GNU Linux-libre 4.9.314-gnu1
[releases.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>      /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF           (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT            4U
125 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT       0
130 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT       1
133 # define RB_ARCH_ALIGNMENT              8U
134 #endif
135
136 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142         RB_LEN_TIME_EXTEND = 8,
143         RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156         /* padding has a NULL time_delta */
157         event->type_len = RINGBUF_TYPE_PADDING;
158         event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164         unsigned length;
165
166         if (event->type_len)
167                 length = event->type_len * RB_ALIGNMENT;
168         else
169                 length = event->array[0];
170         return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181         switch (event->type_len) {
182         case RINGBUF_TYPE_PADDING:
183                 if (rb_null_event(event))
184                         /* undefined */
185                         return -1;
186                 return  event->array[0] + RB_EVNT_HDR_SIZE;
187
188         case RINGBUF_TYPE_TIME_EXTEND:
189                 return RB_LEN_TIME_EXTEND;
190
191         case RINGBUF_TYPE_TIME_STAMP:
192                 return RB_LEN_TIME_STAMP;
193
194         case RINGBUF_TYPE_DATA:
195                 return rb_event_data_length(event);
196         default:
197                 BUG();
198         }
199         /* not hit */
200         return 0;
201 }
202
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210         unsigned len = 0;
211
212         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213                 /* time extends include the data event after it */
214                 len = RB_LEN_TIME_EXTEND;
215                 event = skip_time_extend(event);
216         }
217         return len + rb_event_length(event);
218 }
219
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235                 event = skip_time_extend(event);
236
237         length = rb_event_length(event);
238         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239                 return length;
240         length -= RB_EVNT_HDR_SIZE;
241         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243         return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252                 event = skip_time_extend(event);
253         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254         /* If length is in len field, then array[0] has the data */
255         if (event->type_len)
256                 return (void *)&event->array[0];
257         /* Otherwise length is in array[0] and array[1] has the data */
258         return (void *)&event->array[1];
259 }
260
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267         return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu)                \
272         for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT        27
275 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST   (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS        (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED        (1 << 30)
282
283 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
285 struct buffer_data_page {
286         u64              time_stamp;    /* page time stamp */
287         local_t          commit;        /* write committed index */
288         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
289 };
290
291 /*
292  * Note, the buffer_page list must be first. The buffer pages
293  * are allocated in cache lines, which means that each buffer
294  * page will be at the beginning of a cache line, and thus
295  * the least significant bits will be zero. We use this to
296  * add flags in the list struct pointers, to make the ring buffer
297  * lockless.
298  */
299 struct buffer_page {
300         struct list_head list;          /* list of buffer pages */
301         local_t          write;         /* index for next write */
302         unsigned         read;          /* index for next read */
303         local_t          entries;       /* entries on this page */
304         unsigned long    real_end;      /* real end of data */
305         struct buffer_data_page *page;  /* Actual data page */
306 };
307
308 /*
309  * The buffer page counters, write and entries, must be reset
310  * atomically when crossing page boundaries. To synchronize this
311  * update, two counters are inserted into the number. One is
312  * the actual counter for the write position or count on the page.
313  *
314  * The other is a counter of updaters. Before an update happens
315  * the update partition of the counter is incremented. This will
316  * allow the updater to update the counter atomically.
317  *
318  * The counter is 20 bits, and the state data is 12.
319  */
320 #define RB_WRITE_MASK           0xfffff
321 #define RB_WRITE_INTCNT         (1 << 20)
322
323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325         local_set(&bpage->commit, 0);
326 }
327
328 /**
329  * ring_buffer_page_len - the size of data on the page.
330  * @page: The page to read
331  *
332  * Returns the amount of data on the page, including buffer page header.
333  */
334 size_t ring_buffer_page_len(void *page)
335 {
336         struct buffer_data_page *bpage = page;
337
338         return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339                 + BUF_PAGE_HDR_SIZE;
340 }
341
342 /*
343  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344  * this issue out.
345  */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348         free_page((unsigned long)bpage->page);
349         kfree(bpage);
350 }
351
352 /*
353  * We need to fit the time_stamp delta into 27 bits.
354  */
355 static inline int test_time_stamp(u64 delta)
356 {
357         if (delta & TS_DELTA_TEST)
358                 return 1;
359         return 0;
360 }
361
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369         struct buffer_data_page field;
370
371         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372                          "offset:0;\tsize:%u;\tsigned:%u;\n",
373                          (unsigned int)sizeof(field.time_stamp),
374                          (unsigned int)is_signed_type(u64));
375
376         trace_seq_printf(s, "\tfield: local_t commit;\t"
377                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
378                          (unsigned int)offsetof(typeof(field), commit),
379                          (unsigned int)sizeof(field.commit),
380                          (unsigned int)is_signed_type(long));
381
382         trace_seq_printf(s, "\tfield: int overwrite;\t"
383                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
384                          (unsigned int)offsetof(typeof(field), commit),
385                          1,
386                          (unsigned int)is_signed_type(long));
387
388         trace_seq_printf(s, "\tfield: char data;\t"
389                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
390                          (unsigned int)offsetof(typeof(field), data),
391                          (unsigned int)BUF_PAGE_SIZE,
392                          (unsigned int)is_signed_type(char));
393
394         return !trace_seq_has_overflowed(s);
395 }
396
397 struct rb_irq_work {
398         struct irq_work                 work;
399         wait_queue_head_t               waiters;
400         wait_queue_head_t               full_waiters;
401         bool                            waiters_pending;
402         bool                            full_waiters_pending;
403         bool                            wakeup_full;
404 };
405
406 /*
407  * Structure to hold event state and handle nested events.
408  */
409 struct rb_event_info {
410         u64                     ts;
411         u64                     delta;
412         unsigned long           length;
413         struct buffer_page      *tail_page;
414         int                     add_timestamp;
415 };
416
417 /*
418  * Used for which event context the event is in.
419  *  TRANSITION = 0
420  *  NMI     = 1
421  *  IRQ     = 2
422  *  SOFTIRQ = 3
423  *  NORMAL  = 4
424  *
425  * See trace_recursive_lock() comment below for more details.
426  */
427 enum {
428         RB_CTX_TRANSITION,
429         RB_CTX_NMI,
430         RB_CTX_IRQ,
431         RB_CTX_SOFTIRQ,
432         RB_CTX_NORMAL,
433         RB_CTX_MAX
434 };
435
436 /*
437  * head_page == tail_page && head == tail then buffer is empty.
438  */
439 struct ring_buffer_per_cpu {
440         int                             cpu;
441         atomic_t                        record_disabled;
442         struct ring_buffer              *buffer;
443         raw_spinlock_t                  reader_lock;    /* serialize readers */
444         arch_spinlock_t                 lock;
445         struct lock_class_key           lock_key;
446         unsigned long                   nr_pages;
447         unsigned int                    current_context;
448         struct list_head                *pages;
449         struct buffer_page              *head_page;     /* read from head */
450         struct buffer_page              *tail_page;     /* write to tail */
451         struct buffer_page              *commit_page;   /* committed pages */
452         struct buffer_page              *reader_page;
453         unsigned long                   lost_events;
454         unsigned long                   last_overrun;
455         local_t                         entries_bytes;
456         local_t                         entries;
457         local_t                         overrun;
458         local_t                         commit_overrun;
459         local_t                         dropped_events;
460         local_t                         committing;
461         local_t                         commits;
462         unsigned long                   read;
463         unsigned long                   read_bytes;
464         u64                             write_stamp;
465         u64                             read_stamp;
466         /* ring buffer pages to update, > 0 to add, < 0 to remove */
467         long                            nr_pages_to_update;
468         struct list_head                new_pages; /* new pages to add */
469         struct work_struct              update_pages_work;
470         struct completion               update_done;
471
472         struct rb_irq_work              irq_work;
473 };
474
475 struct ring_buffer {
476         unsigned                        flags;
477         int                             cpus;
478         atomic_t                        record_disabled;
479         atomic_t                        resize_disabled;
480         cpumask_var_t                   cpumask;
481
482         struct lock_class_key           *reader_lock_key;
483
484         struct mutex                    mutex;
485
486         struct ring_buffer_per_cpu      **buffers;
487
488 #ifdef CONFIG_HOTPLUG_CPU
489         struct notifier_block           cpu_notify;
490 #endif
491         u64                             (*clock)(void);
492
493         struct rb_irq_work              irq_work;
494 };
495
496 struct ring_buffer_iter {
497         struct ring_buffer_per_cpu      *cpu_buffer;
498         unsigned long                   head;
499         struct buffer_page              *head_page;
500         struct buffer_page              *cache_reader_page;
501         unsigned long                   cache_read;
502         u64                             read_stamp;
503 };
504
505 /*
506  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
507  *
508  * Schedules a delayed work to wake up any task that is blocked on the
509  * ring buffer waiters queue.
510  */
511 static void rb_wake_up_waiters(struct irq_work *work)
512 {
513         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
514
515         wake_up_all(&rbwork->waiters);
516         if (rbwork->wakeup_full) {
517                 rbwork->wakeup_full = false;
518                 wake_up_all(&rbwork->full_waiters);
519         }
520 }
521
522 /**
523  * ring_buffer_wait - wait for input to the ring buffer
524  * @buffer: buffer to wait on
525  * @cpu: the cpu buffer to wait on
526  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
527  *
528  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
529  * as data is added to any of the @buffer's cpu buffers. Otherwise
530  * it will wait for data to be added to a specific cpu buffer.
531  */
532 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
533 {
534         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
535         DEFINE_WAIT(wait);
536         struct rb_irq_work *work;
537         int ret = 0;
538
539         /*
540          * Depending on what the caller is waiting for, either any
541          * data in any cpu buffer, or a specific buffer, put the
542          * caller on the appropriate wait queue.
543          */
544         if (cpu == RING_BUFFER_ALL_CPUS) {
545                 work = &buffer->irq_work;
546                 /* Full only makes sense on per cpu reads */
547                 full = false;
548         } else {
549                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
550                         return -ENODEV;
551                 cpu_buffer = buffer->buffers[cpu];
552                 work = &cpu_buffer->irq_work;
553         }
554
555
556         while (true) {
557                 if (full)
558                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
559                 else
560                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
561
562                 /*
563                  * The events can happen in critical sections where
564                  * checking a work queue can cause deadlocks.
565                  * After adding a task to the queue, this flag is set
566                  * only to notify events to try to wake up the queue
567                  * using irq_work.
568                  *
569                  * We don't clear it even if the buffer is no longer
570                  * empty. The flag only causes the next event to run
571                  * irq_work to do the work queue wake up. The worse
572                  * that can happen if we race with !trace_empty() is that
573                  * an event will cause an irq_work to try to wake up
574                  * an empty queue.
575                  *
576                  * There's no reason to protect this flag either, as
577                  * the work queue and irq_work logic will do the necessary
578                  * synchronization for the wake ups. The only thing
579                  * that is necessary is that the wake up happens after
580                  * a task has been queued. It's OK for spurious wake ups.
581                  */
582                 if (full)
583                         work->full_waiters_pending = true;
584                 else
585                         work->waiters_pending = true;
586
587                 if (signal_pending(current)) {
588                         ret = -EINTR;
589                         break;
590                 }
591
592                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
593                         break;
594
595                 if (cpu != RING_BUFFER_ALL_CPUS &&
596                     !ring_buffer_empty_cpu(buffer, cpu)) {
597                         unsigned long flags;
598                         bool pagebusy;
599
600                         if (!full)
601                                 break;
602
603                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
604                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
605                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
606
607                         if (!pagebusy)
608                                 break;
609                 }
610
611                 schedule();
612         }
613
614         if (full)
615                 finish_wait(&work->full_waiters, &wait);
616         else
617                 finish_wait(&work->waiters, &wait);
618
619         return ret;
620 }
621
622 /**
623  * ring_buffer_poll_wait - poll on buffer input
624  * @buffer: buffer to wait on
625  * @cpu: the cpu buffer to wait on
626  * @filp: the file descriptor
627  * @poll_table: The poll descriptor
628  *
629  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
630  * as data is added to any of the @buffer's cpu buffers. Otherwise
631  * it will wait for data to be added to a specific cpu buffer.
632  *
633  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
634  * zero otherwise.
635  */
636 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
637                           struct file *filp, poll_table *poll_table)
638 {
639         struct ring_buffer_per_cpu *cpu_buffer;
640         struct rb_irq_work *work;
641
642         if (cpu == RING_BUFFER_ALL_CPUS)
643                 work = &buffer->irq_work;
644         else {
645                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
646                         return -EINVAL;
647
648                 cpu_buffer = buffer->buffers[cpu];
649                 work = &cpu_buffer->irq_work;
650         }
651
652         poll_wait(filp, &work->waiters, poll_table);
653         work->waiters_pending = true;
654         /*
655          * There's a tight race between setting the waiters_pending and
656          * checking if the ring buffer is empty.  Once the waiters_pending bit
657          * is set, the next event will wake the task up, but we can get stuck
658          * if there's only a single event in.
659          *
660          * FIXME: Ideally, we need a memory barrier on the writer side as well,
661          * but adding a memory barrier to all events will cause too much of a
662          * performance hit in the fast path.  We only need a memory barrier when
663          * the buffer goes from empty to having content.  But as this race is
664          * extremely small, and it's not a problem if another event comes in, we
665          * will fix it later.
666          */
667         smp_mb();
668
669         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
670             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
671                 return POLLIN | POLLRDNORM;
672         return 0;
673 }
674
675 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
676 #define RB_WARN_ON(b, cond)                                             \
677         ({                                                              \
678                 int _____ret = unlikely(cond);                          \
679                 if (_____ret) {                                         \
680                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
681                                 struct ring_buffer_per_cpu *__b =       \
682                                         (void *)b;                      \
683                                 atomic_inc(&__b->buffer->record_disabled); \
684                         } else                                          \
685                                 atomic_inc(&b->record_disabled);        \
686                         WARN_ON(1);                                     \
687                 }                                                       \
688                 _____ret;                                               \
689         })
690
691 /* Up this if you want to test the TIME_EXTENTS and normalization */
692 #define DEBUG_SHIFT 0
693
694 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
695 {
696         /* shift to debug/test normalization and TIME_EXTENTS */
697         return buffer->clock() << DEBUG_SHIFT;
698 }
699
700 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
701 {
702         u64 time;
703
704         preempt_disable_notrace();
705         time = rb_time_stamp(buffer);
706         preempt_enable_notrace();
707
708         return time;
709 }
710 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
711
712 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
713                                       int cpu, u64 *ts)
714 {
715         /* Just stupid testing the normalize function and deltas */
716         *ts >>= DEBUG_SHIFT;
717 }
718 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
719
720 /*
721  * Making the ring buffer lockless makes things tricky.
722  * Although writes only happen on the CPU that they are on,
723  * and they only need to worry about interrupts. Reads can
724  * happen on any CPU.
725  *
726  * The reader page is always off the ring buffer, but when the
727  * reader finishes with a page, it needs to swap its page with
728  * a new one from the buffer. The reader needs to take from
729  * the head (writes go to the tail). But if a writer is in overwrite
730  * mode and wraps, it must push the head page forward.
731  *
732  * Here lies the problem.
733  *
734  * The reader must be careful to replace only the head page, and
735  * not another one. As described at the top of the file in the
736  * ASCII art, the reader sets its old page to point to the next
737  * page after head. It then sets the page after head to point to
738  * the old reader page. But if the writer moves the head page
739  * during this operation, the reader could end up with the tail.
740  *
741  * We use cmpxchg to help prevent this race. We also do something
742  * special with the page before head. We set the LSB to 1.
743  *
744  * When the writer must push the page forward, it will clear the
745  * bit that points to the head page, move the head, and then set
746  * the bit that points to the new head page.
747  *
748  * We also don't want an interrupt coming in and moving the head
749  * page on another writer. Thus we use the second LSB to catch
750  * that too. Thus:
751  *
752  * head->list->prev->next        bit 1          bit 0
753  *                              -------        -------
754  * Normal page                     0              0
755  * Points to head page             0              1
756  * New head page                   1              0
757  *
758  * Note we can not trust the prev pointer of the head page, because:
759  *
760  * +----+       +-----+        +-----+
761  * |    |------>|  T  |---X--->|  N  |
762  * |    |<------|     |        |     |
763  * +----+       +-----+        +-----+
764  *   ^                           ^ |
765  *   |          +-----+          | |
766  *   +----------|  R  |----------+ |
767  *              |     |<-----------+
768  *              +-----+
769  *
770  * Key:  ---X-->  HEAD flag set in pointer
771  *         T      Tail page
772  *         R      Reader page
773  *         N      Next page
774  *
775  * (see __rb_reserve_next() to see where this happens)
776  *
777  *  What the above shows is that the reader just swapped out
778  *  the reader page with a page in the buffer, but before it
779  *  could make the new header point back to the new page added
780  *  it was preempted by a writer. The writer moved forward onto
781  *  the new page added by the reader and is about to move forward
782  *  again.
783  *
784  *  You can see, it is legitimate for the previous pointer of
785  *  the head (or any page) not to point back to itself. But only
786  *  temporarially.
787  */
788
789 #define RB_PAGE_NORMAL          0UL
790 #define RB_PAGE_HEAD            1UL
791 #define RB_PAGE_UPDATE          2UL
792
793
794 #define RB_FLAG_MASK            3UL
795
796 /* PAGE_MOVED is not part of the mask */
797 #define RB_PAGE_MOVED           4UL
798
799 /*
800  * rb_list_head - remove any bit
801  */
802 static struct list_head *rb_list_head(struct list_head *list)
803 {
804         unsigned long val = (unsigned long)list;
805
806         return (struct list_head *)(val & ~RB_FLAG_MASK);
807 }
808
809 /*
810  * rb_is_head_page - test if the given page is the head page
811  *
812  * Because the reader may move the head_page pointer, we can
813  * not trust what the head page is (it may be pointing to
814  * the reader page). But if the next page is a header page,
815  * its flags will be non zero.
816  */
817 static inline int
818 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
819                 struct buffer_page *page, struct list_head *list)
820 {
821         unsigned long val;
822
823         val = (unsigned long)list->next;
824
825         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
826                 return RB_PAGE_MOVED;
827
828         return val & RB_FLAG_MASK;
829 }
830
831 /*
832  * rb_is_reader_page
833  *
834  * The unique thing about the reader page, is that, if the
835  * writer is ever on it, the previous pointer never points
836  * back to the reader page.
837  */
838 static bool rb_is_reader_page(struct buffer_page *page)
839 {
840         struct list_head *list = page->list.prev;
841
842         return rb_list_head(list->next) != &page->list;
843 }
844
845 /*
846  * rb_set_list_to_head - set a list_head to be pointing to head.
847  */
848 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
849                                 struct list_head *list)
850 {
851         unsigned long *ptr;
852
853         ptr = (unsigned long *)&list->next;
854         *ptr |= RB_PAGE_HEAD;
855         *ptr &= ~RB_PAGE_UPDATE;
856 }
857
858 /*
859  * rb_head_page_activate - sets up head page
860  */
861 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
862 {
863         struct buffer_page *head;
864
865         head = cpu_buffer->head_page;
866         if (!head)
867                 return;
868
869         /*
870          * Set the previous list pointer to have the HEAD flag.
871          */
872         rb_set_list_to_head(cpu_buffer, head->list.prev);
873 }
874
875 static void rb_list_head_clear(struct list_head *list)
876 {
877         unsigned long *ptr = (unsigned long *)&list->next;
878
879         *ptr &= ~RB_FLAG_MASK;
880 }
881
882 /*
883  * rb_head_page_dactivate - clears head page ptr (for free list)
884  */
885 static void
886 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
887 {
888         struct list_head *hd;
889
890         /* Go through the whole list and clear any pointers found. */
891         rb_list_head_clear(cpu_buffer->pages);
892
893         list_for_each(hd, cpu_buffer->pages)
894                 rb_list_head_clear(hd);
895 }
896
897 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
898                             struct buffer_page *head,
899                             struct buffer_page *prev,
900                             int old_flag, int new_flag)
901 {
902         struct list_head *list;
903         unsigned long val = (unsigned long)&head->list;
904         unsigned long ret;
905
906         list = &prev->list;
907
908         val &= ~RB_FLAG_MASK;
909
910         ret = cmpxchg((unsigned long *)&list->next,
911                       val | old_flag, val | new_flag);
912
913         /* check if the reader took the page */
914         if ((ret & ~RB_FLAG_MASK) != val)
915                 return RB_PAGE_MOVED;
916
917         return ret & RB_FLAG_MASK;
918 }
919
920 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
921                                    struct buffer_page *head,
922                                    struct buffer_page *prev,
923                                    int old_flag)
924 {
925         return rb_head_page_set(cpu_buffer, head, prev,
926                                 old_flag, RB_PAGE_UPDATE);
927 }
928
929 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
930                                  struct buffer_page *head,
931                                  struct buffer_page *prev,
932                                  int old_flag)
933 {
934         return rb_head_page_set(cpu_buffer, head, prev,
935                                 old_flag, RB_PAGE_HEAD);
936 }
937
938 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
939                                    struct buffer_page *head,
940                                    struct buffer_page *prev,
941                                    int old_flag)
942 {
943         return rb_head_page_set(cpu_buffer, head, prev,
944                                 old_flag, RB_PAGE_NORMAL);
945 }
946
947 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
948                                struct buffer_page **bpage)
949 {
950         struct list_head *p = rb_list_head((*bpage)->list.next);
951
952         *bpage = list_entry(p, struct buffer_page, list);
953 }
954
955 static struct buffer_page *
956 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
957 {
958         struct buffer_page *head;
959         struct buffer_page *page;
960         struct list_head *list;
961         int i;
962
963         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
964                 return NULL;
965
966         /* sanity check */
967         list = cpu_buffer->pages;
968         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
969                 return NULL;
970
971         page = head = cpu_buffer->head_page;
972         /*
973          * It is possible that the writer moves the header behind
974          * where we started, and we miss in one loop.
975          * A second loop should grab the header, but we'll do
976          * three loops just because I'm paranoid.
977          */
978         for (i = 0; i < 3; i++) {
979                 do {
980                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
981                                 cpu_buffer->head_page = page;
982                                 return page;
983                         }
984                         rb_inc_page(cpu_buffer, &page);
985                 } while (page != head);
986         }
987
988         RB_WARN_ON(cpu_buffer, 1);
989
990         return NULL;
991 }
992
993 static int rb_head_page_replace(struct buffer_page *old,
994                                 struct buffer_page *new)
995 {
996         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
997         unsigned long val;
998         unsigned long ret;
999
1000         val = *ptr & ~RB_FLAG_MASK;
1001         val |= RB_PAGE_HEAD;
1002
1003         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1004
1005         return ret == val;
1006 }
1007
1008 /*
1009  * rb_tail_page_update - move the tail page forward
1010  */
1011 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1012                                struct buffer_page *tail_page,
1013                                struct buffer_page *next_page)
1014 {
1015         unsigned long old_entries;
1016         unsigned long old_write;
1017
1018         /*
1019          * The tail page now needs to be moved forward.
1020          *
1021          * We need to reset the tail page, but without messing
1022          * with possible erasing of data brought in by interrupts
1023          * that have moved the tail page and are currently on it.
1024          *
1025          * We add a counter to the write field to denote this.
1026          */
1027         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1028         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1029
1030         /*
1031          * Just make sure we have seen our old_write and synchronize
1032          * with any interrupts that come in.
1033          */
1034         barrier();
1035
1036         /*
1037          * If the tail page is still the same as what we think
1038          * it is, then it is up to us to update the tail
1039          * pointer.
1040          */
1041         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1042                 /* Zero the write counter */
1043                 unsigned long val = old_write & ~RB_WRITE_MASK;
1044                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1045
1046                 /*
1047                  * This will only succeed if an interrupt did
1048                  * not come in and change it. In which case, we
1049                  * do not want to modify it.
1050                  *
1051                  * We add (void) to let the compiler know that we do not care
1052                  * about the return value of these functions. We use the
1053                  * cmpxchg to only update if an interrupt did not already
1054                  * do it for us. If the cmpxchg fails, we don't care.
1055                  */
1056                 (void)local_cmpxchg(&next_page->write, old_write, val);
1057                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1058
1059                 /*
1060                  * No need to worry about races with clearing out the commit.
1061                  * it only can increment when a commit takes place. But that
1062                  * only happens in the outer most nested commit.
1063                  */
1064                 local_set(&next_page->page->commit, 0);
1065
1066                 /* Again, either we update tail_page or an interrupt does */
1067                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1068         }
1069 }
1070
1071 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1072                           struct buffer_page *bpage)
1073 {
1074         unsigned long val = (unsigned long)bpage;
1075
1076         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1077                 return 1;
1078
1079         return 0;
1080 }
1081
1082 /**
1083  * rb_check_list - make sure a pointer to a list has the last bits zero
1084  */
1085 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1086                          struct list_head *list)
1087 {
1088         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1089                 return 1;
1090         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1091                 return 1;
1092         return 0;
1093 }
1094
1095 /**
1096  * rb_check_pages - integrity check of buffer pages
1097  * @cpu_buffer: CPU buffer with pages to test
1098  *
1099  * As a safety measure we check to make sure the data pages have not
1100  * been corrupted.
1101  */
1102 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1103 {
1104         struct list_head *head = cpu_buffer->pages;
1105         struct buffer_page *bpage, *tmp;
1106
1107         /* Reset the head page if it exists */
1108         if (cpu_buffer->head_page)
1109                 rb_set_head_page(cpu_buffer);
1110
1111         rb_head_page_deactivate(cpu_buffer);
1112
1113         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1114                 return -1;
1115         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1116                 return -1;
1117
1118         if (rb_check_list(cpu_buffer, head))
1119                 return -1;
1120
1121         list_for_each_entry_safe(bpage, tmp, head, list) {
1122                 if (RB_WARN_ON(cpu_buffer,
1123                                bpage->list.next->prev != &bpage->list))
1124                         return -1;
1125                 if (RB_WARN_ON(cpu_buffer,
1126                                bpage->list.prev->next != &bpage->list))
1127                         return -1;
1128                 if (rb_check_list(cpu_buffer, &bpage->list))
1129                         return -1;
1130         }
1131
1132         rb_head_page_activate(cpu_buffer);
1133
1134         return 0;
1135 }
1136
1137 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1138 {
1139         struct buffer_page *bpage, *tmp;
1140         long i;
1141
1142         for (i = 0; i < nr_pages; i++) {
1143                 struct page *page;
1144                 /*
1145                  * __GFP_NORETRY flag makes sure that the allocation fails
1146                  * gracefully without invoking oom-killer and the system is
1147                  * not destabilized.
1148                  */
1149                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1150                                     GFP_KERNEL | __GFP_NORETRY,
1151                                     cpu_to_node(cpu));
1152                 if (!bpage)
1153                         goto free_pages;
1154
1155                 list_add(&bpage->list, pages);
1156
1157                 page = alloc_pages_node(cpu_to_node(cpu),
1158                                         GFP_KERNEL | __GFP_NORETRY, 0);
1159                 if (!page)
1160                         goto free_pages;
1161                 bpage->page = page_address(page);
1162                 rb_init_page(bpage->page);
1163         }
1164
1165         return 0;
1166
1167 free_pages:
1168         list_for_each_entry_safe(bpage, tmp, pages, list) {
1169                 list_del_init(&bpage->list);
1170                 free_buffer_page(bpage);
1171         }
1172
1173         return -ENOMEM;
1174 }
1175
1176 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1177                              unsigned long nr_pages)
1178 {
1179         LIST_HEAD(pages);
1180
1181         WARN_ON(!nr_pages);
1182
1183         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1184                 return -ENOMEM;
1185
1186         /*
1187          * The ring buffer page list is a circular list that does not
1188          * start and end with a list head. All page list items point to
1189          * other pages.
1190          */
1191         cpu_buffer->pages = pages.next;
1192         list_del(&pages);
1193
1194         cpu_buffer->nr_pages = nr_pages;
1195
1196         rb_check_pages(cpu_buffer);
1197
1198         return 0;
1199 }
1200
1201 static struct ring_buffer_per_cpu *
1202 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1203 {
1204         struct ring_buffer_per_cpu *cpu_buffer;
1205         struct buffer_page *bpage;
1206         struct page *page;
1207         int ret;
1208
1209         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1210                                   GFP_KERNEL, cpu_to_node(cpu));
1211         if (!cpu_buffer)
1212                 return NULL;
1213
1214         cpu_buffer->cpu = cpu;
1215         cpu_buffer->buffer = buffer;
1216         raw_spin_lock_init(&cpu_buffer->reader_lock);
1217         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1218         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1219         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1220         init_completion(&cpu_buffer->update_done);
1221         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1222         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1223         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1224
1225         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1226                             GFP_KERNEL, cpu_to_node(cpu));
1227         if (!bpage)
1228                 goto fail_free_buffer;
1229
1230         rb_check_bpage(cpu_buffer, bpage);
1231
1232         cpu_buffer->reader_page = bpage;
1233         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1234         if (!page)
1235                 goto fail_free_reader;
1236         bpage->page = page_address(page);
1237         rb_init_page(bpage->page);
1238
1239         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1240         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1241
1242         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1243         if (ret < 0)
1244                 goto fail_free_reader;
1245
1246         cpu_buffer->head_page
1247                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1248         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1249
1250         rb_head_page_activate(cpu_buffer);
1251
1252         return cpu_buffer;
1253
1254  fail_free_reader:
1255         free_buffer_page(cpu_buffer->reader_page);
1256
1257  fail_free_buffer:
1258         kfree(cpu_buffer);
1259         return NULL;
1260 }
1261
1262 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1263 {
1264         struct list_head *head = cpu_buffer->pages;
1265         struct buffer_page *bpage, *tmp;
1266
1267         free_buffer_page(cpu_buffer->reader_page);
1268
1269         rb_head_page_deactivate(cpu_buffer);
1270
1271         if (head) {
1272                 list_for_each_entry_safe(bpage, tmp, head, list) {
1273                         list_del_init(&bpage->list);
1274                         free_buffer_page(bpage);
1275                 }
1276                 bpage = list_entry(head, struct buffer_page, list);
1277                 free_buffer_page(bpage);
1278         }
1279
1280         kfree(cpu_buffer);
1281 }
1282
1283 #ifdef CONFIG_HOTPLUG_CPU
1284 static int rb_cpu_notify(struct notifier_block *self,
1285                          unsigned long action, void *hcpu);
1286 #endif
1287
1288 /**
1289  * __ring_buffer_alloc - allocate a new ring_buffer
1290  * @size: the size in bytes per cpu that is needed.
1291  * @flags: attributes to set for the ring buffer.
1292  *
1293  * Currently the only flag that is available is the RB_FL_OVERWRITE
1294  * flag. This flag means that the buffer will overwrite old data
1295  * when the buffer wraps. If this flag is not set, the buffer will
1296  * drop data when the tail hits the head.
1297  */
1298 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1299                                         struct lock_class_key *key)
1300 {
1301         struct ring_buffer *buffer;
1302         long nr_pages;
1303         int bsize;
1304         int cpu;
1305
1306         /* keep it in its own cache line */
1307         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1308                          GFP_KERNEL);
1309         if (!buffer)
1310                 return NULL;
1311
1312         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1313                 goto fail_free_buffer;
1314
1315         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1316         buffer->flags = flags;
1317         buffer->clock = trace_clock_local;
1318         buffer->reader_lock_key = key;
1319
1320         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1321         init_waitqueue_head(&buffer->irq_work.waiters);
1322
1323         /* need at least two pages */
1324         if (nr_pages < 2)
1325                 nr_pages = 2;
1326
1327         /*
1328          * In case of non-hotplug cpu, if the ring-buffer is allocated
1329          * in early initcall, it will not be notified of secondary cpus.
1330          * In that off case, we need to allocate for all possible cpus.
1331          */
1332 #ifdef CONFIG_HOTPLUG_CPU
1333         cpu_notifier_register_begin();
1334         cpumask_copy(buffer->cpumask, cpu_online_mask);
1335 #else
1336         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1337 #endif
1338         buffer->cpus = nr_cpu_ids;
1339
1340         bsize = sizeof(void *) * nr_cpu_ids;
1341         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1342                                   GFP_KERNEL);
1343         if (!buffer->buffers)
1344                 goto fail_free_cpumask;
1345
1346         for_each_buffer_cpu(buffer, cpu) {
1347                 buffer->buffers[cpu] =
1348                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1349                 if (!buffer->buffers[cpu])
1350                         goto fail_free_buffers;
1351         }
1352
1353 #ifdef CONFIG_HOTPLUG_CPU
1354         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1355         buffer->cpu_notify.priority = 0;
1356         __register_cpu_notifier(&buffer->cpu_notify);
1357         cpu_notifier_register_done();
1358 #endif
1359
1360         mutex_init(&buffer->mutex);
1361
1362         return buffer;
1363
1364  fail_free_buffers:
1365         for_each_buffer_cpu(buffer, cpu) {
1366                 if (buffer->buffers[cpu])
1367                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1368         }
1369         kfree(buffer->buffers);
1370
1371  fail_free_cpumask:
1372         free_cpumask_var(buffer->cpumask);
1373 #ifdef CONFIG_HOTPLUG_CPU
1374         cpu_notifier_register_done();
1375 #endif
1376
1377  fail_free_buffer:
1378         kfree(buffer);
1379         return NULL;
1380 }
1381 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1382
1383 /**
1384  * ring_buffer_free - free a ring buffer.
1385  * @buffer: the buffer to free.
1386  */
1387 void
1388 ring_buffer_free(struct ring_buffer *buffer)
1389 {
1390         int cpu;
1391
1392 #ifdef CONFIG_HOTPLUG_CPU
1393         cpu_notifier_register_begin();
1394         __unregister_cpu_notifier(&buffer->cpu_notify);
1395 #endif
1396
1397         for_each_buffer_cpu(buffer, cpu)
1398                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1399
1400 #ifdef CONFIG_HOTPLUG_CPU
1401         cpu_notifier_register_done();
1402 #endif
1403
1404         kfree(buffer->buffers);
1405         free_cpumask_var(buffer->cpumask);
1406
1407         kfree(buffer);
1408 }
1409 EXPORT_SYMBOL_GPL(ring_buffer_free);
1410
1411 void ring_buffer_set_clock(struct ring_buffer *buffer,
1412                            u64 (*clock)(void))
1413 {
1414         buffer->clock = clock;
1415 }
1416
1417 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1418
1419 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1420 {
1421         return local_read(&bpage->entries) & RB_WRITE_MASK;
1422 }
1423
1424 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1425 {
1426         return local_read(&bpage->write) & RB_WRITE_MASK;
1427 }
1428
1429 static int
1430 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1431 {
1432         struct list_head *tail_page, *to_remove, *next_page;
1433         struct buffer_page *to_remove_page, *tmp_iter_page;
1434         struct buffer_page *last_page, *first_page;
1435         unsigned long nr_removed;
1436         unsigned long head_bit;
1437         int page_entries;
1438
1439         head_bit = 0;
1440
1441         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1442         atomic_inc(&cpu_buffer->record_disabled);
1443         /*
1444          * We don't race with the readers since we have acquired the reader
1445          * lock. We also don't race with writers after disabling recording.
1446          * This makes it easy to figure out the first and the last page to be
1447          * removed from the list. We unlink all the pages in between including
1448          * the first and last pages. This is done in a busy loop so that we
1449          * lose the least number of traces.
1450          * The pages are freed after we restart recording and unlock readers.
1451          */
1452         tail_page = &cpu_buffer->tail_page->list;
1453
1454         /*
1455          * tail page might be on reader page, we remove the next page
1456          * from the ring buffer
1457          */
1458         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1459                 tail_page = rb_list_head(tail_page->next);
1460         to_remove = tail_page;
1461
1462         /* start of pages to remove */
1463         first_page = list_entry(rb_list_head(to_remove->next),
1464                                 struct buffer_page, list);
1465
1466         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1467                 to_remove = rb_list_head(to_remove)->next;
1468                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1469         }
1470
1471         next_page = rb_list_head(to_remove)->next;
1472
1473         /*
1474          * Now we remove all pages between tail_page and next_page.
1475          * Make sure that we have head_bit value preserved for the
1476          * next page
1477          */
1478         tail_page->next = (struct list_head *)((unsigned long)next_page |
1479                                                 head_bit);
1480         next_page = rb_list_head(next_page);
1481         next_page->prev = tail_page;
1482
1483         /* make sure pages points to a valid page in the ring buffer */
1484         cpu_buffer->pages = next_page;
1485
1486         /* update head page */
1487         if (head_bit)
1488                 cpu_buffer->head_page = list_entry(next_page,
1489                                                 struct buffer_page, list);
1490
1491         /*
1492          * change read pointer to make sure any read iterators reset
1493          * themselves
1494          */
1495         cpu_buffer->read = 0;
1496
1497         /* pages are removed, resume tracing and then free the pages */
1498         atomic_dec(&cpu_buffer->record_disabled);
1499         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1500
1501         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1502
1503         /* last buffer page to remove */
1504         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1505                                 list);
1506         tmp_iter_page = first_page;
1507
1508         do {
1509                 cond_resched();
1510
1511                 to_remove_page = tmp_iter_page;
1512                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1513
1514                 /* update the counters */
1515                 page_entries = rb_page_entries(to_remove_page);
1516                 if (page_entries) {
1517                         /*
1518                          * If something was added to this page, it was full
1519                          * since it is not the tail page. So we deduct the
1520                          * bytes consumed in ring buffer from here.
1521                          * Increment overrun to account for the lost events.
1522                          */
1523                         local_add(page_entries, &cpu_buffer->overrun);
1524                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1525                 }
1526
1527                 /*
1528                  * We have already removed references to this list item, just
1529                  * free up the buffer_page and its page
1530                  */
1531                 free_buffer_page(to_remove_page);
1532                 nr_removed--;
1533
1534         } while (to_remove_page != last_page);
1535
1536         RB_WARN_ON(cpu_buffer, nr_removed);
1537
1538         return nr_removed == 0;
1539 }
1540
1541 static int
1542 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1543 {
1544         struct list_head *pages = &cpu_buffer->new_pages;
1545         int retries, success;
1546
1547         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1548         /*
1549          * We are holding the reader lock, so the reader page won't be swapped
1550          * in the ring buffer. Now we are racing with the writer trying to
1551          * move head page and the tail page.
1552          * We are going to adapt the reader page update process where:
1553          * 1. We first splice the start and end of list of new pages between
1554          *    the head page and its previous page.
1555          * 2. We cmpxchg the prev_page->next to point from head page to the
1556          *    start of new pages list.
1557          * 3. Finally, we update the head->prev to the end of new list.
1558          *
1559          * We will try this process 10 times, to make sure that we don't keep
1560          * spinning.
1561          */
1562         retries = 10;
1563         success = 0;
1564         while (retries--) {
1565                 struct list_head *head_page, *prev_page, *r;
1566                 struct list_head *last_page, *first_page;
1567                 struct list_head *head_page_with_bit;
1568
1569                 head_page = &rb_set_head_page(cpu_buffer)->list;
1570                 if (!head_page)
1571                         break;
1572                 prev_page = head_page->prev;
1573
1574                 first_page = pages->next;
1575                 last_page  = pages->prev;
1576
1577                 head_page_with_bit = (struct list_head *)
1578                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1579
1580                 last_page->next = head_page_with_bit;
1581                 first_page->prev = prev_page;
1582
1583                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1584
1585                 if (r == head_page_with_bit) {
1586                         /*
1587                          * yay, we replaced the page pointer to our new list,
1588                          * now, we just have to update to head page's prev
1589                          * pointer to point to end of list
1590                          */
1591                         head_page->prev = last_page;
1592                         success = 1;
1593                         break;
1594                 }
1595         }
1596
1597         if (success)
1598                 INIT_LIST_HEAD(pages);
1599         /*
1600          * If we weren't successful in adding in new pages, warn and stop
1601          * tracing
1602          */
1603         RB_WARN_ON(cpu_buffer, !success);
1604         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1605
1606         /* free pages if they weren't inserted */
1607         if (!success) {
1608                 struct buffer_page *bpage, *tmp;
1609                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1610                                          list) {
1611                         list_del_init(&bpage->list);
1612                         free_buffer_page(bpage);
1613                 }
1614         }
1615         return success;
1616 }
1617
1618 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1619 {
1620         int success;
1621
1622         if (cpu_buffer->nr_pages_to_update > 0)
1623                 success = rb_insert_pages(cpu_buffer);
1624         else
1625                 success = rb_remove_pages(cpu_buffer,
1626                                         -cpu_buffer->nr_pages_to_update);
1627
1628         if (success)
1629                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1630 }
1631
1632 static void update_pages_handler(struct work_struct *work)
1633 {
1634         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1635                         struct ring_buffer_per_cpu, update_pages_work);
1636         rb_update_pages(cpu_buffer);
1637         complete(&cpu_buffer->update_done);
1638 }
1639
1640 /**
1641  * ring_buffer_resize - resize the ring buffer
1642  * @buffer: the buffer to resize.
1643  * @size: the new size.
1644  * @cpu_id: the cpu buffer to resize
1645  *
1646  * Minimum size is 2 * BUF_PAGE_SIZE.
1647  *
1648  * Returns 0 on success and < 0 on failure.
1649  */
1650 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1651                         int cpu_id)
1652 {
1653         struct ring_buffer_per_cpu *cpu_buffer;
1654         unsigned long nr_pages;
1655         int cpu, err;
1656
1657         /*
1658          * Always succeed at resizing a non-existent buffer:
1659          */
1660         if (!buffer)
1661                 return 0;
1662
1663         /* Make sure the requested buffer exists */
1664         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1665             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1666                 return 0;
1667
1668         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1669
1670         /* we need a minimum of two pages */
1671         if (nr_pages < 2)
1672                 nr_pages = 2;
1673
1674         size = nr_pages * BUF_PAGE_SIZE;
1675
1676         /*
1677          * Don't succeed if resizing is disabled, as a reader might be
1678          * manipulating the ring buffer and is expecting a sane state while
1679          * this is true.
1680          */
1681         if (atomic_read(&buffer->resize_disabled))
1682                 return -EBUSY;
1683
1684         /* prevent another thread from changing buffer sizes */
1685         mutex_lock(&buffer->mutex);
1686
1687         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1688                 /* calculate the pages to update */
1689                 for_each_buffer_cpu(buffer, cpu) {
1690                         cpu_buffer = buffer->buffers[cpu];
1691
1692                         cpu_buffer->nr_pages_to_update = nr_pages -
1693                                                         cpu_buffer->nr_pages;
1694                         /*
1695                          * nothing more to do for removing pages or no update
1696                          */
1697                         if (cpu_buffer->nr_pages_to_update <= 0)
1698                                 continue;
1699                         /*
1700                          * to add pages, make sure all new pages can be
1701                          * allocated without receiving ENOMEM
1702                          */
1703                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1704                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1705                                                 &cpu_buffer->new_pages, cpu)) {
1706                                 /* not enough memory for new pages */
1707                                 err = -ENOMEM;
1708                                 goto out_err;
1709                         }
1710                 }
1711
1712                 get_online_cpus();
1713                 /*
1714                  * Fire off all the required work handlers
1715                  * We can't schedule on offline CPUs, but it's not necessary
1716                  * since we can change their buffer sizes without any race.
1717                  */
1718                 for_each_buffer_cpu(buffer, cpu) {
1719                         cpu_buffer = buffer->buffers[cpu];
1720                         if (!cpu_buffer->nr_pages_to_update)
1721                                 continue;
1722
1723                         /* Can't run something on an offline CPU. */
1724                         if (!cpu_online(cpu)) {
1725                                 rb_update_pages(cpu_buffer);
1726                                 cpu_buffer->nr_pages_to_update = 0;
1727                         } else {
1728                                 schedule_work_on(cpu,
1729                                                 &cpu_buffer->update_pages_work);
1730                         }
1731                 }
1732
1733                 /* wait for all the updates to complete */
1734                 for_each_buffer_cpu(buffer, cpu) {
1735                         cpu_buffer = buffer->buffers[cpu];
1736                         if (!cpu_buffer->nr_pages_to_update)
1737                                 continue;
1738
1739                         if (cpu_online(cpu))
1740                                 wait_for_completion(&cpu_buffer->update_done);
1741                         cpu_buffer->nr_pages_to_update = 0;
1742                 }
1743
1744                 put_online_cpus();
1745         } else {
1746                 /* Make sure this CPU has been intitialized */
1747                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1748                         goto out;
1749
1750                 cpu_buffer = buffer->buffers[cpu_id];
1751
1752                 if (nr_pages == cpu_buffer->nr_pages)
1753                         goto out;
1754
1755                 cpu_buffer->nr_pages_to_update = nr_pages -
1756                                                 cpu_buffer->nr_pages;
1757
1758                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1759                 if (cpu_buffer->nr_pages_to_update > 0 &&
1760                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1761                                             &cpu_buffer->new_pages, cpu_id)) {
1762                         err = -ENOMEM;
1763                         goto out_err;
1764                 }
1765
1766                 get_online_cpus();
1767
1768                 /* Can't run something on an offline CPU. */
1769                 if (!cpu_online(cpu_id))
1770                         rb_update_pages(cpu_buffer);
1771                 else {
1772                         schedule_work_on(cpu_id,
1773                                          &cpu_buffer->update_pages_work);
1774                         wait_for_completion(&cpu_buffer->update_done);
1775                 }
1776
1777                 cpu_buffer->nr_pages_to_update = 0;
1778                 put_online_cpus();
1779         }
1780
1781  out:
1782         /*
1783          * The ring buffer resize can happen with the ring buffer
1784          * enabled, so that the update disturbs the tracing as little
1785          * as possible. But if the buffer is disabled, we do not need
1786          * to worry about that, and we can take the time to verify
1787          * that the buffer is not corrupt.
1788          */
1789         if (atomic_read(&buffer->record_disabled)) {
1790                 atomic_inc(&buffer->record_disabled);
1791                 /*
1792                  * Even though the buffer was disabled, we must make sure
1793                  * that it is truly disabled before calling rb_check_pages.
1794                  * There could have been a race between checking
1795                  * record_disable and incrementing it.
1796                  */
1797                 synchronize_sched();
1798                 for_each_buffer_cpu(buffer, cpu) {
1799                         cpu_buffer = buffer->buffers[cpu];
1800                         rb_check_pages(cpu_buffer);
1801                 }
1802                 atomic_dec(&buffer->record_disabled);
1803         }
1804
1805         mutex_unlock(&buffer->mutex);
1806         return 0;
1807
1808  out_err:
1809         for_each_buffer_cpu(buffer, cpu) {
1810                 struct buffer_page *bpage, *tmp;
1811
1812                 cpu_buffer = buffer->buffers[cpu];
1813                 cpu_buffer->nr_pages_to_update = 0;
1814
1815                 if (list_empty(&cpu_buffer->new_pages))
1816                         continue;
1817
1818                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1819                                         list) {
1820                         list_del_init(&bpage->list);
1821                         free_buffer_page(bpage);
1822                 }
1823         }
1824         mutex_unlock(&buffer->mutex);
1825         return err;
1826 }
1827 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1828
1829 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1830 {
1831         mutex_lock(&buffer->mutex);
1832         if (val)
1833                 buffer->flags |= RB_FL_OVERWRITE;
1834         else
1835                 buffer->flags &= ~RB_FL_OVERWRITE;
1836         mutex_unlock(&buffer->mutex);
1837 }
1838 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1839
1840 static inline void *
1841 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1842 {
1843         return bpage->data + index;
1844 }
1845
1846 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1847 {
1848         return bpage->page->data + index;
1849 }
1850
1851 static inline struct ring_buffer_event *
1852 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1853 {
1854         return __rb_page_index(cpu_buffer->reader_page,
1855                                cpu_buffer->reader_page->read);
1856 }
1857
1858 static inline struct ring_buffer_event *
1859 rb_iter_head_event(struct ring_buffer_iter *iter)
1860 {
1861         return __rb_page_index(iter->head_page, iter->head);
1862 }
1863
1864 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1865 {
1866         return local_read(&bpage->page->commit);
1867 }
1868
1869 /* Size is determined by what has been committed */
1870 static inline unsigned rb_page_size(struct buffer_page *bpage)
1871 {
1872         return rb_page_commit(bpage);
1873 }
1874
1875 static inline unsigned
1876 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1877 {
1878         return rb_page_commit(cpu_buffer->commit_page);
1879 }
1880
1881 static inline unsigned
1882 rb_event_index(struct ring_buffer_event *event)
1883 {
1884         unsigned long addr = (unsigned long)event;
1885
1886         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1887 }
1888
1889 static void rb_inc_iter(struct ring_buffer_iter *iter)
1890 {
1891         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1892
1893         /*
1894          * The iterator could be on the reader page (it starts there).
1895          * But the head could have moved, since the reader was
1896          * found. Check for this case and assign the iterator
1897          * to the head page instead of next.
1898          */
1899         if (iter->head_page == cpu_buffer->reader_page)
1900                 iter->head_page = rb_set_head_page(cpu_buffer);
1901         else
1902                 rb_inc_page(cpu_buffer, &iter->head_page);
1903
1904         iter->read_stamp = iter->head_page->page->time_stamp;
1905         iter->head = 0;
1906 }
1907
1908 /*
1909  * rb_handle_head_page - writer hit the head page
1910  *
1911  * Returns: +1 to retry page
1912  *           0 to continue
1913  *          -1 on error
1914  */
1915 static int
1916 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1917                     struct buffer_page *tail_page,
1918                     struct buffer_page *next_page)
1919 {
1920         struct buffer_page *new_head;
1921         int entries;
1922         int type;
1923         int ret;
1924
1925         entries = rb_page_entries(next_page);
1926
1927         /*
1928          * The hard part is here. We need to move the head
1929          * forward, and protect against both readers on
1930          * other CPUs and writers coming in via interrupts.
1931          */
1932         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1933                                        RB_PAGE_HEAD);
1934
1935         /*
1936          * type can be one of four:
1937          *  NORMAL - an interrupt already moved it for us
1938          *  HEAD   - we are the first to get here.
1939          *  UPDATE - we are the interrupt interrupting
1940          *           a current move.
1941          *  MOVED  - a reader on another CPU moved the next
1942          *           pointer to its reader page. Give up
1943          *           and try again.
1944          */
1945
1946         switch (type) {
1947         case RB_PAGE_HEAD:
1948                 /*
1949                  * We changed the head to UPDATE, thus
1950                  * it is our responsibility to update
1951                  * the counters.
1952                  */
1953                 local_add(entries, &cpu_buffer->overrun);
1954                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1955
1956                 /*
1957                  * The entries will be zeroed out when we move the
1958                  * tail page.
1959                  */
1960
1961                 /* still more to do */
1962                 break;
1963
1964         case RB_PAGE_UPDATE:
1965                 /*
1966                  * This is an interrupt that interrupt the
1967                  * previous update. Still more to do.
1968                  */
1969                 break;
1970         case RB_PAGE_NORMAL:
1971                 /*
1972                  * An interrupt came in before the update
1973                  * and processed this for us.
1974                  * Nothing left to do.
1975                  */
1976                 return 1;
1977         case RB_PAGE_MOVED:
1978                 /*
1979                  * The reader is on another CPU and just did
1980                  * a swap with our next_page.
1981                  * Try again.
1982                  */
1983                 return 1;
1984         default:
1985                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1986                 return -1;
1987         }
1988
1989         /*
1990          * Now that we are here, the old head pointer is
1991          * set to UPDATE. This will keep the reader from
1992          * swapping the head page with the reader page.
1993          * The reader (on another CPU) will spin till
1994          * we are finished.
1995          *
1996          * We just need to protect against interrupts
1997          * doing the job. We will set the next pointer
1998          * to HEAD. After that, we set the old pointer
1999          * to NORMAL, but only if it was HEAD before.
2000          * otherwise we are an interrupt, and only
2001          * want the outer most commit to reset it.
2002          */
2003         new_head = next_page;
2004         rb_inc_page(cpu_buffer, &new_head);
2005
2006         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2007                                     RB_PAGE_NORMAL);
2008
2009         /*
2010          * Valid returns are:
2011          *  HEAD   - an interrupt came in and already set it.
2012          *  NORMAL - One of two things:
2013          *            1) We really set it.
2014          *            2) A bunch of interrupts came in and moved
2015          *               the page forward again.
2016          */
2017         switch (ret) {
2018         case RB_PAGE_HEAD:
2019         case RB_PAGE_NORMAL:
2020                 /* OK */
2021                 break;
2022         default:
2023                 RB_WARN_ON(cpu_buffer, 1);
2024                 return -1;
2025         }
2026
2027         /*
2028          * It is possible that an interrupt came in,
2029          * set the head up, then more interrupts came in
2030          * and moved it again. When we get back here,
2031          * the page would have been set to NORMAL but we
2032          * just set it back to HEAD.
2033          *
2034          * How do you detect this? Well, if that happened
2035          * the tail page would have moved.
2036          */
2037         if (ret == RB_PAGE_NORMAL) {
2038                 struct buffer_page *buffer_tail_page;
2039
2040                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2041                 /*
2042                  * If the tail had moved passed next, then we need
2043                  * to reset the pointer.
2044                  */
2045                 if (buffer_tail_page != tail_page &&
2046                     buffer_tail_page != next_page)
2047                         rb_head_page_set_normal(cpu_buffer, new_head,
2048                                                 next_page,
2049                                                 RB_PAGE_HEAD);
2050         }
2051
2052         /*
2053          * If this was the outer most commit (the one that
2054          * changed the original pointer from HEAD to UPDATE),
2055          * then it is up to us to reset it to NORMAL.
2056          */
2057         if (type == RB_PAGE_HEAD) {
2058                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2059                                               tail_page,
2060                                               RB_PAGE_UPDATE);
2061                 if (RB_WARN_ON(cpu_buffer,
2062                                ret != RB_PAGE_UPDATE))
2063                         return -1;
2064         }
2065
2066         return 0;
2067 }
2068
2069 static inline void
2070 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2071               unsigned long tail, struct rb_event_info *info)
2072 {
2073         struct buffer_page *tail_page = info->tail_page;
2074         struct ring_buffer_event *event;
2075         unsigned long length = info->length;
2076
2077         /*
2078          * Only the event that crossed the page boundary
2079          * must fill the old tail_page with padding.
2080          */
2081         if (tail >= BUF_PAGE_SIZE) {
2082                 /*
2083                  * If the page was filled, then we still need
2084                  * to update the real_end. Reset it to zero
2085                  * and the reader will ignore it.
2086                  */
2087                 if (tail == BUF_PAGE_SIZE)
2088                         tail_page->real_end = 0;
2089
2090                 local_sub(length, &tail_page->write);
2091                 return;
2092         }
2093
2094         event = __rb_page_index(tail_page, tail);
2095         kmemcheck_annotate_bitfield(event, bitfield);
2096
2097         /* account for padding bytes */
2098         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2099
2100         /*
2101          * Save the original length to the meta data.
2102          * This will be used by the reader to add lost event
2103          * counter.
2104          */
2105         tail_page->real_end = tail;
2106
2107         /*
2108          * If this event is bigger than the minimum size, then
2109          * we need to be careful that we don't subtract the
2110          * write counter enough to allow another writer to slip
2111          * in on this page.
2112          * We put in a discarded commit instead, to make sure
2113          * that this space is not used again.
2114          *
2115          * If we are less than the minimum size, we don't need to
2116          * worry about it.
2117          */
2118         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2119                 /* No room for any events */
2120
2121                 /* Mark the rest of the page with padding */
2122                 rb_event_set_padding(event);
2123
2124                 /* Set the write back to the previous setting */
2125                 local_sub(length, &tail_page->write);
2126                 return;
2127         }
2128
2129         /* Put in a discarded event */
2130         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2131         event->type_len = RINGBUF_TYPE_PADDING;
2132         /* time delta must be non zero */
2133         event->time_delta = 1;
2134
2135         /* Set write to end of buffer */
2136         length = (tail + length) - BUF_PAGE_SIZE;
2137         local_sub(length, &tail_page->write);
2138 }
2139
2140 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2141
2142 /*
2143  * This is the slow path, force gcc not to inline it.
2144  */
2145 static noinline struct ring_buffer_event *
2146 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2147              unsigned long tail, struct rb_event_info *info)
2148 {
2149         struct buffer_page *tail_page = info->tail_page;
2150         struct buffer_page *commit_page = cpu_buffer->commit_page;
2151         struct ring_buffer *buffer = cpu_buffer->buffer;
2152         struct buffer_page *next_page;
2153         int ret;
2154
2155         next_page = tail_page;
2156
2157         rb_inc_page(cpu_buffer, &next_page);
2158
2159         /*
2160          * If for some reason, we had an interrupt storm that made
2161          * it all the way around the buffer, bail, and warn
2162          * about it.
2163          */
2164         if (unlikely(next_page == commit_page)) {
2165                 local_inc(&cpu_buffer->commit_overrun);
2166                 goto out_reset;
2167         }
2168
2169         /*
2170          * This is where the fun begins!
2171          *
2172          * We are fighting against races between a reader that
2173          * could be on another CPU trying to swap its reader
2174          * page with the buffer head.
2175          *
2176          * We are also fighting against interrupts coming in and
2177          * moving the head or tail on us as well.
2178          *
2179          * If the next page is the head page then we have filled
2180          * the buffer, unless the commit page is still on the
2181          * reader page.
2182          */
2183         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2184
2185                 /*
2186                  * If the commit is not on the reader page, then
2187                  * move the header page.
2188                  */
2189                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2190                         /*
2191                          * If we are not in overwrite mode,
2192                          * this is easy, just stop here.
2193                          */
2194                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2195                                 local_inc(&cpu_buffer->dropped_events);
2196                                 goto out_reset;
2197                         }
2198
2199                         ret = rb_handle_head_page(cpu_buffer,
2200                                                   tail_page,
2201                                                   next_page);
2202                         if (ret < 0)
2203                                 goto out_reset;
2204                         if (ret)
2205                                 goto out_again;
2206                 } else {
2207                         /*
2208                          * We need to be careful here too. The
2209                          * commit page could still be on the reader
2210                          * page. We could have a small buffer, and
2211                          * have filled up the buffer with events
2212                          * from interrupts and such, and wrapped.
2213                          *
2214                          * Note, if the tail page is also the on the
2215                          * reader_page, we let it move out.
2216                          */
2217                         if (unlikely((cpu_buffer->commit_page !=
2218                                       cpu_buffer->tail_page) &&
2219                                      (cpu_buffer->commit_page ==
2220                                       cpu_buffer->reader_page))) {
2221                                 local_inc(&cpu_buffer->commit_overrun);
2222                                 goto out_reset;
2223                         }
2224                 }
2225         }
2226
2227         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2228
2229  out_again:
2230
2231         rb_reset_tail(cpu_buffer, tail, info);
2232
2233         /* Commit what we have for now. */
2234         rb_end_commit(cpu_buffer);
2235         /* rb_end_commit() decs committing */
2236         local_inc(&cpu_buffer->committing);
2237
2238         /* fail and let the caller try again */
2239         return ERR_PTR(-EAGAIN);
2240
2241  out_reset:
2242         /* reset write */
2243         rb_reset_tail(cpu_buffer, tail, info);
2244
2245         return NULL;
2246 }
2247
2248 /* Slow path, do not inline */
2249 static noinline struct ring_buffer_event *
2250 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2251 {
2252         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2253
2254         /* Not the first event on the page? */
2255         if (rb_event_index(event)) {
2256                 event->time_delta = delta & TS_MASK;
2257                 event->array[0] = delta >> TS_SHIFT;
2258         } else {
2259                 /* nope, just zero it */
2260                 event->time_delta = 0;
2261                 event->array[0] = 0;
2262         }
2263
2264         return skip_time_extend(event);
2265 }
2266
2267 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2268                                      struct ring_buffer_event *event);
2269
2270 /**
2271  * rb_update_event - update event type and data
2272  * @event: the event to update
2273  * @type: the type of event
2274  * @length: the size of the event field in the ring buffer
2275  *
2276  * Update the type and data fields of the event. The length
2277  * is the actual size that is written to the ring buffer,
2278  * and with this, we can determine what to place into the
2279  * data field.
2280  */
2281 static void
2282 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2283                 struct ring_buffer_event *event,
2284                 struct rb_event_info *info)
2285 {
2286         unsigned length = info->length;
2287         u64 delta = info->delta;
2288
2289         /* Only a commit updates the timestamp */
2290         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2291                 delta = 0;
2292
2293         /*
2294          * If we need to add a timestamp, then we
2295          * add it to the start of the resevered space.
2296          */
2297         if (unlikely(info->add_timestamp)) {
2298                 event = rb_add_time_stamp(event, delta);
2299                 length -= RB_LEN_TIME_EXTEND;
2300                 delta = 0;
2301         }
2302
2303         event->time_delta = delta;
2304         length -= RB_EVNT_HDR_SIZE;
2305         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2306                 event->type_len = 0;
2307                 event->array[0] = length;
2308         } else
2309                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2310 }
2311
2312 static unsigned rb_calculate_event_length(unsigned length)
2313 {
2314         struct ring_buffer_event event; /* Used only for sizeof array */
2315
2316         /* zero length can cause confusions */
2317         if (!length)
2318                 length++;
2319
2320         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2321                 length += sizeof(event.array[0]);
2322
2323         length += RB_EVNT_HDR_SIZE;
2324         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2325
2326         /*
2327          * In case the time delta is larger than the 27 bits for it
2328          * in the header, we need to add a timestamp. If another
2329          * event comes in when trying to discard this one to increase
2330          * the length, then the timestamp will be added in the allocated
2331          * space of this event. If length is bigger than the size needed
2332          * for the TIME_EXTEND, then padding has to be used. The events
2333          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2334          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2335          * As length is a multiple of 4, we only need to worry if it
2336          * is 12 (RB_LEN_TIME_EXTEND + 4).
2337          */
2338         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2339                 length += RB_ALIGNMENT;
2340
2341         return length;
2342 }
2343
2344 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2345 static inline bool sched_clock_stable(void)
2346 {
2347         return true;
2348 }
2349 #endif
2350
2351 static inline int
2352 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2353                   struct ring_buffer_event *event)
2354 {
2355         unsigned long new_index, old_index;
2356         struct buffer_page *bpage;
2357         unsigned long index;
2358         unsigned long addr;
2359
2360         new_index = rb_event_index(event);
2361         old_index = new_index + rb_event_ts_length(event);
2362         addr = (unsigned long)event;
2363         addr &= PAGE_MASK;
2364
2365         bpage = READ_ONCE(cpu_buffer->tail_page);
2366
2367         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2368                 unsigned long write_mask =
2369                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2370                 unsigned long event_length = rb_event_length(event);
2371                 /*
2372                  * This is on the tail page. It is possible that
2373                  * a write could come in and move the tail page
2374                  * and write to the next page. That is fine
2375                  * because we just shorten what is on this page.
2376                  */
2377                 old_index += write_mask;
2378                 new_index += write_mask;
2379                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2380                 if (index == old_index) {
2381                         /* update counters */
2382                         local_sub(event_length, &cpu_buffer->entries_bytes);
2383                         return 1;
2384                 }
2385         }
2386
2387         /* could not discard */
2388         return 0;
2389 }
2390
2391 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2392 {
2393         local_inc(&cpu_buffer->committing);
2394         local_inc(&cpu_buffer->commits);
2395 }
2396
2397 static void
2398 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2399 {
2400         unsigned long max_count;
2401
2402         /*
2403          * We only race with interrupts and NMIs on this CPU.
2404          * If we own the commit event, then we can commit
2405          * all others that interrupted us, since the interruptions
2406          * are in stack format (they finish before they come
2407          * back to us). This allows us to do a simple loop to
2408          * assign the commit to the tail.
2409          */
2410  again:
2411         max_count = cpu_buffer->nr_pages * 100;
2412
2413         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2414                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2415                         return;
2416                 if (RB_WARN_ON(cpu_buffer,
2417                                rb_is_reader_page(cpu_buffer->tail_page)))
2418                         return;
2419                 local_set(&cpu_buffer->commit_page->page->commit,
2420                           rb_page_write(cpu_buffer->commit_page));
2421                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2422                 /* Only update the write stamp if the page has an event */
2423                 if (rb_page_write(cpu_buffer->commit_page))
2424                         cpu_buffer->write_stamp =
2425                                 cpu_buffer->commit_page->page->time_stamp;
2426                 /* add barrier to keep gcc from optimizing too much */
2427                 barrier();
2428         }
2429         while (rb_commit_index(cpu_buffer) !=
2430                rb_page_write(cpu_buffer->commit_page)) {
2431
2432                 local_set(&cpu_buffer->commit_page->page->commit,
2433                           rb_page_write(cpu_buffer->commit_page));
2434                 RB_WARN_ON(cpu_buffer,
2435                            local_read(&cpu_buffer->commit_page->page->commit) &
2436                            ~RB_WRITE_MASK);
2437                 barrier();
2438         }
2439
2440         /* again, keep gcc from optimizing */
2441         barrier();
2442
2443         /*
2444          * If an interrupt came in just after the first while loop
2445          * and pushed the tail page forward, we will be left with
2446          * a dangling commit that will never go forward.
2447          */
2448         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2449                 goto again;
2450 }
2451
2452 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2453 {
2454         unsigned long commits;
2455
2456         if (RB_WARN_ON(cpu_buffer,
2457                        !local_read(&cpu_buffer->committing)))
2458                 return;
2459
2460  again:
2461         commits = local_read(&cpu_buffer->commits);
2462         /* synchronize with interrupts */
2463         barrier();
2464         if (local_read(&cpu_buffer->committing) == 1)
2465                 rb_set_commit_to_write(cpu_buffer);
2466
2467         local_dec(&cpu_buffer->committing);
2468
2469         /* synchronize with interrupts */
2470         barrier();
2471
2472         /*
2473          * Need to account for interrupts coming in between the
2474          * updating of the commit page and the clearing of the
2475          * committing counter.
2476          */
2477         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2478             !local_read(&cpu_buffer->committing)) {
2479                 local_inc(&cpu_buffer->committing);
2480                 goto again;
2481         }
2482 }
2483
2484 static inline void rb_event_discard(struct ring_buffer_event *event)
2485 {
2486         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2487                 event = skip_time_extend(event);
2488
2489         /* array[0] holds the actual length for the discarded event */
2490         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2491         event->type_len = RINGBUF_TYPE_PADDING;
2492         /* time delta must be non zero */
2493         if (!event->time_delta)
2494                 event->time_delta = 1;
2495 }
2496
2497 static inline bool
2498 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2499                    struct ring_buffer_event *event)
2500 {
2501         unsigned long addr = (unsigned long)event;
2502         unsigned long index;
2503
2504         index = rb_event_index(event);
2505         addr &= PAGE_MASK;
2506
2507         return cpu_buffer->commit_page->page == (void *)addr &&
2508                 rb_commit_index(cpu_buffer) == index;
2509 }
2510
2511 static void
2512 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2513                       struct ring_buffer_event *event)
2514 {
2515         u64 delta;
2516
2517         /*
2518          * The event first in the commit queue updates the
2519          * time stamp.
2520          */
2521         if (rb_event_is_commit(cpu_buffer, event)) {
2522                 /*
2523                  * A commit event that is first on a page
2524                  * updates the write timestamp with the page stamp
2525                  */
2526                 if (!rb_event_index(event))
2527                         cpu_buffer->write_stamp =
2528                                 cpu_buffer->commit_page->page->time_stamp;
2529                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2530                         delta = event->array[0];
2531                         delta <<= TS_SHIFT;
2532                         delta += event->time_delta;
2533                         cpu_buffer->write_stamp += delta;
2534                 } else
2535                         cpu_buffer->write_stamp += event->time_delta;
2536         }
2537 }
2538
2539 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2540                       struct ring_buffer_event *event)
2541 {
2542         local_inc(&cpu_buffer->entries);
2543         rb_update_write_stamp(cpu_buffer, event);
2544         rb_end_commit(cpu_buffer);
2545 }
2546
2547 static __always_inline void
2548 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2549 {
2550         bool pagebusy;
2551
2552         if (buffer->irq_work.waiters_pending) {
2553                 buffer->irq_work.waiters_pending = false;
2554                 /* irq_work_queue() supplies it's own memory barriers */
2555                 irq_work_queue(&buffer->irq_work.work);
2556         }
2557
2558         if (cpu_buffer->irq_work.waiters_pending) {
2559                 cpu_buffer->irq_work.waiters_pending = false;
2560                 /* irq_work_queue() supplies it's own memory barriers */
2561                 irq_work_queue(&cpu_buffer->irq_work.work);
2562         }
2563
2564         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2565
2566         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2567                 cpu_buffer->irq_work.wakeup_full = true;
2568                 cpu_buffer->irq_work.full_waiters_pending = false;
2569                 /* irq_work_queue() supplies it's own memory barriers */
2570                 irq_work_queue(&cpu_buffer->irq_work.work);
2571         }
2572 }
2573
2574 /*
2575  * The lock and unlock are done within a preempt disable section.
2576  * The current_context per_cpu variable can only be modified
2577  * by the current task between lock and unlock. But it can
2578  * be modified more than once via an interrupt. To pass this
2579  * information from the lock to the unlock without having to
2580  * access the 'in_interrupt()' functions again (which do show
2581  * a bit of overhead in something as critical as function tracing,
2582  * we use a bitmask trick.
2583  *
2584  *  bit 1 =  NMI context
2585  *  bit 2 =  IRQ context
2586  *  bit 3 =  SoftIRQ context
2587  *  bit 4 =  normal context.
2588  *
2589  * This works because this is the order of contexts that can
2590  * preempt other contexts. A SoftIRQ never preempts an IRQ
2591  * context.
2592  *
2593  * When the context is determined, the corresponding bit is
2594  * checked and set (if it was set, then a recursion of that context
2595  * happened).
2596  *
2597  * On unlock, we need to clear this bit. To do so, just subtract
2598  * 1 from the current_context and AND it to itself.
2599  *
2600  * (binary)
2601  *  101 - 1 = 100
2602  *  101 & 100 = 100 (clearing bit zero)
2603  *
2604  *  1010 - 1 = 1001
2605  *  1010 & 1001 = 1000 (clearing bit 1)
2606  *
2607  * The least significant bit can be cleared this way, and it
2608  * just so happens that it is the same bit corresponding to
2609  * the current context.
2610  *
2611  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
2612  * is set when a recursion is detected at the current context, and if
2613  * the TRANSITION bit is already set, it will fail the recursion.
2614  * This is needed because there's a lag between the changing of
2615  * interrupt context and updating the preempt count. In this case,
2616  * a false positive will be found. To handle this, one extra recursion
2617  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
2618  * bit is already set, then it is considered a recursion and the function
2619  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
2620  *
2621  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
2622  * to be cleared. Even if it wasn't the context that set it. That is,
2623  * if an interrupt comes in while NORMAL bit is set and the ring buffer
2624  * is called before preempt_count() is updated, since the check will
2625  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
2626  * NMI then comes in, it will set the NMI bit, but when the NMI code
2627  * does the trace_recursive_unlock() it will clear the TRANSTION bit
2628  * and leave the NMI bit set. But this is fine, because the interrupt
2629  * code that set the TRANSITION bit will then clear the NMI bit when it
2630  * calls trace_recursive_unlock(). If another NMI comes in, it will
2631  * set the TRANSITION bit and continue.
2632  *
2633  * Note: The TRANSITION bit only handles a single transition between context.
2634  */
2635
2636 static __always_inline int
2637 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2638 {
2639         unsigned int val = cpu_buffer->current_context;
2640         int bit;
2641
2642         if (in_interrupt()) {
2643                 if (in_nmi())
2644                         bit = RB_CTX_NMI;
2645                 else if (in_irq())
2646                         bit = RB_CTX_IRQ;
2647                 else
2648                         bit = RB_CTX_SOFTIRQ;
2649         } else
2650                 bit = RB_CTX_NORMAL;
2651
2652         if (unlikely(val & (1 << bit))) {
2653                 /*
2654                  * It is possible that this was called by transitioning
2655                  * between interrupt context, and preempt_count() has not
2656                  * been updated yet. In this case, use the TRANSITION bit.
2657                  */
2658                 bit = RB_CTX_TRANSITION;
2659                 if (val & (1 << bit))
2660                         return 1;
2661         }
2662
2663         val |= (1 << bit);
2664         cpu_buffer->current_context = val;
2665
2666         return 0;
2667 }
2668
2669 static __always_inline void
2670 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2671 {
2672         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2673 }
2674
2675 /**
2676  * ring_buffer_unlock_commit - commit a reserved
2677  * @buffer: The buffer to commit to
2678  * @event: The event pointer to commit.
2679  *
2680  * This commits the data to the ring buffer, and releases any locks held.
2681  *
2682  * Must be paired with ring_buffer_lock_reserve.
2683  */
2684 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2685                               struct ring_buffer_event *event)
2686 {
2687         struct ring_buffer_per_cpu *cpu_buffer;
2688         int cpu = raw_smp_processor_id();
2689
2690         cpu_buffer = buffer->buffers[cpu];
2691
2692         rb_commit(cpu_buffer, event);
2693
2694         rb_wakeups(buffer, cpu_buffer);
2695
2696         trace_recursive_unlock(cpu_buffer);
2697
2698         preempt_enable_notrace();
2699
2700         return 0;
2701 }
2702 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2703
2704 static noinline void
2705 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2706                     struct rb_event_info *info)
2707 {
2708         WARN_ONCE(info->delta > (1ULL << 59),
2709                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2710                   (unsigned long long)info->delta,
2711                   (unsigned long long)info->ts,
2712                   (unsigned long long)cpu_buffer->write_stamp,
2713                   sched_clock_stable() ? "" :
2714                   "If you just came from a suspend/resume,\n"
2715                   "please switch to the trace global clock:\n"
2716                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2717         info->add_timestamp = 1;
2718 }
2719
2720 static struct ring_buffer_event *
2721 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2722                   struct rb_event_info *info)
2723 {
2724         struct ring_buffer_event *event;
2725         struct buffer_page *tail_page;
2726         unsigned long tail, write;
2727
2728         /*
2729          * If the time delta since the last event is too big to
2730          * hold in the time field of the event, then we append a
2731          * TIME EXTEND event ahead of the data event.
2732          */
2733         if (unlikely(info->add_timestamp))
2734                 info->length += RB_LEN_TIME_EXTEND;
2735
2736         /* Don't let the compiler play games with cpu_buffer->tail_page */
2737         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2738         write = local_add_return(info->length, &tail_page->write);
2739
2740         /* set write to only the index of the write */
2741         write &= RB_WRITE_MASK;
2742         tail = write - info->length;
2743
2744         /*
2745          * If this is the first commit on the page, then it has the same
2746          * timestamp as the page itself.
2747          */
2748         if (!tail)
2749                 info->delta = 0;
2750
2751         /* See if we shot pass the end of this buffer page */
2752         if (unlikely(write > BUF_PAGE_SIZE))
2753                 return rb_move_tail(cpu_buffer, tail, info);
2754
2755         /* We reserved something on the buffer */
2756
2757         event = __rb_page_index(tail_page, tail);
2758         kmemcheck_annotate_bitfield(event, bitfield);
2759         rb_update_event(cpu_buffer, event, info);
2760
2761         local_inc(&tail_page->entries);
2762
2763         /*
2764          * If this is the first commit on the page, then update
2765          * its timestamp.
2766          */
2767         if (!tail)
2768                 tail_page->page->time_stamp = info->ts;
2769
2770         /* account for these added bytes */
2771         local_add(info->length, &cpu_buffer->entries_bytes);
2772
2773         return event;
2774 }
2775
2776 static struct ring_buffer_event *
2777 rb_reserve_next_event(struct ring_buffer *buffer,
2778                       struct ring_buffer_per_cpu *cpu_buffer,
2779                       unsigned long length)
2780 {
2781         struct ring_buffer_event *event;
2782         struct rb_event_info info;
2783         int nr_loops = 0;
2784         u64 diff;
2785
2786         rb_start_commit(cpu_buffer);
2787
2788 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2789         /*
2790          * Due to the ability to swap a cpu buffer from a buffer
2791          * it is possible it was swapped before we committed.
2792          * (committing stops a swap). We check for it here and
2793          * if it happened, we have to fail the write.
2794          */
2795         barrier();
2796         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2797                 local_dec(&cpu_buffer->committing);
2798                 local_dec(&cpu_buffer->commits);
2799                 return NULL;
2800         }
2801 #endif
2802
2803         info.length = rb_calculate_event_length(length);
2804  again:
2805         info.add_timestamp = 0;
2806         info.delta = 0;
2807
2808         /*
2809          * We allow for interrupts to reenter here and do a trace.
2810          * If one does, it will cause this original code to loop
2811          * back here. Even with heavy interrupts happening, this
2812          * should only happen a few times in a row. If this happens
2813          * 1000 times in a row, there must be either an interrupt
2814          * storm or we have something buggy.
2815          * Bail!
2816          */
2817         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2818                 goto out_fail;
2819
2820         info.ts = rb_time_stamp(cpu_buffer->buffer);
2821         diff = info.ts - cpu_buffer->write_stamp;
2822
2823         /* make sure this diff is calculated here */
2824         barrier();
2825
2826         /* Did the write stamp get updated already? */
2827         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2828                 info.delta = diff;
2829                 if (unlikely(test_time_stamp(info.delta)))
2830                         rb_handle_timestamp(cpu_buffer, &info);
2831         }
2832
2833         event = __rb_reserve_next(cpu_buffer, &info);
2834
2835         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2836                 if (info.add_timestamp)
2837                         info.length -= RB_LEN_TIME_EXTEND;
2838                 goto again;
2839         }
2840
2841         if (!event)
2842                 goto out_fail;
2843
2844         return event;
2845
2846  out_fail:
2847         rb_end_commit(cpu_buffer);
2848         return NULL;
2849 }
2850
2851 /**
2852  * ring_buffer_lock_reserve - reserve a part of the buffer
2853  * @buffer: the ring buffer to reserve from
2854  * @length: the length of the data to reserve (excluding event header)
2855  *
2856  * Returns a reseverd event on the ring buffer to copy directly to.
2857  * The user of this interface will need to get the body to write into
2858  * and can use the ring_buffer_event_data() interface.
2859  *
2860  * The length is the length of the data needed, not the event length
2861  * which also includes the event header.
2862  *
2863  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2864  * If NULL is returned, then nothing has been allocated or locked.
2865  */
2866 struct ring_buffer_event *
2867 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2868 {
2869         struct ring_buffer_per_cpu *cpu_buffer;
2870         struct ring_buffer_event *event;
2871         int cpu;
2872
2873         /* If we are tracing schedule, we don't want to recurse */
2874         preempt_disable_notrace();
2875
2876         if (unlikely(atomic_read(&buffer->record_disabled)))
2877                 goto out;
2878
2879         cpu = raw_smp_processor_id();
2880
2881         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2882                 goto out;
2883
2884         cpu_buffer = buffer->buffers[cpu];
2885
2886         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2887                 goto out;
2888
2889         if (unlikely(length > BUF_MAX_DATA_SIZE))
2890                 goto out;
2891
2892         if (unlikely(trace_recursive_lock(cpu_buffer)))
2893                 goto out;
2894
2895         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2896         if (!event)
2897                 goto out_unlock;
2898
2899         return event;
2900
2901  out_unlock:
2902         trace_recursive_unlock(cpu_buffer);
2903  out:
2904         preempt_enable_notrace();
2905         return NULL;
2906 }
2907 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2908
2909 /*
2910  * Decrement the entries to the page that an event is on.
2911  * The event does not even need to exist, only the pointer
2912  * to the page it is on. This may only be called before the commit
2913  * takes place.
2914  */
2915 static inline void
2916 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2917                    struct ring_buffer_event *event)
2918 {
2919         unsigned long addr = (unsigned long)event;
2920         struct buffer_page *bpage = cpu_buffer->commit_page;
2921         struct buffer_page *start;
2922
2923         addr &= PAGE_MASK;
2924
2925         /* Do the likely case first */
2926         if (likely(bpage->page == (void *)addr)) {
2927                 local_dec(&bpage->entries);
2928                 return;
2929         }
2930
2931         /*
2932          * Because the commit page may be on the reader page we
2933          * start with the next page and check the end loop there.
2934          */
2935         rb_inc_page(cpu_buffer, &bpage);
2936         start = bpage;
2937         do {
2938                 if (bpage->page == (void *)addr) {
2939                         local_dec(&bpage->entries);
2940                         return;
2941                 }
2942                 rb_inc_page(cpu_buffer, &bpage);
2943         } while (bpage != start);
2944
2945         /* commit not part of this buffer?? */
2946         RB_WARN_ON(cpu_buffer, 1);
2947 }
2948
2949 /**
2950  * ring_buffer_commit_discard - discard an event that has not been committed
2951  * @buffer: the ring buffer
2952  * @event: non committed event to discard
2953  *
2954  * Sometimes an event that is in the ring buffer needs to be ignored.
2955  * This function lets the user discard an event in the ring buffer
2956  * and then that event will not be read later.
2957  *
2958  * This function only works if it is called before the the item has been
2959  * committed. It will try to free the event from the ring buffer
2960  * if another event has not been added behind it.
2961  *
2962  * If another event has been added behind it, it will set the event
2963  * up as discarded, and perform the commit.
2964  *
2965  * If this function is called, do not call ring_buffer_unlock_commit on
2966  * the event.
2967  */
2968 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2969                                 struct ring_buffer_event *event)
2970 {
2971         struct ring_buffer_per_cpu *cpu_buffer;
2972         int cpu;
2973
2974         /* The event is discarded regardless */
2975         rb_event_discard(event);
2976
2977         cpu = smp_processor_id();
2978         cpu_buffer = buffer->buffers[cpu];
2979
2980         /*
2981          * This must only be called if the event has not been
2982          * committed yet. Thus we can assume that preemption
2983          * is still disabled.
2984          */
2985         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2986
2987         rb_decrement_entry(cpu_buffer, event);
2988         if (rb_try_to_discard(cpu_buffer, event))
2989                 goto out;
2990
2991         /*
2992          * The commit is still visible by the reader, so we
2993          * must still update the timestamp.
2994          */
2995         rb_update_write_stamp(cpu_buffer, event);
2996  out:
2997         rb_end_commit(cpu_buffer);
2998
2999         trace_recursive_unlock(cpu_buffer);
3000
3001         preempt_enable_notrace();
3002
3003 }
3004 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3005
3006 /**
3007  * ring_buffer_write - write data to the buffer without reserving
3008  * @buffer: The ring buffer to write to.
3009  * @length: The length of the data being written (excluding the event header)
3010  * @data: The data to write to the buffer.
3011  *
3012  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3013  * one function. If you already have the data to write to the buffer, it
3014  * may be easier to simply call this function.
3015  *
3016  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3017  * and not the length of the event which would hold the header.
3018  */
3019 int ring_buffer_write(struct ring_buffer *buffer,
3020                       unsigned long length,
3021                       void *data)
3022 {
3023         struct ring_buffer_per_cpu *cpu_buffer;
3024         struct ring_buffer_event *event;
3025         void *body;
3026         int ret = -EBUSY;
3027         int cpu;
3028
3029         preempt_disable_notrace();
3030
3031         if (atomic_read(&buffer->record_disabled))
3032                 goto out;
3033
3034         cpu = raw_smp_processor_id();
3035
3036         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3037                 goto out;
3038
3039         cpu_buffer = buffer->buffers[cpu];
3040
3041         if (atomic_read(&cpu_buffer->record_disabled))
3042                 goto out;
3043
3044         if (length > BUF_MAX_DATA_SIZE)
3045                 goto out;
3046
3047         if (unlikely(trace_recursive_lock(cpu_buffer)))
3048                 goto out;
3049
3050         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3051         if (!event)
3052                 goto out_unlock;
3053
3054         body = rb_event_data(event);
3055
3056         memcpy(body, data, length);
3057
3058         rb_commit(cpu_buffer, event);
3059
3060         rb_wakeups(buffer, cpu_buffer);
3061
3062         ret = 0;
3063
3064  out_unlock:
3065         trace_recursive_unlock(cpu_buffer);
3066
3067  out:
3068         preempt_enable_notrace();
3069
3070         return ret;
3071 }
3072 EXPORT_SYMBOL_GPL(ring_buffer_write);
3073
3074 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3075 {
3076         struct buffer_page *reader = cpu_buffer->reader_page;
3077         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3078         struct buffer_page *commit = cpu_buffer->commit_page;
3079
3080         /* In case of error, head will be NULL */
3081         if (unlikely(!head))
3082                 return true;
3083
3084         /* Reader should exhaust content in reader page */
3085         if (reader->read != rb_page_commit(reader))
3086                 return false;
3087
3088         /*
3089          * If writers are committing on the reader page, knowing all
3090          * committed content has been read, the ring buffer is empty.
3091          */
3092         if (commit == reader)
3093                 return true;
3094
3095         /*
3096          * If writers are committing on a page other than reader page
3097          * and head page, there should always be content to read.
3098          */
3099         if (commit != head)
3100                 return false;
3101
3102         /*
3103          * Writers are committing on the head page, we just need
3104          * to care about there're committed data, and the reader will
3105          * swap reader page with head page when it is to read data.
3106          */
3107         return rb_page_commit(commit) == 0;
3108 }
3109
3110 /**
3111  * ring_buffer_record_disable - stop all writes into the buffer
3112  * @buffer: The ring buffer to stop writes to.
3113  *
3114  * This prevents all writes to the buffer. Any attempt to write
3115  * to the buffer after this will fail and return NULL.
3116  *
3117  * The caller should call synchronize_sched() after this.
3118  */
3119 void ring_buffer_record_disable(struct ring_buffer *buffer)
3120 {
3121         atomic_inc(&buffer->record_disabled);
3122 }
3123 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3124
3125 /**
3126  * ring_buffer_record_enable - enable writes to the buffer
3127  * @buffer: The ring buffer to enable writes
3128  *
3129  * Note, multiple disables will need the same number of enables
3130  * to truly enable the writing (much like preempt_disable).
3131  */
3132 void ring_buffer_record_enable(struct ring_buffer *buffer)
3133 {
3134         atomic_dec(&buffer->record_disabled);
3135 }
3136 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3137
3138 /**
3139  * ring_buffer_record_off - stop all writes into the buffer
3140  * @buffer: The ring buffer to stop writes to.
3141  *
3142  * This prevents all writes to the buffer. Any attempt to write
3143  * to the buffer after this will fail and return NULL.
3144  *
3145  * This is different than ring_buffer_record_disable() as
3146  * it works like an on/off switch, where as the disable() version
3147  * must be paired with a enable().
3148  */
3149 void ring_buffer_record_off(struct ring_buffer *buffer)
3150 {
3151         unsigned int rd;
3152         unsigned int new_rd;
3153
3154         do {
3155                 rd = atomic_read(&buffer->record_disabled);
3156                 new_rd = rd | RB_BUFFER_OFF;
3157         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3158 }
3159 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3160
3161 /**
3162  * ring_buffer_record_on - restart writes into the buffer
3163  * @buffer: The ring buffer to start writes to.
3164  *
3165  * This enables all writes to the buffer that was disabled by
3166  * ring_buffer_record_off().
3167  *
3168  * This is different than ring_buffer_record_enable() as
3169  * it works like an on/off switch, where as the enable() version
3170  * must be paired with a disable().
3171  */
3172 void ring_buffer_record_on(struct ring_buffer *buffer)
3173 {
3174         unsigned int rd;
3175         unsigned int new_rd;
3176
3177         do {
3178                 rd = atomic_read(&buffer->record_disabled);
3179                 new_rd = rd & ~RB_BUFFER_OFF;
3180         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3181 }
3182 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3183
3184 /**
3185  * ring_buffer_record_is_on - return true if the ring buffer can write
3186  * @buffer: The ring buffer to see if write is enabled
3187  *
3188  * Returns true if the ring buffer is in a state that it accepts writes.
3189  */
3190 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3191 {
3192         return !atomic_read(&buffer->record_disabled);
3193 }
3194
3195 /**
3196  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3197  * @buffer: The ring buffer to see if write is set enabled
3198  *
3199  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3200  * Note that this does NOT mean it is in a writable state.
3201  *
3202  * It may return true when the ring buffer has been disabled by
3203  * ring_buffer_record_disable(), as that is a temporary disabling of
3204  * the ring buffer.
3205  */
3206 int ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3207 {
3208         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3209 }
3210
3211 /**
3212  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3213  * @buffer: The ring buffer to stop writes to.
3214  * @cpu: The CPU buffer to stop
3215  *
3216  * This prevents all writes to the buffer. Any attempt to write
3217  * to the buffer after this will fail and return NULL.
3218  *
3219  * The caller should call synchronize_sched() after this.
3220  */
3221 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3222 {
3223         struct ring_buffer_per_cpu *cpu_buffer;
3224
3225         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3226                 return;
3227
3228         cpu_buffer = buffer->buffers[cpu];
3229         atomic_inc(&cpu_buffer->record_disabled);
3230 }
3231 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3232
3233 /**
3234  * ring_buffer_record_enable_cpu - enable writes to the buffer
3235  * @buffer: The ring buffer to enable writes
3236  * @cpu: The CPU to enable.
3237  *
3238  * Note, multiple disables will need the same number of enables
3239  * to truly enable the writing (much like preempt_disable).
3240  */
3241 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3242 {
3243         struct ring_buffer_per_cpu *cpu_buffer;
3244
3245         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3246                 return;
3247
3248         cpu_buffer = buffer->buffers[cpu];
3249         atomic_dec(&cpu_buffer->record_disabled);
3250 }
3251 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3252
3253 /*
3254  * The total entries in the ring buffer is the running counter
3255  * of entries entered into the ring buffer, minus the sum of
3256  * the entries read from the ring buffer and the number of
3257  * entries that were overwritten.
3258  */
3259 static inline unsigned long
3260 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3261 {
3262         return local_read(&cpu_buffer->entries) -
3263                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3264 }
3265
3266 /**
3267  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3268  * @buffer: The ring buffer
3269  * @cpu: The per CPU buffer to read from.
3270  */
3271 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3272 {
3273         unsigned long flags;
3274         struct ring_buffer_per_cpu *cpu_buffer;
3275         struct buffer_page *bpage;
3276         u64 ret = 0;
3277
3278         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3279                 return 0;
3280
3281         cpu_buffer = buffer->buffers[cpu];
3282         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3283         /*
3284          * if the tail is on reader_page, oldest time stamp is on the reader
3285          * page
3286          */
3287         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3288                 bpage = cpu_buffer->reader_page;
3289         else
3290                 bpage = rb_set_head_page(cpu_buffer);
3291         if (bpage)
3292                 ret = bpage->page->time_stamp;
3293         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3294
3295         return ret;
3296 }
3297 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3298
3299 /**
3300  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3301  * @buffer: The ring buffer
3302  * @cpu: The per CPU buffer to read from.
3303  */
3304 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3305 {
3306         struct ring_buffer_per_cpu *cpu_buffer;
3307         unsigned long ret;
3308
3309         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3310                 return 0;
3311
3312         cpu_buffer = buffer->buffers[cpu];
3313         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3314
3315         return ret;
3316 }
3317 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3318
3319 /**
3320  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3321  * @buffer: The ring buffer
3322  * @cpu: The per CPU buffer to get the entries from.
3323  */
3324 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3325 {
3326         struct ring_buffer_per_cpu *cpu_buffer;
3327
3328         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3329                 return 0;
3330
3331         cpu_buffer = buffer->buffers[cpu];
3332
3333         return rb_num_of_entries(cpu_buffer);
3334 }
3335 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3336
3337 /**
3338  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3339  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3340  * @buffer: The ring buffer
3341  * @cpu: The per CPU buffer to get the number of overruns from
3342  */
3343 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3344 {
3345         struct ring_buffer_per_cpu *cpu_buffer;
3346         unsigned long ret;
3347
3348         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3349                 return 0;
3350
3351         cpu_buffer = buffer->buffers[cpu];
3352         ret = local_read(&cpu_buffer->overrun);
3353
3354         return ret;
3355 }
3356 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3357
3358 /**
3359  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3360  * commits failing due to the buffer wrapping around while there are uncommitted
3361  * events, such as during an interrupt storm.
3362  * @buffer: The ring buffer
3363  * @cpu: The per CPU buffer to get the number of overruns from
3364  */
3365 unsigned long
3366 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3367 {
3368         struct ring_buffer_per_cpu *cpu_buffer;
3369         unsigned long ret;
3370
3371         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3372                 return 0;
3373
3374         cpu_buffer = buffer->buffers[cpu];
3375         ret = local_read(&cpu_buffer->commit_overrun);
3376
3377         return ret;
3378 }
3379 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3380
3381 /**
3382  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3383  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3384  * @buffer: The ring buffer
3385  * @cpu: The per CPU buffer to get the number of overruns from
3386  */
3387 unsigned long
3388 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3389 {
3390         struct ring_buffer_per_cpu *cpu_buffer;
3391         unsigned long ret;
3392
3393         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3394                 return 0;
3395
3396         cpu_buffer = buffer->buffers[cpu];
3397         ret = local_read(&cpu_buffer->dropped_events);
3398
3399         return ret;
3400 }
3401 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3402
3403 /**
3404  * ring_buffer_read_events_cpu - get the number of events successfully read
3405  * @buffer: The ring buffer
3406  * @cpu: The per CPU buffer to get the number of events read
3407  */
3408 unsigned long
3409 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3410 {
3411         struct ring_buffer_per_cpu *cpu_buffer;
3412
3413         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3414                 return 0;
3415
3416         cpu_buffer = buffer->buffers[cpu];
3417         return cpu_buffer->read;
3418 }
3419 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3420
3421 /**
3422  * ring_buffer_entries - get the number of entries in a buffer
3423  * @buffer: The ring buffer
3424  *
3425  * Returns the total number of entries in the ring buffer
3426  * (all CPU entries)
3427  */
3428 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3429 {
3430         struct ring_buffer_per_cpu *cpu_buffer;
3431         unsigned long entries = 0;
3432         int cpu;
3433
3434         /* if you care about this being correct, lock the buffer */
3435         for_each_buffer_cpu(buffer, cpu) {
3436                 cpu_buffer = buffer->buffers[cpu];
3437                 entries += rb_num_of_entries(cpu_buffer);
3438         }
3439
3440         return entries;
3441 }
3442 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3443
3444 /**
3445  * ring_buffer_overruns - get the number of overruns in buffer
3446  * @buffer: The ring buffer
3447  *
3448  * Returns the total number of overruns in the ring buffer
3449  * (all CPU entries)
3450  */
3451 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3452 {
3453         struct ring_buffer_per_cpu *cpu_buffer;
3454         unsigned long overruns = 0;
3455         int cpu;
3456
3457         /* if you care about this being correct, lock the buffer */
3458         for_each_buffer_cpu(buffer, cpu) {
3459                 cpu_buffer = buffer->buffers[cpu];
3460                 overruns += local_read(&cpu_buffer->overrun);
3461         }
3462
3463         return overruns;
3464 }
3465 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3466
3467 static void rb_iter_reset(struct ring_buffer_iter *iter)
3468 {
3469         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3470
3471         /* Iterator usage is expected to have record disabled */
3472         iter->head_page = cpu_buffer->reader_page;
3473         iter->head = cpu_buffer->reader_page->read;
3474
3475         iter->cache_reader_page = iter->head_page;
3476         iter->cache_read = cpu_buffer->read;
3477
3478         if (iter->head)
3479                 iter->read_stamp = cpu_buffer->read_stamp;
3480         else
3481                 iter->read_stamp = iter->head_page->page->time_stamp;
3482 }
3483
3484 /**
3485  * ring_buffer_iter_reset - reset an iterator
3486  * @iter: The iterator to reset
3487  *
3488  * Resets the iterator, so that it will start from the beginning
3489  * again.
3490  */
3491 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3492 {
3493         struct ring_buffer_per_cpu *cpu_buffer;
3494         unsigned long flags;
3495
3496         if (!iter)
3497                 return;
3498
3499         cpu_buffer = iter->cpu_buffer;
3500
3501         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3502         rb_iter_reset(iter);
3503         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3504 }
3505 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3506
3507 /**
3508  * ring_buffer_iter_empty - check if an iterator has no more to read
3509  * @iter: The iterator to check
3510  */
3511 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3512 {
3513         struct ring_buffer_per_cpu *cpu_buffer;
3514         struct buffer_page *reader;
3515         struct buffer_page *head_page;
3516         struct buffer_page *commit_page;
3517         unsigned commit;
3518
3519         cpu_buffer = iter->cpu_buffer;
3520
3521         /* Remember, trace recording is off when iterator is in use */
3522         reader = cpu_buffer->reader_page;
3523         head_page = cpu_buffer->head_page;
3524         commit_page = cpu_buffer->commit_page;
3525         commit = rb_page_commit(commit_page);
3526
3527         return ((iter->head_page == commit_page && iter->head == commit) ||
3528                 (iter->head_page == reader && commit_page == head_page &&
3529                  head_page->read == commit &&
3530                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3531 }
3532 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3533
3534 static void
3535 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3536                      struct ring_buffer_event *event)
3537 {
3538         u64 delta;
3539
3540         switch (event->type_len) {
3541         case RINGBUF_TYPE_PADDING:
3542                 return;
3543
3544         case RINGBUF_TYPE_TIME_EXTEND:
3545                 delta = event->array[0];
3546                 delta <<= TS_SHIFT;
3547                 delta += event->time_delta;
3548                 cpu_buffer->read_stamp += delta;
3549                 return;
3550
3551         case RINGBUF_TYPE_TIME_STAMP:
3552                 /* FIXME: not implemented */
3553                 return;
3554
3555         case RINGBUF_TYPE_DATA:
3556                 cpu_buffer->read_stamp += event->time_delta;
3557                 return;
3558
3559         default:
3560                 BUG();
3561         }
3562         return;
3563 }
3564
3565 static void
3566 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3567                           struct ring_buffer_event *event)
3568 {
3569         u64 delta;
3570
3571         switch (event->type_len) {
3572         case RINGBUF_TYPE_PADDING:
3573                 return;
3574
3575         case RINGBUF_TYPE_TIME_EXTEND:
3576                 delta = event->array[0];
3577                 delta <<= TS_SHIFT;
3578                 delta += event->time_delta;
3579                 iter->read_stamp += delta;
3580                 return;
3581
3582         case RINGBUF_TYPE_TIME_STAMP:
3583                 /* FIXME: not implemented */
3584                 return;
3585
3586         case RINGBUF_TYPE_DATA:
3587                 iter->read_stamp += event->time_delta;
3588                 return;
3589
3590         default:
3591                 BUG();
3592         }
3593         return;
3594 }
3595
3596 static struct buffer_page *
3597 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3598 {
3599         struct buffer_page *reader = NULL;
3600         unsigned long overwrite;
3601         unsigned long flags;
3602         int nr_loops = 0;
3603         int ret;
3604
3605         local_irq_save(flags);
3606         arch_spin_lock(&cpu_buffer->lock);
3607
3608  again:
3609         /*
3610          * This should normally only loop twice. But because the
3611          * start of the reader inserts an empty page, it causes
3612          * a case where we will loop three times. There should be no
3613          * reason to loop four times (that I know of).
3614          */
3615         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3616                 reader = NULL;
3617                 goto out;
3618         }
3619
3620         reader = cpu_buffer->reader_page;
3621
3622         /* If there's more to read, return this page */
3623         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3624                 goto out;
3625
3626         /* Never should we have an index greater than the size */
3627         if (RB_WARN_ON(cpu_buffer,
3628                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3629                 goto out;
3630
3631         /* check if we caught up to the tail */
3632         reader = NULL;
3633         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3634                 goto out;
3635
3636         /* Don't bother swapping if the ring buffer is empty */
3637         if (rb_num_of_entries(cpu_buffer) == 0)
3638                 goto out;
3639
3640         /*
3641          * Reset the reader page to size zero.
3642          */
3643         local_set(&cpu_buffer->reader_page->write, 0);
3644         local_set(&cpu_buffer->reader_page->entries, 0);
3645         local_set(&cpu_buffer->reader_page->page->commit, 0);
3646         cpu_buffer->reader_page->real_end = 0;
3647
3648  spin:
3649         /*
3650          * Splice the empty reader page into the list around the head.
3651          */
3652         reader = rb_set_head_page(cpu_buffer);
3653         if (!reader)
3654                 goto out;
3655         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3656         cpu_buffer->reader_page->list.prev = reader->list.prev;
3657
3658         /*
3659          * cpu_buffer->pages just needs to point to the buffer, it
3660          *  has no specific buffer page to point to. Lets move it out
3661          *  of our way so we don't accidentally swap it.
3662          */
3663         cpu_buffer->pages = reader->list.prev;
3664
3665         /* The reader page will be pointing to the new head */
3666         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3667
3668         /*
3669          * We want to make sure we read the overruns after we set up our
3670          * pointers to the next object. The writer side does a
3671          * cmpxchg to cross pages which acts as the mb on the writer
3672          * side. Note, the reader will constantly fail the swap
3673          * while the writer is updating the pointers, so this
3674          * guarantees that the overwrite recorded here is the one we
3675          * want to compare with the last_overrun.
3676          */
3677         smp_mb();
3678         overwrite = local_read(&(cpu_buffer->overrun));
3679
3680         /*
3681          * Here's the tricky part.
3682          *
3683          * We need to move the pointer past the header page.
3684          * But we can only do that if a writer is not currently
3685          * moving it. The page before the header page has the
3686          * flag bit '1' set if it is pointing to the page we want.
3687          * but if the writer is in the process of moving it
3688          * than it will be '2' or already moved '0'.
3689          */
3690
3691         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3692
3693         /*
3694          * If we did not convert it, then we must try again.
3695          */
3696         if (!ret)
3697                 goto spin;
3698
3699         /*
3700          * Yeah! We succeeded in replacing the page.
3701          *
3702          * Now make the new head point back to the reader page.
3703          */
3704         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3705         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3706
3707         /* Finally update the reader page to the new head */
3708         cpu_buffer->reader_page = reader;
3709         cpu_buffer->reader_page->read = 0;
3710
3711         if (overwrite != cpu_buffer->last_overrun) {
3712                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3713                 cpu_buffer->last_overrun = overwrite;
3714         }
3715
3716         goto again;
3717
3718  out:
3719         /* Update the read_stamp on the first event */
3720         if (reader && reader->read == 0)
3721                 cpu_buffer->read_stamp = reader->page->time_stamp;
3722
3723         arch_spin_unlock(&cpu_buffer->lock);
3724         local_irq_restore(flags);
3725
3726         return reader;
3727 }
3728
3729 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3730 {
3731         struct ring_buffer_event *event;
3732         struct buffer_page *reader;
3733         unsigned length;
3734
3735         reader = rb_get_reader_page(cpu_buffer);
3736
3737         /* This function should not be called when buffer is empty */
3738         if (RB_WARN_ON(cpu_buffer, !reader))
3739                 return;
3740
3741         event = rb_reader_event(cpu_buffer);
3742
3743         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3744                 cpu_buffer->read++;
3745
3746         rb_update_read_stamp(cpu_buffer, event);
3747
3748         length = rb_event_length(event);
3749         cpu_buffer->reader_page->read += length;
3750 }
3751
3752 static void rb_advance_iter(struct ring_buffer_iter *iter)
3753 {
3754         struct ring_buffer_per_cpu *cpu_buffer;
3755         struct ring_buffer_event *event;
3756         unsigned length;
3757
3758         cpu_buffer = iter->cpu_buffer;
3759
3760         /*
3761          * Check if we are at the end of the buffer.
3762          */
3763         if (iter->head >= rb_page_size(iter->head_page)) {
3764                 /* discarded commits can make the page empty */
3765                 if (iter->head_page == cpu_buffer->commit_page)
3766                         return;
3767                 rb_inc_iter(iter);
3768                 return;
3769         }
3770
3771         event = rb_iter_head_event(iter);
3772
3773         length = rb_event_length(event);
3774
3775         /*
3776          * This should not be called to advance the header if we are
3777          * at the tail of the buffer.
3778          */
3779         if (RB_WARN_ON(cpu_buffer,
3780                        (iter->head_page == cpu_buffer->commit_page) &&
3781                        (iter->head + length > rb_commit_index(cpu_buffer))))
3782                 return;
3783
3784         rb_update_iter_read_stamp(iter, event);
3785
3786         iter->head += length;
3787
3788         /* check for end of page padding */
3789         if ((iter->head >= rb_page_size(iter->head_page)) &&
3790             (iter->head_page != cpu_buffer->commit_page))
3791                 rb_inc_iter(iter);
3792 }
3793
3794 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3795 {
3796         return cpu_buffer->lost_events;
3797 }
3798
3799 static struct ring_buffer_event *
3800 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3801                unsigned long *lost_events)
3802 {
3803         struct ring_buffer_event *event;
3804         struct buffer_page *reader;
3805         int nr_loops = 0;
3806
3807  again:
3808         /*
3809          * We repeat when a time extend is encountered.
3810          * Since the time extend is always attached to a data event,
3811          * we should never loop more than once.
3812          * (We never hit the following condition more than twice).
3813          */
3814         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3815                 return NULL;
3816
3817         reader = rb_get_reader_page(cpu_buffer);
3818         if (!reader)
3819                 return NULL;
3820
3821         event = rb_reader_event(cpu_buffer);
3822
3823         switch (event->type_len) {
3824         case RINGBUF_TYPE_PADDING:
3825                 if (rb_null_event(event))
3826                         RB_WARN_ON(cpu_buffer, 1);
3827                 /*
3828                  * Because the writer could be discarding every
3829                  * event it creates (which would probably be bad)
3830                  * if we were to go back to "again" then we may never
3831                  * catch up, and will trigger the warn on, or lock
3832                  * the box. Return the padding, and we will release
3833                  * the current locks, and try again.
3834                  */
3835                 return event;
3836
3837         case RINGBUF_TYPE_TIME_EXTEND:
3838                 /* Internal data, OK to advance */
3839                 rb_advance_reader(cpu_buffer);
3840                 goto again;
3841
3842         case RINGBUF_TYPE_TIME_STAMP:
3843                 /* FIXME: not implemented */
3844                 rb_advance_reader(cpu_buffer);
3845                 goto again;
3846
3847         case RINGBUF_TYPE_DATA:
3848                 if (ts) {
3849                         *ts = cpu_buffer->read_stamp + event->time_delta;
3850                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3851                                                          cpu_buffer->cpu, ts);
3852                 }
3853                 if (lost_events)
3854                         *lost_events = rb_lost_events(cpu_buffer);
3855                 return event;
3856
3857         default:
3858                 BUG();
3859         }
3860
3861         return NULL;
3862 }
3863 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3864
3865 static struct ring_buffer_event *
3866 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3867 {
3868         struct ring_buffer *buffer;
3869         struct ring_buffer_per_cpu *cpu_buffer;
3870         struct ring_buffer_event *event;
3871         int nr_loops = 0;
3872
3873         cpu_buffer = iter->cpu_buffer;
3874         buffer = cpu_buffer->buffer;
3875
3876         /*
3877          * Check if someone performed a consuming read to
3878          * the buffer. A consuming read invalidates the iterator
3879          * and we need to reset the iterator in this case.
3880          */
3881         if (unlikely(iter->cache_read != cpu_buffer->read ||
3882                      iter->cache_reader_page != cpu_buffer->reader_page))
3883                 rb_iter_reset(iter);
3884
3885  again:
3886         if (ring_buffer_iter_empty(iter))
3887                 return NULL;
3888
3889         /*
3890          * We repeat when a time extend is encountered or we hit
3891          * the end of the page. Since the time extend is always attached
3892          * to a data event, we should never loop more than three times.
3893          * Once for going to next page, once on time extend, and
3894          * finally once to get the event.
3895          * (We never hit the following condition more than thrice).
3896          */
3897         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3898                 return NULL;
3899
3900         if (rb_per_cpu_empty(cpu_buffer))
3901                 return NULL;
3902
3903         if (iter->head >= rb_page_size(iter->head_page)) {
3904                 rb_inc_iter(iter);
3905                 goto again;
3906         }
3907
3908         event = rb_iter_head_event(iter);
3909
3910         switch (event->type_len) {
3911         case RINGBUF_TYPE_PADDING:
3912                 if (rb_null_event(event)) {
3913                         rb_inc_iter(iter);
3914                         goto again;
3915                 }
3916                 rb_advance_iter(iter);
3917                 return event;
3918
3919         case RINGBUF_TYPE_TIME_EXTEND:
3920                 /* Internal data, OK to advance */
3921                 rb_advance_iter(iter);
3922                 goto again;
3923
3924         case RINGBUF_TYPE_TIME_STAMP:
3925                 /* FIXME: not implemented */
3926                 rb_advance_iter(iter);
3927                 goto again;
3928
3929         case RINGBUF_TYPE_DATA:
3930                 if (ts) {
3931                         *ts = iter->read_stamp + event->time_delta;
3932                         ring_buffer_normalize_time_stamp(buffer,
3933                                                          cpu_buffer->cpu, ts);
3934                 }
3935                 return event;
3936
3937         default:
3938                 BUG();
3939         }
3940
3941         return NULL;
3942 }
3943 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3944
3945 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3946 {
3947         if (likely(!in_nmi())) {
3948                 raw_spin_lock(&cpu_buffer->reader_lock);
3949                 return true;
3950         }
3951
3952         /*
3953          * If an NMI die dumps out the content of the ring buffer
3954          * trylock must be used to prevent a deadlock if the NMI
3955          * preempted a task that holds the ring buffer locks. If
3956          * we get the lock then all is fine, if not, then continue
3957          * to do the read, but this can corrupt the ring buffer,
3958          * so it must be permanently disabled from future writes.
3959          * Reading from NMI is a oneshot deal.
3960          */
3961         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3962                 return true;
3963
3964         /* Continue without locking, but disable the ring buffer */
3965         atomic_inc(&cpu_buffer->record_disabled);
3966         return false;
3967 }
3968
3969 static inline void
3970 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3971 {
3972         if (likely(locked))
3973                 raw_spin_unlock(&cpu_buffer->reader_lock);
3974         return;
3975 }
3976
3977 /**
3978  * ring_buffer_peek - peek at the next event to be read
3979  * @buffer: The ring buffer to read
3980  * @cpu: The cpu to peak at
3981  * @ts: The timestamp counter of this event.
3982  * @lost_events: a variable to store if events were lost (may be NULL)
3983  *
3984  * This will return the event that will be read next, but does
3985  * not consume the data.
3986  */
3987 struct ring_buffer_event *
3988 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3989                  unsigned long *lost_events)
3990 {
3991         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3992         struct ring_buffer_event *event;
3993         unsigned long flags;
3994         bool dolock;
3995
3996         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3997                 return NULL;
3998
3999  again:
4000         local_irq_save(flags);
4001         dolock = rb_reader_lock(cpu_buffer);
4002         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4003         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4004                 rb_advance_reader(cpu_buffer);
4005         rb_reader_unlock(cpu_buffer, dolock);
4006         local_irq_restore(flags);
4007
4008         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4009                 goto again;
4010
4011         return event;
4012 }
4013
4014 /**
4015  * ring_buffer_iter_peek - peek at the next event to be read
4016  * @iter: The ring buffer iterator
4017  * @ts: The timestamp counter of this event.
4018  *
4019  * This will return the event that will be read next, but does
4020  * not increment the iterator.
4021  */
4022 struct ring_buffer_event *
4023 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4024 {
4025         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4026         struct ring_buffer_event *event;
4027         unsigned long flags;
4028
4029  again:
4030         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4031         event = rb_iter_peek(iter, ts);
4032         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4033
4034         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4035                 goto again;
4036
4037         return event;
4038 }
4039
4040 /**
4041  * ring_buffer_consume - return an event and consume it
4042  * @buffer: The ring buffer to get the next event from
4043  * @cpu: the cpu to read the buffer from
4044  * @ts: a variable to store the timestamp (may be NULL)
4045  * @lost_events: a variable to store if events were lost (may be NULL)
4046  *
4047  * Returns the next event in the ring buffer, and that event is consumed.
4048  * Meaning, that sequential reads will keep returning a different event,
4049  * and eventually empty the ring buffer if the producer is slower.
4050  */
4051 struct ring_buffer_event *
4052 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4053                     unsigned long *lost_events)
4054 {
4055         struct ring_buffer_per_cpu *cpu_buffer;
4056         struct ring_buffer_event *event = NULL;
4057         unsigned long flags;
4058         bool dolock;
4059
4060  again:
4061         /* might be called in atomic */
4062         preempt_disable();
4063
4064         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4065                 goto out;
4066
4067         cpu_buffer = buffer->buffers[cpu];
4068         local_irq_save(flags);
4069         dolock = rb_reader_lock(cpu_buffer);
4070
4071         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4072         if (event) {
4073                 cpu_buffer->lost_events = 0;
4074                 rb_advance_reader(cpu_buffer);
4075         }
4076
4077         rb_reader_unlock(cpu_buffer, dolock);
4078         local_irq_restore(flags);
4079
4080  out:
4081         preempt_enable();
4082
4083         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4084                 goto again;
4085
4086         return event;
4087 }
4088 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4089
4090 /**
4091  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4092  * @buffer: The ring buffer to read from
4093  * @cpu: The cpu buffer to iterate over
4094  * @flags: gfp flags to use for memory allocation
4095  *
4096  * This performs the initial preparations necessary to iterate
4097  * through the buffer.  Memory is allocated, buffer recording
4098  * is disabled, and the iterator pointer is returned to the caller.
4099  *
4100  * Disabling buffer recordng prevents the reading from being
4101  * corrupted. This is not a consuming read, so a producer is not
4102  * expected.
4103  *
4104  * After a sequence of ring_buffer_read_prepare calls, the user is
4105  * expected to make at least one call to ring_buffer_read_prepare_sync.
4106  * Afterwards, ring_buffer_read_start is invoked to get things going
4107  * for real.
4108  *
4109  * This overall must be paired with ring_buffer_read_finish.
4110  */
4111 struct ring_buffer_iter *
4112 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4113 {
4114         struct ring_buffer_per_cpu *cpu_buffer;
4115         struct ring_buffer_iter *iter;
4116
4117         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4118                 return NULL;
4119
4120         iter = kmalloc(sizeof(*iter), flags);
4121         if (!iter)
4122                 return NULL;
4123
4124         cpu_buffer = buffer->buffers[cpu];
4125
4126         iter->cpu_buffer = cpu_buffer;
4127
4128         atomic_inc(&buffer->resize_disabled);
4129         atomic_inc(&cpu_buffer->record_disabled);
4130
4131         return iter;
4132 }
4133 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4134
4135 /**
4136  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4137  *
4138  * All previously invoked ring_buffer_read_prepare calls to prepare
4139  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4140  * calls on those iterators are allowed.
4141  */
4142 void
4143 ring_buffer_read_prepare_sync(void)
4144 {
4145         synchronize_sched();
4146 }
4147 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4148
4149 /**
4150  * ring_buffer_read_start - start a non consuming read of the buffer
4151  * @iter: The iterator returned by ring_buffer_read_prepare
4152  *
4153  * This finalizes the startup of an iteration through the buffer.
4154  * The iterator comes from a call to ring_buffer_read_prepare and
4155  * an intervening ring_buffer_read_prepare_sync must have been
4156  * performed.
4157  *
4158  * Must be paired with ring_buffer_read_finish.
4159  */
4160 void
4161 ring_buffer_read_start(struct ring_buffer_iter *iter)
4162 {
4163         struct ring_buffer_per_cpu *cpu_buffer;
4164         unsigned long flags;
4165
4166         if (!iter)
4167                 return;
4168
4169         cpu_buffer = iter->cpu_buffer;
4170
4171         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4172         arch_spin_lock(&cpu_buffer->lock);
4173         rb_iter_reset(iter);
4174         arch_spin_unlock(&cpu_buffer->lock);
4175         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4176 }
4177 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4178
4179 /**
4180  * ring_buffer_read_finish - finish reading the iterator of the buffer
4181  * @iter: The iterator retrieved by ring_buffer_start
4182  *
4183  * This re-enables the recording to the buffer, and frees the
4184  * iterator.
4185  */
4186 void
4187 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4188 {
4189         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4190         unsigned long flags;
4191
4192         /*
4193          * Ring buffer is disabled from recording, here's a good place
4194          * to check the integrity of the ring buffer.
4195          * Must prevent readers from trying to read, as the check
4196          * clears the HEAD page and readers require it.
4197          */
4198         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4199         rb_check_pages(cpu_buffer);
4200         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4201
4202         atomic_dec(&cpu_buffer->record_disabled);
4203         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4204         kfree(iter);
4205 }
4206 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4207
4208 /**
4209  * ring_buffer_read - read the next item in the ring buffer by the iterator
4210  * @iter: The ring buffer iterator
4211  * @ts: The time stamp of the event read.
4212  *
4213  * This reads the next event in the ring buffer and increments the iterator.
4214  */
4215 struct ring_buffer_event *
4216 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4217 {
4218         struct ring_buffer_event *event;
4219         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4220         unsigned long flags;
4221
4222         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4223  again:
4224         event = rb_iter_peek(iter, ts);
4225         if (!event)
4226                 goto out;
4227
4228         if (event->type_len == RINGBUF_TYPE_PADDING)
4229                 goto again;
4230
4231         rb_advance_iter(iter);
4232  out:
4233         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4234
4235         return event;
4236 }
4237 EXPORT_SYMBOL_GPL(ring_buffer_read);
4238
4239 /**
4240  * ring_buffer_size - return the size of the ring buffer (in bytes)
4241  * @buffer: The ring buffer.
4242  */
4243 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4244 {
4245         /*
4246          * Earlier, this method returned
4247          *      BUF_PAGE_SIZE * buffer->nr_pages
4248          * Since the nr_pages field is now removed, we have converted this to
4249          * return the per cpu buffer value.
4250          */
4251         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4252                 return 0;
4253
4254         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4255 }
4256 EXPORT_SYMBOL_GPL(ring_buffer_size);
4257
4258 static void
4259 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4260 {
4261         rb_head_page_deactivate(cpu_buffer);
4262
4263         cpu_buffer->head_page
4264                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4265         local_set(&cpu_buffer->head_page->write, 0);
4266         local_set(&cpu_buffer->head_page->entries, 0);
4267         local_set(&cpu_buffer->head_page->page->commit, 0);
4268
4269         cpu_buffer->head_page->read = 0;
4270
4271         cpu_buffer->tail_page = cpu_buffer->head_page;
4272         cpu_buffer->commit_page = cpu_buffer->head_page;
4273
4274         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4275         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4276         local_set(&cpu_buffer->reader_page->write, 0);
4277         local_set(&cpu_buffer->reader_page->entries, 0);
4278         local_set(&cpu_buffer->reader_page->page->commit, 0);
4279         cpu_buffer->reader_page->read = 0;
4280
4281         local_set(&cpu_buffer->entries_bytes, 0);
4282         local_set(&cpu_buffer->overrun, 0);
4283         local_set(&cpu_buffer->commit_overrun, 0);
4284         local_set(&cpu_buffer->dropped_events, 0);
4285         local_set(&cpu_buffer->entries, 0);
4286         local_set(&cpu_buffer->committing, 0);
4287         local_set(&cpu_buffer->commits, 0);
4288         cpu_buffer->read = 0;
4289         cpu_buffer->read_bytes = 0;
4290
4291         cpu_buffer->write_stamp = 0;
4292         cpu_buffer->read_stamp = 0;
4293
4294         cpu_buffer->lost_events = 0;
4295         cpu_buffer->last_overrun = 0;
4296
4297         rb_head_page_activate(cpu_buffer);
4298 }
4299
4300 /**
4301  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4302  * @buffer: The ring buffer to reset a per cpu buffer of
4303  * @cpu: The CPU buffer to be reset
4304  */
4305 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4306 {
4307         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4308         unsigned long flags;
4309
4310         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4311                 return;
4312         /* prevent another thread from changing buffer sizes */
4313         mutex_lock(&buffer->mutex);
4314
4315         atomic_inc(&buffer->resize_disabled);
4316         atomic_inc(&cpu_buffer->record_disabled);
4317
4318         /* Make sure all commits have finished */
4319         synchronize_sched();
4320
4321         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4322
4323         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4324                 goto out;
4325
4326         arch_spin_lock(&cpu_buffer->lock);
4327
4328         rb_reset_cpu(cpu_buffer);
4329
4330         arch_spin_unlock(&cpu_buffer->lock);
4331
4332  out:
4333         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4334
4335         atomic_dec(&cpu_buffer->record_disabled);
4336         atomic_dec(&buffer->resize_disabled);
4337
4338         mutex_unlock(&buffer->mutex);
4339 }
4340 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4341
4342 /**
4343  * ring_buffer_reset - reset a ring buffer
4344  * @buffer: The ring buffer to reset all cpu buffers
4345  */
4346 void ring_buffer_reset(struct ring_buffer *buffer)
4347 {
4348         int cpu;
4349
4350         for_each_buffer_cpu(buffer, cpu)
4351                 ring_buffer_reset_cpu(buffer, cpu);
4352 }
4353 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4354
4355 /**
4356  * rind_buffer_empty - is the ring buffer empty?
4357  * @buffer: The ring buffer to test
4358  */
4359 bool ring_buffer_empty(struct ring_buffer *buffer)
4360 {
4361         struct ring_buffer_per_cpu *cpu_buffer;
4362         unsigned long flags;
4363         bool dolock;
4364         int cpu;
4365         int ret;
4366
4367         /* yes this is racy, but if you don't like the race, lock the buffer */
4368         for_each_buffer_cpu(buffer, cpu) {
4369                 cpu_buffer = buffer->buffers[cpu];
4370                 local_irq_save(flags);
4371                 dolock = rb_reader_lock(cpu_buffer);
4372                 ret = rb_per_cpu_empty(cpu_buffer);
4373                 rb_reader_unlock(cpu_buffer, dolock);
4374                 local_irq_restore(flags);
4375
4376                 if (!ret)
4377                         return false;
4378         }
4379
4380         return true;
4381 }
4382 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4383
4384 /**
4385  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4386  * @buffer: The ring buffer
4387  * @cpu: The CPU buffer to test
4388  */
4389 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4390 {
4391         struct ring_buffer_per_cpu *cpu_buffer;
4392         unsigned long flags;
4393         bool dolock;
4394         int ret;
4395
4396         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4397                 return true;
4398
4399         cpu_buffer = buffer->buffers[cpu];
4400         local_irq_save(flags);
4401         dolock = rb_reader_lock(cpu_buffer);
4402         ret = rb_per_cpu_empty(cpu_buffer);
4403         rb_reader_unlock(cpu_buffer, dolock);
4404         local_irq_restore(flags);
4405
4406         return ret;
4407 }
4408 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4409
4410 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4411 /**
4412  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4413  * @buffer_a: One buffer to swap with
4414  * @buffer_b: The other buffer to swap with
4415  *
4416  * This function is useful for tracers that want to take a "snapshot"
4417  * of a CPU buffer and has another back up buffer lying around.
4418  * it is expected that the tracer handles the cpu buffer not being
4419  * used at the moment.
4420  */
4421 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4422                          struct ring_buffer *buffer_b, int cpu)
4423 {
4424         struct ring_buffer_per_cpu *cpu_buffer_a;
4425         struct ring_buffer_per_cpu *cpu_buffer_b;
4426         int ret = -EINVAL;
4427
4428         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4429             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4430                 goto out;
4431
4432         cpu_buffer_a = buffer_a->buffers[cpu];
4433         cpu_buffer_b = buffer_b->buffers[cpu];
4434
4435         /* At least make sure the two buffers are somewhat the same */
4436         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4437                 goto out;
4438
4439         ret = -EAGAIN;
4440
4441         if (atomic_read(&buffer_a->record_disabled))
4442                 goto out;
4443
4444         if (atomic_read(&buffer_b->record_disabled))
4445                 goto out;
4446
4447         if (atomic_read(&cpu_buffer_a->record_disabled))
4448                 goto out;
4449
4450         if (atomic_read(&cpu_buffer_b->record_disabled))
4451                 goto out;
4452
4453         /*
4454          * We can't do a synchronize_sched here because this
4455          * function can be called in atomic context.
4456          * Normally this will be called from the same CPU as cpu.
4457          * If not it's up to the caller to protect this.
4458          */
4459         atomic_inc(&cpu_buffer_a->record_disabled);
4460         atomic_inc(&cpu_buffer_b->record_disabled);
4461
4462         ret = -EBUSY;
4463         if (local_read(&cpu_buffer_a->committing))
4464                 goto out_dec;
4465         if (local_read(&cpu_buffer_b->committing))
4466                 goto out_dec;
4467
4468         buffer_a->buffers[cpu] = cpu_buffer_b;
4469         buffer_b->buffers[cpu] = cpu_buffer_a;
4470
4471         cpu_buffer_b->buffer = buffer_a;
4472         cpu_buffer_a->buffer = buffer_b;
4473
4474         ret = 0;
4475
4476 out_dec:
4477         atomic_dec(&cpu_buffer_a->record_disabled);
4478         atomic_dec(&cpu_buffer_b->record_disabled);
4479 out:
4480         return ret;
4481 }
4482 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4483 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4484
4485 /**
4486  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4487  * @buffer: the buffer to allocate for.
4488  * @cpu: the cpu buffer to allocate.
4489  *
4490  * This function is used in conjunction with ring_buffer_read_page.
4491  * When reading a full page from the ring buffer, these functions
4492  * can be used to speed up the process. The calling function should
4493  * allocate a few pages first with this function. Then when it
4494  * needs to get pages from the ring buffer, it passes the result
4495  * of this function into ring_buffer_read_page, which will swap
4496  * the page that was allocated, with the read page of the buffer.
4497  *
4498  * Returns:
4499  *  The page allocated, or NULL on error.
4500  */
4501 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4502 {
4503         struct buffer_data_page *bpage;
4504         struct page *page;
4505
4506         page = alloc_pages_node(cpu_to_node(cpu),
4507                                 GFP_KERNEL | __GFP_NORETRY, 0);
4508         if (!page)
4509                 return NULL;
4510
4511         bpage = page_address(page);
4512
4513         rb_init_page(bpage);
4514
4515         return bpage;
4516 }
4517 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4518
4519 /**
4520  * ring_buffer_free_read_page - free an allocated read page
4521  * @buffer: the buffer the page was allocate for
4522  * @data: the page to free
4523  *
4524  * Free a page allocated from ring_buffer_alloc_read_page.
4525  */
4526 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4527 {
4528         free_page((unsigned long)data);
4529 }
4530 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4531
4532 /**
4533  * ring_buffer_read_page - extract a page from the ring buffer
4534  * @buffer: buffer to extract from
4535  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4536  * @len: amount to extract
4537  * @cpu: the cpu of the buffer to extract
4538  * @full: should the extraction only happen when the page is full.
4539  *
4540  * This function will pull out a page from the ring buffer and consume it.
4541  * @data_page must be the address of the variable that was returned
4542  * from ring_buffer_alloc_read_page. This is because the page might be used
4543  * to swap with a page in the ring buffer.
4544  *
4545  * for example:
4546  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4547  *      if (!rpage)
4548  *              return error;
4549  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4550  *      if (ret >= 0)
4551  *              process_page(rpage, ret);
4552  *
4553  * When @full is set, the function will not return true unless
4554  * the writer is off the reader page.
4555  *
4556  * Note: it is up to the calling functions to handle sleeps and wakeups.
4557  *  The ring buffer can be used anywhere in the kernel and can not
4558  *  blindly call wake_up. The layer that uses the ring buffer must be
4559  *  responsible for that.
4560  *
4561  * Returns:
4562  *  >=0 if data has been transferred, returns the offset of consumed data.
4563  *  <0 if no data has been transferred.
4564  */
4565 int ring_buffer_read_page(struct ring_buffer *buffer,
4566                           void **data_page, size_t len, int cpu, int full)
4567 {
4568         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4569         struct ring_buffer_event *event;
4570         struct buffer_data_page *bpage;
4571         struct buffer_page *reader;
4572         unsigned long missed_events;
4573         unsigned long flags;
4574         unsigned int commit;
4575         unsigned int read;
4576         u64 save_timestamp;
4577         int ret = -1;
4578
4579         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4580                 goto out;
4581
4582         /*
4583          * If len is not big enough to hold the page header, then
4584          * we can not copy anything.
4585          */
4586         if (len <= BUF_PAGE_HDR_SIZE)
4587                 goto out;
4588
4589         len -= BUF_PAGE_HDR_SIZE;
4590
4591         if (!data_page)
4592                 goto out;
4593
4594         bpage = *data_page;
4595         if (!bpage)
4596                 goto out;
4597
4598         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4599
4600         reader = rb_get_reader_page(cpu_buffer);
4601         if (!reader)
4602                 goto out_unlock;
4603
4604         event = rb_reader_event(cpu_buffer);
4605
4606         read = reader->read;
4607         commit = rb_page_commit(reader);
4608
4609         /* Check if any events were dropped */
4610         missed_events = cpu_buffer->lost_events;
4611
4612         /*
4613          * If this page has been partially read or
4614          * if len is not big enough to read the rest of the page or
4615          * a writer is still on the page, then
4616          * we must copy the data from the page to the buffer.
4617          * Otherwise, we can simply swap the page with the one passed in.
4618          */
4619         if (read || (len < (commit - read)) ||
4620             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4621                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4622                 unsigned int rpos = read;
4623                 unsigned int pos = 0;
4624                 unsigned int size;
4625
4626                 if (full)
4627                         goto out_unlock;
4628
4629                 if (len > (commit - read))
4630                         len = (commit - read);
4631
4632                 /* Always keep the time extend and data together */
4633                 size = rb_event_ts_length(event);
4634
4635                 if (len < size)
4636                         goto out_unlock;
4637
4638                 /* save the current timestamp, since the user will need it */
4639                 save_timestamp = cpu_buffer->read_stamp;
4640
4641                 /* Need to copy one event at a time */
4642                 do {
4643                         /* We need the size of one event, because
4644                          * rb_advance_reader only advances by one event,
4645                          * whereas rb_event_ts_length may include the size of
4646                          * one or two events.
4647                          * We have already ensured there's enough space if this
4648                          * is a time extend. */
4649                         size = rb_event_length(event);
4650                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4651
4652                         len -= size;
4653
4654                         rb_advance_reader(cpu_buffer);
4655                         rpos = reader->read;
4656                         pos += size;
4657
4658                         if (rpos >= commit)
4659                                 break;
4660
4661                         event = rb_reader_event(cpu_buffer);
4662                         /* Always keep the time extend and data together */
4663                         size = rb_event_ts_length(event);
4664                 } while (len >= size);
4665
4666                 /* update bpage */
4667                 local_set(&bpage->commit, pos);
4668                 bpage->time_stamp = save_timestamp;
4669
4670                 /* we copied everything to the beginning */
4671                 read = 0;
4672         } else {
4673                 /* update the entry counter */
4674                 cpu_buffer->read += rb_page_entries(reader);
4675                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4676
4677                 /* swap the pages */
4678                 rb_init_page(bpage);
4679                 bpage = reader->page;
4680                 reader->page = *data_page;
4681                 local_set(&reader->write, 0);
4682                 local_set(&reader->entries, 0);
4683                 reader->read = 0;
4684                 *data_page = bpage;
4685
4686                 /*
4687                  * Use the real_end for the data size,
4688                  * This gives us a chance to store the lost events
4689                  * on the page.
4690                  */
4691                 if (reader->real_end)
4692                         local_set(&bpage->commit, reader->real_end);
4693         }
4694         ret = read;
4695
4696         cpu_buffer->lost_events = 0;
4697
4698         commit = local_read(&bpage->commit);
4699         /*
4700          * Set a flag in the commit field if we lost events
4701          */
4702         if (missed_events) {
4703                 /* If there is room at the end of the page to save the
4704                  * missed events, then record it there.
4705                  */
4706                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4707                         memcpy(&bpage->data[commit], &missed_events,
4708                                sizeof(missed_events));
4709                         local_add(RB_MISSED_STORED, &bpage->commit);
4710                         commit += sizeof(missed_events);
4711                 }
4712                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4713         }
4714
4715         /*
4716          * This page may be off to user land. Zero it out here.
4717          */
4718         if (commit < BUF_PAGE_SIZE)
4719                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4720
4721  out_unlock:
4722         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4723
4724  out:
4725         return ret;
4726 }
4727 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4728
4729 #ifdef CONFIG_HOTPLUG_CPU
4730 static int rb_cpu_notify(struct notifier_block *self,
4731                          unsigned long action, void *hcpu)
4732 {
4733         struct ring_buffer *buffer =
4734                 container_of(self, struct ring_buffer, cpu_notify);
4735         long cpu = (long)hcpu;
4736         long nr_pages_same;
4737         int cpu_i;
4738         unsigned long nr_pages;
4739
4740         switch (action) {
4741         case CPU_UP_PREPARE:
4742         case CPU_UP_PREPARE_FROZEN:
4743                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4744                         return NOTIFY_OK;
4745
4746                 nr_pages = 0;
4747                 nr_pages_same = 1;
4748                 /* check if all cpu sizes are same */
4749                 for_each_buffer_cpu(buffer, cpu_i) {
4750                         /* fill in the size from first enabled cpu */
4751                         if (nr_pages == 0)
4752                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4753                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4754                                 nr_pages_same = 0;
4755                                 break;
4756                         }
4757                 }
4758                 /* allocate minimum pages, user can later expand it */
4759                 if (!nr_pages_same)
4760                         nr_pages = 2;
4761                 buffer->buffers[cpu] =
4762                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4763                 if (!buffer->buffers[cpu]) {
4764                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4765                              cpu);
4766                         return NOTIFY_OK;
4767                 }
4768                 smp_wmb();
4769                 cpumask_set_cpu(cpu, buffer->cpumask);
4770                 break;
4771         case CPU_DOWN_PREPARE:
4772         case CPU_DOWN_PREPARE_FROZEN:
4773                 /*
4774                  * Do nothing.
4775                  *  If we were to free the buffer, then the user would
4776                  *  lose any trace that was in the buffer.
4777                  */
4778                 break;
4779         default:
4780                 break;
4781         }
4782         return NOTIFY_OK;
4783 }
4784 #endif
4785
4786 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4787 /*
4788  * This is a basic integrity check of the ring buffer.
4789  * Late in the boot cycle this test will run when configured in.
4790  * It will kick off a thread per CPU that will go into a loop
4791  * writing to the per cpu ring buffer various sizes of data.
4792  * Some of the data will be large items, some small.
4793  *
4794  * Another thread is created that goes into a spin, sending out
4795  * IPIs to the other CPUs to also write into the ring buffer.
4796  * this is to test the nesting ability of the buffer.
4797  *
4798  * Basic stats are recorded and reported. If something in the
4799  * ring buffer should happen that's not expected, a big warning
4800  * is displayed and all ring buffers are disabled.
4801  */
4802 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4803
4804 struct rb_test_data {
4805         struct ring_buffer      *buffer;
4806         unsigned long           events;
4807         unsigned long           bytes_written;
4808         unsigned long           bytes_alloc;
4809         unsigned long           bytes_dropped;
4810         unsigned long           events_nested;
4811         unsigned long           bytes_written_nested;
4812         unsigned long           bytes_alloc_nested;
4813         unsigned long           bytes_dropped_nested;
4814         int                     min_size_nested;
4815         int                     max_size_nested;
4816         int                     max_size;
4817         int                     min_size;
4818         int                     cpu;
4819         int                     cnt;
4820 };
4821
4822 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4823
4824 /* 1 meg per cpu */
4825 #define RB_TEST_BUFFER_SIZE     1048576
4826
4827 static char rb_string[] __initdata =
4828         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4829         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4830         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4831
4832 static bool rb_test_started __initdata;
4833
4834 struct rb_item {
4835         int size;
4836         char str[];
4837 };
4838
4839 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4840 {
4841         struct ring_buffer_event *event;
4842         struct rb_item *item;
4843         bool started;
4844         int event_len;
4845         int size;
4846         int len;
4847         int cnt;
4848
4849         /* Have nested writes different that what is written */
4850         cnt = data->cnt + (nested ? 27 : 0);
4851
4852         /* Multiply cnt by ~e, to make some unique increment */
4853         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4854
4855         len = size + sizeof(struct rb_item);
4856
4857         started = rb_test_started;
4858         /* read rb_test_started before checking buffer enabled */
4859         smp_rmb();
4860
4861         event = ring_buffer_lock_reserve(data->buffer, len);
4862         if (!event) {
4863                 /* Ignore dropped events before test starts. */
4864                 if (started) {
4865                         if (nested)
4866                                 data->bytes_dropped += len;
4867                         else
4868                                 data->bytes_dropped_nested += len;
4869                 }
4870                 return len;
4871         }
4872
4873         event_len = ring_buffer_event_length(event);
4874
4875         if (RB_WARN_ON(data->buffer, event_len < len))
4876                 goto out;
4877
4878         item = ring_buffer_event_data(event);
4879         item->size = size;
4880         memcpy(item->str, rb_string, size);
4881
4882         if (nested) {
4883                 data->bytes_alloc_nested += event_len;
4884                 data->bytes_written_nested += len;
4885                 data->events_nested++;
4886                 if (!data->min_size_nested || len < data->min_size_nested)
4887                         data->min_size_nested = len;
4888                 if (len > data->max_size_nested)
4889                         data->max_size_nested = len;
4890         } else {
4891                 data->bytes_alloc += event_len;
4892                 data->bytes_written += len;
4893                 data->events++;
4894                 if (!data->min_size || len < data->min_size)
4895                         data->max_size = len;
4896                 if (len > data->max_size)
4897                         data->max_size = len;
4898         }
4899
4900  out:
4901         ring_buffer_unlock_commit(data->buffer, event);
4902
4903         return 0;
4904 }
4905
4906 static __init int rb_test(void *arg)
4907 {
4908         struct rb_test_data *data = arg;
4909
4910         while (!kthread_should_stop()) {
4911                 rb_write_something(data, false);
4912                 data->cnt++;
4913
4914                 set_current_state(TASK_INTERRUPTIBLE);
4915                 /* Now sleep between a min of 100-300us and a max of 1ms */
4916                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4917         }
4918
4919         return 0;
4920 }
4921
4922 static __init void rb_ipi(void *ignore)
4923 {
4924         struct rb_test_data *data;
4925         int cpu = smp_processor_id();
4926
4927         data = &rb_data[cpu];
4928         rb_write_something(data, true);
4929 }
4930
4931 static __init int rb_hammer_test(void *arg)
4932 {
4933         while (!kthread_should_stop()) {
4934
4935                 /* Send an IPI to all cpus to write data! */
4936                 smp_call_function(rb_ipi, NULL, 1);
4937                 /* No sleep, but for non preempt, let others run */
4938                 schedule();
4939         }
4940
4941         return 0;
4942 }
4943
4944 static __init int test_ringbuffer(void)
4945 {
4946         struct task_struct *rb_hammer;
4947         struct ring_buffer *buffer;
4948         int cpu;
4949         int ret = 0;
4950
4951         pr_info("Running ring buffer tests...\n");
4952
4953         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4954         if (WARN_ON(!buffer))
4955                 return 0;
4956
4957         /* Disable buffer so that threads can't write to it yet */
4958         ring_buffer_record_off(buffer);
4959
4960         for_each_online_cpu(cpu) {
4961                 rb_data[cpu].buffer = buffer;
4962                 rb_data[cpu].cpu = cpu;
4963                 rb_data[cpu].cnt = cpu;
4964                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4965                                                  "rbtester/%d", cpu);
4966                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4967                         pr_cont("FAILED\n");
4968                         ret = PTR_ERR(rb_threads[cpu]);
4969                         goto out_free;
4970                 }
4971
4972                 kthread_bind(rb_threads[cpu], cpu);
4973                 wake_up_process(rb_threads[cpu]);
4974         }
4975
4976         /* Now create the rb hammer! */
4977         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4978         if (WARN_ON(IS_ERR(rb_hammer))) {
4979                 pr_cont("FAILED\n");
4980                 ret = PTR_ERR(rb_hammer);
4981                 goto out_free;
4982         }
4983
4984         ring_buffer_record_on(buffer);
4985         /*
4986          * Show buffer is enabled before setting rb_test_started.
4987          * Yes there's a small race window where events could be
4988          * dropped and the thread wont catch it. But when a ring
4989          * buffer gets enabled, there will always be some kind of
4990          * delay before other CPUs see it. Thus, we don't care about
4991          * those dropped events. We care about events dropped after
4992          * the threads see that the buffer is active.
4993          */
4994         smp_wmb();
4995         rb_test_started = true;
4996
4997         set_current_state(TASK_INTERRUPTIBLE);
4998         /* Just run for 10 seconds */;
4999         schedule_timeout(10 * HZ);
5000
5001         kthread_stop(rb_hammer);
5002
5003  out_free:
5004         for_each_online_cpu(cpu) {
5005                 if (!rb_threads[cpu])
5006                         break;
5007                 kthread_stop(rb_threads[cpu]);
5008         }
5009         if (ret) {
5010                 ring_buffer_free(buffer);
5011                 return ret;
5012         }
5013
5014         /* Report! */
5015         pr_info("finished\n");
5016         for_each_online_cpu(cpu) {
5017                 struct ring_buffer_event *event;
5018                 struct rb_test_data *data = &rb_data[cpu];
5019                 struct rb_item *item;
5020                 unsigned long total_events;
5021                 unsigned long total_dropped;
5022                 unsigned long total_written;
5023                 unsigned long total_alloc;
5024                 unsigned long total_read = 0;
5025                 unsigned long total_size = 0;
5026                 unsigned long total_len = 0;
5027                 unsigned long total_lost = 0;
5028                 unsigned long lost;
5029                 int big_event_size;
5030                 int small_event_size;
5031
5032                 ret = -1;
5033
5034                 total_events = data->events + data->events_nested;
5035                 total_written = data->bytes_written + data->bytes_written_nested;
5036                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5037                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5038
5039                 big_event_size = data->max_size + data->max_size_nested;
5040                 small_event_size = data->min_size + data->min_size_nested;
5041
5042                 pr_info("CPU %d:\n", cpu);
5043                 pr_info("              events:    %ld\n", total_events);
5044                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5045                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5046                 pr_info("       written bytes:    %ld\n", total_written);
5047                 pr_info("       biggest event:    %d\n", big_event_size);
5048                 pr_info("      smallest event:    %d\n", small_event_size);
5049
5050                 if (RB_WARN_ON(buffer, total_dropped))
5051                         break;
5052
5053                 ret = 0;
5054
5055                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5056                         total_lost += lost;
5057                         item = ring_buffer_event_data(event);
5058                         total_len += ring_buffer_event_length(event);
5059                         total_size += item->size + sizeof(struct rb_item);
5060                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5061                                 pr_info("FAILED!\n");
5062                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5063                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5064                                 RB_WARN_ON(buffer, 1);
5065                                 ret = -1;
5066                                 break;
5067                         }
5068                         total_read++;
5069                 }
5070                 if (ret)
5071                         break;
5072
5073                 ret = -1;
5074
5075                 pr_info("         read events:   %ld\n", total_read);
5076                 pr_info("         lost events:   %ld\n", total_lost);
5077                 pr_info("        total events:   %ld\n", total_lost + total_read);
5078                 pr_info("  recorded len bytes:   %ld\n", total_len);
5079                 pr_info(" recorded size bytes:   %ld\n", total_size);
5080                 if (total_lost)
5081                         pr_info(" With dropped events, record len and size may not match\n"
5082                                 " alloced and written from above\n");
5083                 if (!total_lost) {
5084                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5085                                        total_size != total_written))
5086                                 break;
5087                 }
5088                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5089                         break;
5090
5091                 ret = 0;
5092         }
5093         if (!ret)
5094                 pr_info("Ring buffer PASSED!\n");
5095
5096         ring_buffer_free(buffer);
5097         return 0;
5098 }
5099
5100 late_initcall(test_ringbuffer);
5101 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */