GNU Linux-libre 5.19-rc6-gnu
[releases.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB          (0xf8ULL << 56)
38 #define ABS_TS_MASK     (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47         trace_seq_puts(s, "# compressed entry header\n");
48         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50         trace_seq_puts(s, "\tarray       :   32 bits\n");
51         trace_seq_putc(s, '\n');
52         trace_seq_printf(s, "\tpadding     : type == %d\n",
53                          RINGBUF_TYPE_PADDING);
54         trace_seq_printf(s, "\ttime_extend : type == %d\n",
55                          RINGBUF_TYPE_TIME_EXTEND);
56         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57                          RINGBUF_TYPE_TIME_STAMP);
58         trace_seq_printf(s, "\tdata max type_len  == %d\n",
59                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61         return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF           (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT            4U
139 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT       0
144 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT       1
147 # define RB_ARCH_ALIGNMENT              8U
148 #endif
149
150 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156         RB_LEN_TIME_EXTEND = 8,
157         RB_LEN_TIME_STAMP =  8,
158 };
159
160 #define skip_time_extend(event) \
161         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166 static inline int rb_null_event(struct ring_buffer_event *event)
167 {
168         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173         /* padding has a NULL time_delta */
174         event->type_len = RINGBUF_TYPE_PADDING;
175         event->time_delta = 0;
176 }
177
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181         unsigned length;
182
183         if (event->type_len)
184                 length = event->type_len * RB_ALIGNMENT;
185         else
186                 length = event->array[0];
187         return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198         switch (event->type_len) {
199         case RINGBUF_TYPE_PADDING:
200                 if (rb_null_event(event))
201                         /* undefined */
202                         return -1;
203                 return  event->array[0] + RB_EVNT_HDR_SIZE;
204
205         case RINGBUF_TYPE_TIME_EXTEND:
206                 return RB_LEN_TIME_EXTEND;
207
208         case RINGBUF_TYPE_TIME_STAMP:
209                 return RB_LEN_TIME_STAMP;
210
211         case RINGBUF_TYPE_DATA:
212                 return rb_event_data_length(event);
213         default:
214                 WARN_ON_ONCE(1);
215         }
216         /* not hit */
217         return 0;
218 }
219
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227         unsigned len = 0;
228
229         if (extended_time(event)) {
230                 /* time extends include the data event after it */
231                 len = RB_LEN_TIME_EXTEND;
232                 event = skip_time_extend(event);
233         }
234         return len + rb_event_length(event);
235 }
236
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249         unsigned length;
250
251         if (extended_time(event))
252                 event = skip_time_extend(event);
253
254         length = rb_event_length(event);
255         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256                 return length;
257         length -= RB_EVNT_HDR_SIZE;
258         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260         return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268         if (extended_time(event))
269                 event = skip_time_extend(event);
270         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271         /* If length is in len field, then array[0] has the data */
272         if (event->type_len)
273                 return (void *)&event->array[0];
274         /* Otherwise length is in array[0] and array[1] has the data */
275         return (void *)&event->array[1];
276 }
277
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284         return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu)                \
289         for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu)         \
292         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT        27
295 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST   (~TS_MASK)
297
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300         u64 ts;
301
302         ts = event->array[0];
303         ts <<= TS_SHIFT;
304         ts += event->time_delta;
305
306         return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS        (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED        (1 << 30)
313
314 struct buffer_data_page {
315         u64              time_stamp;    /* page time stamp */
316         local_t          commit;        /* write committed index */
317         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
318 };
319
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329         struct list_head list;          /* list of buffer pages */
330         local_t          write;         /* index for next write */
331         unsigned         read;          /* index for next read */
332         local_t          entries;       /* entries on this page */
333         unsigned long    real_end;      /* real end of data */
334         struct buffer_data_page *page;  /* Actual data page */
335 };
336
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK           0xfffff
350 #define RB_WRITE_INTCNT         (1 << 20)
351
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354         local_set(&bpage->commit, 0);
355 }
356
357 /*
358  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
359  * this issue out.
360  */
361 static void free_buffer_page(struct buffer_page *bpage)
362 {
363         free_page((unsigned long)bpage->page);
364         kfree(bpage);
365 }
366
367 /*
368  * We need to fit the time_stamp delta into 27 bits.
369  */
370 static inline int test_time_stamp(u64 delta)
371 {
372         if (delta & TS_DELTA_TEST)
373                 return 1;
374         return 0;
375 }
376
377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
378
379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
381
382 int ring_buffer_print_page_header(struct trace_seq *s)
383 {
384         struct buffer_data_page field;
385
386         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
387                          "offset:0;\tsize:%u;\tsigned:%u;\n",
388                          (unsigned int)sizeof(field.time_stamp),
389                          (unsigned int)is_signed_type(u64));
390
391         trace_seq_printf(s, "\tfield: local_t commit;\t"
392                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
393                          (unsigned int)offsetof(typeof(field), commit),
394                          (unsigned int)sizeof(field.commit),
395                          (unsigned int)is_signed_type(long));
396
397         trace_seq_printf(s, "\tfield: int overwrite;\t"
398                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
399                          (unsigned int)offsetof(typeof(field), commit),
400                          1,
401                          (unsigned int)is_signed_type(long));
402
403         trace_seq_printf(s, "\tfield: char data;\t"
404                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
405                          (unsigned int)offsetof(typeof(field), data),
406                          (unsigned int)BUF_PAGE_SIZE,
407                          (unsigned int)is_signed_type(char));
408
409         return !trace_seq_has_overflowed(s);
410 }
411
412 struct rb_irq_work {
413         struct irq_work                 work;
414         wait_queue_head_t               waiters;
415         wait_queue_head_t               full_waiters;
416         bool                            waiters_pending;
417         bool                            full_waiters_pending;
418         bool                            wakeup_full;
419 };
420
421 /*
422  * Structure to hold event state and handle nested events.
423  */
424 struct rb_event_info {
425         u64                     ts;
426         u64                     delta;
427         u64                     before;
428         u64                     after;
429         unsigned long           length;
430         struct buffer_page      *tail_page;
431         int                     add_timestamp;
432 };
433
434 /*
435  * Used for the add_timestamp
436  *  NONE
437  *  EXTEND - wants a time extend
438  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
439  *  FORCE - force a full time stamp.
440  */
441 enum {
442         RB_ADD_STAMP_NONE               = 0,
443         RB_ADD_STAMP_EXTEND             = BIT(1),
444         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
445         RB_ADD_STAMP_FORCE              = BIT(3)
446 };
447 /*
448  * Used for which event context the event is in.
449  *  TRANSITION = 0
450  *  NMI     = 1
451  *  IRQ     = 2
452  *  SOFTIRQ = 3
453  *  NORMAL  = 4
454  *
455  * See trace_recursive_lock() comment below for more details.
456  */
457 enum {
458         RB_CTX_TRANSITION,
459         RB_CTX_NMI,
460         RB_CTX_IRQ,
461         RB_CTX_SOFTIRQ,
462         RB_CTX_NORMAL,
463         RB_CTX_MAX
464 };
465
466 #if BITS_PER_LONG == 32
467 #define RB_TIME_32
468 #endif
469
470 /* To test on 64 bit machines */
471 //#define RB_TIME_32
472
473 #ifdef RB_TIME_32
474
475 struct rb_time_struct {
476         local_t         cnt;
477         local_t         top;
478         local_t         bottom;
479         local_t         msb;
480 };
481 #else
482 #include <asm/local64.h>
483 struct rb_time_struct {
484         local64_t       time;
485 };
486 #endif
487 typedef struct rb_time_struct rb_time_t;
488
489 #define MAX_NEST        5
490
491 /*
492  * head_page == tail_page && head == tail then buffer is empty.
493  */
494 struct ring_buffer_per_cpu {
495         int                             cpu;
496         atomic_t                        record_disabled;
497         atomic_t                        resize_disabled;
498         struct trace_buffer     *buffer;
499         raw_spinlock_t                  reader_lock;    /* serialize readers */
500         arch_spinlock_t                 lock;
501         struct lock_class_key           lock_key;
502         struct buffer_data_page         *free_page;
503         unsigned long                   nr_pages;
504         unsigned int                    current_context;
505         struct list_head                *pages;
506         struct buffer_page              *head_page;     /* read from head */
507         struct buffer_page              *tail_page;     /* write to tail */
508         struct buffer_page              *commit_page;   /* committed pages */
509         struct buffer_page              *reader_page;
510         unsigned long                   lost_events;
511         unsigned long                   last_overrun;
512         unsigned long                   nest;
513         local_t                         entries_bytes;
514         local_t                         entries;
515         local_t                         overrun;
516         local_t                         commit_overrun;
517         local_t                         dropped_events;
518         local_t                         committing;
519         local_t                         commits;
520         local_t                         pages_touched;
521         local_t                         pages_read;
522         long                            last_pages_touch;
523         size_t                          shortest_full;
524         unsigned long                   read;
525         unsigned long                   read_bytes;
526         rb_time_t                       write_stamp;
527         rb_time_t                       before_stamp;
528         u64                             event_stamp[MAX_NEST];
529         u64                             read_stamp;
530         /* ring buffer pages to update, > 0 to add, < 0 to remove */
531         long                            nr_pages_to_update;
532         struct list_head                new_pages; /* new pages to add */
533         struct work_struct              update_pages_work;
534         struct completion               update_done;
535
536         struct rb_irq_work              irq_work;
537 };
538
539 struct trace_buffer {
540         unsigned                        flags;
541         int                             cpus;
542         atomic_t                        record_disabled;
543         cpumask_var_t                   cpumask;
544
545         struct lock_class_key           *reader_lock_key;
546
547         struct mutex                    mutex;
548
549         struct ring_buffer_per_cpu      **buffers;
550
551         struct hlist_node               node;
552         u64                             (*clock)(void);
553
554         struct rb_irq_work              irq_work;
555         bool                            time_stamp_abs;
556 };
557
558 struct ring_buffer_iter {
559         struct ring_buffer_per_cpu      *cpu_buffer;
560         unsigned long                   head;
561         unsigned long                   next_event;
562         struct buffer_page              *head_page;
563         struct buffer_page              *cache_reader_page;
564         unsigned long                   cache_read;
565         u64                             read_stamp;
566         u64                             page_stamp;
567         struct ring_buffer_event        *event;
568         int                             missed_events;
569 };
570
571 #ifdef RB_TIME_32
572
573 /*
574  * On 32 bit machines, local64_t is very expensive. As the ring
575  * buffer doesn't need all the features of a true 64 bit atomic,
576  * on 32 bit, it uses these functions (64 still uses local64_t).
577  *
578  * For the ring buffer, 64 bit required operations for the time is
579  * the following:
580  *
581  *  - Reads may fail if it interrupted a modification of the time stamp.
582  *      It will succeed if it did not interrupt another write even if
583  *      the read itself is interrupted by a write.
584  *      It returns whether it was successful or not.
585  *
586  *  - Writes always succeed and will overwrite other writes and writes
587  *      that were done by events interrupting the current write.
588  *
589  *  - A write followed by a read of the same time stamp will always succeed,
590  *      but may not contain the same value.
591  *
592  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
593  *      Other than that, it acts like a normal cmpxchg.
594  *
595  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
596  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
597  *
598  * The two most significant bits of each half holds a 2 bit counter (0-3).
599  * Each update will increment this counter by one.
600  * When reading the top and bottom, if the two counter bits match then the
601  *  top and bottom together make a valid 60 bit number.
602  */
603 #define RB_TIME_SHIFT   30
604 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
605 #define RB_TIME_MSB_SHIFT        60
606
607 static inline int rb_time_cnt(unsigned long val)
608 {
609         return (val >> RB_TIME_SHIFT) & 3;
610 }
611
612 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
613 {
614         u64 val;
615
616         val = top & RB_TIME_VAL_MASK;
617         val <<= RB_TIME_SHIFT;
618         val |= bottom & RB_TIME_VAL_MASK;
619
620         return val;
621 }
622
623 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
624 {
625         unsigned long top, bottom, msb;
626         unsigned long c;
627
628         /*
629          * If the read is interrupted by a write, then the cnt will
630          * be different. Loop until both top and bottom have been read
631          * without interruption.
632          */
633         do {
634                 c = local_read(&t->cnt);
635                 top = local_read(&t->top);
636                 bottom = local_read(&t->bottom);
637                 msb = local_read(&t->msb);
638         } while (c != local_read(&t->cnt));
639
640         *cnt = rb_time_cnt(top);
641
642         /* If top and bottom counts don't match, this interrupted a write */
643         if (*cnt != rb_time_cnt(bottom))
644                 return false;
645
646         /* The shift to msb will lose its cnt bits */
647         *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
648         return true;
649 }
650
651 static bool rb_time_read(rb_time_t *t, u64 *ret)
652 {
653         unsigned long cnt;
654
655         return __rb_time_read(t, ret, &cnt);
656 }
657
658 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
659 {
660         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
661 }
662
663 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
664                                  unsigned long *msb)
665 {
666         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
667         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
668         *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
669 }
670
671 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
672 {
673         val = rb_time_val_cnt(val, cnt);
674         local_set(t, val);
675 }
676
677 static void rb_time_set(rb_time_t *t, u64 val)
678 {
679         unsigned long cnt, top, bottom, msb;
680
681         rb_time_split(val, &top, &bottom, &msb);
682
683         /* Writes always succeed with a valid number even if it gets interrupted. */
684         do {
685                 cnt = local_inc_return(&t->cnt);
686                 rb_time_val_set(&t->top, top, cnt);
687                 rb_time_val_set(&t->bottom, bottom, cnt);
688                 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
689         } while (cnt != local_read(&t->cnt));
690 }
691
692 static inline bool
693 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
694 {
695         unsigned long ret;
696
697         ret = local_cmpxchg(l, expect, set);
698         return ret == expect;
699 }
700
701 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
702 {
703         unsigned long cnt, top, bottom, msb;
704         unsigned long cnt2, top2, bottom2, msb2;
705         u64 val;
706
707         /* The cmpxchg always fails if it interrupted an update */
708          if (!__rb_time_read(t, &val, &cnt2))
709                  return false;
710
711          if (val != expect)
712                  return false;
713
714          cnt = local_read(&t->cnt);
715          if ((cnt & 3) != cnt2)
716                  return false;
717
718          cnt2 = cnt + 1;
719
720          rb_time_split(val, &top, &bottom, &msb);
721          top = rb_time_val_cnt(top, cnt);
722          bottom = rb_time_val_cnt(bottom, cnt);
723
724          rb_time_split(set, &top2, &bottom2, &msb2);
725          top2 = rb_time_val_cnt(top2, cnt2);
726          bottom2 = rb_time_val_cnt(bottom2, cnt2);
727
728         if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
729                 return false;
730         if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
731                 return false;
732         if (!rb_time_read_cmpxchg(&t->top, top, top2))
733                 return false;
734         if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
735                 return false;
736         return true;
737 }
738
739 #else /* 64 bits */
740
741 /* local64_t always succeeds */
742
743 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
744 {
745         *ret = local64_read(&t->time);
746         return true;
747 }
748 static void rb_time_set(rb_time_t *t, u64 val)
749 {
750         local64_set(&t->time, val);
751 }
752
753 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
754 {
755         u64 val;
756         val = local64_cmpxchg(&t->time, expect, set);
757         return val == expect;
758 }
759 #endif
760
761 /*
762  * Enable this to make sure that the event passed to
763  * ring_buffer_event_time_stamp() is not committed and also
764  * is on the buffer that it passed in.
765  */
766 //#define RB_VERIFY_EVENT
767 #ifdef RB_VERIFY_EVENT
768 static struct list_head *rb_list_head(struct list_head *list);
769 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
770                          void *event)
771 {
772         struct buffer_page *page = cpu_buffer->commit_page;
773         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
774         struct list_head *next;
775         long commit, write;
776         unsigned long addr = (unsigned long)event;
777         bool done = false;
778         int stop = 0;
779
780         /* Make sure the event exists and is not committed yet */
781         do {
782                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
783                         done = true;
784                 commit = local_read(&page->page->commit);
785                 write = local_read(&page->write);
786                 if (addr >= (unsigned long)&page->page->data[commit] &&
787                     addr < (unsigned long)&page->page->data[write])
788                         return;
789
790                 next = rb_list_head(page->list.next);
791                 page = list_entry(next, struct buffer_page, list);
792         } while (!done);
793         WARN_ON_ONCE(1);
794 }
795 #else
796 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
797                          void *event)
798 {
799 }
800 #endif
801
802 /*
803  * The absolute time stamp drops the 5 MSBs and some clocks may
804  * require them. The rb_fix_abs_ts() will take a previous full
805  * time stamp, and add the 5 MSB of that time stamp on to the
806  * saved absolute time stamp. Then they are compared in case of
807  * the unlikely event that the latest time stamp incremented
808  * the 5 MSB.
809  */
810 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
811 {
812         if (save_ts & TS_MSB) {
813                 abs |= save_ts & TS_MSB;
814                 /* Check for overflow */
815                 if (unlikely(abs < save_ts))
816                         abs += 1ULL << 59;
817         }
818         return abs;
819 }
820
821 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
822
823 /**
824  * ring_buffer_event_time_stamp - return the event's current time stamp
825  * @buffer: The buffer that the event is on
826  * @event: the event to get the time stamp of
827  *
828  * Note, this must be called after @event is reserved, and before it is
829  * committed to the ring buffer. And must be called from the same
830  * context where the event was reserved (normal, softirq, irq, etc).
831  *
832  * Returns the time stamp associated with the current event.
833  * If the event has an extended time stamp, then that is used as
834  * the time stamp to return.
835  * In the highly unlikely case that the event was nested more than
836  * the max nesting, then the write_stamp of the buffer is returned,
837  * otherwise  current time is returned, but that really neither of
838  * the last two cases should ever happen.
839  */
840 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
841                                  struct ring_buffer_event *event)
842 {
843         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
844         unsigned int nest;
845         u64 ts;
846
847         /* If the event includes an absolute time, then just use that */
848         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
849                 ts = rb_event_time_stamp(event);
850                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
851         }
852
853         nest = local_read(&cpu_buffer->committing);
854         verify_event(cpu_buffer, event);
855         if (WARN_ON_ONCE(!nest))
856                 goto fail;
857
858         /* Read the current saved nesting level time stamp */
859         if (likely(--nest < MAX_NEST))
860                 return cpu_buffer->event_stamp[nest];
861
862         /* Shouldn't happen, warn if it does */
863         WARN_ONCE(1, "nest (%d) greater than max", nest);
864
865  fail:
866         /* Can only fail on 32 bit */
867         if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
868                 /* Screw it, just read the current time */
869                 ts = rb_time_stamp(cpu_buffer->buffer);
870
871         return ts;
872 }
873
874 /**
875  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
876  * @buffer: The ring_buffer to get the number of pages from
877  * @cpu: The cpu of the ring_buffer to get the number of pages from
878  *
879  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
880  */
881 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
882 {
883         return buffer->buffers[cpu]->nr_pages;
884 }
885
886 /**
887  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
888  * @buffer: The ring_buffer to get the number of pages from
889  * @cpu: The cpu of the ring_buffer to get the number of pages from
890  *
891  * Returns the number of pages that have content in the ring buffer.
892  */
893 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
894 {
895         size_t read;
896         size_t cnt;
897
898         read = local_read(&buffer->buffers[cpu]->pages_read);
899         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
900         /* The reader can read an empty page, but not more than that */
901         if (cnt < read) {
902                 WARN_ON_ONCE(read > cnt + 1);
903                 return 0;
904         }
905
906         return cnt - read;
907 }
908
909 /*
910  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
911  *
912  * Schedules a delayed work to wake up any task that is blocked on the
913  * ring buffer waiters queue.
914  */
915 static void rb_wake_up_waiters(struct irq_work *work)
916 {
917         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
918
919         wake_up_all(&rbwork->waiters);
920         if (rbwork->wakeup_full) {
921                 rbwork->wakeup_full = false;
922                 wake_up_all(&rbwork->full_waiters);
923         }
924 }
925
926 /**
927  * ring_buffer_wait - wait for input to the ring buffer
928  * @buffer: buffer to wait on
929  * @cpu: the cpu buffer to wait on
930  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
931  *
932  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
933  * as data is added to any of the @buffer's cpu buffers. Otherwise
934  * it will wait for data to be added to a specific cpu buffer.
935  */
936 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
937 {
938         struct ring_buffer_per_cpu *cpu_buffer;
939         DEFINE_WAIT(wait);
940         struct rb_irq_work *work;
941         int ret = 0;
942
943         /*
944          * Depending on what the caller is waiting for, either any
945          * data in any cpu buffer, or a specific buffer, put the
946          * caller on the appropriate wait queue.
947          */
948         if (cpu == RING_BUFFER_ALL_CPUS) {
949                 work = &buffer->irq_work;
950                 /* Full only makes sense on per cpu reads */
951                 full = 0;
952         } else {
953                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
954                         return -ENODEV;
955                 cpu_buffer = buffer->buffers[cpu];
956                 work = &cpu_buffer->irq_work;
957         }
958
959
960         while (true) {
961                 if (full)
962                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
963                 else
964                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
965
966                 /*
967                  * The events can happen in critical sections where
968                  * checking a work queue can cause deadlocks.
969                  * After adding a task to the queue, this flag is set
970                  * only to notify events to try to wake up the queue
971                  * using irq_work.
972                  *
973                  * We don't clear it even if the buffer is no longer
974                  * empty. The flag only causes the next event to run
975                  * irq_work to do the work queue wake up. The worse
976                  * that can happen if we race with !trace_empty() is that
977                  * an event will cause an irq_work to try to wake up
978                  * an empty queue.
979                  *
980                  * There's no reason to protect this flag either, as
981                  * the work queue and irq_work logic will do the necessary
982                  * synchronization for the wake ups. The only thing
983                  * that is necessary is that the wake up happens after
984                  * a task has been queued. It's OK for spurious wake ups.
985                  */
986                 if (full)
987                         work->full_waiters_pending = true;
988                 else
989                         work->waiters_pending = true;
990
991                 if (signal_pending(current)) {
992                         ret = -EINTR;
993                         break;
994                 }
995
996                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
997                         break;
998
999                 if (cpu != RING_BUFFER_ALL_CPUS &&
1000                     !ring_buffer_empty_cpu(buffer, cpu)) {
1001                         unsigned long flags;
1002                         bool pagebusy;
1003                         size_t nr_pages;
1004                         size_t dirty;
1005
1006                         if (!full)
1007                                 break;
1008
1009                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1010                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1011                         nr_pages = cpu_buffer->nr_pages;
1012                         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
1013                         if (!cpu_buffer->shortest_full ||
1014                             cpu_buffer->shortest_full < full)
1015                                 cpu_buffer->shortest_full = full;
1016                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1017                         if (!pagebusy &&
1018                             (!nr_pages || (dirty * 100) > full * nr_pages))
1019                                 break;
1020                 }
1021
1022                 schedule();
1023         }
1024
1025         if (full)
1026                 finish_wait(&work->full_waiters, &wait);
1027         else
1028                 finish_wait(&work->waiters, &wait);
1029
1030         return ret;
1031 }
1032
1033 /**
1034  * ring_buffer_poll_wait - poll on buffer input
1035  * @buffer: buffer to wait on
1036  * @cpu: the cpu buffer to wait on
1037  * @filp: the file descriptor
1038  * @poll_table: The poll descriptor
1039  *
1040  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1041  * as data is added to any of the @buffer's cpu buffers. Otherwise
1042  * it will wait for data to be added to a specific cpu buffer.
1043  *
1044  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1045  * zero otherwise.
1046  */
1047 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1048                           struct file *filp, poll_table *poll_table)
1049 {
1050         struct ring_buffer_per_cpu *cpu_buffer;
1051         struct rb_irq_work *work;
1052
1053         if (cpu == RING_BUFFER_ALL_CPUS)
1054                 work = &buffer->irq_work;
1055         else {
1056                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1057                         return -EINVAL;
1058
1059                 cpu_buffer = buffer->buffers[cpu];
1060                 work = &cpu_buffer->irq_work;
1061         }
1062
1063         poll_wait(filp, &work->waiters, poll_table);
1064         work->waiters_pending = true;
1065         /*
1066          * There's a tight race between setting the waiters_pending and
1067          * checking if the ring buffer is empty.  Once the waiters_pending bit
1068          * is set, the next event will wake the task up, but we can get stuck
1069          * if there's only a single event in.
1070          *
1071          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1072          * but adding a memory barrier to all events will cause too much of a
1073          * performance hit in the fast path.  We only need a memory barrier when
1074          * the buffer goes from empty to having content.  But as this race is
1075          * extremely small, and it's not a problem if another event comes in, we
1076          * will fix it later.
1077          */
1078         smp_mb();
1079
1080         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1081             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1082                 return EPOLLIN | EPOLLRDNORM;
1083         return 0;
1084 }
1085
1086 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1087 #define RB_WARN_ON(b, cond)                                             \
1088         ({                                                              \
1089                 int _____ret = unlikely(cond);                          \
1090                 if (_____ret) {                                         \
1091                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1092                                 struct ring_buffer_per_cpu *__b =       \
1093                                         (void *)b;                      \
1094                                 atomic_inc(&__b->buffer->record_disabled); \
1095                         } else                                          \
1096                                 atomic_inc(&b->record_disabled);        \
1097                         WARN_ON(1);                                     \
1098                 }                                                       \
1099                 _____ret;                                               \
1100         })
1101
1102 /* Up this if you want to test the TIME_EXTENTS and normalization */
1103 #define DEBUG_SHIFT 0
1104
1105 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1106 {
1107         u64 ts;
1108
1109         /* Skip retpolines :-( */
1110         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1111                 ts = trace_clock_local();
1112         else
1113                 ts = buffer->clock();
1114
1115         /* shift to debug/test normalization and TIME_EXTENTS */
1116         return ts << DEBUG_SHIFT;
1117 }
1118
1119 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1120 {
1121         u64 time;
1122
1123         preempt_disable_notrace();
1124         time = rb_time_stamp(buffer);
1125         preempt_enable_notrace();
1126
1127         return time;
1128 }
1129 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1130
1131 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1132                                       int cpu, u64 *ts)
1133 {
1134         /* Just stupid testing the normalize function and deltas */
1135         *ts >>= DEBUG_SHIFT;
1136 }
1137 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1138
1139 /*
1140  * Making the ring buffer lockless makes things tricky.
1141  * Although writes only happen on the CPU that they are on,
1142  * and they only need to worry about interrupts. Reads can
1143  * happen on any CPU.
1144  *
1145  * The reader page is always off the ring buffer, but when the
1146  * reader finishes with a page, it needs to swap its page with
1147  * a new one from the buffer. The reader needs to take from
1148  * the head (writes go to the tail). But if a writer is in overwrite
1149  * mode and wraps, it must push the head page forward.
1150  *
1151  * Here lies the problem.
1152  *
1153  * The reader must be careful to replace only the head page, and
1154  * not another one. As described at the top of the file in the
1155  * ASCII art, the reader sets its old page to point to the next
1156  * page after head. It then sets the page after head to point to
1157  * the old reader page. But if the writer moves the head page
1158  * during this operation, the reader could end up with the tail.
1159  *
1160  * We use cmpxchg to help prevent this race. We also do something
1161  * special with the page before head. We set the LSB to 1.
1162  *
1163  * When the writer must push the page forward, it will clear the
1164  * bit that points to the head page, move the head, and then set
1165  * the bit that points to the new head page.
1166  *
1167  * We also don't want an interrupt coming in and moving the head
1168  * page on another writer. Thus we use the second LSB to catch
1169  * that too. Thus:
1170  *
1171  * head->list->prev->next        bit 1          bit 0
1172  *                              -------        -------
1173  * Normal page                     0              0
1174  * Points to head page             0              1
1175  * New head page                   1              0
1176  *
1177  * Note we can not trust the prev pointer of the head page, because:
1178  *
1179  * +----+       +-----+        +-----+
1180  * |    |------>|  T  |---X--->|  N  |
1181  * |    |<------|     |        |     |
1182  * +----+       +-----+        +-----+
1183  *   ^                           ^ |
1184  *   |          +-----+          | |
1185  *   +----------|  R  |----------+ |
1186  *              |     |<-----------+
1187  *              +-----+
1188  *
1189  * Key:  ---X-->  HEAD flag set in pointer
1190  *         T      Tail page
1191  *         R      Reader page
1192  *         N      Next page
1193  *
1194  * (see __rb_reserve_next() to see where this happens)
1195  *
1196  *  What the above shows is that the reader just swapped out
1197  *  the reader page with a page in the buffer, but before it
1198  *  could make the new header point back to the new page added
1199  *  it was preempted by a writer. The writer moved forward onto
1200  *  the new page added by the reader and is about to move forward
1201  *  again.
1202  *
1203  *  You can see, it is legitimate for the previous pointer of
1204  *  the head (or any page) not to point back to itself. But only
1205  *  temporarily.
1206  */
1207
1208 #define RB_PAGE_NORMAL          0UL
1209 #define RB_PAGE_HEAD            1UL
1210 #define RB_PAGE_UPDATE          2UL
1211
1212
1213 #define RB_FLAG_MASK            3UL
1214
1215 /* PAGE_MOVED is not part of the mask */
1216 #define RB_PAGE_MOVED           4UL
1217
1218 /*
1219  * rb_list_head - remove any bit
1220  */
1221 static struct list_head *rb_list_head(struct list_head *list)
1222 {
1223         unsigned long val = (unsigned long)list;
1224
1225         return (struct list_head *)(val & ~RB_FLAG_MASK);
1226 }
1227
1228 /*
1229  * rb_is_head_page - test if the given page is the head page
1230  *
1231  * Because the reader may move the head_page pointer, we can
1232  * not trust what the head page is (it may be pointing to
1233  * the reader page). But if the next page is a header page,
1234  * its flags will be non zero.
1235  */
1236 static inline int
1237 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1238 {
1239         unsigned long val;
1240
1241         val = (unsigned long)list->next;
1242
1243         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1244                 return RB_PAGE_MOVED;
1245
1246         return val & RB_FLAG_MASK;
1247 }
1248
1249 /*
1250  * rb_is_reader_page
1251  *
1252  * The unique thing about the reader page, is that, if the
1253  * writer is ever on it, the previous pointer never points
1254  * back to the reader page.
1255  */
1256 static bool rb_is_reader_page(struct buffer_page *page)
1257 {
1258         struct list_head *list = page->list.prev;
1259
1260         return rb_list_head(list->next) != &page->list;
1261 }
1262
1263 /*
1264  * rb_set_list_to_head - set a list_head to be pointing to head.
1265  */
1266 static void rb_set_list_to_head(struct list_head *list)
1267 {
1268         unsigned long *ptr;
1269
1270         ptr = (unsigned long *)&list->next;
1271         *ptr |= RB_PAGE_HEAD;
1272         *ptr &= ~RB_PAGE_UPDATE;
1273 }
1274
1275 /*
1276  * rb_head_page_activate - sets up head page
1277  */
1278 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1279 {
1280         struct buffer_page *head;
1281
1282         head = cpu_buffer->head_page;
1283         if (!head)
1284                 return;
1285
1286         /*
1287          * Set the previous list pointer to have the HEAD flag.
1288          */
1289         rb_set_list_to_head(head->list.prev);
1290 }
1291
1292 static void rb_list_head_clear(struct list_head *list)
1293 {
1294         unsigned long *ptr = (unsigned long *)&list->next;
1295
1296         *ptr &= ~RB_FLAG_MASK;
1297 }
1298
1299 /*
1300  * rb_head_page_deactivate - clears head page ptr (for free list)
1301  */
1302 static void
1303 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1304 {
1305         struct list_head *hd;
1306
1307         /* Go through the whole list and clear any pointers found. */
1308         rb_list_head_clear(cpu_buffer->pages);
1309
1310         list_for_each(hd, cpu_buffer->pages)
1311                 rb_list_head_clear(hd);
1312 }
1313
1314 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1315                             struct buffer_page *head,
1316                             struct buffer_page *prev,
1317                             int old_flag, int new_flag)
1318 {
1319         struct list_head *list;
1320         unsigned long val = (unsigned long)&head->list;
1321         unsigned long ret;
1322
1323         list = &prev->list;
1324
1325         val &= ~RB_FLAG_MASK;
1326
1327         ret = cmpxchg((unsigned long *)&list->next,
1328                       val | old_flag, val | new_flag);
1329
1330         /* check if the reader took the page */
1331         if ((ret & ~RB_FLAG_MASK) != val)
1332                 return RB_PAGE_MOVED;
1333
1334         return ret & RB_FLAG_MASK;
1335 }
1336
1337 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1338                                    struct buffer_page *head,
1339                                    struct buffer_page *prev,
1340                                    int old_flag)
1341 {
1342         return rb_head_page_set(cpu_buffer, head, prev,
1343                                 old_flag, RB_PAGE_UPDATE);
1344 }
1345
1346 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1347                                  struct buffer_page *head,
1348                                  struct buffer_page *prev,
1349                                  int old_flag)
1350 {
1351         return rb_head_page_set(cpu_buffer, head, prev,
1352                                 old_flag, RB_PAGE_HEAD);
1353 }
1354
1355 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1356                                    struct buffer_page *head,
1357                                    struct buffer_page *prev,
1358                                    int old_flag)
1359 {
1360         return rb_head_page_set(cpu_buffer, head, prev,
1361                                 old_flag, RB_PAGE_NORMAL);
1362 }
1363
1364 static inline void rb_inc_page(struct buffer_page **bpage)
1365 {
1366         struct list_head *p = rb_list_head((*bpage)->list.next);
1367
1368         *bpage = list_entry(p, struct buffer_page, list);
1369 }
1370
1371 static struct buffer_page *
1372 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1373 {
1374         struct buffer_page *head;
1375         struct buffer_page *page;
1376         struct list_head *list;
1377         int i;
1378
1379         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1380                 return NULL;
1381
1382         /* sanity check */
1383         list = cpu_buffer->pages;
1384         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1385                 return NULL;
1386
1387         page = head = cpu_buffer->head_page;
1388         /*
1389          * It is possible that the writer moves the header behind
1390          * where we started, and we miss in one loop.
1391          * A second loop should grab the header, but we'll do
1392          * three loops just because I'm paranoid.
1393          */
1394         for (i = 0; i < 3; i++) {
1395                 do {
1396                         if (rb_is_head_page(page, page->list.prev)) {
1397                                 cpu_buffer->head_page = page;
1398                                 return page;
1399                         }
1400                         rb_inc_page(&page);
1401                 } while (page != head);
1402         }
1403
1404         RB_WARN_ON(cpu_buffer, 1);
1405
1406         return NULL;
1407 }
1408
1409 static int rb_head_page_replace(struct buffer_page *old,
1410                                 struct buffer_page *new)
1411 {
1412         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1413         unsigned long val;
1414         unsigned long ret;
1415
1416         val = *ptr & ~RB_FLAG_MASK;
1417         val |= RB_PAGE_HEAD;
1418
1419         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1420
1421         return ret == val;
1422 }
1423
1424 /*
1425  * rb_tail_page_update - move the tail page forward
1426  */
1427 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1428                                struct buffer_page *tail_page,
1429                                struct buffer_page *next_page)
1430 {
1431         unsigned long old_entries;
1432         unsigned long old_write;
1433
1434         /*
1435          * The tail page now needs to be moved forward.
1436          *
1437          * We need to reset the tail page, but without messing
1438          * with possible erasing of data brought in by interrupts
1439          * that have moved the tail page and are currently on it.
1440          *
1441          * We add a counter to the write field to denote this.
1442          */
1443         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1444         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1445
1446         local_inc(&cpu_buffer->pages_touched);
1447         /*
1448          * Just make sure we have seen our old_write and synchronize
1449          * with any interrupts that come in.
1450          */
1451         barrier();
1452
1453         /*
1454          * If the tail page is still the same as what we think
1455          * it is, then it is up to us to update the tail
1456          * pointer.
1457          */
1458         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1459                 /* Zero the write counter */
1460                 unsigned long val = old_write & ~RB_WRITE_MASK;
1461                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1462
1463                 /*
1464                  * This will only succeed if an interrupt did
1465                  * not come in and change it. In which case, we
1466                  * do not want to modify it.
1467                  *
1468                  * We add (void) to let the compiler know that we do not care
1469                  * about the return value of these functions. We use the
1470                  * cmpxchg to only update if an interrupt did not already
1471                  * do it for us. If the cmpxchg fails, we don't care.
1472                  */
1473                 (void)local_cmpxchg(&next_page->write, old_write, val);
1474                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1475
1476                 /*
1477                  * No need to worry about races with clearing out the commit.
1478                  * it only can increment when a commit takes place. But that
1479                  * only happens in the outer most nested commit.
1480                  */
1481                 local_set(&next_page->page->commit, 0);
1482
1483                 /* Again, either we update tail_page or an interrupt does */
1484                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1485         }
1486 }
1487
1488 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1489                           struct buffer_page *bpage)
1490 {
1491         unsigned long val = (unsigned long)bpage;
1492
1493         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1494                 return 1;
1495
1496         return 0;
1497 }
1498
1499 /**
1500  * rb_check_list - make sure a pointer to a list has the last bits zero
1501  */
1502 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1503                          struct list_head *list)
1504 {
1505         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1506                 return 1;
1507         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1508                 return 1;
1509         return 0;
1510 }
1511
1512 /**
1513  * rb_check_pages - integrity check of buffer pages
1514  * @cpu_buffer: CPU buffer with pages to test
1515  *
1516  * As a safety measure we check to make sure the data pages have not
1517  * been corrupted.
1518  */
1519 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1520 {
1521         struct list_head *head = cpu_buffer->pages;
1522         struct buffer_page *bpage, *tmp;
1523
1524         /* Reset the head page if it exists */
1525         if (cpu_buffer->head_page)
1526                 rb_set_head_page(cpu_buffer);
1527
1528         rb_head_page_deactivate(cpu_buffer);
1529
1530         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1531                 return -1;
1532         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1533                 return -1;
1534
1535         if (rb_check_list(cpu_buffer, head))
1536                 return -1;
1537
1538         list_for_each_entry_safe(bpage, tmp, head, list) {
1539                 if (RB_WARN_ON(cpu_buffer,
1540                                bpage->list.next->prev != &bpage->list))
1541                         return -1;
1542                 if (RB_WARN_ON(cpu_buffer,
1543                                bpage->list.prev->next != &bpage->list))
1544                         return -1;
1545                 if (rb_check_list(cpu_buffer, &bpage->list))
1546                         return -1;
1547         }
1548
1549         rb_head_page_activate(cpu_buffer);
1550
1551         return 0;
1552 }
1553
1554 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1555                 long nr_pages, struct list_head *pages)
1556 {
1557         struct buffer_page *bpage, *tmp;
1558         bool user_thread = current->mm != NULL;
1559         gfp_t mflags;
1560         long i;
1561
1562         /*
1563          * Check if the available memory is there first.
1564          * Note, si_mem_available() only gives us a rough estimate of available
1565          * memory. It may not be accurate. But we don't care, we just want
1566          * to prevent doing any allocation when it is obvious that it is
1567          * not going to succeed.
1568          */
1569         i = si_mem_available();
1570         if (i < nr_pages)
1571                 return -ENOMEM;
1572
1573         /*
1574          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1575          * gracefully without invoking oom-killer and the system is not
1576          * destabilized.
1577          */
1578         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1579
1580         /*
1581          * If a user thread allocates too much, and si_mem_available()
1582          * reports there's enough memory, even though there is not.
1583          * Make sure the OOM killer kills this thread. This can happen
1584          * even with RETRY_MAYFAIL because another task may be doing
1585          * an allocation after this task has taken all memory.
1586          * This is the task the OOM killer needs to take out during this
1587          * loop, even if it was triggered by an allocation somewhere else.
1588          */
1589         if (user_thread)
1590                 set_current_oom_origin();
1591         for (i = 0; i < nr_pages; i++) {
1592                 struct page *page;
1593
1594                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1595                                     mflags, cpu_to_node(cpu_buffer->cpu));
1596                 if (!bpage)
1597                         goto free_pages;
1598
1599                 rb_check_bpage(cpu_buffer, bpage);
1600
1601                 list_add(&bpage->list, pages);
1602
1603                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1604                 if (!page)
1605                         goto free_pages;
1606                 bpage->page = page_address(page);
1607                 rb_init_page(bpage->page);
1608
1609                 if (user_thread && fatal_signal_pending(current))
1610                         goto free_pages;
1611         }
1612         if (user_thread)
1613                 clear_current_oom_origin();
1614
1615         return 0;
1616
1617 free_pages:
1618         list_for_each_entry_safe(bpage, tmp, pages, list) {
1619                 list_del_init(&bpage->list);
1620                 free_buffer_page(bpage);
1621         }
1622         if (user_thread)
1623                 clear_current_oom_origin();
1624
1625         return -ENOMEM;
1626 }
1627
1628 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1629                              unsigned long nr_pages)
1630 {
1631         LIST_HEAD(pages);
1632
1633         WARN_ON(!nr_pages);
1634
1635         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1636                 return -ENOMEM;
1637
1638         /*
1639          * The ring buffer page list is a circular list that does not
1640          * start and end with a list head. All page list items point to
1641          * other pages.
1642          */
1643         cpu_buffer->pages = pages.next;
1644         list_del(&pages);
1645
1646         cpu_buffer->nr_pages = nr_pages;
1647
1648         rb_check_pages(cpu_buffer);
1649
1650         return 0;
1651 }
1652
1653 static struct ring_buffer_per_cpu *
1654 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1655 {
1656         struct ring_buffer_per_cpu *cpu_buffer;
1657         struct buffer_page *bpage;
1658         struct page *page;
1659         int ret;
1660
1661         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1662                                   GFP_KERNEL, cpu_to_node(cpu));
1663         if (!cpu_buffer)
1664                 return NULL;
1665
1666         cpu_buffer->cpu = cpu;
1667         cpu_buffer->buffer = buffer;
1668         raw_spin_lock_init(&cpu_buffer->reader_lock);
1669         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1670         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1671         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1672         init_completion(&cpu_buffer->update_done);
1673         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1674         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1675         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1676
1677         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1678                             GFP_KERNEL, cpu_to_node(cpu));
1679         if (!bpage)
1680                 goto fail_free_buffer;
1681
1682         rb_check_bpage(cpu_buffer, bpage);
1683
1684         cpu_buffer->reader_page = bpage;
1685         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1686         if (!page)
1687                 goto fail_free_reader;
1688         bpage->page = page_address(page);
1689         rb_init_page(bpage->page);
1690
1691         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1692         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1693
1694         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1695         if (ret < 0)
1696                 goto fail_free_reader;
1697
1698         cpu_buffer->head_page
1699                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1700         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1701
1702         rb_head_page_activate(cpu_buffer);
1703
1704         return cpu_buffer;
1705
1706  fail_free_reader:
1707         free_buffer_page(cpu_buffer->reader_page);
1708
1709  fail_free_buffer:
1710         kfree(cpu_buffer);
1711         return NULL;
1712 }
1713
1714 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1715 {
1716         struct list_head *head = cpu_buffer->pages;
1717         struct buffer_page *bpage, *tmp;
1718
1719         free_buffer_page(cpu_buffer->reader_page);
1720
1721         rb_head_page_deactivate(cpu_buffer);
1722
1723         if (head) {
1724                 list_for_each_entry_safe(bpage, tmp, head, list) {
1725                         list_del_init(&bpage->list);
1726                         free_buffer_page(bpage);
1727                 }
1728                 bpage = list_entry(head, struct buffer_page, list);
1729                 free_buffer_page(bpage);
1730         }
1731
1732         kfree(cpu_buffer);
1733 }
1734
1735 /**
1736  * __ring_buffer_alloc - allocate a new ring_buffer
1737  * @size: the size in bytes per cpu that is needed.
1738  * @flags: attributes to set for the ring buffer.
1739  * @key: ring buffer reader_lock_key.
1740  *
1741  * Currently the only flag that is available is the RB_FL_OVERWRITE
1742  * flag. This flag means that the buffer will overwrite old data
1743  * when the buffer wraps. If this flag is not set, the buffer will
1744  * drop data when the tail hits the head.
1745  */
1746 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1747                                         struct lock_class_key *key)
1748 {
1749         struct trace_buffer *buffer;
1750         long nr_pages;
1751         int bsize;
1752         int cpu;
1753         int ret;
1754
1755         /* keep it in its own cache line */
1756         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1757                          GFP_KERNEL);
1758         if (!buffer)
1759                 return NULL;
1760
1761         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1762                 goto fail_free_buffer;
1763
1764         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1765         buffer->flags = flags;
1766         buffer->clock = trace_clock_local;
1767         buffer->reader_lock_key = key;
1768
1769         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1770         init_waitqueue_head(&buffer->irq_work.waiters);
1771
1772         /* need at least two pages */
1773         if (nr_pages < 2)
1774                 nr_pages = 2;
1775
1776         buffer->cpus = nr_cpu_ids;
1777
1778         bsize = sizeof(void *) * nr_cpu_ids;
1779         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1780                                   GFP_KERNEL);
1781         if (!buffer->buffers)
1782                 goto fail_free_cpumask;
1783
1784         cpu = raw_smp_processor_id();
1785         cpumask_set_cpu(cpu, buffer->cpumask);
1786         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1787         if (!buffer->buffers[cpu])
1788                 goto fail_free_buffers;
1789
1790         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1791         if (ret < 0)
1792                 goto fail_free_buffers;
1793
1794         mutex_init(&buffer->mutex);
1795
1796         return buffer;
1797
1798  fail_free_buffers:
1799         for_each_buffer_cpu(buffer, cpu) {
1800                 if (buffer->buffers[cpu])
1801                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1802         }
1803         kfree(buffer->buffers);
1804
1805  fail_free_cpumask:
1806         free_cpumask_var(buffer->cpumask);
1807
1808  fail_free_buffer:
1809         kfree(buffer);
1810         return NULL;
1811 }
1812 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1813
1814 /**
1815  * ring_buffer_free - free a ring buffer.
1816  * @buffer: the buffer to free.
1817  */
1818 void
1819 ring_buffer_free(struct trace_buffer *buffer)
1820 {
1821         int cpu;
1822
1823         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1824
1825         for_each_buffer_cpu(buffer, cpu)
1826                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1827
1828         kfree(buffer->buffers);
1829         free_cpumask_var(buffer->cpumask);
1830
1831         kfree(buffer);
1832 }
1833 EXPORT_SYMBOL_GPL(ring_buffer_free);
1834
1835 void ring_buffer_set_clock(struct trace_buffer *buffer,
1836                            u64 (*clock)(void))
1837 {
1838         buffer->clock = clock;
1839 }
1840
1841 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1842 {
1843         buffer->time_stamp_abs = abs;
1844 }
1845
1846 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1847 {
1848         return buffer->time_stamp_abs;
1849 }
1850
1851 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1852
1853 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1854 {
1855         return local_read(&bpage->entries) & RB_WRITE_MASK;
1856 }
1857
1858 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1859 {
1860         return local_read(&bpage->write) & RB_WRITE_MASK;
1861 }
1862
1863 static int
1864 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1865 {
1866         struct list_head *tail_page, *to_remove, *next_page;
1867         struct buffer_page *to_remove_page, *tmp_iter_page;
1868         struct buffer_page *last_page, *first_page;
1869         unsigned long nr_removed;
1870         unsigned long head_bit;
1871         int page_entries;
1872
1873         head_bit = 0;
1874
1875         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1876         atomic_inc(&cpu_buffer->record_disabled);
1877         /*
1878          * We don't race with the readers since we have acquired the reader
1879          * lock. We also don't race with writers after disabling recording.
1880          * This makes it easy to figure out the first and the last page to be
1881          * removed from the list. We unlink all the pages in between including
1882          * the first and last pages. This is done in a busy loop so that we
1883          * lose the least number of traces.
1884          * The pages are freed after we restart recording and unlock readers.
1885          */
1886         tail_page = &cpu_buffer->tail_page->list;
1887
1888         /*
1889          * tail page might be on reader page, we remove the next page
1890          * from the ring buffer
1891          */
1892         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1893                 tail_page = rb_list_head(tail_page->next);
1894         to_remove = tail_page;
1895
1896         /* start of pages to remove */
1897         first_page = list_entry(rb_list_head(to_remove->next),
1898                                 struct buffer_page, list);
1899
1900         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1901                 to_remove = rb_list_head(to_remove)->next;
1902                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1903         }
1904
1905         next_page = rb_list_head(to_remove)->next;
1906
1907         /*
1908          * Now we remove all pages between tail_page and next_page.
1909          * Make sure that we have head_bit value preserved for the
1910          * next page
1911          */
1912         tail_page->next = (struct list_head *)((unsigned long)next_page |
1913                                                 head_bit);
1914         next_page = rb_list_head(next_page);
1915         next_page->prev = tail_page;
1916
1917         /* make sure pages points to a valid page in the ring buffer */
1918         cpu_buffer->pages = next_page;
1919
1920         /* update head page */
1921         if (head_bit)
1922                 cpu_buffer->head_page = list_entry(next_page,
1923                                                 struct buffer_page, list);
1924
1925         /*
1926          * change read pointer to make sure any read iterators reset
1927          * themselves
1928          */
1929         cpu_buffer->read = 0;
1930
1931         /* pages are removed, resume tracing and then free the pages */
1932         atomic_dec(&cpu_buffer->record_disabled);
1933         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1934
1935         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1936
1937         /* last buffer page to remove */
1938         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1939                                 list);
1940         tmp_iter_page = first_page;
1941
1942         do {
1943                 cond_resched();
1944
1945                 to_remove_page = tmp_iter_page;
1946                 rb_inc_page(&tmp_iter_page);
1947
1948                 /* update the counters */
1949                 page_entries = rb_page_entries(to_remove_page);
1950                 if (page_entries) {
1951                         /*
1952                          * If something was added to this page, it was full
1953                          * since it is not the tail page. So we deduct the
1954                          * bytes consumed in ring buffer from here.
1955                          * Increment overrun to account for the lost events.
1956                          */
1957                         local_add(page_entries, &cpu_buffer->overrun);
1958                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1959                 }
1960
1961                 /*
1962                  * We have already removed references to this list item, just
1963                  * free up the buffer_page and its page
1964                  */
1965                 free_buffer_page(to_remove_page);
1966                 nr_removed--;
1967
1968         } while (to_remove_page != last_page);
1969
1970         RB_WARN_ON(cpu_buffer, nr_removed);
1971
1972         return nr_removed == 0;
1973 }
1974
1975 static int
1976 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1977 {
1978         struct list_head *pages = &cpu_buffer->new_pages;
1979         int retries, success;
1980
1981         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1982         /*
1983          * We are holding the reader lock, so the reader page won't be swapped
1984          * in the ring buffer. Now we are racing with the writer trying to
1985          * move head page and the tail page.
1986          * We are going to adapt the reader page update process where:
1987          * 1. We first splice the start and end of list of new pages between
1988          *    the head page and its previous page.
1989          * 2. We cmpxchg the prev_page->next to point from head page to the
1990          *    start of new pages list.
1991          * 3. Finally, we update the head->prev to the end of new list.
1992          *
1993          * We will try this process 10 times, to make sure that we don't keep
1994          * spinning.
1995          */
1996         retries = 10;
1997         success = 0;
1998         while (retries--) {
1999                 struct list_head *head_page, *prev_page, *r;
2000                 struct list_head *last_page, *first_page;
2001                 struct list_head *head_page_with_bit;
2002
2003                 head_page = &rb_set_head_page(cpu_buffer)->list;
2004                 if (!head_page)
2005                         break;
2006                 prev_page = head_page->prev;
2007
2008                 first_page = pages->next;
2009                 last_page  = pages->prev;
2010
2011                 head_page_with_bit = (struct list_head *)
2012                                      ((unsigned long)head_page | RB_PAGE_HEAD);
2013
2014                 last_page->next = head_page_with_bit;
2015                 first_page->prev = prev_page;
2016
2017                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2018
2019                 if (r == head_page_with_bit) {
2020                         /*
2021                          * yay, we replaced the page pointer to our new list,
2022                          * now, we just have to update to head page's prev
2023                          * pointer to point to end of list
2024                          */
2025                         head_page->prev = last_page;
2026                         success = 1;
2027                         break;
2028                 }
2029         }
2030
2031         if (success)
2032                 INIT_LIST_HEAD(pages);
2033         /*
2034          * If we weren't successful in adding in new pages, warn and stop
2035          * tracing
2036          */
2037         RB_WARN_ON(cpu_buffer, !success);
2038         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2039
2040         /* free pages if they weren't inserted */
2041         if (!success) {
2042                 struct buffer_page *bpage, *tmp;
2043                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2044                                          list) {
2045                         list_del_init(&bpage->list);
2046                         free_buffer_page(bpage);
2047                 }
2048         }
2049         return success;
2050 }
2051
2052 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2053 {
2054         int success;
2055
2056         if (cpu_buffer->nr_pages_to_update > 0)
2057                 success = rb_insert_pages(cpu_buffer);
2058         else
2059                 success = rb_remove_pages(cpu_buffer,
2060                                         -cpu_buffer->nr_pages_to_update);
2061
2062         if (success)
2063                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2064 }
2065
2066 static void update_pages_handler(struct work_struct *work)
2067 {
2068         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2069                         struct ring_buffer_per_cpu, update_pages_work);
2070         rb_update_pages(cpu_buffer);
2071         complete(&cpu_buffer->update_done);
2072 }
2073
2074 /**
2075  * ring_buffer_resize - resize the ring buffer
2076  * @buffer: the buffer to resize.
2077  * @size: the new size.
2078  * @cpu_id: the cpu buffer to resize
2079  *
2080  * Minimum size is 2 * BUF_PAGE_SIZE.
2081  *
2082  * Returns 0 on success and < 0 on failure.
2083  */
2084 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2085                         int cpu_id)
2086 {
2087         struct ring_buffer_per_cpu *cpu_buffer;
2088         unsigned long nr_pages;
2089         int cpu, err;
2090
2091         /*
2092          * Always succeed at resizing a non-existent buffer:
2093          */
2094         if (!buffer)
2095                 return 0;
2096
2097         /* Make sure the requested buffer exists */
2098         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2099             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2100                 return 0;
2101
2102         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2103
2104         /* we need a minimum of two pages */
2105         if (nr_pages < 2)
2106                 nr_pages = 2;
2107
2108         /* prevent another thread from changing buffer sizes */
2109         mutex_lock(&buffer->mutex);
2110
2111
2112         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2113                 /*
2114                  * Don't succeed if resizing is disabled, as a reader might be
2115                  * manipulating the ring buffer and is expecting a sane state while
2116                  * this is true.
2117                  */
2118                 for_each_buffer_cpu(buffer, cpu) {
2119                         cpu_buffer = buffer->buffers[cpu];
2120                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2121                                 err = -EBUSY;
2122                                 goto out_err_unlock;
2123                         }
2124                 }
2125
2126                 /* calculate the pages to update */
2127                 for_each_buffer_cpu(buffer, cpu) {
2128                         cpu_buffer = buffer->buffers[cpu];
2129
2130                         cpu_buffer->nr_pages_to_update = nr_pages -
2131                                                         cpu_buffer->nr_pages;
2132                         /*
2133                          * nothing more to do for removing pages or no update
2134                          */
2135                         if (cpu_buffer->nr_pages_to_update <= 0)
2136                                 continue;
2137                         /*
2138                          * to add pages, make sure all new pages can be
2139                          * allocated without receiving ENOMEM
2140                          */
2141                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2142                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2143                                                 &cpu_buffer->new_pages)) {
2144                                 /* not enough memory for new pages */
2145                                 err = -ENOMEM;
2146                                 goto out_err;
2147                         }
2148                 }
2149
2150                 cpus_read_lock();
2151                 /*
2152                  * Fire off all the required work handlers
2153                  * We can't schedule on offline CPUs, but it's not necessary
2154                  * since we can change their buffer sizes without any race.
2155                  */
2156                 for_each_buffer_cpu(buffer, cpu) {
2157                         cpu_buffer = buffer->buffers[cpu];
2158                         if (!cpu_buffer->nr_pages_to_update)
2159                                 continue;
2160
2161                         /* Can't run something on an offline CPU. */
2162                         if (!cpu_online(cpu)) {
2163                                 rb_update_pages(cpu_buffer);
2164                                 cpu_buffer->nr_pages_to_update = 0;
2165                         } else {
2166                                 schedule_work_on(cpu,
2167                                                 &cpu_buffer->update_pages_work);
2168                         }
2169                 }
2170
2171                 /* wait for all the updates to complete */
2172                 for_each_buffer_cpu(buffer, cpu) {
2173                         cpu_buffer = buffer->buffers[cpu];
2174                         if (!cpu_buffer->nr_pages_to_update)
2175                                 continue;
2176
2177                         if (cpu_online(cpu))
2178                                 wait_for_completion(&cpu_buffer->update_done);
2179                         cpu_buffer->nr_pages_to_update = 0;
2180                 }
2181
2182                 cpus_read_unlock();
2183         } else {
2184                 cpu_buffer = buffer->buffers[cpu_id];
2185
2186                 if (nr_pages == cpu_buffer->nr_pages)
2187                         goto out;
2188
2189                 /*
2190                  * Don't succeed if resizing is disabled, as a reader might be
2191                  * manipulating the ring buffer and is expecting a sane state while
2192                  * this is true.
2193                  */
2194                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2195                         err = -EBUSY;
2196                         goto out_err_unlock;
2197                 }
2198
2199                 cpu_buffer->nr_pages_to_update = nr_pages -
2200                                                 cpu_buffer->nr_pages;
2201
2202                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2203                 if (cpu_buffer->nr_pages_to_update > 0 &&
2204                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2205                                             &cpu_buffer->new_pages)) {
2206                         err = -ENOMEM;
2207                         goto out_err;
2208                 }
2209
2210                 cpus_read_lock();
2211
2212                 /* Can't run something on an offline CPU. */
2213                 if (!cpu_online(cpu_id))
2214                         rb_update_pages(cpu_buffer);
2215                 else {
2216                         schedule_work_on(cpu_id,
2217                                          &cpu_buffer->update_pages_work);
2218                         wait_for_completion(&cpu_buffer->update_done);
2219                 }
2220
2221                 cpu_buffer->nr_pages_to_update = 0;
2222                 cpus_read_unlock();
2223         }
2224
2225  out:
2226         /*
2227          * The ring buffer resize can happen with the ring buffer
2228          * enabled, so that the update disturbs the tracing as little
2229          * as possible. But if the buffer is disabled, we do not need
2230          * to worry about that, and we can take the time to verify
2231          * that the buffer is not corrupt.
2232          */
2233         if (atomic_read(&buffer->record_disabled)) {
2234                 atomic_inc(&buffer->record_disabled);
2235                 /*
2236                  * Even though the buffer was disabled, we must make sure
2237                  * that it is truly disabled before calling rb_check_pages.
2238                  * There could have been a race between checking
2239                  * record_disable and incrementing it.
2240                  */
2241                 synchronize_rcu();
2242                 for_each_buffer_cpu(buffer, cpu) {
2243                         cpu_buffer = buffer->buffers[cpu];
2244                         rb_check_pages(cpu_buffer);
2245                 }
2246                 atomic_dec(&buffer->record_disabled);
2247         }
2248
2249         mutex_unlock(&buffer->mutex);
2250         return 0;
2251
2252  out_err:
2253         for_each_buffer_cpu(buffer, cpu) {
2254                 struct buffer_page *bpage, *tmp;
2255
2256                 cpu_buffer = buffer->buffers[cpu];
2257                 cpu_buffer->nr_pages_to_update = 0;
2258
2259                 if (list_empty(&cpu_buffer->new_pages))
2260                         continue;
2261
2262                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2263                                         list) {
2264                         list_del_init(&bpage->list);
2265                         free_buffer_page(bpage);
2266                 }
2267         }
2268  out_err_unlock:
2269         mutex_unlock(&buffer->mutex);
2270         return err;
2271 }
2272 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2273
2274 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2275 {
2276         mutex_lock(&buffer->mutex);
2277         if (val)
2278                 buffer->flags |= RB_FL_OVERWRITE;
2279         else
2280                 buffer->flags &= ~RB_FL_OVERWRITE;
2281         mutex_unlock(&buffer->mutex);
2282 }
2283 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2284
2285 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2286 {
2287         return bpage->page->data + index;
2288 }
2289
2290 static __always_inline struct ring_buffer_event *
2291 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2292 {
2293         return __rb_page_index(cpu_buffer->reader_page,
2294                                cpu_buffer->reader_page->read);
2295 }
2296
2297 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2298 {
2299         return local_read(&bpage->page->commit);
2300 }
2301
2302 static struct ring_buffer_event *
2303 rb_iter_head_event(struct ring_buffer_iter *iter)
2304 {
2305         struct ring_buffer_event *event;
2306         struct buffer_page *iter_head_page = iter->head_page;
2307         unsigned long commit;
2308         unsigned length;
2309
2310         if (iter->head != iter->next_event)
2311                 return iter->event;
2312
2313         /*
2314          * When the writer goes across pages, it issues a cmpxchg which
2315          * is a mb(), which will synchronize with the rmb here.
2316          * (see rb_tail_page_update() and __rb_reserve_next())
2317          */
2318         commit = rb_page_commit(iter_head_page);
2319         smp_rmb();
2320         event = __rb_page_index(iter_head_page, iter->head);
2321         length = rb_event_length(event);
2322
2323         /*
2324          * READ_ONCE() doesn't work on functions and we don't want the
2325          * compiler doing any crazy optimizations with length.
2326          */
2327         barrier();
2328
2329         if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2330                 /* Writer corrupted the read? */
2331                 goto reset;
2332
2333         memcpy(iter->event, event, length);
2334         /*
2335          * If the page stamp is still the same after this rmb() then the
2336          * event was safely copied without the writer entering the page.
2337          */
2338         smp_rmb();
2339
2340         /* Make sure the page didn't change since we read this */
2341         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2342             commit > rb_page_commit(iter_head_page))
2343                 goto reset;
2344
2345         iter->next_event = iter->head + length;
2346         return iter->event;
2347  reset:
2348         /* Reset to the beginning */
2349         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2350         iter->head = 0;
2351         iter->next_event = 0;
2352         iter->missed_events = 1;
2353         return NULL;
2354 }
2355
2356 /* Size is determined by what has been committed */
2357 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2358 {
2359         return rb_page_commit(bpage);
2360 }
2361
2362 static __always_inline unsigned
2363 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2364 {
2365         return rb_page_commit(cpu_buffer->commit_page);
2366 }
2367
2368 static __always_inline unsigned
2369 rb_event_index(struct ring_buffer_event *event)
2370 {
2371         unsigned long addr = (unsigned long)event;
2372
2373         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2374 }
2375
2376 static void rb_inc_iter(struct ring_buffer_iter *iter)
2377 {
2378         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2379
2380         /*
2381          * The iterator could be on the reader page (it starts there).
2382          * But the head could have moved, since the reader was
2383          * found. Check for this case and assign the iterator
2384          * to the head page instead of next.
2385          */
2386         if (iter->head_page == cpu_buffer->reader_page)
2387                 iter->head_page = rb_set_head_page(cpu_buffer);
2388         else
2389                 rb_inc_page(&iter->head_page);
2390
2391         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2392         iter->head = 0;
2393         iter->next_event = 0;
2394 }
2395
2396 /*
2397  * rb_handle_head_page - writer hit the head page
2398  *
2399  * Returns: +1 to retry page
2400  *           0 to continue
2401  *          -1 on error
2402  */
2403 static int
2404 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2405                     struct buffer_page *tail_page,
2406                     struct buffer_page *next_page)
2407 {
2408         struct buffer_page *new_head;
2409         int entries;
2410         int type;
2411         int ret;
2412
2413         entries = rb_page_entries(next_page);
2414
2415         /*
2416          * The hard part is here. We need to move the head
2417          * forward, and protect against both readers on
2418          * other CPUs and writers coming in via interrupts.
2419          */
2420         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2421                                        RB_PAGE_HEAD);
2422
2423         /*
2424          * type can be one of four:
2425          *  NORMAL - an interrupt already moved it for us
2426          *  HEAD   - we are the first to get here.
2427          *  UPDATE - we are the interrupt interrupting
2428          *           a current move.
2429          *  MOVED  - a reader on another CPU moved the next
2430          *           pointer to its reader page. Give up
2431          *           and try again.
2432          */
2433
2434         switch (type) {
2435         case RB_PAGE_HEAD:
2436                 /*
2437                  * We changed the head to UPDATE, thus
2438                  * it is our responsibility to update
2439                  * the counters.
2440                  */
2441                 local_add(entries, &cpu_buffer->overrun);
2442                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2443
2444                 /*
2445                  * The entries will be zeroed out when we move the
2446                  * tail page.
2447                  */
2448
2449                 /* still more to do */
2450                 break;
2451
2452         case RB_PAGE_UPDATE:
2453                 /*
2454                  * This is an interrupt that interrupt the
2455                  * previous update. Still more to do.
2456                  */
2457                 break;
2458         case RB_PAGE_NORMAL:
2459                 /*
2460                  * An interrupt came in before the update
2461                  * and processed this for us.
2462                  * Nothing left to do.
2463                  */
2464                 return 1;
2465         case RB_PAGE_MOVED:
2466                 /*
2467                  * The reader is on another CPU and just did
2468                  * a swap with our next_page.
2469                  * Try again.
2470                  */
2471                 return 1;
2472         default:
2473                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2474                 return -1;
2475         }
2476
2477         /*
2478          * Now that we are here, the old head pointer is
2479          * set to UPDATE. This will keep the reader from
2480          * swapping the head page with the reader page.
2481          * The reader (on another CPU) will spin till
2482          * we are finished.
2483          *
2484          * We just need to protect against interrupts
2485          * doing the job. We will set the next pointer
2486          * to HEAD. After that, we set the old pointer
2487          * to NORMAL, but only if it was HEAD before.
2488          * otherwise we are an interrupt, and only
2489          * want the outer most commit to reset it.
2490          */
2491         new_head = next_page;
2492         rb_inc_page(&new_head);
2493
2494         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2495                                     RB_PAGE_NORMAL);
2496
2497         /*
2498          * Valid returns are:
2499          *  HEAD   - an interrupt came in and already set it.
2500          *  NORMAL - One of two things:
2501          *            1) We really set it.
2502          *            2) A bunch of interrupts came in and moved
2503          *               the page forward again.
2504          */
2505         switch (ret) {
2506         case RB_PAGE_HEAD:
2507         case RB_PAGE_NORMAL:
2508                 /* OK */
2509                 break;
2510         default:
2511                 RB_WARN_ON(cpu_buffer, 1);
2512                 return -1;
2513         }
2514
2515         /*
2516          * It is possible that an interrupt came in,
2517          * set the head up, then more interrupts came in
2518          * and moved it again. When we get back here,
2519          * the page would have been set to NORMAL but we
2520          * just set it back to HEAD.
2521          *
2522          * How do you detect this? Well, if that happened
2523          * the tail page would have moved.
2524          */
2525         if (ret == RB_PAGE_NORMAL) {
2526                 struct buffer_page *buffer_tail_page;
2527
2528                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2529                 /*
2530                  * If the tail had moved passed next, then we need
2531                  * to reset the pointer.
2532                  */
2533                 if (buffer_tail_page != tail_page &&
2534                     buffer_tail_page != next_page)
2535                         rb_head_page_set_normal(cpu_buffer, new_head,
2536                                                 next_page,
2537                                                 RB_PAGE_HEAD);
2538         }
2539
2540         /*
2541          * If this was the outer most commit (the one that
2542          * changed the original pointer from HEAD to UPDATE),
2543          * then it is up to us to reset it to NORMAL.
2544          */
2545         if (type == RB_PAGE_HEAD) {
2546                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2547                                               tail_page,
2548                                               RB_PAGE_UPDATE);
2549                 if (RB_WARN_ON(cpu_buffer,
2550                                ret != RB_PAGE_UPDATE))
2551                         return -1;
2552         }
2553
2554         return 0;
2555 }
2556
2557 static inline void
2558 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2559               unsigned long tail, struct rb_event_info *info)
2560 {
2561         struct buffer_page *tail_page = info->tail_page;
2562         struct ring_buffer_event *event;
2563         unsigned long length = info->length;
2564
2565         /*
2566          * Only the event that crossed the page boundary
2567          * must fill the old tail_page with padding.
2568          */
2569         if (tail >= BUF_PAGE_SIZE) {
2570                 /*
2571                  * If the page was filled, then we still need
2572                  * to update the real_end. Reset it to zero
2573                  * and the reader will ignore it.
2574                  */
2575                 if (tail == BUF_PAGE_SIZE)
2576                         tail_page->real_end = 0;
2577
2578                 local_sub(length, &tail_page->write);
2579                 return;
2580         }
2581
2582         event = __rb_page_index(tail_page, tail);
2583
2584         /* account for padding bytes */
2585         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2586
2587         /*
2588          * Save the original length to the meta data.
2589          * This will be used by the reader to add lost event
2590          * counter.
2591          */
2592         tail_page->real_end = tail;
2593
2594         /*
2595          * If this event is bigger than the minimum size, then
2596          * we need to be careful that we don't subtract the
2597          * write counter enough to allow another writer to slip
2598          * in on this page.
2599          * We put in a discarded commit instead, to make sure
2600          * that this space is not used again.
2601          *
2602          * If we are less than the minimum size, we don't need to
2603          * worry about it.
2604          */
2605         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2606                 /* No room for any events */
2607
2608                 /* Mark the rest of the page with padding */
2609                 rb_event_set_padding(event);
2610
2611                 /* Set the write back to the previous setting */
2612                 local_sub(length, &tail_page->write);
2613                 return;
2614         }
2615
2616         /* Put in a discarded event */
2617         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2618         event->type_len = RINGBUF_TYPE_PADDING;
2619         /* time delta must be non zero */
2620         event->time_delta = 1;
2621
2622         /* Set write to end of buffer */
2623         length = (tail + length) - BUF_PAGE_SIZE;
2624         local_sub(length, &tail_page->write);
2625 }
2626
2627 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2628
2629 /*
2630  * This is the slow path, force gcc not to inline it.
2631  */
2632 static noinline struct ring_buffer_event *
2633 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2634              unsigned long tail, struct rb_event_info *info)
2635 {
2636         struct buffer_page *tail_page = info->tail_page;
2637         struct buffer_page *commit_page = cpu_buffer->commit_page;
2638         struct trace_buffer *buffer = cpu_buffer->buffer;
2639         struct buffer_page *next_page;
2640         int ret;
2641
2642         next_page = tail_page;
2643
2644         rb_inc_page(&next_page);
2645
2646         /*
2647          * If for some reason, we had an interrupt storm that made
2648          * it all the way around the buffer, bail, and warn
2649          * about it.
2650          */
2651         if (unlikely(next_page == commit_page)) {
2652                 local_inc(&cpu_buffer->commit_overrun);
2653                 goto out_reset;
2654         }
2655
2656         /*
2657          * This is where the fun begins!
2658          *
2659          * We are fighting against races between a reader that
2660          * could be on another CPU trying to swap its reader
2661          * page with the buffer head.
2662          *
2663          * We are also fighting against interrupts coming in and
2664          * moving the head or tail on us as well.
2665          *
2666          * If the next page is the head page then we have filled
2667          * the buffer, unless the commit page is still on the
2668          * reader page.
2669          */
2670         if (rb_is_head_page(next_page, &tail_page->list)) {
2671
2672                 /*
2673                  * If the commit is not on the reader page, then
2674                  * move the header page.
2675                  */
2676                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2677                         /*
2678                          * If we are not in overwrite mode,
2679                          * this is easy, just stop here.
2680                          */
2681                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2682                                 local_inc(&cpu_buffer->dropped_events);
2683                                 goto out_reset;
2684                         }
2685
2686                         ret = rb_handle_head_page(cpu_buffer,
2687                                                   tail_page,
2688                                                   next_page);
2689                         if (ret < 0)
2690                                 goto out_reset;
2691                         if (ret)
2692                                 goto out_again;
2693                 } else {
2694                         /*
2695                          * We need to be careful here too. The
2696                          * commit page could still be on the reader
2697                          * page. We could have a small buffer, and
2698                          * have filled up the buffer with events
2699                          * from interrupts and such, and wrapped.
2700                          *
2701                          * Note, if the tail page is also on the
2702                          * reader_page, we let it move out.
2703                          */
2704                         if (unlikely((cpu_buffer->commit_page !=
2705                                       cpu_buffer->tail_page) &&
2706                                      (cpu_buffer->commit_page ==
2707                                       cpu_buffer->reader_page))) {
2708                                 local_inc(&cpu_buffer->commit_overrun);
2709                                 goto out_reset;
2710                         }
2711                 }
2712         }
2713
2714         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2715
2716  out_again:
2717
2718         rb_reset_tail(cpu_buffer, tail, info);
2719
2720         /* Commit what we have for now. */
2721         rb_end_commit(cpu_buffer);
2722         /* rb_end_commit() decs committing */
2723         local_inc(&cpu_buffer->committing);
2724
2725         /* fail and let the caller try again */
2726         return ERR_PTR(-EAGAIN);
2727
2728  out_reset:
2729         /* reset write */
2730         rb_reset_tail(cpu_buffer, tail, info);
2731
2732         return NULL;
2733 }
2734
2735 /* Slow path */
2736 static struct ring_buffer_event *
2737 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2738 {
2739         if (abs)
2740                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2741         else
2742                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2743
2744         /* Not the first event on the page, or not delta? */
2745         if (abs || rb_event_index(event)) {
2746                 event->time_delta = delta & TS_MASK;
2747                 event->array[0] = delta >> TS_SHIFT;
2748         } else {
2749                 /* nope, just zero it */
2750                 event->time_delta = 0;
2751                 event->array[0] = 0;
2752         }
2753
2754         return skip_time_extend(event);
2755 }
2756
2757 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2758 static inline bool sched_clock_stable(void)
2759 {
2760         return true;
2761 }
2762 #endif
2763
2764 static void
2765 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2766                    struct rb_event_info *info)
2767 {
2768         u64 write_stamp;
2769
2770         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2771                   (unsigned long long)info->delta,
2772                   (unsigned long long)info->ts,
2773                   (unsigned long long)info->before,
2774                   (unsigned long long)info->after,
2775                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2776                   sched_clock_stable() ? "" :
2777                   "If you just came from a suspend/resume,\n"
2778                   "please switch to the trace global clock:\n"
2779                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2780                   "or add trace_clock=global to the kernel command line\n");
2781 }
2782
2783 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2784                                       struct ring_buffer_event **event,
2785                                       struct rb_event_info *info,
2786                                       u64 *delta,
2787                                       unsigned int *length)
2788 {
2789         bool abs = info->add_timestamp &
2790                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2791
2792         if (unlikely(info->delta > (1ULL << 59))) {
2793                 /*
2794                  * Some timers can use more than 59 bits, and when a timestamp
2795                  * is added to the buffer, it will lose those bits.
2796                  */
2797                 if (abs && (info->ts & TS_MSB)) {
2798                         info->delta &= ABS_TS_MASK;
2799
2800                 /* did the clock go backwards */
2801                 } else if (info->before == info->after && info->before > info->ts) {
2802                         /* not interrupted */
2803                         static int once;
2804
2805                         /*
2806                          * This is possible with a recalibrating of the TSC.
2807                          * Do not produce a call stack, but just report it.
2808                          */
2809                         if (!once) {
2810                                 once++;
2811                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2812                                         info->before, info->ts);
2813                         }
2814                 } else
2815                         rb_check_timestamp(cpu_buffer, info);
2816                 if (!abs)
2817                         info->delta = 0;
2818         }
2819         *event = rb_add_time_stamp(*event, info->delta, abs);
2820         *length -= RB_LEN_TIME_EXTEND;
2821         *delta = 0;
2822 }
2823
2824 /**
2825  * rb_update_event - update event type and data
2826  * @cpu_buffer: The per cpu buffer of the @event
2827  * @event: the event to update
2828  * @info: The info to update the @event with (contains length and delta)
2829  *
2830  * Update the type and data fields of the @event. The length
2831  * is the actual size that is written to the ring buffer,
2832  * and with this, we can determine what to place into the
2833  * data field.
2834  */
2835 static void
2836 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2837                 struct ring_buffer_event *event,
2838                 struct rb_event_info *info)
2839 {
2840         unsigned length = info->length;
2841         u64 delta = info->delta;
2842         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2843
2844         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2845                 cpu_buffer->event_stamp[nest] = info->ts;
2846
2847         /*
2848          * If we need to add a timestamp, then we
2849          * add it to the start of the reserved space.
2850          */
2851         if (unlikely(info->add_timestamp))
2852                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2853
2854         event->time_delta = delta;
2855         length -= RB_EVNT_HDR_SIZE;
2856         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2857                 event->type_len = 0;
2858                 event->array[0] = length;
2859         } else
2860                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2861 }
2862
2863 static unsigned rb_calculate_event_length(unsigned length)
2864 {
2865         struct ring_buffer_event event; /* Used only for sizeof array */
2866
2867         /* zero length can cause confusions */
2868         if (!length)
2869                 length++;
2870
2871         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2872                 length += sizeof(event.array[0]);
2873
2874         length += RB_EVNT_HDR_SIZE;
2875         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2876
2877         /*
2878          * In case the time delta is larger than the 27 bits for it
2879          * in the header, we need to add a timestamp. If another
2880          * event comes in when trying to discard this one to increase
2881          * the length, then the timestamp will be added in the allocated
2882          * space of this event. If length is bigger than the size needed
2883          * for the TIME_EXTEND, then padding has to be used. The events
2884          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2885          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2886          * As length is a multiple of 4, we only need to worry if it
2887          * is 12 (RB_LEN_TIME_EXTEND + 4).
2888          */
2889         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2890                 length += RB_ALIGNMENT;
2891
2892         return length;
2893 }
2894
2895 static u64 rb_time_delta(struct ring_buffer_event *event)
2896 {
2897         switch (event->type_len) {
2898         case RINGBUF_TYPE_PADDING:
2899                 return 0;
2900
2901         case RINGBUF_TYPE_TIME_EXTEND:
2902                 return rb_event_time_stamp(event);
2903
2904         case RINGBUF_TYPE_TIME_STAMP:
2905                 return 0;
2906
2907         case RINGBUF_TYPE_DATA:
2908                 return event->time_delta;
2909         default:
2910                 return 0;
2911         }
2912 }
2913
2914 static inline int
2915 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2916                   struct ring_buffer_event *event)
2917 {
2918         unsigned long new_index, old_index;
2919         struct buffer_page *bpage;
2920         unsigned long index;
2921         unsigned long addr;
2922         u64 write_stamp;
2923         u64 delta;
2924
2925         new_index = rb_event_index(event);
2926         old_index = new_index + rb_event_ts_length(event);
2927         addr = (unsigned long)event;
2928         addr &= PAGE_MASK;
2929
2930         bpage = READ_ONCE(cpu_buffer->tail_page);
2931
2932         delta = rb_time_delta(event);
2933
2934         if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2935                 return 0;
2936
2937         /* Make sure the write stamp is read before testing the location */
2938         barrier();
2939
2940         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2941                 unsigned long write_mask =
2942                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2943                 unsigned long event_length = rb_event_length(event);
2944
2945                 /* Something came in, can't discard */
2946                 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2947                                        write_stamp, write_stamp - delta))
2948                         return 0;
2949
2950                 /*
2951                  * It's possible that the event time delta is zero
2952                  * (has the same time stamp as the previous event)
2953                  * in which case write_stamp and before_stamp could
2954                  * be the same. In such a case, force before_stamp
2955                  * to be different than write_stamp. It doesn't
2956                  * matter what it is, as long as its different.
2957                  */
2958                 if (!delta)
2959                         rb_time_set(&cpu_buffer->before_stamp, 0);
2960
2961                 /*
2962                  * If an event were to come in now, it would see that the
2963                  * write_stamp and the before_stamp are different, and assume
2964                  * that this event just added itself before updating
2965                  * the write stamp. The interrupting event will fix the
2966                  * write stamp for us, and use the before stamp as its delta.
2967                  */
2968
2969                 /*
2970                  * This is on the tail page. It is possible that
2971                  * a write could come in and move the tail page
2972                  * and write to the next page. That is fine
2973                  * because we just shorten what is on this page.
2974                  */
2975                 old_index += write_mask;
2976                 new_index += write_mask;
2977                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2978                 if (index == old_index) {
2979                         /* update counters */
2980                         local_sub(event_length, &cpu_buffer->entries_bytes);
2981                         return 1;
2982                 }
2983         }
2984
2985         /* could not discard */
2986         return 0;
2987 }
2988
2989 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2990 {
2991         local_inc(&cpu_buffer->committing);
2992         local_inc(&cpu_buffer->commits);
2993 }
2994
2995 static __always_inline void
2996 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2997 {
2998         unsigned long max_count;
2999
3000         /*
3001          * We only race with interrupts and NMIs on this CPU.
3002          * If we own the commit event, then we can commit
3003          * all others that interrupted us, since the interruptions
3004          * are in stack format (they finish before they come
3005          * back to us). This allows us to do a simple loop to
3006          * assign the commit to the tail.
3007          */
3008  again:
3009         max_count = cpu_buffer->nr_pages * 100;
3010
3011         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3012                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3013                         return;
3014                 if (RB_WARN_ON(cpu_buffer,
3015                                rb_is_reader_page(cpu_buffer->tail_page)))
3016                         return;
3017                 local_set(&cpu_buffer->commit_page->page->commit,
3018                           rb_page_write(cpu_buffer->commit_page));
3019                 rb_inc_page(&cpu_buffer->commit_page);
3020                 /* add barrier to keep gcc from optimizing too much */
3021                 barrier();
3022         }
3023         while (rb_commit_index(cpu_buffer) !=
3024                rb_page_write(cpu_buffer->commit_page)) {
3025
3026                 local_set(&cpu_buffer->commit_page->page->commit,
3027                           rb_page_write(cpu_buffer->commit_page));
3028                 RB_WARN_ON(cpu_buffer,
3029                            local_read(&cpu_buffer->commit_page->page->commit) &
3030                            ~RB_WRITE_MASK);
3031                 barrier();
3032         }
3033
3034         /* again, keep gcc from optimizing */
3035         barrier();
3036
3037         /*
3038          * If an interrupt came in just after the first while loop
3039          * and pushed the tail page forward, we will be left with
3040          * a dangling commit that will never go forward.
3041          */
3042         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3043                 goto again;
3044 }
3045
3046 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3047 {
3048         unsigned long commits;
3049
3050         if (RB_WARN_ON(cpu_buffer,
3051                        !local_read(&cpu_buffer->committing)))
3052                 return;
3053
3054  again:
3055         commits = local_read(&cpu_buffer->commits);
3056         /* synchronize with interrupts */
3057         barrier();
3058         if (local_read(&cpu_buffer->committing) == 1)
3059                 rb_set_commit_to_write(cpu_buffer);
3060
3061         local_dec(&cpu_buffer->committing);
3062
3063         /* synchronize with interrupts */
3064         barrier();
3065
3066         /*
3067          * Need to account for interrupts coming in between the
3068          * updating of the commit page and the clearing of the
3069          * committing counter.
3070          */
3071         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3072             !local_read(&cpu_buffer->committing)) {
3073                 local_inc(&cpu_buffer->committing);
3074                 goto again;
3075         }
3076 }
3077
3078 static inline void rb_event_discard(struct ring_buffer_event *event)
3079 {
3080         if (extended_time(event))
3081                 event = skip_time_extend(event);
3082
3083         /* array[0] holds the actual length for the discarded event */
3084         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3085         event->type_len = RINGBUF_TYPE_PADDING;
3086         /* time delta must be non zero */
3087         if (!event->time_delta)
3088                 event->time_delta = 1;
3089 }
3090
3091 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
3092                       struct ring_buffer_event *event)
3093 {
3094         local_inc(&cpu_buffer->entries);
3095         rb_end_commit(cpu_buffer);
3096 }
3097
3098 static __always_inline void
3099 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3100 {
3101         size_t nr_pages;
3102         size_t dirty;
3103         size_t full;
3104
3105         if (buffer->irq_work.waiters_pending) {
3106                 buffer->irq_work.waiters_pending = false;
3107                 /* irq_work_queue() supplies it's own memory barriers */
3108                 irq_work_queue(&buffer->irq_work.work);
3109         }
3110
3111         if (cpu_buffer->irq_work.waiters_pending) {
3112                 cpu_buffer->irq_work.waiters_pending = false;
3113                 /* irq_work_queue() supplies it's own memory barriers */
3114                 irq_work_queue(&cpu_buffer->irq_work.work);
3115         }
3116
3117         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3118                 return;
3119
3120         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3121                 return;
3122
3123         if (!cpu_buffer->irq_work.full_waiters_pending)
3124                 return;
3125
3126         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3127
3128         full = cpu_buffer->shortest_full;
3129         nr_pages = cpu_buffer->nr_pages;
3130         dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
3131         if (full && nr_pages && (dirty * 100) <= full * nr_pages)
3132                 return;
3133
3134         cpu_buffer->irq_work.wakeup_full = true;
3135         cpu_buffer->irq_work.full_waiters_pending = false;
3136         /* irq_work_queue() supplies it's own memory barriers */
3137         irq_work_queue(&cpu_buffer->irq_work.work);
3138 }
3139
3140 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3141 # define do_ring_buffer_record_recursion()      \
3142         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3143 #else
3144 # define do_ring_buffer_record_recursion() do { } while (0)
3145 #endif
3146
3147 /*
3148  * The lock and unlock are done within a preempt disable section.
3149  * The current_context per_cpu variable can only be modified
3150  * by the current task between lock and unlock. But it can
3151  * be modified more than once via an interrupt. To pass this
3152  * information from the lock to the unlock without having to
3153  * access the 'in_interrupt()' functions again (which do show
3154  * a bit of overhead in something as critical as function tracing,
3155  * we use a bitmask trick.
3156  *
3157  *  bit 1 =  NMI context
3158  *  bit 2 =  IRQ context
3159  *  bit 3 =  SoftIRQ context
3160  *  bit 4 =  normal context.
3161  *
3162  * This works because this is the order of contexts that can
3163  * preempt other contexts. A SoftIRQ never preempts an IRQ
3164  * context.
3165  *
3166  * When the context is determined, the corresponding bit is
3167  * checked and set (if it was set, then a recursion of that context
3168  * happened).
3169  *
3170  * On unlock, we need to clear this bit. To do so, just subtract
3171  * 1 from the current_context and AND it to itself.
3172  *
3173  * (binary)
3174  *  101 - 1 = 100
3175  *  101 & 100 = 100 (clearing bit zero)
3176  *
3177  *  1010 - 1 = 1001
3178  *  1010 & 1001 = 1000 (clearing bit 1)
3179  *
3180  * The least significant bit can be cleared this way, and it
3181  * just so happens that it is the same bit corresponding to
3182  * the current context.
3183  *
3184  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3185  * is set when a recursion is detected at the current context, and if
3186  * the TRANSITION bit is already set, it will fail the recursion.
3187  * This is needed because there's a lag between the changing of
3188  * interrupt context and updating the preempt count. In this case,
3189  * a false positive will be found. To handle this, one extra recursion
3190  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3191  * bit is already set, then it is considered a recursion and the function
3192  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3193  *
3194  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3195  * to be cleared. Even if it wasn't the context that set it. That is,
3196  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3197  * is called before preempt_count() is updated, since the check will
3198  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3199  * NMI then comes in, it will set the NMI bit, but when the NMI code
3200  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3201  * and leave the NMI bit set. But this is fine, because the interrupt
3202  * code that set the TRANSITION bit will then clear the NMI bit when it
3203  * calls trace_recursive_unlock(). If another NMI comes in, it will
3204  * set the TRANSITION bit and continue.
3205  *
3206  * Note: The TRANSITION bit only handles a single transition between context.
3207  */
3208
3209 static __always_inline int
3210 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3211 {
3212         unsigned int val = cpu_buffer->current_context;
3213         int bit = interrupt_context_level();
3214
3215         bit = RB_CTX_NORMAL - bit;
3216
3217         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3218                 /*
3219                  * It is possible that this was called by transitioning
3220                  * between interrupt context, and preempt_count() has not
3221                  * been updated yet. In this case, use the TRANSITION bit.
3222                  */
3223                 bit = RB_CTX_TRANSITION;
3224                 if (val & (1 << (bit + cpu_buffer->nest))) {
3225                         do_ring_buffer_record_recursion();
3226                         return 1;
3227                 }
3228         }
3229
3230         val |= (1 << (bit + cpu_buffer->nest));
3231         cpu_buffer->current_context = val;
3232
3233         return 0;
3234 }
3235
3236 static __always_inline void
3237 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3238 {
3239         cpu_buffer->current_context &=
3240                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3241 }
3242
3243 /* The recursive locking above uses 5 bits */
3244 #define NESTED_BITS 5
3245
3246 /**
3247  * ring_buffer_nest_start - Allow to trace while nested
3248  * @buffer: The ring buffer to modify
3249  *
3250  * The ring buffer has a safety mechanism to prevent recursion.
3251  * But there may be a case where a trace needs to be done while
3252  * tracing something else. In this case, calling this function
3253  * will allow this function to nest within a currently active
3254  * ring_buffer_lock_reserve().
3255  *
3256  * Call this function before calling another ring_buffer_lock_reserve() and
3257  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3258  */
3259 void ring_buffer_nest_start(struct trace_buffer *buffer)
3260 {
3261         struct ring_buffer_per_cpu *cpu_buffer;
3262         int cpu;
3263
3264         /* Enabled by ring_buffer_nest_end() */
3265         preempt_disable_notrace();
3266         cpu = raw_smp_processor_id();
3267         cpu_buffer = buffer->buffers[cpu];
3268         /* This is the shift value for the above recursive locking */
3269         cpu_buffer->nest += NESTED_BITS;
3270 }
3271
3272 /**
3273  * ring_buffer_nest_end - Allow to trace while nested
3274  * @buffer: The ring buffer to modify
3275  *
3276  * Must be called after ring_buffer_nest_start() and after the
3277  * ring_buffer_unlock_commit().
3278  */
3279 void ring_buffer_nest_end(struct trace_buffer *buffer)
3280 {
3281         struct ring_buffer_per_cpu *cpu_buffer;
3282         int cpu;
3283
3284         /* disabled by ring_buffer_nest_start() */
3285         cpu = raw_smp_processor_id();
3286         cpu_buffer = buffer->buffers[cpu];
3287         /* This is the shift value for the above recursive locking */
3288         cpu_buffer->nest -= NESTED_BITS;
3289         preempt_enable_notrace();
3290 }
3291
3292 /**
3293  * ring_buffer_unlock_commit - commit a reserved
3294  * @buffer: The buffer to commit to
3295  * @event: The event pointer to commit.
3296  *
3297  * This commits the data to the ring buffer, and releases any locks held.
3298  *
3299  * Must be paired with ring_buffer_lock_reserve.
3300  */
3301 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3302                               struct ring_buffer_event *event)
3303 {
3304         struct ring_buffer_per_cpu *cpu_buffer;
3305         int cpu = raw_smp_processor_id();
3306
3307         cpu_buffer = buffer->buffers[cpu];
3308
3309         rb_commit(cpu_buffer, event);
3310
3311         rb_wakeups(buffer, cpu_buffer);
3312
3313         trace_recursive_unlock(cpu_buffer);
3314
3315         preempt_enable_notrace();
3316
3317         return 0;
3318 }
3319 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3320
3321 /* Special value to validate all deltas on a page. */
3322 #define CHECK_FULL_PAGE         1L
3323
3324 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3325 static void dump_buffer_page(struct buffer_data_page *bpage,
3326                              struct rb_event_info *info,
3327                              unsigned long tail)
3328 {
3329         struct ring_buffer_event *event;
3330         u64 ts, delta;
3331         int e;
3332
3333         ts = bpage->time_stamp;
3334         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3335
3336         for (e = 0; e < tail; e += rb_event_length(event)) {
3337
3338                 event = (struct ring_buffer_event *)(bpage->data + e);
3339
3340                 switch (event->type_len) {
3341
3342                 case RINGBUF_TYPE_TIME_EXTEND:
3343                         delta = rb_event_time_stamp(event);
3344                         ts += delta;
3345                         pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3346                         break;
3347
3348                 case RINGBUF_TYPE_TIME_STAMP:
3349                         delta = rb_event_time_stamp(event);
3350                         ts = rb_fix_abs_ts(delta, ts);
3351                         pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3352                         break;
3353
3354                 case RINGBUF_TYPE_PADDING:
3355                         ts += event->time_delta;
3356                         pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3357                         break;
3358
3359                 case RINGBUF_TYPE_DATA:
3360                         ts += event->time_delta;
3361                         pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3362                         break;
3363
3364                 default:
3365                         break;
3366                 }
3367         }
3368 }
3369
3370 static DEFINE_PER_CPU(atomic_t, checking);
3371 static atomic_t ts_dump;
3372
3373 /*
3374  * Check if the current event time stamp matches the deltas on
3375  * the buffer page.
3376  */
3377 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3378                          struct rb_event_info *info,
3379                          unsigned long tail)
3380 {
3381         struct ring_buffer_event *event;
3382         struct buffer_data_page *bpage;
3383         u64 ts, delta;
3384         bool full = false;
3385         int e;
3386
3387         bpage = info->tail_page->page;
3388
3389         if (tail == CHECK_FULL_PAGE) {
3390                 full = true;
3391                 tail = local_read(&bpage->commit);
3392         } else if (info->add_timestamp &
3393                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3394                 /* Ignore events with absolute time stamps */
3395                 return;
3396         }
3397
3398         /*
3399          * Do not check the first event (skip possible extends too).
3400          * Also do not check if previous events have not been committed.
3401          */
3402         if (tail <= 8 || tail > local_read(&bpage->commit))
3403                 return;
3404
3405         /*
3406          * If this interrupted another event, 
3407          */
3408         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3409                 goto out;
3410
3411         ts = bpage->time_stamp;
3412
3413         for (e = 0; e < tail; e += rb_event_length(event)) {
3414
3415                 event = (struct ring_buffer_event *)(bpage->data + e);
3416
3417                 switch (event->type_len) {
3418
3419                 case RINGBUF_TYPE_TIME_EXTEND:
3420                         delta = rb_event_time_stamp(event);
3421                         ts += delta;
3422                         break;
3423
3424                 case RINGBUF_TYPE_TIME_STAMP:
3425                         delta = rb_event_time_stamp(event);
3426                         ts = rb_fix_abs_ts(delta, ts);
3427                         break;
3428
3429                 case RINGBUF_TYPE_PADDING:
3430                         if (event->time_delta == 1)
3431                                 break;
3432                         fallthrough;
3433                 case RINGBUF_TYPE_DATA:
3434                         ts += event->time_delta;
3435                         break;
3436
3437                 default:
3438                         RB_WARN_ON(cpu_buffer, 1);
3439                 }
3440         }
3441         if ((full && ts > info->ts) ||
3442             (!full && ts + info->delta != info->ts)) {
3443                 /* If another report is happening, ignore this one */
3444                 if (atomic_inc_return(&ts_dump) != 1) {
3445                         atomic_dec(&ts_dump);
3446                         goto out;
3447                 }
3448                 atomic_inc(&cpu_buffer->record_disabled);
3449                 /* There's some cases in boot up that this can happen */
3450                 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3451                 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3452                         cpu_buffer->cpu,
3453                         ts + info->delta, info->ts, info->delta,
3454                         info->before, info->after,
3455                         full ? " (full)" : "");
3456                 dump_buffer_page(bpage, info, tail);
3457                 atomic_dec(&ts_dump);
3458                 /* Do not re-enable checking */
3459                 return;
3460         }
3461 out:
3462         atomic_dec(this_cpu_ptr(&checking));
3463 }
3464 #else
3465 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3466                          struct rb_event_info *info,
3467                          unsigned long tail)
3468 {
3469 }
3470 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3471
3472 static struct ring_buffer_event *
3473 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3474                   struct rb_event_info *info)
3475 {
3476         struct ring_buffer_event *event;
3477         struct buffer_page *tail_page;
3478         unsigned long tail, write, w;
3479         bool a_ok;
3480         bool b_ok;
3481
3482         /* Don't let the compiler play games with cpu_buffer->tail_page */
3483         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3484
3485  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3486         barrier();
3487         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3488         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3489         barrier();
3490         info->ts = rb_time_stamp(cpu_buffer->buffer);
3491
3492         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3493                 info->delta = info->ts;
3494         } else {
3495                 /*
3496                  * If interrupting an event time update, we may need an
3497                  * absolute timestamp.
3498                  * Don't bother if this is the start of a new page (w == 0).
3499                  */
3500                 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3501                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3502                         info->length += RB_LEN_TIME_EXTEND;
3503                 } else {
3504                         info->delta = info->ts - info->after;
3505                         if (unlikely(test_time_stamp(info->delta))) {
3506                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3507                                 info->length += RB_LEN_TIME_EXTEND;
3508                         }
3509                 }
3510         }
3511
3512  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3513
3514  /*C*/  write = local_add_return(info->length, &tail_page->write);
3515
3516         /* set write to only the index of the write */
3517         write &= RB_WRITE_MASK;
3518
3519         tail = write - info->length;
3520
3521         /* See if we shot pass the end of this buffer page */
3522         if (unlikely(write > BUF_PAGE_SIZE)) {
3523                 /* before and after may now different, fix it up*/
3524                 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3525                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3526                 if (a_ok && b_ok && info->before != info->after)
3527                         (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3528                                               info->before, info->after);
3529                 if (a_ok && b_ok)
3530                         check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3531                 return rb_move_tail(cpu_buffer, tail, info);
3532         }
3533
3534         if (likely(tail == w)) {
3535                 u64 save_before;
3536                 bool s_ok;
3537
3538                 /* Nothing interrupted us between A and C */
3539  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3540                 barrier();
3541  /*E*/          s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3542                 RB_WARN_ON(cpu_buffer, !s_ok);
3543                 if (likely(!(info->add_timestamp &
3544                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3545                         /* This did not interrupt any time update */
3546                         info->delta = info->ts - info->after;
3547                 else
3548                         /* Just use full timestamp for interrupting event */
3549                         info->delta = info->ts;
3550                 barrier();
3551                 check_buffer(cpu_buffer, info, tail);
3552                 if (unlikely(info->ts != save_before)) {
3553                         /* SLOW PATH - Interrupted between C and E */
3554
3555                         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3556                         RB_WARN_ON(cpu_buffer, !a_ok);
3557
3558                         /* Write stamp must only go forward */
3559                         if (save_before > info->after) {
3560                                 /*
3561                                  * We do not care about the result, only that
3562                                  * it gets updated atomically.
3563                                  */
3564                                 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3565                                                       info->after, save_before);
3566                         }
3567                 }
3568         } else {
3569                 u64 ts;
3570                 /* SLOW PATH - Interrupted between A and C */
3571                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3572                 /* Was interrupted before here, write_stamp must be valid */
3573                 RB_WARN_ON(cpu_buffer, !a_ok);
3574                 ts = rb_time_stamp(cpu_buffer->buffer);
3575                 barrier();
3576  /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3577                     info->after < ts &&
3578                     rb_time_cmpxchg(&cpu_buffer->write_stamp,
3579                                     info->after, ts)) {
3580                         /* Nothing came after this event between C and E */
3581                         info->delta = ts - info->after;
3582                 } else {
3583                         /*
3584                          * Interrupted between C and E:
3585                          * Lost the previous events time stamp. Just set the
3586                          * delta to zero, and this will be the same time as
3587                          * the event this event interrupted. And the events that
3588                          * came after this will still be correct (as they would
3589                          * have built their delta on the previous event.
3590                          */
3591                         info->delta = 0;
3592                 }
3593                 info->ts = ts;
3594                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3595         }
3596
3597         /*
3598          * If this is the first commit on the page, then it has the same
3599          * timestamp as the page itself.
3600          */
3601         if (unlikely(!tail && !(info->add_timestamp &
3602                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3603                 info->delta = 0;
3604
3605         /* We reserved something on the buffer */
3606
3607         event = __rb_page_index(tail_page, tail);
3608         rb_update_event(cpu_buffer, event, info);
3609
3610         local_inc(&tail_page->entries);
3611
3612         /*
3613          * If this is the first commit on the page, then update
3614          * its timestamp.
3615          */
3616         if (unlikely(!tail))
3617                 tail_page->page->time_stamp = info->ts;
3618
3619         /* account for these added bytes */
3620         local_add(info->length, &cpu_buffer->entries_bytes);
3621
3622         return event;
3623 }
3624
3625 static __always_inline struct ring_buffer_event *
3626 rb_reserve_next_event(struct trace_buffer *buffer,
3627                       struct ring_buffer_per_cpu *cpu_buffer,
3628                       unsigned long length)
3629 {
3630         struct ring_buffer_event *event;
3631         struct rb_event_info info;
3632         int nr_loops = 0;
3633         int add_ts_default;
3634
3635         rb_start_commit(cpu_buffer);
3636         /* The commit page can not change after this */
3637
3638 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3639         /*
3640          * Due to the ability to swap a cpu buffer from a buffer
3641          * it is possible it was swapped before we committed.
3642          * (committing stops a swap). We check for it here and
3643          * if it happened, we have to fail the write.
3644          */
3645         barrier();
3646         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3647                 local_dec(&cpu_buffer->committing);
3648                 local_dec(&cpu_buffer->commits);
3649                 return NULL;
3650         }
3651 #endif
3652
3653         info.length = rb_calculate_event_length(length);
3654
3655         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3656                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3657                 info.length += RB_LEN_TIME_EXTEND;
3658         } else {
3659                 add_ts_default = RB_ADD_STAMP_NONE;
3660         }
3661
3662  again:
3663         info.add_timestamp = add_ts_default;
3664         info.delta = 0;
3665
3666         /*
3667          * We allow for interrupts to reenter here and do a trace.
3668          * If one does, it will cause this original code to loop
3669          * back here. Even with heavy interrupts happening, this
3670          * should only happen a few times in a row. If this happens
3671          * 1000 times in a row, there must be either an interrupt
3672          * storm or we have something buggy.
3673          * Bail!
3674          */
3675         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3676                 goto out_fail;
3677
3678         event = __rb_reserve_next(cpu_buffer, &info);
3679
3680         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3681                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3682                         info.length -= RB_LEN_TIME_EXTEND;
3683                 goto again;
3684         }
3685
3686         if (likely(event))
3687                 return event;
3688  out_fail:
3689         rb_end_commit(cpu_buffer);
3690         return NULL;
3691 }
3692
3693 /**
3694  * ring_buffer_lock_reserve - reserve a part of the buffer
3695  * @buffer: the ring buffer to reserve from
3696  * @length: the length of the data to reserve (excluding event header)
3697  *
3698  * Returns a reserved event on the ring buffer to copy directly to.
3699  * The user of this interface will need to get the body to write into
3700  * and can use the ring_buffer_event_data() interface.
3701  *
3702  * The length is the length of the data needed, not the event length
3703  * which also includes the event header.
3704  *
3705  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3706  * If NULL is returned, then nothing has been allocated or locked.
3707  */
3708 struct ring_buffer_event *
3709 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3710 {
3711         struct ring_buffer_per_cpu *cpu_buffer;
3712         struct ring_buffer_event *event;
3713         int cpu;
3714
3715         /* If we are tracing schedule, we don't want to recurse */
3716         preempt_disable_notrace();
3717
3718         if (unlikely(atomic_read(&buffer->record_disabled)))
3719                 goto out;
3720
3721         cpu = raw_smp_processor_id();
3722
3723         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3724                 goto out;
3725
3726         cpu_buffer = buffer->buffers[cpu];
3727
3728         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3729                 goto out;
3730
3731         if (unlikely(length > BUF_MAX_DATA_SIZE))
3732                 goto out;
3733
3734         if (unlikely(trace_recursive_lock(cpu_buffer)))
3735                 goto out;
3736
3737         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3738         if (!event)
3739                 goto out_unlock;
3740
3741         return event;
3742
3743  out_unlock:
3744         trace_recursive_unlock(cpu_buffer);
3745  out:
3746         preempt_enable_notrace();
3747         return NULL;
3748 }
3749 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3750
3751 /*
3752  * Decrement the entries to the page that an event is on.
3753  * The event does not even need to exist, only the pointer
3754  * to the page it is on. This may only be called before the commit
3755  * takes place.
3756  */
3757 static inline void
3758 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3759                    struct ring_buffer_event *event)
3760 {
3761         unsigned long addr = (unsigned long)event;
3762         struct buffer_page *bpage = cpu_buffer->commit_page;
3763         struct buffer_page *start;
3764
3765         addr &= PAGE_MASK;
3766
3767         /* Do the likely case first */
3768         if (likely(bpage->page == (void *)addr)) {
3769                 local_dec(&bpage->entries);
3770                 return;
3771         }
3772
3773         /*
3774          * Because the commit page may be on the reader page we
3775          * start with the next page and check the end loop there.
3776          */
3777         rb_inc_page(&bpage);
3778         start = bpage;
3779         do {
3780                 if (bpage->page == (void *)addr) {
3781                         local_dec(&bpage->entries);
3782                         return;
3783                 }
3784                 rb_inc_page(&bpage);
3785         } while (bpage != start);
3786
3787         /* commit not part of this buffer?? */
3788         RB_WARN_ON(cpu_buffer, 1);
3789 }
3790
3791 /**
3792  * ring_buffer_discard_commit - discard an event that has not been committed
3793  * @buffer: the ring buffer
3794  * @event: non committed event to discard
3795  *
3796  * Sometimes an event that is in the ring buffer needs to be ignored.
3797  * This function lets the user discard an event in the ring buffer
3798  * and then that event will not be read later.
3799  *
3800  * This function only works if it is called before the item has been
3801  * committed. It will try to free the event from the ring buffer
3802  * if another event has not been added behind it.
3803  *
3804  * If another event has been added behind it, it will set the event
3805  * up as discarded, and perform the commit.
3806  *
3807  * If this function is called, do not call ring_buffer_unlock_commit on
3808  * the event.
3809  */
3810 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3811                                 struct ring_buffer_event *event)
3812 {
3813         struct ring_buffer_per_cpu *cpu_buffer;
3814         int cpu;
3815
3816         /* The event is discarded regardless */
3817         rb_event_discard(event);
3818
3819         cpu = smp_processor_id();
3820         cpu_buffer = buffer->buffers[cpu];
3821
3822         /*
3823          * This must only be called if the event has not been
3824          * committed yet. Thus we can assume that preemption
3825          * is still disabled.
3826          */
3827         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3828
3829         rb_decrement_entry(cpu_buffer, event);
3830         if (rb_try_to_discard(cpu_buffer, event))
3831                 goto out;
3832
3833  out:
3834         rb_end_commit(cpu_buffer);
3835
3836         trace_recursive_unlock(cpu_buffer);
3837
3838         preempt_enable_notrace();
3839
3840 }
3841 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3842
3843 /**
3844  * ring_buffer_write - write data to the buffer without reserving
3845  * @buffer: The ring buffer to write to.
3846  * @length: The length of the data being written (excluding the event header)
3847  * @data: The data to write to the buffer.
3848  *
3849  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3850  * one function. If you already have the data to write to the buffer, it
3851  * may be easier to simply call this function.
3852  *
3853  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3854  * and not the length of the event which would hold the header.
3855  */
3856 int ring_buffer_write(struct trace_buffer *buffer,
3857                       unsigned long length,
3858                       void *data)
3859 {
3860         struct ring_buffer_per_cpu *cpu_buffer;
3861         struct ring_buffer_event *event;
3862         void *body;
3863         int ret = -EBUSY;
3864         int cpu;
3865
3866         preempt_disable_notrace();
3867
3868         if (atomic_read(&buffer->record_disabled))
3869                 goto out;
3870
3871         cpu = raw_smp_processor_id();
3872
3873         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3874                 goto out;
3875
3876         cpu_buffer = buffer->buffers[cpu];
3877
3878         if (atomic_read(&cpu_buffer->record_disabled))
3879                 goto out;
3880
3881         if (length > BUF_MAX_DATA_SIZE)
3882                 goto out;
3883
3884         if (unlikely(trace_recursive_lock(cpu_buffer)))
3885                 goto out;
3886
3887         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3888         if (!event)
3889                 goto out_unlock;
3890
3891         body = rb_event_data(event);
3892
3893         memcpy(body, data, length);
3894
3895         rb_commit(cpu_buffer, event);
3896
3897         rb_wakeups(buffer, cpu_buffer);
3898
3899         ret = 0;
3900
3901  out_unlock:
3902         trace_recursive_unlock(cpu_buffer);
3903
3904  out:
3905         preempt_enable_notrace();
3906
3907         return ret;
3908 }
3909 EXPORT_SYMBOL_GPL(ring_buffer_write);
3910
3911 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3912 {
3913         struct buffer_page *reader = cpu_buffer->reader_page;
3914         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3915         struct buffer_page *commit = cpu_buffer->commit_page;
3916
3917         /* In case of error, head will be NULL */
3918         if (unlikely(!head))
3919                 return true;
3920
3921         /* Reader should exhaust content in reader page */
3922         if (reader->read != rb_page_commit(reader))
3923                 return false;
3924
3925         /*
3926          * If writers are committing on the reader page, knowing all
3927          * committed content has been read, the ring buffer is empty.
3928          */
3929         if (commit == reader)
3930                 return true;
3931
3932         /*
3933          * If writers are committing on a page other than reader page
3934          * and head page, there should always be content to read.
3935          */
3936         if (commit != head)
3937                 return false;
3938
3939         /*
3940          * Writers are committing on the head page, we just need
3941          * to care about there're committed data, and the reader will
3942          * swap reader page with head page when it is to read data.
3943          */
3944         return rb_page_commit(commit) == 0;
3945 }
3946
3947 /**
3948  * ring_buffer_record_disable - stop all writes into the buffer
3949  * @buffer: The ring buffer to stop writes to.
3950  *
3951  * This prevents all writes to the buffer. Any attempt to write
3952  * to the buffer after this will fail and return NULL.
3953  *
3954  * The caller should call synchronize_rcu() after this.
3955  */
3956 void ring_buffer_record_disable(struct trace_buffer *buffer)
3957 {
3958         atomic_inc(&buffer->record_disabled);
3959 }
3960 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3961
3962 /**
3963  * ring_buffer_record_enable - enable writes to the buffer
3964  * @buffer: The ring buffer to enable writes
3965  *
3966  * Note, multiple disables will need the same number of enables
3967  * to truly enable the writing (much like preempt_disable).
3968  */
3969 void ring_buffer_record_enable(struct trace_buffer *buffer)
3970 {
3971         atomic_dec(&buffer->record_disabled);
3972 }
3973 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3974
3975 /**
3976  * ring_buffer_record_off - stop all writes into the buffer
3977  * @buffer: The ring buffer to stop writes to.
3978  *
3979  * This prevents all writes to the buffer. Any attempt to write
3980  * to the buffer after this will fail and return NULL.
3981  *
3982  * This is different than ring_buffer_record_disable() as
3983  * it works like an on/off switch, where as the disable() version
3984  * must be paired with a enable().
3985  */
3986 void ring_buffer_record_off(struct trace_buffer *buffer)
3987 {
3988         unsigned int rd;
3989         unsigned int new_rd;
3990
3991         do {
3992                 rd = atomic_read(&buffer->record_disabled);
3993                 new_rd = rd | RB_BUFFER_OFF;
3994         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3995 }
3996 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3997
3998 /**
3999  * ring_buffer_record_on - restart writes into the buffer
4000  * @buffer: The ring buffer to start writes to.
4001  *
4002  * This enables all writes to the buffer that was disabled by
4003  * ring_buffer_record_off().
4004  *
4005  * This is different than ring_buffer_record_enable() as
4006  * it works like an on/off switch, where as the enable() version
4007  * must be paired with a disable().
4008  */
4009 void ring_buffer_record_on(struct trace_buffer *buffer)
4010 {
4011         unsigned int rd;
4012         unsigned int new_rd;
4013
4014         do {
4015                 rd = atomic_read(&buffer->record_disabled);
4016                 new_rd = rd & ~RB_BUFFER_OFF;
4017         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4018 }
4019 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4020
4021 /**
4022  * ring_buffer_record_is_on - return true if the ring buffer can write
4023  * @buffer: The ring buffer to see if write is enabled
4024  *
4025  * Returns true if the ring buffer is in a state that it accepts writes.
4026  */
4027 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4028 {
4029         return !atomic_read(&buffer->record_disabled);
4030 }
4031
4032 /**
4033  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4034  * @buffer: The ring buffer to see if write is set enabled
4035  *
4036  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4037  * Note that this does NOT mean it is in a writable state.
4038  *
4039  * It may return true when the ring buffer has been disabled by
4040  * ring_buffer_record_disable(), as that is a temporary disabling of
4041  * the ring buffer.
4042  */
4043 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4044 {
4045         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4046 }
4047
4048 /**
4049  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4050  * @buffer: The ring buffer to stop writes to.
4051  * @cpu: The CPU buffer to stop
4052  *
4053  * This prevents all writes to the buffer. Any attempt to write
4054  * to the buffer after this will fail and return NULL.
4055  *
4056  * The caller should call synchronize_rcu() after this.
4057  */
4058 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4059 {
4060         struct ring_buffer_per_cpu *cpu_buffer;
4061
4062         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4063                 return;
4064
4065         cpu_buffer = buffer->buffers[cpu];
4066         atomic_inc(&cpu_buffer->record_disabled);
4067 }
4068 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4069
4070 /**
4071  * ring_buffer_record_enable_cpu - enable writes to the buffer
4072  * @buffer: The ring buffer to enable writes
4073  * @cpu: The CPU to enable.
4074  *
4075  * Note, multiple disables will need the same number of enables
4076  * to truly enable the writing (much like preempt_disable).
4077  */
4078 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4079 {
4080         struct ring_buffer_per_cpu *cpu_buffer;
4081
4082         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4083                 return;
4084
4085         cpu_buffer = buffer->buffers[cpu];
4086         atomic_dec(&cpu_buffer->record_disabled);
4087 }
4088 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4089
4090 /*
4091  * The total entries in the ring buffer is the running counter
4092  * of entries entered into the ring buffer, minus the sum of
4093  * the entries read from the ring buffer and the number of
4094  * entries that were overwritten.
4095  */
4096 static inline unsigned long
4097 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4098 {
4099         return local_read(&cpu_buffer->entries) -
4100                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4101 }
4102
4103 /**
4104  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4105  * @buffer: The ring buffer
4106  * @cpu: The per CPU buffer to read from.
4107  */
4108 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4109 {
4110         unsigned long flags;
4111         struct ring_buffer_per_cpu *cpu_buffer;
4112         struct buffer_page *bpage;
4113         u64 ret = 0;
4114
4115         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4116                 return 0;
4117
4118         cpu_buffer = buffer->buffers[cpu];
4119         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4120         /*
4121          * if the tail is on reader_page, oldest time stamp is on the reader
4122          * page
4123          */
4124         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4125                 bpage = cpu_buffer->reader_page;
4126         else
4127                 bpage = rb_set_head_page(cpu_buffer);
4128         if (bpage)
4129                 ret = bpage->page->time_stamp;
4130         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4131
4132         return ret;
4133 }
4134 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4135
4136 /**
4137  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4138  * @buffer: The ring buffer
4139  * @cpu: The per CPU buffer to read from.
4140  */
4141 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4142 {
4143         struct ring_buffer_per_cpu *cpu_buffer;
4144         unsigned long ret;
4145
4146         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4147                 return 0;
4148
4149         cpu_buffer = buffer->buffers[cpu];
4150         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4151
4152         return ret;
4153 }
4154 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4155
4156 /**
4157  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4158  * @buffer: The ring buffer
4159  * @cpu: The per CPU buffer to get the entries from.
4160  */
4161 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4162 {
4163         struct ring_buffer_per_cpu *cpu_buffer;
4164
4165         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4166                 return 0;
4167
4168         cpu_buffer = buffer->buffers[cpu];
4169
4170         return rb_num_of_entries(cpu_buffer);
4171 }
4172 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4173
4174 /**
4175  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4176  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4177  * @buffer: The ring buffer
4178  * @cpu: The per CPU buffer to get the number of overruns from
4179  */
4180 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4181 {
4182         struct ring_buffer_per_cpu *cpu_buffer;
4183         unsigned long ret;
4184
4185         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4186                 return 0;
4187
4188         cpu_buffer = buffer->buffers[cpu];
4189         ret = local_read(&cpu_buffer->overrun);
4190
4191         return ret;
4192 }
4193 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4194
4195 /**
4196  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4197  * commits failing due to the buffer wrapping around while there are uncommitted
4198  * events, such as during an interrupt storm.
4199  * @buffer: The ring buffer
4200  * @cpu: The per CPU buffer to get the number of overruns from
4201  */
4202 unsigned long
4203 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4204 {
4205         struct ring_buffer_per_cpu *cpu_buffer;
4206         unsigned long ret;
4207
4208         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4209                 return 0;
4210
4211         cpu_buffer = buffer->buffers[cpu];
4212         ret = local_read(&cpu_buffer->commit_overrun);
4213
4214         return ret;
4215 }
4216 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4217
4218 /**
4219  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4220  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4221  * @buffer: The ring buffer
4222  * @cpu: The per CPU buffer to get the number of overruns from
4223  */
4224 unsigned long
4225 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4226 {
4227         struct ring_buffer_per_cpu *cpu_buffer;
4228         unsigned long ret;
4229
4230         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4231                 return 0;
4232
4233         cpu_buffer = buffer->buffers[cpu];
4234         ret = local_read(&cpu_buffer->dropped_events);
4235
4236         return ret;
4237 }
4238 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4239
4240 /**
4241  * ring_buffer_read_events_cpu - get the number of events successfully read
4242  * @buffer: The ring buffer
4243  * @cpu: The per CPU buffer to get the number of events read
4244  */
4245 unsigned long
4246 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4247 {
4248         struct ring_buffer_per_cpu *cpu_buffer;
4249
4250         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4251                 return 0;
4252
4253         cpu_buffer = buffer->buffers[cpu];
4254         return cpu_buffer->read;
4255 }
4256 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4257
4258 /**
4259  * ring_buffer_entries - get the number of entries in a buffer
4260  * @buffer: The ring buffer
4261  *
4262  * Returns the total number of entries in the ring buffer
4263  * (all CPU entries)
4264  */
4265 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4266 {
4267         struct ring_buffer_per_cpu *cpu_buffer;
4268         unsigned long entries = 0;
4269         int cpu;
4270
4271         /* if you care about this being correct, lock the buffer */
4272         for_each_buffer_cpu(buffer, cpu) {
4273                 cpu_buffer = buffer->buffers[cpu];
4274                 entries += rb_num_of_entries(cpu_buffer);
4275         }
4276
4277         return entries;
4278 }
4279 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4280
4281 /**
4282  * ring_buffer_overruns - get the number of overruns in buffer
4283  * @buffer: The ring buffer
4284  *
4285  * Returns the total number of overruns in the ring buffer
4286  * (all CPU entries)
4287  */
4288 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4289 {
4290         struct ring_buffer_per_cpu *cpu_buffer;
4291         unsigned long overruns = 0;
4292         int cpu;
4293
4294         /* if you care about this being correct, lock the buffer */
4295         for_each_buffer_cpu(buffer, cpu) {
4296                 cpu_buffer = buffer->buffers[cpu];
4297                 overruns += local_read(&cpu_buffer->overrun);
4298         }
4299
4300         return overruns;
4301 }
4302 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4303
4304 static void rb_iter_reset(struct ring_buffer_iter *iter)
4305 {
4306         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4307
4308         /* Iterator usage is expected to have record disabled */
4309         iter->head_page = cpu_buffer->reader_page;
4310         iter->head = cpu_buffer->reader_page->read;
4311         iter->next_event = iter->head;
4312
4313         iter->cache_reader_page = iter->head_page;
4314         iter->cache_read = cpu_buffer->read;
4315
4316         if (iter->head) {
4317                 iter->read_stamp = cpu_buffer->read_stamp;
4318                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4319         } else {
4320                 iter->read_stamp = iter->head_page->page->time_stamp;
4321                 iter->page_stamp = iter->read_stamp;
4322         }
4323 }
4324
4325 /**
4326  * ring_buffer_iter_reset - reset an iterator
4327  * @iter: The iterator to reset
4328  *
4329  * Resets the iterator, so that it will start from the beginning
4330  * again.
4331  */
4332 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4333 {
4334         struct ring_buffer_per_cpu *cpu_buffer;
4335         unsigned long flags;
4336
4337         if (!iter)
4338                 return;
4339
4340         cpu_buffer = iter->cpu_buffer;
4341
4342         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4343         rb_iter_reset(iter);
4344         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4345 }
4346 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4347
4348 /**
4349  * ring_buffer_iter_empty - check if an iterator has no more to read
4350  * @iter: The iterator to check
4351  */
4352 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4353 {
4354         struct ring_buffer_per_cpu *cpu_buffer;
4355         struct buffer_page *reader;
4356         struct buffer_page *head_page;
4357         struct buffer_page *commit_page;
4358         struct buffer_page *curr_commit_page;
4359         unsigned commit;
4360         u64 curr_commit_ts;
4361         u64 commit_ts;
4362
4363         cpu_buffer = iter->cpu_buffer;
4364         reader = cpu_buffer->reader_page;
4365         head_page = cpu_buffer->head_page;
4366         commit_page = cpu_buffer->commit_page;
4367         commit_ts = commit_page->page->time_stamp;
4368
4369         /*
4370          * When the writer goes across pages, it issues a cmpxchg which
4371          * is a mb(), which will synchronize with the rmb here.
4372          * (see rb_tail_page_update())
4373          */
4374         smp_rmb();
4375         commit = rb_page_commit(commit_page);
4376         /* We want to make sure that the commit page doesn't change */
4377         smp_rmb();
4378
4379         /* Make sure commit page didn't change */
4380         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4381         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4382
4383         /* If the commit page changed, then there's more data */
4384         if (curr_commit_page != commit_page ||
4385             curr_commit_ts != commit_ts)
4386                 return 0;
4387
4388         /* Still racy, as it may return a false positive, but that's OK */
4389         return ((iter->head_page == commit_page && iter->head >= commit) ||
4390                 (iter->head_page == reader && commit_page == head_page &&
4391                  head_page->read == commit &&
4392                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4393 }
4394 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4395
4396 static void
4397 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4398                      struct ring_buffer_event *event)
4399 {
4400         u64 delta;
4401
4402         switch (event->type_len) {
4403         case RINGBUF_TYPE_PADDING:
4404                 return;
4405
4406         case RINGBUF_TYPE_TIME_EXTEND:
4407                 delta = rb_event_time_stamp(event);
4408                 cpu_buffer->read_stamp += delta;
4409                 return;
4410
4411         case RINGBUF_TYPE_TIME_STAMP:
4412                 delta = rb_event_time_stamp(event);
4413                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4414                 cpu_buffer->read_stamp = delta;
4415                 return;
4416
4417         case RINGBUF_TYPE_DATA:
4418                 cpu_buffer->read_stamp += event->time_delta;
4419                 return;
4420
4421         default:
4422                 RB_WARN_ON(cpu_buffer, 1);
4423         }
4424         return;
4425 }
4426
4427 static void
4428 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4429                           struct ring_buffer_event *event)
4430 {
4431         u64 delta;
4432
4433         switch (event->type_len) {
4434         case RINGBUF_TYPE_PADDING:
4435                 return;
4436
4437         case RINGBUF_TYPE_TIME_EXTEND:
4438                 delta = rb_event_time_stamp(event);
4439                 iter->read_stamp += delta;
4440                 return;
4441
4442         case RINGBUF_TYPE_TIME_STAMP:
4443                 delta = rb_event_time_stamp(event);
4444                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4445                 iter->read_stamp = delta;
4446                 return;
4447
4448         case RINGBUF_TYPE_DATA:
4449                 iter->read_stamp += event->time_delta;
4450                 return;
4451
4452         default:
4453                 RB_WARN_ON(iter->cpu_buffer, 1);
4454         }
4455         return;
4456 }
4457
4458 static struct buffer_page *
4459 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4460 {
4461         struct buffer_page *reader = NULL;
4462         unsigned long overwrite;
4463         unsigned long flags;
4464         int nr_loops = 0;
4465         int ret;
4466
4467         local_irq_save(flags);
4468         arch_spin_lock(&cpu_buffer->lock);
4469
4470  again:
4471         /*
4472          * This should normally only loop twice. But because the
4473          * start of the reader inserts an empty page, it causes
4474          * a case where we will loop three times. There should be no
4475          * reason to loop four times (that I know of).
4476          */
4477         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4478                 reader = NULL;
4479                 goto out;
4480         }
4481
4482         reader = cpu_buffer->reader_page;
4483
4484         /* If there's more to read, return this page */
4485         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4486                 goto out;
4487
4488         /* Never should we have an index greater than the size */
4489         if (RB_WARN_ON(cpu_buffer,
4490                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4491                 goto out;
4492
4493         /* check if we caught up to the tail */
4494         reader = NULL;
4495         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4496                 goto out;
4497
4498         /* Don't bother swapping if the ring buffer is empty */
4499         if (rb_num_of_entries(cpu_buffer) == 0)
4500                 goto out;
4501
4502         /*
4503          * Reset the reader page to size zero.
4504          */
4505         local_set(&cpu_buffer->reader_page->write, 0);
4506         local_set(&cpu_buffer->reader_page->entries, 0);
4507         local_set(&cpu_buffer->reader_page->page->commit, 0);
4508         cpu_buffer->reader_page->real_end = 0;
4509
4510  spin:
4511         /*
4512          * Splice the empty reader page into the list around the head.
4513          */
4514         reader = rb_set_head_page(cpu_buffer);
4515         if (!reader)
4516                 goto out;
4517         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4518         cpu_buffer->reader_page->list.prev = reader->list.prev;
4519
4520         /*
4521          * cpu_buffer->pages just needs to point to the buffer, it
4522          *  has no specific buffer page to point to. Lets move it out
4523          *  of our way so we don't accidentally swap it.
4524          */
4525         cpu_buffer->pages = reader->list.prev;
4526
4527         /* The reader page will be pointing to the new head */
4528         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4529
4530         /*
4531          * We want to make sure we read the overruns after we set up our
4532          * pointers to the next object. The writer side does a
4533          * cmpxchg to cross pages which acts as the mb on the writer
4534          * side. Note, the reader will constantly fail the swap
4535          * while the writer is updating the pointers, so this
4536          * guarantees that the overwrite recorded here is the one we
4537          * want to compare with the last_overrun.
4538          */
4539         smp_mb();
4540         overwrite = local_read(&(cpu_buffer->overrun));
4541
4542         /*
4543          * Here's the tricky part.
4544          *
4545          * We need to move the pointer past the header page.
4546          * But we can only do that if a writer is not currently
4547          * moving it. The page before the header page has the
4548          * flag bit '1' set if it is pointing to the page we want.
4549          * but if the writer is in the process of moving it
4550          * than it will be '2' or already moved '0'.
4551          */
4552
4553         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4554
4555         /*
4556          * If we did not convert it, then we must try again.
4557          */
4558         if (!ret)
4559                 goto spin;
4560
4561         /*
4562          * Yay! We succeeded in replacing the page.
4563          *
4564          * Now make the new head point back to the reader page.
4565          */
4566         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4567         rb_inc_page(&cpu_buffer->head_page);
4568
4569         local_inc(&cpu_buffer->pages_read);
4570
4571         /* Finally update the reader page to the new head */
4572         cpu_buffer->reader_page = reader;
4573         cpu_buffer->reader_page->read = 0;
4574
4575         if (overwrite != cpu_buffer->last_overrun) {
4576                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4577                 cpu_buffer->last_overrun = overwrite;
4578         }
4579
4580         goto again;
4581
4582  out:
4583         /* Update the read_stamp on the first event */
4584         if (reader && reader->read == 0)
4585                 cpu_buffer->read_stamp = reader->page->time_stamp;
4586
4587         arch_spin_unlock(&cpu_buffer->lock);
4588         local_irq_restore(flags);
4589
4590         return reader;
4591 }
4592
4593 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4594 {
4595         struct ring_buffer_event *event;
4596         struct buffer_page *reader;
4597         unsigned length;
4598
4599         reader = rb_get_reader_page(cpu_buffer);
4600
4601         /* This function should not be called when buffer is empty */
4602         if (RB_WARN_ON(cpu_buffer, !reader))
4603                 return;
4604
4605         event = rb_reader_event(cpu_buffer);
4606
4607         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4608                 cpu_buffer->read++;
4609
4610         rb_update_read_stamp(cpu_buffer, event);
4611
4612         length = rb_event_length(event);
4613         cpu_buffer->reader_page->read += length;
4614 }
4615
4616 static void rb_advance_iter(struct ring_buffer_iter *iter)
4617 {
4618         struct ring_buffer_per_cpu *cpu_buffer;
4619
4620         cpu_buffer = iter->cpu_buffer;
4621
4622         /* If head == next_event then we need to jump to the next event */
4623         if (iter->head == iter->next_event) {
4624                 /* If the event gets overwritten again, there's nothing to do */
4625                 if (rb_iter_head_event(iter) == NULL)
4626                         return;
4627         }
4628
4629         iter->head = iter->next_event;
4630
4631         /*
4632          * Check if we are at the end of the buffer.
4633          */
4634         if (iter->next_event >= rb_page_size(iter->head_page)) {
4635                 /* discarded commits can make the page empty */
4636                 if (iter->head_page == cpu_buffer->commit_page)
4637                         return;
4638                 rb_inc_iter(iter);
4639                 return;
4640         }
4641
4642         rb_update_iter_read_stamp(iter, iter->event);
4643 }
4644
4645 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4646 {
4647         return cpu_buffer->lost_events;
4648 }
4649
4650 static struct ring_buffer_event *
4651 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4652                unsigned long *lost_events)
4653 {
4654         struct ring_buffer_event *event;
4655         struct buffer_page *reader;
4656         int nr_loops = 0;
4657
4658         if (ts)
4659                 *ts = 0;
4660  again:
4661         /*
4662          * We repeat when a time extend is encountered.
4663          * Since the time extend is always attached to a data event,
4664          * we should never loop more than once.
4665          * (We never hit the following condition more than twice).
4666          */
4667         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4668                 return NULL;
4669
4670         reader = rb_get_reader_page(cpu_buffer);
4671         if (!reader)
4672                 return NULL;
4673
4674         event = rb_reader_event(cpu_buffer);
4675
4676         switch (event->type_len) {
4677         case RINGBUF_TYPE_PADDING:
4678                 if (rb_null_event(event))
4679                         RB_WARN_ON(cpu_buffer, 1);
4680                 /*
4681                  * Because the writer could be discarding every
4682                  * event it creates (which would probably be bad)
4683                  * if we were to go back to "again" then we may never
4684                  * catch up, and will trigger the warn on, or lock
4685                  * the box. Return the padding, and we will release
4686                  * the current locks, and try again.
4687                  */
4688                 return event;
4689
4690         case RINGBUF_TYPE_TIME_EXTEND:
4691                 /* Internal data, OK to advance */
4692                 rb_advance_reader(cpu_buffer);
4693                 goto again;
4694
4695         case RINGBUF_TYPE_TIME_STAMP:
4696                 if (ts) {
4697                         *ts = rb_event_time_stamp(event);
4698                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4699                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4700                                                          cpu_buffer->cpu, ts);
4701                 }
4702                 /* Internal data, OK to advance */
4703                 rb_advance_reader(cpu_buffer);
4704                 goto again;
4705
4706         case RINGBUF_TYPE_DATA:
4707                 if (ts && !(*ts)) {
4708                         *ts = cpu_buffer->read_stamp + event->time_delta;
4709                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4710                                                          cpu_buffer->cpu, ts);
4711                 }
4712                 if (lost_events)
4713                         *lost_events = rb_lost_events(cpu_buffer);
4714                 return event;
4715
4716         default:
4717                 RB_WARN_ON(cpu_buffer, 1);
4718         }
4719
4720         return NULL;
4721 }
4722 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4723
4724 static struct ring_buffer_event *
4725 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4726 {
4727         struct trace_buffer *buffer;
4728         struct ring_buffer_per_cpu *cpu_buffer;
4729         struct ring_buffer_event *event;
4730         int nr_loops = 0;
4731
4732         if (ts)
4733                 *ts = 0;
4734
4735         cpu_buffer = iter->cpu_buffer;
4736         buffer = cpu_buffer->buffer;
4737
4738         /*
4739          * Check if someone performed a consuming read to
4740          * the buffer. A consuming read invalidates the iterator
4741          * and we need to reset the iterator in this case.
4742          */
4743         if (unlikely(iter->cache_read != cpu_buffer->read ||
4744                      iter->cache_reader_page != cpu_buffer->reader_page))
4745                 rb_iter_reset(iter);
4746
4747  again:
4748         if (ring_buffer_iter_empty(iter))
4749                 return NULL;
4750
4751         /*
4752          * As the writer can mess with what the iterator is trying
4753          * to read, just give up if we fail to get an event after
4754          * three tries. The iterator is not as reliable when reading
4755          * the ring buffer with an active write as the consumer is.
4756          * Do not warn if the three failures is reached.
4757          */
4758         if (++nr_loops > 3)
4759                 return NULL;
4760
4761         if (rb_per_cpu_empty(cpu_buffer))
4762                 return NULL;
4763
4764         if (iter->head >= rb_page_size(iter->head_page)) {
4765                 rb_inc_iter(iter);
4766                 goto again;
4767         }
4768
4769         event = rb_iter_head_event(iter);
4770         if (!event)
4771                 goto again;
4772
4773         switch (event->type_len) {
4774         case RINGBUF_TYPE_PADDING:
4775                 if (rb_null_event(event)) {
4776                         rb_inc_iter(iter);
4777                         goto again;
4778                 }
4779                 rb_advance_iter(iter);
4780                 return event;
4781
4782         case RINGBUF_TYPE_TIME_EXTEND:
4783                 /* Internal data, OK to advance */
4784                 rb_advance_iter(iter);
4785                 goto again;
4786
4787         case RINGBUF_TYPE_TIME_STAMP:
4788                 if (ts) {
4789                         *ts = rb_event_time_stamp(event);
4790                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4791                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4792                                                          cpu_buffer->cpu, ts);
4793                 }
4794                 /* Internal data, OK to advance */
4795                 rb_advance_iter(iter);
4796                 goto again;
4797
4798         case RINGBUF_TYPE_DATA:
4799                 if (ts && !(*ts)) {
4800                         *ts = iter->read_stamp + event->time_delta;
4801                         ring_buffer_normalize_time_stamp(buffer,
4802                                                          cpu_buffer->cpu, ts);
4803                 }
4804                 return event;
4805
4806         default:
4807                 RB_WARN_ON(cpu_buffer, 1);
4808         }
4809
4810         return NULL;
4811 }
4812 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4813
4814 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4815 {
4816         if (likely(!in_nmi())) {
4817                 raw_spin_lock(&cpu_buffer->reader_lock);
4818                 return true;
4819         }
4820
4821         /*
4822          * If an NMI die dumps out the content of the ring buffer
4823          * trylock must be used to prevent a deadlock if the NMI
4824          * preempted a task that holds the ring buffer locks. If
4825          * we get the lock then all is fine, if not, then continue
4826          * to do the read, but this can corrupt the ring buffer,
4827          * so it must be permanently disabled from future writes.
4828          * Reading from NMI is a oneshot deal.
4829          */
4830         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4831                 return true;
4832
4833         /* Continue without locking, but disable the ring buffer */
4834         atomic_inc(&cpu_buffer->record_disabled);
4835         return false;
4836 }
4837
4838 static inline void
4839 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4840 {
4841         if (likely(locked))
4842                 raw_spin_unlock(&cpu_buffer->reader_lock);
4843         return;
4844 }
4845
4846 /**
4847  * ring_buffer_peek - peek at the next event to be read
4848  * @buffer: The ring buffer to read
4849  * @cpu: The cpu to peak at
4850  * @ts: The timestamp counter of this event.
4851  * @lost_events: a variable to store if events were lost (may be NULL)
4852  *
4853  * This will return the event that will be read next, but does
4854  * not consume the data.
4855  */
4856 struct ring_buffer_event *
4857 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4858                  unsigned long *lost_events)
4859 {
4860         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4861         struct ring_buffer_event *event;
4862         unsigned long flags;
4863         bool dolock;
4864
4865         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4866                 return NULL;
4867
4868  again:
4869         local_irq_save(flags);
4870         dolock = rb_reader_lock(cpu_buffer);
4871         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4872         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4873                 rb_advance_reader(cpu_buffer);
4874         rb_reader_unlock(cpu_buffer, dolock);
4875         local_irq_restore(flags);
4876
4877         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4878                 goto again;
4879
4880         return event;
4881 }
4882
4883 /** ring_buffer_iter_dropped - report if there are dropped events
4884  * @iter: The ring buffer iterator
4885  *
4886  * Returns true if there was dropped events since the last peek.
4887  */
4888 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4889 {
4890         bool ret = iter->missed_events != 0;
4891
4892         iter->missed_events = 0;
4893         return ret;
4894 }
4895 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4896
4897 /**
4898  * ring_buffer_iter_peek - peek at the next event to be read
4899  * @iter: The ring buffer iterator
4900  * @ts: The timestamp counter of this event.
4901  *
4902  * This will return the event that will be read next, but does
4903  * not increment the iterator.
4904  */
4905 struct ring_buffer_event *
4906 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4907 {
4908         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4909         struct ring_buffer_event *event;
4910         unsigned long flags;
4911
4912  again:
4913         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4914         event = rb_iter_peek(iter, ts);
4915         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4916
4917         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4918                 goto again;
4919
4920         return event;
4921 }
4922
4923 /**
4924  * ring_buffer_consume - return an event and consume it
4925  * @buffer: The ring buffer to get the next event from
4926  * @cpu: the cpu to read the buffer from
4927  * @ts: a variable to store the timestamp (may be NULL)
4928  * @lost_events: a variable to store if events were lost (may be NULL)
4929  *
4930  * Returns the next event in the ring buffer, and that event is consumed.
4931  * Meaning, that sequential reads will keep returning a different event,
4932  * and eventually empty the ring buffer if the producer is slower.
4933  */
4934 struct ring_buffer_event *
4935 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4936                     unsigned long *lost_events)
4937 {
4938         struct ring_buffer_per_cpu *cpu_buffer;
4939         struct ring_buffer_event *event = NULL;
4940         unsigned long flags;
4941         bool dolock;
4942
4943  again:
4944         /* might be called in atomic */
4945         preempt_disable();
4946
4947         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4948                 goto out;
4949
4950         cpu_buffer = buffer->buffers[cpu];
4951         local_irq_save(flags);
4952         dolock = rb_reader_lock(cpu_buffer);
4953
4954         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4955         if (event) {
4956                 cpu_buffer->lost_events = 0;
4957                 rb_advance_reader(cpu_buffer);
4958         }
4959
4960         rb_reader_unlock(cpu_buffer, dolock);
4961         local_irq_restore(flags);
4962
4963  out:
4964         preempt_enable();
4965
4966         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4967                 goto again;
4968
4969         return event;
4970 }
4971 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4972
4973 /**
4974  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4975  * @buffer: The ring buffer to read from
4976  * @cpu: The cpu buffer to iterate over
4977  * @flags: gfp flags to use for memory allocation
4978  *
4979  * This performs the initial preparations necessary to iterate
4980  * through the buffer.  Memory is allocated, buffer recording
4981  * is disabled, and the iterator pointer is returned to the caller.
4982  *
4983  * Disabling buffer recording prevents the reading from being
4984  * corrupted. This is not a consuming read, so a producer is not
4985  * expected.
4986  *
4987  * After a sequence of ring_buffer_read_prepare calls, the user is
4988  * expected to make at least one call to ring_buffer_read_prepare_sync.
4989  * Afterwards, ring_buffer_read_start is invoked to get things going
4990  * for real.
4991  *
4992  * This overall must be paired with ring_buffer_read_finish.
4993  */
4994 struct ring_buffer_iter *
4995 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4996 {
4997         struct ring_buffer_per_cpu *cpu_buffer;
4998         struct ring_buffer_iter *iter;
4999
5000         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5001                 return NULL;
5002
5003         iter = kzalloc(sizeof(*iter), flags);
5004         if (!iter)
5005                 return NULL;
5006
5007         iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5008         if (!iter->event) {
5009                 kfree(iter);
5010                 return NULL;
5011         }
5012
5013         cpu_buffer = buffer->buffers[cpu];
5014
5015         iter->cpu_buffer = cpu_buffer;
5016
5017         atomic_inc(&cpu_buffer->resize_disabled);
5018
5019         return iter;
5020 }
5021 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5022
5023 /**
5024  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5025  *
5026  * All previously invoked ring_buffer_read_prepare calls to prepare
5027  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5028  * calls on those iterators are allowed.
5029  */
5030 void
5031 ring_buffer_read_prepare_sync(void)
5032 {
5033         synchronize_rcu();
5034 }
5035 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5036
5037 /**
5038  * ring_buffer_read_start - start a non consuming read of the buffer
5039  * @iter: The iterator returned by ring_buffer_read_prepare
5040  *
5041  * This finalizes the startup of an iteration through the buffer.
5042  * The iterator comes from a call to ring_buffer_read_prepare and
5043  * an intervening ring_buffer_read_prepare_sync must have been
5044  * performed.
5045  *
5046  * Must be paired with ring_buffer_read_finish.
5047  */
5048 void
5049 ring_buffer_read_start(struct ring_buffer_iter *iter)
5050 {
5051         struct ring_buffer_per_cpu *cpu_buffer;
5052         unsigned long flags;
5053
5054         if (!iter)
5055                 return;
5056
5057         cpu_buffer = iter->cpu_buffer;
5058
5059         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5060         arch_spin_lock(&cpu_buffer->lock);
5061         rb_iter_reset(iter);
5062         arch_spin_unlock(&cpu_buffer->lock);
5063         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5064 }
5065 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5066
5067 /**
5068  * ring_buffer_read_finish - finish reading the iterator of the buffer
5069  * @iter: The iterator retrieved by ring_buffer_start
5070  *
5071  * This re-enables the recording to the buffer, and frees the
5072  * iterator.
5073  */
5074 void
5075 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5076 {
5077         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5078         unsigned long flags;
5079
5080         /*
5081          * Ring buffer is disabled from recording, here's a good place
5082          * to check the integrity of the ring buffer.
5083          * Must prevent readers from trying to read, as the check
5084          * clears the HEAD page and readers require it.
5085          */
5086         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5087         rb_check_pages(cpu_buffer);
5088         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5089
5090         atomic_dec(&cpu_buffer->resize_disabled);
5091         kfree(iter->event);
5092         kfree(iter);
5093 }
5094 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5095
5096 /**
5097  * ring_buffer_iter_advance - advance the iterator to the next location
5098  * @iter: The ring buffer iterator
5099  *
5100  * Move the location of the iterator such that the next read will
5101  * be the next location of the iterator.
5102  */
5103 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5104 {
5105         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5106         unsigned long flags;
5107
5108         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5109
5110         rb_advance_iter(iter);
5111
5112         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5113 }
5114 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5115
5116 /**
5117  * ring_buffer_size - return the size of the ring buffer (in bytes)
5118  * @buffer: The ring buffer.
5119  * @cpu: The CPU to get ring buffer size from.
5120  */
5121 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5122 {
5123         /*
5124          * Earlier, this method returned
5125          *      BUF_PAGE_SIZE * buffer->nr_pages
5126          * Since the nr_pages field is now removed, we have converted this to
5127          * return the per cpu buffer value.
5128          */
5129         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5130                 return 0;
5131
5132         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5133 }
5134 EXPORT_SYMBOL_GPL(ring_buffer_size);
5135
5136 static void
5137 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5138 {
5139         rb_head_page_deactivate(cpu_buffer);
5140
5141         cpu_buffer->head_page
5142                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5143         local_set(&cpu_buffer->head_page->write, 0);
5144         local_set(&cpu_buffer->head_page->entries, 0);
5145         local_set(&cpu_buffer->head_page->page->commit, 0);
5146
5147         cpu_buffer->head_page->read = 0;
5148
5149         cpu_buffer->tail_page = cpu_buffer->head_page;
5150         cpu_buffer->commit_page = cpu_buffer->head_page;
5151
5152         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5153         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5154         local_set(&cpu_buffer->reader_page->write, 0);
5155         local_set(&cpu_buffer->reader_page->entries, 0);
5156         local_set(&cpu_buffer->reader_page->page->commit, 0);
5157         cpu_buffer->reader_page->read = 0;
5158
5159         local_set(&cpu_buffer->entries_bytes, 0);
5160         local_set(&cpu_buffer->overrun, 0);
5161         local_set(&cpu_buffer->commit_overrun, 0);
5162         local_set(&cpu_buffer->dropped_events, 0);
5163         local_set(&cpu_buffer->entries, 0);
5164         local_set(&cpu_buffer->committing, 0);
5165         local_set(&cpu_buffer->commits, 0);
5166         local_set(&cpu_buffer->pages_touched, 0);
5167         local_set(&cpu_buffer->pages_read, 0);
5168         cpu_buffer->last_pages_touch = 0;
5169         cpu_buffer->shortest_full = 0;
5170         cpu_buffer->read = 0;
5171         cpu_buffer->read_bytes = 0;
5172
5173         rb_time_set(&cpu_buffer->write_stamp, 0);
5174         rb_time_set(&cpu_buffer->before_stamp, 0);
5175
5176         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5177
5178         cpu_buffer->lost_events = 0;
5179         cpu_buffer->last_overrun = 0;
5180
5181         rb_head_page_activate(cpu_buffer);
5182 }
5183
5184 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5185 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5186 {
5187         unsigned long flags;
5188
5189         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5190
5191         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5192                 goto out;
5193
5194         arch_spin_lock(&cpu_buffer->lock);
5195
5196         rb_reset_cpu(cpu_buffer);
5197
5198         arch_spin_unlock(&cpu_buffer->lock);
5199
5200  out:
5201         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5202 }
5203
5204 /**
5205  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5206  * @buffer: The ring buffer to reset a per cpu buffer of
5207  * @cpu: The CPU buffer to be reset
5208  */
5209 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5210 {
5211         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5212
5213         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5214                 return;
5215
5216         /* prevent another thread from changing buffer sizes */
5217         mutex_lock(&buffer->mutex);
5218
5219         atomic_inc(&cpu_buffer->resize_disabled);
5220         atomic_inc(&cpu_buffer->record_disabled);
5221
5222         /* Make sure all commits have finished */
5223         synchronize_rcu();
5224
5225         reset_disabled_cpu_buffer(cpu_buffer);
5226
5227         atomic_dec(&cpu_buffer->record_disabled);
5228         atomic_dec(&cpu_buffer->resize_disabled);
5229
5230         mutex_unlock(&buffer->mutex);
5231 }
5232 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5233
5234 /**
5235  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5236  * @buffer: The ring buffer to reset a per cpu buffer of
5237  * @cpu: The CPU buffer to be reset
5238  */
5239 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5240 {
5241         struct ring_buffer_per_cpu *cpu_buffer;
5242         int cpu;
5243
5244         /* prevent another thread from changing buffer sizes */
5245         mutex_lock(&buffer->mutex);
5246
5247         for_each_online_buffer_cpu(buffer, cpu) {
5248                 cpu_buffer = buffer->buffers[cpu];
5249
5250                 atomic_inc(&cpu_buffer->resize_disabled);
5251                 atomic_inc(&cpu_buffer->record_disabled);
5252         }
5253
5254         /* Make sure all commits have finished */
5255         synchronize_rcu();
5256
5257         for_each_online_buffer_cpu(buffer, cpu) {
5258                 cpu_buffer = buffer->buffers[cpu];
5259
5260                 reset_disabled_cpu_buffer(cpu_buffer);
5261
5262                 atomic_dec(&cpu_buffer->record_disabled);
5263                 atomic_dec(&cpu_buffer->resize_disabled);
5264         }
5265
5266         mutex_unlock(&buffer->mutex);
5267 }
5268
5269 /**
5270  * ring_buffer_reset - reset a ring buffer
5271  * @buffer: The ring buffer to reset all cpu buffers
5272  */
5273 void ring_buffer_reset(struct trace_buffer *buffer)
5274 {
5275         struct ring_buffer_per_cpu *cpu_buffer;
5276         int cpu;
5277
5278         /* prevent another thread from changing buffer sizes */
5279         mutex_lock(&buffer->mutex);
5280
5281         for_each_buffer_cpu(buffer, cpu) {
5282                 cpu_buffer = buffer->buffers[cpu];
5283
5284                 atomic_inc(&cpu_buffer->resize_disabled);
5285                 atomic_inc(&cpu_buffer->record_disabled);
5286         }
5287
5288         /* Make sure all commits have finished */
5289         synchronize_rcu();
5290
5291         for_each_buffer_cpu(buffer, cpu) {
5292                 cpu_buffer = buffer->buffers[cpu];
5293
5294                 reset_disabled_cpu_buffer(cpu_buffer);
5295
5296                 atomic_dec(&cpu_buffer->record_disabled);
5297                 atomic_dec(&cpu_buffer->resize_disabled);
5298         }
5299
5300         mutex_unlock(&buffer->mutex);
5301 }
5302 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5303
5304 /**
5305  * rind_buffer_empty - is the ring buffer empty?
5306  * @buffer: The ring buffer to test
5307  */
5308 bool ring_buffer_empty(struct trace_buffer *buffer)
5309 {
5310         struct ring_buffer_per_cpu *cpu_buffer;
5311         unsigned long flags;
5312         bool dolock;
5313         int cpu;
5314         int ret;
5315
5316         /* yes this is racy, but if you don't like the race, lock the buffer */
5317         for_each_buffer_cpu(buffer, cpu) {
5318                 cpu_buffer = buffer->buffers[cpu];
5319                 local_irq_save(flags);
5320                 dolock = rb_reader_lock(cpu_buffer);
5321                 ret = rb_per_cpu_empty(cpu_buffer);
5322                 rb_reader_unlock(cpu_buffer, dolock);
5323                 local_irq_restore(flags);
5324
5325                 if (!ret)
5326                         return false;
5327         }
5328
5329         return true;
5330 }
5331 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5332
5333 /**
5334  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5335  * @buffer: The ring buffer
5336  * @cpu: The CPU buffer to test
5337  */
5338 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5339 {
5340         struct ring_buffer_per_cpu *cpu_buffer;
5341         unsigned long flags;
5342         bool dolock;
5343         int ret;
5344
5345         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5346                 return true;
5347
5348         cpu_buffer = buffer->buffers[cpu];
5349         local_irq_save(flags);
5350         dolock = rb_reader_lock(cpu_buffer);
5351         ret = rb_per_cpu_empty(cpu_buffer);
5352         rb_reader_unlock(cpu_buffer, dolock);
5353         local_irq_restore(flags);
5354
5355         return ret;
5356 }
5357 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5358
5359 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5360 /**
5361  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5362  * @buffer_a: One buffer to swap with
5363  * @buffer_b: The other buffer to swap with
5364  * @cpu: the CPU of the buffers to swap
5365  *
5366  * This function is useful for tracers that want to take a "snapshot"
5367  * of a CPU buffer and has another back up buffer lying around.
5368  * it is expected that the tracer handles the cpu buffer not being
5369  * used at the moment.
5370  */
5371 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5372                          struct trace_buffer *buffer_b, int cpu)
5373 {
5374         struct ring_buffer_per_cpu *cpu_buffer_a;
5375         struct ring_buffer_per_cpu *cpu_buffer_b;
5376         int ret = -EINVAL;
5377
5378         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5379             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5380                 goto out;
5381
5382         cpu_buffer_a = buffer_a->buffers[cpu];
5383         cpu_buffer_b = buffer_b->buffers[cpu];
5384
5385         /* At least make sure the two buffers are somewhat the same */
5386         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5387                 goto out;
5388
5389         ret = -EAGAIN;
5390
5391         if (atomic_read(&buffer_a->record_disabled))
5392                 goto out;
5393
5394         if (atomic_read(&buffer_b->record_disabled))
5395                 goto out;
5396
5397         if (atomic_read(&cpu_buffer_a->record_disabled))
5398                 goto out;
5399
5400         if (atomic_read(&cpu_buffer_b->record_disabled))
5401                 goto out;
5402
5403         /*
5404          * We can't do a synchronize_rcu here because this
5405          * function can be called in atomic context.
5406          * Normally this will be called from the same CPU as cpu.
5407          * If not it's up to the caller to protect this.
5408          */
5409         atomic_inc(&cpu_buffer_a->record_disabled);
5410         atomic_inc(&cpu_buffer_b->record_disabled);
5411
5412         ret = -EBUSY;
5413         if (local_read(&cpu_buffer_a->committing))
5414                 goto out_dec;
5415         if (local_read(&cpu_buffer_b->committing))
5416                 goto out_dec;
5417
5418         buffer_a->buffers[cpu] = cpu_buffer_b;
5419         buffer_b->buffers[cpu] = cpu_buffer_a;
5420
5421         cpu_buffer_b->buffer = buffer_a;
5422         cpu_buffer_a->buffer = buffer_b;
5423
5424         ret = 0;
5425
5426 out_dec:
5427         atomic_dec(&cpu_buffer_a->record_disabled);
5428         atomic_dec(&cpu_buffer_b->record_disabled);
5429 out:
5430         return ret;
5431 }
5432 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5433 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5434
5435 /**
5436  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5437  * @buffer: the buffer to allocate for.
5438  * @cpu: the cpu buffer to allocate.
5439  *
5440  * This function is used in conjunction with ring_buffer_read_page.
5441  * When reading a full page from the ring buffer, these functions
5442  * can be used to speed up the process. The calling function should
5443  * allocate a few pages first with this function. Then when it
5444  * needs to get pages from the ring buffer, it passes the result
5445  * of this function into ring_buffer_read_page, which will swap
5446  * the page that was allocated, with the read page of the buffer.
5447  *
5448  * Returns:
5449  *  The page allocated, or ERR_PTR
5450  */
5451 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5452 {
5453         struct ring_buffer_per_cpu *cpu_buffer;
5454         struct buffer_data_page *bpage = NULL;
5455         unsigned long flags;
5456         struct page *page;
5457
5458         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5459                 return ERR_PTR(-ENODEV);
5460
5461         cpu_buffer = buffer->buffers[cpu];
5462         local_irq_save(flags);
5463         arch_spin_lock(&cpu_buffer->lock);
5464
5465         if (cpu_buffer->free_page) {
5466                 bpage = cpu_buffer->free_page;
5467                 cpu_buffer->free_page = NULL;
5468         }
5469
5470         arch_spin_unlock(&cpu_buffer->lock);
5471         local_irq_restore(flags);
5472
5473         if (bpage)
5474                 goto out;
5475
5476         page = alloc_pages_node(cpu_to_node(cpu),
5477                                 GFP_KERNEL | __GFP_NORETRY, 0);
5478         if (!page)
5479                 return ERR_PTR(-ENOMEM);
5480
5481         bpage = page_address(page);
5482
5483  out:
5484         rb_init_page(bpage);
5485
5486         return bpage;
5487 }
5488 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5489
5490 /**
5491  * ring_buffer_free_read_page - free an allocated read page
5492  * @buffer: the buffer the page was allocate for
5493  * @cpu: the cpu buffer the page came from
5494  * @data: the page to free
5495  *
5496  * Free a page allocated from ring_buffer_alloc_read_page.
5497  */
5498 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5499 {
5500         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5501         struct buffer_data_page *bpage = data;
5502         struct page *page = virt_to_page(bpage);
5503         unsigned long flags;
5504
5505         /* If the page is still in use someplace else, we can't reuse it */
5506         if (page_ref_count(page) > 1)
5507                 goto out;
5508
5509         local_irq_save(flags);
5510         arch_spin_lock(&cpu_buffer->lock);
5511
5512         if (!cpu_buffer->free_page) {
5513                 cpu_buffer->free_page = bpage;
5514                 bpage = NULL;
5515         }
5516
5517         arch_spin_unlock(&cpu_buffer->lock);
5518         local_irq_restore(flags);
5519
5520  out:
5521         free_page((unsigned long)bpage);
5522 }
5523 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5524
5525 /**
5526  * ring_buffer_read_page - extract a page from the ring buffer
5527  * @buffer: buffer to extract from
5528  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5529  * @len: amount to extract
5530  * @cpu: the cpu of the buffer to extract
5531  * @full: should the extraction only happen when the page is full.
5532  *
5533  * This function will pull out a page from the ring buffer and consume it.
5534  * @data_page must be the address of the variable that was returned
5535  * from ring_buffer_alloc_read_page. This is because the page might be used
5536  * to swap with a page in the ring buffer.
5537  *
5538  * for example:
5539  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5540  *      if (IS_ERR(rpage))
5541  *              return PTR_ERR(rpage);
5542  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5543  *      if (ret >= 0)
5544  *              process_page(rpage, ret);
5545  *
5546  * When @full is set, the function will not return true unless
5547  * the writer is off the reader page.
5548  *
5549  * Note: it is up to the calling functions to handle sleeps and wakeups.
5550  *  The ring buffer can be used anywhere in the kernel and can not
5551  *  blindly call wake_up. The layer that uses the ring buffer must be
5552  *  responsible for that.
5553  *
5554  * Returns:
5555  *  >=0 if data has been transferred, returns the offset of consumed data.
5556  *  <0 if no data has been transferred.
5557  */
5558 int ring_buffer_read_page(struct trace_buffer *buffer,
5559                           void **data_page, size_t len, int cpu, int full)
5560 {
5561         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5562         struct ring_buffer_event *event;
5563         struct buffer_data_page *bpage;
5564         struct buffer_page *reader;
5565         unsigned long missed_events;
5566         unsigned long flags;
5567         unsigned int commit;
5568         unsigned int read;
5569         u64 save_timestamp;
5570         int ret = -1;
5571
5572         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5573                 goto out;
5574
5575         /*
5576          * If len is not big enough to hold the page header, then
5577          * we can not copy anything.
5578          */
5579         if (len <= BUF_PAGE_HDR_SIZE)
5580                 goto out;
5581
5582         len -= BUF_PAGE_HDR_SIZE;
5583
5584         if (!data_page)
5585                 goto out;
5586
5587         bpage = *data_page;
5588         if (!bpage)
5589                 goto out;
5590
5591         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5592
5593         reader = rb_get_reader_page(cpu_buffer);
5594         if (!reader)
5595                 goto out_unlock;
5596
5597         event = rb_reader_event(cpu_buffer);
5598
5599         read = reader->read;
5600         commit = rb_page_commit(reader);
5601
5602         /* Check if any events were dropped */
5603         missed_events = cpu_buffer->lost_events;
5604
5605         /*
5606          * If this page has been partially read or
5607          * if len is not big enough to read the rest of the page or
5608          * a writer is still on the page, then
5609          * we must copy the data from the page to the buffer.
5610          * Otherwise, we can simply swap the page with the one passed in.
5611          */
5612         if (read || (len < (commit - read)) ||
5613             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5614                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5615                 unsigned int rpos = read;
5616                 unsigned int pos = 0;
5617                 unsigned int size;
5618
5619                 if (full)
5620                         goto out_unlock;
5621
5622                 if (len > (commit - read))
5623                         len = (commit - read);
5624
5625                 /* Always keep the time extend and data together */
5626                 size = rb_event_ts_length(event);
5627
5628                 if (len < size)
5629                         goto out_unlock;
5630
5631                 /* save the current timestamp, since the user will need it */
5632                 save_timestamp = cpu_buffer->read_stamp;
5633
5634                 /* Need to copy one event at a time */
5635                 do {
5636                         /* We need the size of one event, because
5637                          * rb_advance_reader only advances by one event,
5638                          * whereas rb_event_ts_length may include the size of
5639                          * one or two events.
5640                          * We have already ensured there's enough space if this
5641                          * is a time extend. */
5642                         size = rb_event_length(event);
5643                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5644
5645                         len -= size;
5646
5647                         rb_advance_reader(cpu_buffer);
5648                         rpos = reader->read;
5649                         pos += size;
5650
5651                         if (rpos >= commit)
5652                                 break;
5653
5654                         event = rb_reader_event(cpu_buffer);
5655                         /* Always keep the time extend and data together */
5656                         size = rb_event_ts_length(event);
5657                 } while (len >= size);
5658
5659                 /* update bpage */
5660                 local_set(&bpage->commit, pos);
5661                 bpage->time_stamp = save_timestamp;
5662
5663                 /* we copied everything to the beginning */
5664                 read = 0;
5665         } else {
5666                 /* update the entry counter */
5667                 cpu_buffer->read += rb_page_entries(reader);
5668                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5669
5670                 /* swap the pages */
5671                 rb_init_page(bpage);
5672                 bpage = reader->page;
5673                 reader->page = *data_page;
5674                 local_set(&reader->write, 0);
5675                 local_set(&reader->entries, 0);
5676                 reader->read = 0;
5677                 *data_page = bpage;
5678
5679                 /*
5680                  * Use the real_end for the data size,
5681                  * This gives us a chance to store the lost events
5682                  * on the page.
5683                  */
5684                 if (reader->real_end)
5685                         local_set(&bpage->commit, reader->real_end);
5686         }
5687         ret = read;
5688
5689         cpu_buffer->lost_events = 0;
5690
5691         commit = local_read(&bpage->commit);
5692         /*
5693          * Set a flag in the commit field if we lost events
5694          */
5695         if (missed_events) {
5696                 /* If there is room at the end of the page to save the
5697                  * missed events, then record it there.
5698                  */
5699                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5700                         memcpy(&bpage->data[commit], &missed_events,
5701                                sizeof(missed_events));
5702                         local_add(RB_MISSED_STORED, &bpage->commit);
5703                         commit += sizeof(missed_events);
5704                 }
5705                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5706         }
5707
5708         /*
5709          * This page may be off to user land. Zero it out here.
5710          */
5711         if (commit < BUF_PAGE_SIZE)
5712                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5713
5714  out_unlock:
5715         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5716
5717  out:
5718         return ret;
5719 }
5720 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5721
5722 /*
5723  * We only allocate new buffers, never free them if the CPU goes down.
5724  * If we were to free the buffer, then the user would lose any trace that was in
5725  * the buffer.
5726  */
5727 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5728 {
5729         struct trace_buffer *buffer;
5730         long nr_pages_same;
5731         int cpu_i;
5732         unsigned long nr_pages;
5733
5734         buffer = container_of(node, struct trace_buffer, node);
5735         if (cpumask_test_cpu(cpu, buffer->cpumask))
5736                 return 0;
5737
5738         nr_pages = 0;
5739         nr_pages_same = 1;
5740         /* check if all cpu sizes are same */
5741         for_each_buffer_cpu(buffer, cpu_i) {
5742                 /* fill in the size from first enabled cpu */
5743                 if (nr_pages == 0)
5744                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5745                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5746                         nr_pages_same = 0;
5747                         break;
5748                 }
5749         }
5750         /* allocate minimum pages, user can later expand it */
5751         if (!nr_pages_same)
5752                 nr_pages = 2;
5753         buffer->buffers[cpu] =
5754                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5755         if (!buffer->buffers[cpu]) {
5756                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5757                      cpu);
5758                 return -ENOMEM;
5759         }
5760         smp_wmb();
5761         cpumask_set_cpu(cpu, buffer->cpumask);
5762         return 0;
5763 }
5764
5765 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5766 /*
5767  * This is a basic integrity check of the ring buffer.
5768  * Late in the boot cycle this test will run when configured in.
5769  * It will kick off a thread per CPU that will go into a loop
5770  * writing to the per cpu ring buffer various sizes of data.
5771  * Some of the data will be large items, some small.
5772  *
5773  * Another thread is created that goes into a spin, sending out
5774  * IPIs to the other CPUs to also write into the ring buffer.
5775  * this is to test the nesting ability of the buffer.
5776  *
5777  * Basic stats are recorded and reported. If something in the
5778  * ring buffer should happen that's not expected, a big warning
5779  * is displayed and all ring buffers are disabled.
5780  */
5781 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5782
5783 struct rb_test_data {
5784         struct trace_buffer *buffer;
5785         unsigned long           events;
5786         unsigned long           bytes_written;
5787         unsigned long           bytes_alloc;
5788         unsigned long           bytes_dropped;
5789         unsigned long           events_nested;
5790         unsigned long           bytes_written_nested;
5791         unsigned long           bytes_alloc_nested;
5792         unsigned long           bytes_dropped_nested;
5793         int                     min_size_nested;
5794         int                     max_size_nested;
5795         int                     max_size;
5796         int                     min_size;
5797         int                     cpu;
5798         int                     cnt;
5799 };
5800
5801 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5802
5803 /* 1 meg per cpu */
5804 #define RB_TEST_BUFFER_SIZE     1048576
5805
5806 static char rb_string[] __initdata =
5807         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5808         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5809         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5810
5811 static bool rb_test_started __initdata;
5812
5813 struct rb_item {
5814         int size;
5815         char str[];
5816 };
5817
5818 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5819 {
5820         struct ring_buffer_event *event;
5821         struct rb_item *item;
5822         bool started;
5823         int event_len;
5824         int size;
5825         int len;
5826         int cnt;
5827
5828         /* Have nested writes different that what is written */
5829         cnt = data->cnt + (nested ? 27 : 0);
5830
5831         /* Multiply cnt by ~e, to make some unique increment */
5832         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5833
5834         len = size + sizeof(struct rb_item);
5835
5836         started = rb_test_started;
5837         /* read rb_test_started before checking buffer enabled */
5838         smp_rmb();
5839
5840         event = ring_buffer_lock_reserve(data->buffer, len);
5841         if (!event) {
5842                 /* Ignore dropped events before test starts. */
5843                 if (started) {
5844                         if (nested)
5845                                 data->bytes_dropped += len;
5846                         else
5847                                 data->bytes_dropped_nested += len;
5848                 }
5849                 return len;
5850         }
5851
5852         event_len = ring_buffer_event_length(event);
5853
5854         if (RB_WARN_ON(data->buffer, event_len < len))
5855                 goto out;
5856
5857         item = ring_buffer_event_data(event);
5858         item->size = size;
5859         memcpy(item->str, rb_string, size);
5860
5861         if (nested) {
5862                 data->bytes_alloc_nested += event_len;
5863                 data->bytes_written_nested += len;
5864                 data->events_nested++;
5865                 if (!data->min_size_nested || len < data->min_size_nested)
5866                         data->min_size_nested = len;
5867                 if (len > data->max_size_nested)
5868                         data->max_size_nested = len;
5869         } else {
5870                 data->bytes_alloc += event_len;
5871                 data->bytes_written += len;
5872                 data->events++;
5873                 if (!data->min_size || len < data->min_size)
5874                         data->max_size = len;
5875                 if (len > data->max_size)
5876                         data->max_size = len;
5877         }
5878
5879  out:
5880         ring_buffer_unlock_commit(data->buffer, event);
5881
5882         return 0;
5883 }
5884
5885 static __init int rb_test(void *arg)
5886 {
5887         struct rb_test_data *data = arg;
5888
5889         while (!kthread_should_stop()) {
5890                 rb_write_something(data, false);
5891                 data->cnt++;
5892
5893                 set_current_state(TASK_INTERRUPTIBLE);
5894                 /* Now sleep between a min of 100-300us and a max of 1ms */
5895                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5896         }
5897
5898         return 0;
5899 }
5900
5901 static __init void rb_ipi(void *ignore)
5902 {
5903         struct rb_test_data *data;
5904         int cpu = smp_processor_id();
5905
5906         data = &rb_data[cpu];
5907         rb_write_something(data, true);
5908 }
5909
5910 static __init int rb_hammer_test(void *arg)
5911 {
5912         while (!kthread_should_stop()) {
5913
5914                 /* Send an IPI to all cpus to write data! */
5915                 smp_call_function(rb_ipi, NULL, 1);
5916                 /* No sleep, but for non preempt, let others run */
5917                 schedule();
5918         }
5919
5920         return 0;
5921 }
5922
5923 static __init int test_ringbuffer(void)
5924 {
5925         struct task_struct *rb_hammer;
5926         struct trace_buffer *buffer;
5927         int cpu;
5928         int ret = 0;
5929
5930         if (security_locked_down(LOCKDOWN_TRACEFS)) {
5931                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5932                 return 0;
5933         }
5934
5935         pr_info("Running ring buffer tests...\n");
5936
5937         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5938         if (WARN_ON(!buffer))
5939                 return 0;
5940
5941         /* Disable buffer so that threads can't write to it yet */
5942         ring_buffer_record_off(buffer);
5943
5944         for_each_online_cpu(cpu) {
5945                 rb_data[cpu].buffer = buffer;
5946                 rb_data[cpu].cpu = cpu;
5947                 rb_data[cpu].cnt = cpu;
5948                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
5949                                                      cpu, "rbtester/%u");
5950                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5951                         pr_cont("FAILED\n");
5952                         ret = PTR_ERR(rb_threads[cpu]);
5953                         goto out_free;
5954                 }
5955         }
5956
5957         /* Now create the rb hammer! */
5958         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5959         if (WARN_ON(IS_ERR(rb_hammer))) {
5960                 pr_cont("FAILED\n");
5961                 ret = PTR_ERR(rb_hammer);
5962                 goto out_free;
5963         }
5964
5965         ring_buffer_record_on(buffer);
5966         /*
5967          * Show buffer is enabled before setting rb_test_started.
5968          * Yes there's a small race window where events could be
5969          * dropped and the thread wont catch it. But when a ring
5970          * buffer gets enabled, there will always be some kind of
5971          * delay before other CPUs see it. Thus, we don't care about
5972          * those dropped events. We care about events dropped after
5973          * the threads see that the buffer is active.
5974          */
5975         smp_wmb();
5976         rb_test_started = true;
5977
5978         set_current_state(TASK_INTERRUPTIBLE);
5979         /* Just run for 10 seconds */;
5980         schedule_timeout(10 * HZ);
5981
5982         kthread_stop(rb_hammer);
5983
5984  out_free:
5985         for_each_online_cpu(cpu) {
5986                 if (!rb_threads[cpu])
5987                         break;
5988                 kthread_stop(rb_threads[cpu]);
5989         }
5990         if (ret) {
5991                 ring_buffer_free(buffer);
5992                 return ret;
5993         }
5994
5995         /* Report! */
5996         pr_info("finished\n");
5997         for_each_online_cpu(cpu) {
5998                 struct ring_buffer_event *event;
5999                 struct rb_test_data *data = &rb_data[cpu];
6000                 struct rb_item *item;
6001                 unsigned long total_events;
6002                 unsigned long total_dropped;
6003                 unsigned long total_written;
6004                 unsigned long total_alloc;
6005                 unsigned long total_read = 0;
6006                 unsigned long total_size = 0;
6007                 unsigned long total_len = 0;
6008                 unsigned long total_lost = 0;
6009                 unsigned long lost;
6010                 int big_event_size;
6011                 int small_event_size;
6012
6013                 ret = -1;
6014
6015                 total_events = data->events + data->events_nested;
6016                 total_written = data->bytes_written + data->bytes_written_nested;
6017                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6018                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6019
6020                 big_event_size = data->max_size + data->max_size_nested;
6021                 small_event_size = data->min_size + data->min_size_nested;
6022
6023                 pr_info("CPU %d:\n", cpu);
6024                 pr_info("              events:    %ld\n", total_events);
6025                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6026                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6027                 pr_info("       written bytes:    %ld\n", total_written);
6028                 pr_info("       biggest event:    %d\n", big_event_size);
6029                 pr_info("      smallest event:    %d\n", small_event_size);
6030
6031                 if (RB_WARN_ON(buffer, total_dropped))
6032                         break;
6033
6034                 ret = 0;
6035
6036                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6037                         total_lost += lost;
6038                         item = ring_buffer_event_data(event);
6039                         total_len += ring_buffer_event_length(event);
6040                         total_size += item->size + sizeof(struct rb_item);
6041                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6042                                 pr_info("FAILED!\n");
6043                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6044                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6045                                 RB_WARN_ON(buffer, 1);
6046                                 ret = -1;
6047                                 break;
6048                         }
6049                         total_read++;
6050                 }
6051                 if (ret)
6052                         break;
6053
6054                 ret = -1;
6055
6056                 pr_info("         read events:   %ld\n", total_read);
6057                 pr_info("         lost events:   %ld\n", total_lost);
6058                 pr_info("        total events:   %ld\n", total_lost + total_read);
6059                 pr_info("  recorded len bytes:   %ld\n", total_len);
6060                 pr_info(" recorded size bytes:   %ld\n", total_size);
6061                 if (total_lost) {
6062                         pr_info(" With dropped events, record len and size may not match\n"
6063                                 " alloced and written from above\n");
6064                 } else {
6065                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6066                                        total_size != total_written))
6067                                 break;
6068                 }
6069                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6070                         break;
6071
6072                 ret = 0;
6073         }
6074         if (!ret)
6075                 pr_info("Ring buffer PASSED!\n");
6076
6077         ring_buffer_free(buffer);
6078         return 0;
6079 }
6080
6081 late_initcall(test_ringbuffer);
6082 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */