2 * Basic general purpose allocator for managing special purpose
3 * memory, for example, memory that is not managed by the regular
4 * kmalloc/kfree interface. Uses for this includes on-device special
5 * memory, uncached memory etc.
7 * It is safe to use the allocator in NMI handlers and other special
8 * unblockable contexts that could otherwise deadlock on locks. This
9 * is implemented by using atomic operations and retries on any
10 * conflicts. The disadvantage is that there may be livelocks in
11 * extreme cases. For better scalability, one allocator can be used
14 * The lockless operation only works if there is enough memory
15 * available. If new memory is added to the pool a lock has to be
16 * still taken. So any user relying on locklessness has to ensure
17 * that sufficient memory is preallocated.
19 * The basic atomic operation of this allocator is cmpxchg on long.
20 * On architectures that don't have NMI-safe cmpxchg implementation,
21 * the allocator can NOT be used in NMI handler. So code uses the
22 * allocator in NMI handler should depend on
23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
27 * This source code is licensed under the GNU General Public License,
28 * Version 2. See the file COPYING for more details.
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include <linux/bitmap.h>
34 #include <linux/rculist.h>
35 #include <linux/interrupt.h>
36 #include <linux/genalloc.h>
37 #include <linux/of_device.h>
38 #include <linux/vmalloc.h>
40 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
42 return chunk->end_addr - chunk->start_addr + 1;
45 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
47 unsigned long val, nval;
52 if (val & mask_to_set)
55 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
60 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
62 unsigned long val, nval;
67 if ((val & mask_to_clear) != mask_to_clear)
70 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
76 * bitmap_set_ll - set the specified number of bits at the specified position
77 * @map: pointer to a bitmap
78 * @start: a bit position in @map
79 * @nr: number of bits to set
81 * Set @nr bits start from @start in @map lock-lessly. Several users
82 * can set/clear the same bitmap simultaneously without lock. If two
83 * users set the same bit, one user will return remain bits, otherwise
86 static int bitmap_set_ll(unsigned long *map, unsigned long start, unsigned long nr)
88 unsigned long *p = map + BIT_WORD(start);
89 const unsigned long size = start + nr;
90 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
91 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
93 while (nr >= bits_to_set) {
94 if (set_bits_ll(p, mask_to_set))
97 bits_to_set = BITS_PER_LONG;
102 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
103 if (set_bits_ll(p, mask_to_set))
111 * bitmap_clear_ll - clear the specified number of bits at the specified position
112 * @map: pointer to a bitmap
113 * @start: a bit position in @map
114 * @nr: number of bits to set
116 * Clear @nr bits start from @start in @map lock-lessly. Several users
117 * can set/clear the same bitmap simultaneously without lock. If two
118 * users clear the same bit, one user will return remain bits,
119 * otherwise return 0.
122 bitmap_clear_ll(unsigned long *map, unsigned long start, unsigned long nr)
124 unsigned long *p = map + BIT_WORD(start);
125 const unsigned long size = start + nr;
126 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
127 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
129 while (nr >= bits_to_clear) {
130 if (clear_bits_ll(p, mask_to_clear))
133 bits_to_clear = BITS_PER_LONG;
134 mask_to_clear = ~0UL;
138 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
139 if (clear_bits_ll(p, mask_to_clear))
147 * gen_pool_create - create a new special memory pool
148 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
149 * @nid: node id of the node the pool structure should be allocated on, or -1
151 * Create a new special memory pool that can be used to manage special purpose
152 * memory not managed by the regular kmalloc/kfree interface.
154 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
156 struct gen_pool *pool;
158 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
160 spin_lock_init(&pool->lock);
161 INIT_LIST_HEAD(&pool->chunks);
162 pool->min_alloc_order = min_alloc_order;
163 pool->algo = gen_pool_first_fit;
169 EXPORT_SYMBOL(gen_pool_create);
172 * gen_pool_add_virt - add a new chunk of special memory to the pool
173 * @pool: pool to add new memory chunk to
174 * @virt: virtual starting address of memory chunk to add to pool
175 * @phys: physical starting address of memory chunk to add to pool
176 * @size: size in bytes of the memory chunk to add to pool
177 * @nid: node id of the node the chunk structure and bitmap should be
178 * allocated on, or -1
180 * Add a new chunk of special memory to the specified pool.
182 * Returns 0 on success or a -ve errno on failure.
184 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
185 size_t size, int nid)
187 struct gen_pool_chunk *chunk;
188 unsigned long nbits = size >> pool->min_alloc_order;
189 unsigned long nbytes = sizeof(struct gen_pool_chunk) +
190 BITS_TO_LONGS(nbits) * sizeof(long);
192 chunk = vzalloc_node(nbytes, nid);
193 if (unlikely(chunk == NULL))
196 chunk->phys_addr = phys;
197 chunk->start_addr = virt;
198 chunk->end_addr = virt + size - 1;
199 atomic_long_set(&chunk->avail, size);
201 spin_lock(&pool->lock);
202 list_add_rcu(&chunk->next_chunk, &pool->chunks);
203 spin_unlock(&pool->lock);
207 EXPORT_SYMBOL(gen_pool_add_virt);
210 * gen_pool_virt_to_phys - return the physical address of memory
211 * @pool: pool to allocate from
212 * @addr: starting address of memory
214 * Returns the physical address on success, or -1 on error.
216 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
218 struct gen_pool_chunk *chunk;
219 phys_addr_t paddr = -1;
222 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
223 if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
224 paddr = chunk->phys_addr + (addr - chunk->start_addr);
232 EXPORT_SYMBOL(gen_pool_virt_to_phys);
235 * gen_pool_destroy - destroy a special memory pool
236 * @pool: pool to destroy
238 * Destroy the specified special memory pool. Verifies that there are no
239 * outstanding allocations.
241 void gen_pool_destroy(struct gen_pool *pool)
243 struct list_head *_chunk, *_next_chunk;
244 struct gen_pool_chunk *chunk;
245 int order = pool->min_alloc_order;
246 unsigned long bit, end_bit;
248 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
249 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
250 list_del(&chunk->next_chunk);
252 end_bit = chunk_size(chunk) >> order;
253 bit = find_next_bit(chunk->bits, end_bit, 0);
254 BUG_ON(bit < end_bit);
258 kfree_const(pool->name);
261 EXPORT_SYMBOL(gen_pool_destroy);
264 * gen_pool_alloc - allocate special memory from the pool
265 * @pool: pool to allocate from
266 * @size: number of bytes to allocate from the pool
268 * Allocate the requested number of bytes from the specified pool.
269 * Uses the pool allocation function (with first-fit algorithm by default).
270 * Can not be used in NMI handler on architectures without
271 * NMI-safe cmpxchg implementation.
273 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
275 struct gen_pool_chunk *chunk;
276 unsigned long addr = 0;
277 int order = pool->min_alloc_order;
278 unsigned long nbits, start_bit, end_bit, remain;
280 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
287 nbits = (size + (1UL << order) - 1) >> order;
289 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
290 if (size > atomic_long_read(&chunk->avail))
294 end_bit = chunk_size(chunk) >> order;
296 start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
298 if (start_bit >= end_bit)
300 remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
302 remain = bitmap_clear_ll(chunk->bits, start_bit,
308 addr = chunk->start_addr + ((unsigned long)start_bit << order);
309 size = nbits << order;
310 atomic_long_sub(size, &chunk->avail);
316 EXPORT_SYMBOL(gen_pool_alloc);
319 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
320 * @pool: pool to allocate from
321 * @size: number of bytes to allocate from the pool
322 * @dma: dma-view physical address return value. Use NULL if unneeded.
324 * Allocate the requested number of bytes from the specified pool.
325 * Uses the pool allocation function (with first-fit algorithm by default).
326 * Can not be used in NMI handler on architectures without
327 * NMI-safe cmpxchg implementation.
329 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
336 vaddr = gen_pool_alloc(pool, size);
341 *dma = gen_pool_virt_to_phys(pool, vaddr);
343 return (void *)vaddr;
345 EXPORT_SYMBOL(gen_pool_dma_alloc);
348 * gen_pool_free - free allocated special memory back to the pool
349 * @pool: pool to free to
350 * @addr: starting address of memory to free back to pool
351 * @size: size in bytes of memory to free
353 * Free previously allocated special memory back to the specified
354 * pool. Can not be used in NMI handler on architectures without
355 * NMI-safe cmpxchg implementation.
357 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
359 struct gen_pool_chunk *chunk;
360 int order = pool->min_alloc_order;
361 unsigned long start_bit, nbits, remain;
363 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
367 nbits = (size + (1UL << order) - 1) >> order;
369 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
370 if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
371 BUG_ON(addr + size - 1 > chunk->end_addr);
372 start_bit = (addr - chunk->start_addr) >> order;
373 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
375 size = nbits << order;
376 atomic_long_add(size, &chunk->avail);
384 EXPORT_SYMBOL(gen_pool_free);
387 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
388 * @pool: the generic memory pool
389 * @func: func to call
390 * @data: additional data used by @func
392 * Call @func for every chunk of generic memory pool. The @func is
393 * called with rcu_read_lock held.
395 void gen_pool_for_each_chunk(struct gen_pool *pool,
396 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
399 struct gen_pool_chunk *chunk;
402 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
403 func(pool, chunk, data);
406 EXPORT_SYMBOL(gen_pool_for_each_chunk);
409 * addr_in_gen_pool - checks if an address falls within the range of a pool
410 * @pool: the generic memory pool
411 * @start: start address
412 * @size: size of the region
414 * Check if the range of addresses falls within the specified pool. Returns
415 * true if the entire range is contained in the pool and false otherwise.
417 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
421 unsigned long end = start + size - 1;
422 struct gen_pool_chunk *chunk;
425 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
426 if (start >= chunk->start_addr && start <= chunk->end_addr) {
427 if (end <= chunk->end_addr) {
438 * gen_pool_avail - get available free space of the pool
439 * @pool: pool to get available free space
441 * Return available free space of the specified pool.
443 size_t gen_pool_avail(struct gen_pool *pool)
445 struct gen_pool_chunk *chunk;
449 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
450 avail += atomic_long_read(&chunk->avail);
454 EXPORT_SYMBOL_GPL(gen_pool_avail);
457 * gen_pool_size - get size in bytes of memory managed by the pool
458 * @pool: pool to get size
460 * Return size in bytes of memory managed by the pool.
462 size_t gen_pool_size(struct gen_pool *pool)
464 struct gen_pool_chunk *chunk;
468 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
469 size += chunk_size(chunk);
473 EXPORT_SYMBOL_GPL(gen_pool_size);
476 * gen_pool_set_algo - set the allocation algorithm
477 * @pool: pool to change allocation algorithm
478 * @algo: custom algorithm function
479 * @data: additional data used by @algo
481 * Call @algo for each memory allocation in the pool.
482 * If @algo is NULL use gen_pool_first_fit as default
483 * memory allocation function.
485 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
491 pool->algo = gen_pool_first_fit;
497 EXPORT_SYMBOL(gen_pool_set_algo);
500 * gen_pool_first_fit - find the first available region
501 * of memory matching the size requirement (no alignment constraint)
502 * @map: The address to base the search on
503 * @size: The bitmap size in bits
504 * @start: The bitnumber to start searching at
505 * @nr: The number of zeroed bits we're looking for
506 * @data: additional data - unused
508 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
509 unsigned long start, unsigned int nr, void *data)
511 return bitmap_find_next_zero_area(map, size, start, nr, 0);
513 EXPORT_SYMBOL(gen_pool_first_fit);
516 * gen_pool_first_fit_order_align - find the first available region
517 * of memory matching the size requirement. The region will be aligned
518 * to the order of the size specified.
519 * @map: The address to base the search on
520 * @size: The bitmap size in bits
521 * @start: The bitnumber to start searching at
522 * @nr: The number of zeroed bits we're looking for
523 * @data: additional data - unused
525 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
526 unsigned long size, unsigned long start,
527 unsigned int nr, void *data)
529 unsigned long align_mask = roundup_pow_of_two(nr) - 1;
531 return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
533 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
536 * gen_pool_best_fit - find the best fitting region of memory
537 * macthing the size requirement (no alignment constraint)
538 * @map: The address to base the search on
539 * @size: The bitmap size in bits
540 * @start: The bitnumber to start searching at
541 * @nr: The number of zeroed bits we're looking for
542 * @data: additional data - unused
544 * Iterate over the bitmap to find the smallest free region
545 * which we can allocate the memory.
547 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
548 unsigned long start, unsigned int nr, void *data)
550 unsigned long start_bit = size;
551 unsigned long len = size + 1;
554 index = bitmap_find_next_zero_area(map, size, start, nr, 0);
556 while (index < size) {
557 unsigned long next_bit = find_next_bit(map, size, index + nr);
558 if ((next_bit - index) < len) {
559 len = next_bit - index;
564 index = bitmap_find_next_zero_area(map, size,
565 next_bit + 1, nr, 0);
570 EXPORT_SYMBOL(gen_pool_best_fit);
572 static void devm_gen_pool_release(struct device *dev, void *res)
574 gen_pool_destroy(*(struct gen_pool **)res);
577 static int devm_gen_pool_match(struct device *dev, void *res, void *data)
579 struct gen_pool **p = res;
581 /* NULL data matches only a pool without an assigned name */
582 if (!data && !(*p)->name)
585 if (!data || !(*p)->name)
588 return !strcmp((*p)->name, data);
592 * gen_pool_get - Obtain the gen_pool (if any) for a device
593 * @dev: device to retrieve the gen_pool from
594 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
596 * Returns the gen_pool for the device if one is present, or NULL.
598 struct gen_pool *gen_pool_get(struct device *dev, const char *name)
602 p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
608 EXPORT_SYMBOL_GPL(gen_pool_get);
611 * devm_gen_pool_create - managed gen_pool_create
612 * @dev: device that provides the gen_pool
613 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
614 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
615 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
617 * Create a new special memory pool that can be used to manage special purpose
618 * memory not managed by the regular kmalloc/kfree interface. The pool will be
619 * automatically destroyed by the device management code.
621 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
622 int nid, const char *name)
624 struct gen_pool **ptr, *pool;
625 const char *pool_name = NULL;
627 /* Check that genpool to be created is uniquely addressed on device */
628 if (gen_pool_get(dev, name))
629 return ERR_PTR(-EINVAL);
632 pool_name = kstrdup_const(name, GFP_KERNEL);
634 return ERR_PTR(-ENOMEM);
637 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
641 pool = gen_pool_create(min_alloc_order, nid);
646 pool->name = pool_name;
647 devres_add(dev, ptr);
654 kfree_const(pool_name);
656 return ERR_PTR(-ENOMEM);
658 EXPORT_SYMBOL(devm_gen_pool_create);
662 * of_gen_pool_get - find a pool by phandle property
664 * @propname: property name containing phandle(s)
665 * @index: index into the phandle array
667 * Returns the pool that contains the chunk starting at the physical
668 * address of the device tree node pointed at by the phandle property,
669 * or NULL if not found.
671 struct gen_pool *of_gen_pool_get(struct device_node *np,
672 const char *propname, int index)
674 struct platform_device *pdev;
675 struct device_node *np_pool, *parent;
676 const char *name = NULL;
677 struct gen_pool *pool = NULL;
679 np_pool = of_parse_phandle(np, propname, index);
683 pdev = of_find_device_by_node(np_pool);
685 /* Check if named gen_pool is created by parent node device */
686 parent = of_get_parent(np_pool);
687 pdev = of_find_device_by_node(parent);
690 of_property_read_string(np_pool, "label", &name);
692 name = np_pool->name;
695 pool = gen_pool_get(&pdev->dev, name);
696 of_node_put(np_pool);
700 EXPORT_SYMBOL_GPL(of_gen_pool_get);
701 #endif /* CONFIG_OF */