GNU Linux-libre 4.14.312-gnu1
[releases.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF           (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT            4U
125 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT       0
130 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT       1
133 # define RB_ARCH_ALIGNMENT              8U
134 #endif
135
136 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142         RB_LEN_TIME_EXTEND = 8,
143         RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156         /* padding has a NULL time_delta */
157         event->type_len = RINGBUF_TYPE_PADDING;
158         event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164         unsigned length;
165
166         if (event->type_len)
167                 length = event->type_len * RB_ALIGNMENT;
168         else
169                 length = event->array[0];
170         return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181         switch (event->type_len) {
182         case RINGBUF_TYPE_PADDING:
183                 if (rb_null_event(event))
184                         /* undefined */
185                         return -1;
186                 return  event->array[0] + RB_EVNT_HDR_SIZE;
187
188         case RINGBUF_TYPE_TIME_EXTEND:
189                 return RB_LEN_TIME_EXTEND;
190
191         case RINGBUF_TYPE_TIME_STAMP:
192                 return RB_LEN_TIME_STAMP;
193
194         case RINGBUF_TYPE_DATA:
195                 return rb_event_data_length(event);
196         default:
197                 BUG();
198         }
199         /* not hit */
200         return 0;
201 }
202
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210         unsigned len = 0;
211
212         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213                 /* time extends include the data event after it */
214                 len = RB_LEN_TIME_EXTEND;
215                 event = skip_time_extend(event);
216         }
217         return len + rb_event_length(event);
218 }
219
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235                 event = skip_time_extend(event);
236
237         length = rb_event_length(event);
238         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239                 return length;
240         length -= RB_EVNT_HDR_SIZE;
241         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243         return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252                 event = skip_time_extend(event);
253         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254         /* If length is in len field, then array[0] has the data */
255         if (event->type_len)
256                 return (void *)&event->array[0];
257         /* Otherwise length is in array[0] and array[1] has the data */
258         return (void *)&event->array[1];
259 }
260
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267         return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu)                \
272         for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT        27
275 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST   (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS        (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED        (1 << 30)
282
283 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
285 struct buffer_data_page {
286         u64              time_stamp;    /* page time stamp */
287         local_t          commit;        /* write committed index */
288         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
289 };
290
291 /*
292  * Note, the buffer_page list must be first. The buffer pages
293  * are allocated in cache lines, which means that each buffer
294  * page will be at the beginning of a cache line, and thus
295  * the least significant bits will be zero. We use this to
296  * add flags in the list struct pointers, to make the ring buffer
297  * lockless.
298  */
299 struct buffer_page {
300         struct list_head list;          /* list of buffer pages */
301         local_t          write;         /* index for next write */
302         unsigned         read;          /* index for next read */
303         local_t          entries;       /* entries on this page */
304         unsigned long    real_end;      /* real end of data */
305         struct buffer_data_page *page;  /* Actual data page */
306 };
307
308 /*
309  * The buffer page counters, write and entries, must be reset
310  * atomically when crossing page boundaries. To synchronize this
311  * update, two counters are inserted into the number. One is
312  * the actual counter for the write position or count on the page.
313  *
314  * The other is a counter of updaters. Before an update happens
315  * the update partition of the counter is incremented. This will
316  * allow the updater to update the counter atomically.
317  *
318  * The counter is 20 bits, and the state data is 12.
319  */
320 #define RB_WRITE_MASK           0xfffff
321 #define RB_WRITE_INTCNT         (1 << 20)
322
323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325         local_set(&bpage->commit, 0);
326 }
327
328 /**
329  * ring_buffer_page_len - the size of data on the page.
330  * @page: The page to read
331  *
332  * Returns the amount of data on the page, including buffer page header.
333  */
334 size_t ring_buffer_page_len(void *page)
335 {
336         struct buffer_data_page *bpage = page;
337
338         return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339                 + BUF_PAGE_HDR_SIZE;
340 }
341
342 /*
343  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344  * this issue out.
345  */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348         free_page((unsigned long)bpage->page);
349         kfree(bpage);
350 }
351
352 /*
353  * We need to fit the time_stamp delta into 27 bits.
354  */
355 static inline int test_time_stamp(u64 delta)
356 {
357         if (delta & TS_DELTA_TEST)
358                 return 1;
359         return 0;
360 }
361
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369         struct buffer_data_page field;
370
371         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372                          "offset:0;\tsize:%u;\tsigned:%u;\n",
373                          (unsigned int)sizeof(field.time_stamp),
374                          (unsigned int)is_signed_type(u64));
375
376         trace_seq_printf(s, "\tfield: local_t commit;\t"
377                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
378                          (unsigned int)offsetof(typeof(field), commit),
379                          (unsigned int)sizeof(field.commit),
380                          (unsigned int)is_signed_type(long));
381
382         trace_seq_printf(s, "\tfield: int overwrite;\t"
383                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
384                          (unsigned int)offsetof(typeof(field), commit),
385                          1,
386                          (unsigned int)is_signed_type(long));
387
388         trace_seq_printf(s, "\tfield: char data;\t"
389                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
390                          (unsigned int)offsetof(typeof(field), data),
391                          (unsigned int)BUF_PAGE_SIZE,
392                          (unsigned int)is_signed_type(char));
393
394         return !trace_seq_has_overflowed(s);
395 }
396
397 struct rb_irq_work {
398         struct irq_work                 work;
399         wait_queue_head_t               waiters;
400         wait_queue_head_t               full_waiters;
401         bool                            waiters_pending;
402         bool                            full_waiters_pending;
403         bool                            wakeup_full;
404 };
405
406 /*
407  * Structure to hold event state and handle nested events.
408  */
409 struct rb_event_info {
410         u64                     ts;
411         u64                     delta;
412         unsigned long           length;
413         struct buffer_page      *tail_page;
414         int                     add_timestamp;
415 };
416
417 /*
418  * Used for which event context the event is in.
419  *  TRANSITION = 0
420  *  NMI     = 1
421  *  IRQ     = 2
422  *  SOFTIRQ = 3
423  *  NORMAL  = 4
424  *
425  * See trace_recursive_lock() comment below for more details.
426  */
427 enum {
428         RB_CTX_TRANSITION,
429         RB_CTX_NMI,
430         RB_CTX_IRQ,
431         RB_CTX_SOFTIRQ,
432         RB_CTX_NORMAL,
433         RB_CTX_MAX
434 };
435
436 /*
437  * head_page == tail_page && head == tail then buffer is empty.
438  */
439 struct ring_buffer_per_cpu {
440         int                             cpu;
441         atomic_t                        record_disabled;
442         struct ring_buffer              *buffer;
443         raw_spinlock_t                  reader_lock;    /* serialize readers */
444         arch_spinlock_t                 lock;
445         struct lock_class_key           lock_key;
446         struct buffer_data_page         *free_page;
447         unsigned long                   nr_pages;
448         unsigned int                    current_context;
449         struct list_head                *pages;
450         struct buffer_page              *head_page;     /* read from head */
451         struct buffer_page              *tail_page;     /* write to tail */
452         struct buffer_page              *commit_page;   /* committed pages */
453         struct buffer_page              *reader_page;
454         unsigned long                   lost_events;
455         unsigned long                   last_overrun;
456         local_t                         entries_bytes;
457         local_t                         entries;
458         local_t                         overrun;
459         local_t                         commit_overrun;
460         local_t                         dropped_events;
461         local_t                         committing;
462         local_t                         commits;
463         unsigned long                   read;
464         unsigned long                   read_bytes;
465         u64                             write_stamp;
466         u64                             read_stamp;
467         /* ring buffer pages to update, > 0 to add, < 0 to remove */
468         long                            nr_pages_to_update;
469         struct list_head                new_pages; /* new pages to add */
470         struct work_struct              update_pages_work;
471         struct completion               update_done;
472
473         struct rb_irq_work              irq_work;
474 };
475
476 struct ring_buffer {
477         unsigned                        flags;
478         int                             cpus;
479         atomic_t                        record_disabled;
480         atomic_t                        resize_disabled;
481         cpumask_var_t                   cpumask;
482
483         struct lock_class_key           *reader_lock_key;
484
485         struct mutex                    mutex;
486
487         struct ring_buffer_per_cpu      **buffers;
488
489         struct hlist_node               node;
490         u64                             (*clock)(void);
491
492         struct rb_irq_work              irq_work;
493 };
494
495 struct ring_buffer_iter {
496         struct ring_buffer_per_cpu      *cpu_buffer;
497         unsigned long                   head;
498         struct buffer_page              *head_page;
499         struct buffer_page              *cache_reader_page;
500         unsigned long                   cache_read;
501         u64                             read_stamp;
502 };
503
504 /*
505  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
506  *
507  * Schedules a delayed work to wake up any task that is blocked on the
508  * ring buffer waiters queue.
509  */
510 static void rb_wake_up_waiters(struct irq_work *work)
511 {
512         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
513
514         wake_up_all(&rbwork->waiters);
515         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
516                 rbwork->wakeup_full = false;
517                 rbwork->full_waiters_pending = false;
518                 wake_up_all(&rbwork->full_waiters);
519         }
520 }
521
522 /**
523  * ring_buffer_wait - wait for input to the ring buffer
524  * @buffer: buffer to wait on
525  * @cpu: the cpu buffer to wait on
526  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
527  *
528  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
529  * as data is added to any of the @buffer's cpu buffers. Otherwise
530  * it will wait for data to be added to a specific cpu buffer.
531  */
532 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
533 {
534         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
535         DEFINE_WAIT(wait);
536         struct rb_irq_work *work;
537         int ret = 0;
538
539         /*
540          * Depending on what the caller is waiting for, either any
541          * data in any cpu buffer, or a specific buffer, put the
542          * caller on the appropriate wait queue.
543          */
544         if (cpu == RING_BUFFER_ALL_CPUS) {
545                 work = &buffer->irq_work;
546                 /* Full only makes sense on per cpu reads */
547                 full = false;
548         } else {
549                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
550                         return -ENODEV;
551                 cpu_buffer = buffer->buffers[cpu];
552                 work = &cpu_buffer->irq_work;
553         }
554
555
556         while (true) {
557                 if (full)
558                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
559                 else
560                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
561
562                 /*
563                  * The events can happen in critical sections where
564                  * checking a work queue can cause deadlocks.
565                  * After adding a task to the queue, this flag is set
566                  * only to notify events to try to wake up the queue
567                  * using irq_work.
568                  *
569                  * We don't clear it even if the buffer is no longer
570                  * empty. The flag only causes the next event to run
571                  * irq_work to do the work queue wake up. The worse
572                  * that can happen if we race with !trace_empty() is that
573                  * an event will cause an irq_work to try to wake up
574                  * an empty queue.
575                  *
576                  * There's no reason to protect this flag either, as
577                  * the work queue and irq_work logic will do the necessary
578                  * synchronization for the wake ups. The only thing
579                  * that is necessary is that the wake up happens after
580                  * a task has been queued. It's OK for spurious wake ups.
581                  */
582                 if (full)
583                         work->full_waiters_pending = true;
584                 else
585                         work->waiters_pending = true;
586
587                 if (signal_pending(current)) {
588                         ret = -EINTR;
589                         break;
590                 }
591
592                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
593                         break;
594
595                 if (cpu != RING_BUFFER_ALL_CPUS &&
596                     !ring_buffer_empty_cpu(buffer, cpu)) {
597                         unsigned long flags;
598                         bool pagebusy;
599
600                         if (!full)
601                                 break;
602
603                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
604                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
605                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
606
607                         if (!pagebusy)
608                                 break;
609                 }
610
611                 schedule();
612         }
613
614         if (full)
615                 finish_wait(&work->full_waiters, &wait);
616         else
617                 finish_wait(&work->waiters, &wait);
618
619         return ret;
620 }
621
622 /**
623  * ring_buffer_poll_wait - poll on buffer input
624  * @buffer: buffer to wait on
625  * @cpu: the cpu buffer to wait on
626  * @filp: the file descriptor
627  * @poll_table: The poll descriptor
628  *
629  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
630  * as data is added to any of the @buffer's cpu buffers. Otherwise
631  * it will wait for data to be added to a specific cpu buffer.
632  *
633  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
634  * zero otherwise.
635  */
636 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
637                           struct file *filp, poll_table *poll_table)
638 {
639         struct ring_buffer_per_cpu *cpu_buffer;
640         struct rb_irq_work *work;
641
642         if (cpu == RING_BUFFER_ALL_CPUS)
643                 work = &buffer->irq_work;
644         else {
645                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
646                         return -EINVAL;
647
648                 cpu_buffer = buffer->buffers[cpu];
649                 work = &cpu_buffer->irq_work;
650         }
651
652         poll_wait(filp, &work->waiters, poll_table);
653         work->waiters_pending = true;
654         /*
655          * There's a tight race between setting the waiters_pending and
656          * checking if the ring buffer is empty.  Once the waiters_pending bit
657          * is set, the next event will wake the task up, but we can get stuck
658          * if there's only a single event in.
659          *
660          * FIXME: Ideally, we need a memory barrier on the writer side as well,
661          * but adding a memory barrier to all events will cause too much of a
662          * performance hit in the fast path.  We only need a memory barrier when
663          * the buffer goes from empty to having content.  But as this race is
664          * extremely small, and it's not a problem if another event comes in, we
665          * will fix it later.
666          */
667         smp_mb();
668
669         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
670             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
671                 return POLLIN | POLLRDNORM;
672         return 0;
673 }
674
675 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
676 #define RB_WARN_ON(b, cond)                                             \
677         ({                                                              \
678                 int _____ret = unlikely(cond);                          \
679                 if (_____ret) {                                         \
680                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
681                                 struct ring_buffer_per_cpu *__b =       \
682                                         (void *)b;                      \
683                                 atomic_inc(&__b->buffer->record_disabled); \
684                         } else                                          \
685                                 atomic_inc(&b->record_disabled);        \
686                         WARN_ON(1);                                     \
687                 }                                                       \
688                 _____ret;                                               \
689         })
690
691 /* Up this if you want to test the TIME_EXTENTS and normalization */
692 #define DEBUG_SHIFT 0
693
694 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
695 {
696         /* shift to debug/test normalization and TIME_EXTENTS */
697         return buffer->clock() << DEBUG_SHIFT;
698 }
699
700 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
701 {
702         u64 time;
703
704         preempt_disable_notrace();
705         time = rb_time_stamp(buffer);
706         preempt_enable_notrace();
707
708         return time;
709 }
710 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
711
712 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
713                                       int cpu, u64 *ts)
714 {
715         /* Just stupid testing the normalize function and deltas */
716         *ts >>= DEBUG_SHIFT;
717 }
718 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
719
720 /*
721  * Making the ring buffer lockless makes things tricky.
722  * Although writes only happen on the CPU that they are on,
723  * and they only need to worry about interrupts. Reads can
724  * happen on any CPU.
725  *
726  * The reader page is always off the ring buffer, but when the
727  * reader finishes with a page, it needs to swap its page with
728  * a new one from the buffer. The reader needs to take from
729  * the head (writes go to the tail). But if a writer is in overwrite
730  * mode and wraps, it must push the head page forward.
731  *
732  * Here lies the problem.
733  *
734  * The reader must be careful to replace only the head page, and
735  * not another one. As described at the top of the file in the
736  * ASCII art, the reader sets its old page to point to the next
737  * page after head. It then sets the page after head to point to
738  * the old reader page. But if the writer moves the head page
739  * during this operation, the reader could end up with the tail.
740  *
741  * We use cmpxchg to help prevent this race. We also do something
742  * special with the page before head. We set the LSB to 1.
743  *
744  * When the writer must push the page forward, it will clear the
745  * bit that points to the head page, move the head, and then set
746  * the bit that points to the new head page.
747  *
748  * We also don't want an interrupt coming in and moving the head
749  * page on another writer. Thus we use the second LSB to catch
750  * that too. Thus:
751  *
752  * head->list->prev->next        bit 1          bit 0
753  *                              -------        -------
754  * Normal page                     0              0
755  * Points to head page             0              1
756  * New head page                   1              0
757  *
758  * Note we can not trust the prev pointer of the head page, because:
759  *
760  * +----+       +-----+        +-----+
761  * |    |------>|  T  |---X--->|  N  |
762  * |    |<------|     |        |     |
763  * +----+       +-----+        +-----+
764  *   ^                           ^ |
765  *   |          +-----+          | |
766  *   +----------|  R  |----------+ |
767  *              |     |<-----------+
768  *              +-----+
769  *
770  * Key:  ---X-->  HEAD flag set in pointer
771  *         T      Tail page
772  *         R      Reader page
773  *         N      Next page
774  *
775  * (see __rb_reserve_next() to see where this happens)
776  *
777  *  What the above shows is that the reader just swapped out
778  *  the reader page with a page in the buffer, but before it
779  *  could make the new header point back to the new page added
780  *  it was preempted by a writer. The writer moved forward onto
781  *  the new page added by the reader and is about to move forward
782  *  again.
783  *
784  *  You can see, it is legitimate for the previous pointer of
785  *  the head (or any page) not to point back to itself. But only
786  *  temporarially.
787  */
788
789 #define RB_PAGE_NORMAL          0UL
790 #define RB_PAGE_HEAD            1UL
791 #define RB_PAGE_UPDATE          2UL
792
793
794 #define RB_FLAG_MASK            3UL
795
796 /* PAGE_MOVED is not part of the mask */
797 #define RB_PAGE_MOVED           4UL
798
799 /*
800  * rb_list_head - remove any bit
801  */
802 static struct list_head *rb_list_head(struct list_head *list)
803 {
804         unsigned long val = (unsigned long)list;
805
806         return (struct list_head *)(val & ~RB_FLAG_MASK);
807 }
808
809 /*
810  * rb_is_head_page - test if the given page is the head page
811  *
812  * Because the reader may move the head_page pointer, we can
813  * not trust what the head page is (it may be pointing to
814  * the reader page). But if the next page is a header page,
815  * its flags will be non zero.
816  */
817 static inline int
818 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
819                 struct buffer_page *page, struct list_head *list)
820 {
821         unsigned long val;
822
823         val = (unsigned long)list->next;
824
825         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
826                 return RB_PAGE_MOVED;
827
828         return val & RB_FLAG_MASK;
829 }
830
831 /*
832  * rb_is_reader_page
833  *
834  * The unique thing about the reader page, is that, if the
835  * writer is ever on it, the previous pointer never points
836  * back to the reader page.
837  */
838 static bool rb_is_reader_page(struct buffer_page *page)
839 {
840         struct list_head *list = page->list.prev;
841
842         return rb_list_head(list->next) != &page->list;
843 }
844
845 /*
846  * rb_set_list_to_head - set a list_head to be pointing to head.
847  */
848 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
849                                 struct list_head *list)
850 {
851         unsigned long *ptr;
852
853         ptr = (unsigned long *)&list->next;
854         *ptr |= RB_PAGE_HEAD;
855         *ptr &= ~RB_PAGE_UPDATE;
856 }
857
858 /*
859  * rb_head_page_activate - sets up head page
860  */
861 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
862 {
863         struct buffer_page *head;
864
865         head = cpu_buffer->head_page;
866         if (!head)
867                 return;
868
869         /*
870          * Set the previous list pointer to have the HEAD flag.
871          */
872         rb_set_list_to_head(cpu_buffer, head->list.prev);
873 }
874
875 static void rb_list_head_clear(struct list_head *list)
876 {
877         unsigned long *ptr = (unsigned long *)&list->next;
878
879         *ptr &= ~RB_FLAG_MASK;
880 }
881
882 /*
883  * rb_head_page_dactivate - clears head page ptr (for free list)
884  */
885 static void
886 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
887 {
888         struct list_head *hd;
889
890         /* Go through the whole list and clear any pointers found. */
891         rb_list_head_clear(cpu_buffer->pages);
892
893         list_for_each(hd, cpu_buffer->pages)
894                 rb_list_head_clear(hd);
895 }
896
897 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
898                             struct buffer_page *head,
899                             struct buffer_page *prev,
900                             int old_flag, int new_flag)
901 {
902         struct list_head *list;
903         unsigned long val = (unsigned long)&head->list;
904         unsigned long ret;
905
906         list = &prev->list;
907
908         val &= ~RB_FLAG_MASK;
909
910         ret = cmpxchg((unsigned long *)&list->next,
911                       val | old_flag, val | new_flag);
912
913         /* check if the reader took the page */
914         if ((ret & ~RB_FLAG_MASK) != val)
915                 return RB_PAGE_MOVED;
916
917         return ret & RB_FLAG_MASK;
918 }
919
920 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
921                                    struct buffer_page *head,
922                                    struct buffer_page *prev,
923                                    int old_flag)
924 {
925         return rb_head_page_set(cpu_buffer, head, prev,
926                                 old_flag, RB_PAGE_UPDATE);
927 }
928
929 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
930                                  struct buffer_page *head,
931                                  struct buffer_page *prev,
932                                  int old_flag)
933 {
934         return rb_head_page_set(cpu_buffer, head, prev,
935                                 old_flag, RB_PAGE_HEAD);
936 }
937
938 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
939                                    struct buffer_page *head,
940                                    struct buffer_page *prev,
941                                    int old_flag)
942 {
943         return rb_head_page_set(cpu_buffer, head, prev,
944                                 old_flag, RB_PAGE_NORMAL);
945 }
946
947 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
948                                struct buffer_page **bpage)
949 {
950         struct list_head *p = rb_list_head((*bpage)->list.next);
951
952         *bpage = list_entry(p, struct buffer_page, list);
953 }
954
955 static struct buffer_page *
956 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
957 {
958         struct buffer_page *head;
959         struct buffer_page *page;
960         struct list_head *list;
961         int i;
962
963         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
964                 return NULL;
965
966         /* sanity check */
967         list = cpu_buffer->pages;
968         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
969                 return NULL;
970
971         page = head = cpu_buffer->head_page;
972         /*
973          * It is possible that the writer moves the header behind
974          * where we started, and we miss in one loop.
975          * A second loop should grab the header, but we'll do
976          * three loops just because I'm paranoid.
977          */
978         for (i = 0; i < 3; i++) {
979                 do {
980                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
981                                 cpu_buffer->head_page = page;
982                                 return page;
983                         }
984                         rb_inc_page(cpu_buffer, &page);
985                 } while (page != head);
986         }
987
988         RB_WARN_ON(cpu_buffer, 1);
989
990         return NULL;
991 }
992
993 static int rb_head_page_replace(struct buffer_page *old,
994                                 struct buffer_page *new)
995 {
996         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
997         unsigned long val;
998         unsigned long ret;
999
1000         val = *ptr & ~RB_FLAG_MASK;
1001         val |= RB_PAGE_HEAD;
1002
1003         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1004
1005         return ret == val;
1006 }
1007
1008 /*
1009  * rb_tail_page_update - move the tail page forward
1010  */
1011 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1012                                struct buffer_page *tail_page,
1013                                struct buffer_page *next_page)
1014 {
1015         unsigned long old_entries;
1016         unsigned long old_write;
1017
1018         /*
1019          * The tail page now needs to be moved forward.
1020          *
1021          * We need to reset the tail page, but without messing
1022          * with possible erasing of data brought in by interrupts
1023          * that have moved the tail page and are currently on it.
1024          *
1025          * We add a counter to the write field to denote this.
1026          */
1027         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1028         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1029
1030         /*
1031          * Just make sure we have seen our old_write and synchronize
1032          * with any interrupts that come in.
1033          */
1034         barrier();
1035
1036         /*
1037          * If the tail page is still the same as what we think
1038          * it is, then it is up to us to update the tail
1039          * pointer.
1040          */
1041         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1042                 /* Zero the write counter */
1043                 unsigned long val = old_write & ~RB_WRITE_MASK;
1044                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1045
1046                 /*
1047                  * This will only succeed if an interrupt did
1048                  * not come in and change it. In which case, we
1049                  * do not want to modify it.
1050                  *
1051                  * We add (void) to let the compiler know that we do not care
1052                  * about the return value of these functions. We use the
1053                  * cmpxchg to only update if an interrupt did not already
1054                  * do it for us. If the cmpxchg fails, we don't care.
1055                  */
1056                 (void)local_cmpxchg(&next_page->write, old_write, val);
1057                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1058
1059                 /*
1060                  * No need to worry about races with clearing out the commit.
1061                  * it only can increment when a commit takes place. But that
1062                  * only happens in the outer most nested commit.
1063                  */
1064                 local_set(&next_page->page->commit, 0);
1065
1066                 /* Again, either we update tail_page or an interrupt does */
1067                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1068         }
1069 }
1070
1071 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1072                           struct buffer_page *bpage)
1073 {
1074         unsigned long val = (unsigned long)bpage;
1075
1076         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1077                 return 1;
1078
1079         return 0;
1080 }
1081
1082 /**
1083  * rb_check_list - make sure a pointer to a list has the last bits zero
1084  */
1085 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1086                          struct list_head *list)
1087 {
1088         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1089                 return 1;
1090         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1091                 return 1;
1092         return 0;
1093 }
1094
1095 /**
1096  * rb_check_pages - integrity check of buffer pages
1097  * @cpu_buffer: CPU buffer with pages to test
1098  *
1099  * As a safety measure we check to make sure the data pages have not
1100  * been corrupted.
1101  */
1102 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1103 {
1104         struct list_head *head = cpu_buffer->pages;
1105         struct buffer_page *bpage, *tmp;
1106
1107         /* Reset the head page if it exists */
1108         if (cpu_buffer->head_page)
1109                 rb_set_head_page(cpu_buffer);
1110
1111         rb_head_page_deactivate(cpu_buffer);
1112
1113         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1114                 return -1;
1115         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1116                 return -1;
1117
1118         if (rb_check_list(cpu_buffer, head))
1119                 return -1;
1120
1121         list_for_each_entry_safe(bpage, tmp, head, list) {
1122                 if (RB_WARN_ON(cpu_buffer,
1123                                bpage->list.next->prev != &bpage->list))
1124                         return -1;
1125                 if (RB_WARN_ON(cpu_buffer,
1126                                bpage->list.prev->next != &bpage->list))
1127                         return -1;
1128                 if (rb_check_list(cpu_buffer, &bpage->list))
1129                         return -1;
1130         }
1131
1132         rb_head_page_activate(cpu_buffer);
1133
1134         return 0;
1135 }
1136
1137 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1138 {
1139         struct buffer_page *bpage, *tmp;
1140         long i;
1141
1142         /* Check if the available memory is there first */
1143         i = si_mem_available();
1144         if (i < nr_pages)
1145                 return -ENOMEM;
1146
1147         for (i = 0; i < nr_pages; i++) {
1148                 struct page *page;
1149                 /*
1150                  * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1151                  * gracefully without invoking oom-killer and the system is not
1152                  * destabilized.
1153                  */
1154                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1155                                     GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1156                                     cpu_to_node(cpu));
1157                 if (!bpage)
1158                         goto free_pages;
1159
1160                 list_add(&bpage->list, pages);
1161
1162                 page = alloc_pages_node(cpu_to_node(cpu),
1163                                         GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1164                 if (!page)
1165                         goto free_pages;
1166                 bpage->page = page_address(page);
1167                 rb_init_page(bpage->page);
1168         }
1169
1170         return 0;
1171
1172 free_pages:
1173         list_for_each_entry_safe(bpage, tmp, pages, list) {
1174                 list_del_init(&bpage->list);
1175                 free_buffer_page(bpage);
1176         }
1177
1178         return -ENOMEM;
1179 }
1180
1181 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1182                              unsigned long nr_pages)
1183 {
1184         LIST_HEAD(pages);
1185
1186         WARN_ON(!nr_pages);
1187
1188         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1189                 return -ENOMEM;
1190
1191         /*
1192          * The ring buffer page list is a circular list that does not
1193          * start and end with a list head. All page list items point to
1194          * other pages.
1195          */
1196         cpu_buffer->pages = pages.next;
1197         list_del(&pages);
1198
1199         cpu_buffer->nr_pages = nr_pages;
1200
1201         rb_check_pages(cpu_buffer);
1202
1203         return 0;
1204 }
1205
1206 static struct ring_buffer_per_cpu *
1207 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1208 {
1209         struct ring_buffer_per_cpu *cpu_buffer;
1210         struct buffer_page *bpage;
1211         struct page *page;
1212         int ret;
1213
1214         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1215                                   GFP_KERNEL, cpu_to_node(cpu));
1216         if (!cpu_buffer)
1217                 return NULL;
1218
1219         cpu_buffer->cpu = cpu;
1220         cpu_buffer->buffer = buffer;
1221         raw_spin_lock_init(&cpu_buffer->reader_lock);
1222         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1223         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1224         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1225         init_completion(&cpu_buffer->update_done);
1226         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1227         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1228         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1229
1230         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1231                             GFP_KERNEL, cpu_to_node(cpu));
1232         if (!bpage)
1233                 goto fail_free_buffer;
1234
1235         rb_check_bpage(cpu_buffer, bpage);
1236
1237         cpu_buffer->reader_page = bpage;
1238         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1239         if (!page)
1240                 goto fail_free_reader;
1241         bpage->page = page_address(page);
1242         rb_init_page(bpage->page);
1243
1244         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1245         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1246
1247         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1248         if (ret < 0)
1249                 goto fail_free_reader;
1250
1251         cpu_buffer->head_page
1252                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1253         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1254
1255         rb_head_page_activate(cpu_buffer);
1256
1257         return cpu_buffer;
1258
1259  fail_free_reader:
1260         free_buffer_page(cpu_buffer->reader_page);
1261
1262  fail_free_buffer:
1263         kfree(cpu_buffer);
1264         return NULL;
1265 }
1266
1267 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1268 {
1269         struct list_head *head = cpu_buffer->pages;
1270         struct buffer_page *bpage, *tmp;
1271
1272         free_buffer_page(cpu_buffer->reader_page);
1273
1274         if (head) {
1275                 rb_head_page_deactivate(cpu_buffer);
1276
1277                 list_for_each_entry_safe(bpage, tmp, head, list) {
1278                         list_del_init(&bpage->list);
1279                         free_buffer_page(bpage);
1280                 }
1281                 bpage = list_entry(head, struct buffer_page, list);
1282                 free_buffer_page(bpage);
1283         }
1284
1285         kfree(cpu_buffer);
1286 }
1287
1288 /**
1289  * __ring_buffer_alloc - allocate a new ring_buffer
1290  * @size: the size in bytes per cpu that is needed.
1291  * @flags: attributes to set for the ring buffer.
1292  *
1293  * Currently the only flag that is available is the RB_FL_OVERWRITE
1294  * flag. This flag means that the buffer will overwrite old data
1295  * when the buffer wraps. If this flag is not set, the buffer will
1296  * drop data when the tail hits the head.
1297  */
1298 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1299                                         struct lock_class_key *key)
1300 {
1301         struct ring_buffer *buffer;
1302         long nr_pages;
1303         int bsize;
1304         int cpu;
1305         int ret;
1306
1307         /* keep it in its own cache line */
1308         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1309                          GFP_KERNEL);
1310         if (!buffer)
1311                 return NULL;
1312
1313         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1314                 goto fail_free_buffer;
1315
1316         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1317         buffer->flags = flags;
1318         buffer->clock = trace_clock_local;
1319         buffer->reader_lock_key = key;
1320
1321         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1322         init_waitqueue_head(&buffer->irq_work.waiters);
1323
1324         /* need at least two pages */
1325         if (nr_pages < 2)
1326                 nr_pages = 2;
1327
1328         buffer->cpus = nr_cpu_ids;
1329
1330         bsize = sizeof(void *) * nr_cpu_ids;
1331         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1332                                   GFP_KERNEL);
1333         if (!buffer->buffers)
1334                 goto fail_free_cpumask;
1335
1336         cpu = raw_smp_processor_id();
1337         cpumask_set_cpu(cpu, buffer->cpumask);
1338         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1339         if (!buffer->buffers[cpu])
1340                 goto fail_free_buffers;
1341
1342         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1343         if (ret < 0)
1344                 goto fail_free_buffers;
1345
1346         mutex_init(&buffer->mutex);
1347
1348         return buffer;
1349
1350  fail_free_buffers:
1351         for_each_buffer_cpu(buffer, cpu) {
1352                 if (buffer->buffers[cpu])
1353                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1354         }
1355         kfree(buffer->buffers);
1356
1357  fail_free_cpumask:
1358         free_cpumask_var(buffer->cpumask);
1359
1360  fail_free_buffer:
1361         kfree(buffer);
1362         return NULL;
1363 }
1364 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1365
1366 /**
1367  * ring_buffer_free - free a ring buffer.
1368  * @buffer: the buffer to free.
1369  */
1370 void
1371 ring_buffer_free(struct ring_buffer *buffer)
1372 {
1373         int cpu;
1374
1375         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1376
1377         for_each_buffer_cpu(buffer, cpu)
1378                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1379
1380         kfree(buffer->buffers);
1381         free_cpumask_var(buffer->cpumask);
1382
1383         kfree(buffer);
1384 }
1385 EXPORT_SYMBOL_GPL(ring_buffer_free);
1386
1387 void ring_buffer_set_clock(struct ring_buffer *buffer,
1388                            u64 (*clock)(void))
1389 {
1390         buffer->clock = clock;
1391 }
1392
1393 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1394
1395 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1396 {
1397         return local_read(&bpage->entries) & RB_WRITE_MASK;
1398 }
1399
1400 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1401 {
1402         return local_read(&bpage->write) & RB_WRITE_MASK;
1403 }
1404
1405 static int
1406 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1407 {
1408         struct list_head *tail_page, *to_remove, *next_page;
1409         struct buffer_page *to_remove_page, *tmp_iter_page;
1410         struct buffer_page *last_page, *first_page;
1411         unsigned long nr_removed;
1412         unsigned long head_bit;
1413         int page_entries;
1414
1415         head_bit = 0;
1416
1417         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1418         atomic_inc(&cpu_buffer->record_disabled);
1419         /*
1420          * We don't race with the readers since we have acquired the reader
1421          * lock. We also don't race with writers after disabling recording.
1422          * This makes it easy to figure out the first and the last page to be
1423          * removed from the list. We unlink all the pages in between including
1424          * the first and last pages. This is done in a busy loop so that we
1425          * lose the least number of traces.
1426          * The pages are freed after we restart recording and unlock readers.
1427          */
1428         tail_page = &cpu_buffer->tail_page->list;
1429
1430         /*
1431          * tail page might be on reader page, we remove the next page
1432          * from the ring buffer
1433          */
1434         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1435                 tail_page = rb_list_head(tail_page->next);
1436         to_remove = tail_page;
1437
1438         /* start of pages to remove */
1439         first_page = list_entry(rb_list_head(to_remove->next),
1440                                 struct buffer_page, list);
1441
1442         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1443                 to_remove = rb_list_head(to_remove)->next;
1444                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1445         }
1446
1447         next_page = rb_list_head(to_remove)->next;
1448
1449         /*
1450          * Now we remove all pages between tail_page and next_page.
1451          * Make sure that we have head_bit value preserved for the
1452          * next page
1453          */
1454         tail_page->next = (struct list_head *)((unsigned long)next_page |
1455                                                 head_bit);
1456         next_page = rb_list_head(next_page);
1457         next_page->prev = tail_page;
1458
1459         /* make sure pages points to a valid page in the ring buffer */
1460         cpu_buffer->pages = next_page;
1461
1462         /* update head page */
1463         if (head_bit)
1464                 cpu_buffer->head_page = list_entry(next_page,
1465                                                 struct buffer_page, list);
1466
1467         /*
1468          * change read pointer to make sure any read iterators reset
1469          * themselves
1470          */
1471         cpu_buffer->read = 0;
1472
1473         /* pages are removed, resume tracing and then free the pages */
1474         atomic_dec(&cpu_buffer->record_disabled);
1475         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1476
1477         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1478
1479         /* last buffer page to remove */
1480         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1481                                 list);
1482         tmp_iter_page = first_page;
1483
1484         do {
1485                 cond_resched();
1486
1487                 to_remove_page = tmp_iter_page;
1488                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1489
1490                 /* update the counters */
1491                 page_entries = rb_page_entries(to_remove_page);
1492                 if (page_entries) {
1493                         /*
1494                          * If something was added to this page, it was full
1495                          * since it is not the tail page. So we deduct the
1496                          * bytes consumed in ring buffer from here.
1497                          * Increment overrun to account for the lost events.
1498                          */
1499                         local_add(page_entries, &cpu_buffer->overrun);
1500                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1501                 }
1502
1503                 /*
1504                  * We have already removed references to this list item, just
1505                  * free up the buffer_page and its page
1506                  */
1507                 free_buffer_page(to_remove_page);
1508                 nr_removed--;
1509
1510         } while (to_remove_page != last_page);
1511
1512         RB_WARN_ON(cpu_buffer, nr_removed);
1513
1514         return nr_removed == 0;
1515 }
1516
1517 static int
1518 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1519 {
1520         struct list_head *pages = &cpu_buffer->new_pages;
1521         int retries, success;
1522
1523         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1524         /*
1525          * We are holding the reader lock, so the reader page won't be swapped
1526          * in the ring buffer. Now we are racing with the writer trying to
1527          * move head page and the tail page.
1528          * We are going to adapt the reader page update process where:
1529          * 1. We first splice the start and end of list of new pages between
1530          *    the head page and its previous page.
1531          * 2. We cmpxchg the prev_page->next to point from head page to the
1532          *    start of new pages list.
1533          * 3. Finally, we update the head->prev to the end of new list.
1534          *
1535          * We will try this process 10 times, to make sure that we don't keep
1536          * spinning.
1537          */
1538         retries = 10;
1539         success = 0;
1540         while (retries--) {
1541                 struct list_head *head_page, *prev_page, *r;
1542                 struct list_head *last_page, *first_page;
1543                 struct list_head *head_page_with_bit;
1544
1545                 head_page = &rb_set_head_page(cpu_buffer)->list;
1546                 if (!head_page)
1547                         break;
1548                 prev_page = head_page->prev;
1549
1550                 first_page = pages->next;
1551                 last_page  = pages->prev;
1552
1553                 head_page_with_bit = (struct list_head *)
1554                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1555
1556                 last_page->next = head_page_with_bit;
1557                 first_page->prev = prev_page;
1558
1559                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1560
1561                 if (r == head_page_with_bit) {
1562                         /*
1563                          * yay, we replaced the page pointer to our new list,
1564                          * now, we just have to update to head page's prev
1565                          * pointer to point to end of list
1566                          */
1567                         head_page->prev = last_page;
1568                         success = 1;
1569                         break;
1570                 }
1571         }
1572
1573         if (success)
1574                 INIT_LIST_HEAD(pages);
1575         /*
1576          * If we weren't successful in adding in new pages, warn and stop
1577          * tracing
1578          */
1579         RB_WARN_ON(cpu_buffer, !success);
1580         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1581
1582         /* free pages if they weren't inserted */
1583         if (!success) {
1584                 struct buffer_page *bpage, *tmp;
1585                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1586                                          list) {
1587                         list_del_init(&bpage->list);
1588                         free_buffer_page(bpage);
1589                 }
1590         }
1591         return success;
1592 }
1593
1594 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1595 {
1596         int success;
1597
1598         if (cpu_buffer->nr_pages_to_update > 0)
1599                 success = rb_insert_pages(cpu_buffer);
1600         else
1601                 success = rb_remove_pages(cpu_buffer,
1602                                         -cpu_buffer->nr_pages_to_update);
1603
1604         if (success)
1605                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1606 }
1607
1608 static void update_pages_handler(struct work_struct *work)
1609 {
1610         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1611                         struct ring_buffer_per_cpu, update_pages_work);
1612         rb_update_pages(cpu_buffer);
1613         complete(&cpu_buffer->update_done);
1614 }
1615
1616 /**
1617  * ring_buffer_resize - resize the ring buffer
1618  * @buffer: the buffer to resize.
1619  * @size: the new size.
1620  * @cpu_id: the cpu buffer to resize
1621  *
1622  * Minimum size is 2 * BUF_PAGE_SIZE.
1623  *
1624  * Returns 0 on success and < 0 on failure.
1625  */
1626 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1627                         int cpu_id)
1628 {
1629         struct ring_buffer_per_cpu *cpu_buffer;
1630         unsigned long nr_pages;
1631         int cpu, err;
1632
1633         /*
1634          * Always succeed at resizing a non-existent buffer:
1635          */
1636         if (!buffer)
1637                 return 0;
1638
1639         /* Make sure the requested buffer exists */
1640         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1641             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1642                 return 0;
1643
1644         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1645
1646         /* we need a minimum of two pages */
1647         if (nr_pages < 2)
1648                 nr_pages = 2;
1649
1650         size = nr_pages * BUF_PAGE_SIZE;
1651
1652         /*
1653          * Don't succeed if resizing is disabled, as a reader might be
1654          * manipulating the ring buffer and is expecting a sane state while
1655          * this is true.
1656          */
1657         if (atomic_read(&buffer->resize_disabled))
1658                 return -EBUSY;
1659
1660         /* prevent another thread from changing buffer sizes */
1661         mutex_lock(&buffer->mutex);
1662
1663         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1664                 /* calculate the pages to update */
1665                 for_each_buffer_cpu(buffer, cpu) {
1666                         cpu_buffer = buffer->buffers[cpu];
1667
1668                         cpu_buffer->nr_pages_to_update = nr_pages -
1669                                                         cpu_buffer->nr_pages;
1670                         /*
1671                          * nothing more to do for removing pages or no update
1672                          */
1673                         if (cpu_buffer->nr_pages_to_update <= 0)
1674                                 continue;
1675                         /*
1676                          * to add pages, make sure all new pages can be
1677                          * allocated without receiving ENOMEM
1678                          */
1679                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1680                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1681                                                 &cpu_buffer->new_pages, cpu)) {
1682                                 /* not enough memory for new pages */
1683                                 err = -ENOMEM;
1684                                 goto out_err;
1685                         }
1686                 }
1687
1688                 get_online_cpus();
1689                 /*
1690                  * Fire off all the required work handlers
1691                  * We can't schedule on offline CPUs, but it's not necessary
1692                  * since we can change their buffer sizes without any race.
1693                  */
1694                 for_each_buffer_cpu(buffer, cpu) {
1695                         cpu_buffer = buffer->buffers[cpu];
1696                         if (!cpu_buffer->nr_pages_to_update)
1697                                 continue;
1698
1699                         /* Can't run something on an offline CPU. */
1700                         if (!cpu_online(cpu)) {
1701                                 rb_update_pages(cpu_buffer);
1702                                 cpu_buffer->nr_pages_to_update = 0;
1703                         } else {
1704                                 schedule_work_on(cpu,
1705                                                 &cpu_buffer->update_pages_work);
1706                         }
1707                 }
1708
1709                 /* wait for all the updates to complete */
1710                 for_each_buffer_cpu(buffer, cpu) {
1711                         cpu_buffer = buffer->buffers[cpu];
1712                         if (!cpu_buffer->nr_pages_to_update)
1713                                 continue;
1714
1715                         if (cpu_online(cpu))
1716                                 wait_for_completion(&cpu_buffer->update_done);
1717                         cpu_buffer->nr_pages_to_update = 0;
1718                 }
1719
1720                 put_online_cpus();
1721         } else {
1722                 /* Make sure this CPU has been intitialized */
1723                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1724                         goto out;
1725
1726                 cpu_buffer = buffer->buffers[cpu_id];
1727
1728                 if (nr_pages == cpu_buffer->nr_pages)
1729                         goto out;
1730
1731                 cpu_buffer->nr_pages_to_update = nr_pages -
1732                                                 cpu_buffer->nr_pages;
1733
1734                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1735                 if (cpu_buffer->nr_pages_to_update > 0 &&
1736                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1737                                             &cpu_buffer->new_pages, cpu_id)) {
1738                         err = -ENOMEM;
1739                         goto out_err;
1740                 }
1741
1742                 get_online_cpus();
1743
1744                 /* Can't run something on an offline CPU. */
1745                 if (!cpu_online(cpu_id))
1746                         rb_update_pages(cpu_buffer);
1747                 else {
1748                         schedule_work_on(cpu_id,
1749                                          &cpu_buffer->update_pages_work);
1750                         wait_for_completion(&cpu_buffer->update_done);
1751                 }
1752
1753                 cpu_buffer->nr_pages_to_update = 0;
1754                 put_online_cpus();
1755         }
1756
1757  out:
1758         /*
1759          * The ring buffer resize can happen with the ring buffer
1760          * enabled, so that the update disturbs the tracing as little
1761          * as possible. But if the buffer is disabled, we do not need
1762          * to worry about that, and we can take the time to verify
1763          * that the buffer is not corrupt.
1764          */
1765         if (atomic_read(&buffer->record_disabled)) {
1766                 atomic_inc(&buffer->record_disabled);
1767                 /*
1768                  * Even though the buffer was disabled, we must make sure
1769                  * that it is truly disabled before calling rb_check_pages.
1770                  * There could have been a race between checking
1771                  * record_disable and incrementing it.
1772                  */
1773                 synchronize_sched();
1774                 for_each_buffer_cpu(buffer, cpu) {
1775                         cpu_buffer = buffer->buffers[cpu];
1776                         rb_check_pages(cpu_buffer);
1777                 }
1778                 atomic_dec(&buffer->record_disabled);
1779         }
1780
1781         mutex_unlock(&buffer->mutex);
1782         return 0;
1783
1784  out_err:
1785         for_each_buffer_cpu(buffer, cpu) {
1786                 struct buffer_page *bpage, *tmp;
1787
1788                 cpu_buffer = buffer->buffers[cpu];
1789                 cpu_buffer->nr_pages_to_update = 0;
1790
1791                 if (list_empty(&cpu_buffer->new_pages))
1792                         continue;
1793
1794                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1795                                         list) {
1796                         list_del_init(&bpage->list);
1797                         free_buffer_page(bpage);
1798                 }
1799         }
1800         mutex_unlock(&buffer->mutex);
1801         return err;
1802 }
1803 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1804
1805 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1806 {
1807         mutex_lock(&buffer->mutex);
1808         if (val)
1809                 buffer->flags |= RB_FL_OVERWRITE;
1810         else
1811                 buffer->flags &= ~RB_FL_OVERWRITE;
1812         mutex_unlock(&buffer->mutex);
1813 }
1814 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1815
1816 static __always_inline void *
1817 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1818 {
1819         return bpage->data + index;
1820 }
1821
1822 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1823 {
1824         return bpage->page->data + index;
1825 }
1826
1827 static __always_inline struct ring_buffer_event *
1828 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1829 {
1830         return __rb_page_index(cpu_buffer->reader_page,
1831                                cpu_buffer->reader_page->read);
1832 }
1833
1834 static __always_inline struct ring_buffer_event *
1835 rb_iter_head_event(struct ring_buffer_iter *iter)
1836 {
1837         return __rb_page_index(iter->head_page, iter->head);
1838 }
1839
1840 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1841 {
1842         return local_read(&bpage->page->commit);
1843 }
1844
1845 /* Size is determined by what has been committed */
1846 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1847 {
1848         return rb_page_commit(bpage);
1849 }
1850
1851 static __always_inline unsigned
1852 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1853 {
1854         return rb_page_commit(cpu_buffer->commit_page);
1855 }
1856
1857 static __always_inline unsigned
1858 rb_event_index(struct ring_buffer_event *event)
1859 {
1860         unsigned long addr = (unsigned long)event;
1861
1862         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1863 }
1864
1865 static void rb_inc_iter(struct ring_buffer_iter *iter)
1866 {
1867         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1868
1869         /*
1870          * The iterator could be on the reader page (it starts there).
1871          * But the head could have moved, since the reader was
1872          * found. Check for this case and assign the iterator
1873          * to the head page instead of next.
1874          */
1875         if (iter->head_page == cpu_buffer->reader_page)
1876                 iter->head_page = rb_set_head_page(cpu_buffer);
1877         else
1878                 rb_inc_page(cpu_buffer, &iter->head_page);
1879
1880         iter->read_stamp = iter->head_page->page->time_stamp;
1881         iter->head = 0;
1882 }
1883
1884 /*
1885  * rb_handle_head_page - writer hit the head page
1886  *
1887  * Returns: +1 to retry page
1888  *           0 to continue
1889  *          -1 on error
1890  */
1891 static int
1892 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1893                     struct buffer_page *tail_page,
1894                     struct buffer_page *next_page)
1895 {
1896         struct buffer_page *new_head;
1897         int entries;
1898         int type;
1899         int ret;
1900
1901         entries = rb_page_entries(next_page);
1902
1903         /*
1904          * The hard part is here. We need to move the head
1905          * forward, and protect against both readers on
1906          * other CPUs and writers coming in via interrupts.
1907          */
1908         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1909                                        RB_PAGE_HEAD);
1910
1911         /*
1912          * type can be one of four:
1913          *  NORMAL - an interrupt already moved it for us
1914          *  HEAD   - we are the first to get here.
1915          *  UPDATE - we are the interrupt interrupting
1916          *           a current move.
1917          *  MOVED  - a reader on another CPU moved the next
1918          *           pointer to its reader page. Give up
1919          *           and try again.
1920          */
1921
1922         switch (type) {
1923         case RB_PAGE_HEAD:
1924                 /*
1925                  * We changed the head to UPDATE, thus
1926                  * it is our responsibility to update
1927                  * the counters.
1928                  */
1929                 local_add(entries, &cpu_buffer->overrun);
1930                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1931
1932                 /*
1933                  * The entries will be zeroed out when we move the
1934                  * tail page.
1935                  */
1936
1937                 /* still more to do */
1938                 break;
1939
1940         case RB_PAGE_UPDATE:
1941                 /*
1942                  * This is an interrupt that interrupt the
1943                  * previous update. Still more to do.
1944                  */
1945                 break;
1946         case RB_PAGE_NORMAL:
1947                 /*
1948                  * An interrupt came in before the update
1949                  * and processed this for us.
1950                  * Nothing left to do.
1951                  */
1952                 return 1;
1953         case RB_PAGE_MOVED:
1954                 /*
1955                  * The reader is on another CPU and just did
1956                  * a swap with our next_page.
1957                  * Try again.
1958                  */
1959                 return 1;
1960         default:
1961                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1962                 return -1;
1963         }
1964
1965         /*
1966          * Now that we are here, the old head pointer is
1967          * set to UPDATE. This will keep the reader from
1968          * swapping the head page with the reader page.
1969          * The reader (on another CPU) will spin till
1970          * we are finished.
1971          *
1972          * We just need to protect against interrupts
1973          * doing the job. We will set the next pointer
1974          * to HEAD. After that, we set the old pointer
1975          * to NORMAL, but only if it was HEAD before.
1976          * otherwise we are an interrupt, and only
1977          * want the outer most commit to reset it.
1978          */
1979         new_head = next_page;
1980         rb_inc_page(cpu_buffer, &new_head);
1981
1982         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1983                                     RB_PAGE_NORMAL);
1984
1985         /*
1986          * Valid returns are:
1987          *  HEAD   - an interrupt came in and already set it.
1988          *  NORMAL - One of two things:
1989          *            1) We really set it.
1990          *            2) A bunch of interrupts came in and moved
1991          *               the page forward again.
1992          */
1993         switch (ret) {
1994         case RB_PAGE_HEAD:
1995         case RB_PAGE_NORMAL:
1996                 /* OK */
1997                 break;
1998         default:
1999                 RB_WARN_ON(cpu_buffer, 1);
2000                 return -1;
2001         }
2002
2003         /*
2004          * It is possible that an interrupt came in,
2005          * set the head up, then more interrupts came in
2006          * and moved it again. When we get back here,
2007          * the page would have been set to NORMAL but we
2008          * just set it back to HEAD.
2009          *
2010          * How do you detect this? Well, if that happened
2011          * the tail page would have moved.
2012          */
2013         if (ret == RB_PAGE_NORMAL) {
2014                 struct buffer_page *buffer_tail_page;
2015
2016                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2017                 /*
2018                  * If the tail had moved passed next, then we need
2019                  * to reset the pointer.
2020                  */
2021                 if (buffer_tail_page != tail_page &&
2022                     buffer_tail_page != next_page)
2023                         rb_head_page_set_normal(cpu_buffer, new_head,
2024                                                 next_page,
2025                                                 RB_PAGE_HEAD);
2026         }
2027
2028         /*
2029          * If this was the outer most commit (the one that
2030          * changed the original pointer from HEAD to UPDATE),
2031          * then it is up to us to reset it to NORMAL.
2032          */
2033         if (type == RB_PAGE_HEAD) {
2034                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2035                                               tail_page,
2036                                               RB_PAGE_UPDATE);
2037                 if (RB_WARN_ON(cpu_buffer,
2038                                ret != RB_PAGE_UPDATE))
2039                         return -1;
2040         }
2041
2042         return 0;
2043 }
2044
2045 static inline void
2046 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2047               unsigned long tail, struct rb_event_info *info)
2048 {
2049         struct buffer_page *tail_page = info->tail_page;
2050         struct ring_buffer_event *event;
2051         unsigned long length = info->length;
2052
2053         /*
2054          * Only the event that crossed the page boundary
2055          * must fill the old tail_page with padding.
2056          */
2057         if (tail >= BUF_PAGE_SIZE) {
2058                 /*
2059                  * If the page was filled, then we still need
2060                  * to update the real_end. Reset it to zero
2061                  * and the reader will ignore it.
2062                  */
2063                 if (tail == BUF_PAGE_SIZE)
2064                         tail_page->real_end = 0;
2065
2066                 local_sub(length, &tail_page->write);
2067                 return;
2068         }
2069
2070         event = __rb_page_index(tail_page, tail);
2071
2072         /* account for padding bytes */
2073         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2074
2075         /*
2076          * Save the original length to the meta data.
2077          * This will be used by the reader to add lost event
2078          * counter.
2079          */
2080         tail_page->real_end = tail;
2081
2082         /*
2083          * If this event is bigger than the minimum size, then
2084          * we need to be careful that we don't subtract the
2085          * write counter enough to allow another writer to slip
2086          * in on this page.
2087          * We put in a discarded commit instead, to make sure
2088          * that this space is not used again.
2089          *
2090          * If we are less than the minimum size, we don't need to
2091          * worry about it.
2092          */
2093         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2094                 /* No room for any events */
2095
2096                 /* Mark the rest of the page with padding */
2097                 rb_event_set_padding(event);
2098
2099                 /* Make sure the padding is visible before the write update */
2100                 smp_wmb();
2101
2102                 /* Set the write back to the previous setting */
2103                 local_sub(length, &tail_page->write);
2104                 return;
2105         }
2106
2107         /* Put in a discarded event */
2108         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2109         event->type_len = RINGBUF_TYPE_PADDING;
2110         /* time delta must be non zero */
2111         event->time_delta = 1;
2112
2113         /* Make sure the padding is visible before the tail_page->write update */
2114         smp_wmb();
2115
2116         /* Set write to end of buffer */
2117         length = (tail + length) - BUF_PAGE_SIZE;
2118         local_sub(length, &tail_page->write);
2119 }
2120
2121 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2122
2123 /*
2124  * This is the slow path, force gcc not to inline it.
2125  */
2126 static noinline struct ring_buffer_event *
2127 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2128              unsigned long tail, struct rb_event_info *info)
2129 {
2130         struct buffer_page *tail_page = info->tail_page;
2131         struct buffer_page *commit_page = cpu_buffer->commit_page;
2132         struct ring_buffer *buffer = cpu_buffer->buffer;
2133         struct buffer_page *next_page;
2134         int ret;
2135
2136         next_page = tail_page;
2137
2138         rb_inc_page(cpu_buffer, &next_page);
2139
2140         /*
2141          * If for some reason, we had an interrupt storm that made
2142          * it all the way around the buffer, bail, and warn
2143          * about it.
2144          */
2145         if (unlikely(next_page == commit_page)) {
2146                 local_inc(&cpu_buffer->commit_overrun);
2147                 goto out_reset;
2148         }
2149
2150         /*
2151          * This is where the fun begins!
2152          *
2153          * We are fighting against races between a reader that
2154          * could be on another CPU trying to swap its reader
2155          * page with the buffer head.
2156          *
2157          * We are also fighting against interrupts coming in and
2158          * moving the head or tail on us as well.
2159          *
2160          * If the next page is the head page then we have filled
2161          * the buffer, unless the commit page is still on the
2162          * reader page.
2163          */
2164         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2165
2166                 /*
2167                  * If the commit is not on the reader page, then
2168                  * move the header page.
2169                  */
2170                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2171                         /*
2172                          * If we are not in overwrite mode,
2173                          * this is easy, just stop here.
2174                          */
2175                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2176                                 local_inc(&cpu_buffer->dropped_events);
2177                                 goto out_reset;
2178                         }
2179
2180                         ret = rb_handle_head_page(cpu_buffer,
2181                                                   tail_page,
2182                                                   next_page);
2183                         if (ret < 0)
2184                                 goto out_reset;
2185                         if (ret)
2186                                 goto out_again;
2187                 } else {
2188                         /*
2189                          * We need to be careful here too. The
2190                          * commit page could still be on the reader
2191                          * page. We could have a small buffer, and
2192                          * have filled up the buffer with events
2193                          * from interrupts and such, and wrapped.
2194                          *
2195                          * Note, if the tail page is also the on the
2196                          * reader_page, we let it move out.
2197                          */
2198                         if (unlikely((cpu_buffer->commit_page !=
2199                                       cpu_buffer->tail_page) &&
2200                                      (cpu_buffer->commit_page ==
2201                                       cpu_buffer->reader_page))) {
2202                                 local_inc(&cpu_buffer->commit_overrun);
2203                                 goto out_reset;
2204                         }
2205                 }
2206         }
2207
2208         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2209
2210  out_again:
2211
2212         rb_reset_tail(cpu_buffer, tail, info);
2213
2214         /* Commit what we have for now. */
2215         rb_end_commit(cpu_buffer);
2216         /* rb_end_commit() decs committing */
2217         local_inc(&cpu_buffer->committing);
2218
2219         /* fail and let the caller try again */
2220         return ERR_PTR(-EAGAIN);
2221
2222  out_reset:
2223         /* reset write */
2224         rb_reset_tail(cpu_buffer, tail, info);
2225
2226         return NULL;
2227 }
2228
2229 /* Slow path, do not inline */
2230 static noinline struct ring_buffer_event *
2231 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2232 {
2233         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2234
2235         /* Not the first event on the page? */
2236         if (rb_event_index(event)) {
2237                 event->time_delta = delta & TS_MASK;
2238                 event->array[0] = delta >> TS_SHIFT;
2239         } else {
2240                 /* nope, just zero it */
2241                 event->time_delta = 0;
2242                 event->array[0] = 0;
2243         }
2244
2245         return skip_time_extend(event);
2246 }
2247
2248 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2249                                      struct ring_buffer_event *event);
2250
2251 /**
2252  * rb_update_event - update event type and data
2253  * @event: the event to update
2254  * @type: the type of event
2255  * @length: the size of the event field in the ring buffer
2256  *
2257  * Update the type and data fields of the event. The length
2258  * is the actual size that is written to the ring buffer,
2259  * and with this, we can determine what to place into the
2260  * data field.
2261  */
2262 static void
2263 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2264                 struct ring_buffer_event *event,
2265                 struct rb_event_info *info)
2266 {
2267         unsigned length = info->length;
2268         u64 delta = info->delta;
2269
2270         /* Only a commit updates the timestamp */
2271         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2272                 delta = 0;
2273
2274         /*
2275          * If we need to add a timestamp, then we
2276          * add it to the start of the resevered space.
2277          */
2278         if (unlikely(info->add_timestamp)) {
2279                 event = rb_add_time_stamp(event, delta);
2280                 length -= RB_LEN_TIME_EXTEND;
2281                 delta = 0;
2282         }
2283
2284         event->time_delta = delta;
2285         length -= RB_EVNT_HDR_SIZE;
2286         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2287                 event->type_len = 0;
2288                 event->array[0] = length;
2289         } else
2290                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2291 }
2292
2293 static unsigned rb_calculate_event_length(unsigned length)
2294 {
2295         struct ring_buffer_event event; /* Used only for sizeof array */
2296
2297         /* zero length can cause confusions */
2298         if (!length)
2299                 length++;
2300
2301         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2302                 length += sizeof(event.array[0]);
2303
2304         length += RB_EVNT_HDR_SIZE;
2305         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2306
2307         /*
2308          * In case the time delta is larger than the 27 bits for it
2309          * in the header, we need to add a timestamp. If another
2310          * event comes in when trying to discard this one to increase
2311          * the length, then the timestamp will be added in the allocated
2312          * space of this event. If length is bigger than the size needed
2313          * for the TIME_EXTEND, then padding has to be used. The events
2314          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2315          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2316          * As length is a multiple of 4, we only need to worry if it
2317          * is 12 (RB_LEN_TIME_EXTEND + 4).
2318          */
2319         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2320                 length += RB_ALIGNMENT;
2321
2322         return length;
2323 }
2324
2325 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2326 static inline bool sched_clock_stable(void)
2327 {
2328         return true;
2329 }
2330 #endif
2331
2332 static inline int
2333 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2334                   struct ring_buffer_event *event)
2335 {
2336         unsigned long new_index, old_index;
2337         struct buffer_page *bpage;
2338         unsigned long index;
2339         unsigned long addr;
2340
2341         new_index = rb_event_index(event);
2342         old_index = new_index + rb_event_ts_length(event);
2343         addr = (unsigned long)event;
2344         addr &= PAGE_MASK;
2345
2346         bpage = READ_ONCE(cpu_buffer->tail_page);
2347
2348         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2349                 unsigned long write_mask =
2350                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2351                 unsigned long event_length = rb_event_length(event);
2352                 /*
2353                  * This is on the tail page. It is possible that
2354                  * a write could come in and move the tail page
2355                  * and write to the next page. That is fine
2356                  * because we just shorten what is on this page.
2357                  */
2358                 old_index += write_mask;
2359                 new_index += write_mask;
2360                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2361                 if (index == old_index) {
2362                         /* update counters */
2363                         local_sub(event_length, &cpu_buffer->entries_bytes);
2364                         return 1;
2365                 }
2366         }
2367
2368         /* could not discard */
2369         return 0;
2370 }
2371
2372 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2373 {
2374         local_inc(&cpu_buffer->committing);
2375         local_inc(&cpu_buffer->commits);
2376 }
2377
2378 static __always_inline void
2379 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2380 {
2381         unsigned long max_count;
2382
2383         /*
2384          * We only race with interrupts and NMIs on this CPU.
2385          * If we own the commit event, then we can commit
2386          * all others that interrupted us, since the interruptions
2387          * are in stack format (they finish before they come
2388          * back to us). This allows us to do a simple loop to
2389          * assign the commit to the tail.
2390          */
2391  again:
2392         max_count = cpu_buffer->nr_pages * 100;
2393
2394         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2395                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2396                         return;
2397                 if (RB_WARN_ON(cpu_buffer,
2398                                rb_is_reader_page(cpu_buffer->tail_page)))
2399                         return;
2400                 local_set(&cpu_buffer->commit_page->page->commit,
2401                           rb_page_write(cpu_buffer->commit_page));
2402                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2403                 /* Only update the write stamp if the page has an event */
2404                 if (rb_page_write(cpu_buffer->commit_page))
2405                         cpu_buffer->write_stamp =
2406                                 cpu_buffer->commit_page->page->time_stamp;
2407                 /* add barrier to keep gcc from optimizing too much */
2408                 barrier();
2409         }
2410         while (rb_commit_index(cpu_buffer) !=
2411                rb_page_write(cpu_buffer->commit_page)) {
2412
2413                 local_set(&cpu_buffer->commit_page->page->commit,
2414                           rb_page_write(cpu_buffer->commit_page));
2415                 RB_WARN_ON(cpu_buffer,
2416                            local_read(&cpu_buffer->commit_page->page->commit) &
2417                            ~RB_WRITE_MASK);
2418                 barrier();
2419         }
2420
2421         /* again, keep gcc from optimizing */
2422         barrier();
2423
2424         /*
2425          * If an interrupt came in just after the first while loop
2426          * and pushed the tail page forward, we will be left with
2427          * a dangling commit that will never go forward.
2428          */
2429         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2430                 goto again;
2431 }
2432
2433 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2434 {
2435         unsigned long commits;
2436
2437         if (RB_WARN_ON(cpu_buffer,
2438                        !local_read(&cpu_buffer->committing)))
2439                 return;
2440
2441  again:
2442         commits = local_read(&cpu_buffer->commits);
2443         /* synchronize with interrupts */
2444         barrier();
2445         if (local_read(&cpu_buffer->committing) == 1)
2446                 rb_set_commit_to_write(cpu_buffer);
2447
2448         local_dec(&cpu_buffer->committing);
2449
2450         /* synchronize with interrupts */
2451         barrier();
2452
2453         /*
2454          * Need to account for interrupts coming in between the
2455          * updating of the commit page and the clearing of the
2456          * committing counter.
2457          */
2458         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2459             !local_read(&cpu_buffer->committing)) {
2460                 local_inc(&cpu_buffer->committing);
2461                 goto again;
2462         }
2463 }
2464
2465 static inline void rb_event_discard(struct ring_buffer_event *event)
2466 {
2467         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2468                 event = skip_time_extend(event);
2469
2470         /* array[0] holds the actual length for the discarded event */
2471         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2472         event->type_len = RINGBUF_TYPE_PADDING;
2473         /* time delta must be non zero */
2474         if (!event->time_delta)
2475                 event->time_delta = 1;
2476 }
2477
2478 static __always_inline bool
2479 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2480                    struct ring_buffer_event *event)
2481 {
2482         unsigned long addr = (unsigned long)event;
2483         unsigned long index;
2484
2485         index = rb_event_index(event);
2486         addr &= PAGE_MASK;
2487
2488         return cpu_buffer->commit_page->page == (void *)addr &&
2489                 rb_commit_index(cpu_buffer) == index;
2490 }
2491
2492 static __always_inline void
2493 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2494                       struct ring_buffer_event *event)
2495 {
2496         u64 delta;
2497
2498         /*
2499          * The event first in the commit queue updates the
2500          * time stamp.
2501          */
2502         if (rb_event_is_commit(cpu_buffer, event)) {
2503                 /*
2504                  * A commit event that is first on a page
2505                  * updates the write timestamp with the page stamp
2506                  */
2507                 if (!rb_event_index(event))
2508                         cpu_buffer->write_stamp =
2509                                 cpu_buffer->commit_page->page->time_stamp;
2510                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2511                         delta = event->array[0];
2512                         delta <<= TS_SHIFT;
2513                         delta += event->time_delta;
2514                         cpu_buffer->write_stamp += delta;
2515                 } else
2516                         cpu_buffer->write_stamp += event->time_delta;
2517         }
2518 }
2519
2520 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2521                       struct ring_buffer_event *event)
2522 {
2523         local_inc(&cpu_buffer->entries);
2524         rb_update_write_stamp(cpu_buffer, event);
2525         rb_end_commit(cpu_buffer);
2526 }
2527
2528 static __always_inline void
2529 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2530 {
2531         bool pagebusy;
2532
2533         if (buffer->irq_work.waiters_pending) {
2534                 buffer->irq_work.waiters_pending = false;
2535                 /* irq_work_queue() supplies it's own memory barriers */
2536                 irq_work_queue(&buffer->irq_work.work);
2537         }
2538
2539         if (cpu_buffer->irq_work.waiters_pending) {
2540                 cpu_buffer->irq_work.waiters_pending = false;
2541                 /* irq_work_queue() supplies it's own memory barriers */
2542                 irq_work_queue(&cpu_buffer->irq_work.work);
2543         }
2544
2545         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2546
2547         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2548                 cpu_buffer->irq_work.wakeup_full = true;
2549                 cpu_buffer->irq_work.full_waiters_pending = false;
2550                 /* irq_work_queue() supplies it's own memory barriers */
2551                 irq_work_queue(&cpu_buffer->irq_work.work);
2552         }
2553 }
2554
2555 /*
2556  * The lock and unlock are done within a preempt disable section.
2557  * The current_context per_cpu variable can only be modified
2558  * by the current task between lock and unlock. But it can
2559  * be modified more than once via an interrupt. To pass this
2560  * information from the lock to the unlock without having to
2561  * access the 'in_interrupt()' functions again (which do show
2562  * a bit of overhead in something as critical as function tracing,
2563  * we use a bitmask trick.
2564  *
2565  *  bit 1 =  NMI context
2566  *  bit 2 =  IRQ context
2567  *  bit 3 =  SoftIRQ context
2568  *  bit 4 =  normal context.
2569  *
2570  * This works because this is the order of contexts that can
2571  * preempt other contexts. A SoftIRQ never preempts an IRQ
2572  * context.
2573  *
2574  * When the context is determined, the corresponding bit is
2575  * checked and set (if it was set, then a recursion of that context
2576  * happened).
2577  *
2578  * On unlock, we need to clear this bit. To do so, just subtract
2579  * 1 from the current_context and AND it to itself.
2580  *
2581  * (binary)
2582  *  101 - 1 = 100
2583  *  101 & 100 = 100 (clearing bit zero)
2584  *
2585  *  1010 - 1 = 1001
2586  *  1010 & 1001 = 1000 (clearing bit 1)
2587  *
2588  * The least significant bit can be cleared this way, and it
2589  * just so happens that it is the same bit corresponding to
2590  * the current context.
2591  *
2592  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
2593  * is set when a recursion is detected at the current context, and if
2594  * the TRANSITION bit is already set, it will fail the recursion.
2595  * This is needed because there's a lag between the changing of
2596  * interrupt context and updating the preempt count. In this case,
2597  * a false positive will be found. To handle this, one extra recursion
2598  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
2599  * bit is already set, then it is considered a recursion and the function
2600  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
2601  *
2602  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
2603  * to be cleared. Even if it wasn't the context that set it. That is,
2604  * if an interrupt comes in while NORMAL bit is set and the ring buffer
2605  * is called before preempt_count() is updated, since the check will
2606  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
2607  * NMI then comes in, it will set the NMI bit, but when the NMI code
2608  * does the trace_recursive_unlock() it will clear the TRANSTION bit
2609  * and leave the NMI bit set. But this is fine, because the interrupt
2610  * code that set the TRANSITION bit will then clear the NMI bit when it
2611  * calls trace_recursive_unlock(). If another NMI comes in, it will
2612  * set the TRANSITION bit and continue.
2613  *
2614  * Note: The TRANSITION bit only handles a single transition between context.
2615  */
2616
2617 static __always_inline int
2618 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2619 {
2620         unsigned int val = cpu_buffer->current_context;
2621         int bit;
2622
2623         if (in_interrupt()) {
2624                 if (in_nmi())
2625                         bit = RB_CTX_NMI;
2626                 else if (in_irq())
2627                         bit = RB_CTX_IRQ;
2628                 else
2629                         bit = RB_CTX_SOFTIRQ;
2630         } else
2631                 bit = RB_CTX_NORMAL;
2632
2633         if (unlikely(val & (1 << bit))) {
2634                 /*
2635                  * It is possible that this was called by transitioning
2636                  * between interrupt context, and preempt_count() has not
2637                  * been updated yet. In this case, use the TRANSITION bit.
2638                  */
2639                 bit = RB_CTX_TRANSITION;
2640                 if (val & (1 << bit))
2641                         return 1;
2642         }
2643
2644         val |= (1 << bit);
2645         cpu_buffer->current_context = val;
2646
2647         return 0;
2648 }
2649
2650 static __always_inline void
2651 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2652 {
2653         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2654 }
2655
2656 /**
2657  * ring_buffer_unlock_commit - commit a reserved
2658  * @buffer: The buffer to commit to
2659  * @event: The event pointer to commit.
2660  *
2661  * This commits the data to the ring buffer, and releases any locks held.
2662  *
2663  * Must be paired with ring_buffer_lock_reserve.
2664  */
2665 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2666                               struct ring_buffer_event *event)
2667 {
2668         struct ring_buffer_per_cpu *cpu_buffer;
2669         int cpu = raw_smp_processor_id();
2670
2671         cpu_buffer = buffer->buffers[cpu];
2672
2673         rb_commit(cpu_buffer, event);
2674
2675         rb_wakeups(buffer, cpu_buffer);
2676
2677         trace_recursive_unlock(cpu_buffer);
2678
2679         preempt_enable_notrace();
2680
2681         return 0;
2682 }
2683 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2684
2685 static noinline void
2686 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2687                     struct rb_event_info *info)
2688 {
2689         WARN_ONCE(info->delta > (1ULL << 59),
2690                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2691                   (unsigned long long)info->delta,
2692                   (unsigned long long)info->ts,
2693                   (unsigned long long)cpu_buffer->write_stamp,
2694                   sched_clock_stable() ? "" :
2695                   "If you just came from a suspend/resume,\n"
2696                   "please switch to the trace global clock:\n"
2697                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2698         info->add_timestamp = 1;
2699 }
2700
2701 static struct ring_buffer_event *
2702 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2703                   struct rb_event_info *info)
2704 {
2705         struct ring_buffer_event *event;
2706         struct buffer_page *tail_page;
2707         unsigned long tail, write;
2708
2709         /*
2710          * If the time delta since the last event is too big to
2711          * hold in the time field of the event, then we append a
2712          * TIME EXTEND event ahead of the data event.
2713          */
2714         if (unlikely(info->add_timestamp))
2715                 info->length += RB_LEN_TIME_EXTEND;
2716
2717         /* Don't let the compiler play games with cpu_buffer->tail_page */
2718         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2719         write = local_add_return(info->length, &tail_page->write);
2720
2721         /* set write to only the index of the write */
2722         write &= RB_WRITE_MASK;
2723         tail = write - info->length;
2724
2725         /*
2726          * If this is the first commit on the page, then it has the same
2727          * timestamp as the page itself.
2728          */
2729         if (!tail)
2730                 info->delta = 0;
2731
2732         /* See if we shot pass the end of this buffer page */
2733         if (unlikely(write > BUF_PAGE_SIZE))
2734                 return rb_move_tail(cpu_buffer, tail, info);
2735
2736         /* We reserved something on the buffer */
2737
2738         event = __rb_page_index(tail_page, tail);
2739         rb_update_event(cpu_buffer, event, info);
2740
2741         local_inc(&tail_page->entries);
2742
2743         /*
2744          * If this is the first commit on the page, then update
2745          * its timestamp.
2746          */
2747         if (!tail)
2748                 tail_page->page->time_stamp = info->ts;
2749
2750         /* account for these added bytes */
2751         local_add(info->length, &cpu_buffer->entries_bytes);
2752
2753         return event;
2754 }
2755
2756 static __always_inline struct ring_buffer_event *
2757 rb_reserve_next_event(struct ring_buffer *buffer,
2758                       struct ring_buffer_per_cpu *cpu_buffer,
2759                       unsigned long length)
2760 {
2761         struct ring_buffer_event *event;
2762         struct rb_event_info info;
2763         int nr_loops = 0;
2764         u64 diff;
2765
2766         rb_start_commit(cpu_buffer);
2767
2768 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2769         /*
2770          * Due to the ability to swap a cpu buffer from a buffer
2771          * it is possible it was swapped before we committed.
2772          * (committing stops a swap). We check for it here and
2773          * if it happened, we have to fail the write.
2774          */
2775         barrier();
2776         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2777                 local_dec(&cpu_buffer->committing);
2778                 local_dec(&cpu_buffer->commits);
2779                 return NULL;
2780         }
2781 #endif
2782
2783         info.length = rb_calculate_event_length(length);
2784  again:
2785         info.add_timestamp = 0;
2786         info.delta = 0;
2787
2788         /*
2789          * We allow for interrupts to reenter here and do a trace.
2790          * If one does, it will cause this original code to loop
2791          * back here. Even with heavy interrupts happening, this
2792          * should only happen a few times in a row. If this happens
2793          * 1000 times in a row, there must be either an interrupt
2794          * storm or we have something buggy.
2795          * Bail!
2796          */
2797         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2798                 goto out_fail;
2799
2800         info.ts = rb_time_stamp(cpu_buffer->buffer);
2801         diff = info.ts - cpu_buffer->write_stamp;
2802
2803         /* make sure this diff is calculated here */
2804         barrier();
2805
2806         /* Did the write stamp get updated already? */
2807         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2808                 info.delta = diff;
2809                 if (unlikely(test_time_stamp(info.delta)))
2810                         rb_handle_timestamp(cpu_buffer, &info);
2811         }
2812
2813         event = __rb_reserve_next(cpu_buffer, &info);
2814
2815         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2816                 if (info.add_timestamp)
2817                         info.length -= RB_LEN_TIME_EXTEND;
2818                 goto again;
2819         }
2820
2821         if (!event)
2822                 goto out_fail;
2823
2824         return event;
2825
2826  out_fail:
2827         rb_end_commit(cpu_buffer);
2828         return NULL;
2829 }
2830
2831 /**
2832  * ring_buffer_lock_reserve - reserve a part of the buffer
2833  * @buffer: the ring buffer to reserve from
2834  * @length: the length of the data to reserve (excluding event header)
2835  *
2836  * Returns a reseverd event on the ring buffer to copy directly to.
2837  * The user of this interface will need to get the body to write into
2838  * and can use the ring_buffer_event_data() interface.
2839  *
2840  * The length is the length of the data needed, not the event length
2841  * which also includes the event header.
2842  *
2843  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2844  * If NULL is returned, then nothing has been allocated or locked.
2845  */
2846 struct ring_buffer_event *
2847 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2848 {
2849         struct ring_buffer_per_cpu *cpu_buffer;
2850         struct ring_buffer_event *event;
2851         int cpu;
2852
2853         /* If we are tracing schedule, we don't want to recurse */
2854         preempt_disable_notrace();
2855
2856         if (unlikely(atomic_read(&buffer->record_disabled)))
2857                 goto out;
2858
2859         cpu = raw_smp_processor_id();
2860
2861         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2862                 goto out;
2863
2864         cpu_buffer = buffer->buffers[cpu];
2865
2866         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2867                 goto out;
2868
2869         if (unlikely(length > BUF_MAX_DATA_SIZE))
2870                 goto out;
2871
2872         if (unlikely(trace_recursive_lock(cpu_buffer)))
2873                 goto out;
2874
2875         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2876         if (!event)
2877                 goto out_unlock;
2878
2879         return event;
2880
2881  out_unlock:
2882         trace_recursive_unlock(cpu_buffer);
2883  out:
2884         preempt_enable_notrace();
2885         return NULL;
2886 }
2887 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2888
2889 /*
2890  * Decrement the entries to the page that an event is on.
2891  * The event does not even need to exist, only the pointer
2892  * to the page it is on. This may only be called before the commit
2893  * takes place.
2894  */
2895 static inline void
2896 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2897                    struct ring_buffer_event *event)
2898 {
2899         unsigned long addr = (unsigned long)event;
2900         struct buffer_page *bpage = cpu_buffer->commit_page;
2901         struct buffer_page *start;
2902
2903         addr &= PAGE_MASK;
2904
2905         /* Do the likely case first */
2906         if (likely(bpage->page == (void *)addr)) {
2907                 local_dec(&bpage->entries);
2908                 return;
2909         }
2910
2911         /*
2912          * Because the commit page may be on the reader page we
2913          * start with the next page and check the end loop there.
2914          */
2915         rb_inc_page(cpu_buffer, &bpage);
2916         start = bpage;
2917         do {
2918                 if (bpage->page == (void *)addr) {
2919                         local_dec(&bpage->entries);
2920                         return;
2921                 }
2922                 rb_inc_page(cpu_buffer, &bpage);
2923         } while (bpage != start);
2924
2925         /* commit not part of this buffer?? */
2926         RB_WARN_ON(cpu_buffer, 1);
2927 }
2928
2929 /**
2930  * ring_buffer_commit_discard - discard an event that has not been committed
2931  * @buffer: the ring buffer
2932  * @event: non committed event to discard
2933  *
2934  * Sometimes an event that is in the ring buffer needs to be ignored.
2935  * This function lets the user discard an event in the ring buffer
2936  * and then that event will not be read later.
2937  *
2938  * This function only works if it is called before the the item has been
2939  * committed. It will try to free the event from the ring buffer
2940  * if another event has not been added behind it.
2941  *
2942  * If another event has been added behind it, it will set the event
2943  * up as discarded, and perform the commit.
2944  *
2945  * If this function is called, do not call ring_buffer_unlock_commit on
2946  * the event.
2947  */
2948 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2949                                 struct ring_buffer_event *event)
2950 {
2951         struct ring_buffer_per_cpu *cpu_buffer;
2952         int cpu;
2953
2954         /* The event is discarded regardless */
2955         rb_event_discard(event);
2956
2957         cpu = smp_processor_id();
2958         cpu_buffer = buffer->buffers[cpu];
2959
2960         /*
2961          * This must only be called if the event has not been
2962          * committed yet. Thus we can assume that preemption
2963          * is still disabled.
2964          */
2965         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2966
2967         rb_decrement_entry(cpu_buffer, event);
2968         if (rb_try_to_discard(cpu_buffer, event))
2969                 goto out;
2970
2971         /*
2972          * The commit is still visible by the reader, so we
2973          * must still update the timestamp.
2974          */
2975         rb_update_write_stamp(cpu_buffer, event);
2976  out:
2977         rb_end_commit(cpu_buffer);
2978
2979         trace_recursive_unlock(cpu_buffer);
2980
2981         preempt_enable_notrace();
2982
2983 }
2984 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2985
2986 /**
2987  * ring_buffer_write - write data to the buffer without reserving
2988  * @buffer: The ring buffer to write to.
2989  * @length: The length of the data being written (excluding the event header)
2990  * @data: The data to write to the buffer.
2991  *
2992  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2993  * one function. If you already have the data to write to the buffer, it
2994  * may be easier to simply call this function.
2995  *
2996  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2997  * and not the length of the event which would hold the header.
2998  */
2999 int ring_buffer_write(struct ring_buffer *buffer,
3000                       unsigned long length,
3001                       void *data)
3002 {
3003         struct ring_buffer_per_cpu *cpu_buffer;
3004         struct ring_buffer_event *event;
3005         void *body;
3006         int ret = -EBUSY;
3007         int cpu;
3008
3009         preempt_disable_notrace();
3010
3011         if (atomic_read(&buffer->record_disabled))
3012                 goto out;
3013
3014         cpu = raw_smp_processor_id();
3015
3016         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3017                 goto out;
3018
3019         cpu_buffer = buffer->buffers[cpu];
3020
3021         if (atomic_read(&cpu_buffer->record_disabled))
3022                 goto out;
3023
3024         if (length > BUF_MAX_DATA_SIZE)
3025                 goto out;
3026
3027         if (unlikely(trace_recursive_lock(cpu_buffer)))
3028                 goto out;
3029
3030         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3031         if (!event)
3032                 goto out_unlock;
3033
3034         body = rb_event_data(event);
3035
3036         memcpy(body, data, length);
3037
3038         rb_commit(cpu_buffer, event);
3039
3040         rb_wakeups(buffer, cpu_buffer);
3041
3042         ret = 0;
3043
3044  out_unlock:
3045         trace_recursive_unlock(cpu_buffer);
3046
3047  out:
3048         preempt_enable_notrace();
3049
3050         return ret;
3051 }
3052 EXPORT_SYMBOL_GPL(ring_buffer_write);
3053
3054 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3055 {
3056         struct buffer_page *reader = cpu_buffer->reader_page;
3057         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3058         struct buffer_page *commit = cpu_buffer->commit_page;
3059
3060         /* In case of error, head will be NULL */
3061         if (unlikely(!head))
3062                 return true;
3063
3064         /* Reader should exhaust content in reader page */
3065         if (reader->read != rb_page_commit(reader))
3066                 return false;
3067
3068         /*
3069          * If writers are committing on the reader page, knowing all
3070          * committed content has been read, the ring buffer is empty.
3071          */
3072         if (commit == reader)
3073                 return true;
3074
3075         /*
3076          * If writers are committing on a page other than reader page
3077          * and head page, there should always be content to read.
3078          */
3079         if (commit != head)
3080                 return false;
3081
3082         /*
3083          * Writers are committing on the head page, we just need
3084          * to care about there're committed data, and the reader will
3085          * swap reader page with head page when it is to read data.
3086          */
3087         return rb_page_commit(commit) == 0;
3088 }
3089
3090 /**
3091  * ring_buffer_record_disable - stop all writes into the buffer
3092  * @buffer: The ring buffer to stop writes to.
3093  *
3094  * This prevents all writes to the buffer. Any attempt to write
3095  * to the buffer after this will fail and return NULL.
3096  *
3097  * The caller should call synchronize_sched() after this.
3098  */
3099 void ring_buffer_record_disable(struct ring_buffer *buffer)
3100 {
3101         atomic_inc(&buffer->record_disabled);
3102 }
3103 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3104
3105 /**
3106  * ring_buffer_record_enable - enable writes to the buffer
3107  * @buffer: The ring buffer to enable writes
3108  *
3109  * Note, multiple disables will need the same number of enables
3110  * to truly enable the writing (much like preempt_disable).
3111  */
3112 void ring_buffer_record_enable(struct ring_buffer *buffer)
3113 {
3114         atomic_dec(&buffer->record_disabled);
3115 }
3116 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3117
3118 /**
3119  * ring_buffer_record_off - stop all writes into the buffer
3120  * @buffer: The ring buffer to stop writes to.
3121  *
3122  * This prevents all writes to the buffer. Any attempt to write
3123  * to the buffer after this will fail and return NULL.
3124  *
3125  * This is different than ring_buffer_record_disable() as
3126  * it works like an on/off switch, where as the disable() version
3127  * must be paired with a enable().
3128  */
3129 void ring_buffer_record_off(struct ring_buffer *buffer)
3130 {
3131         unsigned int rd;
3132         unsigned int new_rd;
3133
3134         do {
3135                 rd = atomic_read(&buffer->record_disabled);
3136                 new_rd = rd | RB_BUFFER_OFF;
3137         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3138 }
3139 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3140
3141 /**
3142  * ring_buffer_record_on - restart writes into the buffer
3143  * @buffer: The ring buffer to start writes to.
3144  *
3145  * This enables all writes to the buffer that was disabled by
3146  * ring_buffer_record_off().
3147  *
3148  * This is different than ring_buffer_record_enable() as
3149  * it works like an on/off switch, where as the enable() version
3150  * must be paired with a disable().
3151  */
3152 void ring_buffer_record_on(struct ring_buffer *buffer)
3153 {
3154         unsigned int rd;
3155         unsigned int new_rd;
3156
3157         do {
3158                 rd = atomic_read(&buffer->record_disabled);
3159                 new_rd = rd & ~RB_BUFFER_OFF;
3160         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3161 }
3162 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3163
3164 /**
3165  * ring_buffer_record_is_on - return true if the ring buffer can write
3166  * @buffer: The ring buffer to see if write is enabled
3167  *
3168  * Returns true if the ring buffer is in a state that it accepts writes.
3169  */
3170 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3171 {
3172         return !atomic_read(&buffer->record_disabled);
3173 }
3174
3175 /**
3176  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3177  * @buffer: The ring buffer to see if write is set enabled
3178  *
3179  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3180  * Note that this does NOT mean it is in a writable state.
3181  *
3182  * It may return true when the ring buffer has been disabled by
3183  * ring_buffer_record_disable(), as that is a temporary disabling of
3184  * the ring buffer.
3185  */
3186 int ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3187 {
3188         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3189 }
3190
3191 /**
3192  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3193  * @buffer: The ring buffer to stop writes to.
3194  * @cpu: The CPU buffer to stop
3195  *
3196  * This prevents all writes to the buffer. Any attempt to write
3197  * to the buffer after this will fail and return NULL.
3198  *
3199  * The caller should call synchronize_sched() after this.
3200  */
3201 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3202 {
3203         struct ring_buffer_per_cpu *cpu_buffer;
3204
3205         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3206                 return;
3207
3208         cpu_buffer = buffer->buffers[cpu];
3209         atomic_inc(&cpu_buffer->record_disabled);
3210 }
3211 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3212
3213 /**
3214  * ring_buffer_record_enable_cpu - enable writes to the buffer
3215  * @buffer: The ring buffer to enable writes
3216  * @cpu: The CPU to enable.
3217  *
3218  * Note, multiple disables will need the same number of enables
3219  * to truly enable the writing (much like preempt_disable).
3220  */
3221 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3222 {
3223         struct ring_buffer_per_cpu *cpu_buffer;
3224
3225         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3226                 return;
3227
3228         cpu_buffer = buffer->buffers[cpu];
3229         atomic_dec(&cpu_buffer->record_disabled);
3230 }
3231 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3232
3233 /*
3234  * The total entries in the ring buffer is the running counter
3235  * of entries entered into the ring buffer, minus the sum of
3236  * the entries read from the ring buffer and the number of
3237  * entries that were overwritten.
3238  */
3239 static inline unsigned long
3240 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3241 {
3242         return local_read(&cpu_buffer->entries) -
3243                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3244 }
3245
3246 /**
3247  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3248  * @buffer: The ring buffer
3249  * @cpu: The per CPU buffer to read from.
3250  */
3251 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3252 {
3253         unsigned long flags;
3254         struct ring_buffer_per_cpu *cpu_buffer;
3255         struct buffer_page *bpage;
3256         u64 ret = 0;
3257
3258         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3259                 return 0;
3260
3261         cpu_buffer = buffer->buffers[cpu];
3262         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3263         /*
3264          * if the tail is on reader_page, oldest time stamp is on the reader
3265          * page
3266          */
3267         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3268                 bpage = cpu_buffer->reader_page;
3269         else
3270                 bpage = rb_set_head_page(cpu_buffer);
3271         if (bpage)
3272                 ret = bpage->page->time_stamp;
3273         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3274
3275         return ret;
3276 }
3277 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3278
3279 /**
3280  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3281  * @buffer: The ring buffer
3282  * @cpu: The per CPU buffer to read from.
3283  */
3284 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3285 {
3286         struct ring_buffer_per_cpu *cpu_buffer;
3287         unsigned long ret;
3288
3289         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3290                 return 0;
3291
3292         cpu_buffer = buffer->buffers[cpu];
3293         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3294
3295         return ret;
3296 }
3297 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3298
3299 /**
3300  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3301  * @buffer: The ring buffer
3302  * @cpu: The per CPU buffer to get the entries from.
3303  */
3304 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3305 {
3306         struct ring_buffer_per_cpu *cpu_buffer;
3307
3308         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3309                 return 0;
3310
3311         cpu_buffer = buffer->buffers[cpu];
3312
3313         return rb_num_of_entries(cpu_buffer);
3314 }
3315 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3316
3317 /**
3318  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3319  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3320  * @buffer: The ring buffer
3321  * @cpu: The per CPU buffer to get the number of overruns from
3322  */
3323 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3324 {
3325         struct ring_buffer_per_cpu *cpu_buffer;
3326         unsigned long ret;
3327
3328         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3329                 return 0;
3330
3331         cpu_buffer = buffer->buffers[cpu];
3332         ret = local_read(&cpu_buffer->overrun);
3333
3334         return ret;
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3337
3338 /**
3339  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3340  * commits failing due to the buffer wrapping around while there are uncommitted
3341  * events, such as during an interrupt storm.
3342  * @buffer: The ring buffer
3343  * @cpu: The per CPU buffer to get the number of overruns from
3344  */
3345 unsigned long
3346 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3347 {
3348         struct ring_buffer_per_cpu *cpu_buffer;
3349         unsigned long ret;
3350
3351         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3352                 return 0;
3353
3354         cpu_buffer = buffer->buffers[cpu];
3355         ret = local_read(&cpu_buffer->commit_overrun);
3356
3357         return ret;
3358 }
3359 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3360
3361 /**
3362  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3363  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3364  * @buffer: The ring buffer
3365  * @cpu: The per CPU buffer to get the number of overruns from
3366  */
3367 unsigned long
3368 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3369 {
3370         struct ring_buffer_per_cpu *cpu_buffer;
3371         unsigned long ret;
3372
3373         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3374                 return 0;
3375
3376         cpu_buffer = buffer->buffers[cpu];
3377         ret = local_read(&cpu_buffer->dropped_events);
3378
3379         return ret;
3380 }
3381 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3382
3383 /**
3384  * ring_buffer_read_events_cpu - get the number of events successfully read
3385  * @buffer: The ring buffer
3386  * @cpu: The per CPU buffer to get the number of events read
3387  */
3388 unsigned long
3389 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3390 {
3391         struct ring_buffer_per_cpu *cpu_buffer;
3392
3393         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3394                 return 0;
3395
3396         cpu_buffer = buffer->buffers[cpu];
3397         return cpu_buffer->read;
3398 }
3399 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3400
3401 /**
3402  * ring_buffer_entries - get the number of entries in a buffer
3403  * @buffer: The ring buffer
3404  *
3405  * Returns the total number of entries in the ring buffer
3406  * (all CPU entries)
3407  */
3408 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3409 {
3410         struct ring_buffer_per_cpu *cpu_buffer;
3411         unsigned long entries = 0;
3412         int cpu;
3413
3414         /* if you care about this being correct, lock the buffer */
3415         for_each_buffer_cpu(buffer, cpu) {
3416                 cpu_buffer = buffer->buffers[cpu];
3417                 entries += rb_num_of_entries(cpu_buffer);
3418         }
3419
3420         return entries;
3421 }
3422 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3423
3424 /**
3425  * ring_buffer_overruns - get the number of overruns in buffer
3426  * @buffer: The ring buffer
3427  *
3428  * Returns the total number of overruns in the ring buffer
3429  * (all CPU entries)
3430  */
3431 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3432 {
3433         struct ring_buffer_per_cpu *cpu_buffer;
3434         unsigned long overruns = 0;
3435         int cpu;
3436
3437         /* if you care about this being correct, lock the buffer */
3438         for_each_buffer_cpu(buffer, cpu) {
3439                 cpu_buffer = buffer->buffers[cpu];
3440                 overruns += local_read(&cpu_buffer->overrun);
3441         }
3442
3443         return overruns;
3444 }
3445 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3446
3447 static void rb_iter_reset(struct ring_buffer_iter *iter)
3448 {
3449         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3450
3451         /* Iterator usage is expected to have record disabled */
3452         iter->head_page = cpu_buffer->reader_page;
3453         iter->head = cpu_buffer->reader_page->read;
3454
3455         iter->cache_reader_page = iter->head_page;
3456         iter->cache_read = cpu_buffer->read;
3457
3458         if (iter->head)
3459                 iter->read_stamp = cpu_buffer->read_stamp;
3460         else
3461                 iter->read_stamp = iter->head_page->page->time_stamp;
3462 }
3463
3464 /**
3465  * ring_buffer_iter_reset - reset an iterator
3466  * @iter: The iterator to reset
3467  *
3468  * Resets the iterator, so that it will start from the beginning
3469  * again.
3470  */
3471 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3472 {
3473         struct ring_buffer_per_cpu *cpu_buffer;
3474         unsigned long flags;
3475
3476         if (!iter)
3477                 return;
3478
3479         cpu_buffer = iter->cpu_buffer;
3480
3481         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3482         rb_iter_reset(iter);
3483         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3484 }
3485 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3486
3487 /**
3488  * ring_buffer_iter_empty - check if an iterator has no more to read
3489  * @iter: The iterator to check
3490  */
3491 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3492 {
3493         struct ring_buffer_per_cpu *cpu_buffer;
3494         struct buffer_page *reader;
3495         struct buffer_page *head_page;
3496         struct buffer_page *commit_page;
3497         unsigned commit;
3498
3499         cpu_buffer = iter->cpu_buffer;
3500
3501         /* Remember, trace recording is off when iterator is in use */
3502         reader = cpu_buffer->reader_page;
3503         head_page = cpu_buffer->head_page;
3504         commit_page = cpu_buffer->commit_page;
3505         commit = rb_page_commit(commit_page);
3506
3507         return ((iter->head_page == commit_page && iter->head == commit) ||
3508                 (iter->head_page == reader && commit_page == head_page &&
3509                  head_page->read == commit &&
3510                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3511 }
3512 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3513
3514 static void
3515 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3516                      struct ring_buffer_event *event)
3517 {
3518         u64 delta;
3519
3520         switch (event->type_len) {
3521         case RINGBUF_TYPE_PADDING:
3522                 return;
3523
3524         case RINGBUF_TYPE_TIME_EXTEND:
3525                 delta = event->array[0];
3526                 delta <<= TS_SHIFT;
3527                 delta += event->time_delta;
3528                 cpu_buffer->read_stamp += delta;
3529                 return;
3530
3531         case RINGBUF_TYPE_TIME_STAMP:
3532                 /* FIXME: not implemented */
3533                 return;
3534
3535         case RINGBUF_TYPE_DATA:
3536                 cpu_buffer->read_stamp += event->time_delta;
3537                 return;
3538
3539         default:
3540                 BUG();
3541         }
3542         return;
3543 }
3544
3545 static void
3546 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3547                           struct ring_buffer_event *event)
3548 {
3549         u64 delta;
3550
3551         switch (event->type_len) {
3552         case RINGBUF_TYPE_PADDING:
3553                 return;
3554
3555         case RINGBUF_TYPE_TIME_EXTEND:
3556                 delta = event->array[0];
3557                 delta <<= TS_SHIFT;
3558                 delta += event->time_delta;
3559                 iter->read_stamp += delta;
3560                 return;
3561
3562         case RINGBUF_TYPE_TIME_STAMP:
3563                 /* FIXME: not implemented */
3564                 return;
3565
3566         case RINGBUF_TYPE_DATA:
3567                 iter->read_stamp += event->time_delta;
3568                 return;
3569
3570         default:
3571                 BUG();
3572         }
3573         return;
3574 }
3575
3576 static struct buffer_page *
3577 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3578 {
3579         struct buffer_page *reader = NULL;
3580         unsigned long overwrite;
3581         unsigned long flags;
3582         int nr_loops = 0;
3583         int ret;
3584
3585         local_irq_save(flags);
3586         arch_spin_lock(&cpu_buffer->lock);
3587
3588  again:
3589         /*
3590          * This should normally only loop twice. But because the
3591          * start of the reader inserts an empty page, it causes
3592          * a case where we will loop three times. There should be no
3593          * reason to loop four times (that I know of).
3594          */
3595         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3596                 reader = NULL;
3597                 goto out;
3598         }
3599
3600         reader = cpu_buffer->reader_page;
3601
3602         /* If there's more to read, return this page */
3603         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3604                 goto out;
3605
3606         /* Never should we have an index greater than the size */
3607         if (RB_WARN_ON(cpu_buffer,
3608                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3609                 goto out;
3610
3611         /* check if we caught up to the tail */
3612         reader = NULL;
3613         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3614                 goto out;
3615
3616         /* Don't bother swapping if the ring buffer is empty */
3617         if (rb_num_of_entries(cpu_buffer) == 0)
3618                 goto out;
3619
3620         /*
3621          * Reset the reader page to size zero.
3622          */
3623         local_set(&cpu_buffer->reader_page->write, 0);
3624         local_set(&cpu_buffer->reader_page->entries, 0);
3625         local_set(&cpu_buffer->reader_page->page->commit, 0);
3626         cpu_buffer->reader_page->real_end = 0;
3627
3628  spin:
3629         /*
3630          * Splice the empty reader page into the list around the head.
3631          */
3632         reader = rb_set_head_page(cpu_buffer);
3633         if (!reader)
3634                 goto out;
3635         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3636         cpu_buffer->reader_page->list.prev = reader->list.prev;
3637
3638         /*
3639          * cpu_buffer->pages just needs to point to the buffer, it
3640          *  has no specific buffer page to point to. Lets move it out
3641          *  of our way so we don't accidentally swap it.
3642          */
3643         cpu_buffer->pages = reader->list.prev;
3644
3645         /* The reader page will be pointing to the new head */
3646         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3647
3648         /*
3649          * We want to make sure we read the overruns after we set up our
3650          * pointers to the next object. The writer side does a
3651          * cmpxchg to cross pages which acts as the mb on the writer
3652          * side. Note, the reader will constantly fail the swap
3653          * while the writer is updating the pointers, so this
3654          * guarantees that the overwrite recorded here is the one we
3655          * want to compare with the last_overrun.
3656          */
3657         smp_mb();
3658         overwrite = local_read(&(cpu_buffer->overrun));
3659
3660         /*
3661          * Here's the tricky part.
3662          *
3663          * We need to move the pointer past the header page.
3664          * But we can only do that if a writer is not currently
3665          * moving it. The page before the header page has the
3666          * flag bit '1' set if it is pointing to the page we want.
3667          * but if the writer is in the process of moving it
3668          * than it will be '2' or already moved '0'.
3669          */
3670
3671         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3672
3673         /*
3674          * If we did not convert it, then we must try again.
3675          */
3676         if (!ret)
3677                 goto spin;
3678
3679         /*
3680          * Yeah! We succeeded in replacing the page.
3681          *
3682          * Now make the new head point back to the reader page.
3683          */
3684         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3685         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3686
3687         /* Finally update the reader page to the new head */
3688         cpu_buffer->reader_page = reader;
3689         cpu_buffer->reader_page->read = 0;
3690
3691         if (overwrite != cpu_buffer->last_overrun) {
3692                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3693                 cpu_buffer->last_overrun = overwrite;
3694         }
3695
3696         goto again;
3697
3698  out:
3699         /* Update the read_stamp on the first event */
3700         if (reader && reader->read == 0)
3701                 cpu_buffer->read_stamp = reader->page->time_stamp;
3702
3703         arch_spin_unlock(&cpu_buffer->lock);
3704         local_irq_restore(flags);
3705
3706         /*
3707          * The writer has preempt disable, wait for it. But not forever
3708          * Although, 1 second is pretty much "forever"
3709          */
3710 #define USECS_WAIT      1000000
3711         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
3712                 /* If the write is past the end of page, a writer is still updating it */
3713                 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
3714                         break;
3715
3716                 udelay(1);
3717
3718                 /* Get the latest version of the reader write value */
3719                 smp_rmb();
3720         }
3721
3722         /* The writer is not moving forward? Something is wrong */
3723         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
3724                 reader = NULL;
3725
3726         /*
3727          * Make sure we see any padding after the write update
3728          * (see rb_reset_tail())
3729          */
3730         smp_rmb();
3731
3732
3733         return reader;
3734 }
3735
3736 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3737 {
3738         struct ring_buffer_event *event;
3739         struct buffer_page *reader;
3740         unsigned length;
3741
3742         reader = rb_get_reader_page(cpu_buffer);
3743
3744         /* This function should not be called when buffer is empty */
3745         if (RB_WARN_ON(cpu_buffer, !reader))
3746                 return;
3747
3748         event = rb_reader_event(cpu_buffer);
3749
3750         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3751                 cpu_buffer->read++;
3752
3753         rb_update_read_stamp(cpu_buffer, event);
3754
3755         length = rb_event_length(event);
3756         cpu_buffer->reader_page->read += length;
3757 }
3758
3759 static void rb_advance_iter(struct ring_buffer_iter *iter)
3760 {
3761         struct ring_buffer_per_cpu *cpu_buffer;
3762         struct ring_buffer_event *event;
3763         unsigned length;
3764
3765         cpu_buffer = iter->cpu_buffer;
3766
3767         /*
3768          * Check if we are at the end of the buffer.
3769          */
3770         if (iter->head >= rb_page_size(iter->head_page)) {
3771                 /* discarded commits can make the page empty */
3772                 if (iter->head_page == cpu_buffer->commit_page)
3773                         return;
3774                 rb_inc_iter(iter);
3775                 return;
3776         }
3777
3778         event = rb_iter_head_event(iter);
3779
3780         length = rb_event_length(event);
3781
3782         /*
3783          * This should not be called to advance the header if we are
3784          * at the tail of the buffer.
3785          */
3786         if (RB_WARN_ON(cpu_buffer,
3787                        (iter->head_page == cpu_buffer->commit_page) &&
3788                        (iter->head + length > rb_commit_index(cpu_buffer))))
3789                 return;
3790
3791         rb_update_iter_read_stamp(iter, event);
3792
3793         iter->head += length;
3794
3795         /* check for end of page padding */
3796         if ((iter->head >= rb_page_size(iter->head_page)) &&
3797             (iter->head_page != cpu_buffer->commit_page))
3798                 rb_inc_iter(iter);
3799 }
3800
3801 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3802 {
3803         return cpu_buffer->lost_events;
3804 }
3805
3806 static struct ring_buffer_event *
3807 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3808                unsigned long *lost_events)
3809 {
3810         struct ring_buffer_event *event;
3811         struct buffer_page *reader;
3812         int nr_loops = 0;
3813
3814  again:
3815         /*
3816          * We repeat when a time extend is encountered.
3817          * Since the time extend is always attached to a data event,
3818          * we should never loop more than once.
3819          * (We never hit the following condition more than twice).
3820          */
3821         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3822                 return NULL;
3823
3824         reader = rb_get_reader_page(cpu_buffer);
3825         if (!reader)
3826                 return NULL;
3827
3828         event = rb_reader_event(cpu_buffer);
3829
3830         switch (event->type_len) {
3831         case RINGBUF_TYPE_PADDING:
3832                 if (rb_null_event(event))
3833                         RB_WARN_ON(cpu_buffer, 1);
3834                 /*
3835                  * Because the writer could be discarding every
3836                  * event it creates (which would probably be bad)
3837                  * if we were to go back to "again" then we may never
3838                  * catch up, and will trigger the warn on, or lock
3839                  * the box. Return the padding, and we will release
3840                  * the current locks, and try again.
3841                  */
3842                 return event;
3843
3844         case RINGBUF_TYPE_TIME_EXTEND:
3845                 /* Internal data, OK to advance */
3846                 rb_advance_reader(cpu_buffer);
3847                 goto again;
3848
3849         case RINGBUF_TYPE_TIME_STAMP:
3850                 /* FIXME: not implemented */
3851                 rb_advance_reader(cpu_buffer);
3852                 goto again;
3853
3854         case RINGBUF_TYPE_DATA:
3855                 if (ts) {
3856                         *ts = cpu_buffer->read_stamp + event->time_delta;
3857                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3858                                                          cpu_buffer->cpu, ts);
3859                 }
3860                 if (lost_events)
3861                         *lost_events = rb_lost_events(cpu_buffer);
3862                 return event;
3863
3864         default:
3865                 BUG();
3866         }
3867
3868         return NULL;
3869 }
3870 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3871
3872 static struct ring_buffer_event *
3873 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3874 {
3875         struct ring_buffer *buffer;
3876         struct ring_buffer_per_cpu *cpu_buffer;
3877         struct ring_buffer_event *event;
3878         int nr_loops = 0;
3879
3880         cpu_buffer = iter->cpu_buffer;
3881         buffer = cpu_buffer->buffer;
3882
3883         /*
3884          * Check if someone performed a consuming read to
3885          * the buffer. A consuming read invalidates the iterator
3886          * and we need to reset the iterator in this case.
3887          */
3888         if (unlikely(iter->cache_read != cpu_buffer->read ||
3889                      iter->cache_reader_page != cpu_buffer->reader_page))
3890                 rb_iter_reset(iter);
3891
3892  again:
3893         if (ring_buffer_iter_empty(iter))
3894                 return NULL;
3895
3896         /*
3897          * We repeat when a time extend is encountered or we hit
3898          * the end of the page. Since the time extend is always attached
3899          * to a data event, we should never loop more than three times.
3900          * Once for going to next page, once on time extend, and
3901          * finally once to get the event.
3902          * (We never hit the following condition more than thrice).
3903          */
3904         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3905                 return NULL;
3906
3907         if (rb_per_cpu_empty(cpu_buffer))
3908                 return NULL;
3909
3910         if (iter->head >= rb_page_size(iter->head_page)) {
3911                 rb_inc_iter(iter);
3912                 goto again;
3913         }
3914
3915         event = rb_iter_head_event(iter);
3916
3917         switch (event->type_len) {
3918         case RINGBUF_TYPE_PADDING:
3919                 if (rb_null_event(event)) {
3920                         rb_inc_iter(iter);
3921                         goto again;
3922                 }
3923                 rb_advance_iter(iter);
3924                 return event;
3925
3926         case RINGBUF_TYPE_TIME_EXTEND:
3927                 /* Internal data, OK to advance */
3928                 rb_advance_iter(iter);
3929                 goto again;
3930
3931         case RINGBUF_TYPE_TIME_STAMP:
3932                 /* FIXME: not implemented */
3933                 rb_advance_iter(iter);
3934                 goto again;
3935
3936         case RINGBUF_TYPE_DATA:
3937                 if (ts) {
3938                         *ts = iter->read_stamp + event->time_delta;
3939                         ring_buffer_normalize_time_stamp(buffer,
3940                                                          cpu_buffer->cpu, ts);
3941                 }
3942                 return event;
3943
3944         default:
3945                 BUG();
3946         }
3947
3948         return NULL;
3949 }
3950 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3951
3952 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3953 {
3954         if (likely(!in_nmi())) {
3955                 raw_spin_lock(&cpu_buffer->reader_lock);
3956                 return true;
3957         }
3958
3959         /*
3960          * If an NMI die dumps out the content of the ring buffer
3961          * trylock must be used to prevent a deadlock if the NMI
3962          * preempted a task that holds the ring buffer locks. If
3963          * we get the lock then all is fine, if not, then continue
3964          * to do the read, but this can corrupt the ring buffer,
3965          * so it must be permanently disabled from future writes.
3966          * Reading from NMI is a oneshot deal.
3967          */
3968         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3969                 return true;
3970
3971         /* Continue without locking, but disable the ring buffer */
3972         atomic_inc(&cpu_buffer->record_disabled);
3973         return false;
3974 }
3975
3976 static inline void
3977 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3978 {
3979         if (likely(locked))
3980                 raw_spin_unlock(&cpu_buffer->reader_lock);
3981         return;
3982 }
3983
3984 /**
3985  * ring_buffer_peek - peek at the next event to be read
3986  * @buffer: The ring buffer to read
3987  * @cpu: The cpu to peak at
3988  * @ts: The timestamp counter of this event.
3989  * @lost_events: a variable to store if events were lost (may be NULL)
3990  *
3991  * This will return the event that will be read next, but does
3992  * not consume the data.
3993  */
3994 struct ring_buffer_event *
3995 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3996                  unsigned long *lost_events)
3997 {
3998         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3999         struct ring_buffer_event *event;
4000         unsigned long flags;
4001         bool dolock;
4002
4003         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4004                 return NULL;
4005
4006  again:
4007         local_irq_save(flags);
4008         dolock = rb_reader_lock(cpu_buffer);
4009         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4010         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4011                 rb_advance_reader(cpu_buffer);
4012         rb_reader_unlock(cpu_buffer, dolock);
4013         local_irq_restore(flags);
4014
4015         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4016                 goto again;
4017
4018         return event;
4019 }
4020
4021 /**
4022  * ring_buffer_iter_peek - peek at the next event to be read
4023  * @iter: The ring buffer iterator
4024  * @ts: The timestamp counter of this event.
4025  *
4026  * This will return the event that will be read next, but does
4027  * not increment the iterator.
4028  */
4029 struct ring_buffer_event *
4030 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4031 {
4032         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4033         struct ring_buffer_event *event;
4034         unsigned long flags;
4035
4036  again:
4037         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4038         event = rb_iter_peek(iter, ts);
4039         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4040
4041         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4042                 goto again;
4043
4044         return event;
4045 }
4046
4047 /**
4048  * ring_buffer_consume - return an event and consume it
4049  * @buffer: The ring buffer to get the next event from
4050  * @cpu: the cpu to read the buffer from
4051  * @ts: a variable to store the timestamp (may be NULL)
4052  * @lost_events: a variable to store if events were lost (may be NULL)
4053  *
4054  * Returns the next event in the ring buffer, and that event is consumed.
4055  * Meaning, that sequential reads will keep returning a different event,
4056  * and eventually empty the ring buffer if the producer is slower.
4057  */
4058 struct ring_buffer_event *
4059 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4060                     unsigned long *lost_events)
4061 {
4062         struct ring_buffer_per_cpu *cpu_buffer;
4063         struct ring_buffer_event *event = NULL;
4064         unsigned long flags;
4065         bool dolock;
4066
4067  again:
4068         /* might be called in atomic */
4069         preempt_disable();
4070
4071         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4072                 goto out;
4073
4074         cpu_buffer = buffer->buffers[cpu];
4075         local_irq_save(flags);
4076         dolock = rb_reader_lock(cpu_buffer);
4077
4078         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4079         if (event) {
4080                 cpu_buffer->lost_events = 0;
4081                 rb_advance_reader(cpu_buffer);
4082         }
4083
4084         rb_reader_unlock(cpu_buffer, dolock);
4085         local_irq_restore(flags);
4086
4087  out:
4088         preempt_enable();
4089
4090         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4091                 goto again;
4092
4093         return event;
4094 }
4095 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4096
4097 /**
4098  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4099  * @buffer: The ring buffer to read from
4100  * @cpu: The cpu buffer to iterate over
4101  * @flags: gfp flags to use for memory allocation
4102  *
4103  * This performs the initial preparations necessary to iterate
4104  * through the buffer.  Memory is allocated, buffer recording
4105  * is disabled, and the iterator pointer is returned to the caller.
4106  *
4107  * Disabling buffer recordng prevents the reading from being
4108  * corrupted. This is not a consuming read, so a producer is not
4109  * expected.
4110  *
4111  * After a sequence of ring_buffer_read_prepare calls, the user is
4112  * expected to make at least one call to ring_buffer_read_prepare_sync.
4113  * Afterwards, ring_buffer_read_start is invoked to get things going
4114  * for real.
4115  *
4116  * This overall must be paired with ring_buffer_read_finish.
4117  */
4118 struct ring_buffer_iter *
4119 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4120 {
4121         struct ring_buffer_per_cpu *cpu_buffer;
4122         struct ring_buffer_iter *iter;
4123
4124         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4125                 return NULL;
4126
4127         iter = kmalloc(sizeof(*iter), flags);
4128         if (!iter)
4129                 return NULL;
4130
4131         cpu_buffer = buffer->buffers[cpu];
4132
4133         iter->cpu_buffer = cpu_buffer;
4134
4135         atomic_inc(&buffer->resize_disabled);
4136         atomic_inc(&cpu_buffer->record_disabled);
4137
4138         return iter;
4139 }
4140 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4141
4142 /**
4143  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4144  *
4145  * All previously invoked ring_buffer_read_prepare calls to prepare
4146  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4147  * calls on those iterators are allowed.
4148  */
4149 void
4150 ring_buffer_read_prepare_sync(void)
4151 {
4152         synchronize_sched();
4153 }
4154 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4155
4156 /**
4157  * ring_buffer_read_start - start a non consuming read of the buffer
4158  * @iter: The iterator returned by ring_buffer_read_prepare
4159  *
4160  * This finalizes the startup of an iteration through the buffer.
4161  * The iterator comes from a call to ring_buffer_read_prepare and
4162  * an intervening ring_buffer_read_prepare_sync must have been
4163  * performed.
4164  *
4165  * Must be paired with ring_buffer_read_finish.
4166  */
4167 void
4168 ring_buffer_read_start(struct ring_buffer_iter *iter)
4169 {
4170         struct ring_buffer_per_cpu *cpu_buffer;
4171         unsigned long flags;
4172
4173         if (!iter)
4174                 return;
4175
4176         cpu_buffer = iter->cpu_buffer;
4177
4178         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4179         arch_spin_lock(&cpu_buffer->lock);
4180         rb_iter_reset(iter);
4181         arch_spin_unlock(&cpu_buffer->lock);
4182         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4183 }
4184 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4185
4186 /**
4187  * ring_buffer_read_finish - finish reading the iterator of the buffer
4188  * @iter: The iterator retrieved by ring_buffer_start
4189  *
4190  * This re-enables the recording to the buffer, and frees the
4191  * iterator.
4192  */
4193 void
4194 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4195 {
4196         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4197         unsigned long flags;
4198
4199         /*
4200          * Ring buffer is disabled from recording, here's a good place
4201          * to check the integrity of the ring buffer.
4202          * Must prevent readers from trying to read, as the check
4203          * clears the HEAD page and readers require it.
4204          */
4205         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4206         rb_check_pages(cpu_buffer);
4207         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4208
4209         atomic_dec(&cpu_buffer->record_disabled);
4210         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4211         kfree(iter);
4212 }
4213 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4214
4215 /**
4216  * ring_buffer_read - read the next item in the ring buffer by the iterator
4217  * @iter: The ring buffer iterator
4218  * @ts: The time stamp of the event read.
4219  *
4220  * This reads the next event in the ring buffer and increments the iterator.
4221  */
4222 struct ring_buffer_event *
4223 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4224 {
4225         struct ring_buffer_event *event;
4226         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4227         unsigned long flags;
4228
4229         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4230  again:
4231         event = rb_iter_peek(iter, ts);
4232         if (!event)
4233                 goto out;
4234
4235         if (event->type_len == RINGBUF_TYPE_PADDING)
4236                 goto again;
4237
4238         rb_advance_iter(iter);
4239  out:
4240         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4241
4242         return event;
4243 }
4244 EXPORT_SYMBOL_GPL(ring_buffer_read);
4245
4246 /**
4247  * ring_buffer_size - return the size of the ring buffer (in bytes)
4248  * @buffer: The ring buffer.
4249  */
4250 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4251 {
4252         /*
4253          * Earlier, this method returned
4254          *      BUF_PAGE_SIZE * buffer->nr_pages
4255          * Since the nr_pages field is now removed, we have converted this to
4256          * return the per cpu buffer value.
4257          */
4258         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4259                 return 0;
4260
4261         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4262 }
4263 EXPORT_SYMBOL_GPL(ring_buffer_size);
4264
4265 static void
4266 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4267 {
4268         rb_head_page_deactivate(cpu_buffer);
4269
4270         cpu_buffer->head_page
4271                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4272         local_set(&cpu_buffer->head_page->write, 0);
4273         local_set(&cpu_buffer->head_page->entries, 0);
4274         local_set(&cpu_buffer->head_page->page->commit, 0);
4275
4276         cpu_buffer->head_page->read = 0;
4277
4278         cpu_buffer->tail_page = cpu_buffer->head_page;
4279         cpu_buffer->commit_page = cpu_buffer->head_page;
4280
4281         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4282         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4283         local_set(&cpu_buffer->reader_page->write, 0);
4284         local_set(&cpu_buffer->reader_page->entries, 0);
4285         local_set(&cpu_buffer->reader_page->page->commit, 0);
4286         cpu_buffer->reader_page->read = 0;
4287
4288         local_set(&cpu_buffer->entries_bytes, 0);
4289         local_set(&cpu_buffer->overrun, 0);
4290         local_set(&cpu_buffer->commit_overrun, 0);
4291         local_set(&cpu_buffer->dropped_events, 0);
4292         local_set(&cpu_buffer->entries, 0);
4293         local_set(&cpu_buffer->committing, 0);
4294         local_set(&cpu_buffer->commits, 0);
4295         cpu_buffer->read = 0;
4296         cpu_buffer->read_bytes = 0;
4297
4298         cpu_buffer->write_stamp = 0;
4299         cpu_buffer->read_stamp = 0;
4300
4301         cpu_buffer->lost_events = 0;
4302         cpu_buffer->last_overrun = 0;
4303
4304         rb_head_page_activate(cpu_buffer);
4305 }
4306
4307 /**
4308  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4309  * @buffer: The ring buffer to reset a per cpu buffer of
4310  * @cpu: The CPU buffer to be reset
4311  */
4312 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4313 {
4314         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4315         unsigned long flags;
4316
4317         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4318                 return;
4319         /* prevent another thread from changing buffer sizes */
4320         mutex_lock(&buffer->mutex);
4321
4322         atomic_inc(&buffer->resize_disabled);
4323         atomic_inc(&cpu_buffer->record_disabled);
4324
4325         /* Make sure all commits have finished */
4326         synchronize_sched();
4327
4328         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4329
4330         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4331                 goto out;
4332
4333         arch_spin_lock(&cpu_buffer->lock);
4334
4335         rb_reset_cpu(cpu_buffer);
4336
4337         arch_spin_unlock(&cpu_buffer->lock);
4338
4339  out:
4340         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4341
4342         atomic_dec(&cpu_buffer->record_disabled);
4343         atomic_dec(&buffer->resize_disabled);
4344
4345         mutex_unlock(&buffer->mutex);
4346 }
4347 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4348
4349 /**
4350  * ring_buffer_reset - reset a ring buffer
4351  * @buffer: The ring buffer to reset all cpu buffers
4352  */
4353 void ring_buffer_reset(struct ring_buffer *buffer)
4354 {
4355         int cpu;
4356
4357         for_each_buffer_cpu(buffer, cpu)
4358                 ring_buffer_reset_cpu(buffer, cpu);
4359 }
4360 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4361
4362 /**
4363  * rind_buffer_empty - is the ring buffer empty?
4364  * @buffer: The ring buffer to test
4365  */
4366 bool ring_buffer_empty(struct ring_buffer *buffer)
4367 {
4368         struct ring_buffer_per_cpu *cpu_buffer;
4369         unsigned long flags;
4370         bool dolock;
4371         int cpu;
4372         int ret;
4373
4374         /* yes this is racy, but if you don't like the race, lock the buffer */
4375         for_each_buffer_cpu(buffer, cpu) {
4376                 cpu_buffer = buffer->buffers[cpu];
4377                 local_irq_save(flags);
4378                 dolock = rb_reader_lock(cpu_buffer);
4379                 ret = rb_per_cpu_empty(cpu_buffer);
4380                 rb_reader_unlock(cpu_buffer, dolock);
4381                 local_irq_restore(flags);
4382
4383                 if (!ret)
4384                         return false;
4385         }
4386
4387         return true;
4388 }
4389 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4390
4391 /**
4392  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4393  * @buffer: The ring buffer
4394  * @cpu: The CPU buffer to test
4395  */
4396 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4397 {
4398         struct ring_buffer_per_cpu *cpu_buffer;
4399         unsigned long flags;
4400         bool dolock;
4401         int ret;
4402
4403         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4404                 return true;
4405
4406         cpu_buffer = buffer->buffers[cpu];
4407         local_irq_save(flags);
4408         dolock = rb_reader_lock(cpu_buffer);
4409         ret = rb_per_cpu_empty(cpu_buffer);
4410         rb_reader_unlock(cpu_buffer, dolock);
4411         local_irq_restore(flags);
4412
4413         return ret;
4414 }
4415 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4416
4417 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4418 /**
4419  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4420  * @buffer_a: One buffer to swap with
4421  * @buffer_b: The other buffer to swap with
4422  *
4423  * This function is useful for tracers that want to take a "snapshot"
4424  * of a CPU buffer and has another back up buffer lying around.
4425  * it is expected that the tracer handles the cpu buffer not being
4426  * used at the moment.
4427  */
4428 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4429                          struct ring_buffer *buffer_b, int cpu)
4430 {
4431         struct ring_buffer_per_cpu *cpu_buffer_a;
4432         struct ring_buffer_per_cpu *cpu_buffer_b;
4433         int ret = -EINVAL;
4434
4435         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4436             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4437                 goto out;
4438
4439         cpu_buffer_a = buffer_a->buffers[cpu];
4440         cpu_buffer_b = buffer_b->buffers[cpu];
4441
4442         /* At least make sure the two buffers are somewhat the same */
4443         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4444                 goto out;
4445
4446         ret = -EAGAIN;
4447
4448         if (atomic_read(&buffer_a->record_disabled))
4449                 goto out;
4450
4451         if (atomic_read(&buffer_b->record_disabled))
4452                 goto out;
4453
4454         if (atomic_read(&cpu_buffer_a->record_disabled))
4455                 goto out;
4456
4457         if (atomic_read(&cpu_buffer_b->record_disabled))
4458                 goto out;
4459
4460         /*
4461          * We can't do a synchronize_sched here because this
4462          * function can be called in atomic context.
4463          * Normally this will be called from the same CPU as cpu.
4464          * If not it's up to the caller to protect this.
4465          */
4466         atomic_inc(&cpu_buffer_a->record_disabled);
4467         atomic_inc(&cpu_buffer_b->record_disabled);
4468
4469         ret = -EBUSY;
4470         if (local_read(&cpu_buffer_a->committing))
4471                 goto out_dec;
4472         if (local_read(&cpu_buffer_b->committing))
4473                 goto out_dec;
4474
4475         buffer_a->buffers[cpu] = cpu_buffer_b;
4476         buffer_b->buffers[cpu] = cpu_buffer_a;
4477
4478         cpu_buffer_b->buffer = buffer_a;
4479         cpu_buffer_a->buffer = buffer_b;
4480
4481         ret = 0;
4482
4483 out_dec:
4484         atomic_dec(&cpu_buffer_a->record_disabled);
4485         atomic_dec(&cpu_buffer_b->record_disabled);
4486 out:
4487         return ret;
4488 }
4489 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4490 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4491
4492 /**
4493  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4494  * @buffer: the buffer to allocate for.
4495  * @cpu: the cpu buffer to allocate.
4496  *
4497  * This function is used in conjunction with ring_buffer_read_page.
4498  * When reading a full page from the ring buffer, these functions
4499  * can be used to speed up the process. The calling function should
4500  * allocate a few pages first with this function. Then when it
4501  * needs to get pages from the ring buffer, it passes the result
4502  * of this function into ring_buffer_read_page, which will swap
4503  * the page that was allocated, with the read page of the buffer.
4504  *
4505  * Returns:
4506  *  The page allocated, or ERR_PTR
4507  */
4508 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4509 {
4510         struct ring_buffer_per_cpu *cpu_buffer;
4511         struct buffer_data_page *bpage = NULL;
4512         unsigned long flags;
4513         struct page *page;
4514
4515         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4516                 return ERR_PTR(-ENODEV);
4517
4518         cpu_buffer = buffer->buffers[cpu];
4519         local_irq_save(flags);
4520         arch_spin_lock(&cpu_buffer->lock);
4521
4522         if (cpu_buffer->free_page) {
4523                 bpage = cpu_buffer->free_page;
4524                 cpu_buffer->free_page = NULL;
4525         }
4526
4527         arch_spin_unlock(&cpu_buffer->lock);
4528         local_irq_restore(flags);
4529
4530         if (bpage)
4531                 goto out;
4532
4533         page = alloc_pages_node(cpu_to_node(cpu),
4534                                 GFP_KERNEL | __GFP_NORETRY, 0);
4535         if (!page)
4536                 return ERR_PTR(-ENOMEM);
4537
4538         bpage = page_address(page);
4539
4540  out:
4541         rb_init_page(bpage);
4542
4543         return bpage;
4544 }
4545 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4546
4547 /**
4548  * ring_buffer_free_read_page - free an allocated read page
4549  * @buffer: the buffer the page was allocate for
4550  * @cpu: the cpu buffer the page came from
4551  * @data: the page to free
4552  *
4553  * Free a page allocated from ring_buffer_alloc_read_page.
4554  */
4555 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4556 {
4557         struct ring_buffer_per_cpu *cpu_buffer;
4558         struct buffer_data_page *bpage = data;
4559         struct page *page = virt_to_page(bpage);
4560         unsigned long flags;
4561
4562         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
4563                 return;
4564
4565         cpu_buffer = buffer->buffers[cpu];
4566
4567         /* If the page is still in use someplace else, we can't reuse it */
4568         if (page_ref_count(page) > 1)
4569                 goto out;
4570
4571         local_irq_save(flags);
4572         arch_spin_lock(&cpu_buffer->lock);
4573
4574         if (!cpu_buffer->free_page) {
4575                 cpu_buffer->free_page = bpage;
4576                 bpage = NULL;
4577         }
4578
4579         arch_spin_unlock(&cpu_buffer->lock);
4580         local_irq_restore(flags);
4581
4582  out:
4583         free_page((unsigned long)bpage);
4584 }
4585 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4586
4587 /**
4588  * ring_buffer_read_page - extract a page from the ring buffer
4589  * @buffer: buffer to extract from
4590  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4591  * @len: amount to extract
4592  * @cpu: the cpu of the buffer to extract
4593  * @full: should the extraction only happen when the page is full.
4594  *
4595  * This function will pull out a page from the ring buffer and consume it.
4596  * @data_page must be the address of the variable that was returned
4597  * from ring_buffer_alloc_read_page. This is because the page might be used
4598  * to swap with a page in the ring buffer.
4599  *
4600  * for example:
4601  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4602  *      if (IS_ERR(rpage))
4603  *              return PTR_ERR(rpage);
4604  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4605  *      if (ret >= 0)
4606  *              process_page(rpage, ret);
4607  *
4608  * When @full is set, the function will not return true unless
4609  * the writer is off the reader page.
4610  *
4611  * Note: it is up to the calling functions to handle sleeps and wakeups.
4612  *  The ring buffer can be used anywhere in the kernel and can not
4613  *  blindly call wake_up. The layer that uses the ring buffer must be
4614  *  responsible for that.
4615  *
4616  * Returns:
4617  *  >=0 if data has been transferred, returns the offset of consumed data.
4618  *  <0 if no data has been transferred.
4619  */
4620 int ring_buffer_read_page(struct ring_buffer *buffer,
4621                           void **data_page, size_t len, int cpu, int full)
4622 {
4623         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4624         struct ring_buffer_event *event;
4625         struct buffer_data_page *bpage;
4626         struct buffer_page *reader;
4627         unsigned long missed_events;
4628         unsigned long flags;
4629         unsigned int commit;
4630         unsigned int read;
4631         u64 save_timestamp;
4632         int ret = -1;
4633
4634         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4635                 goto out;
4636
4637         /*
4638          * If len is not big enough to hold the page header, then
4639          * we can not copy anything.
4640          */
4641         if (len <= BUF_PAGE_HDR_SIZE)
4642                 goto out;
4643
4644         len -= BUF_PAGE_HDR_SIZE;
4645
4646         if (!data_page)
4647                 goto out;
4648
4649         bpage = *data_page;
4650         if (!bpage)
4651                 goto out;
4652
4653         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4654
4655         reader = rb_get_reader_page(cpu_buffer);
4656         if (!reader)
4657                 goto out_unlock;
4658
4659         event = rb_reader_event(cpu_buffer);
4660
4661         read = reader->read;
4662         commit = rb_page_commit(reader);
4663
4664         /* Check if any events were dropped */
4665         missed_events = cpu_buffer->lost_events;
4666
4667         /*
4668          * If this page has been partially read or
4669          * if len is not big enough to read the rest of the page or
4670          * a writer is still on the page, then
4671          * we must copy the data from the page to the buffer.
4672          * Otherwise, we can simply swap the page with the one passed in.
4673          */
4674         if (read || (len < (commit - read)) ||
4675             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4676                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4677                 unsigned int rpos = read;
4678                 unsigned int pos = 0;
4679                 unsigned int size;
4680
4681                 /*
4682                  * If a full page is expected, this can still be returned
4683                  * if there's been a previous partial read and the
4684                  * rest of the page can be read and the commit page is off
4685                  * the reader page.
4686                  */
4687                 if (full &&
4688                     (!read || (len < (commit - read)) ||
4689                      cpu_buffer->reader_page == cpu_buffer->commit_page))
4690                         goto out_unlock;
4691
4692                 if (len > (commit - read))
4693                         len = (commit - read);
4694
4695                 /* Always keep the time extend and data together */
4696                 size = rb_event_ts_length(event);
4697
4698                 if (len < size)
4699                         goto out_unlock;
4700
4701                 /* save the current timestamp, since the user will need it */
4702                 save_timestamp = cpu_buffer->read_stamp;
4703
4704                 /* Need to copy one event at a time */
4705                 do {
4706                         /* We need the size of one event, because
4707                          * rb_advance_reader only advances by one event,
4708                          * whereas rb_event_ts_length may include the size of
4709                          * one or two events.
4710                          * We have already ensured there's enough space if this
4711                          * is a time extend. */
4712                         size = rb_event_length(event);
4713                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4714
4715                         len -= size;
4716
4717                         rb_advance_reader(cpu_buffer);
4718                         rpos = reader->read;
4719                         pos += size;
4720
4721                         if (rpos >= commit)
4722                                 break;
4723
4724                         event = rb_reader_event(cpu_buffer);
4725                         /* Always keep the time extend and data together */
4726                         size = rb_event_ts_length(event);
4727                 } while (len >= size);
4728
4729                 /* update bpage */
4730                 local_set(&bpage->commit, pos);
4731                 bpage->time_stamp = save_timestamp;
4732
4733                 /* we copied everything to the beginning */
4734                 read = 0;
4735         } else {
4736                 /* update the entry counter */
4737                 cpu_buffer->read += rb_page_entries(reader);
4738                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4739
4740                 /* swap the pages */
4741                 rb_init_page(bpage);
4742                 bpage = reader->page;
4743                 reader->page = *data_page;
4744                 local_set(&reader->write, 0);
4745                 local_set(&reader->entries, 0);
4746                 reader->read = 0;
4747                 *data_page = bpage;
4748
4749                 /*
4750                  * Use the real_end for the data size,
4751                  * This gives us a chance to store the lost events
4752                  * on the page.
4753                  */
4754                 if (reader->real_end)
4755                         local_set(&bpage->commit, reader->real_end);
4756         }
4757         ret = read;
4758
4759         cpu_buffer->lost_events = 0;
4760
4761         commit = local_read(&bpage->commit);
4762         /*
4763          * Set a flag in the commit field if we lost events
4764          */
4765         if (missed_events) {
4766                 /* If there is room at the end of the page to save the
4767                  * missed events, then record it there.
4768                  */
4769                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4770                         memcpy(&bpage->data[commit], &missed_events,
4771                                sizeof(missed_events));
4772                         local_add(RB_MISSED_STORED, &bpage->commit);
4773                         commit += sizeof(missed_events);
4774                 }
4775                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4776         }
4777
4778         /*
4779          * This page may be off to user land. Zero it out here.
4780          */
4781         if (commit < BUF_PAGE_SIZE)
4782                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4783
4784  out_unlock:
4785         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4786
4787  out:
4788         return ret;
4789 }
4790 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4791
4792 /*
4793  * We only allocate new buffers, never free them if the CPU goes down.
4794  * If we were to free the buffer, then the user would lose any trace that was in
4795  * the buffer.
4796  */
4797 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4798 {
4799         struct ring_buffer *buffer;
4800         long nr_pages_same;
4801         int cpu_i;
4802         unsigned long nr_pages;
4803
4804         buffer = container_of(node, struct ring_buffer, node);
4805         if (cpumask_test_cpu(cpu, buffer->cpumask))
4806                 return 0;
4807
4808         nr_pages = 0;
4809         nr_pages_same = 1;
4810         /* check if all cpu sizes are same */
4811         for_each_buffer_cpu(buffer, cpu_i) {
4812                 /* fill in the size from first enabled cpu */
4813                 if (nr_pages == 0)
4814                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4815                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4816                         nr_pages_same = 0;
4817                         break;
4818                 }
4819         }
4820         /* allocate minimum pages, user can later expand it */
4821         if (!nr_pages_same)
4822                 nr_pages = 2;
4823         buffer->buffers[cpu] =
4824                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4825         if (!buffer->buffers[cpu]) {
4826                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4827                      cpu);
4828                 return -ENOMEM;
4829         }
4830         smp_wmb();
4831         cpumask_set_cpu(cpu, buffer->cpumask);
4832         return 0;
4833 }
4834
4835 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4836 /*
4837  * This is a basic integrity check of the ring buffer.
4838  * Late in the boot cycle this test will run when configured in.
4839  * It will kick off a thread per CPU that will go into a loop
4840  * writing to the per cpu ring buffer various sizes of data.
4841  * Some of the data will be large items, some small.
4842  *
4843  * Another thread is created that goes into a spin, sending out
4844  * IPIs to the other CPUs to also write into the ring buffer.
4845  * this is to test the nesting ability of the buffer.
4846  *
4847  * Basic stats are recorded and reported. If something in the
4848  * ring buffer should happen that's not expected, a big warning
4849  * is displayed and all ring buffers are disabled.
4850  */
4851 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4852
4853 struct rb_test_data {
4854         struct ring_buffer      *buffer;
4855         unsigned long           events;
4856         unsigned long           bytes_written;
4857         unsigned long           bytes_alloc;
4858         unsigned long           bytes_dropped;
4859         unsigned long           events_nested;
4860         unsigned long           bytes_written_nested;
4861         unsigned long           bytes_alloc_nested;
4862         unsigned long           bytes_dropped_nested;
4863         int                     min_size_nested;
4864         int                     max_size_nested;
4865         int                     max_size;
4866         int                     min_size;
4867         int                     cpu;
4868         int                     cnt;
4869 };
4870
4871 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4872
4873 /* 1 meg per cpu */
4874 #define RB_TEST_BUFFER_SIZE     1048576
4875
4876 static char rb_string[] __initdata =
4877         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4878         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4879         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4880
4881 static bool rb_test_started __initdata;
4882
4883 struct rb_item {
4884         int size;
4885         char str[];
4886 };
4887
4888 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4889 {
4890         struct ring_buffer_event *event;
4891         struct rb_item *item;
4892         bool started;
4893         int event_len;
4894         int size;
4895         int len;
4896         int cnt;
4897
4898         /* Have nested writes different that what is written */
4899         cnt = data->cnt + (nested ? 27 : 0);
4900
4901         /* Multiply cnt by ~e, to make some unique increment */
4902         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4903
4904         len = size + sizeof(struct rb_item);
4905
4906         started = rb_test_started;
4907         /* read rb_test_started before checking buffer enabled */
4908         smp_rmb();
4909
4910         event = ring_buffer_lock_reserve(data->buffer, len);
4911         if (!event) {
4912                 /* Ignore dropped events before test starts. */
4913                 if (started) {
4914                         if (nested)
4915                                 data->bytes_dropped += len;
4916                         else
4917                                 data->bytes_dropped_nested += len;
4918                 }
4919                 return len;
4920         }
4921
4922         event_len = ring_buffer_event_length(event);
4923
4924         if (RB_WARN_ON(data->buffer, event_len < len))
4925                 goto out;
4926
4927         item = ring_buffer_event_data(event);
4928         item->size = size;
4929         memcpy(item->str, rb_string, size);
4930
4931         if (nested) {
4932                 data->bytes_alloc_nested += event_len;
4933                 data->bytes_written_nested += len;
4934                 data->events_nested++;
4935                 if (!data->min_size_nested || len < data->min_size_nested)
4936                         data->min_size_nested = len;
4937                 if (len > data->max_size_nested)
4938                         data->max_size_nested = len;
4939         } else {
4940                 data->bytes_alloc += event_len;
4941                 data->bytes_written += len;
4942                 data->events++;
4943                 if (!data->min_size || len < data->min_size)
4944                         data->max_size = len;
4945                 if (len > data->max_size)
4946                         data->max_size = len;
4947         }
4948
4949  out:
4950         ring_buffer_unlock_commit(data->buffer, event);
4951
4952         return 0;
4953 }
4954
4955 static __init int rb_test(void *arg)
4956 {
4957         struct rb_test_data *data = arg;
4958
4959         while (!kthread_should_stop()) {
4960                 rb_write_something(data, false);
4961                 data->cnt++;
4962
4963                 set_current_state(TASK_INTERRUPTIBLE);
4964                 /* Now sleep between a min of 100-300us and a max of 1ms */
4965                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4966         }
4967
4968         return 0;
4969 }
4970
4971 static __init void rb_ipi(void *ignore)
4972 {
4973         struct rb_test_data *data;
4974         int cpu = smp_processor_id();
4975
4976         data = &rb_data[cpu];
4977         rb_write_something(data, true);
4978 }
4979
4980 static __init int rb_hammer_test(void *arg)
4981 {
4982         while (!kthread_should_stop()) {
4983
4984                 /* Send an IPI to all cpus to write data! */
4985                 smp_call_function(rb_ipi, NULL, 1);
4986                 /* No sleep, but for non preempt, let others run */
4987                 schedule();
4988         }
4989
4990         return 0;
4991 }
4992
4993 static __init int test_ringbuffer(void)
4994 {
4995         struct task_struct *rb_hammer;
4996         struct ring_buffer *buffer;
4997         int cpu;
4998         int ret = 0;
4999
5000         pr_info("Running ring buffer tests...\n");
5001
5002         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5003         if (WARN_ON(!buffer))
5004                 return 0;
5005
5006         /* Disable buffer so that threads can't write to it yet */
5007         ring_buffer_record_off(buffer);
5008
5009         for_each_online_cpu(cpu) {
5010                 rb_data[cpu].buffer = buffer;
5011                 rb_data[cpu].cpu = cpu;
5012                 rb_data[cpu].cnt = cpu;
5013                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5014                                                  "rbtester/%d", cpu);
5015                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5016                         pr_cont("FAILED\n");
5017                         ret = PTR_ERR(rb_threads[cpu]);
5018                         goto out_free;
5019                 }
5020
5021                 kthread_bind(rb_threads[cpu], cpu);
5022                 wake_up_process(rb_threads[cpu]);
5023         }
5024
5025         /* Now create the rb hammer! */
5026         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5027         if (WARN_ON(IS_ERR(rb_hammer))) {
5028                 pr_cont("FAILED\n");
5029                 ret = PTR_ERR(rb_hammer);
5030                 goto out_free;
5031         }
5032
5033         ring_buffer_record_on(buffer);
5034         /*
5035          * Show buffer is enabled before setting rb_test_started.
5036          * Yes there's a small race window where events could be
5037          * dropped and the thread wont catch it. But when a ring
5038          * buffer gets enabled, there will always be some kind of
5039          * delay before other CPUs see it. Thus, we don't care about
5040          * those dropped events. We care about events dropped after
5041          * the threads see that the buffer is active.
5042          */
5043         smp_wmb();
5044         rb_test_started = true;
5045
5046         set_current_state(TASK_INTERRUPTIBLE);
5047         /* Just run for 10 seconds */;
5048         schedule_timeout(10 * HZ);
5049
5050         kthread_stop(rb_hammer);
5051
5052  out_free:
5053         for_each_online_cpu(cpu) {
5054                 if (!rb_threads[cpu])
5055                         break;
5056                 kthread_stop(rb_threads[cpu]);
5057         }
5058         if (ret) {
5059                 ring_buffer_free(buffer);
5060                 return ret;
5061         }
5062
5063         /* Report! */
5064         pr_info("finished\n");
5065         for_each_online_cpu(cpu) {
5066                 struct ring_buffer_event *event;
5067                 struct rb_test_data *data = &rb_data[cpu];
5068                 struct rb_item *item;
5069                 unsigned long total_events;
5070                 unsigned long total_dropped;
5071                 unsigned long total_written;
5072                 unsigned long total_alloc;
5073                 unsigned long total_read = 0;
5074                 unsigned long total_size = 0;
5075                 unsigned long total_len = 0;
5076                 unsigned long total_lost = 0;
5077                 unsigned long lost;
5078                 int big_event_size;
5079                 int small_event_size;
5080
5081                 ret = -1;
5082
5083                 total_events = data->events + data->events_nested;
5084                 total_written = data->bytes_written + data->bytes_written_nested;
5085                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5086                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5087
5088                 big_event_size = data->max_size + data->max_size_nested;
5089                 small_event_size = data->min_size + data->min_size_nested;
5090
5091                 pr_info("CPU %d:\n", cpu);
5092                 pr_info("              events:    %ld\n", total_events);
5093                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5094                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5095                 pr_info("       written bytes:    %ld\n", total_written);
5096                 pr_info("       biggest event:    %d\n", big_event_size);
5097                 pr_info("      smallest event:    %d\n", small_event_size);
5098
5099                 if (RB_WARN_ON(buffer, total_dropped))
5100                         break;
5101
5102                 ret = 0;
5103
5104                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5105                         total_lost += lost;
5106                         item = ring_buffer_event_data(event);
5107                         total_len += ring_buffer_event_length(event);
5108                         total_size += item->size + sizeof(struct rb_item);
5109                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5110                                 pr_info("FAILED!\n");
5111                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5112                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5113                                 RB_WARN_ON(buffer, 1);
5114                                 ret = -1;
5115                                 break;
5116                         }
5117                         total_read++;
5118                 }
5119                 if (ret)
5120                         break;
5121
5122                 ret = -1;
5123
5124                 pr_info("         read events:   %ld\n", total_read);
5125                 pr_info("         lost events:   %ld\n", total_lost);
5126                 pr_info("        total events:   %ld\n", total_lost + total_read);
5127                 pr_info("  recorded len bytes:   %ld\n", total_len);
5128                 pr_info(" recorded size bytes:   %ld\n", total_size);
5129                 if (total_lost)
5130                         pr_info(" With dropped events, record len and size may not match\n"
5131                                 " alloced and written from above\n");
5132                 if (!total_lost) {
5133                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5134                                        total_size != total_written))
5135                                 break;
5136                 }
5137                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5138                         break;
5139
5140                 ret = 0;
5141         }
5142         if (!ret)
5143                 pr_info("Ring buffer PASSED!\n");
5144
5145         ring_buffer_free(buffer);
5146         return 0;
5147 }
5148
5149 late_initcall(test_ringbuffer);
5150 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */