GNU Linux-libre 5.19-rc6-gnu
[releases.git] / lib / crypto / curve25519-fiat32.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright (C) 2015-2016 The fiat-crypto Authors.
4  * Copyright (C) 2018-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
5  *
6  * This is a machine-generated formally verified implementation of Curve25519
7  * ECDH from: <https://github.com/mit-plv/fiat-crypto>. Though originally
8  * machine generated, it has been tweaked to be suitable for use in the kernel.
9  * It is optimized for 32-bit machines and machines that cannot work efficiently
10  * with 128-bit integer types.
11  */
12
13 #include <asm/unaligned.h>
14 #include <crypto/curve25519.h>
15 #include <linux/string.h>
16
17 /* fe means field element. Here the field is \Z/(2^255-19). An element t,
18  * entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
19  * t[3]+2^102 t[4]+...+2^230 t[9].
20  * fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc.
21  * Multiplication and carrying produce fe from fe_loose.
22  */
23 typedef struct fe { u32 v[10]; } fe;
24
25 /* fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc
26  * Addition and subtraction produce fe_loose from (fe, fe).
27  */
28 typedef struct fe_loose { u32 v[10]; } fe_loose;
29
30 static __always_inline void fe_frombytes_impl(u32 h[10], const u8 *s)
31 {
32         /* Ignores top bit of s. */
33         u32 a0 = get_unaligned_le32(s);
34         u32 a1 = get_unaligned_le32(s+4);
35         u32 a2 = get_unaligned_le32(s+8);
36         u32 a3 = get_unaligned_le32(s+12);
37         u32 a4 = get_unaligned_le32(s+16);
38         u32 a5 = get_unaligned_le32(s+20);
39         u32 a6 = get_unaligned_le32(s+24);
40         u32 a7 = get_unaligned_le32(s+28);
41         h[0] = a0&((1<<26)-1);                    /* 26 used, 32-26 left.   26 */
42         h[1] = (a0>>26) | ((a1&((1<<19)-1))<< 6); /* (32-26) + 19 =  6+19 = 25 */
43         h[2] = (a1>>19) | ((a2&((1<<13)-1))<<13); /* (32-19) + 13 = 13+13 = 26 */
44         h[3] = (a2>>13) | ((a3&((1<< 6)-1))<<19); /* (32-13) +  6 = 19+ 6 = 25 */
45         h[4] = (a3>> 6);                          /* (32- 6)              = 26 */
46         h[5] = a4&((1<<25)-1);                    /*                        25 */
47         h[6] = (a4>>25) | ((a5&((1<<19)-1))<< 7); /* (32-25) + 19 =  7+19 = 26 */
48         h[7] = (a5>>19) | ((a6&((1<<12)-1))<<13); /* (32-19) + 12 = 13+12 = 25 */
49         h[8] = (a6>>12) | ((a7&((1<< 6)-1))<<20); /* (32-12) +  6 = 20+ 6 = 26 */
50         h[9] = (a7>> 6)&((1<<25)-1); /*                                     25 */
51 }
52
53 static __always_inline void fe_frombytes(fe *h, const u8 *s)
54 {
55         fe_frombytes_impl(h->v, s);
56 }
57
58 static __always_inline u8 /*bool*/
59 addcarryx_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
60 {
61         /* This function extracts 25 bits of result and 1 bit of carry
62          * (26 total), so a 32-bit intermediate is sufficient.
63          */
64         u32 x = a + b + c;
65         *low = x & ((1 << 25) - 1);
66         return (x >> 25) & 1;
67 }
68
69 static __always_inline u8 /*bool*/
70 addcarryx_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
71 {
72         /* This function extracts 26 bits of result and 1 bit of carry
73          * (27 total), so a 32-bit intermediate is sufficient.
74          */
75         u32 x = a + b + c;
76         *low = x & ((1 << 26) - 1);
77         return (x >> 26) & 1;
78 }
79
80 static __always_inline u8 /*bool*/
81 subborrow_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
82 {
83         /* This function extracts 25 bits of result and 1 bit of borrow
84          * (26 total), so a 32-bit intermediate is sufficient.
85          */
86         u32 x = a - b - c;
87         *low = x & ((1 << 25) - 1);
88         return x >> 31;
89 }
90
91 static __always_inline u8 /*bool*/
92 subborrow_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
93 {
94         /* This function extracts 26 bits of result and 1 bit of borrow
95          *(27 total), so a 32-bit intermediate is sufficient.
96          */
97         u32 x = a - b - c;
98         *low = x & ((1 << 26) - 1);
99         return x >> 31;
100 }
101
102 static __always_inline u32 cmovznz32(u32 t, u32 z, u32 nz)
103 {
104         t = -!!t; /* all set if nonzero, 0 if 0 */
105         return (t&nz) | ((~t)&z);
106 }
107
108 static __always_inline void fe_freeze(u32 out[10], const u32 in1[10])
109 {
110         { const u32 x17 = in1[9];
111         { const u32 x18 = in1[8];
112         { const u32 x16 = in1[7];
113         { const u32 x14 = in1[6];
114         { const u32 x12 = in1[5];
115         { const u32 x10 = in1[4];
116         { const u32 x8 = in1[3];
117         { const u32 x6 = in1[2];
118         { const u32 x4 = in1[1];
119         { const u32 x2 = in1[0];
120         { u32 x20; u8/*bool*/ x21 = subborrow_u26(0x0, x2, 0x3ffffed, &x20);
121         { u32 x23; u8/*bool*/ x24 = subborrow_u25(x21, x4, 0x1ffffff, &x23);
122         { u32 x26; u8/*bool*/ x27 = subborrow_u26(x24, x6, 0x3ffffff, &x26);
123         { u32 x29; u8/*bool*/ x30 = subborrow_u25(x27, x8, 0x1ffffff, &x29);
124         { u32 x32; u8/*bool*/ x33 = subborrow_u26(x30, x10, 0x3ffffff, &x32);
125         { u32 x35; u8/*bool*/ x36 = subborrow_u25(x33, x12, 0x1ffffff, &x35);
126         { u32 x38; u8/*bool*/ x39 = subborrow_u26(x36, x14, 0x3ffffff, &x38);
127         { u32 x41; u8/*bool*/ x42 = subborrow_u25(x39, x16, 0x1ffffff, &x41);
128         { u32 x44; u8/*bool*/ x45 = subborrow_u26(x42, x18, 0x3ffffff, &x44);
129         { u32 x47; u8/*bool*/ x48 = subborrow_u25(x45, x17, 0x1ffffff, &x47);
130         { u32 x49 = cmovznz32(x48, 0x0, 0xffffffff);
131         { u32 x50 = (x49 & 0x3ffffed);
132         { u32 x52; u8/*bool*/ x53 = addcarryx_u26(0x0, x20, x50, &x52);
133         { u32 x54 = (x49 & 0x1ffffff);
134         { u32 x56; u8/*bool*/ x57 = addcarryx_u25(x53, x23, x54, &x56);
135         { u32 x58 = (x49 & 0x3ffffff);
136         { u32 x60; u8/*bool*/ x61 = addcarryx_u26(x57, x26, x58, &x60);
137         { u32 x62 = (x49 & 0x1ffffff);
138         { u32 x64; u8/*bool*/ x65 = addcarryx_u25(x61, x29, x62, &x64);
139         { u32 x66 = (x49 & 0x3ffffff);
140         { u32 x68; u8/*bool*/ x69 = addcarryx_u26(x65, x32, x66, &x68);
141         { u32 x70 = (x49 & 0x1ffffff);
142         { u32 x72; u8/*bool*/ x73 = addcarryx_u25(x69, x35, x70, &x72);
143         { u32 x74 = (x49 & 0x3ffffff);
144         { u32 x76; u8/*bool*/ x77 = addcarryx_u26(x73, x38, x74, &x76);
145         { u32 x78 = (x49 & 0x1ffffff);
146         { u32 x80; u8/*bool*/ x81 = addcarryx_u25(x77, x41, x78, &x80);
147         { u32 x82 = (x49 & 0x3ffffff);
148         { u32 x84; u8/*bool*/ x85 = addcarryx_u26(x81, x44, x82, &x84);
149         { u32 x86 = (x49 & 0x1ffffff);
150         { u32 x88; addcarryx_u25(x85, x47, x86, &x88);
151         out[0] = x52;
152         out[1] = x56;
153         out[2] = x60;
154         out[3] = x64;
155         out[4] = x68;
156         out[5] = x72;
157         out[6] = x76;
158         out[7] = x80;
159         out[8] = x84;
160         out[9] = x88;
161         }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
162 }
163
164 static __always_inline void fe_tobytes(u8 s[32], const fe *f)
165 {
166         u32 h[10];
167         fe_freeze(h, f->v);
168         s[0] = h[0] >> 0;
169         s[1] = h[0] >> 8;
170         s[2] = h[0] >> 16;
171         s[3] = (h[0] >> 24) | (h[1] << 2);
172         s[4] = h[1] >> 6;
173         s[5] = h[1] >> 14;
174         s[6] = (h[1] >> 22) | (h[2] << 3);
175         s[7] = h[2] >> 5;
176         s[8] = h[2] >> 13;
177         s[9] = (h[2] >> 21) | (h[3] << 5);
178         s[10] = h[3] >> 3;
179         s[11] = h[3] >> 11;
180         s[12] = (h[3] >> 19) | (h[4] << 6);
181         s[13] = h[4] >> 2;
182         s[14] = h[4] >> 10;
183         s[15] = h[4] >> 18;
184         s[16] = h[5] >> 0;
185         s[17] = h[5] >> 8;
186         s[18] = h[5] >> 16;
187         s[19] = (h[5] >> 24) | (h[6] << 1);
188         s[20] = h[6] >> 7;
189         s[21] = h[6] >> 15;
190         s[22] = (h[6] >> 23) | (h[7] << 3);
191         s[23] = h[7] >> 5;
192         s[24] = h[7] >> 13;
193         s[25] = (h[7] >> 21) | (h[8] << 4);
194         s[26] = h[8] >> 4;
195         s[27] = h[8] >> 12;
196         s[28] = (h[8] >> 20) | (h[9] << 6);
197         s[29] = h[9] >> 2;
198         s[30] = h[9] >> 10;
199         s[31] = h[9] >> 18;
200 }
201
202 /* h = f */
203 static __always_inline void fe_copy(fe *h, const fe *f)
204 {
205         memmove(h, f, sizeof(u32) * 10);
206 }
207
208 static __always_inline void fe_copy_lt(fe_loose *h, const fe *f)
209 {
210         memmove(h, f, sizeof(u32) * 10);
211 }
212
213 /* h = 0 */
214 static __always_inline void fe_0(fe *h)
215 {
216         memset(h, 0, sizeof(u32) * 10);
217 }
218
219 /* h = 1 */
220 static __always_inline void fe_1(fe *h)
221 {
222         memset(h, 0, sizeof(u32) * 10);
223         h->v[0] = 1;
224 }
225
226 static noinline void fe_add_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
227 {
228         { const u32 x20 = in1[9];
229         { const u32 x21 = in1[8];
230         { const u32 x19 = in1[7];
231         { const u32 x17 = in1[6];
232         { const u32 x15 = in1[5];
233         { const u32 x13 = in1[4];
234         { const u32 x11 = in1[3];
235         { const u32 x9 = in1[2];
236         { const u32 x7 = in1[1];
237         { const u32 x5 = in1[0];
238         { const u32 x38 = in2[9];
239         { const u32 x39 = in2[8];
240         { const u32 x37 = in2[7];
241         { const u32 x35 = in2[6];
242         { const u32 x33 = in2[5];
243         { const u32 x31 = in2[4];
244         { const u32 x29 = in2[3];
245         { const u32 x27 = in2[2];
246         { const u32 x25 = in2[1];
247         { const u32 x23 = in2[0];
248         out[0] = (x5 + x23);
249         out[1] = (x7 + x25);
250         out[2] = (x9 + x27);
251         out[3] = (x11 + x29);
252         out[4] = (x13 + x31);
253         out[5] = (x15 + x33);
254         out[6] = (x17 + x35);
255         out[7] = (x19 + x37);
256         out[8] = (x21 + x39);
257         out[9] = (x20 + x38);
258         }}}}}}}}}}}}}}}}}}}}
259 }
260
261 /* h = f + g
262  * Can overlap h with f or g.
263  */
264 static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g)
265 {
266         fe_add_impl(h->v, f->v, g->v);
267 }
268
269 static noinline void fe_sub_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
270 {
271         { const u32 x20 = in1[9];
272         { const u32 x21 = in1[8];
273         { const u32 x19 = in1[7];
274         { const u32 x17 = in1[6];
275         { const u32 x15 = in1[5];
276         { const u32 x13 = in1[4];
277         { const u32 x11 = in1[3];
278         { const u32 x9 = in1[2];
279         { const u32 x7 = in1[1];
280         { const u32 x5 = in1[0];
281         { const u32 x38 = in2[9];
282         { const u32 x39 = in2[8];
283         { const u32 x37 = in2[7];
284         { const u32 x35 = in2[6];
285         { const u32 x33 = in2[5];
286         { const u32 x31 = in2[4];
287         { const u32 x29 = in2[3];
288         { const u32 x27 = in2[2];
289         { const u32 x25 = in2[1];
290         { const u32 x23 = in2[0];
291         out[0] = ((0x7ffffda + x5) - x23);
292         out[1] = ((0x3fffffe + x7) - x25);
293         out[2] = ((0x7fffffe + x9) - x27);
294         out[3] = ((0x3fffffe + x11) - x29);
295         out[4] = ((0x7fffffe + x13) - x31);
296         out[5] = ((0x3fffffe + x15) - x33);
297         out[6] = ((0x7fffffe + x17) - x35);
298         out[7] = ((0x3fffffe + x19) - x37);
299         out[8] = ((0x7fffffe + x21) - x39);
300         out[9] = ((0x3fffffe + x20) - x38);
301         }}}}}}}}}}}}}}}}}}}}
302 }
303
304 /* h = f - g
305  * Can overlap h with f or g.
306  */
307 static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g)
308 {
309         fe_sub_impl(h->v, f->v, g->v);
310 }
311
312 static noinline void fe_mul_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
313 {
314         { const u32 x20 = in1[9];
315         { const u32 x21 = in1[8];
316         { const u32 x19 = in1[7];
317         { const u32 x17 = in1[6];
318         { const u32 x15 = in1[5];
319         { const u32 x13 = in1[4];
320         { const u32 x11 = in1[3];
321         { const u32 x9 = in1[2];
322         { const u32 x7 = in1[1];
323         { const u32 x5 = in1[0];
324         { const u32 x38 = in2[9];
325         { const u32 x39 = in2[8];
326         { const u32 x37 = in2[7];
327         { const u32 x35 = in2[6];
328         { const u32 x33 = in2[5];
329         { const u32 x31 = in2[4];
330         { const u32 x29 = in2[3];
331         { const u32 x27 = in2[2];
332         { const u32 x25 = in2[1];
333         { const u32 x23 = in2[0];
334         { u64 x40 = ((u64)x23 * x5);
335         { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5));
336         { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5));
337         { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5));
338         { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5));
339         { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5));
340         { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5));
341         { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5));
342         { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5));
343         { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5));
344         { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9));
345         { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9));
346         { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13));
347         { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13));
348         { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17));
349         { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17));
350         { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19))));
351         { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21));
352         { u64 x58 = ((u64)(0x2 * x38) * x20);
353         { u64 x59 = (x48 + (x58 << 0x4));
354         { u64 x60 = (x59 + (x58 << 0x1));
355         { u64 x61 = (x60 + x58);
356         { u64 x62 = (x47 + (x57 << 0x4));
357         { u64 x63 = (x62 + (x57 << 0x1));
358         { u64 x64 = (x63 + x57);
359         { u64 x65 = (x46 + (x56 << 0x4));
360         { u64 x66 = (x65 + (x56 << 0x1));
361         { u64 x67 = (x66 + x56);
362         { u64 x68 = (x45 + (x55 << 0x4));
363         { u64 x69 = (x68 + (x55 << 0x1));
364         { u64 x70 = (x69 + x55);
365         { u64 x71 = (x44 + (x54 << 0x4));
366         { u64 x72 = (x71 + (x54 << 0x1));
367         { u64 x73 = (x72 + x54);
368         { u64 x74 = (x43 + (x53 << 0x4));
369         { u64 x75 = (x74 + (x53 << 0x1));
370         { u64 x76 = (x75 + x53);
371         { u64 x77 = (x42 + (x52 << 0x4));
372         { u64 x78 = (x77 + (x52 << 0x1));
373         { u64 x79 = (x78 + x52);
374         { u64 x80 = (x41 + (x51 << 0x4));
375         { u64 x81 = (x80 + (x51 << 0x1));
376         { u64 x82 = (x81 + x51);
377         { u64 x83 = (x40 + (x50 << 0x4));
378         { u64 x84 = (x83 + (x50 << 0x1));
379         { u64 x85 = (x84 + x50);
380         { u64 x86 = (x85 >> 0x1a);
381         { u32 x87 = ((u32)x85 & 0x3ffffff);
382         { u64 x88 = (x86 + x82);
383         { u64 x89 = (x88 >> 0x19);
384         { u32 x90 = ((u32)x88 & 0x1ffffff);
385         { u64 x91 = (x89 + x79);
386         { u64 x92 = (x91 >> 0x1a);
387         { u32 x93 = ((u32)x91 & 0x3ffffff);
388         { u64 x94 = (x92 + x76);
389         { u64 x95 = (x94 >> 0x19);
390         { u32 x96 = ((u32)x94 & 0x1ffffff);
391         { u64 x97 = (x95 + x73);
392         { u64 x98 = (x97 >> 0x1a);
393         { u32 x99 = ((u32)x97 & 0x3ffffff);
394         { u64 x100 = (x98 + x70);
395         { u64 x101 = (x100 >> 0x19);
396         { u32 x102 = ((u32)x100 & 0x1ffffff);
397         { u64 x103 = (x101 + x67);
398         { u64 x104 = (x103 >> 0x1a);
399         { u32 x105 = ((u32)x103 & 0x3ffffff);
400         { u64 x106 = (x104 + x64);
401         { u64 x107 = (x106 >> 0x19);
402         { u32 x108 = ((u32)x106 & 0x1ffffff);
403         { u64 x109 = (x107 + x61);
404         { u64 x110 = (x109 >> 0x1a);
405         { u32 x111 = ((u32)x109 & 0x3ffffff);
406         { u64 x112 = (x110 + x49);
407         { u64 x113 = (x112 >> 0x19);
408         { u32 x114 = ((u32)x112 & 0x1ffffff);
409         { u64 x115 = (x87 + (0x13 * x113));
410         { u32 x116 = (u32) (x115 >> 0x1a);
411         { u32 x117 = ((u32)x115 & 0x3ffffff);
412         { u32 x118 = (x116 + x90);
413         { u32 x119 = (x118 >> 0x19);
414         { u32 x120 = (x118 & 0x1ffffff);
415         out[0] = x117;
416         out[1] = x120;
417         out[2] = (x119 + x93);
418         out[3] = x96;
419         out[4] = x99;
420         out[5] = x102;
421         out[6] = x105;
422         out[7] = x108;
423         out[8] = x111;
424         out[9] = x114;
425         }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
426 }
427
428 static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g)
429 {
430         fe_mul_impl(h->v, f->v, g->v);
431 }
432
433 static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g)
434 {
435         fe_mul_impl(h->v, f->v, g->v);
436 }
437
438 static __always_inline void
439 fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g)
440 {
441         fe_mul_impl(h->v, f->v, g->v);
442 }
443
444 static noinline void fe_sqr_impl(u32 out[10], const u32 in1[10])
445 {
446         { const u32 x17 = in1[9];
447         { const u32 x18 = in1[8];
448         { const u32 x16 = in1[7];
449         { const u32 x14 = in1[6];
450         { const u32 x12 = in1[5];
451         { const u32 x10 = in1[4];
452         { const u32 x8 = in1[3];
453         { const u32 x6 = in1[2];
454         { const u32 x4 = in1[1];
455         { const u32 x2 = in1[0];
456         { u64 x19 = ((u64)x2 * x2);
457         { u64 x20 = ((u64)(0x2 * x2) * x4);
458         { u64 x21 = (0x2 * (((u64)x4 * x4) + ((u64)x2 * x6)));
459         { u64 x22 = (0x2 * (((u64)x4 * x6) + ((u64)x2 * x8)));
460         { u64 x23 = ((((u64)x6 * x6) + ((u64)(0x4 * x4) * x8)) + ((u64)(0x2 * x2) * x10));
461         { u64 x24 = (0x2 * ((((u64)x6 * x8) + ((u64)x4 * x10)) + ((u64)x2 * x12)));
462         { u64 x25 = (0x2 * (((((u64)x8 * x8) + ((u64)x6 * x10)) + ((u64)x2 * x14)) + ((u64)(0x2 * x4) * x12)));
463         { u64 x26 = (0x2 * (((((u64)x8 * x10) + ((u64)x6 * x12)) + ((u64)x4 * x14)) + ((u64)x2 * x16)));
464         { u64 x27 = (((u64)x10 * x10) + (0x2 * ((((u64)x6 * x14) + ((u64)x2 * x18)) + (0x2 * (((u64)x4 * x16) + ((u64)x8 * x12))))));
465         { u64 x28 = (0x2 * ((((((u64)x10 * x12) + ((u64)x8 * x14)) + ((u64)x6 * x16)) + ((u64)x4 * x18)) + ((u64)x2 * x17)));
466         { u64 x29 = (0x2 * (((((u64)x12 * x12) + ((u64)x10 * x14)) + ((u64)x6 * x18)) + (0x2 * (((u64)x8 * x16) + ((u64)x4 * x17)))));
467         { u64 x30 = (0x2 * (((((u64)x12 * x14) + ((u64)x10 * x16)) + ((u64)x8 * x18)) + ((u64)x6 * x17)));
468         { u64 x31 = (((u64)x14 * x14) + (0x2 * (((u64)x10 * x18) + (0x2 * (((u64)x12 * x16) + ((u64)x8 * x17))))));
469         { u64 x32 = (0x2 * ((((u64)x14 * x16) + ((u64)x12 * x18)) + ((u64)x10 * x17)));
470         { u64 x33 = (0x2 * ((((u64)x16 * x16) + ((u64)x14 * x18)) + ((u64)(0x2 * x12) * x17)));
471         { u64 x34 = (0x2 * (((u64)x16 * x18) + ((u64)x14 * x17)));
472         { u64 x35 = (((u64)x18 * x18) + ((u64)(0x4 * x16) * x17));
473         { u64 x36 = ((u64)(0x2 * x18) * x17);
474         { u64 x37 = ((u64)(0x2 * x17) * x17);
475         { u64 x38 = (x27 + (x37 << 0x4));
476         { u64 x39 = (x38 + (x37 << 0x1));
477         { u64 x40 = (x39 + x37);
478         { u64 x41 = (x26 + (x36 << 0x4));
479         { u64 x42 = (x41 + (x36 << 0x1));
480         { u64 x43 = (x42 + x36);
481         { u64 x44 = (x25 + (x35 << 0x4));
482         { u64 x45 = (x44 + (x35 << 0x1));
483         { u64 x46 = (x45 + x35);
484         { u64 x47 = (x24 + (x34 << 0x4));
485         { u64 x48 = (x47 + (x34 << 0x1));
486         { u64 x49 = (x48 + x34);
487         { u64 x50 = (x23 + (x33 << 0x4));
488         { u64 x51 = (x50 + (x33 << 0x1));
489         { u64 x52 = (x51 + x33);
490         { u64 x53 = (x22 + (x32 << 0x4));
491         { u64 x54 = (x53 + (x32 << 0x1));
492         { u64 x55 = (x54 + x32);
493         { u64 x56 = (x21 + (x31 << 0x4));
494         { u64 x57 = (x56 + (x31 << 0x1));
495         { u64 x58 = (x57 + x31);
496         { u64 x59 = (x20 + (x30 << 0x4));
497         { u64 x60 = (x59 + (x30 << 0x1));
498         { u64 x61 = (x60 + x30);
499         { u64 x62 = (x19 + (x29 << 0x4));
500         { u64 x63 = (x62 + (x29 << 0x1));
501         { u64 x64 = (x63 + x29);
502         { u64 x65 = (x64 >> 0x1a);
503         { u32 x66 = ((u32)x64 & 0x3ffffff);
504         { u64 x67 = (x65 + x61);
505         { u64 x68 = (x67 >> 0x19);
506         { u32 x69 = ((u32)x67 & 0x1ffffff);
507         { u64 x70 = (x68 + x58);
508         { u64 x71 = (x70 >> 0x1a);
509         { u32 x72 = ((u32)x70 & 0x3ffffff);
510         { u64 x73 = (x71 + x55);
511         { u64 x74 = (x73 >> 0x19);
512         { u32 x75 = ((u32)x73 & 0x1ffffff);
513         { u64 x76 = (x74 + x52);
514         { u64 x77 = (x76 >> 0x1a);
515         { u32 x78 = ((u32)x76 & 0x3ffffff);
516         { u64 x79 = (x77 + x49);
517         { u64 x80 = (x79 >> 0x19);
518         { u32 x81 = ((u32)x79 & 0x1ffffff);
519         { u64 x82 = (x80 + x46);
520         { u64 x83 = (x82 >> 0x1a);
521         { u32 x84 = ((u32)x82 & 0x3ffffff);
522         { u64 x85 = (x83 + x43);
523         { u64 x86 = (x85 >> 0x19);
524         { u32 x87 = ((u32)x85 & 0x1ffffff);
525         { u64 x88 = (x86 + x40);
526         { u64 x89 = (x88 >> 0x1a);
527         { u32 x90 = ((u32)x88 & 0x3ffffff);
528         { u64 x91 = (x89 + x28);
529         { u64 x92 = (x91 >> 0x19);
530         { u32 x93 = ((u32)x91 & 0x1ffffff);
531         { u64 x94 = (x66 + (0x13 * x92));
532         { u32 x95 = (u32) (x94 >> 0x1a);
533         { u32 x96 = ((u32)x94 & 0x3ffffff);
534         { u32 x97 = (x95 + x69);
535         { u32 x98 = (x97 >> 0x19);
536         { u32 x99 = (x97 & 0x1ffffff);
537         out[0] = x96;
538         out[1] = x99;
539         out[2] = (x98 + x72);
540         out[3] = x75;
541         out[4] = x78;
542         out[5] = x81;
543         out[6] = x84;
544         out[7] = x87;
545         out[8] = x90;
546         out[9] = x93;
547         }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
548 }
549
550 static __always_inline void fe_sq_tl(fe *h, const fe_loose *f)
551 {
552         fe_sqr_impl(h->v, f->v);
553 }
554
555 static __always_inline void fe_sq_tt(fe *h, const fe *f)
556 {
557         fe_sqr_impl(h->v, f->v);
558 }
559
560 static __always_inline void fe_loose_invert(fe *out, const fe_loose *z)
561 {
562         fe t0;
563         fe t1;
564         fe t2;
565         fe t3;
566         int i;
567
568         fe_sq_tl(&t0, z);
569         fe_sq_tt(&t1, &t0);
570         for (i = 1; i < 2; ++i)
571                 fe_sq_tt(&t1, &t1);
572         fe_mul_tlt(&t1, z, &t1);
573         fe_mul_ttt(&t0, &t0, &t1);
574         fe_sq_tt(&t2, &t0);
575         fe_mul_ttt(&t1, &t1, &t2);
576         fe_sq_tt(&t2, &t1);
577         for (i = 1; i < 5; ++i)
578                 fe_sq_tt(&t2, &t2);
579         fe_mul_ttt(&t1, &t2, &t1);
580         fe_sq_tt(&t2, &t1);
581         for (i = 1; i < 10; ++i)
582                 fe_sq_tt(&t2, &t2);
583         fe_mul_ttt(&t2, &t2, &t1);
584         fe_sq_tt(&t3, &t2);
585         for (i = 1; i < 20; ++i)
586                 fe_sq_tt(&t3, &t3);
587         fe_mul_ttt(&t2, &t3, &t2);
588         fe_sq_tt(&t2, &t2);
589         for (i = 1; i < 10; ++i)
590                 fe_sq_tt(&t2, &t2);
591         fe_mul_ttt(&t1, &t2, &t1);
592         fe_sq_tt(&t2, &t1);
593         for (i = 1; i < 50; ++i)
594                 fe_sq_tt(&t2, &t2);
595         fe_mul_ttt(&t2, &t2, &t1);
596         fe_sq_tt(&t3, &t2);
597         for (i = 1; i < 100; ++i)
598                 fe_sq_tt(&t3, &t3);
599         fe_mul_ttt(&t2, &t3, &t2);
600         fe_sq_tt(&t2, &t2);
601         for (i = 1; i < 50; ++i)
602                 fe_sq_tt(&t2, &t2);
603         fe_mul_ttt(&t1, &t2, &t1);
604         fe_sq_tt(&t1, &t1);
605         for (i = 1; i < 5; ++i)
606                 fe_sq_tt(&t1, &t1);
607         fe_mul_ttt(out, &t1, &t0);
608 }
609
610 static __always_inline void fe_invert(fe *out, const fe *z)
611 {
612         fe_loose l;
613         fe_copy_lt(&l, z);
614         fe_loose_invert(out, &l);
615 }
616
617 /* Replace (f,g) with (g,f) if b == 1;
618  * replace (f,g) with (f,g) if b == 0.
619  *
620  * Preconditions: b in {0,1}
621  */
622 static noinline void fe_cswap(fe *f, fe *g, unsigned int b)
623 {
624         unsigned i;
625         b = 0 - b;
626         for (i = 0; i < 10; i++) {
627                 u32 x = f->v[i] ^ g->v[i];
628                 x &= b;
629                 f->v[i] ^= x;
630                 g->v[i] ^= x;
631         }
632 }
633
634 /* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/
635 static __always_inline void fe_mul_121666_impl(u32 out[10], const u32 in1[10])
636 {
637         { const u32 x20 = in1[9];
638         { const u32 x21 = in1[8];
639         { const u32 x19 = in1[7];
640         { const u32 x17 = in1[6];
641         { const u32 x15 = in1[5];
642         { const u32 x13 = in1[4];
643         { const u32 x11 = in1[3];
644         { const u32 x9 = in1[2];
645         { const u32 x7 = in1[1];
646         { const u32 x5 = in1[0];
647         { const u32 x38 = 0;
648         { const u32 x39 = 0;
649         { const u32 x37 = 0;
650         { const u32 x35 = 0;
651         { const u32 x33 = 0;
652         { const u32 x31 = 0;
653         { const u32 x29 = 0;
654         { const u32 x27 = 0;
655         { const u32 x25 = 0;
656         { const u32 x23 = 121666;
657         { u64 x40 = ((u64)x23 * x5);
658         { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5));
659         { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5));
660         { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5));
661         { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5));
662         { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5));
663         { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5));
664         { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5));
665         { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5));
666         { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5));
667         { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9));
668         { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9));
669         { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13));
670         { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13));
671         { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17));
672         { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17));
673         { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19))));
674         { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21));
675         { u64 x58 = ((u64)(0x2 * x38) * x20);
676         { u64 x59 = (x48 + (x58 << 0x4));
677         { u64 x60 = (x59 + (x58 << 0x1));
678         { u64 x61 = (x60 + x58);
679         { u64 x62 = (x47 + (x57 << 0x4));
680         { u64 x63 = (x62 + (x57 << 0x1));
681         { u64 x64 = (x63 + x57);
682         { u64 x65 = (x46 + (x56 << 0x4));
683         { u64 x66 = (x65 + (x56 << 0x1));
684         { u64 x67 = (x66 + x56);
685         { u64 x68 = (x45 + (x55 << 0x4));
686         { u64 x69 = (x68 + (x55 << 0x1));
687         { u64 x70 = (x69 + x55);
688         { u64 x71 = (x44 + (x54 << 0x4));
689         { u64 x72 = (x71 + (x54 << 0x1));
690         { u64 x73 = (x72 + x54);
691         { u64 x74 = (x43 + (x53 << 0x4));
692         { u64 x75 = (x74 + (x53 << 0x1));
693         { u64 x76 = (x75 + x53);
694         { u64 x77 = (x42 + (x52 << 0x4));
695         { u64 x78 = (x77 + (x52 << 0x1));
696         { u64 x79 = (x78 + x52);
697         { u64 x80 = (x41 + (x51 << 0x4));
698         { u64 x81 = (x80 + (x51 << 0x1));
699         { u64 x82 = (x81 + x51);
700         { u64 x83 = (x40 + (x50 << 0x4));
701         { u64 x84 = (x83 + (x50 << 0x1));
702         { u64 x85 = (x84 + x50);
703         { u64 x86 = (x85 >> 0x1a);
704         { u32 x87 = ((u32)x85 & 0x3ffffff);
705         { u64 x88 = (x86 + x82);
706         { u64 x89 = (x88 >> 0x19);
707         { u32 x90 = ((u32)x88 & 0x1ffffff);
708         { u64 x91 = (x89 + x79);
709         { u64 x92 = (x91 >> 0x1a);
710         { u32 x93 = ((u32)x91 & 0x3ffffff);
711         { u64 x94 = (x92 + x76);
712         { u64 x95 = (x94 >> 0x19);
713         { u32 x96 = ((u32)x94 & 0x1ffffff);
714         { u64 x97 = (x95 + x73);
715         { u64 x98 = (x97 >> 0x1a);
716         { u32 x99 = ((u32)x97 & 0x3ffffff);
717         { u64 x100 = (x98 + x70);
718         { u64 x101 = (x100 >> 0x19);
719         { u32 x102 = ((u32)x100 & 0x1ffffff);
720         { u64 x103 = (x101 + x67);
721         { u64 x104 = (x103 >> 0x1a);
722         { u32 x105 = ((u32)x103 & 0x3ffffff);
723         { u64 x106 = (x104 + x64);
724         { u64 x107 = (x106 >> 0x19);
725         { u32 x108 = ((u32)x106 & 0x1ffffff);
726         { u64 x109 = (x107 + x61);
727         { u64 x110 = (x109 >> 0x1a);
728         { u32 x111 = ((u32)x109 & 0x3ffffff);
729         { u64 x112 = (x110 + x49);
730         { u64 x113 = (x112 >> 0x19);
731         { u32 x114 = ((u32)x112 & 0x1ffffff);
732         { u64 x115 = (x87 + (0x13 * x113));
733         { u32 x116 = (u32) (x115 >> 0x1a);
734         { u32 x117 = ((u32)x115 & 0x3ffffff);
735         { u32 x118 = (x116 + x90);
736         { u32 x119 = (x118 >> 0x19);
737         { u32 x120 = (x118 & 0x1ffffff);
738         out[0] = x117;
739         out[1] = x120;
740         out[2] = (x119 + x93);
741         out[3] = x96;
742         out[4] = x99;
743         out[5] = x102;
744         out[6] = x105;
745         out[7] = x108;
746         out[8] = x111;
747         out[9] = x114;
748         }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
749 }
750
751 static __always_inline void fe_mul121666(fe *h, const fe_loose *f)
752 {
753         fe_mul_121666_impl(h->v, f->v);
754 }
755
756 void curve25519_generic(u8 out[CURVE25519_KEY_SIZE],
757                         const u8 scalar[CURVE25519_KEY_SIZE],
758                         const u8 point[CURVE25519_KEY_SIZE])
759 {
760         fe x1, x2, z2, x3, z3;
761         fe_loose x2l, z2l, x3l;
762         unsigned swap = 0;
763         int pos;
764         u8 e[32];
765
766         memcpy(e, scalar, 32);
767         curve25519_clamp_secret(e);
768
769         /* The following implementation was transcribed to Coq and proven to
770          * correspond to unary scalar multiplication in affine coordinates given
771          * that x1 != 0 is the x coordinate of some point on the curve. It was
772          * also checked in Coq that doing a ladderstep with x1 = x3 = 0 gives
773          * z2' = z3' = 0, and z2 = z3 = 0 gives z2' = z3' = 0. The statement was
774          * quantified over the underlying field, so it applies to Curve25519
775          * itself and the quadratic twist of Curve25519. It was not proven in
776          * Coq that prime-field arithmetic correctly simulates extension-field
777          * arithmetic on prime-field values. The decoding of the byte array
778          * representation of e was not considered.
779          *
780          * Specification of Montgomery curves in affine coordinates:
781          * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27>
782          *
783          * Proof that these form a group that is isomorphic to a Weierstrass
784          * curve:
785          * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35>
786          *
787          * Coq transcription and correctness proof of the loop
788          * (where scalarbits=255):
789          * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118>
790          * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278>
791          * preconditions: 0 <= e < 2^255 (not necessarily e < order),
792          * fe_invert(0) = 0
793          */
794         fe_frombytes(&x1, point);
795         fe_1(&x2);
796         fe_0(&z2);
797         fe_copy(&x3, &x1);
798         fe_1(&z3);
799
800         for (pos = 254; pos >= 0; --pos) {
801                 fe tmp0, tmp1;
802                 fe_loose tmp0l, tmp1l;
803                 /* loop invariant as of right before the test, for the case
804                  * where x1 != 0:
805                  *   pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3
806                  *   is nonzero
807                  *   let r := e >> (pos+1) in the following equalities of
808                  *   projective points:
809                  *   to_xz (r*P)     === if swap then (x3, z3) else (x2, z2)
810                  *   to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3)
811                  *   x1 is the nonzero x coordinate of the nonzero
812                  *   point (r*P-(r+1)*P)
813                  */
814                 unsigned b = 1 & (e[pos / 8] >> (pos & 7));
815                 swap ^= b;
816                 fe_cswap(&x2, &x3, swap);
817                 fe_cswap(&z2, &z3, swap);
818                 swap = b;
819                 /* Coq transcription of ladderstep formula (called from
820                  * transcribed loop):
821                  * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89>
822                  * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131>
823                  * x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217>
824                  * x1  = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147>
825                  */
826                 fe_sub(&tmp0l, &x3, &z3);
827                 fe_sub(&tmp1l, &x2, &z2);
828                 fe_add(&x2l, &x2, &z2);
829                 fe_add(&z2l, &x3, &z3);
830                 fe_mul_tll(&z3, &tmp0l, &x2l);
831                 fe_mul_tll(&z2, &z2l, &tmp1l);
832                 fe_sq_tl(&tmp0, &tmp1l);
833                 fe_sq_tl(&tmp1, &x2l);
834                 fe_add(&x3l, &z3, &z2);
835                 fe_sub(&z2l, &z3, &z2);
836                 fe_mul_ttt(&x2, &tmp1, &tmp0);
837                 fe_sub(&tmp1l, &tmp1, &tmp0);
838                 fe_sq_tl(&z2, &z2l);
839                 fe_mul121666(&z3, &tmp1l);
840                 fe_sq_tl(&x3, &x3l);
841                 fe_add(&tmp0l, &tmp0, &z3);
842                 fe_mul_ttt(&z3, &x1, &z2);
843                 fe_mul_tll(&z2, &tmp1l, &tmp0l);
844         }
845         /* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3)
846          * else (x2, z2)
847          */
848         fe_cswap(&x2, &x3, swap);
849         fe_cswap(&z2, &z3, swap);
850
851         fe_invert(&z2, &z2);
852         fe_mul_ttt(&x2, &x2, &z2);
853         fe_tobytes(out, &x2);
854
855         memzero_explicit(&x1, sizeof(x1));
856         memzero_explicit(&x2, sizeof(x2));
857         memzero_explicit(&z2, sizeof(z2));
858         memzero_explicit(&x3, sizeof(x3));
859         memzero_explicit(&z3, sizeof(z3));
860         memzero_explicit(&x2l, sizeof(x2l));
861         memzero_explicit(&z2l, sizeof(z2l));
862         memzero_explicit(&x3l, sizeof(x3l));
863         memzero_explicit(&e, sizeof(e));
864 }