2 * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
3 * cleaned up code to current version of sparse and added the slicing-by-8
4 * algorithm to the closely similar existing slicing-by-4 algorithm.
6 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
7 * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
8 * Code was from the public domain, copyright abandoned. Code was
9 * subsequently included in the kernel, thus was re-licensed under the
12 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
13 * Same crc32 function was used in 5 other places in the kernel.
14 * I made one version, and deleted the others.
15 * There are various incantations of crc32(). Some use a seed of 0 or ~0.
16 * Some xor at the end with ~0. The generic crc32() function takes
17 * seed as an argument, and doesn't xor at the end. Then individual
18 * users can do whatever they need.
19 * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
20 * fs/jffs2 uses seed 0, doesn't xor with ~0.
21 * fs/partitions/efi.c uses seed ~0, xor's with ~0.
23 * This source code is licensed under the GNU General Public License,
24 * Version 2. See the file COPYING for more details.
27 /* see: Documentation/crc32.txt for a description of algorithms */
29 #include <linux/crc32.h>
30 #include <linux/crc32poly.h>
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/sched.h>
34 #include "crc32defs.h"
37 # define tole(x) ((__force u32) cpu_to_le32(x))
43 # define tobe(x) ((__force u32) cpu_to_be32(x))
48 #include "crc32table.h"
50 MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
51 MODULE_DESCRIPTION("Various CRC32 calculations");
52 MODULE_LICENSE("GPL");
54 #if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
56 /* implements slicing-by-4 or slicing-by-8 algorithm */
57 static inline u32 __pure
58 crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
60 # ifdef __LITTLE_ENDIAN
61 # define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
62 # define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
63 t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
64 # define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
65 t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
67 # define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
68 # define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
69 t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
70 # define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
71 t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
78 const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
79 # if CRC_LE_BITS != 32
80 const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
85 if (unlikely((long)buf & 3 && len)) {
88 } while ((--len) && ((long)buf)&3);
91 # if CRC_LE_BITS == 32
102 for (i = 0; i < len; i++) {
104 for (--b; len; --len) {
106 q = crc ^ *++b; /* use pre increment for speed */
107 # if CRC_LE_BITS == 32
116 /* And the last few bytes */
118 u8 *p = (u8 *)(b + 1) - 1;
120 for (i = 0; i < len; i++)
121 DO_CRC(*++p); /* use pre increment for speed */
124 DO_CRC(*++p); /* use pre increment for speed */
137 * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
139 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for other
140 * uses, or the previous crc32/crc32c value if computing incrementally.
141 * @p: pointer to buffer over which CRC32/CRC32C is run
142 * @len: length of buffer @p
143 * @tab: little-endian Ethernet table
144 * @polynomial: CRC32/CRC32c LE polynomial
146 static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
147 size_t len, const u32 (*tab)[256],
154 for (i = 0; i < 8; i++)
155 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
157 # elif CRC_LE_BITS == 2
160 crc = (crc >> 2) ^ tab[0][crc & 3];
161 crc = (crc >> 2) ^ tab[0][crc & 3];
162 crc = (crc >> 2) ^ tab[0][crc & 3];
163 crc = (crc >> 2) ^ tab[0][crc & 3];
165 # elif CRC_LE_BITS == 4
168 crc = (crc >> 4) ^ tab[0][crc & 15];
169 crc = (crc >> 4) ^ tab[0][crc & 15];
171 # elif CRC_LE_BITS == 8
172 /* aka Sarwate algorithm */
175 crc = (crc >> 8) ^ tab[0][crc & 255];
178 crc = (__force u32) __cpu_to_le32(crc);
179 crc = crc32_body(crc, p, len, tab);
180 crc = __le32_to_cpu((__force __le32)crc);
186 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
188 return crc32_le_generic(crc, p, len, NULL, CRC32_POLY_LE);
190 u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len)
192 return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
195 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
197 return crc32_le_generic(crc, p, len,
198 (const u32 (*)[256])crc32table_le, CRC32_POLY_LE);
200 u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len)
202 return crc32_le_generic(crc, p, len,
203 (const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE);
206 EXPORT_SYMBOL(crc32_le);
207 EXPORT_SYMBOL(__crc32c_le);
210 * This multiplies the polynomials x and y modulo the given modulus.
211 * This follows the "little-endian" CRC convention that the lsbit
212 * represents the highest power of x, and the msbit represents x^0.
214 static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
216 u32 product = x & 1 ? y : 0;
219 for (i = 0; i < 31; i++) {
220 product = (product >> 1) ^ (product & 1 ? modulus : 0);
222 product ^= x & 1 ? y : 0;
229 * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
230 * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
231 * @len: The number of bytes. @crc is multiplied by x^(8*@len)
232 * @polynomial: The modulus used to reduce the result to 32 bits.
234 * It's possible to parallelize CRC computations by computing a CRC
235 * over separate ranges of a buffer, then summing them.
236 * This shifts the given CRC by 8*len bits (i.e. produces the same effect
237 * as appending len bytes of zero to the data), in time proportional
240 static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
243 u32 power = polynomial; /* CRC of x^32 */
246 /* Shift up to 32 bits in the simple linear way */
247 for (i = 0; i < 8 * (int)(len & 3); i++)
248 crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
255 /* "power" is x^(2^i), modulo the polynomial */
257 crc = gf2_multiply(crc, power, polynomial);
263 /* Square power, advancing to x^(2^(i+1)) */
264 power = gf2_multiply(power, power, polynomial);
270 u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
272 return crc32_generic_shift(crc, len, CRC32_POLY_LE);
275 u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
277 return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
279 EXPORT_SYMBOL(crc32_le_shift);
280 EXPORT_SYMBOL(__crc32c_le_shift);
283 * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
284 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
285 * other uses, or the previous crc32 value if computing incrementally.
286 * @p: pointer to buffer over which CRC32 is run
287 * @len: length of buffer @p
288 * @tab: big-endian Ethernet table
289 * @polynomial: CRC32 BE polynomial
291 static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
292 size_t len, const u32 (*tab)[256],
299 for (i = 0; i < 8; i++)
301 (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
304 # elif CRC_BE_BITS == 2
307 crc = (crc << 2) ^ tab[0][crc >> 30];
308 crc = (crc << 2) ^ tab[0][crc >> 30];
309 crc = (crc << 2) ^ tab[0][crc >> 30];
310 crc = (crc << 2) ^ tab[0][crc >> 30];
312 # elif CRC_BE_BITS == 4
315 crc = (crc << 4) ^ tab[0][crc >> 28];
316 crc = (crc << 4) ^ tab[0][crc >> 28];
318 # elif CRC_BE_BITS == 8
321 crc = (crc << 8) ^ tab[0][crc >> 24];
324 crc = (__force u32) __cpu_to_be32(crc);
325 crc = crc32_body(crc, p, len, tab);
326 crc = __be32_to_cpu((__force __be32)crc);
332 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
334 return crc32_be_generic(crc, p, len, NULL, CRC32_POLY_BE);
337 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
339 return crc32_be_generic(crc, p, len,
340 (const u32 (*)[256])crc32table_be, CRC32_POLY_BE);
343 EXPORT_SYMBOL(crc32_be);