
1677
1678                 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1679                 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1680
1681                 /* check for compat_size_t not fitting in compat_ssize_t .. */
1682                 if (len < 0) {
1683                         ret = -EINVAL;
1684                         goto uaccess_end;
1685                 }
1686                 iov[i].iov_base = compat_ptr(buf);
1687                 iov[i].iov_len = len;
1688         }
1689
1690         ret = 0;
1691 uaccess_end:
1692         user_access_end();
1693         return ret;
1694 }
1695
1696 static int copy_iovec_from_user(struct iovec *iov,
1697                 const struct iovec __user *uvec, unsigned long nr_segs)
1698 {
1699         unsigned long seg;
1700
1701         if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1702                 return -EFAULT;
1703         for (seg = 0; seg < nr_segs; seg++) {
1704                 if ((ssize_t)iov[seg].iov_len < 0)
1705                         return -EINVAL;
1706         }
1707
1708         return 0;
1709 }
1710
1711 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1712                 unsigned long nr_segs, unsigned long fast_segs,
1713                 struct iovec *fast_iov, bool compat)
1714 {
1715         struct iovec *iov = fast_iov;
1716         int ret;
1717
1718         /*
1719          * SuS says "The readv() function *may* fail if the iovcnt argument was
1720          * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1721          * traditionally returned zero for zero segments, so...
1722          */
1723         if (nr_segs == 0)
1724                 return iov;
1725         if (nr_segs > UIO_MAXIOV)
1726                 return ERR_PTR(-EINVAL);
1727         if (nr_segs > fast_segs) {
1728                 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1729                 if (!iov)
1730                         return ERR_PTR(-ENOMEM);
1731         }
1732
1733         if (compat)
1734                 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1735         else
1736                 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1737         if (ret) {
1738                 if (iov != fast_iov)
1739                         kfree(iov);
1740                 return ERR_PTR(ret);
1741         }
1742
1743         return iov;
1744 }
1745
1746 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1747                  unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1748                  struct iov_iter *i, bool compat)
1749 {
1750         ssize_t total_len = 0;
1751         unsigned long seg;
1752         struct iovec *iov;
1753
1754         iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1755         if (IS_ERR(iov)) {
1756                 *iovp = NULL;
1757                 return PTR_ERR(iov);
1758         }
1759
1760         /*
1761          * According to the Single Unix Specification we should return EINVAL if
1762          * an element length is < 0 when cast to ssize_t or if the total length
1763          * would overflow the ssize_t return value of the system call.
1764          *
1765          * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1766          * overflow case.
1767          */
1768         for (seg = 0; seg < nr_segs; seg++) {
1769                 ssize_t len = (ssize_t)iov[seg].iov_len;
1770
1771                 if (!access_ok(iov[seg].iov_base, len)) {
1772                         if (iov != *iovp)
1773                                 kfree(iov);
1774                         *iovp = NULL;
1775                         return -EFAULT;
1776                 }
1777
1778                 if (len > MAX_RW_COUNT - total_len) {
1779                         len = MAX_RW_COUNT - total_len;
1780                         iov[seg].iov_len = len;
1781                 }
1782                 total_len += len;
1783         }
1784
1785         iov_iter_init(i, type, iov, nr_segs, total_len);
1786         if (iov == *iovp)
1787                 *iovp = NULL;
1788         else
1789                 *iovp = iov;
1790         return total_len;
1791 }
1792
1793 /**
1794  * import_iovec() - Copy an array of &struct iovec from userspace
1795  *     into the kernel, check that it is valid, and initialize a new
1796  *     &struct iov_iter iterator to access it.
1797  *
1798  * @type: One of %READ or %WRITE.
1799  * @uvec: Pointer to the userspace array.
1800  * @nr_segs: Number of elements in userspace array.
1801  * @fast_segs: Number of elements in @iov.
1802  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1803  *     on-stack) kernel array.
1804  * @i: Pointer to iterator that will be initialized on success.
1805  *
1806  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1807  * then this function places %NULL in *@iov on return. Otherwise, a new
1808  * array will be allocated and the result placed in *@iov. This means that
1809  * the caller may call kfree() on *@iov regardless of whether the small
1810  * on-stack array was used or not (and regardless of whether this function
1811  * returns an error or not).
1812  *
1813  * Return: Negative error code on error, bytes imported on success
1814  */
1815 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1816                  unsigned nr_segs, unsigned fast_segs,
1817                  struct iovec **iovp, struct iov_iter *i)
1818 {
1819         return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1820                               in_compat_syscall());
1821 }
1822 EXPORT_SYMBOL(import_iovec);
1823
1824 int import_single_range(int rw, void __user *buf, size_t len,
1825                  struct iovec *iov, struct iov_iter *i)
1826 {
1827         if (len > MAX_RW_COUNT)
1828                 len = MAX_RW_COUNT;
1829         if (unlikely(!access_ok(buf, len)))
1830                 return -EFAULT;
1831
1832         iov->iov_base = buf;
1833         iov->iov_len = len;
1834         iov_iter_init(i, rw, iov, 1, len);
1835         return 0;
1836 }
1837 EXPORT_SYMBOL(import_single_range);
1838
1839 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1840                             int (*f)(struct kvec *vec, void *context),
1841                             void *context)
1842 {
1843         struct kvec w;
1844         int err = -EINVAL;
1845         if (!bytes)
1846                 return 0;
1847
1848         iterate_all_kinds(i, bytes, v, -EINVAL, ({
1849                 w.iov_base = kmap(v.bv_page) + v.bv_offset;
1850                 w.iov_len = v.bv_len;
1851                 err = f(&w, context);
1852                 kunmap(v.bv_page);
1853                 err;}), ({
1854                 w = v;
1855                 err = f(&w, context);})
1856         )
1857         return err;
1858 }
1859 EXPORT_SYMBOL(iov_iter_for_each_range);