GNU Linux-libre 4.14.332-gnu1
[releases.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF           (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT            4U
125 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT       0
130 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT       1
133 # define RB_ARCH_ALIGNMENT              8U
134 #endif
135
136 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142         RB_LEN_TIME_EXTEND = 8,
143         RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156         /* padding has a NULL time_delta */
157         event->type_len = RINGBUF_TYPE_PADDING;
158         event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164         unsigned length;
165
166         if (event->type_len)
167                 length = event->type_len * RB_ALIGNMENT;
168         else
169                 length = event->array[0];
170         return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181         switch (event->type_len) {
182         case RINGBUF_TYPE_PADDING:
183                 if (rb_null_event(event))
184                         /* undefined */
185                         return -1;
186                 return  event->array[0] + RB_EVNT_HDR_SIZE;
187
188         case RINGBUF_TYPE_TIME_EXTEND:
189                 return RB_LEN_TIME_EXTEND;
190
191         case RINGBUF_TYPE_TIME_STAMP:
192                 return RB_LEN_TIME_STAMP;
193
194         case RINGBUF_TYPE_DATA:
195                 return rb_event_data_length(event);
196         default:
197                 BUG();
198         }
199         /* not hit */
200         return 0;
201 }
202
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210         unsigned len = 0;
211
212         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213                 /* time extends include the data event after it */
214                 len = RB_LEN_TIME_EXTEND;
215                 event = skip_time_extend(event);
216         }
217         return len + rb_event_length(event);
218 }
219
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235                 event = skip_time_extend(event);
236
237         length = rb_event_length(event);
238         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239                 return length;
240         length -= RB_EVNT_HDR_SIZE;
241         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243         return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252                 event = skip_time_extend(event);
253         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254         /* If length is in len field, then array[0] has the data */
255         if (event->type_len)
256                 return (void *)&event->array[0];
257         /* Otherwise length is in array[0] and array[1] has the data */
258         return (void *)&event->array[1];
259 }
260
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267         return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu)                \
272         for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT        27
275 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST   (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS        (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED        (1 << 30)
282
283 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
285 struct buffer_data_page {
286         u64              time_stamp;    /* page time stamp */
287         local_t          commit;        /* write committed index */
288         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
289 };
290
291 /*
292  * Note, the buffer_page list must be first. The buffer pages
293  * are allocated in cache lines, which means that each buffer
294  * page will be at the beginning of a cache line, and thus
295  * the least significant bits will be zero. We use this to
296  * add flags in the list struct pointers, to make the ring buffer
297  * lockless.
298  */
299 struct buffer_page {
300         struct list_head list;          /* list of buffer pages */
301         local_t          write;         /* index for next write */
302         unsigned         read;          /* index for next read */
303         local_t          entries;       /* entries on this page */
304         unsigned long    real_end;      /* real end of data */
305         struct buffer_data_page *page;  /* Actual data page */
306 };
307
308 /*
309  * The buffer page counters, write and entries, must be reset
310  * atomically when crossing page boundaries. To synchronize this
311  * update, two counters are inserted into the number. One is
312  * the actual counter for the write position or count on the page.
313  *
314  * The other is a counter of updaters. Before an update happens
315  * the update partition of the counter is incremented. This will
316  * allow the updater to update the counter atomically.
317  *
318  * The counter is 20 bits, and the state data is 12.
319  */
320 #define RB_WRITE_MASK           0xfffff
321 #define RB_WRITE_INTCNT         (1 << 20)
322
323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325         local_set(&bpage->commit, 0);
326 }
327
328 /**
329  * ring_buffer_page_len - the size of data on the page.
330  * @page: The page to read
331  *
332  * Returns the amount of data on the page, including buffer page header.
333  */
334 size_t ring_buffer_page_len(void *page)
335 {
336         struct buffer_data_page *bpage = page;
337
338         return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339                 + BUF_PAGE_HDR_SIZE;
340 }
341
342 /*
343  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344  * this issue out.
345  */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348         free_page((unsigned long)bpage->page);
349         kfree(bpage);
350 }
351
352 /*
353  * We need to fit the time_stamp delta into 27 bits.
354  */
355 static inline int test_time_stamp(u64 delta)
356 {
357         if (delta & TS_DELTA_TEST)
358                 return 1;
359         return 0;
360 }
361
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369         struct buffer_data_page field;
370
371         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372                          "offset:0;\tsize:%u;\tsigned:%u;\n",
373                          (unsigned int)sizeof(field.time_stamp),
374                          (unsigned int)is_signed_type(u64));
375
376         trace_seq_printf(s, "\tfield: local_t commit;\t"
377                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
378                          (unsigned int)offsetof(typeof(field), commit),
379                          (unsigned int)sizeof(field.commit),
380                          (unsigned int)is_signed_type(long));
381
382         trace_seq_printf(s, "\tfield: int overwrite;\t"
383                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
384                          (unsigned int)offsetof(typeof(field), commit),
385                          1,
386                          (unsigned int)is_signed_type(long));
387
388         trace_seq_printf(s, "\tfield: char data;\t"
389                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
390                          (unsigned int)offsetof(typeof(field), data),
391                          (unsigned int)BUF_PAGE_SIZE,
392                          (unsigned int)is_signed_type(char));
393
394         return !trace_seq_has_overflowed(s);
395 }
396
397 struct rb_irq_work {
398         struct irq_work                 work;
399         wait_queue_head_t               waiters;
400         wait_queue_head_t               full_waiters;
401         bool                            waiters_pending;
402         bool                            full_waiters_pending;
403         bool                            wakeup_full;
404 };
405
406 /*
407  * Structure to hold event state and handle nested events.
408  */
409 struct rb_event_info {
410         u64                     ts;
411         u64                     delta;
412         unsigned long           length;
413         struct buffer_page      *tail_page;
414         int                     add_timestamp;
415 };
416
417 /*
418  * Used for which event context the event is in.
419  *  TRANSITION = 0
420  *  NMI     = 1
421  *  IRQ     = 2
422  *  SOFTIRQ = 3
423  *  NORMAL  = 4
424  *
425  * See trace_recursive_lock() comment below for more details.
426  */
427 enum {
428         RB_CTX_TRANSITION,
429         RB_CTX_NMI,
430         RB_CTX_IRQ,
431         RB_CTX_SOFTIRQ,
432         RB_CTX_NORMAL,
433         RB_CTX_MAX
434 };
435
436 /*
437  * head_page == tail_page && head == tail then buffer is empty.
438  */
439 struct ring_buffer_per_cpu {
440         int                             cpu;
441         atomic_t                        record_disabled;
442         struct ring_buffer              *buffer;
443         raw_spinlock_t                  reader_lock;    /* serialize readers */
444         arch_spinlock_t                 lock;
445         struct lock_class_key           lock_key;
446         struct buffer_data_page         *free_page;
447         unsigned long                   nr_pages;
448         unsigned int                    current_context;
449         struct list_head                *pages;
450         struct buffer_page              *head_page;     /* read from head */
451         struct buffer_page              *tail_page;     /* write to tail */
452         struct buffer_page              *commit_page;   /* committed pages */
453         struct buffer_page              *reader_page;
454         unsigned long                   lost_events;
455         unsigned long                   last_overrun;
456         local_t                         entries_bytes;
457         local_t                         entries;
458         local_t                         overrun;
459         local_t                         commit_overrun;
460         local_t                         dropped_events;
461         local_t                         committing;
462         local_t                         commits;
463         unsigned long                   read;
464         unsigned long                   read_bytes;
465         u64                             write_stamp;
466         u64                             read_stamp;
467         /* pages removed since last reset */
468         unsigned long                   pages_removed;
469         /* ring buffer pages to update, > 0 to add, < 0 to remove */
470         long                            nr_pages_to_update;
471         struct list_head                new_pages; /* new pages to add */
472         struct work_struct              update_pages_work;
473         struct completion               update_done;
474
475         struct rb_irq_work              irq_work;
476 };
477
478 struct ring_buffer {
479         unsigned                        flags;
480         int                             cpus;
481         atomic_t                        record_disabled;
482         atomic_t                        resize_disabled;
483         cpumask_var_t                   cpumask;
484
485         struct lock_class_key           *reader_lock_key;
486
487         struct mutex                    mutex;
488
489         struct ring_buffer_per_cpu      **buffers;
490
491         struct hlist_node               node;
492         u64                             (*clock)(void);
493
494         struct rb_irq_work              irq_work;
495 };
496
497 struct ring_buffer_iter {
498         struct ring_buffer_per_cpu      *cpu_buffer;
499         unsigned long                   head;
500         struct buffer_page              *head_page;
501         struct buffer_page              *cache_reader_page;
502         unsigned long                   cache_read;
503         unsigned long                   cache_pages_removed;
504         u64                             read_stamp;
505 };
506
507 /*
508  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
509  *
510  * Schedules a delayed work to wake up any task that is blocked on the
511  * ring buffer waiters queue.
512  */
513 static void rb_wake_up_waiters(struct irq_work *work)
514 {
515         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
516
517         wake_up_all(&rbwork->waiters);
518         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
519                 rbwork->wakeup_full = false;
520                 rbwork->full_waiters_pending = false;
521                 wake_up_all(&rbwork->full_waiters);
522         }
523 }
524
525 /**
526  * ring_buffer_wait - wait for input to the ring buffer
527  * @buffer: buffer to wait on
528  * @cpu: the cpu buffer to wait on
529  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
530  *
531  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
532  * as data is added to any of the @buffer's cpu buffers. Otherwise
533  * it will wait for data to be added to a specific cpu buffer.
534  */
535 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
536 {
537         struct ring_buffer_per_cpu *cpu_buffer;
538         DEFINE_WAIT(wait);
539         struct rb_irq_work *work;
540         int ret = 0;
541
542         /*
543          * Depending on what the caller is waiting for, either any
544          * data in any cpu buffer, or a specific buffer, put the
545          * caller on the appropriate wait queue.
546          */
547         if (cpu == RING_BUFFER_ALL_CPUS) {
548                 work = &buffer->irq_work;
549                 /* Full only makes sense on per cpu reads */
550                 full = false;
551         } else {
552                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
553                         return -ENODEV;
554                 cpu_buffer = buffer->buffers[cpu];
555                 work = &cpu_buffer->irq_work;
556         }
557
558
559         while (true) {
560                 if (full)
561                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
562                 else
563                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
564
565                 /*
566                  * The events can happen in critical sections where
567                  * checking a work queue can cause deadlocks.
568                  * After adding a task to the queue, this flag is set
569                  * only to notify events to try to wake up the queue
570                  * using irq_work.
571                  *
572                  * We don't clear it even if the buffer is no longer
573                  * empty. The flag only causes the next event to run
574                  * irq_work to do the work queue wake up. The worse
575                  * that can happen if we race with !trace_empty() is that
576                  * an event will cause an irq_work to try to wake up
577                  * an empty queue.
578                  *
579                  * There's no reason to protect this flag either, as
580                  * the work queue and irq_work logic will do the necessary
581                  * synchronization for the wake ups. The only thing
582                  * that is necessary is that the wake up happens after
583                  * a task has been queued. It's OK for spurious wake ups.
584                  */
585                 if (full)
586                         work->full_waiters_pending = true;
587                 else
588                         work->waiters_pending = true;
589
590                 if (signal_pending(current)) {
591                         ret = -EINTR;
592                         break;
593                 }
594
595                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
596                         break;
597
598                 if (cpu != RING_BUFFER_ALL_CPUS &&
599                     !ring_buffer_empty_cpu(buffer, cpu)) {
600                         unsigned long flags;
601                         bool pagebusy;
602
603                         if (!full)
604                                 break;
605
606                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
607                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
608                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
609
610                         if (!pagebusy)
611                                 break;
612                 }
613
614                 schedule();
615         }
616
617         if (full)
618                 finish_wait(&work->full_waiters, &wait);
619         else
620                 finish_wait(&work->waiters, &wait);
621
622         return ret;
623 }
624
625 /**
626  * ring_buffer_poll_wait - poll on buffer input
627  * @buffer: buffer to wait on
628  * @cpu: the cpu buffer to wait on
629  * @filp: the file descriptor
630  * @poll_table: The poll descriptor
631  *
632  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
633  * as data is added to any of the @buffer's cpu buffers. Otherwise
634  * it will wait for data to be added to a specific cpu buffer.
635  *
636  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
637  * zero otherwise.
638  */
639 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
640                           struct file *filp, poll_table *poll_table)
641 {
642         struct ring_buffer_per_cpu *cpu_buffer;
643         struct rb_irq_work *work;
644
645         if (cpu == RING_BUFFER_ALL_CPUS)
646                 work = &buffer->irq_work;
647         else {
648                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
649                         return -EINVAL;
650
651                 cpu_buffer = buffer->buffers[cpu];
652                 work = &cpu_buffer->irq_work;
653         }
654
655         poll_wait(filp, &work->waiters, poll_table);
656         work->waiters_pending = true;
657         /*
658          * There's a tight race between setting the waiters_pending and
659          * checking if the ring buffer is empty.  Once the waiters_pending bit
660          * is set, the next event will wake the task up, but we can get stuck
661          * if there's only a single event in.
662          *
663          * FIXME: Ideally, we need a memory barrier on the writer side as well,
664          * but adding a memory barrier to all events will cause too much of a
665          * performance hit in the fast path.  We only need a memory barrier when
666          * the buffer goes from empty to having content.  But as this race is
667          * extremely small, and it's not a problem if another event comes in, we
668          * will fix it later.
669          */
670         smp_mb();
671
672         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
673             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
674                 return POLLIN | POLLRDNORM;
675         return 0;
676 }
677
678 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
679 #define RB_WARN_ON(b, cond)                                             \
680         ({                                                              \
681                 int _____ret = unlikely(cond);                          \
682                 if (_____ret) {                                         \
683                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
684                                 struct ring_buffer_per_cpu *__b =       \
685                                         (void *)b;                      \
686                                 atomic_inc(&__b->buffer->record_disabled); \
687                         } else                                          \
688                                 atomic_inc(&b->record_disabled);        \
689                         WARN_ON(1);                                     \
690                 }                                                       \
691                 _____ret;                                               \
692         })
693
694 /* Up this if you want to test the TIME_EXTENTS and normalization */
695 #define DEBUG_SHIFT 0
696
697 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
698 {
699         /* shift to debug/test normalization and TIME_EXTENTS */
700         return buffer->clock() << DEBUG_SHIFT;
701 }
702
703 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
704 {
705         u64 time;
706
707         preempt_disable_notrace();
708         time = rb_time_stamp(buffer);
709         preempt_enable_notrace();
710
711         return time;
712 }
713 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
714
715 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
716                                       int cpu, u64 *ts)
717 {
718         /* Just stupid testing the normalize function and deltas */
719         *ts >>= DEBUG_SHIFT;
720 }
721 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
722
723 /*
724  * Making the ring buffer lockless makes things tricky.
725  * Although writes only happen on the CPU that they are on,
726  * and they only need to worry about interrupts. Reads can
727  * happen on any CPU.
728  *
729  * The reader page is always off the ring buffer, but when the
730  * reader finishes with a page, it needs to swap its page with
731  * a new one from the buffer. The reader needs to take from
732  * the head (writes go to the tail). But if a writer is in overwrite
733  * mode and wraps, it must push the head page forward.
734  *
735  * Here lies the problem.
736  *
737  * The reader must be careful to replace only the head page, and
738  * not another one. As described at the top of the file in the
739  * ASCII art, the reader sets its old page to point to the next
740  * page after head. It then sets the page after head to point to
741  * the old reader page. But if the writer moves the head page
742  * during this operation, the reader could end up with the tail.
743  *
744  * We use cmpxchg to help prevent this race. We also do something
745  * special with the page before head. We set the LSB to 1.
746  *
747  * When the writer must push the page forward, it will clear the
748  * bit that points to the head page, move the head, and then set
749  * the bit that points to the new head page.
750  *
751  * We also don't want an interrupt coming in and moving the head
752  * page on another writer. Thus we use the second LSB to catch
753  * that too. Thus:
754  *
755  * head->list->prev->next        bit 1          bit 0
756  *                              -------        -------
757  * Normal page                     0              0
758  * Points to head page             0              1
759  * New head page                   1              0
760  *
761  * Note we can not trust the prev pointer of the head page, because:
762  *
763  * +----+       +-----+        +-----+
764  * |    |------>|  T  |---X--->|  N  |
765  * |    |<------|     |        |     |
766  * +----+       +-----+        +-----+
767  *   ^                           ^ |
768  *   |          +-----+          | |
769  *   +----------|  R  |----------+ |
770  *              |     |<-----------+
771  *              +-----+
772  *
773  * Key:  ---X-->  HEAD flag set in pointer
774  *         T      Tail page
775  *         R      Reader page
776  *         N      Next page
777  *
778  * (see __rb_reserve_next() to see where this happens)
779  *
780  *  What the above shows is that the reader just swapped out
781  *  the reader page with a page in the buffer, but before it
782  *  could make the new header point back to the new page added
783  *  it was preempted by a writer. The writer moved forward onto
784  *  the new page added by the reader and is about to move forward
785  *  again.
786  *
787  *  You can see, it is legitimate for the previous pointer of
788  *  the head (or any page) not to point back to itself. But only
789  *  temporarially.
790  */
791
792 #define RB_PAGE_NORMAL          0UL
793 #define RB_PAGE_HEAD            1UL
794 #define RB_PAGE_UPDATE          2UL
795
796
797 #define RB_FLAG_MASK            3UL
798
799 /* PAGE_MOVED is not part of the mask */
800 #define RB_PAGE_MOVED           4UL
801
802 /*
803  * rb_list_head - remove any bit
804  */
805 static struct list_head *rb_list_head(struct list_head *list)
806 {
807         unsigned long val = (unsigned long)list;
808
809         return (struct list_head *)(val & ~RB_FLAG_MASK);
810 }
811
812 /*
813  * rb_is_head_page - test if the given page is the head page
814  *
815  * Because the reader may move the head_page pointer, we can
816  * not trust what the head page is (it may be pointing to
817  * the reader page). But if the next page is a header page,
818  * its flags will be non zero.
819  */
820 static inline int
821 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
822                 struct buffer_page *page, struct list_head *list)
823 {
824         unsigned long val;
825
826         val = (unsigned long)list->next;
827
828         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
829                 return RB_PAGE_MOVED;
830
831         return val & RB_FLAG_MASK;
832 }
833
834 /*
835  * rb_is_reader_page
836  *
837  * The unique thing about the reader page, is that, if the
838  * writer is ever on it, the previous pointer never points
839  * back to the reader page.
840  */
841 static bool rb_is_reader_page(struct buffer_page *page)
842 {
843         struct list_head *list = page->list.prev;
844
845         return rb_list_head(list->next) != &page->list;
846 }
847
848 /*
849  * rb_set_list_to_head - set a list_head to be pointing to head.
850  */
851 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
852                                 struct list_head *list)
853 {
854         unsigned long *ptr;
855
856         ptr = (unsigned long *)&list->next;
857         *ptr |= RB_PAGE_HEAD;
858         *ptr &= ~RB_PAGE_UPDATE;
859 }
860
861 /*
862  * rb_head_page_activate - sets up head page
863  */
864 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
865 {
866         struct buffer_page *head;
867
868         head = cpu_buffer->head_page;
869         if (!head)
870                 return;
871
872         /*
873          * Set the previous list pointer to have the HEAD flag.
874          */
875         rb_set_list_to_head(cpu_buffer, head->list.prev);
876 }
877
878 static void rb_list_head_clear(struct list_head *list)
879 {
880         unsigned long *ptr = (unsigned long *)&list->next;
881
882         *ptr &= ~RB_FLAG_MASK;
883 }
884
885 /*
886  * rb_head_page_dactivate - clears head page ptr (for free list)
887  */
888 static void
889 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
890 {
891         struct list_head *hd;
892
893         /* Go through the whole list and clear any pointers found. */
894         rb_list_head_clear(cpu_buffer->pages);
895
896         list_for_each(hd, cpu_buffer->pages)
897                 rb_list_head_clear(hd);
898 }
899
900 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
901                             struct buffer_page *head,
902                             struct buffer_page *prev,
903                             int old_flag, int new_flag)
904 {
905         struct list_head *list;
906         unsigned long val = (unsigned long)&head->list;
907         unsigned long ret;
908
909         list = &prev->list;
910
911         val &= ~RB_FLAG_MASK;
912
913         ret = cmpxchg((unsigned long *)&list->next,
914                       val | old_flag, val | new_flag);
915
916         /* check if the reader took the page */
917         if ((ret & ~RB_FLAG_MASK) != val)
918                 return RB_PAGE_MOVED;
919
920         return ret & RB_FLAG_MASK;
921 }
922
923 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
924                                    struct buffer_page *head,
925                                    struct buffer_page *prev,
926                                    int old_flag)
927 {
928         return rb_head_page_set(cpu_buffer, head, prev,
929                                 old_flag, RB_PAGE_UPDATE);
930 }
931
932 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
933                                  struct buffer_page *head,
934                                  struct buffer_page *prev,
935                                  int old_flag)
936 {
937         return rb_head_page_set(cpu_buffer, head, prev,
938                                 old_flag, RB_PAGE_HEAD);
939 }
940
941 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
942                                    struct buffer_page *head,
943                                    struct buffer_page *prev,
944                                    int old_flag)
945 {
946         return rb_head_page_set(cpu_buffer, head, prev,
947                                 old_flag, RB_PAGE_NORMAL);
948 }
949
950 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
951                                struct buffer_page **bpage)
952 {
953         struct list_head *p = rb_list_head((*bpage)->list.next);
954
955         *bpage = list_entry(p, struct buffer_page, list);
956 }
957
958 static struct buffer_page *
959 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
960 {
961         struct buffer_page *head;
962         struct buffer_page *page;
963         struct list_head *list;
964         int i;
965
966         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
967                 return NULL;
968
969         /* sanity check */
970         list = cpu_buffer->pages;
971         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
972                 return NULL;
973
974         page = head = cpu_buffer->head_page;
975         /*
976          * It is possible that the writer moves the header behind
977          * where we started, and we miss in one loop.
978          * A second loop should grab the header, but we'll do
979          * three loops just because I'm paranoid.
980          */
981         for (i = 0; i < 3; i++) {
982                 do {
983                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
984                                 cpu_buffer->head_page = page;
985                                 return page;
986                         }
987                         rb_inc_page(cpu_buffer, &page);
988                 } while (page != head);
989         }
990
991         RB_WARN_ON(cpu_buffer, 1);
992
993         return NULL;
994 }
995
996 static int rb_head_page_replace(struct buffer_page *old,
997                                 struct buffer_page *new)
998 {
999         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1000         unsigned long val;
1001         unsigned long ret;
1002
1003         val = *ptr & ~RB_FLAG_MASK;
1004         val |= RB_PAGE_HEAD;
1005
1006         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1007
1008         return ret == val;
1009 }
1010
1011 /*
1012  * rb_tail_page_update - move the tail page forward
1013  */
1014 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1015                                struct buffer_page *tail_page,
1016                                struct buffer_page *next_page)
1017 {
1018         unsigned long old_entries;
1019         unsigned long old_write;
1020
1021         /*
1022          * The tail page now needs to be moved forward.
1023          *
1024          * We need to reset the tail page, but without messing
1025          * with possible erasing of data brought in by interrupts
1026          * that have moved the tail page and are currently on it.
1027          *
1028          * We add a counter to the write field to denote this.
1029          */
1030         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1031         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1032
1033         /*
1034          * Just make sure we have seen our old_write and synchronize
1035          * with any interrupts that come in.
1036          */
1037         barrier();
1038
1039         /*
1040          * If the tail page is still the same as what we think
1041          * it is, then it is up to us to update the tail
1042          * pointer.
1043          */
1044         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1045                 /* Zero the write counter */
1046                 unsigned long val = old_write & ~RB_WRITE_MASK;
1047                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1048
1049                 /*
1050                  * This will only succeed if an interrupt did
1051                  * not come in and change it. In which case, we
1052                  * do not want to modify it.
1053                  *
1054                  * We add (void) to let the compiler know that we do not care
1055                  * about the return value of these functions. We use the
1056                  * cmpxchg to only update if an interrupt did not already
1057                  * do it for us. If the cmpxchg fails, we don't care.
1058                  */
1059                 (void)local_cmpxchg(&next_page->write, old_write, val);
1060                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1061
1062                 /*
1063                  * No need to worry about races with clearing out the commit.
1064                  * it only can increment when a commit takes place. But that
1065                  * only happens in the outer most nested commit.
1066                  */
1067                 local_set(&next_page->page->commit, 0);
1068
1069                 /* Again, either we update tail_page or an interrupt does */
1070                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1071         }
1072 }
1073
1074 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1075                           struct buffer_page *bpage)
1076 {
1077         unsigned long val = (unsigned long)bpage;
1078
1079         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1080                 return 1;
1081
1082         return 0;
1083 }
1084
1085 /**
1086  * rb_check_list - make sure a pointer to a list has the last bits zero
1087  */
1088 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1089                          struct list_head *list)
1090 {
1091         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1092                 return 1;
1093         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1094                 return 1;
1095         return 0;
1096 }
1097
1098 /**
1099  * rb_check_pages - integrity check of buffer pages
1100  * @cpu_buffer: CPU buffer with pages to test
1101  *
1102  * As a safety measure we check to make sure the data pages have not
1103  * been corrupted.
1104  */
1105 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1106 {
1107         struct list_head *head = cpu_buffer->pages;
1108         struct buffer_page *bpage, *tmp;
1109
1110         /* Reset the head page if it exists */
1111         if (cpu_buffer->head_page)
1112                 rb_set_head_page(cpu_buffer);
1113
1114         rb_head_page_deactivate(cpu_buffer);
1115
1116         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1117                 return -1;
1118         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1119                 return -1;
1120
1121         if (rb_check_list(cpu_buffer, head))
1122                 return -1;
1123
1124         list_for_each_entry_safe(bpage, tmp, head, list) {
1125                 if (RB_WARN_ON(cpu_buffer,
1126                                bpage->list.next->prev != &bpage->list))
1127                         return -1;
1128                 if (RB_WARN_ON(cpu_buffer,
1129                                bpage->list.prev->next != &bpage->list))
1130                         return -1;
1131                 if (rb_check_list(cpu_buffer, &bpage->list))
1132                         return -1;
1133         }
1134
1135         rb_head_page_activate(cpu_buffer);
1136
1137         return 0;
1138 }
1139
1140 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1141 {
1142         struct buffer_page *bpage, *tmp;
1143         long i;
1144
1145         /* Check if the available memory is there first */
1146         i = si_mem_available();
1147         if (i < nr_pages)
1148                 return -ENOMEM;
1149
1150         for (i = 0; i < nr_pages; i++) {
1151                 struct page *page;
1152                 /*
1153                  * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1154                  * gracefully without invoking oom-killer and the system is not
1155                  * destabilized.
1156                  */
1157                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1158                                     GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1159                                     cpu_to_node(cpu));
1160                 if (!bpage)
1161                         goto free_pages;
1162
1163                 list_add(&bpage->list, pages);
1164
1165                 page = alloc_pages_node(cpu_to_node(cpu),
1166                                         GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1167                 if (!page)
1168                         goto free_pages;
1169                 bpage->page = page_address(page);
1170                 rb_init_page(bpage->page);
1171         }
1172
1173         return 0;
1174
1175 free_pages:
1176         list_for_each_entry_safe(bpage, tmp, pages, list) {
1177                 list_del_init(&bpage->list);
1178                 free_buffer_page(bpage);
1179         }
1180
1181         return -ENOMEM;
1182 }
1183
1184 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1185                              unsigned long nr_pages)
1186 {
1187         LIST_HEAD(pages);
1188
1189         WARN_ON(!nr_pages);
1190
1191         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1192                 return -ENOMEM;
1193
1194         /*
1195          * The ring buffer page list is a circular list that does not
1196          * start and end with a list head. All page list items point to
1197          * other pages.
1198          */
1199         cpu_buffer->pages = pages.next;
1200         list_del(&pages);
1201
1202         cpu_buffer->nr_pages = nr_pages;
1203
1204         rb_check_pages(cpu_buffer);
1205
1206         return 0;
1207 }
1208
1209 static struct ring_buffer_per_cpu *
1210 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1211 {
1212         struct ring_buffer_per_cpu *cpu_buffer;
1213         struct buffer_page *bpage;
1214         struct page *page;
1215         int ret;
1216
1217         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1218                                   GFP_KERNEL, cpu_to_node(cpu));
1219         if (!cpu_buffer)
1220                 return NULL;
1221
1222         cpu_buffer->cpu = cpu;
1223         cpu_buffer->buffer = buffer;
1224         raw_spin_lock_init(&cpu_buffer->reader_lock);
1225         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1226         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1227         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1228         init_completion(&cpu_buffer->update_done);
1229         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1230         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1231         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1232
1233         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1234                             GFP_KERNEL, cpu_to_node(cpu));
1235         if (!bpage)
1236                 goto fail_free_buffer;
1237
1238         rb_check_bpage(cpu_buffer, bpage);
1239
1240         cpu_buffer->reader_page = bpage;
1241         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1242         if (!page)
1243                 goto fail_free_reader;
1244         bpage->page = page_address(page);
1245         rb_init_page(bpage->page);
1246
1247         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1248         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1249
1250         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1251         if (ret < 0)
1252                 goto fail_free_reader;
1253
1254         cpu_buffer->head_page
1255                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1256         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1257
1258         rb_head_page_activate(cpu_buffer);
1259
1260         return cpu_buffer;
1261
1262  fail_free_reader:
1263         free_buffer_page(cpu_buffer->reader_page);
1264
1265  fail_free_buffer:
1266         kfree(cpu_buffer);
1267         return NULL;
1268 }
1269
1270 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1271 {
1272         struct list_head *head = cpu_buffer->pages;
1273         struct buffer_page *bpage, *tmp;
1274
1275         irq_work_sync(&cpu_buffer->irq_work.work);
1276
1277         free_buffer_page(cpu_buffer->reader_page);
1278
1279         if (head) {
1280                 rb_head_page_deactivate(cpu_buffer);
1281
1282                 list_for_each_entry_safe(bpage, tmp, head, list) {
1283                         list_del_init(&bpage->list);
1284                         free_buffer_page(bpage);
1285                 }
1286                 bpage = list_entry(head, struct buffer_page, list);
1287                 free_buffer_page(bpage);
1288         }
1289
1290         kfree(cpu_buffer);
1291 }
1292
1293 /**
1294  * __ring_buffer_alloc - allocate a new ring_buffer
1295  * @size: the size in bytes per cpu that is needed.
1296  * @flags: attributes to set for the ring buffer.
1297  *
1298  * Currently the only flag that is available is the RB_FL_OVERWRITE
1299  * flag. This flag means that the buffer will overwrite old data
1300  * when the buffer wraps. If this flag is not set, the buffer will
1301  * drop data when the tail hits the head.
1302  */
1303 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1304                                         struct lock_class_key *key)
1305 {
1306         struct ring_buffer *buffer;
1307         long nr_pages;
1308         int bsize;
1309         int cpu;
1310         int ret;
1311
1312         /* keep it in its own cache line */
1313         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1314                          GFP_KERNEL);
1315         if (!buffer)
1316                 return NULL;
1317
1318         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1319                 goto fail_free_buffer;
1320
1321         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1322         buffer->flags = flags;
1323         buffer->clock = trace_clock_local;
1324         buffer->reader_lock_key = key;
1325
1326         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1327         init_waitqueue_head(&buffer->irq_work.waiters);
1328
1329         /* need at least two pages */
1330         if (nr_pages < 2)
1331                 nr_pages = 2;
1332
1333         buffer->cpus = nr_cpu_ids;
1334
1335         bsize = sizeof(void *) * nr_cpu_ids;
1336         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1337                                   GFP_KERNEL);
1338         if (!buffer->buffers)
1339                 goto fail_free_cpumask;
1340
1341         cpu = raw_smp_processor_id();
1342         cpumask_set_cpu(cpu, buffer->cpumask);
1343         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1344         if (!buffer->buffers[cpu])
1345                 goto fail_free_buffers;
1346
1347         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1348         if (ret < 0)
1349                 goto fail_free_buffers;
1350
1351         mutex_init(&buffer->mutex);
1352
1353         return buffer;
1354
1355  fail_free_buffers:
1356         for_each_buffer_cpu(buffer, cpu) {
1357                 if (buffer->buffers[cpu])
1358                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1359         }
1360         kfree(buffer->buffers);
1361
1362  fail_free_cpumask:
1363         free_cpumask_var(buffer->cpumask);
1364
1365  fail_free_buffer:
1366         kfree(buffer);
1367         return NULL;
1368 }
1369 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1370
1371 /**
1372  * ring_buffer_free - free a ring buffer.
1373  * @buffer: the buffer to free.
1374  */
1375 void
1376 ring_buffer_free(struct ring_buffer *buffer)
1377 {
1378         int cpu;
1379
1380         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1381
1382         irq_work_sync(&buffer->irq_work.work);
1383
1384         for_each_buffer_cpu(buffer, cpu)
1385                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1386
1387         kfree(buffer->buffers);
1388         free_cpumask_var(buffer->cpumask);
1389
1390         kfree(buffer);
1391 }
1392 EXPORT_SYMBOL_GPL(ring_buffer_free);
1393
1394 void ring_buffer_set_clock(struct ring_buffer *buffer,
1395                            u64 (*clock)(void))
1396 {
1397         buffer->clock = clock;
1398 }
1399
1400 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1401
1402 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1403 {
1404         return local_read(&bpage->entries) & RB_WRITE_MASK;
1405 }
1406
1407 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1408 {
1409         return local_read(&bpage->write) & RB_WRITE_MASK;
1410 }
1411
1412 static int
1413 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1414 {
1415         struct list_head *tail_page, *to_remove, *next_page;
1416         struct buffer_page *to_remove_page, *tmp_iter_page;
1417         struct buffer_page *last_page, *first_page;
1418         unsigned long nr_removed;
1419         unsigned long head_bit;
1420         int page_entries;
1421
1422         head_bit = 0;
1423
1424         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1425         atomic_inc(&cpu_buffer->record_disabled);
1426         /*
1427          * We don't race with the readers since we have acquired the reader
1428          * lock. We also don't race with writers after disabling recording.
1429          * This makes it easy to figure out the first and the last page to be
1430          * removed from the list. We unlink all the pages in between including
1431          * the first and last pages. This is done in a busy loop so that we
1432          * lose the least number of traces.
1433          * The pages are freed after we restart recording and unlock readers.
1434          */
1435         tail_page = &cpu_buffer->tail_page->list;
1436
1437         /*
1438          * tail page might be on reader page, we remove the next page
1439          * from the ring buffer
1440          */
1441         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1442                 tail_page = rb_list_head(tail_page->next);
1443         to_remove = tail_page;
1444
1445         /* start of pages to remove */
1446         first_page = list_entry(rb_list_head(to_remove->next),
1447                                 struct buffer_page, list);
1448
1449         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1450                 to_remove = rb_list_head(to_remove)->next;
1451                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1452         }
1453         /* Read iterators need to reset themselves when some pages removed */
1454         cpu_buffer->pages_removed += nr_removed;
1455
1456         next_page = rb_list_head(to_remove)->next;
1457
1458         /*
1459          * Now we remove all pages between tail_page and next_page.
1460          * Make sure that we have head_bit value preserved for the
1461          * next page
1462          */
1463         tail_page->next = (struct list_head *)((unsigned long)next_page |
1464                                                 head_bit);
1465         next_page = rb_list_head(next_page);
1466         next_page->prev = tail_page;
1467
1468         /* make sure pages points to a valid page in the ring buffer */
1469         cpu_buffer->pages = next_page;
1470
1471         /* update head page */
1472         if (head_bit)
1473                 cpu_buffer->head_page = list_entry(next_page,
1474                                                 struct buffer_page, list);
1475
1476         /* pages are removed, resume tracing and then free the pages */
1477         atomic_dec(&cpu_buffer->record_disabled);
1478         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1479
1480         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1481
1482         /* last buffer page to remove */
1483         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1484                                 list);
1485         tmp_iter_page = first_page;
1486
1487         do {
1488                 cond_resched();
1489
1490                 to_remove_page = tmp_iter_page;
1491                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1492
1493                 /* update the counters */
1494                 page_entries = rb_page_entries(to_remove_page);
1495                 if (page_entries) {
1496                         /*
1497                          * If something was added to this page, it was full
1498                          * since it is not the tail page. So we deduct the
1499                          * bytes consumed in ring buffer from here.
1500                          * Increment overrun to account for the lost events.
1501                          */
1502                         local_add(page_entries, &cpu_buffer->overrun);
1503                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1504                 }
1505
1506                 /*
1507                  * We have already removed references to this list item, just
1508                  * free up the buffer_page and its page
1509                  */
1510                 free_buffer_page(to_remove_page);
1511                 nr_removed--;
1512
1513         } while (to_remove_page != last_page);
1514
1515         RB_WARN_ON(cpu_buffer, nr_removed);
1516
1517         return nr_removed == 0;
1518 }
1519
1520 static int
1521 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1522 {
1523         struct list_head *pages = &cpu_buffer->new_pages;
1524         int retries, success;
1525
1526         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1527         /*
1528          * We are holding the reader lock, so the reader page won't be swapped
1529          * in the ring buffer. Now we are racing with the writer trying to
1530          * move head page and the tail page.
1531          * We are going to adapt the reader page update process where:
1532          * 1. We first splice the start and end of list of new pages between
1533          *    the head page and its previous page.
1534          * 2. We cmpxchg the prev_page->next to point from head page to the
1535          *    start of new pages list.
1536          * 3. Finally, we update the head->prev to the end of new list.
1537          *
1538          * We will try this process 10 times, to make sure that we don't keep
1539          * spinning.
1540          */
1541         retries = 10;
1542         success = 0;
1543         while (retries--) {
1544                 struct list_head *head_page, *prev_page, *r;
1545                 struct list_head *last_page, *first_page;
1546                 struct list_head *head_page_with_bit;
1547
1548                 head_page = &rb_set_head_page(cpu_buffer)->list;
1549                 if (!head_page)
1550                         break;
1551                 prev_page = head_page->prev;
1552
1553                 first_page = pages->next;
1554                 last_page  = pages->prev;
1555
1556                 head_page_with_bit = (struct list_head *)
1557                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1558
1559                 last_page->next = head_page_with_bit;
1560                 first_page->prev = prev_page;
1561
1562                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1563
1564                 if (r == head_page_with_bit) {
1565                         /*
1566                          * yay, we replaced the page pointer to our new list,
1567                          * now, we just have to update to head page's prev
1568                          * pointer to point to end of list
1569                          */
1570                         head_page->prev = last_page;
1571                         success = 1;
1572                         break;
1573                 }
1574         }
1575
1576         if (success)
1577                 INIT_LIST_HEAD(pages);
1578         /*
1579          * If we weren't successful in adding in new pages, warn and stop
1580          * tracing
1581          */
1582         RB_WARN_ON(cpu_buffer, !success);
1583         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1584
1585         /* free pages if they weren't inserted */
1586         if (!success) {
1587                 struct buffer_page *bpage, *tmp;
1588                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1589                                          list) {
1590                         list_del_init(&bpage->list);
1591                         free_buffer_page(bpage);
1592                 }
1593         }
1594         return success;
1595 }
1596
1597 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1598 {
1599         int success;
1600
1601         if (cpu_buffer->nr_pages_to_update > 0)
1602                 success = rb_insert_pages(cpu_buffer);
1603         else
1604                 success = rb_remove_pages(cpu_buffer,
1605                                         -cpu_buffer->nr_pages_to_update);
1606
1607         if (success)
1608                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1609 }
1610
1611 static void update_pages_handler(struct work_struct *work)
1612 {
1613         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1614                         struct ring_buffer_per_cpu, update_pages_work);
1615         rb_update_pages(cpu_buffer);
1616         complete(&cpu_buffer->update_done);
1617 }
1618
1619 /**
1620  * ring_buffer_resize - resize the ring buffer
1621  * @buffer: the buffer to resize.
1622  * @size: the new size.
1623  * @cpu_id: the cpu buffer to resize
1624  *
1625  * Minimum size is 2 * BUF_PAGE_SIZE.
1626  *
1627  * Returns 0 on success and < 0 on failure.
1628  */
1629 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1630                         int cpu_id)
1631 {
1632         struct ring_buffer_per_cpu *cpu_buffer;
1633         unsigned long nr_pages;
1634         int cpu, err;
1635
1636         /*
1637          * Always succeed at resizing a non-existent buffer:
1638          */
1639         if (!buffer)
1640                 return 0;
1641
1642         /* Make sure the requested buffer exists */
1643         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1644             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1645                 return 0;
1646
1647         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1648
1649         /* we need a minimum of two pages */
1650         if (nr_pages < 2)
1651                 nr_pages = 2;
1652
1653         size = nr_pages * BUF_PAGE_SIZE;
1654
1655         /*
1656          * Don't succeed if resizing is disabled, as a reader might be
1657          * manipulating the ring buffer and is expecting a sane state while
1658          * this is true.
1659          */
1660         if (atomic_read(&buffer->resize_disabled))
1661                 return -EBUSY;
1662
1663         /* prevent another thread from changing buffer sizes */
1664         mutex_lock(&buffer->mutex);
1665
1666         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1667                 /* calculate the pages to update */
1668                 for_each_buffer_cpu(buffer, cpu) {
1669                         cpu_buffer = buffer->buffers[cpu];
1670
1671                         cpu_buffer->nr_pages_to_update = nr_pages -
1672                                                         cpu_buffer->nr_pages;
1673                         /*
1674                          * nothing more to do for removing pages or no update
1675                          */
1676                         if (cpu_buffer->nr_pages_to_update <= 0)
1677                                 continue;
1678                         /*
1679                          * to add pages, make sure all new pages can be
1680                          * allocated without receiving ENOMEM
1681                          */
1682                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1683                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1684                                                 &cpu_buffer->new_pages, cpu)) {
1685                                 /* not enough memory for new pages */
1686                                 err = -ENOMEM;
1687                                 goto out_err;
1688                         }
1689
1690                         cond_resched();
1691                 }
1692
1693                 get_online_cpus();
1694                 /*
1695                  * Fire off all the required work handlers
1696                  * We can't schedule on offline CPUs, but it's not necessary
1697                  * since we can change their buffer sizes without any race.
1698                  */
1699                 for_each_buffer_cpu(buffer, cpu) {
1700                         cpu_buffer = buffer->buffers[cpu];
1701                         if (!cpu_buffer->nr_pages_to_update)
1702                                 continue;
1703
1704                         /* Can't run something on an offline CPU. */
1705                         if (!cpu_online(cpu)) {
1706                                 rb_update_pages(cpu_buffer);
1707                                 cpu_buffer->nr_pages_to_update = 0;
1708                         } else {
1709                                 schedule_work_on(cpu,
1710                                                 &cpu_buffer->update_pages_work);
1711                         }
1712                 }
1713
1714                 /* wait for all the updates to complete */
1715                 for_each_buffer_cpu(buffer, cpu) {
1716                         cpu_buffer = buffer->buffers[cpu];
1717                         if (!cpu_buffer->nr_pages_to_update)
1718                                 continue;
1719
1720                         if (cpu_online(cpu))
1721                                 wait_for_completion(&cpu_buffer->update_done);
1722                         cpu_buffer->nr_pages_to_update = 0;
1723                 }
1724
1725                 put_online_cpus();
1726         } else {
1727                 /* Make sure this CPU has been intitialized */
1728                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1729                         goto out;
1730
1731                 cpu_buffer = buffer->buffers[cpu_id];
1732
1733                 if (nr_pages == cpu_buffer->nr_pages)
1734                         goto out;
1735
1736                 cpu_buffer->nr_pages_to_update = nr_pages -
1737                                                 cpu_buffer->nr_pages;
1738
1739                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1740                 if (cpu_buffer->nr_pages_to_update > 0 &&
1741                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1742                                             &cpu_buffer->new_pages, cpu_id)) {
1743                         err = -ENOMEM;
1744                         goto out_err;
1745                 }
1746
1747                 get_online_cpus();
1748
1749                 /* Can't run something on an offline CPU. */
1750                 if (!cpu_online(cpu_id))
1751                         rb_update_pages(cpu_buffer);
1752                 else {
1753                         schedule_work_on(cpu_id,
1754                                          &cpu_buffer->update_pages_work);
1755                         wait_for_completion(&cpu_buffer->update_done);
1756                 }
1757
1758                 cpu_buffer->nr_pages_to_update = 0;
1759                 put_online_cpus();
1760         }
1761
1762  out:
1763         /*
1764          * The ring buffer resize can happen with the ring buffer
1765          * enabled, so that the update disturbs the tracing as little
1766          * as possible. But if the buffer is disabled, we do not need
1767          * to worry about that, and we can take the time to verify
1768          * that the buffer is not corrupt.
1769          */
1770         if (atomic_read(&buffer->record_disabled)) {
1771                 atomic_inc(&buffer->record_disabled);
1772                 /*
1773                  * Even though the buffer was disabled, we must make sure
1774                  * that it is truly disabled before calling rb_check_pages.
1775                  * There could have been a race between checking
1776                  * record_disable and incrementing it.
1777                  */
1778                 synchronize_sched();
1779                 for_each_buffer_cpu(buffer, cpu) {
1780                         cpu_buffer = buffer->buffers[cpu];
1781                         rb_check_pages(cpu_buffer);
1782                 }
1783                 atomic_dec(&buffer->record_disabled);
1784         }
1785
1786         mutex_unlock(&buffer->mutex);
1787         return 0;
1788
1789  out_err:
1790         for_each_buffer_cpu(buffer, cpu) {
1791                 struct buffer_page *bpage, *tmp;
1792
1793                 cpu_buffer = buffer->buffers[cpu];
1794                 cpu_buffer->nr_pages_to_update = 0;
1795
1796                 if (list_empty(&cpu_buffer->new_pages))
1797                         continue;
1798
1799                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1800                                         list) {
1801                         list_del_init(&bpage->list);
1802                         free_buffer_page(bpage);
1803                 }
1804         }
1805         mutex_unlock(&buffer->mutex);
1806         return err;
1807 }
1808 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1809
1810 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1811 {
1812         mutex_lock(&buffer->mutex);
1813         if (val)
1814                 buffer->flags |= RB_FL_OVERWRITE;
1815         else
1816                 buffer->flags &= ~RB_FL_OVERWRITE;
1817         mutex_unlock(&buffer->mutex);
1818 }
1819 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1820
1821 static __always_inline void *
1822 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1823 {
1824         return bpage->data + index;
1825 }
1826
1827 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1828 {
1829         return bpage->page->data + index;
1830 }
1831
1832 static __always_inline struct ring_buffer_event *
1833 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1834 {
1835         return __rb_page_index(cpu_buffer->reader_page,
1836                                cpu_buffer->reader_page->read);
1837 }
1838
1839 static __always_inline struct ring_buffer_event *
1840 rb_iter_head_event(struct ring_buffer_iter *iter)
1841 {
1842         return __rb_page_index(iter->head_page, iter->head);
1843 }
1844
1845 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1846 {
1847         return local_read(&bpage->page->commit);
1848 }
1849
1850 /* Size is determined by what has been committed */
1851 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1852 {
1853         return rb_page_commit(bpage);
1854 }
1855
1856 static __always_inline unsigned
1857 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1858 {
1859         return rb_page_commit(cpu_buffer->commit_page);
1860 }
1861
1862 static __always_inline unsigned
1863 rb_event_index(struct ring_buffer_event *event)
1864 {
1865         unsigned long addr = (unsigned long)event;
1866
1867         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1868 }
1869
1870 static void rb_inc_iter(struct ring_buffer_iter *iter)
1871 {
1872         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1873
1874         /*
1875          * The iterator could be on the reader page (it starts there).
1876          * But the head could have moved, since the reader was
1877          * found. Check for this case and assign the iterator
1878          * to the head page instead of next.
1879          */
1880         if (iter->head_page == cpu_buffer->reader_page)
1881                 iter->head_page = rb_set_head_page(cpu_buffer);
1882         else
1883                 rb_inc_page(cpu_buffer, &iter->head_page);
1884
1885         iter->read_stamp = iter->head_page->page->time_stamp;
1886         iter->head = 0;
1887 }
1888
1889 /*
1890  * rb_handle_head_page - writer hit the head page
1891  *
1892  * Returns: +1 to retry page
1893  *           0 to continue
1894  *          -1 on error
1895  */
1896 static int
1897 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1898                     struct buffer_page *tail_page,
1899                     struct buffer_page *next_page)
1900 {
1901         struct buffer_page *new_head;
1902         int entries;
1903         int type;
1904         int ret;
1905
1906         entries = rb_page_entries(next_page);
1907
1908         /*
1909          * The hard part is here. We need to move the head
1910          * forward, and protect against both readers on
1911          * other CPUs and writers coming in via interrupts.
1912          */
1913         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1914                                        RB_PAGE_HEAD);
1915
1916         /*
1917          * type can be one of four:
1918          *  NORMAL - an interrupt already moved it for us
1919          *  HEAD   - we are the first to get here.
1920          *  UPDATE - we are the interrupt interrupting
1921          *           a current move.
1922          *  MOVED  - a reader on another CPU moved the next
1923          *           pointer to its reader page. Give up
1924          *           and try again.
1925          */
1926
1927         switch (type) {
1928         case RB_PAGE_HEAD:
1929                 /*
1930                  * We changed the head to UPDATE, thus
1931                  * it is our responsibility to update
1932                  * the counters.
1933                  */
1934                 local_add(entries, &cpu_buffer->overrun);
1935                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1936
1937                 /*
1938                  * The entries will be zeroed out when we move the
1939                  * tail page.
1940                  */
1941
1942                 /* still more to do */
1943                 break;
1944
1945         case RB_PAGE_UPDATE:
1946                 /*
1947                  * This is an interrupt that interrupt the
1948                  * previous update. Still more to do.
1949                  */
1950                 break;
1951         case RB_PAGE_NORMAL:
1952                 /*
1953                  * An interrupt came in before the update
1954                  * and processed this for us.
1955                  * Nothing left to do.
1956                  */
1957                 return 1;
1958         case RB_PAGE_MOVED:
1959                 /*
1960                  * The reader is on another CPU and just did
1961                  * a swap with our next_page.
1962                  * Try again.
1963                  */
1964                 return 1;
1965         default:
1966                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1967                 return -1;
1968         }
1969
1970         /*
1971          * Now that we are here, the old head pointer is
1972          * set to UPDATE. This will keep the reader from
1973          * swapping the head page with the reader page.
1974          * The reader (on another CPU) will spin till
1975          * we are finished.
1976          *
1977          * We just need to protect against interrupts
1978          * doing the job. We will set the next pointer
1979          * to HEAD. After that, we set the old pointer
1980          * to NORMAL, but only if it was HEAD before.
1981          * otherwise we are an interrupt, and only
1982          * want the outer most commit to reset it.
1983          */
1984         new_head = next_page;
1985         rb_inc_page(cpu_buffer, &new_head);
1986
1987         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1988                                     RB_PAGE_NORMAL);
1989
1990         /*
1991          * Valid returns are:
1992          *  HEAD   - an interrupt came in and already set it.
1993          *  NORMAL - One of two things:
1994          *            1) We really set it.
1995          *            2) A bunch of interrupts came in and moved
1996          *               the page forward again.
1997          */
1998         switch (ret) {
1999         case RB_PAGE_HEAD:
2000         case RB_PAGE_NORMAL:
2001                 /* OK */
2002                 break;
2003         default:
2004                 RB_WARN_ON(cpu_buffer, 1);
2005                 return -1;
2006         }
2007
2008         /*
2009          * It is possible that an interrupt came in,
2010          * set the head up, then more interrupts came in
2011          * and moved it again. When we get back here,
2012          * the page would have been set to NORMAL but we
2013          * just set it back to HEAD.
2014          *
2015          * How do you detect this? Well, if that happened
2016          * the tail page would have moved.
2017          */
2018         if (ret == RB_PAGE_NORMAL) {
2019                 struct buffer_page *buffer_tail_page;
2020
2021                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2022                 /*
2023                  * If the tail had moved passed next, then we need
2024                  * to reset the pointer.
2025                  */
2026                 if (buffer_tail_page != tail_page &&
2027                     buffer_tail_page != next_page)
2028                         rb_head_page_set_normal(cpu_buffer, new_head,
2029                                                 next_page,
2030                                                 RB_PAGE_HEAD);
2031         }
2032
2033         /*
2034          * If this was the outer most commit (the one that
2035          * changed the original pointer from HEAD to UPDATE),
2036          * then it is up to us to reset it to NORMAL.
2037          */
2038         if (type == RB_PAGE_HEAD) {
2039                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2040                                               tail_page,
2041                                               RB_PAGE_UPDATE);
2042                 if (RB_WARN_ON(cpu_buffer,
2043                                ret != RB_PAGE_UPDATE))
2044                         return -1;
2045         }
2046
2047         return 0;
2048 }
2049
2050 static inline void
2051 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2052               unsigned long tail, struct rb_event_info *info)
2053 {
2054         struct buffer_page *tail_page = info->tail_page;
2055         struct ring_buffer_event *event;
2056         unsigned long length = info->length;
2057
2058         /*
2059          * Only the event that crossed the page boundary
2060          * must fill the old tail_page with padding.
2061          */
2062         if (tail >= BUF_PAGE_SIZE) {
2063                 /*
2064                  * If the page was filled, then we still need
2065                  * to update the real_end. Reset it to zero
2066                  * and the reader will ignore it.
2067                  */
2068                 if (tail == BUF_PAGE_SIZE)
2069                         tail_page->real_end = 0;
2070
2071                 local_sub(length, &tail_page->write);
2072                 return;
2073         }
2074
2075         event = __rb_page_index(tail_page, tail);
2076
2077         /* account for padding bytes */
2078         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2079
2080         /*
2081          * Save the original length to the meta data.
2082          * This will be used by the reader to add lost event
2083          * counter.
2084          */
2085         tail_page->real_end = tail;
2086
2087         /*
2088          * If this event is bigger than the minimum size, then
2089          * we need to be careful that we don't subtract the
2090          * write counter enough to allow another writer to slip
2091          * in on this page.
2092          * We put in a discarded commit instead, to make sure
2093          * that this space is not used again.
2094          *
2095          * If we are less than the minimum size, we don't need to
2096          * worry about it.
2097          */
2098         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2099                 /* No room for any events */
2100
2101                 /* Mark the rest of the page with padding */
2102                 rb_event_set_padding(event);
2103
2104                 /* Make sure the padding is visible before the write update */
2105                 smp_wmb();
2106
2107                 /* Set the write back to the previous setting */
2108                 local_sub(length, &tail_page->write);
2109                 return;
2110         }
2111
2112         /* Put in a discarded event */
2113         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2114         event->type_len = RINGBUF_TYPE_PADDING;
2115         /* time delta must be non zero */
2116         event->time_delta = 1;
2117
2118         /* Make sure the padding is visible before the tail_page->write update */
2119         smp_wmb();
2120
2121         /* Set write to end of buffer */
2122         length = (tail + length) - BUF_PAGE_SIZE;
2123         local_sub(length, &tail_page->write);
2124 }
2125
2126 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2127
2128 /*
2129  * This is the slow path, force gcc not to inline it.
2130  */
2131 static noinline struct ring_buffer_event *
2132 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2133              unsigned long tail, struct rb_event_info *info)
2134 {
2135         struct buffer_page *tail_page = info->tail_page;
2136         struct buffer_page *commit_page = cpu_buffer->commit_page;
2137         struct ring_buffer *buffer = cpu_buffer->buffer;
2138         struct buffer_page *next_page;
2139         int ret;
2140
2141         next_page = tail_page;
2142
2143         rb_inc_page(cpu_buffer, &next_page);
2144
2145         /*
2146          * If for some reason, we had an interrupt storm that made
2147          * it all the way around the buffer, bail, and warn
2148          * about it.
2149          */
2150         if (unlikely(next_page == commit_page)) {
2151                 local_inc(&cpu_buffer->commit_overrun);
2152                 goto out_reset;
2153         }
2154
2155         /*
2156          * This is where the fun begins!
2157          *
2158          * We are fighting against races between a reader that
2159          * could be on another CPU trying to swap its reader
2160          * page with the buffer head.
2161          *
2162          * We are also fighting against interrupts coming in and
2163          * moving the head or tail on us as well.
2164          *
2165          * If the next page is the head page then we have filled
2166          * the buffer, unless the commit page is still on the
2167          * reader page.
2168          */
2169         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2170
2171                 /*
2172                  * If the commit is not on the reader page, then
2173                  * move the header page.
2174                  */
2175                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2176                         /*
2177                          * If we are not in overwrite mode,
2178                          * this is easy, just stop here.
2179                          */
2180                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2181                                 local_inc(&cpu_buffer->dropped_events);
2182                                 goto out_reset;
2183                         }
2184
2185                         ret = rb_handle_head_page(cpu_buffer,
2186                                                   tail_page,
2187                                                   next_page);
2188                         if (ret < 0)
2189                                 goto out_reset;
2190                         if (ret)
2191                                 goto out_again;
2192                 } else {
2193                         /*
2194                          * We need to be careful here too. The
2195                          * commit page could still be on the reader
2196                          * page. We could have a small buffer, and
2197                          * have filled up the buffer with events
2198                          * from interrupts and such, and wrapped.
2199                          *
2200                          * Note, if the tail page is also the on the
2201                          * reader_page, we let it move out.
2202                          */
2203                         if (unlikely((cpu_buffer->commit_page !=
2204                                       cpu_buffer->tail_page) &&
2205                                      (cpu_buffer->commit_page ==
2206                                       cpu_buffer->reader_page))) {
2207                                 local_inc(&cpu_buffer->commit_overrun);
2208                                 goto out_reset;
2209                         }
2210                 }
2211         }
2212
2213         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2214
2215  out_again:
2216
2217         rb_reset_tail(cpu_buffer, tail, info);
2218
2219         /* Commit what we have for now. */
2220         rb_end_commit(cpu_buffer);
2221         /* rb_end_commit() decs committing */
2222         local_inc(&cpu_buffer->committing);
2223
2224         /* fail and let the caller try again */
2225         return ERR_PTR(-EAGAIN);
2226
2227  out_reset:
2228         /* reset write */
2229         rb_reset_tail(cpu_buffer, tail, info);
2230
2231         return NULL;
2232 }
2233
2234 /* Slow path, do not inline */
2235 static noinline struct ring_buffer_event *
2236 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2237 {
2238         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2239
2240         /* Not the first event on the page? */
2241         if (rb_event_index(event)) {
2242                 event->time_delta = delta & TS_MASK;
2243                 event->array[0] = delta >> TS_SHIFT;
2244         } else {
2245                 /* nope, just zero it */
2246                 event->time_delta = 0;
2247                 event->array[0] = 0;
2248         }
2249
2250         return skip_time_extend(event);
2251 }
2252
2253 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2254                                      struct ring_buffer_event *event);
2255
2256 /**
2257  * rb_update_event - update event type and data
2258  * @event: the event to update
2259  * @type: the type of event
2260  * @length: the size of the event field in the ring buffer
2261  *
2262  * Update the type and data fields of the event. The length
2263  * is the actual size that is written to the ring buffer,
2264  * and with this, we can determine what to place into the
2265  * data field.
2266  */
2267 static void
2268 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2269                 struct ring_buffer_event *event,
2270                 struct rb_event_info *info)
2271 {
2272         unsigned length = info->length;
2273         u64 delta = info->delta;
2274
2275         /* Only a commit updates the timestamp */
2276         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2277                 delta = 0;
2278
2279         /*
2280          * If we need to add a timestamp, then we
2281          * add it to the start of the resevered space.
2282          */
2283         if (unlikely(info->add_timestamp)) {
2284                 event = rb_add_time_stamp(event, delta);
2285                 length -= RB_LEN_TIME_EXTEND;
2286                 delta = 0;
2287         }
2288
2289         event->time_delta = delta;
2290         length -= RB_EVNT_HDR_SIZE;
2291         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2292                 event->type_len = 0;
2293                 event->array[0] = length;
2294         } else
2295                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2296 }
2297
2298 static unsigned rb_calculate_event_length(unsigned length)
2299 {
2300         struct ring_buffer_event event; /* Used only for sizeof array */
2301
2302         /* zero length can cause confusions */
2303         if (!length)
2304                 length++;
2305
2306         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2307                 length += sizeof(event.array[0]);
2308
2309         length += RB_EVNT_HDR_SIZE;
2310         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2311
2312         /*
2313          * In case the time delta is larger than the 27 bits for it
2314          * in the header, we need to add a timestamp. If another
2315          * event comes in when trying to discard this one to increase
2316          * the length, then the timestamp will be added in the allocated
2317          * space of this event. If length is bigger than the size needed
2318          * for the TIME_EXTEND, then padding has to be used. The events
2319          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2320          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2321          * As length is a multiple of 4, we only need to worry if it
2322          * is 12 (RB_LEN_TIME_EXTEND + 4).
2323          */
2324         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2325                 length += RB_ALIGNMENT;
2326
2327         return length;
2328 }
2329
2330 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2331 static inline bool sched_clock_stable(void)
2332 {
2333         return true;
2334 }
2335 #endif
2336
2337 static inline int
2338 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2339                   struct ring_buffer_event *event)
2340 {
2341         unsigned long new_index, old_index;
2342         struct buffer_page *bpage;
2343         unsigned long index;
2344         unsigned long addr;
2345
2346         new_index = rb_event_index(event);
2347         old_index = new_index + rb_event_ts_length(event);
2348         addr = (unsigned long)event;
2349         addr &= PAGE_MASK;
2350
2351         bpage = READ_ONCE(cpu_buffer->tail_page);
2352
2353         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2354                 unsigned long write_mask =
2355                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2356                 unsigned long event_length = rb_event_length(event);
2357                 /*
2358                  * This is on the tail page. It is possible that
2359                  * a write could come in and move the tail page
2360                  * and write to the next page. That is fine
2361                  * because we just shorten what is on this page.
2362                  */
2363                 old_index += write_mask;
2364                 new_index += write_mask;
2365                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2366                 if (index == old_index) {
2367                         /* update counters */
2368                         local_sub(event_length, &cpu_buffer->entries_bytes);
2369                         return 1;
2370                 }
2371         }
2372
2373         /* could not discard */
2374         return 0;
2375 }
2376
2377 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2378 {
2379         local_inc(&cpu_buffer->committing);
2380         local_inc(&cpu_buffer->commits);
2381 }
2382
2383 static __always_inline void
2384 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2385 {
2386         unsigned long max_count;
2387
2388         /*
2389          * We only race with interrupts and NMIs on this CPU.
2390          * If we own the commit event, then we can commit
2391          * all others that interrupted us, since the interruptions
2392          * are in stack format (they finish before they come
2393          * back to us). This allows us to do a simple loop to
2394          * assign the commit to the tail.
2395          */
2396  again:
2397         max_count = cpu_buffer->nr_pages * 100;
2398
2399         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2400                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2401                         return;
2402                 if (RB_WARN_ON(cpu_buffer,
2403                                rb_is_reader_page(cpu_buffer->tail_page)))
2404                         return;
2405                 /*
2406                  * No need for a memory barrier here, as the update
2407                  * of the tail_page did it for this page.
2408                  */
2409                 local_set(&cpu_buffer->commit_page->page->commit,
2410                           rb_page_write(cpu_buffer->commit_page));
2411                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2412                 /* Only update the write stamp if the page has an event */
2413                 if (rb_page_write(cpu_buffer->commit_page))
2414                         cpu_buffer->write_stamp =
2415                                 cpu_buffer->commit_page->page->time_stamp;
2416                 /* add barrier to keep gcc from optimizing too much */
2417                 barrier();
2418         }
2419         while (rb_commit_index(cpu_buffer) !=
2420                rb_page_write(cpu_buffer->commit_page)) {
2421
2422                 /* Make sure the readers see the content of what is committed. */
2423                 smp_wmb();
2424                 local_set(&cpu_buffer->commit_page->page->commit,
2425                           rb_page_write(cpu_buffer->commit_page));
2426                 RB_WARN_ON(cpu_buffer,
2427                            local_read(&cpu_buffer->commit_page->page->commit) &
2428                            ~RB_WRITE_MASK);
2429                 barrier();
2430         }
2431
2432         /* again, keep gcc from optimizing */
2433         barrier();
2434
2435         /*
2436          * If an interrupt came in just after the first while loop
2437          * and pushed the tail page forward, we will be left with
2438          * a dangling commit that will never go forward.
2439          */
2440         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2441                 goto again;
2442 }
2443
2444 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2445 {
2446         unsigned long commits;
2447
2448         if (RB_WARN_ON(cpu_buffer,
2449                        !local_read(&cpu_buffer->committing)))
2450                 return;
2451
2452  again:
2453         commits = local_read(&cpu_buffer->commits);
2454         /* synchronize with interrupts */
2455         barrier();
2456         if (local_read(&cpu_buffer->committing) == 1)
2457                 rb_set_commit_to_write(cpu_buffer);
2458
2459         local_dec(&cpu_buffer->committing);
2460
2461         /* synchronize with interrupts */
2462         barrier();
2463
2464         /*
2465          * Need to account for interrupts coming in between the
2466          * updating of the commit page and the clearing of the
2467          * committing counter.
2468          */
2469         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2470             !local_read(&cpu_buffer->committing)) {
2471                 local_inc(&cpu_buffer->committing);
2472                 goto again;
2473         }
2474 }
2475
2476 static inline void rb_event_discard(struct ring_buffer_event *event)
2477 {
2478         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2479                 event = skip_time_extend(event);
2480
2481         /* array[0] holds the actual length for the discarded event */
2482         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2483         event->type_len = RINGBUF_TYPE_PADDING;
2484         /* time delta must be non zero */
2485         if (!event->time_delta)
2486                 event->time_delta = 1;
2487 }
2488
2489 static __always_inline bool
2490 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2491                    struct ring_buffer_event *event)
2492 {
2493         unsigned long addr = (unsigned long)event;
2494         unsigned long index;
2495
2496         index = rb_event_index(event);
2497         addr &= PAGE_MASK;
2498
2499         return cpu_buffer->commit_page->page == (void *)addr &&
2500                 rb_commit_index(cpu_buffer) == index;
2501 }
2502
2503 static __always_inline void
2504 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2505                       struct ring_buffer_event *event)
2506 {
2507         u64 delta;
2508
2509         /*
2510          * The event first in the commit queue updates the
2511          * time stamp.
2512          */
2513         if (rb_event_is_commit(cpu_buffer, event)) {
2514                 /*
2515                  * A commit event that is first on a page
2516                  * updates the write timestamp with the page stamp
2517                  */
2518                 if (!rb_event_index(event))
2519                         cpu_buffer->write_stamp =
2520                                 cpu_buffer->commit_page->page->time_stamp;
2521                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2522                         delta = event->array[0];
2523                         delta <<= TS_SHIFT;
2524                         delta += event->time_delta;
2525                         cpu_buffer->write_stamp += delta;
2526                 } else
2527                         cpu_buffer->write_stamp += event->time_delta;
2528         }
2529 }
2530
2531 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2532                       struct ring_buffer_event *event)
2533 {
2534         local_inc(&cpu_buffer->entries);
2535         rb_update_write_stamp(cpu_buffer, event);
2536         rb_end_commit(cpu_buffer);
2537 }
2538
2539 static __always_inline void
2540 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2541 {
2542         bool pagebusy;
2543
2544         if (buffer->irq_work.waiters_pending) {
2545                 buffer->irq_work.waiters_pending = false;
2546                 /* irq_work_queue() supplies it's own memory barriers */
2547                 irq_work_queue(&buffer->irq_work.work);
2548         }
2549
2550         if (cpu_buffer->irq_work.waiters_pending) {
2551                 cpu_buffer->irq_work.waiters_pending = false;
2552                 /* irq_work_queue() supplies it's own memory barriers */
2553                 irq_work_queue(&cpu_buffer->irq_work.work);
2554         }
2555
2556         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2557
2558         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2559                 cpu_buffer->irq_work.wakeup_full = true;
2560                 cpu_buffer->irq_work.full_waiters_pending = false;
2561                 /* irq_work_queue() supplies it's own memory barriers */
2562                 irq_work_queue(&cpu_buffer->irq_work.work);
2563         }
2564 }
2565
2566 /*
2567  * The lock and unlock are done within a preempt disable section.
2568  * The current_context per_cpu variable can only be modified
2569  * by the current task between lock and unlock. But it can
2570  * be modified more than once via an interrupt. To pass this
2571  * information from the lock to the unlock without having to
2572  * access the 'in_interrupt()' functions again (which do show
2573  * a bit of overhead in something as critical as function tracing,
2574  * we use a bitmask trick.
2575  *
2576  *  bit 1 =  NMI context
2577  *  bit 2 =  IRQ context
2578  *  bit 3 =  SoftIRQ context
2579  *  bit 4 =  normal context.
2580  *
2581  * This works because this is the order of contexts that can
2582  * preempt other contexts. A SoftIRQ never preempts an IRQ
2583  * context.
2584  *
2585  * When the context is determined, the corresponding bit is
2586  * checked and set (if it was set, then a recursion of that context
2587  * happened).
2588  *
2589  * On unlock, we need to clear this bit. To do so, just subtract
2590  * 1 from the current_context and AND it to itself.
2591  *
2592  * (binary)
2593  *  101 - 1 = 100
2594  *  101 & 100 = 100 (clearing bit zero)
2595  *
2596  *  1010 - 1 = 1001
2597  *  1010 & 1001 = 1000 (clearing bit 1)
2598  *
2599  * The least significant bit can be cleared this way, and it
2600  * just so happens that it is the same bit corresponding to
2601  * the current context.
2602  *
2603  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
2604  * is set when a recursion is detected at the current context, and if
2605  * the TRANSITION bit is already set, it will fail the recursion.
2606  * This is needed because there's a lag between the changing of
2607  * interrupt context and updating the preempt count. In this case,
2608  * a false positive will be found. To handle this, one extra recursion
2609  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
2610  * bit is already set, then it is considered a recursion and the function
2611  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
2612  *
2613  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
2614  * to be cleared. Even if it wasn't the context that set it. That is,
2615  * if an interrupt comes in while NORMAL bit is set and the ring buffer
2616  * is called before preempt_count() is updated, since the check will
2617  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
2618  * NMI then comes in, it will set the NMI bit, but when the NMI code
2619  * does the trace_recursive_unlock() it will clear the TRANSTION bit
2620  * and leave the NMI bit set. But this is fine, because the interrupt
2621  * code that set the TRANSITION bit will then clear the NMI bit when it
2622  * calls trace_recursive_unlock(). If another NMI comes in, it will
2623  * set the TRANSITION bit and continue.
2624  *
2625  * Note: The TRANSITION bit only handles a single transition between context.
2626  */
2627
2628 static __always_inline int
2629 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2630 {
2631         unsigned int val = cpu_buffer->current_context;
2632         int bit;
2633
2634         if (in_interrupt()) {
2635                 if (in_nmi())
2636                         bit = RB_CTX_NMI;
2637                 else if (in_irq())
2638                         bit = RB_CTX_IRQ;
2639                 else
2640                         bit = RB_CTX_SOFTIRQ;
2641         } else
2642                 bit = RB_CTX_NORMAL;
2643
2644         if (unlikely(val & (1 << bit))) {
2645                 /*
2646                  * It is possible that this was called by transitioning
2647                  * between interrupt context, and preempt_count() has not
2648                  * been updated yet. In this case, use the TRANSITION bit.
2649                  */
2650                 bit = RB_CTX_TRANSITION;
2651                 if (val & (1 << bit))
2652                         return 1;
2653         }
2654
2655         val |= (1 << bit);
2656         cpu_buffer->current_context = val;
2657
2658         return 0;
2659 }
2660
2661 static __always_inline void
2662 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2663 {
2664         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2665 }
2666
2667 /**
2668  * ring_buffer_unlock_commit - commit a reserved
2669  * @buffer: The buffer to commit to
2670  * @event: The event pointer to commit.
2671  *
2672  * This commits the data to the ring buffer, and releases any locks held.
2673  *
2674  * Must be paired with ring_buffer_lock_reserve.
2675  */
2676 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2677                               struct ring_buffer_event *event)
2678 {
2679         struct ring_buffer_per_cpu *cpu_buffer;
2680         int cpu = raw_smp_processor_id();
2681
2682         cpu_buffer = buffer->buffers[cpu];
2683
2684         rb_commit(cpu_buffer, event);
2685
2686         rb_wakeups(buffer, cpu_buffer);
2687
2688         trace_recursive_unlock(cpu_buffer);
2689
2690         preempt_enable_notrace();
2691
2692         return 0;
2693 }
2694 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2695
2696 static noinline void
2697 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2698                     struct rb_event_info *info)
2699 {
2700         WARN_ONCE(info->delta > (1ULL << 59),
2701                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2702                   (unsigned long long)info->delta,
2703                   (unsigned long long)info->ts,
2704                   (unsigned long long)cpu_buffer->write_stamp,
2705                   sched_clock_stable() ? "" :
2706                   "If you just came from a suspend/resume,\n"
2707                   "please switch to the trace global clock:\n"
2708                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2709         info->add_timestamp = 1;
2710 }
2711
2712 static struct ring_buffer_event *
2713 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2714                   struct rb_event_info *info)
2715 {
2716         struct ring_buffer_event *event;
2717         struct buffer_page *tail_page;
2718         unsigned long tail, write;
2719
2720         /*
2721          * If the time delta since the last event is too big to
2722          * hold in the time field of the event, then we append a
2723          * TIME EXTEND event ahead of the data event.
2724          */
2725         if (unlikely(info->add_timestamp))
2726                 info->length += RB_LEN_TIME_EXTEND;
2727
2728         /* Don't let the compiler play games with cpu_buffer->tail_page */
2729         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2730         write = local_add_return(info->length, &tail_page->write);
2731
2732         /* set write to only the index of the write */
2733         write &= RB_WRITE_MASK;
2734         tail = write - info->length;
2735
2736         /*
2737          * If this is the first commit on the page, then it has the same
2738          * timestamp as the page itself.
2739          */
2740         if (!tail)
2741                 info->delta = 0;
2742
2743         /* See if we shot pass the end of this buffer page */
2744         if (unlikely(write > BUF_PAGE_SIZE))
2745                 return rb_move_tail(cpu_buffer, tail, info);
2746
2747         /* We reserved something on the buffer */
2748
2749         event = __rb_page_index(tail_page, tail);
2750         rb_update_event(cpu_buffer, event, info);
2751
2752         local_inc(&tail_page->entries);
2753
2754         /*
2755          * If this is the first commit on the page, then update
2756          * its timestamp.
2757          */
2758         if (!tail)
2759                 tail_page->page->time_stamp = info->ts;
2760
2761         /* account for these added bytes */
2762         local_add(info->length, &cpu_buffer->entries_bytes);
2763
2764         return event;
2765 }
2766
2767 static __always_inline struct ring_buffer_event *
2768 rb_reserve_next_event(struct ring_buffer *buffer,
2769                       struct ring_buffer_per_cpu *cpu_buffer,
2770                       unsigned long length)
2771 {
2772         struct ring_buffer_event *event;
2773         struct rb_event_info info;
2774         int nr_loops = 0;
2775         u64 diff;
2776
2777         rb_start_commit(cpu_buffer);
2778
2779 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2780         /*
2781          * Due to the ability to swap a cpu buffer from a buffer
2782          * it is possible it was swapped before we committed.
2783          * (committing stops a swap). We check for it here and
2784          * if it happened, we have to fail the write.
2785          */
2786         barrier();
2787         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2788                 local_dec(&cpu_buffer->committing);
2789                 local_dec(&cpu_buffer->commits);
2790                 return NULL;
2791         }
2792 #endif
2793
2794         info.length = rb_calculate_event_length(length);
2795  again:
2796         info.add_timestamp = 0;
2797         info.delta = 0;
2798
2799         /*
2800          * We allow for interrupts to reenter here and do a trace.
2801          * If one does, it will cause this original code to loop
2802          * back here. Even with heavy interrupts happening, this
2803          * should only happen a few times in a row. If this happens
2804          * 1000 times in a row, there must be either an interrupt
2805          * storm or we have something buggy.
2806          * Bail!
2807          */
2808         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2809                 goto out_fail;
2810
2811         info.ts = rb_time_stamp(cpu_buffer->buffer);
2812         diff = info.ts - cpu_buffer->write_stamp;
2813
2814         /* make sure this diff is calculated here */
2815         barrier();
2816
2817         /* Did the write stamp get updated already? */
2818         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2819                 info.delta = diff;
2820                 if (unlikely(test_time_stamp(info.delta)))
2821                         rb_handle_timestamp(cpu_buffer, &info);
2822         }
2823
2824         event = __rb_reserve_next(cpu_buffer, &info);
2825
2826         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2827                 if (info.add_timestamp)
2828                         info.length -= RB_LEN_TIME_EXTEND;
2829                 goto again;
2830         }
2831
2832         if (!event)
2833                 goto out_fail;
2834
2835         return event;
2836
2837  out_fail:
2838         rb_end_commit(cpu_buffer);
2839         return NULL;
2840 }
2841
2842 /**
2843  * ring_buffer_lock_reserve - reserve a part of the buffer
2844  * @buffer: the ring buffer to reserve from
2845  * @length: the length of the data to reserve (excluding event header)
2846  *
2847  * Returns a reseverd event on the ring buffer to copy directly to.
2848  * The user of this interface will need to get the body to write into
2849  * and can use the ring_buffer_event_data() interface.
2850  *
2851  * The length is the length of the data needed, not the event length
2852  * which also includes the event header.
2853  *
2854  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2855  * If NULL is returned, then nothing has been allocated or locked.
2856  */
2857 struct ring_buffer_event *
2858 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2859 {
2860         struct ring_buffer_per_cpu *cpu_buffer;
2861         struct ring_buffer_event *event;
2862         int cpu;
2863
2864         /* If we are tracing schedule, we don't want to recurse */
2865         preempt_disable_notrace();
2866
2867         if (unlikely(atomic_read(&buffer->record_disabled)))
2868                 goto out;
2869
2870         cpu = raw_smp_processor_id();
2871
2872         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2873                 goto out;
2874
2875         cpu_buffer = buffer->buffers[cpu];
2876
2877         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2878                 goto out;
2879
2880         if (unlikely(length > BUF_MAX_DATA_SIZE))
2881                 goto out;
2882
2883         if (unlikely(trace_recursive_lock(cpu_buffer)))
2884                 goto out;
2885
2886         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2887         if (!event)
2888                 goto out_unlock;
2889
2890         return event;
2891
2892  out_unlock:
2893         trace_recursive_unlock(cpu_buffer);
2894  out:
2895         preempt_enable_notrace();
2896         return NULL;
2897 }
2898 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2899
2900 /*
2901  * Decrement the entries to the page that an event is on.
2902  * The event does not even need to exist, only the pointer
2903  * to the page it is on. This may only be called before the commit
2904  * takes place.
2905  */
2906 static inline void
2907 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2908                    struct ring_buffer_event *event)
2909 {
2910         unsigned long addr = (unsigned long)event;
2911         struct buffer_page *bpage = cpu_buffer->commit_page;
2912         struct buffer_page *start;
2913
2914         addr &= PAGE_MASK;
2915
2916         /* Do the likely case first */
2917         if (likely(bpage->page == (void *)addr)) {
2918                 local_dec(&bpage->entries);
2919                 return;
2920         }
2921
2922         /*
2923          * Because the commit page may be on the reader page we
2924          * start with the next page and check the end loop there.
2925          */
2926         rb_inc_page(cpu_buffer, &bpage);
2927         start = bpage;
2928         do {
2929                 if (bpage->page == (void *)addr) {
2930                         local_dec(&bpage->entries);
2931                         return;
2932                 }
2933                 rb_inc_page(cpu_buffer, &bpage);
2934         } while (bpage != start);
2935
2936         /* commit not part of this buffer?? */
2937         RB_WARN_ON(cpu_buffer, 1);
2938 }
2939
2940 /**
2941  * ring_buffer_commit_discard - discard an event that has not been committed
2942  * @buffer: the ring buffer
2943  * @event: non committed event to discard
2944  *
2945  * Sometimes an event that is in the ring buffer needs to be ignored.
2946  * This function lets the user discard an event in the ring buffer
2947  * and then that event will not be read later.
2948  *
2949  * This function only works if it is called before the the item has been
2950  * committed. It will try to free the event from the ring buffer
2951  * if another event has not been added behind it.
2952  *
2953  * If another event has been added behind it, it will set the event
2954  * up as discarded, and perform the commit.
2955  *
2956  * If this function is called, do not call ring_buffer_unlock_commit on
2957  * the event.
2958  */
2959 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2960                                 struct ring_buffer_event *event)
2961 {
2962         struct ring_buffer_per_cpu *cpu_buffer;
2963         int cpu;
2964
2965         /* The event is discarded regardless */
2966         rb_event_discard(event);
2967
2968         cpu = smp_processor_id();
2969         cpu_buffer = buffer->buffers[cpu];
2970
2971         /*
2972          * This must only be called if the event has not been
2973          * committed yet. Thus we can assume that preemption
2974          * is still disabled.
2975          */
2976         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2977
2978         rb_decrement_entry(cpu_buffer, event);
2979         if (rb_try_to_discard(cpu_buffer, event))
2980                 goto out;
2981
2982         /*
2983          * The commit is still visible by the reader, so we
2984          * must still update the timestamp.
2985          */
2986         rb_update_write_stamp(cpu_buffer, event);
2987  out:
2988         rb_end_commit(cpu_buffer);
2989
2990         trace_recursive_unlock(cpu_buffer);
2991
2992         preempt_enable_notrace();
2993
2994 }
2995 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2996
2997 /**
2998  * ring_buffer_write - write data to the buffer without reserving
2999  * @buffer: The ring buffer to write to.
3000  * @length: The length of the data being written (excluding the event header)
3001  * @data: The data to write to the buffer.
3002  *
3003  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3004  * one function. If you already have the data to write to the buffer, it
3005  * may be easier to simply call this function.
3006  *
3007  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3008  * and not the length of the event which would hold the header.
3009  */
3010 int ring_buffer_write(struct ring_buffer *buffer,
3011                       unsigned long length,
3012                       void *data)
3013 {
3014         struct ring_buffer_per_cpu *cpu_buffer;
3015         struct ring_buffer_event *event;
3016         void *body;
3017         int ret = -EBUSY;
3018         int cpu;
3019
3020         preempt_disable_notrace();
3021
3022         if (atomic_read(&buffer->record_disabled))
3023                 goto out;
3024
3025         cpu = raw_smp_processor_id();
3026
3027         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3028                 goto out;
3029
3030         cpu_buffer = buffer->buffers[cpu];
3031
3032         if (atomic_read(&cpu_buffer->record_disabled))
3033                 goto out;
3034
3035         if (length > BUF_MAX_DATA_SIZE)
3036                 goto out;
3037
3038         if (unlikely(trace_recursive_lock(cpu_buffer)))
3039                 goto out;
3040
3041         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3042         if (!event)
3043                 goto out_unlock;
3044
3045         body = rb_event_data(event);
3046
3047         memcpy(body, data, length);
3048
3049         rb_commit(cpu_buffer, event);
3050
3051         rb_wakeups(buffer, cpu_buffer);
3052
3053         ret = 0;
3054
3055  out_unlock:
3056         trace_recursive_unlock(cpu_buffer);
3057
3058  out:
3059         preempt_enable_notrace();
3060
3061         return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(ring_buffer_write);
3064
3065 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3066 {
3067         struct buffer_page *reader = cpu_buffer->reader_page;
3068         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3069         struct buffer_page *commit = cpu_buffer->commit_page;
3070
3071         /* In case of error, head will be NULL */
3072         if (unlikely(!head))
3073                 return true;
3074
3075         /* Reader should exhaust content in reader page */
3076         if (reader->read != rb_page_commit(reader))
3077                 return false;
3078
3079         /*
3080          * If writers are committing on the reader page, knowing all
3081          * committed content has been read, the ring buffer is empty.
3082          */
3083         if (commit == reader)
3084                 return true;
3085
3086         /*
3087          * If writers are committing on a page other than reader page
3088          * and head page, there should always be content to read.
3089          */
3090         if (commit != head)
3091                 return false;
3092
3093         /*
3094          * Writers are committing on the head page, we just need
3095          * to care about there're committed data, and the reader will
3096          * swap reader page with head page when it is to read data.
3097          */
3098         return rb_page_commit(commit) == 0;
3099 }
3100
3101 /**
3102  * ring_buffer_record_disable - stop all writes into the buffer
3103  * @buffer: The ring buffer to stop writes to.
3104  *
3105  * This prevents all writes to the buffer. Any attempt to write
3106  * to the buffer after this will fail and return NULL.
3107  *
3108  * The caller should call synchronize_sched() after this.
3109  */
3110 void ring_buffer_record_disable(struct ring_buffer *buffer)
3111 {
3112         atomic_inc(&buffer->record_disabled);
3113 }
3114 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3115
3116 /**
3117  * ring_buffer_record_enable - enable writes to the buffer
3118  * @buffer: The ring buffer to enable writes
3119  *
3120  * Note, multiple disables will need the same number of enables
3121  * to truly enable the writing (much like preempt_disable).
3122  */
3123 void ring_buffer_record_enable(struct ring_buffer *buffer)
3124 {
3125         atomic_dec(&buffer->record_disabled);
3126 }
3127 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3128
3129 /**
3130  * ring_buffer_record_off - stop all writes into the buffer
3131  * @buffer: The ring buffer to stop writes to.
3132  *
3133  * This prevents all writes to the buffer. Any attempt to write
3134  * to the buffer after this will fail and return NULL.
3135  *
3136  * This is different than ring_buffer_record_disable() as
3137  * it works like an on/off switch, where as the disable() version
3138  * must be paired with a enable().
3139  */
3140 void ring_buffer_record_off(struct ring_buffer *buffer)
3141 {
3142         unsigned int rd;
3143         unsigned int new_rd;
3144
3145         do {
3146                 rd = atomic_read(&buffer->record_disabled);
3147                 new_rd = rd | RB_BUFFER_OFF;
3148         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3149 }
3150 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3151
3152 /**
3153  * ring_buffer_record_on - restart writes into the buffer
3154  * @buffer: The ring buffer to start writes to.
3155  *
3156  * This enables all writes to the buffer that was disabled by
3157  * ring_buffer_record_off().
3158  *
3159  * This is different than ring_buffer_record_enable() as
3160  * it works like an on/off switch, where as the enable() version
3161  * must be paired with a disable().
3162  */
3163 void ring_buffer_record_on(struct ring_buffer *buffer)
3164 {
3165         unsigned int rd;
3166         unsigned int new_rd;
3167
3168         do {
3169                 rd = atomic_read(&buffer->record_disabled);
3170                 new_rd = rd & ~RB_BUFFER_OFF;
3171         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3172 }
3173 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3174
3175 /**
3176  * ring_buffer_record_is_on - return true if the ring buffer can write
3177  * @buffer: The ring buffer to see if write is enabled
3178  *
3179  * Returns true if the ring buffer is in a state that it accepts writes.
3180  */
3181 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3182 {
3183         return !atomic_read(&buffer->record_disabled);
3184 }
3185
3186 /**
3187  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3188  * @buffer: The ring buffer to see if write is set enabled
3189  *
3190  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3191  * Note that this does NOT mean it is in a writable state.
3192  *
3193  * It may return true when the ring buffer has been disabled by
3194  * ring_buffer_record_disable(), as that is a temporary disabling of
3195  * the ring buffer.
3196  */
3197 int ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3198 {
3199         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3200 }
3201
3202 /**
3203  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3204  * @buffer: The ring buffer to stop writes to.
3205  * @cpu: The CPU buffer to stop
3206  *
3207  * This prevents all writes to the buffer. Any attempt to write
3208  * to the buffer after this will fail and return NULL.
3209  *
3210  * The caller should call synchronize_sched() after this.
3211  */
3212 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3213 {
3214         struct ring_buffer_per_cpu *cpu_buffer;
3215
3216         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3217                 return;
3218
3219         cpu_buffer = buffer->buffers[cpu];
3220         atomic_inc(&cpu_buffer->record_disabled);
3221 }
3222 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3223
3224 /**
3225  * ring_buffer_record_enable_cpu - enable writes to the buffer
3226  * @buffer: The ring buffer to enable writes
3227  * @cpu: The CPU to enable.
3228  *
3229  * Note, multiple disables will need the same number of enables
3230  * to truly enable the writing (much like preempt_disable).
3231  */
3232 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3233 {
3234         struct ring_buffer_per_cpu *cpu_buffer;
3235
3236         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3237                 return;
3238
3239         cpu_buffer = buffer->buffers[cpu];
3240         atomic_dec(&cpu_buffer->record_disabled);
3241 }
3242 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3243
3244 /*
3245  * The total entries in the ring buffer is the running counter
3246  * of entries entered into the ring buffer, minus the sum of
3247  * the entries read from the ring buffer and the number of
3248  * entries that were overwritten.
3249  */
3250 static inline unsigned long
3251 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3252 {
3253         return local_read(&cpu_buffer->entries) -
3254                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3255 }
3256
3257 /**
3258  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3259  * @buffer: The ring buffer
3260  * @cpu: The per CPU buffer to read from.
3261  */
3262 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3263 {
3264         unsigned long flags;
3265         struct ring_buffer_per_cpu *cpu_buffer;
3266         struct buffer_page *bpage;
3267         u64 ret = 0;
3268
3269         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3270                 return 0;
3271
3272         cpu_buffer = buffer->buffers[cpu];
3273         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3274         /*
3275          * if the tail is on reader_page, oldest time stamp is on the reader
3276          * page
3277          */
3278         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3279                 bpage = cpu_buffer->reader_page;
3280         else
3281                 bpage = rb_set_head_page(cpu_buffer);
3282         if (bpage)
3283                 ret = bpage->page->time_stamp;
3284         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3285
3286         return ret;
3287 }
3288 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3289
3290 /**
3291  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3292  * @buffer: The ring buffer
3293  * @cpu: The per CPU buffer to read from.
3294  */
3295 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3296 {
3297         struct ring_buffer_per_cpu *cpu_buffer;
3298         unsigned long ret;
3299
3300         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3301                 return 0;
3302
3303         cpu_buffer = buffer->buffers[cpu];
3304         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3305
3306         return ret;
3307 }
3308 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3309
3310 /**
3311  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3312  * @buffer: The ring buffer
3313  * @cpu: The per CPU buffer to get the entries from.
3314  */
3315 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3316 {
3317         struct ring_buffer_per_cpu *cpu_buffer;
3318
3319         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3320                 return 0;
3321
3322         cpu_buffer = buffer->buffers[cpu];
3323
3324         return rb_num_of_entries(cpu_buffer);
3325 }
3326 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3327
3328 /**
3329  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3330  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3331  * @buffer: The ring buffer
3332  * @cpu: The per CPU buffer to get the number of overruns from
3333  */
3334 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3335 {
3336         struct ring_buffer_per_cpu *cpu_buffer;
3337         unsigned long ret;
3338
3339         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3340                 return 0;
3341
3342         cpu_buffer = buffer->buffers[cpu];
3343         ret = local_read(&cpu_buffer->overrun);
3344
3345         return ret;
3346 }
3347 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3348
3349 /**
3350  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3351  * commits failing due to the buffer wrapping around while there are uncommitted
3352  * events, such as during an interrupt storm.
3353  * @buffer: The ring buffer
3354  * @cpu: The per CPU buffer to get the number of overruns from
3355  */
3356 unsigned long
3357 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3358 {
3359         struct ring_buffer_per_cpu *cpu_buffer;
3360         unsigned long ret;
3361
3362         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3363                 return 0;
3364
3365         cpu_buffer = buffer->buffers[cpu];
3366         ret = local_read(&cpu_buffer->commit_overrun);
3367
3368         return ret;
3369 }
3370 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3371
3372 /**
3373  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3374  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3375  * @buffer: The ring buffer
3376  * @cpu: The per CPU buffer to get the number of overruns from
3377  */
3378 unsigned long
3379 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3380 {
3381         struct ring_buffer_per_cpu *cpu_buffer;
3382         unsigned long ret;
3383
3384         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3385                 return 0;
3386
3387         cpu_buffer = buffer->buffers[cpu];
3388         ret = local_read(&cpu_buffer->dropped_events);
3389
3390         return ret;
3391 }
3392 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3393
3394 /**
3395  * ring_buffer_read_events_cpu - get the number of events successfully read
3396  * @buffer: The ring buffer
3397  * @cpu: The per CPU buffer to get the number of events read
3398  */
3399 unsigned long
3400 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3401 {
3402         struct ring_buffer_per_cpu *cpu_buffer;
3403
3404         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3405                 return 0;
3406
3407         cpu_buffer = buffer->buffers[cpu];
3408         return cpu_buffer->read;
3409 }
3410 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3411
3412 /**
3413  * ring_buffer_entries - get the number of entries in a buffer
3414  * @buffer: The ring buffer
3415  *
3416  * Returns the total number of entries in the ring buffer
3417  * (all CPU entries)
3418  */
3419 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3420 {
3421         struct ring_buffer_per_cpu *cpu_buffer;
3422         unsigned long entries = 0;
3423         int cpu;
3424
3425         /* if you care about this being correct, lock the buffer */
3426         for_each_buffer_cpu(buffer, cpu) {
3427                 cpu_buffer = buffer->buffers[cpu];
3428                 entries += rb_num_of_entries(cpu_buffer);
3429         }
3430
3431         return entries;
3432 }
3433 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3434
3435 /**
3436  * ring_buffer_overruns - get the number of overruns in buffer
3437  * @buffer: The ring buffer
3438  *
3439  * Returns the total number of overruns in the ring buffer
3440  * (all CPU entries)
3441  */
3442 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3443 {
3444         struct ring_buffer_per_cpu *cpu_buffer;
3445         unsigned long overruns = 0;
3446         int cpu;
3447
3448         /* if you care about this being correct, lock the buffer */
3449         for_each_buffer_cpu(buffer, cpu) {
3450                 cpu_buffer = buffer->buffers[cpu];
3451                 overruns += local_read(&cpu_buffer->overrun);
3452         }
3453
3454         return overruns;
3455 }
3456 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3457
3458 static void rb_iter_reset(struct ring_buffer_iter *iter)
3459 {
3460         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3461
3462         /* Iterator usage is expected to have record disabled */
3463         iter->head_page = cpu_buffer->reader_page;
3464         iter->head = cpu_buffer->reader_page->read;
3465
3466         iter->cache_reader_page = iter->head_page;
3467         iter->cache_read = cpu_buffer->read;
3468         iter->cache_pages_removed = cpu_buffer->pages_removed;
3469
3470         if (iter->head)
3471                 iter->read_stamp = cpu_buffer->read_stamp;
3472         else
3473                 iter->read_stamp = iter->head_page->page->time_stamp;
3474 }
3475
3476 /**
3477  * ring_buffer_iter_reset - reset an iterator
3478  * @iter: The iterator to reset
3479  *
3480  * Resets the iterator, so that it will start from the beginning
3481  * again.
3482  */
3483 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3484 {
3485         struct ring_buffer_per_cpu *cpu_buffer;
3486         unsigned long flags;
3487
3488         if (!iter)
3489                 return;
3490
3491         cpu_buffer = iter->cpu_buffer;
3492
3493         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3494         rb_iter_reset(iter);
3495         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3496 }
3497 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3498
3499 /**
3500  * ring_buffer_iter_empty - check if an iterator has no more to read
3501  * @iter: The iterator to check
3502  */
3503 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3504 {
3505         struct ring_buffer_per_cpu *cpu_buffer;
3506         struct buffer_page *reader;
3507         struct buffer_page *head_page;
3508         struct buffer_page *commit_page;
3509         unsigned commit;
3510
3511         cpu_buffer = iter->cpu_buffer;
3512
3513         /* Remember, trace recording is off when iterator is in use */
3514         reader = cpu_buffer->reader_page;
3515         head_page = cpu_buffer->head_page;
3516         commit_page = cpu_buffer->commit_page;
3517         commit = rb_page_commit(commit_page);
3518
3519         return ((iter->head_page == commit_page && iter->head == commit) ||
3520                 (iter->head_page == reader && commit_page == head_page &&
3521                  head_page->read == commit &&
3522                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3523 }
3524 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3525
3526 static void
3527 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3528                      struct ring_buffer_event *event)
3529 {
3530         u64 delta;
3531
3532         switch (event->type_len) {
3533         case RINGBUF_TYPE_PADDING:
3534                 return;
3535
3536         case RINGBUF_TYPE_TIME_EXTEND:
3537                 delta = event->array[0];
3538                 delta <<= TS_SHIFT;
3539                 delta += event->time_delta;
3540                 cpu_buffer->read_stamp += delta;
3541                 return;
3542
3543         case RINGBUF_TYPE_TIME_STAMP:
3544                 /* FIXME: not implemented */
3545                 return;
3546
3547         case RINGBUF_TYPE_DATA:
3548                 cpu_buffer->read_stamp += event->time_delta;
3549                 return;
3550
3551         default:
3552                 BUG();
3553         }
3554         return;
3555 }
3556
3557 static void
3558 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3559                           struct ring_buffer_event *event)
3560 {
3561         u64 delta;
3562
3563         switch (event->type_len) {
3564         case RINGBUF_TYPE_PADDING:
3565                 return;
3566
3567         case RINGBUF_TYPE_TIME_EXTEND:
3568                 delta = event->array[0];
3569                 delta <<= TS_SHIFT;
3570                 delta += event->time_delta;
3571                 iter->read_stamp += delta;
3572                 return;
3573
3574         case RINGBUF_TYPE_TIME_STAMP:
3575                 /* FIXME: not implemented */
3576                 return;
3577
3578         case RINGBUF_TYPE_DATA:
3579                 iter->read_stamp += event->time_delta;
3580                 return;
3581
3582         default:
3583                 BUG();
3584         }
3585         return;
3586 }
3587
3588 static struct buffer_page *
3589 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3590 {
3591         struct buffer_page *reader = NULL;
3592         unsigned long overwrite;
3593         unsigned long flags;
3594         int nr_loops = 0;
3595         int ret;
3596
3597         local_irq_save(flags);
3598         arch_spin_lock(&cpu_buffer->lock);
3599
3600  again:
3601         /*
3602          * This should normally only loop twice. But because the
3603          * start of the reader inserts an empty page, it causes
3604          * a case where we will loop three times. There should be no
3605          * reason to loop four times (that I know of).
3606          */
3607         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3608                 reader = NULL;
3609                 goto out;
3610         }
3611
3612         reader = cpu_buffer->reader_page;
3613
3614         /* If there's more to read, return this page */
3615         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3616                 goto out;
3617
3618         /* Never should we have an index greater than the size */
3619         if (RB_WARN_ON(cpu_buffer,
3620                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3621                 goto out;
3622
3623         /* check if we caught up to the tail */
3624         reader = NULL;
3625         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3626                 goto out;
3627
3628         /* Don't bother swapping if the ring buffer is empty */
3629         if (rb_num_of_entries(cpu_buffer) == 0)
3630                 goto out;
3631
3632         /*
3633          * Reset the reader page to size zero.
3634          */
3635         local_set(&cpu_buffer->reader_page->write, 0);
3636         local_set(&cpu_buffer->reader_page->entries, 0);
3637         local_set(&cpu_buffer->reader_page->page->commit, 0);
3638         cpu_buffer->reader_page->real_end = 0;
3639
3640  spin:
3641         /*
3642          * Splice the empty reader page into the list around the head.
3643          */
3644         reader = rb_set_head_page(cpu_buffer);
3645         if (!reader)
3646                 goto out;
3647         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3648         cpu_buffer->reader_page->list.prev = reader->list.prev;
3649
3650         /*
3651          * cpu_buffer->pages just needs to point to the buffer, it
3652          *  has no specific buffer page to point to. Lets move it out
3653          *  of our way so we don't accidentally swap it.
3654          */
3655         cpu_buffer->pages = reader->list.prev;
3656
3657         /* The reader page will be pointing to the new head */
3658         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3659
3660         /*
3661          * We want to make sure we read the overruns after we set up our
3662          * pointers to the next object. The writer side does a
3663          * cmpxchg to cross pages which acts as the mb on the writer
3664          * side. Note, the reader will constantly fail the swap
3665          * while the writer is updating the pointers, so this
3666          * guarantees that the overwrite recorded here is the one we
3667          * want to compare with the last_overrun.
3668          */
3669         smp_mb();
3670         overwrite = local_read(&(cpu_buffer->overrun));
3671
3672         /*
3673          * Here's the tricky part.
3674          *
3675          * We need to move the pointer past the header page.
3676          * But we can only do that if a writer is not currently
3677          * moving it. The page before the header page has the
3678          * flag bit '1' set if it is pointing to the page we want.
3679          * but if the writer is in the process of moving it
3680          * than it will be '2' or already moved '0'.
3681          */
3682
3683         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3684
3685         /*
3686          * If we did not convert it, then we must try again.
3687          */
3688         if (!ret)
3689                 goto spin;
3690
3691         /*
3692          * Yeah! We succeeded in replacing the page.
3693          *
3694          * Now make the new head point back to the reader page.
3695          */
3696         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3697         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3698
3699         /* Finally update the reader page to the new head */
3700         cpu_buffer->reader_page = reader;
3701         cpu_buffer->reader_page->read = 0;
3702
3703         if (overwrite != cpu_buffer->last_overrun) {
3704                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3705                 cpu_buffer->last_overrun = overwrite;
3706         }
3707
3708         goto again;
3709
3710  out:
3711         /* Update the read_stamp on the first event */
3712         if (reader && reader->read == 0)
3713                 cpu_buffer->read_stamp = reader->page->time_stamp;
3714
3715         arch_spin_unlock(&cpu_buffer->lock);
3716         local_irq_restore(flags);
3717
3718         /*
3719          * The writer has preempt disable, wait for it. But not forever
3720          * Although, 1 second is pretty much "forever"
3721          */
3722 #define USECS_WAIT      1000000
3723         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
3724                 /* If the write is past the end of page, a writer is still updating it */
3725                 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
3726                         break;
3727
3728                 udelay(1);
3729
3730                 /* Get the latest version of the reader write value */
3731                 smp_rmb();
3732         }
3733
3734         /* The writer is not moving forward? Something is wrong */
3735         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
3736                 reader = NULL;
3737
3738         /*
3739          * Make sure we see any padding after the write update
3740          * (see rb_reset_tail()).
3741          *
3742          * In addition, a writer may be writing on the reader page
3743          * if the page has not been fully filled, so the read barrier
3744          * is also needed to make sure we see the content of what is
3745          * committed by the writer (see rb_set_commit_to_write()).
3746          */
3747         smp_rmb();
3748
3749
3750         return reader;
3751 }
3752
3753 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3754 {
3755         struct ring_buffer_event *event;
3756         struct buffer_page *reader;
3757         unsigned length;
3758
3759         reader = rb_get_reader_page(cpu_buffer);
3760
3761         /* This function should not be called when buffer is empty */
3762         if (RB_WARN_ON(cpu_buffer, !reader))
3763                 return;
3764
3765         event = rb_reader_event(cpu_buffer);
3766
3767         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3768                 cpu_buffer->read++;
3769
3770         rb_update_read_stamp(cpu_buffer, event);
3771
3772         length = rb_event_length(event);
3773         cpu_buffer->reader_page->read += length;
3774 }
3775
3776 static void rb_advance_iter(struct ring_buffer_iter *iter)
3777 {
3778         struct ring_buffer_per_cpu *cpu_buffer;
3779         struct ring_buffer_event *event;
3780         unsigned length;
3781
3782         cpu_buffer = iter->cpu_buffer;
3783
3784         /*
3785          * Check if we are at the end of the buffer.
3786          */
3787         if (iter->head >= rb_page_size(iter->head_page)) {
3788                 /* discarded commits can make the page empty */
3789                 if (iter->head_page == cpu_buffer->commit_page)
3790                         return;
3791                 rb_inc_iter(iter);
3792                 return;
3793         }
3794
3795         event = rb_iter_head_event(iter);
3796
3797         length = rb_event_length(event);
3798
3799         /*
3800          * This should not be called to advance the header if we are
3801          * at the tail of the buffer.
3802          */
3803         if (RB_WARN_ON(cpu_buffer,
3804                        (iter->head_page == cpu_buffer->commit_page) &&
3805                        (iter->head + length > rb_commit_index(cpu_buffer))))
3806                 return;
3807
3808         rb_update_iter_read_stamp(iter, event);
3809
3810         iter->head += length;
3811
3812         /* check for end of page padding */
3813         if ((iter->head >= rb_page_size(iter->head_page)) &&
3814             (iter->head_page != cpu_buffer->commit_page))
3815                 rb_inc_iter(iter);
3816 }
3817
3818 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3819 {
3820         return cpu_buffer->lost_events;
3821 }
3822
3823 static struct ring_buffer_event *
3824 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3825                unsigned long *lost_events)
3826 {
3827         struct ring_buffer_event *event;
3828         struct buffer_page *reader;
3829         int nr_loops = 0;
3830
3831  again:
3832         /*
3833          * We repeat when a time extend is encountered.
3834          * Since the time extend is always attached to a data event,
3835          * we should never loop more than once.
3836          * (We never hit the following condition more than twice).
3837          */
3838         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3839                 return NULL;
3840
3841         reader = rb_get_reader_page(cpu_buffer);
3842         if (!reader)
3843                 return NULL;
3844
3845         event = rb_reader_event(cpu_buffer);
3846
3847         switch (event->type_len) {
3848         case RINGBUF_TYPE_PADDING:
3849                 if (rb_null_event(event))
3850                         RB_WARN_ON(cpu_buffer, 1);
3851                 /*
3852                  * Because the writer could be discarding every
3853                  * event it creates (which would probably be bad)
3854                  * if we were to go back to "again" then we may never
3855                  * catch up, and will trigger the warn on, or lock
3856                  * the box. Return the padding, and we will release
3857                  * the current locks, and try again.
3858                  */
3859                 return event;
3860
3861         case RINGBUF_TYPE_TIME_EXTEND:
3862                 /* Internal data, OK to advance */
3863                 rb_advance_reader(cpu_buffer);
3864                 goto again;
3865
3866         case RINGBUF_TYPE_TIME_STAMP:
3867                 /* FIXME: not implemented */
3868                 rb_advance_reader(cpu_buffer);
3869                 goto again;
3870
3871         case RINGBUF_TYPE_DATA:
3872                 if (ts) {
3873                         *ts = cpu_buffer->read_stamp + event->time_delta;
3874                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3875                                                          cpu_buffer->cpu, ts);
3876                 }
3877                 if (lost_events)
3878                         *lost_events = rb_lost_events(cpu_buffer);
3879                 return event;
3880
3881         default:
3882                 BUG();
3883         }
3884
3885         return NULL;
3886 }
3887 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3888
3889 static struct ring_buffer_event *
3890 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3891 {
3892         struct ring_buffer *buffer;
3893         struct ring_buffer_per_cpu *cpu_buffer;
3894         struct ring_buffer_event *event;
3895         int nr_loops = 0;
3896
3897         cpu_buffer = iter->cpu_buffer;
3898         buffer = cpu_buffer->buffer;
3899
3900         /*
3901          * Check if someone performed a consuming read to the buffer
3902          * or removed some pages from the buffer. In these cases,
3903          * iterator was invalidated and we need to reset it.
3904          */
3905         if (unlikely(iter->cache_read != cpu_buffer->read ||
3906                      iter->cache_reader_page != cpu_buffer->reader_page ||
3907                      iter->cache_pages_removed != cpu_buffer->pages_removed))
3908                 rb_iter_reset(iter);
3909
3910  again:
3911         if (ring_buffer_iter_empty(iter))
3912                 return NULL;
3913
3914         /*
3915          * We repeat when a time extend is encountered or we hit
3916          * the end of the page. Since the time extend is always attached
3917          * to a data event, we should never loop more than three times.
3918          * Once for going to next page, once on time extend, and
3919          * finally once to get the event.
3920          * (We never hit the following condition more than thrice).
3921          */
3922         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3923                 return NULL;
3924
3925         if (rb_per_cpu_empty(cpu_buffer))
3926                 return NULL;
3927
3928         if (iter->head >= rb_page_size(iter->head_page)) {
3929                 rb_inc_iter(iter);
3930                 goto again;
3931         }
3932
3933         event = rb_iter_head_event(iter);
3934
3935         switch (event->type_len) {
3936         case RINGBUF_TYPE_PADDING:
3937                 if (rb_null_event(event)) {
3938                         rb_inc_iter(iter);
3939                         goto again;
3940                 }
3941                 rb_advance_iter(iter);
3942                 return event;
3943
3944         case RINGBUF_TYPE_TIME_EXTEND:
3945                 /* Internal data, OK to advance */
3946                 rb_advance_iter(iter);
3947                 goto again;
3948
3949         case RINGBUF_TYPE_TIME_STAMP:
3950                 /* FIXME: not implemented */
3951                 rb_advance_iter(iter);
3952                 goto again;
3953
3954         case RINGBUF_TYPE_DATA:
3955                 if (ts) {
3956                         *ts = iter->read_stamp + event->time_delta;
3957                         ring_buffer_normalize_time_stamp(buffer,
3958                                                          cpu_buffer->cpu, ts);
3959                 }
3960                 return event;
3961
3962         default:
3963                 BUG();
3964         }
3965
3966         return NULL;
3967 }
3968 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3969
3970 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3971 {
3972         if (likely(!in_nmi())) {
3973                 raw_spin_lock(&cpu_buffer->reader_lock);
3974                 return true;
3975         }
3976
3977         /*
3978          * If an NMI die dumps out the content of the ring buffer
3979          * trylock must be used to prevent a deadlock if the NMI
3980          * preempted a task that holds the ring buffer locks. If
3981          * we get the lock then all is fine, if not, then continue
3982          * to do the read, but this can corrupt the ring buffer,
3983          * so it must be permanently disabled from future writes.
3984          * Reading from NMI is a oneshot deal.
3985          */
3986         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3987                 return true;
3988
3989         /* Continue without locking, but disable the ring buffer */
3990         atomic_inc(&cpu_buffer->record_disabled);
3991         return false;
3992 }
3993
3994 static inline void
3995 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3996 {
3997         if (likely(locked))
3998                 raw_spin_unlock(&cpu_buffer->reader_lock);
3999         return;
4000 }
4001
4002 /**
4003  * ring_buffer_peek - peek at the next event to be read
4004  * @buffer: The ring buffer to read
4005  * @cpu: The cpu to peak at
4006  * @ts: The timestamp counter of this event.
4007  * @lost_events: a variable to store if events were lost (may be NULL)
4008  *
4009  * This will return the event that will be read next, but does
4010  * not consume the data.
4011  */
4012 struct ring_buffer_event *
4013 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4014                  unsigned long *lost_events)
4015 {
4016         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4017         struct ring_buffer_event *event;
4018         unsigned long flags;
4019         bool dolock;
4020
4021         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4022                 return NULL;
4023
4024  again:
4025         local_irq_save(flags);
4026         dolock = rb_reader_lock(cpu_buffer);
4027         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4028         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4029                 rb_advance_reader(cpu_buffer);
4030         rb_reader_unlock(cpu_buffer, dolock);
4031         local_irq_restore(flags);
4032
4033         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4034                 goto again;
4035
4036         return event;
4037 }
4038
4039 /**
4040  * ring_buffer_iter_peek - peek at the next event to be read
4041  * @iter: The ring buffer iterator
4042  * @ts: The timestamp counter of this event.
4043  *
4044  * This will return the event that will be read next, but does
4045  * not increment the iterator.
4046  */
4047 struct ring_buffer_event *
4048 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4049 {
4050         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4051         struct ring_buffer_event *event;
4052         unsigned long flags;
4053
4054  again:
4055         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4056         event = rb_iter_peek(iter, ts);
4057         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4058
4059         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4060                 goto again;
4061
4062         return event;
4063 }
4064
4065 /**
4066  * ring_buffer_consume - return an event and consume it
4067  * @buffer: The ring buffer to get the next event from
4068  * @cpu: the cpu to read the buffer from
4069  * @ts: a variable to store the timestamp (may be NULL)
4070  * @lost_events: a variable to store if events were lost (may be NULL)
4071  *
4072  * Returns the next event in the ring buffer, and that event is consumed.
4073  * Meaning, that sequential reads will keep returning a different event,
4074  * and eventually empty the ring buffer if the producer is slower.
4075  */
4076 struct ring_buffer_event *
4077 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4078                     unsigned long *lost_events)
4079 {
4080         struct ring_buffer_per_cpu *cpu_buffer;
4081         struct ring_buffer_event *event = NULL;
4082         unsigned long flags;
4083         bool dolock;
4084
4085  again:
4086         /* might be called in atomic */
4087         preempt_disable();
4088
4089         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4090                 goto out;
4091
4092         cpu_buffer = buffer->buffers[cpu];
4093         local_irq_save(flags);
4094         dolock = rb_reader_lock(cpu_buffer);
4095
4096         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4097         if (event) {
4098                 cpu_buffer->lost_events = 0;
4099                 rb_advance_reader(cpu_buffer);
4100         }
4101
4102         rb_reader_unlock(cpu_buffer, dolock);
4103         local_irq_restore(flags);
4104
4105  out:
4106         preempt_enable();
4107
4108         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4109                 goto again;
4110
4111         return event;
4112 }
4113 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4114
4115 /**
4116  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4117  * @buffer: The ring buffer to read from
4118  * @cpu: The cpu buffer to iterate over
4119  * @flags: gfp flags to use for memory allocation
4120  *
4121  * This performs the initial preparations necessary to iterate
4122  * through the buffer.  Memory is allocated, buffer recording
4123  * is disabled, and the iterator pointer is returned to the caller.
4124  *
4125  * Disabling buffer recordng prevents the reading from being
4126  * corrupted. This is not a consuming read, so a producer is not
4127  * expected.
4128  *
4129  * After a sequence of ring_buffer_read_prepare calls, the user is
4130  * expected to make at least one call to ring_buffer_read_prepare_sync.
4131  * Afterwards, ring_buffer_read_start is invoked to get things going
4132  * for real.
4133  *
4134  * This overall must be paired with ring_buffer_read_finish.
4135  */
4136 struct ring_buffer_iter *
4137 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4138 {
4139         struct ring_buffer_per_cpu *cpu_buffer;
4140         struct ring_buffer_iter *iter;
4141
4142         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4143                 return NULL;
4144
4145         iter = kmalloc(sizeof(*iter), flags);
4146         if (!iter)
4147                 return NULL;
4148
4149         cpu_buffer = buffer->buffers[cpu];
4150
4151         iter->cpu_buffer = cpu_buffer;
4152
4153         atomic_inc(&buffer->resize_disabled);
4154         atomic_inc(&cpu_buffer->record_disabled);
4155
4156         return iter;
4157 }
4158 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4159
4160 /**
4161  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4162  *
4163  * All previously invoked ring_buffer_read_prepare calls to prepare
4164  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4165  * calls on those iterators are allowed.
4166  */
4167 void
4168 ring_buffer_read_prepare_sync(void)
4169 {
4170         synchronize_sched();
4171 }
4172 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4173
4174 /**
4175  * ring_buffer_read_start - start a non consuming read of the buffer
4176  * @iter: The iterator returned by ring_buffer_read_prepare
4177  *
4178  * This finalizes the startup of an iteration through the buffer.
4179  * The iterator comes from a call to ring_buffer_read_prepare and
4180  * an intervening ring_buffer_read_prepare_sync must have been
4181  * performed.
4182  *
4183  * Must be paired with ring_buffer_read_finish.
4184  */
4185 void
4186 ring_buffer_read_start(struct ring_buffer_iter *iter)
4187 {
4188         struct ring_buffer_per_cpu *cpu_buffer;
4189         unsigned long flags;
4190
4191         if (!iter)
4192                 return;
4193
4194         cpu_buffer = iter->cpu_buffer;
4195
4196         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4197         arch_spin_lock(&cpu_buffer->lock);
4198         rb_iter_reset(iter);
4199         arch_spin_unlock(&cpu_buffer->lock);
4200         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4201 }
4202 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4203
4204 /**
4205  * ring_buffer_read_finish - finish reading the iterator of the buffer
4206  * @iter: The iterator retrieved by ring_buffer_start
4207  *
4208  * This re-enables the recording to the buffer, and frees the
4209  * iterator.
4210  */
4211 void
4212 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4213 {
4214         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4215         unsigned long flags;
4216
4217         /*
4218          * Ring buffer is disabled from recording, here's a good place
4219          * to check the integrity of the ring buffer.
4220          * Must prevent readers from trying to read, as the check
4221          * clears the HEAD page and readers require it.
4222          */
4223         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4224         rb_check_pages(cpu_buffer);
4225         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4226
4227         atomic_dec(&cpu_buffer->record_disabled);
4228         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4229         kfree(iter);
4230 }
4231 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4232
4233 /**
4234  * ring_buffer_read - read the next item in the ring buffer by the iterator
4235  * @iter: The ring buffer iterator
4236  * @ts: The time stamp of the event read.
4237  *
4238  * This reads the next event in the ring buffer and increments the iterator.
4239  */
4240 struct ring_buffer_event *
4241 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4242 {
4243         struct ring_buffer_event *event;
4244         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4245         unsigned long flags;
4246
4247         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4248  again:
4249         event = rb_iter_peek(iter, ts);
4250         if (!event)
4251                 goto out;
4252
4253         if (event->type_len == RINGBUF_TYPE_PADDING)
4254                 goto again;
4255
4256         rb_advance_iter(iter);
4257  out:
4258         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4259
4260         return event;
4261 }
4262 EXPORT_SYMBOL_GPL(ring_buffer_read);
4263
4264 /**
4265  * ring_buffer_size - return the size of the ring buffer (in bytes)
4266  * @buffer: The ring buffer.
4267  */
4268 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4269 {
4270         /*
4271          * Earlier, this method returned
4272          *      BUF_PAGE_SIZE * buffer->nr_pages
4273          * Since the nr_pages field is now removed, we have converted this to
4274          * return the per cpu buffer value.
4275          */
4276         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4277                 return 0;
4278
4279         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4280 }
4281 EXPORT_SYMBOL_GPL(ring_buffer_size);
4282
4283 static void rb_clear_buffer_page(struct buffer_page *page)
4284 {
4285         local_set(&page->write, 0);
4286         local_set(&page->entries, 0);
4287         rb_init_page(page->page);
4288         page->read = 0;
4289 }
4290
4291 static void
4292 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4293 {
4294         struct buffer_page *page;
4295
4296         rb_head_page_deactivate(cpu_buffer);
4297
4298         cpu_buffer->head_page
4299                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4300         rb_clear_buffer_page(cpu_buffer->head_page);
4301         list_for_each_entry(page, cpu_buffer->pages, list) {
4302                 rb_clear_buffer_page(page);
4303         }
4304
4305         cpu_buffer->tail_page = cpu_buffer->head_page;
4306         cpu_buffer->commit_page = cpu_buffer->head_page;
4307
4308         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4309         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4310         rb_clear_buffer_page(cpu_buffer->reader_page);
4311
4312         local_set(&cpu_buffer->entries_bytes, 0);
4313         local_set(&cpu_buffer->overrun, 0);
4314         local_set(&cpu_buffer->commit_overrun, 0);
4315         local_set(&cpu_buffer->dropped_events, 0);
4316         local_set(&cpu_buffer->entries, 0);
4317         local_set(&cpu_buffer->committing, 0);
4318         local_set(&cpu_buffer->commits, 0);
4319         cpu_buffer->read = 0;
4320         cpu_buffer->read_bytes = 0;
4321
4322         cpu_buffer->write_stamp = 0;
4323         cpu_buffer->read_stamp = 0;
4324
4325         cpu_buffer->lost_events = 0;
4326         cpu_buffer->last_overrun = 0;
4327
4328         rb_head_page_activate(cpu_buffer);
4329         cpu_buffer->pages_removed = 0;
4330 }
4331
4332 /**
4333  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4334  * @buffer: The ring buffer to reset a per cpu buffer of
4335  * @cpu: The CPU buffer to be reset
4336  */
4337 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4338 {
4339         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4340         unsigned long flags;
4341
4342         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4343                 return;
4344         /* prevent another thread from changing buffer sizes */
4345         mutex_lock(&buffer->mutex);
4346
4347         atomic_inc(&buffer->resize_disabled);
4348         atomic_inc(&cpu_buffer->record_disabled);
4349
4350         /* Make sure all commits have finished */
4351         synchronize_sched();
4352
4353         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4354
4355         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4356                 goto out;
4357
4358         arch_spin_lock(&cpu_buffer->lock);
4359
4360         rb_reset_cpu(cpu_buffer);
4361
4362         arch_spin_unlock(&cpu_buffer->lock);
4363
4364  out:
4365         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4366
4367         atomic_dec(&cpu_buffer->record_disabled);
4368         atomic_dec(&buffer->resize_disabled);
4369
4370         mutex_unlock(&buffer->mutex);
4371 }
4372 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4373
4374 /**
4375  * ring_buffer_reset - reset a ring buffer
4376  * @buffer: The ring buffer to reset all cpu buffers
4377  */
4378 void ring_buffer_reset(struct ring_buffer *buffer)
4379 {
4380         int cpu;
4381
4382         for_each_buffer_cpu(buffer, cpu)
4383                 ring_buffer_reset_cpu(buffer, cpu);
4384 }
4385 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4386
4387 /**
4388  * rind_buffer_empty - is the ring buffer empty?
4389  * @buffer: The ring buffer to test
4390  */
4391 bool ring_buffer_empty(struct ring_buffer *buffer)
4392 {
4393         struct ring_buffer_per_cpu *cpu_buffer;
4394         unsigned long flags;
4395         bool dolock;
4396         int cpu;
4397         int ret;
4398
4399         /* yes this is racy, but if you don't like the race, lock the buffer */
4400         for_each_buffer_cpu(buffer, cpu) {
4401                 cpu_buffer = buffer->buffers[cpu];
4402                 local_irq_save(flags);
4403                 dolock = rb_reader_lock(cpu_buffer);
4404                 ret = rb_per_cpu_empty(cpu_buffer);
4405                 rb_reader_unlock(cpu_buffer, dolock);
4406                 local_irq_restore(flags);
4407
4408                 if (!ret)
4409                         return false;
4410         }
4411
4412         return true;
4413 }
4414 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4415
4416 /**
4417  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4418  * @buffer: The ring buffer
4419  * @cpu: The CPU buffer to test
4420  */
4421 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4422 {
4423         struct ring_buffer_per_cpu *cpu_buffer;
4424         unsigned long flags;
4425         bool dolock;
4426         int ret;
4427
4428         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4429                 return true;
4430
4431         cpu_buffer = buffer->buffers[cpu];
4432         local_irq_save(flags);
4433         dolock = rb_reader_lock(cpu_buffer);
4434         ret = rb_per_cpu_empty(cpu_buffer);
4435         rb_reader_unlock(cpu_buffer, dolock);
4436         local_irq_restore(flags);
4437
4438         return ret;
4439 }
4440 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4441
4442 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4443 /**
4444  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4445  * @buffer_a: One buffer to swap with
4446  * @buffer_b: The other buffer to swap with
4447  *
4448  * This function is useful for tracers that want to take a "snapshot"
4449  * of a CPU buffer and has another back up buffer lying around.
4450  * it is expected that the tracer handles the cpu buffer not being
4451  * used at the moment.
4452  */
4453 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4454                          struct ring_buffer *buffer_b, int cpu)
4455 {
4456         struct ring_buffer_per_cpu *cpu_buffer_a;
4457         struct ring_buffer_per_cpu *cpu_buffer_b;
4458         int ret = -EINVAL;
4459
4460         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4461             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4462                 goto out;
4463
4464         cpu_buffer_a = buffer_a->buffers[cpu];
4465         cpu_buffer_b = buffer_b->buffers[cpu];
4466
4467         /* At least make sure the two buffers are somewhat the same */
4468         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4469                 goto out;
4470
4471         ret = -EAGAIN;
4472
4473         if (atomic_read(&buffer_a->record_disabled))
4474                 goto out;
4475
4476         if (atomic_read(&buffer_b->record_disabled))
4477                 goto out;
4478
4479         if (atomic_read(&cpu_buffer_a->record_disabled))
4480                 goto out;
4481
4482         if (atomic_read(&cpu_buffer_b->record_disabled))
4483                 goto out;
4484
4485         /*
4486          * We can't do a synchronize_sched here because this
4487          * function can be called in atomic context.
4488          * Normally this will be called from the same CPU as cpu.
4489          * If not it's up to the caller to protect this.
4490          */
4491         atomic_inc(&cpu_buffer_a->record_disabled);
4492         atomic_inc(&cpu_buffer_b->record_disabled);
4493
4494         ret = -EBUSY;
4495         if (local_read(&cpu_buffer_a->committing))
4496                 goto out_dec;
4497         if (local_read(&cpu_buffer_b->committing))
4498                 goto out_dec;
4499
4500         buffer_a->buffers[cpu] = cpu_buffer_b;
4501         buffer_b->buffers[cpu] = cpu_buffer_a;
4502
4503         cpu_buffer_b->buffer = buffer_a;
4504         cpu_buffer_a->buffer = buffer_b;
4505
4506         ret = 0;
4507
4508 out_dec:
4509         atomic_dec(&cpu_buffer_a->record_disabled);
4510         atomic_dec(&cpu_buffer_b->record_disabled);
4511 out:
4512         return ret;
4513 }
4514 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4515 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4516
4517 /**
4518  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4519  * @buffer: the buffer to allocate for.
4520  * @cpu: the cpu buffer to allocate.
4521  *
4522  * This function is used in conjunction with ring_buffer_read_page.
4523  * When reading a full page from the ring buffer, these functions
4524  * can be used to speed up the process. The calling function should
4525  * allocate a few pages first with this function. Then when it
4526  * needs to get pages from the ring buffer, it passes the result
4527  * of this function into ring_buffer_read_page, which will swap
4528  * the page that was allocated, with the read page of the buffer.
4529  *
4530  * Returns:
4531  *  The page allocated, or ERR_PTR
4532  */
4533 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4534 {
4535         struct ring_buffer_per_cpu *cpu_buffer;
4536         struct buffer_data_page *bpage = NULL;
4537         unsigned long flags;
4538         struct page *page;
4539
4540         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4541                 return ERR_PTR(-ENODEV);
4542
4543         cpu_buffer = buffer->buffers[cpu];
4544         local_irq_save(flags);
4545         arch_spin_lock(&cpu_buffer->lock);
4546
4547         if (cpu_buffer->free_page) {
4548                 bpage = cpu_buffer->free_page;
4549                 cpu_buffer->free_page = NULL;
4550         }
4551
4552         arch_spin_unlock(&cpu_buffer->lock);
4553         local_irq_restore(flags);
4554
4555         if (bpage)
4556                 goto out;
4557
4558         page = alloc_pages_node(cpu_to_node(cpu),
4559                                 GFP_KERNEL | __GFP_NORETRY, 0);
4560         if (!page)
4561                 return ERR_PTR(-ENOMEM);
4562
4563         bpage = page_address(page);
4564
4565  out:
4566         rb_init_page(bpage);
4567
4568         return bpage;
4569 }
4570 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4571
4572 /**
4573  * ring_buffer_free_read_page - free an allocated read page
4574  * @buffer: the buffer the page was allocate for
4575  * @cpu: the cpu buffer the page came from
4576  * @data: the page to free
4577  *
4578  * Free a page allocated from ring_buffer_alloc_read_page.
4579  */
4580 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4581 {
4582         struct ring_buffer_per_cpu *cpu_buffer;
4583         struct buffer_data_page *bpage = data;
4584         struct page *page = virt_to_page(bpage);
4585         unsigned long flags;
4586
4587         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
4588                 return;
4589
4590         cpu_buffer = buffer->buffers[cpu];
4591
4592         /* If the page is still in use someplace else, we can't reuse it */
4593         if (page_ref_count(page) > 1)
4594                 goto out;
4595
4596         local_irq_save(flags);
4597         arch_spin_lock(&cpu_buffer->lock);
4598
4599         if (!cpu_buffer->free_page) {
4600                 cpu_buffer->free_page = bpage;
4601                 bpage = NULL;
4602         }
4603
4604         arch_spin_unlock(&cpu_buffer->lock);
4605         local_irq_restore(flags);
4606
4607  out:
4608         free_page((unsigned long)bpage);
4609 }
4610 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4611
4612 /**
4613  * ring_buffer_read_page - extract a page from the ring buffer
4614  * @buffer: buffer to extract from
4615  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4616  * @len: amount to extract
4617  * @cpu: the cpu of the buffer to extract
4618  * @full: should the extraction only happen when the page is full.
4619  *
4620  * This function will pull out a page from the ring buffer and consume it.
4621  * @data_page must be the address of the variable that was returned
4622  * from ring_buffer_alloc_read_page. This is because the page might be used
4623  * to swap with a page in the ring buffer.
4624  *
4625  * for example:
4626  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4627  *      if (IS_ERR(rpage))
4628  *              return PTR_ERR(rpage);
4629  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4630  *      if (ret >= 0)
4631  *              process_page(rpage, ret);
4632  *
4633  * When @full is set, the function will not return true unless
4634  * the writer is off the reader page.
4635  *
4636  * Note: it is up to the calling functions to handle sleeps and wakeups.
4637  *  The ring buffer can be used anywhere in the kernel and can not
4638  *  blindly call wake_up. The layer that uses the ring buffer must be
4639  *  responsible for that.
4640  *
4641  * Returns:
4642  *  >=0 if data has been transferred, returns the offset of consumed data.
4643  *  <0 if no data has been transferred.
4644  */
4645 int ring_buffer_read_page(struct ring_buffer *buffer,
4646                           void **data_page, size_t len, int cpu, int full)
4647 {
4648         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4649         struct ring_buffer_event *event;
4650         struct buffer_data_page *bpage;
4651         struct buffer_page *reader;
4652         unsigned long missed_events;
4653         unsigned long flags;
4654         unsigned int commit;
4655         unsigned int read;
4656         u64 save_timestamp;
4657         int ret = -1;
4658
4659         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4660                 goto out;
4661
4662         /*
4663          * If len is not big enough to hold the page header, then
4664          * we can not copy anything.
4665          */
4666         if (len <= BUF_PAGE_HDR_SIZE)
4667                 goto out;
4668
4669         len -= BUF_PAGE_HDR_SIZE;
4670
4671         if (!data_page)
4672                 goto out;
4673
4674         bpage = *data_page;
4675         if (!bpage)
4676                 goto out;
4677
4678         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4679
4680         reader = rb_get_reader_page(cpu_buffer);
4681         if (!reader)
4682                 goto out_unlock;
4683
4684         event = rb_reader_event(cpu_buffer);
4685
4686         read = reader->read;
4687         commit = rb_page_commit(reader);
4688
4689         /* Check if any events were dropped */
4690         missed_events = cpu_buffer->lost_events;
4691
4692         /*
4693          * If this page has been partially read or
4694          * if len is not big enough to read the rest of the page or
4695          * a writer is still on the page, then
4696          * we must copy the data from the page to the buffer.
4697          * Otherwise, we can simply swap the page with the one passed in.
4698          */
4699         if (read || (len < (commit - read)) ||
4700             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4701                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4702                 unsigned int rpos = read;
4703                 unsigned int pos = 0;
4704                 unsigned int size;
4705
4706                 /*
4707                  * If a full page is expected, this can still be returned
4708                  * if there's been a previous partial read and the
4709                  * rest of the page can be read and the commit page is off
4710                  * the reader page.
4711                  */
4712                 if (full &&
4713                     (!read || (len < (commit - read)) ||
4714                      cpu_buffer->reader_page == cpu_buffer->commit_page))
4715                         goto out_unlock;
4716
4717                 if (len > (commit - read))
4718                         len = (commit - read);
4719
4720                 /* Always keep the time extend and data together */
4721                 size = rb_event_ts_length(event);
4722
4723                 if (len < size)
4724                         goto out_unlock;
4725
4726                 /* save the current timestamp, since the user will need it */
4727                 save_timestamp = cpu_buffer->read_stamp;
4728
4729                 /* Need to copy one event at a time */
4730                 do {
4731                         /* We need the size of one event, because
4732                          * rb_advance_reader only advances by one event,
4733                          * whereas rb_event_ts_length may include the size of
4734                          * one or two events.
4735                          * We have already ensured there's enough space if this
4736                          * is a time extend. */
4737                         size = rb_event_length(event);
4738                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4739
4740                         len -= size;
4741
4742                         rb_advance_reader(cpu_buffer);
4743                         rpos = reader->read;
4744                         pos += size;
4745
4746                         if (rpos >= commit)
4747                                 break;
4748
4749                         event = rb_reader_event(cpu_buffer);
4750                         /* Always keep the time extend and data together */
4751                         size = rb_event_ts_length(event);
4752                 } while (len >= size);
4753
4754                 /* update bpage */
4755                 local_set(&bpage->commit, pos);
4756                 bpage->time_stamp = save_timestamp;
4757
4758                 /* we copied everything to the beginning */
4759                 read = 0;
4760         } else {
4761                 /* update the entry counter */
4762                 cpu_buffer->read += rb_page_entries(reader);
4763                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4764
4765                 /* swap the pages */
4766                 rb_init_page(bpage);
4767                 bpage = reader->page;
4768                 reader->page = *data_page;
4769                 local_set(&reader->write, 0);
4770                 local_set(&reader->entries, 0);
4771                 reader->read = 0;
4772                 *data_page = bpage;
4773
4774                 /*
4775                  * Use the real_end for the data size,
4776                  * This gives us a chance to store the lost events
4777                  * on the page.
4778                  */
4779                 if (reader->real_end)
4780                         local_set(&bpage->commit, reader->real_end);
4781         }
4782         ret = read;
4783
4784         cpu_buffer->lost_events = 0;
4785
4786         commit = local_read(&bpage->commit);
4787         /*
4788          * Set a flag in the commit field if we lost events
4789          */
4790         if (missed_events) {
4791                 /* If there is room at the end of the page to save the
4792                  * missed events, then record it there.
4793                  */
4794                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4795                         memcpy(&bpage->data[commit], &missed_events,
4796                                sizeof(missed_events));
4797                         local_add(RB_MISSED_STORED, &bpage->commit);
4798                         commit += sizeof(missed_events);
4799                 }
4800                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4801         }
4802
4803         /*
4804          * This page may be off to user land. Zero it out here.
4805          */
4806         if (commit < BUF_PAGE_SIZE)
4807                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4808
4809  out_unlock:
4810         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4811
4812  out:
4813         return ret;
4814 }
4815 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4816
4817 /*
4818  * We only allocate new buffers, never free them if the CPU goes down.
4819  * If we were to free the buffer, then the user would lose any trace that was in
4820  * the buffer.
4821  */
4822 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4823 {
4824         struct ring_buffer *buffer;
4825         long nr_pages_same;
4826         int cpu_i;
4827         unsigned long nr_pages;
4828
4829         buffer = container_of(node, struct ring_buffer, node);
4830         if (cpumask_test_cpu(cpu, buffer->cpumask))
4831                 return 0;
4832
4833         nr_pages = 0;
4834         nr_pages_same = 1;
4835         /* check if all cpu sizes are same */
4836         for_each_buffer_cpu(buffer, cpu_i) {
4837                 /* fill in the size from first enabled cpu */
4838                 if (nr_pages == 0)
4839                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4840                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4841                         nr_pages_same = 0;
4842                         break;
4843                 }
4844         }
4845         /* allocate minimum pages, user can later expand it */
4846         if (!nr_pages_same)
4847                 nr_pages = 2;
4848         buffer->buffers[cpu] =
4849                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4850         if (!buffer->buffers[cpu]) {
4851                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4852                      cpu);
4853                 return -ENOMEM;
4854         }
4855         smp_wmb();
4856         cpumask_set_cpu(cpu, buffer->cpumask);
4857         return 0;
4858 }
4859
4860 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4861 /*
4862  * This is a basic integrity check of the ring buffer.
4863  * Late in the boot cycle this test will run when configured in.
4864  * It will kick off a thread per CPU that will go into a loop
4865  * writing to the per cpu ring buffer various sizes of data.
4866  * Some of the data will be large items, some small.
4867  *
4868  * Another thread is created that goes into a spin, sending out
4869  * IPIs to the other CPUs to also write into the ring buffer.
4870  * this is to test the nesting ability of the buffer.
4871  *
4872  * Basic stats are recorded and reported. If something in the
4873  * ring buffer should happen that's not expected, a big warning
4874  * is displayed and all ring buffers are disabled.
4875  */
4876 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4877
4878 struct rb_test_data {
4879         struct ring_buffer      *buffer;
4880         unsigned long           events;
4881         unsigned long           bytes_written;
4882         unsigned long           bytes_alloc;
4883         unsigned long           bytes_dropped;
4884         unsigned long           events_nested;
4885         unsigned long           bytes_written_nested;
4886         unsigned long           bytes_alloc_nested;
4887         unsigned long           bytes_dropped_nested;
4888         int                     min_size_nested;
4889         int                     max_size_nested;
4890         int                     max_size;
4891         int                     min_size;
4892         int                     cpu;
4893         int                     cnt;
4894 };
4895
4896 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4897
4898 /* 1 meg per cpu */
4899 #define RB_TEST_BUFFER_SIZE     1048576
4900
4901 static char rb_string[] __initdata =
4902         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4903         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4904         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4905
4906 static bool rb_test_started __initdata;
4907
4908 struct rb_item {
4909         int size;
4910         char str[];
4911 };
4912
4913 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4914 {
4915         struct ring_buffer_event *event;
4916         struct rb_item *item;
4917         bool started;
4918         int event_len;
4919         int size;
4920         int len;
4921         int cnt;
4922
4923         /* Have nested writes different that what is written */
4924         cnt = data->cnt + (nested ? 27 : 0);
4925
4926         /* Multiply cnt by ~e, to make some unique increment */
4927         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4928
4929         len = size + sizeof(struct rb_item);
4930
4931         started = rb_test_started;
4932         /* read rb_test_started before checking buffer enabled */
4933         smp_rmb();
4934
4935         event = ring_buffer_lock_reserve(data->buffer, len);
4936         if (!event) {
4937                 /* Ignore dropped events before test starts. */
4938                 if (started) {
4939                         if (nested)
4940                                 data->bytes_dropped += len;
4941                         else
4942                                 data->bytes_dropped_nested += len;
4943                 }
4944                 return len;
4945         }
4946
4947         event_len = ring_buffer_event_length(event);
4948
4949         if (RB_WARN_ON(data->buffer, event_len < len))
4950                 goto out;
4951
4952         item = ring_buffer_event_data(event);
4953         item->size = size;
4954         memcpy(item->str, rb_string, size);
4955
4956         if (nested) {
4957                 data->bytes_alloc_nested += event_len;
4958                 data->bytes_written_nested += len;
4959                 data->events_nested++;
4960                 if (!data->min_size_nested || len < data->min_size_nested)
4961                         data->min_size_nested = len;
4962                 if (len > data->max_size_nested)
4963                         data->max_size_nested = len;
4964         } else {
4965                 data->bytes_alloc += event_len;
4966                 data->bytes_written += len;
4967                 data->events++;
4968                 if (!data->min_size || len < data->min_size)
4969                         data->max_size = len;
4970                 if (len > data->max_size)
4971                         data->max_size = len;
4972         }
4973
4974  out:
4975         ring_buffer_unlock_commit(data->buffer, event);
4976
4977         return 0;
4978 }
4979
4980 static __init int rb_test(void *arg)
4981 {
4982         struct rb_test_data *data = arg;
4983
4984         while (!kthread_should_stop()) {
4985                 rb_write_something(data, false);
4986                 data->cnt++;
4987
4988                 set_current_state(TASK_INTERRUPTIBLE);
4989                 /* Now sleep between a min of 100-300us and a max of 1ms */
4990                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4991         }
4992
4993         return 0;
4994 }
4995
4996 static __init void rb_ipi(void *ignore)
4997 {
4998         struct rb_test_data *data;
4999         int cpu = smp_processor_id();
5000
5001         data = &rb_data[cpu];
5002         rb_write_something(data, true);
5003 }
5004
5005 static __init int rb_hammer_test(void *arg)
5006 {
5007         while (!kthread_should_stop()) {
5008
5009                 /* Send an IPI to all cpus to write data! */
5010                 smp_call_function(rb_ipi, NULL, 1);
5011                 /* No sleep, but for non preempt, let others run */
5012                 schedule();
5013         }
5014
5015         return 0;
5016 }
5017
5018 static __init int test_ringbuffer(void)
5019 {
5020         struct task_struct *rb_hammer;
5021         struct ring_buffer *buffer;
5022         int cpu;
5023         int ret = 0;
5024
5025         pr_info("Running ring buffer tests...\n");
5026
5027         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5028         if (WARN_ON(!buffer))
5029                 return 0;
5030
5031         /* Disable buffer so that threads can't write to it yet */
5032         ring_buffer_record_off(buffer);
5033
5034         for_each_online_cpu(cpu) {
5035                 rb_data[cpu].buffer = buffer;
5036                 rb_data[cpu].cpu = cpu;
5037                 rb_data[cpu].cnt = cpu;
5038                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5039                                                  "rbtester/%d", cpu);
5040                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5041                         pr_cont("FAILED\n");
5042                         ret = PTR_ERR(rb_threads[cpu]);
5043                         goto out_free;
5044                 }
5045
5046                 kthread_bind(rb_threads[cpu], cpu);
5047                 wake_up_process(rb_threads[cpu]);
5048         }
5049
5050         /* Now create the rb hammer! */
5051         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5052         if (WARN_ON(IS_ERR(rb_hammer))) {
5053                 pr_cont("FAILED\n");
5054                 ret = PTR_ERR(rb_hammer);
5055                 goto out_free;
5056         }
5057
5058         ring_buffer_record_on(buffer);
5059         /*
5060          * Show buffer is enabled before setting rb_test_started.
5061          * Yes there's a small race window where events could be
5062          * dropped and the thread wont catch it. But when a ring
5063          * buffer gets enabled, there will always be some kind of
5064          * delay before other CPUs see it. Thus, we don't care about
5065          * those dropped events. We care about events dropped after
5066          * the threads see that the buffer is active.
5067          */
5068         smp_wmb();
5069         rb_test_started = true;
5070
5071         set_current_state(TASK_INTERRUPTIBLE);
5072         /* Just run for 10 seconds */;
5073         schedule_timeout(10 * HZ);
5074
5075         kthread_stop(rb_hammer);
5076
5077  out_free:
5078         for_each_online_cpu(cpu) {
5079                 if (!rb_threads[cpu])
5080                         break;
5081                 kthread_stop(rb_threads[cpu]);
5082         }
5083         if (ret) {
5084                 ring_buffer_free(buffer);
5085                 return ret;
5086         }
5087
5088         /* Report! */
5089         pr_info("finished\n");
5090         for_each_online_cpu(cpu) {
5091                 struct ring_buffer_event *event;
5092                 struct rb_test_data *data = &rb_data[cpu];
5093                 struct rb_item *item;
5094                 unsigned long total_events;
5095                 unsigned long total_dropped;
5096                 unsigned long total_written;
5097                 unsigned long total_alloc;
5098                 unsigned long total_read = 0;
5099                 unsigned long total_size = 0;
5100                 unsigned long total_len = 0;
5101                 unsigned long total_lost = 0;
5102                 unsigned long lost;
5103                 int big_event_size;
5104                 int small_event_size;
5105
5106                 ret = -1;
5107
5108                 total_events = data->events + data->events_nested;
5109                 total_written = data->bytes_written + data->bytes_written_nested;
5110                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5111                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5112
5113                 big_event_size = data->max_size + data->max_size_nested;
5114                 small_event_size = data->min_size + data->min_size_nested;
5115
5116                 pr_info("CPU %d:\n", cpu);
5117                 pr_info("              events:    %ld\n", total_events);
5118                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5119                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5120                 pr_info("       written bytes:    %ld\n", total_written);
5121                 pr_info("       biggest event:    %d\n", big_event_size);
5122                 pr_info("      smallest event:    %d\n", small_event_size);
5123
5124                 if (RB_WARN_ON(buffer, total_dropped))
5125                         break;
5126
5127                 ret = 0;
5128
5129                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5130                         total_lost += lost;
5131                         item = ring_buffer_event_data(event);
5132                         total_len += ring_buffer_event_length(event);
5133                         total_size += item->size + sizeof(struct rb_item);
5134                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5135                                 pr_info("FAILED!\n");
5136                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5137                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5138                                 RB_WARN_ON(buffer, 1);
5139                                 ret = -1;
5140                                 break;
5141                         }
5142                         total_read++;
5143                 }
5144                 if (ret)
5145                         break;
5146
5147                 ret = -1;
5148
5149                 pr_info("         read events:   %ld\n", total_read);
5150                 pr_info("         lost events:   %ld\n", total_lost);
5151                 pr_info("        total events:   %ld\n", total_lost + total_read);
5152                 pr_info("  recorded len bytes:   %ld\n", total_len);
5153                 pr_info(" recorded size bytes:   %ld\n", total_size);
5154                 if (total_lost)
5155                         pr_info(" With dropped events, record len and size may not match\n"
5156                                 " alloced and written from above\n");
5157                 if (!total_lost) {
5158                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5159                                        total_size != total_written))
5160                                 break;
5161                 }
5162                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5163                         break;
5164
5165                 ret = 0;
5166         }
5167         if (!ret)
5168                 pr_info("Ring buffer PASSED!\n");
5169
5170         ring_buffer_free(buffer);
5171         return 0;
5172 }
5173
5174 late_initcall(test_ringbuffer);
5175 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */