GNU Linux-libre 4.19.211-gnu1
[releases.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kthread.h>      /* for self test */
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/oom.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         trace_seq_puts(s, "# compressed entry header\n");
38         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
39         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
40         trace_seq_puts(s, "\tarray       :   32 bits\n");
41         trace_seq_putc(s, '\n');
42         trace_seq_printf(s, "\tpadding     : type == %d\n",
43                          RINGBUF_TYPE_PADDING);
44         trace_seq_printf(s, "\ttime_extend : type == %d\n",
45                          RINGBUF_TYPE_TIME_EXTEND);
46         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
47                          RINGBUF_TYPE_TIME_STAMP);
48         trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return !trace_seq_has_overflowed(s);
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /* Used for individual buffers (after the counter) */
123 #define RB_BUFFER_OFF           (1 << 20)
124
125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
126
127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
128 #define RB_ALIGNMENT            4U
129 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
130 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
131
132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
133 # define RB_FORCE_8BYTE_ALIGNMENT       0
134 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
135 #else
136 # define RB_FORCE_8BYTE_ALIGNMENT       1
137 # define RB_ARCH_ALIGNMENT              8U
138 #endif
139
140 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
141
142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
144
145 enum {
146         RB_LEN_TIME_EXTEND = 8,
147         RB_LEN_TIME_STAMP =  8,
148 };
149
150 #define skip_time_extend(event) \
151         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
152
153 #define extended_time(event) \
154         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
155
156 static inline int rb_null_event(struct ring_buffer_event *event)
157 {
158         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
159 }
160
161 static void rb_event_set_padding(struct ring_buffer_event *event)
162 {
163         /* padding has a NULL time_delta */
164         event->type_len = RINGBUF_TYPE_PADDING;
165         event->time_delta = 0;
166 }
167
168 static unsigned
169 rb_event_data_length(struct ring_buffer_event *event)
170 {
171         unsigned length;
172
173         if (event->type_len)
174                 length = event->type_len * RB_ALIGNMENT;
175         else
176                 length = event->array[0];
177         return length + RB_EVNT_HDR_SIZE;
178 }
179
180 /*
181  * Return the length of the given event. Will return
182  * the length of the time extend if the event is a
183  * time extend.
184  */
185 static inline unsigned
186 rb_event_length(struct ring_buffer_event *event)
187 {
188         switch (event->type_len) {
189         case RINGBUF_TYPE_PADDING:
190                 if (rb_null_event(event))
191                         /* undefined */
192                         return -1;
193                 return  event->array[0] + RB_EVNT_HDR_SIZE;
194
195         case RINGBUF_TYPE_TIME_EXTEND:
196                 return RB_LEN_TIME_EXTEND;
197
198         case RINGBUF_TYPE_TIME_STAMP:
199                 return RB_LEN_TIME_STAMP;
200
201         case RINGBUF_TYPE_DATA:
202                 return rb_event_data_length(event);
203         default:
204                 BUG();
205         }
206         /* not hit */
207         return 0;
208 }
209
210 /*
211  * Return total length of time extend and data,
212  *   or just the event length for all other events.
213  */
214 static inline unsigned
215 rb_event_ts_length(struct ring_buffer_event *event)
216 {
217         unsigned len = 0;
218
219         if (extended_time(event)) {
220                 /* time extends include the data event after it */
221                 len = RB_LEN_TIME_EXTEND;
222                 event = skip_time_extend(event);
223         }
224         return len + rb_event_length(event);
225 }
226
227 /**
228  * ring_buffer_event_length - return the length of the event
229  * @event: the event to get the length of
230  *
231  * Returns the size of the data load of a data event.
232  * If the event is something other than a data event, it
233  * returns the size of the event itself. With the exception
234  * of a TIME EXTEND, where it still returns the size of the
235  * data load of the data event after it.
236  */
237 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
238 {
239         unsigned length;
240
241         if (extended_time(event))
242                 event = skip_time_extend(event);
243
244         length = rb_event_length(event);
245         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
246                 return length;
247         length -= RB_EVNT_HDR_SIZE;
248         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
249                 length -= sizeof(event->array[0]);
250         return length;
251 }
252 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
253
254 /* inline for ring buffer fast paths */
255 static __always_inline void *
256 rb_event_data(struct ring_buffer_event *event)
257 {
258         if (extended_time(event))
259                 event = skip_time_extend(event);
260         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
261         /* If length is in len field, then array[0] has the data */
262         if (event->type_len)
263                 return (void *)&event->array[0];
264         /* Otherwise length is in array[0] and array[1] has the data */
265         return (void *)&event->array[1];
266 }
267
268 /**
269  * ring_buffer_event_data - return the data of the event
270  * @event: the event to get the data from
271  */
272 void *ring_buffer_event_data(struct ring_buffer_event *event)
273 {
274         return rb_event_data(event);
275 }
276 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
277
278 #define for_each_buffer_cpu(buffer, cpu)                \
279         for_each_cpu(cpu, buffer->cpumask)
280
281 #define TS_SHIFT        27
282 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
283 #define TS_DELTA_TEST   (~TS_MASK)
284
285 /**
286  * ring_buffer_event_time_stamp - return the event's extended timestamp
287  * @event: the event to get the timestamp of
288  *
289  * Returns the extended timestamp associated with a data event.
290  * An extended time_stamp is a 64-bit timestamp represented
291  * internally in a special way that makes the best use of space
292  * contained within a ring buffer event.  This function decodes
293  * it and maps it to a straight u64 value.
294  */
295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
296 {
297         u64 ts;
298
299         ts = event->array[0];
300         ts <<= TS_SHIFT;
301         ts += event->time_delta;
302
303         return ts;
304 }
305
306 /* Flag when events were overwritten */
307 #define RB_MISSED_EVENTS        (1 << 31)
308 /* Missed count stored at end */
309 #define RB_MISSED_STORED        (1 << 30)
310
311 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
312
313 struct buffer_data_page {
314         u64              time_stamp;    /* page time stamp */
315         local_t          commit;        /* write committed index */
316         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
317 };
318
319 /*
320  * Note, the buffer_page list must be first. The buffer pages
321  * are allocated in cache lines, which means that each buffer
322  * page will be at the beginning of a cache line, and thus
323  * the least significant bits will be zero. We use this to
324  * add flags in the list struct pointers, to make the ring buffer
325  * lockless.
326  */
327 struct buffer_page {
328         struct list_head list;          /* list of buffer pages */
329         local_t          write;         /* index for next write */
330         unsigned         read;          /* index for next read */
331         local_t          entries;       /* entries on this page */
332         unsigned long    real_end;      /* real end of data */
333         struct buffer_data_page *page;  /* Actual data page */
334 };
335
336 /*
337  * The buffer page counters, write and entries, must be reset
338  * atomically when crossing page boundaries. To synchronize this
339  * update, two counters are inserted into the number. One is
340  * the actual counter for the write position or count on the page.
341  *
342  * The other is a counter of updaters. Before an update happens
343  * the update partition of the counter is incremented. This will
344  * allow the updater to update the counter atomically.
345  *
346  * The counter is 20 bits, and the state data is 12.
347  */
348 #define RB_WRITE_MASK           0xfffff
349 #define RB_WRITE_INTCNT         (1 << 20)
350
351 static void rb_init_page(struct buffer_data_page *bpage)
352 {
353         local_set(&bpage->commit, 0);
354 }
355
356 /**
357  * ring_buffer_page_len - the size of data on the page.
358  * @page: The page to read
359  *
360  * Returns the amount of data on the page, including buffer page header.
361  */
362 size_t ring_buffer_page_len(void *page)
363 {
364         struct buffer_data_page *bpage = page;
365
366         return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
367                 + BUF_PAGE_HDR_SIZE;
368 }
369
370 /*
371  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
372  * this issue out.
373  */
374 static void free_buffer_page(struct buffer_page *bpage)
375 {
376         free_page((unsigned long)bpage->page);
377         kfree(bpage);
378 }
379
380 /*
381  * We need to fit the time_stamp delta into 27 bits.
382  */
383 static inline int test_time_stamp(u64 delta)
384 {
385         if (delta & TS_DELTA_TEST)
386                 return 1;
387         return 0;
388 }
389
390 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
391
392 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
393 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
394
395 int ring_buffer_print_page_header(struct trace_seq *s)
396 {
397         struct buffer_data_page field;
398
399         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400                          "offset:0;\tsize:%u;\tsigned:%u;\n",
401                          (unsigned int)sizeof(field.time_stamp),
402                          (unsigned int)is_signed_type(u64));
403
404         trace_seq_printf(s, "\tfield: local_t commit;\t"
405                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
406                          (unsigned int)offsetof(typeof(field), commit),
407                          (unsigned int)sizeof(field.commit),
408                          (unsigned int)is_signed_type(long));
409
410         trace_seq_printf(s, "\tfield: int overwrite;\t"
411                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
412                          (unsigned int)offsetof(typeof(field), commit),
413                          1,
414                          (unsigned int)is_signed_type(long));
415
416         trace_seq_printf(s, "\tfield: char data;\t"
417                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
418                          (unsigned int)offsetof(typeof(field), data),
419                          (unsigned int)BUF_PAGE_SIZE,
420                          (unsigned int)is_signed_type(char));
421
422         return !trace_seq_has_overflowed(s);
423 }
424
425 struct rb_irq_work {
426         struct irq_work                 work;
427         wait_queue_head_t               waiters;
428         wait_queue_head_t               full_waiters;
429         bool                            waiters_pending;
430         bool                            full_waiters_pending;
431         bool                            wakeup_full;
432 };
433
434 /*
435  * Structure to hold event state and handle nested events.
436  */
437 struct rb_event_info {
438         u64                     ts;
439         u64                     delta;
440         unsigned long           length;
441         struct buffer_page      *tail_page;
442         int                     add_timestamp;
443 };
444
445 /*
446  * Used for which event context the event is in.
447  *  TRANSITION = 0
448  *  NMI     = 1
449  *  IRQ     = 2
450  *  SOFTIRQ = 3
451  *  NORMAL  = 4
452  *
453  * See trace_recursive_lock() comment below for more details.
454  */
455 enum {
456         RB_CTX_TRANSITION,
457         RB_CTX_NMI,
458         RB_CTX_IRQ,
459         RB_CTX_SOFTIRQ,
460         RB_CTX_NORMAL,
461         RB_CTX_MAX
462 };
463
464 /*
465  * head_page == tail_page && head == tail then buffer is empty.
466  */
467 struct ring_buffer_per_cpu {
468         int                             cpu;
469         atomic_t                        record_disabled;
470         struct ring_buffer              *buffer;
471         raw_spinlock_t                  reader_lock;    /* serialize readers */
472         arch_spinlock_t                 lock;
473         struct lock_class_key           lock_key;
474         struct buffer_data_page         *free_page;
475         unsigned long                   nr_pages;
476         unsigned int                    current_context;
477         struct list_head                *pages;
478         struct buffer_page              *head_page;     /* read from head */
479         struct buffer_page              *tail_page;     /* write to tail */
480         struct buffer_page              *commit_page;   /* committed pages */
481         struct buffer_page              *reader_page;
482         unsigned long                   lost_events;
483         unsigned long                   last_overrun;
484         unsigned long                   nest;
485         local_t                         entries_bytes;
486         local_t                         entries;
487         local_t                         overrun;
488         local_t                         commit_overrun;
489         local_t                         dropped_events;
490         local_t                         committing;
491         local_t                         commits;
492         unsigned long                   read;
493         unsigned long                   read_bytes;
494         u64                             write_stamp;
495         u64                             read_stamp;
496         /* ring buffer pages to update, > 0 to add, < 0 to remove */
497         long                            nr_pages_to_update;
498         struct list_head                new_pages; /* new pages to add */
499         struct work_struct              update_pages_work;
500         struct completion               update_done;
501
502         struct rb_irq_work              irq_work;
503 };
504
505 struct ring_buffer {
506         unsigned                        flags;
507         int                             cpus;
508         atomic_t                        record_disabled;
509         atomic_t                        resize_disabled;
510         cpumask_var_t                   cpumask;
511
512         struct lock_class_key           *reader_lock_key;
513
514         struct mutex                    mutex;
515
516         struct ring_buffer_per_cpu      **buffers;
517
518         struct hlist_node               node;
519         u64                             (*clock)(void);
520
521         struct rb_irq_work              irq_work;
522         bool                            time_stamp_abs;
523 };
524
525 struct ring_buffer_iter {
526         struct ring_buffer_per_cpu      *cpu_buffer;
527         unsigned long                   head;
528         struct buffer_page              *head_page;
529         struct buffer_page              *cache_reader_page;
530         unsigned long                   cache_read;
531         u64                             read_stamp;
532 };
533
534 /*
535  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
536  *
537  * Schedules a delayed work to wake up any task that is blocked on the
538  * ring buffer waiters queue.
539  */
540 static void rb_wake_up_waiters(struct irq_work *work)
541 {
542         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
543
544         wake_up_all(&rbwork->waiters);
545         if (rbwork->wakeup_full) {
546                 rbwork->wakeup_full = false;
547                 wake_up_all(&rbwork->full_waiters);
548         }
549 }
550
551 /**
552  * ring_buffer_wait - wait for input to the ring buffer
553  * @buffer: buffer to wait on
554  * @cpu: the cpu buffer to wait on
555  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
556  *
557  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
558  * as data is added to any of the @buffer's cpu buffers. Otherwise
559  * it will wait for data to be added to a specific cpu buffer.
560  */
561 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
562 {
563         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
564         DEFINE_WAIT(wait);
565         struct rb_irq_work *work;
566         int ret = 0;
567
568         /*
569          * Depending on what the caller is waiting for, either any
570          * data in any cpu buffer, or a specific buffer, put the
571          * caller on the appropriate wait queue.
572          */
573         if (cpu == RING_BUFFER_ALL_CPUS) {
574                 work = &buffer->irq_work;
575                 /* Full only makes sense on per cpu reads */
576                 full = false;
577         } else {
578                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
579                         return -ENODEV;
580                 cpu_buffer = buffer->buffers[cpu];
581                 work = &cpu_buffer->irq_work;
582         }
583
584
585         while (true) {
586                 if (full)
587                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
588                 else
589                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
590
591                 /*
592                  * The events can happen in critical sections where
593                  * checking a work queue can cause deadlocks.
594                  * After adding a task to the queue, this flag is set
595                  * only to notify events to try to wake up the queue
596                  * using irq_work.
597                  *
598                  * We don't clear it even if the buffer is no longer
599                  * empty. The flag only causes the next event to run
600                  * irq_work to do the work queue wake up. The worse
601                  * that can happen if we race with !trace_empty() is that
602                  * an event will cause an irq_work to try to wake up
603                  * an empty queue.
604                  *
605                  * There's no reason to protect this flag either, as
606                  * the work queue and irq_work logic will do the necessary
607                  * synchronization for the wake ups. The only thing
608                  * that is necessary is that the wake up happens after
609                  * a task has been queued. It's OK for spurious wake ups.
610                  */
611                 if (full)
612                         work->full_waiters_pending = true;
613                 else
614                         work->waiters_pending = true;
615
616                 if (signal_pending(current)) {
617                         ret = -EINTR;
618                         break;
619                 }
620
621                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
622                         break;
623
624                 if (cpu != RING_BUFFER_ALL_CPUS &&
625                     !ring_buffer_empty_cpu(buffer, cpu)) {
626                         unsigned long flags;
627                         bool pagebusy;
628
629                         if (!full)
630                                 break;
631
632                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
633                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
634                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
635
636                         if (!pagebusy)
637                                 break;
638                 }
639
640                 schedule();
641         }
642
643         if (full)
644                 finish_wait(&work->full_waiters, &wait);
645         else
646                 finish_wait(&work->waiters, &wait);
647
648         return ret;
649 }
650
651 /**
652  * ring_buffer_poll_wait - poll on buffer input
653  * @buffer: buffer to wait on
654  * @cpu: the cpu buffer to wait on
655  * @filp: the file descriptor
656  * @poll_table: The poll descriptor
657  *
658  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
659  * as data is added to any of the @buffer's cpu buffers. Otherwise
660  * it will wait for data to be added to a specific cpu buffer.
661  *
662  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
663  * zero otherwise.
664  */
665 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
666                           struct file *filp, poll_table *poll_table)
667 {
668         struct ring_buffer_per_cpu *cpu_buffer;
669         struct rb_irq_work *work;
670
671         if (cpu == RING_BUFFER_ALL_CPUS)
672                 work = &buffer->irq_work;
673         else {
674                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
675                         return -EINVAL;
676
677                 cpu_buffer = buffer->buffers[cpu];
678                 work = &cpu_buffer->irq_work;
679         }
680
681         poll_wait(filp, &work->waiters, poll_table);
682         work->waiters_pending = true;
683         /*
684          * There's a tight race between setting the waiters_pending and
685          * checking if the ring buffer is empty.  Once the waiters_pending bit
686          * is set, the next event will wake the task up, but we can get stuck
687          * if there's only a single event in.
688          *
689          * FIXME: Ideally, we need a memory barrier on the writer side as well,
690          * but adding a memory barrier to all events will cause too much of a
691          * performance hit in the fast path.  We only need a memory barrier when
692          * the buffer goes from empty to having content.  But as this race is
693          * extremely small, and it's not a problem if another event comes in, we
694          * will fix it later.
695          */
696         smp_mb();
697
698         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
699             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
700                 return EPOLLIN | EPOLLRDNORM;
701         return 0;
702 }
703
704 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
705 #define RB_WARN_ON(b, cond)                                             \
706         ({                                                              \
707                 int _____ret = unlikely(cond);                          \
708                 if (_____ret) {                                         \
709                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
710                                 struct ring_buffer_per_cpu *__b =       \
711                                         (void *)b;                      \
712                                 atomic_inc(&__b->buffer->record_disabled); \
713                         } else                                          \
714                                 atomic_inc(&b->record_disabled);        \
715                         WARN_ON(1);                                     \
716                 }                                                       \
717                 _____ret;                                               \
718         })
719
720 /* Up this if you want to test the TIME_EXTENTS and normalization */
721 #define DEBUG_SHIFT 0
722
723 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
724 {
725         /* shift to debug/test normalization and TIME_EXTENTS */
726         return buffer->clock() << DEBUG_SHIFT;
727 }
728
729 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
730 {
731         u64 time;
732
733         preempt_disable_notrace();
734         time = rb_time_stamp(buffer);
735         preempt_enable_notrace();
736
737         return time;
738 }
739 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
740
741 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
742                                       int cpu, u64 *ts)
743 {
744         /* Just stupid testing the normalize function and deltas */
745         *ts >>= DEBUG_SHIFT;
746 }
747 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
748
749 /*
750  * Making the ring buffer lockless makes things tricky.
751  * Although writes only happen on the CPU that they are on,
752  * and they only need to worry about interrupts. Reads can
753  * happen on any CPU.
754  *
755  * The reader page is always off the ring buffer, but when the
756  * reader finishes with a page, it needs to swap its page with
757  * a new one from the buffer. The reader needs to take from
758  * the head (writes go to the tail). But if a writer is in overwrite
759  * mode and wraps, it must push the head page forward.
760  *
761  * Here lies the problem.
762  *
763  * The reader must be careful to replace only the head page, and
764  * not another one. As described at the top of the file in the
765  * ASCII art, the reader sets its old page to point to the next
766  * page after head. It then sets the page after head to point to
767  * the old reader page. But if the writer moves the head page
768  * during this operation, the reader could end up with the tail.
769  *
770  * We use cmpxchg to help prevent this race. We also do something
771  * special with the page before head. We set the LSB to 1.
772  *
773  * When the writer must push the page forward, it will clear the
774  * bit that points to the head page, move the head, and then set
775  * the bit that points to the new head page.
776  *
777  * We also don't want an interrupt coming in and moving the head
778  * page on another writer. Thus we use the second LSB to catch
779  * that too. Thus:
780  *
781  * head->list->prev->next        bit 1          bit 0
782  *                              -------        -------
783  * Normal page                     0              0
784  * Points to head page             0              1
785  * New head page                   1              0
786  *
787  * Note we can not trust the prev pointer of the head page, because:
788  *
789  * +----+       +-----+        +-----+
790  * |    |------>|  T  |---X--->|  N  |
791  * |    |<------|     |        |     |
792  * +----+       +-----+        +-----+
793  *   ^                           ^ |
794  *   |          +-----+          | |
795  *   +----------|  R  |----------+ |
796  *              |     |<-----------+
797  *              +-----+
798  *
799  * Key:  ---X-->  HEAD flag set in pointer
800  *         T      Tail page
801  *         R      Reader page
802  *         N      Next page
803  *
804  * (see __rb_reserve_next() to see where this happens)
805  *
806  *  What the above shows is that the reader just swapped out
807  *  the reader page with a page in the buffer, but before it
808  *  could make the new header point back to the new page added
809  *  it was preempted by a writer. The writer moved forward onto
810  *  the new page added by the reader and is about to move forward
811  *  again.
812  *
813  *  You can see, it is legitimate for the previous pointer of
814  *  the head (or any page) not to point back to itself. But only
815  *  temporarily.
816  */
817
818 #define RB_PAGE_NORMAL          0UL
819 #define RB_PAGE_HEAD            1UL
820 #define RB_PAGE_UPDATE          2UL
821
822
823 #define RB_FLAG_MASK            3UL
824
825 /* PAGE_MOVED is not part of the mask */
826 #define RB_PAGE_MOVED           4UL
827
828 /*
829  * rb_list_head - remove any bit
830  */
831 static struct list_head *rb_list_head(struct list_head *list)
832 {
833         unsigned long val = (unsigned long)list;
834
835         return (struct list_head *)(val & ~RB_FLAG_MASK);
836 }
837
838 /*
839  * rb_is_head_page - test if the given page is the head page
840  *
841  * Because the reader may move the head_page pointer, we can
842  * not trust what the head page is (it may be pointing to
843  * the reader page). But if the next page is a header page,
844  * its flags will be non zero.
845  */
846 static inline int
847 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
848                 struct buffer_page *page, struct list_head *list)
849 {
850         unsigned long val;
851
852         val = (unsigned long)list->next;
853
854         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
855                 return RB_PAGE_MOVED;
856
857         return val & RB_FLAG_MASK;
858 }
859
860 /*
861  * rb_is_reader_page
862  *
863  * The unique thing about the reader page, is that, if the
864  * writer is ever on it, the previous pointer never points
865  * back to the reader page.
866  */
867 static bool rb_is_reader_page(struct buffer_page *page)
868 {
869         struct list_head *list = page->list.prev;
870
871         return rb_list_head(list->next) != &page->list;
872 }
873
874 /*
875  * rb_set_list_to_head - set a list_head to be pointing to head.
876  */
877 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
878                                 struct list_head *list)
879 {
880         unsigned long *ptr;
881
882         ptr = (unsigned long *)&list->next;
883         *ptr |= RB_PAGE_HEAD;
884         *ptr &= ~RB_PAGE_UPDATE;
885 }
886
887 /*
888  * rb_head_page_activate - sets up head page
889  */
890 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
891 {
892         struct buffer_page *head;
893
894         head = cpu_buffer->head_page;
895         if (!head)
896                 return;
897
898         /*
899          * Set the previous list pointer to have the HEAD flag.
900          */
901         rb_set_list_to_head(cpu_buffer, head->list.prev);
902 }
903
904 static void rb_list_head_clear(struct list_head *list)
905 {
906         unsigned long *ptr = (unsigned long *)&list->next;
907
908         *ptr &= ~RB_FLAG_MASK;
909 }
910
911 /*
912  * rb_head_page_deactivate - clears head page ptr (for free list)
913  */
914 static void
915 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
916 {
917         struct list_head *hd;
918
919         /* Go through the whole list and clear any pointers found. */
920         rb_list_head_clear(cpu_buffer->pages);
921
922         list_for_each(hd, cpu_buffer->pages)
923                 rb_list_head_clear(hd);
924 }
925
926 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
927                             struct buffer_page *head,
928                             struct buffer_page *prev,
929                             int old_flag, int new_flag)
930 {
931         struct list_head *list;
932         unsigned long val = (unsigned long)&head->list;
933         unsigned long ret;
934
935         list = &prev->list;
936
937         val &= ~RB_FLAG_MASK;
938
939         ret = cmpxchg((unsigned long *)&list->next,
940                       val | old_flag, val | new_flag);
941
942         /* check if the reader took the page */
943         if ((ret & ~RB_FLAG_MASK) != val)
944                 return RB_PAGE_MOVED;
945
946         return ret & RB_FLAG_MASK;
947 }
948
949 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
950                                    struct buffer_page *head,
951                                    struct buffer_page *prev,
952                                    int old_flag)
953 {
954         return rb_head_page_set(cpu_buffer, head, prev,
955                                 old_flag, RB_PAGE_UPDATE);
956 }
957
958 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
959                                  struct buffer_page *head,
960                                  struct buffer_page *prev,
961                                  int old_flag)
962 {
963         return rb_head_page_set(cpu_buffer, head, prev,
964                                 old_flag, RB_PAGE_HEAD);
965 }
966
967 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
968                                    struct buffer_page *head,
969                                    struct buffer_page *prev,
970                                    int old_flag)
971 {
972         return rb_head_page_set(cpu_buffer, head, prev,
973                                 old_flag, RB_PAGE_NORMAL);
974 }
975
976 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
977                                struct buffer_page **bpage)
978 {
979         struct list_head *p = rb_list_head((*bpage)->list.next);
980
981         *bpage = list_entry(p, struct buffer_page, list);
982 }
983
984 static struct buffer_page *
985 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
986 {
987         struct buffer_page *head;
988         struct buffer_page *page;
989         struct list_head *list;
990         int i;
991
992         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
993                 return NULL;
994
995         /* sanity check */
996         list = cpu_buffer->pages;
997         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
998                 return NULL;
999
1000         page = head = cpu_buffer->head_page;
1001         /*
1002          * It is possible that the writer moves the header behind
1003          * where we started, and we miss in one loop.
1004          * A second loop should grab the header, but we'll do
1005          * three loops just because I'm paranoid.
1006          */
1007         for (i = 0; i < 3; i++) {
1008                 do {
1009                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1010                                 cpu_buffer->head_page = page;
1011                                 return page;
1012                         }
1013                         rb_inc_page(cpu_buffer, &page);
1014                 } while (page != head);
1015         }
1016
1017         RB_WARN_ON(cpu_buffer, 1);
1018
1019         return NULL;
1020 }
1021
1022 static int rb_head_page_replace(struct buffer_page *old,
1023                                 struct buffer_page *new)
1024 {
1025         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1026         unsigned long val;
1027         unsigned long ret;
1028
1029         val = *ptr & ~RB_FLAG_MASK;
1030         val |= RB_PAGE_HEAD;
1031
1032         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1033
1034         return ret == val;
1035 }
1036
1037 /*
1038  * rb_tail_page_update - move the tail page forward
1039  */
1040 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1041                                struct buffer_page *tail_page,
1042                                struct buffer_page *next_page)
1043 {
1044         unsigned long old_entries;
1045         unsigned long old_write;
1046
1047         /*
1048          * The tail page now needs to be moved forward.
1049          *
1050          * We need to reset the tail page, but without messing
1051          * with possible erasing of data brought in by interrupts
1052          * that have moved the tail page and are currently on it.
1053          *
1054          * We add a counter to the write field to denote this.
1055          */
1056         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1057         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1058
1059         /*
1060          * Just make sure we have seen our old_write and synchronize
1061          * with any interrupts that come in.
1062          */
1063         barrier();
1064
1065         /*
1066          * If the tail page is still the same as what we think
1067          * it is, then it is up to us to update the tail
1068          * pointer.
1069          */
1070         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1071                 /* Zero the write counter */
1072                 unsigned long val = old_write & ~RB_WRITE_MASK;
1073                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1074
1075                 /*
1076                  * This will only succeed if an interrupt did
1077                  * not come in and change it. In which case, we
1078                  * do not want to modify it.
1079                  *
1080                  * We add (void) to let the compiler know that we do not care
1081                  * about the return value of these functions. We use the
1082                  * cmpxchg to only update if an interrupt did not already
1083                  * do it for us. If the cmpxchg fails, we don't care.
1084                  */
1085                 (void)local_cmpxchg(&next_page->write, old_write, val);
1086                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1087
1088                 /*
1089                  * No need to worry about races with clearing out the commit.
1090                  * it only can increment when a commit takes place. But that
1091                  * only happens in the outer most nested commit.
1092                  */
1093                 local_set(&next_page->page->commit, 0);
1094
1095                 /* Again, either we update tail_page or an interrupt does */
1096                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1097         }
1098 }
1099
1100 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1101                           struct buffer_page *bpage)
1102 {
1103         unsigned long val = (unsigned long)bpage;
1104
1105         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1106                 return 1;
1107
1108         return 0;
1109 }
1110
1111 /**
1112  * rb_check_list - make sure a pointer to a list has the last bits zero
1113  */
1114 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1115                          struct list_head *list)
1116 {
1117         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1118                 return 1;
1119         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1120                 return 1;
1121         return 0;
1122 }
1123
1124 /**
1125  * rb_check_pages - integrity check of buffer pages
1126  * @cpu_buffer: CPU buffer with pages to test
1127  *
1128  * As a safety measure we check to make sure the data pages have not
1129  * been corrupted.
1130  */
1131 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1132 {
1133         struct list_head *head = cpu_buffer->pages;
1134         struct buffer_page *bpage, *tmp;
1135
1136         /* Reset the head page if it exists */
1137         if (cpu_buffer->head_page)
1138                 rb_set_head_page(cpu_buffer);
1139
1140         rb_head_page_deactivate(cpu_buffer);
1141
1142         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1143                 return -1;
1144         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1145                 return -1;
1146
1147         if (rb_check_list(cpu_buffer, head))
1148                 return -1;
1149
1150         list_for_each_entry_safe(bpage, tmp, head, list) {
1151                 if (RB_WARN_ON(cpu_buffer,
1152                                bpage->list.next->prev != &bpage->list))
1153                         return -1;
1154                 if (RB_WARN_ON(cpu_buffer,
1155                                bpage->list.prev->next != &bpage->list))
1156                         return -1;
1157                 if (rb_check_list(cpu_buffer, &bpage->list))
1158                         return -1;
1159         }
1160
1161         rb_head_page_activate(cpu_buffer);
1162
1163         return 0;
1164 }
1165
1166 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1167 {
1168         struct buffer_page *bpage, *tmp;
1169         bool user_thread = current->mm != NULL;
1170         gfp_t mflags;
1171         long i;
1172
1173         /*
1174          * Check if the available memory is there first.
1175          * Note, si_mem_available() only gives us a rough estimate of available
1176          * memory. It may not be accurate. But we don't care, we just want
1177          * to prevent doing any allocation when it is obvious that it is
1178          * not going to succeed.
1179          */
1180         i = si_mem_available();
1181         if (i < nr_pages)
1182                 return -ENOMEM;
1183
1184         /*
1185          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1186          * gracefully without invoking oom-killer and the system is not
1187          * destabilized.
1188          */
1189         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1190
1191         /*
1192          * If a user thread allocates too much, and si_mem_available()
1193          * reports there's enough memory, even though there is not.
1194          * Make sure the OOM killer kills this thread. This can happen
1195          * even with RETRY_MAYFAIL because another task may be doing
1196          * an allocation after this task has taken all memory.
1197          * This is the task the OOM killer needs to take out during this
1198          * loop, even if it was triggered by an allocation somewhere else.
1199          */
1200         if (user_thread)
1201                 set_current_oom_origin();
1202         for (i = 0; i < nr_pages; i++) {
1203                 struct page *page;
1204
1205                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1206                                     mflags, cpu_to_node(cpu));
1207                 if (!bpage)
1208                         goto free_pages;
1209
1210                 list_add(&bpage->list, pages);
1211
1212                 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1213                 if (!page)
1214                         goto free_pages;
1215                 bpage->page = page_address(page);
1216                 rb_init_page(bpage->page);
1217
1218                 if (user_thread && fatal_signal_pending(current))
1219                         goto free_pages;
1220         }
1221         if (user_thread)
1222                 clear_current_oom_origin();
1223
1224         return 0;
1225
1226 free_pages:
1227         list_for_each_entry_safe(bpage, tmp, pages, list) {
1228                 list_del_init(&bpage->list);
1229                 free_buffer_page(bpage);
1230         }
1231         if (user_thread)
1232                 clear_current_oom_origin();
1233
1234         return -ENOMEM;
1235 }
1236
1237 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1238                              unsigned long nr_pages)
1239 {
1240         LIST_HEAD(pages);
1241
1242         WARN_ON(!nr_pages);
1243
1244         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1245                 return -ENOMEM;
1246
1247         /*
1248          * The ring buffer page list is a circular list that does not
1249          * start and end with a list head. All page list items point to
1250          * other pages.
1251          */
1252         cpu_buffer->pages = pages.next;
1253         list_del(&pages);
1254
1255         cpu_buffer->nr_pages = nr_pages;
1256
1257         rb_check_pages(cpu_buffer);
1258
1259         return 0;
1260 }
1261
1262 static struct ring_buffer_per_cpu *
1263 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1264 {
1265         struct ring_buffer_per_cpu *cpu_buffer;
1266         struct buffer_page *bpage;
1267         struct page *page;
1268         int ret;
1269
1270         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1271                                   GFP_KERNEL, cpu_to_node(cpu));
1272         if (!cpu_buffer)
1273                 return NULL;
1274
1275         cpu_buffer->cpu = cpu;
1276         cpu_buffer->buffer = buffer;
1277         raw_spin_lock_init(&cpu_buffer->reader_lock);
1278         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1279         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1280         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1281         init_completion(&cpu_buffer->update_done);
1282         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1283         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1284         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1285
1286         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1287                             GFP_KERNEL, cpu_to_node(cpu));
1288         if (!bpage)
1289                 goto fail_free_buffer;
1290
1291         rb_check_bpage(cpu_buffer, bpage);
1292
1293         cpu_buffer->reader_page = bpage;
1294         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1295         if (!page)
1296                 goto fail_free_reader;
1297         bpage->page = page_address(page);
1298         rb_init_page(bpage->page);
1299
1300         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1301         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1302
1303         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1304         if (ret < 0)
1305                 goto fail_free_reader;
1306
1307         cpu_buffer->head_page
1308                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1309         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1310
1311         rb_head_page_activate(cpu_buffer);
1312
1313         return cpu_buffer;
1314
1315  fail_free_reader:
1316         free_buffer_page(cpu_buffer->reader_page);
1317
1318  fail_free_buffer:
1319         kfree(cpu_buffer);
1320         return NULL;
1321 }
1322
1323 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1324 {
1325         struct list_head *head = cpu_buffer->pages;
1326         struct buffer_page *bpage, *tmp;
1327
1328         free_buffer_page(cpu_buffer->reader_page);
1329
1330         rb_head_page_deactivate(cpu_buffer);
1331
1332         if (head) {
1333                 list_for_each_entry_safe(bpage, tmp, head, list) {
1334                         list_del_init(&bpage->list);
1335                         free_buffer_page(bpage);
1336                 }
1337                 bpage = list_entry(head, struct buffer_page, list);
1338                 free_buffer_page(bpage);
1339         }
1340
1341         kfree(cpu_buffer);
1342 }
1343
1344 /**
1345  * __ring_buffer_alloc - allocate a new ring_buffer
1346  * @size: the size in bytes per cpu that is needed.
1347  * @flags: attributes to set for the ring buffer.
1348  *
1349  * Currently the only flag that is available is the RB_FL_OVERWRITE
1350  * flag. This flag means that the buffer will overwrite old data
1351  * when the buffer wraps. If this flag is not set, the buffer will
1352  * drop data when the tail hits the head.
1353  */
1354 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1355                                         struct lock_class_key *key)
1356 {
1357         struct ring_buffer *buffer;
1358         long nr_pages;
1359         int bsize;
1360         int cpu;
1361         int ret;
1362
1363         /* keep it in its own cache line */
1364         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1365                          GFP_KERNEL);
1366         if (!buffer)
1367                 return NULL;
1368
1369         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1370                 goto fail_free_buffer;
1371
1372         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1373         buffer->flags = flags;
1374         buffer->clock = trace_clock_local;
1375         buffer->reader_lock_key = key;
1376
1377         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1378         init_waitqueue_head(&buffer->irq_work.waiters);
1379
1380         /* need at least two pages */
1381         if (nr_pages < 2)
1382                 nr_pages = 2;
1383
1384         buffer->cpus = nr_cpu_ids;
1385
1386         bsize = sizeof(void *) * nr_cpu_ids;
1387         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1388                                   GFP_KERNEL);
1389         if (!buffer->buffers)
1390                 goto fail_free_cpumask;
1391
1392         cpu = raw_smp_processor_id();
1393         cpumask_set_cpu(cpu, buffer->cpumask);
1394         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1395         if (!buffer->buffers[cpu])
1396                 goto fail_free_buffers;
1397
1398         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1399         if (ret < 0)
1400                 goto fail_free_buffers;
1401
1402         mutex_init(&buffer->mutex);
1403
1404         return buffer;
1405
1406  fail_free_buffers:
1407         for_each_buffer_cpu(buffer, cpu) {
1408                 if (buffer->buffers[cpu])
1409                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1410         }
1411         kfree(buffer->buffers);
1412
1413  fail_free_cpumask:
1414         free_cpumask_var(buffer->cpumask);
1415
1416  fail_free_buffer:
1417         kfree(buffer);
1418         return NULL;
1419 }
1420 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1421
1422 /**
1423  * ring_buffer_free - free a ring buffer.
1424  * @buffer: the buffer to free.
1425  */
1426 void
1427 ring_buffer_free(struct ring_buffer *buffer)
1428 {
1429         int cpu;
1430
1431         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1432
1433         for_each_buffer_cpu(buffer, cpu)
1434                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1435
1436         kfree(buffer->buffers);
1437         free_cpumask_var(buffer->cpumask);
1438
1439         kfree(buffer);
1440 }
1441 EXPORT_SYMBOL_GPL(ring_buffer_free);
1442
1443 void ring_buffer_set_clock(struct ring_buffer *buffer,
1444                            u64 (*clock)(void))
1445 {
1446         buffer->clock = clock;
1447 }
1448
1449 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1450 {
1451         buffer->time_stamp_abs = abs;
1452 }
1453
1454 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1455 {
1456         return buffer->time_stamp_abs;
1457 }
1458
1459 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1460
1461 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1462 {
1463         return local_read(&bpage->entries) & RB_WRITE_MASK;
1464 }
1465
1466 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1467 {
1468         return local_read(&bpage->write) & RB_WRITE_MASK;
1469 }
1470
1471 static int
1472 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1473 {
1474         struct list_head *tail_page, *to_remove, *next_page;
1475         struct buffer_page *to_remove_page, *tmp_iter_page;
1476         struct buffer_page *last_page, *first_page;
1477         unsigned long nr_removed;
1478         unsigned long head_bit;
1479         int page_entries;
1480
1481         head_bit = 0;
1482
1483         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1484         atomic_inc(&cpu_buffer->record_disabled);
1485         /*
1486          * We don't race with the readers since we have acquired the reader
1487          * lock. We also don't race with writers after disabling recording.
1488          * This makes it easy to figure out the first and the last page to be
1489          * removed from the list. We unlink all the pages in between including
1490          * the first and last pages. This is done in a busy loop so that we
1491          * lose the least number of traces.
1492          * The pages are freed after we restart recording and unlock readers.
1493          */
1494         tail_page = &cpu_buffer->tail_page->list;
1495
1496         /*
1497          * tail page might be on reader page, we remove the next page
1498          * from the ring buffer
1499          */
1500         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1501                 tail_page = rb_list_head(tail_page->next);
1502         to_remove = tail_page;
1503
1504         /* start of pages to remove */
1505         first_page = list_entry(rb_list_head(to_remove->next),
1506                                 struct buffer_page, list);
1507
1508         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1509                 to_remove = rb_list_head(to_remove)->next;
1510                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1511         }
1512
1513         next_page = rb_list_head(to_remove)->next;
1514
1515         /*
1516          * Now we remove all pages between tail_page and next_page.
1517          * Make sure that we have head_bit value preserved for the
1518          * next page
1519          */
1520         tail_page->next = (struct list_head *)((unsigned long)next_page |
1521                                                 head_bit);
1522         next_page = rb_list_head(next_page);
1523         next_page->prev = tail_page;
1524
1525         /* make sure pages points to a valid page in the ring buffer */
1526         cpu_buffer->pages = next_page;
1527
1528         /* update head page */
1529         if (head_bit)
1530                 cpu_buffer->head_page = list_entry(next_page,
1531                                                 struct buffer_page, list);
1532
1533         /*
1534          * change read pointer to make sure any read iterators reset
1535          * themselves
1536          */
1537         cpu_buffer->read = 0;
1538
1539         /* pages are removed, resume tracing and then free the pages */
1540         atomic_dec(&cpu_buffer->record_disabled);
1541         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1542
1543         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1544
1545         /* last buffer page to remove */
1546         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1547                                 list);
1548         tmp_iter_page = first_page;
1549
1550         do {
1551                 cond_resched();
1552
1553                 to_remove_page = tmp_iter_page;
1554                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1555
1556                 /* update the counters */
1557                 page_entries = rb_page_entries(to_remove_page);
1558                 if (page_entries) {
1559                         /*
1560                          * If something was added to this page, it was full
1561                          * since it is not the tail page. So we deduct the
1562                          * bytes consumed in ring buffer from here.
1563                          * Increment overrun to account for the lost events.
1564                          */
1565                         local_add(page_entries, &cpu_buffer->overrun);
1566                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1567                 }
1568
1569                 /*
1570                  * We have already removed references to this list item, just
1571                  * free up the buffer_page and its page
1572                  */
1573                 free_buffer_page(to_remove_page);
1574                 nr_removed--;
1575
1576         } while (to_remove_page != last_page);
1577
1578         RB_WARN_ON(cpu_buffer, nr_removed);
1579
1580         return nr_removed == 0;
1581 }
1582
1583 static int
1584 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586         struct list_head *pages = &cpu_buffer->new_pages;
1587         int retries, success;
1588
1589         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1590         /*
1591          * We are holding the reader lock, so the reader page won't be swapped
1592          * in the ring buffer. Now we are racing with the writer trying to
1593          * move head page and the tail page.
1594          * We are going to adapt the reader page update process where:
1595          * 1. We first splice the start and end of list of new pages between
1596          *    the head page and its previous page.
1597          * 2. We cmpxchg the prev_page->next to point from head page to the
1598          *    start of new pages list.
1599          * 3. Finally, we update the head->prev to the end of new list.
1600          *
1601          * We will try this process 10 times, to make sure that we don't keep
1602          * spinning.
1603          */
1604         retries = 10;
1605         success = 0;
1606         while (retries--) {
1607                 struct list_head *head_page, *prev_page, *r;
1608                 struct list_head *last_page, *first_page;
1609                 struct list_head *head_page_with_bit;
1610
1611                 head_page = &rb_set_head_page(cpu_buffer)->list;
1612                 if (!head_page)
1613                         break;
1614                 prev_page = head_page->prev;
1615
1616                 first_page = pages->next;
1617                 last_page  = pages->prev;
1618
1619                 head_page_with_bit = (struct list_head *)
1620                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1621
1622                 last_page->next = head_page_with_bit;
1623                 first_page->prev = prev_page;
1624
1625                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1626
1627                 if (r == head_page_with_bit) {
1628                         /*
1629                          * yay, we replaced the page pointer to our new list,
1630                          * now, we just have to update to head page's prev
1631                          * pointer to point to end of list
1632                          */
1633                         head_page->prev = last_page;
1634                         success = 1;
1635                         break;
1636                 }
1637         }
1638
1639         if (success)
1640                 INIT_LIST_HEAD(pages);
1641         /*
1642          * If we weren't successful in adding in new pages, warn and stop
1643          * tracing
1644          */
1645         RB_WARN_ON(cpu_buffer, !success);
1646         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1647
1648         /* free pages if they weren't inserted */
1649         if (!success) {
1650                 struct buffer_page *bpage, *tmp;
1651                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1652                                          list) {
1653                         list_del_init(&bpage->list);
1654                         free_buffer_page(bpage);
1655                 }
1656         }
1657         return success;
1658 }
1659
1660 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1661 {
1662         int success;
1663
1664         if (cpu_buffer->nr_pages_to_update > 0)
1665                 success = rb_insert_pages(cpu_buffer);
1666         else
1667                 success = rb_remove_pages(cpu_buffer,
1668                                         -cpu_buffer->nr_pages_to_update);
1669
1670         if (success)
1671                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1672 }
1673
1674 static void update_pages_handler(struct work_struct *work)
1675 {
1676         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1677                         struct ring_buffer_per_cpu, update_pages_work);
1678         rb_update_pages(cpu_buffer);
1679         complete(&cpu_buffer->update_done);
1680 }
1681
1682 /**
1683  * ring_buffer_resize - resize the ring buffer
1684  * @buffer: the buffer to resize.
1685  * @size: the new size.
1686  * @cpu_id: the cpu buffer to resize
1687  *
1688  * Minimum size is 2 * BUF_PAGE_SIZE.
1689  *
1690  * Returns 0 on success and < 0 on failure.
1691  */
1692 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1693                         int cpu_id)
1694 {
1695         struct ring_buffer_per_cpu *cpu_buffer;
1696         unsigned long nr_pages;
1697         int cpu, err;
1698
1699         /*
1700          * Always succeed at resizing a non-existent buffer:
1701          */
1702         if (!buffer)
1703                 return 0;
1704
1705         /* Make sure the requested buffer exists */
1706         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1707             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1708                 return 0;
1709
1710         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1711
1712         /* we need a minimum of two pages */
1713         if (nr_pages < 2)
1714                 nr_pages = 2;
1715
1716         size = nr_pages * BUF_PAGE_SIZE;
1717
1718         /*
1719          * Don't succeed if resizing is disabled, as a reader might be
1720          * manipulating the ring buffer and is expecting a sane state while
1721          * this is true.
1722          */
1723         if (atomic_read(&buffer->resize_disabled))
1724                 return -EBUSY;
1725
1726         /* prevent another thread from changing buffer sizes */
1727         mutex_lock(&buffer->mutex);
1728
1729         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1730                 /* calculate the pages to update */
1731                 for_each_buffer_cpu(buffer, cpu) {
1732                         cpu_buffer = buffer->buffers[cpu];
1733
1734                         cpu_buffer->nr_pages_to_update = nr_pages -
1735                                                         cpu_buffer->nr_pages;
1736                         /*
1737                          * nothing more to do for removing pages or no update
1738                          */
1739                         if (cpu_buffer->nr_pages_to_update <= 0)
1740                                 continue;
1741                         /*
1742                          * to add pages, make sure all new pages can be
1743                          * allocated without receiving ENOMEM
1744                          */
1745                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1746                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1747                                                 &cpu_buffer->new_pages, cpu)) {
1748                                 /* not enough memory for new pages */
1749                                 err = -ENOMEM;
1750                                 goto out_err;
1751                         }
1752                 }
1753
1754                 get_online_cpus();
1755                 /*
1756                  * Fire off all the required work handlers
1757                  * We can't schedule on offline CPUs, but it's not necessary
1758                  * since we can change their buffer sizes without any race.
1759                  */
1760                 for_each_buffer_cpu(buffer, cpu) {
1761                         cpu_buffer = buffer->buffers[cpu];
1762                         if (!cpu_buffer->nr_pages_to_update)
1763                                 continue;
1764
1765                         /* Can't run something on an offline CPU. */
1766                         if (!cpu_online(cpu)) {
1767                                 rb_update_pages(cpu_buffer);
1768                                 cpu_buffer->nr_pages_to_update = 0;
1769                         } else {
1770                                 schedule_work_on(cpu,
1771                                                 &cpu_buffer->update_pages_work);
1772                         }
1773                 }
1774
1775                 /* wait for all the updates to complete */
1776                 for_each_buffer_cpu(buffer, cpu) {
1777                         cpu_buffer = buffer->buffers[cpu];
1778                         if (!cpu_buffer->nr_pages_to_update)
1779                                 continue;
1780
1781                         if (cpu_online(cpu))
1782                                 wait_for_completion(&cpu_buffer->update_done);
1783                         cpu_buffer->nr_pages_to_update = 0;
1784                 }
1785
1786                 put_online_cpus();
1787         } else {
1788                 /* Make sure this CPU has been initialized */
1789                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1790                         goto out;
1791
1792                 cpu_buffer = buffer->buffers[cpu_id];
1793
1794                 if (nr_pages == cpu_buffer->nr_pages)
1795                         goto out;
1796
1797                 cpu_buffer->nr_pages_to_update = nr_pages -
1798                                                 cpu_buffer->nr_pages;
1799
1800                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1801                 if (cpu_buffer->nr_pages_to_update > 0 &&
1802                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1803                                             &cpu_buffer->new_pages, cpu_id)) {
1804                         err = -ENOMEM;
1805                         goto out_err;
1806                 }
1807
1808                 get_online_cpus();
1809
1810                 /* Can't run something on an offline CPU. */
1811                 if (!cpu_online(cpu_id))
1812                         rb_update_pages(cpu_buffer);
1813                 else {
1814                         schedule_work_on(cpu_id,
1815                                          &cpu_buffer->update_pages_work);
1816                         wait_for_completion(&cpu_buffer->update_done);
1817                 }
1818
1819                 cpu_buffer->nr_pages_to_update = 0;
1820                 put_online_cpus();
1821         }
1822
1823  out:
1824         /*
1825          * The ring buffer resize can happen with the ring buffer
1826          * enabled, so that the update disturbs the tracing as little
1827          * as possible. But if the buffer is disabled, we do not need
1828          * to worry about that, and we can take the time to verify
1829          * that the buffer is not corrupt.
1830          */
1831         if (atomic_read(&buffer->record_disabled)) {
1832                 atomic_inc(&buffer->record_disabled);
1833                 /*
1834                  * Even though the buffer was disabled, we must make sure
1835                  * that it is truly disabled before calling rb_check_pages.
1836                  * There could have been a race between checking
1837                  * record_disable and incrementing it.
1838                  */
1839                 synchronize_sched();
1840                 for_each_buffer_cpu(buffer, cpu) {
1841                         cpu_buffer = buffer->buffers[cpu];
1842                         rb_check_pages(cpu_buffer);
1843                 }
1844                 atomic_dec(&buffer->record_disabled);
1845         }
1846
1847         mutex_unlock(&buffer->mutex);
1848         return 0;
1849
1850  out_err:
1851         for_each_buffer_cpu(buffer, cpu) {
1852                 struct buffer_page *bpage, *tmp;
1853
1854                 cpu_buffer = buffer->buffers[cpu];
1855                 cpu_buffer->nr_pages_to_update = 0;
1856
1857                 if (list_empty(&cpu_buffer->new_pages))
1858                         continue;
1859
1860                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1861                                         list) {
1862                         list_del_init(&bpage->list);
1863                         free_buffer_page(bpage);
1864                 }
1865         }
1866         mutex_unlock(&buffer->mutex);
1867         return err;
1868 }
1869 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1870
1871 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1872 {
1873         mutex_lock(&buffer->mutex);
1874         if (val)
1875                 buffer->flags |= RB_FL_OVERWRITE;
1876         else
1877                 buffer->flags &= ~RB_FL_OVERWRITE;
1878         mutex_unlock(&buffer->mutex);
1879 }
1880 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1881
1882 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1883 {
1884         return bpage->page->data + index;
1885 }
1886
1887 static __always_inline struct ring_buffer_event *
1888 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1889 {
1890         return __rb_page_index(cpu_buffer->reader_page,
1891                                cpu_buffer->reader_page->read);
1892 }
1893
1894 static __always_inline struct ring_buffer_event *
1895 rb_iter_head_event(struct ring_buffer_iter *iter)
1896 {
1897         return __rb_page_index(iter->head_page, iter->head);
1898 }
1899
1900 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1901 {
1902         return local_read(&bpage->page->commit);
1903 }
1904
1905 /* Size is determined by what has been committed */
1906 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1907 {
1908         return rb_page_commit(bpage);
1909 }
1910
1911 static __always_inline unsigned
1912 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1913 {
1914         return rb_page_commit(cpu_buffer->commit_page);
1915 }
1916
1917 static __always_inline unsigned
1918 rb_event_index(struct ring_buffer_event *event)
1919 {
1920         unsigned long addr = (unsigned long)event;
1921
1922         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1923 }
1924
1925 static void rb_inc_iter(struct ring_buffer_iter *iter)
1926 {
1927         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1928
1929         /*
1930          * The iterator could be on the reader page (it starts there).
1931          * But the head could have moved, since the reader was
1932          * found. Check for this case and assign the iterator
1933          * to the head page instead of next.
1934          */
1935         if (iter->head_page == cpu_buffer->reader_page)
1936                 iter->head_page = rb_set_head_page(cpu_buffer);
1937         else
1938                 rb_inc_page(cpu_buffer, &iter->head_page);
1939
1940         iter->read_stamp = iter->head_page->page->time_stamp;
1941         iter->head = 0;
1942 }
1943
1944 /*
1945  * rb_handle_head_page - writer hit the head page
1946  *
1947  * Returns: +1 to retry page
1948  *           0 to continue
1949  *          -1 on error
1950  */
1951 static int
1952 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1953                     struct buffer_page *tail_page,
1954                     struct buffer_page *next_page)
1955 {
1956         struct buffer_page *new_head;
1957         int entries;
1958         int type;
1959         int ret;
1960
1961         entries = rb_page_entries(next_page);
1962
1963         /*
1964          * The hard part is here. We need to move the head
1965          * forward, and protect against both readers on
1966          * other CPUs and writers coming in via interrupts.
1967          */
1968         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1969                                        RB_PAGE_HEAD);
1970
1971         /*
1972          * type can be one of four:
1973          *  NORMAL - an interrupt already moved it for us
1974          *  HEAD   - we are the first to get here.
1975          *  UPDATE - we are the interrupt interrupting
1976          *           a current move.
1977          *  MOVED  - a reader on another CPU moved the next
1978          *           pointer to its reader page. Give up
1979          *           and try again.
1980          */
1981
1982         switch (type) {
1983         case RB_PAGE_HEAD:
1984                 /*
1985                  * We changed the head to UPDATE, thus
1986                  * it is our responsibility to update
1987                  * the counters.
1988                  */
1989                 local_add(entries, &cpu_buffer->overrun);
1990                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1991
1992                 /*
1993                  * The entries will be zeroed out when we move the
1994                  * tail page.
1995                  */
1996
1997                 /* still more to do */
1998                 break;
1999
2000         case RB_PAGE_UPDATE:
2001                 /*
2002                  * This is an interrupt that interrupt the
2003                  * previous update. Still more to do.
2004                  */
2005                 break;
2006         case RB_PAGE_NORMAL:
2007                 /*
2008                  * An interrupt came in before the update
2009                  * and processed this for us.
2010                  * Nothing left to do.
2011                  */
2012                 return 1;
2013         case RB_PAGE_MOVED:
2014                 /*
2015                  * The reader is on another CPU and just did
2016                  * a swap with our next_page.
2017                  * Try again.
2018                  */
2019                 return 1;
2020         default:
2021                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2022                 return -1;
2023         }
2024
2025         /*
2026          * Now that we are here, the old head pointer is
2027          * set to UPDATE. This will keep the reader from
2028          * swapping the head page with the reader page.
2029          * The reader (on another CPU) will spin till
2030          * we are finished.
2031          *
2032          * We just need to protect against interrupts
2033          * doing the job. We will set the next pointer
2034          * to HEAD. After that, we set the old pointer
2035          * to NORMAL, but only if it was HEAD before.
2036          * otherwise we are an interrupt, and only
2037          * want the outer most commit to reset it.
2038          */
2039         new_head = next_page;
2040         rb_inc_page(cpu_buffer, &new_head);
2041
2042         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2043                                     RB_PAGE_NORMAL);
2044
2045         /*
2046          * Valid returns are:
2047          *  HEAD   - an interrupt came in and already set it.
2048          *  NORMAL - One of two things:
2049          *            1) We really set it.
2050          *            2) A bunch of interrupts came in and moved
2051          *               the page forward again.
2052          */
2053         switch (ret) {
2054         case RB_PAGE_HEAD:
2055         case RB_PAGE_NORMAL:
2056                 /* OK */
2057                 break;
2058         default:
2059                 RB_WARN_ON(cpu_buffer, 1);
2060                 return -1;
2061         }
2062
2063         /*
2064          * It is possible that an interrupt came in,
2065          * set the head up, then more interrupts came in
2066          * and moved it again. When we get back here,
2067          * the page would have been set to NORMAL but we
2068          * just set it back to HEAD.
2069          *
2070          * How do you detect this? Well, if that happened
2071          * the tail page would have moved.
2072          */
2073         if (ret == RB_PAGE_NORMAL) {
2074                 struct buffer_page *buffer_tail_page;
2075
2076                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2077                 /*
2078                  * If the tail had moved passed next, then we need
2079                  * to reset the pointer.
2080                  */
2081                 if (buffer_tail_page != tail_page &&
2082                     buffer_tail_page != next_page)
2083                         rb_head_page_set_normal(cpu_buffer, new_head,
2084                                                 next_page,
2085                                                 RB_PAGE_HEAD);
2086         }
2087
2088         /*
2089          * If this was the outer most commit (the one that
2090          * changed the original pointer from HEAD to UPDATE),
2091          * then it is up to us to reset it to NORMAL.
2092          */
2093         if (type == RB_PAGE_HEAD) {
2094                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2095                                               tail_page,
2096                                               RB_PAGE_UPDATE);
2097                 if (RB_WARN_ON(cpu_buffer,
2098                                ret != RB_PAGE_UPDATE))
2099                         return -1;
2100         }
2101
2102         return 0;
2103 }
2104
2105 static inline void
2106 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2107               unsigned long tail, struct rb_event_info *info)
2108 {
2109         struct buffer_page *tail_page = info->tail_page;
2110         struct ring_buffer_event *event;
2111         unsigned long length = info->length;
2112
2113         /*
2114          * Only the event that crossed the page boundary
2115          * must fill the old tail_page with padding.
2116          */
2117         if (tail >= BUF_PAGE_SIZE) {
2118                 /*
2119                  * If the page was filled, then we still need
2120                  * to update the real_end. Reset it to zero
2121                  * and the reader will ignore it.
2122                  */
2123                 if (tail == BUF_PAGE_SIZE)
2124                         tail_page->real_end = 0;
2125
2126                 local_sub(length, &tail_page->write);
2127                 return;
2128         }
2129
2130         event = __rb_page_index(tail_page, tail);
2131
2132         /* account for padding bytes */
2133         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2134
2135         /*
2136          * Save the original length to the meta data.
2137          * This will be used by the reader to add lost event
2138          * counter.
2139          */
2140         tail_page->real_end = tail;
2141
2142         /*
2143          * If this event is bigger than the minimum size, then
2144          * we need to be careful that we don't subtract the
2145          * write counter enough to allow another writer to slip
2146          * in on this page.
2147          * We put in a discarded commit instead, to make sure
2148          * that this space is not used again.
2149          *
2150          * If we are less than the minimum size, we don't need to
2151          * worry about it.
2152          */
2153         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2154                 /* No room for any events */
2155
2156                 /* Mark the rest of the page with padding */
2157                 rb_event_set_padding(event);
2158
2159                 /* Set the write back to the previous setting */
2160                 local_sub(length, &tail_page->write);
2161                 return;
2162         }
2163
2164         /* Put in a discarded event */
2165         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2166         event->type_len = RINGBUF_TYPE_PADDING;
2167         /* time delta must be non zero */
2168         event->time_delta = 1;
2169
2170         /* Set write to end of buffer */
2171         length = (tail + length) - BUF_PAGE_SIZE;
2172         local_sub(length, &tail_page->write);
2173 }
2174
2175 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2176
2177 /*
2178  * This is the slow path, force gcc not to inline it.
2179  */
2180 static noinline struct ring_buffer_event *
2181 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2182              unsigned long tail, struct rb_event_info *info)
2183 {
2184         struct buffer_page *tail_page = info->tail_page;
2185         struct buffer_page *commit_page = cpu_buffer->commit_page;
2186         struct ring_buffer *buffer = cpu_buffer->buffer;
2187         struct buffer_page *next_page;
2188         int ret;
2189
2190         next_page = tail_page;
2191
2192         rb_inc_page(cpu_buffer, &next_page);
2193
2194         /*
2195          * If for some reason, we had an interrupt storm that made
2196          * it all the way around the buffer, bail, and warn
2197          * about it.
2198          */
2199         if (unlikely(next_page == commit_page)) {
2200                 local_inc(&cpu_buffer->commit_overrun);
2201                 goto out_reset;
2202         }
2203
2204         /*
2205          * This is where the fun begins!
2206          *
2207          * We are fighting against races between a reader that
2208          * could be on another CPU trying to swap its reader
2209          * page with the buffer head.
2210          *
2211          * We are also fighting against interrupts coming in and
2212          * moving the head or tail on us as well.
2213          *
2214          * If the next page is the head page then we have filled
2215          * the buffer, unless the commit page is still on the
2216          * reader page.
2217          */
2218         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2219
2220                 /*
2221                  * If the commit is not on the reader page, then
2222                  * move the header page.
2223                  */
2224                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2225                         /*
2226                          * If we are not in overwrite mode,
2227                          * this is easy, just stop here.
2228                          */
2229                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2230                                 local_inc(&cpu_buffer->dropped_events);
2231                                 goto out_reset;
2232                         }
2233
2234                         ret = rb_handle_head_page(cpu_buffer,
2235                                                   tail_page,
2236                                                   next_page);
2237                         if (ret < 0)
2238                                 goto out_reset;
2239                         if (ret)
2240                                 goto out_again;
2241                 } else {
2242                         /*
2243                          * We need to be careful here too. The
2244                          * commit page could still be on the reader
2245                          * page. We could have a small buffer, and
2246                          * have filled up the buffer with events
2247                          * from interrupts and such, and wrapped.
2248                          *
2249                          * Note, if the tail page is also the on the
2250                          * reader_page, we let it move out.
2251                          */
2252                         if (unlikely((cpu_buffer->commit_page !=
2253                                       cpu_buffer->tail_page) &&
2254                                      (cpu_buffer->commit_page ==
2255                                       cpu_buffer->reader_page))) {
2256                                 local_inc(&cpu_buffer->commit_overrun);
2257                                 goto out_reset;
2258                         }
2259                 }
2260         }
2261
2262         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2263
2264  out_again:
2265
2266         rb_reset_tail(cpu_buffer, tail, info);
2267
2268         /* Commit what we have for now. */
2269         rb_end_commit(cpu_buffer);
2270         /* rb_end_commit() decs committing */
2271         local_inc(&cpu_buffer->committing);
2272
2273         /* fail and let the caller try again */
2274         return ERR_PTR(-EAGAIN);
2275
2276  out_reset:
2277         /* reset write */
2278         rb_reset_tail(cpu_buffer, tail, info);
2279
2280         return NULL;
2281 }
2282
2283 /* Slow path, do not inline */
2284 static noinline struct ring_buffer_event *
2285 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2286 {
2287         if (abs)
2288                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2289         else
2290                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2291
2292         /* Not the first event on the page, or not delta? */
2293         if (abs || rb_event_index(event)) {
2294                 event->time_delta = delta & TS_MASK;
2295                 event->array[0] = delta >> TS_SHIFT;
2296         } else {
2297                 /* nope, just zero it */
2298                 event->time_delta = 0;
2299                 event->array[0] = 0;
2300         }
2301
2302         return skip_time_extend(event);
2303 }
2304
2305 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2306                                      struct ring_buffer_event *event);
2307
2308 /**
2309  * rb_update_event - update event type and data
2310  * @event: the event to update
2311  * @type: the type of event
2312  * @length: the size of the event field in the ring buffer
2313  *
2314  * Update the type and data fields of the event. The length
2315  * is the actual size that is written to the ring buffer,
2316  * and with this, we can determine what to place into the
2317  * data field.
2318  */
2319 static void
2320 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2321                 struct ring_buffer_event *event,
2322                 struct rb_event_info *info)
2323 {
2324         unsigned length = info->length;
2325         u64 delta = info->delta;
2326
2327         /* Only a commit updates the timestamp */
2328         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2329                 delta = 0;
2330
2331         /*
2332          * If we need to add a timestamp, then we
2333          * add it to the start of the reserved space.
2334          */
2335         if (unlikely(info->add_timestamp)) {
2336                 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2337
2338                 event = rb_add_time_stamp(event, abs ? info->delta : delta, abs);
2339                 length -= RB_LEN_TIME_EXTEND;
2340                 delta = 0;
2341         }
2342
2343         event->time_delta = delta;
2344         length -= RB_EVNT_HDR_SIZE;
2345         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2346                 event->type_len = 0;
2347                 event->array[0] = length;
2348         } else
2349                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2350 }
2351
2352 static unsigned rb_calculate_event_length(unsigned length)
2353 {
2354         struct ring_buffer_event event; /* Used only for sizeof array */
2355
2356         /* zero length can cause confusions */
2357         if (!length)
2358                 length++;
2359
2360         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2361                 length += sizeof(event.array[0]);
2362
2363         length += RB_EVNT_HDR_SIZE;
2364         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2365
2366         /*
2367          * In case the time delta is larger than the 27 bits for it
2368          * in the header, we need to add a timestamp. If another
2369          * event comes in when trying to discard this one to increase
2370          * the length, then the timestamp will be added in the allocated
2371          * space of this event. If length is bigger than the size needed
2372          * for the TIME_EXTEND, then padding has to be used. The events
2373          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2374          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2375          * As length is a multiple of 4, we only need to worry if it
2376          * is 12 (RB_LEN_TIME_EXTEND + 4).
2377          */
2378         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2379                 length += RB_ALIGNMENT;
2380
2381         return length;
2382 }
2383
2384 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2385 static inline bool sched_clock_stable(void)
2386 {
2387         return true;
2388 }
2389 #endif
2390
2391 static inline int
2392 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2393                   struct ring_buffer_event *event)
2394 {
2395         unsigned long new_index, old_index;
2396         struct buffer_page *bpage;
2397         unsigned long index;
2398         unsigned long addr;
2399
2400         new_index = rb_event_index(event);
2401         old_index = new_index + rb_event_ts_length(event);
2402         addr = (unsigned long)event;
2403         addr &= PAGE_MASK;
2404
2405         bpage = READ_ONCE(cpu_buffer->tail_page);
2406
2407         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2408                 unsigned long write_mask =
2409                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2410                 unsigned long event_length = rb_event_length(event);
2411                 /*
2412                  * This is on the tail page. It is possible that
2413                  * a write could come in and move the tail page
2414                  * and write to the next page. That is fine
2415                  * because we just shorten what is on this page.
2416                  */
2417                 old_index += write_mask;
2418                 new_index += write_mask;
2419                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2420                 if (index == old_index) {
2421                         /* update counters */
2422                         local_sub(event_length, &cpu_buffer->entries_bytes);
2423                         return 1;
2424                 }
2425         }
2426
2427         /* could not discard */
2428         return 0;
2429 }
2430
2431 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2432 {
2433         local_inc(&cpu_buffer->committing);
2434         local_inc(&cpu_buffer->commits);
2435 }
2436
2437 static __always_inline void
2438 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2439 {
2440         unsigned long max_count;
2441
2442         /*
2443          * We only race with interrupts and NMIs on this CPU.
2444          * If we own the commit event, then we can commit
2445          * all others that interrupted us, since the interruptions
2446          * are in stack format (they finish before they come
2447          * back to us). This allows us to do a simple loop to
2448          * assign the commit to the tail.
2449          */
2450  again:
2451         max_count = cpu_buffer->nr_pages * 100;
2452
2453         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2454                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2455                         return;
2456                 if (RB_WARN_ON(cpu_buffer,
2457                                rb_is_reader_page(cpu_buffer->tail_page)))
2458                         return;
2459                 local_set(&cpu_buffer->commit_page->page->commit,
2460                           rb_page_write(cpu_buffer->commit_page));
2461                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2462                 /* Only update the write stamp if the page has an event */
2463                 if (rb_page_write(cpu_buffer->commit_page))
2464                         cpu_buffer->write_stamp =
2465                                 cpu_buffer->commit_page->page->time_stamp;
2466                 /* add barrier to keep gcc from optimizing too much */
2467                 barrier();
2468         }
2469         while (rb_commit_index(cpu_buffer) !=
2470                rb_page_write(cpu_buffer->commit_page)) {
2471
2472                 local_set(&cpu_buffer->commit_page->page->commit,
2473                           rb_page_write(cpu_buffer->commit_page));
2474                 RB_WARN_ON(cpu_buffer,
2475                            local_read(&cpu_buffer->commit_page->page->commit) &
2476                            ~RB_WRITE_MASK);
2477                 barrier();
2478         }
2479
2480         /* again, keep gcc from optimizing */
2481         barrier();
2482
2483         /*
2484          * If an interrupt came in just after the first while loop
2485          * and pushed the tail page forward, we will be left with
2486          * a dangling commit that will never go forward.
2487          */
2488         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2489                 goto again;
2490 }
2491
2492 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2493 {
2494         unsigned long commits;
2495
2496         if (RB_WARN_ON(cpu_buffer,
2497                        !local_read(&cpu_buffer->committing)))
2498                 return;
2499
2500  again:
2501         commits = local_read(&cpu_buffer->commits);
2502         /* synchronize with interrupts */
2503         barrier();
2504         if (local_read(&cpu_buffer->committing) == 1)
2505                 rb_set_commit_to_write(cpu_buffer);
2506
2507         local_dec(&cpu_buffer->committing);
2508
2509         /* synchronize with interrupts */
2510         barrier();
2511
2512         /*
2513          * Need to account for interrupts coming in between the
2514          * updating of the commit page and the clearing of the
2515          * committing counter.
2516          */
2517         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2518             !local_read(&cpu_buffer->committing)) {
2519                 local_inc(&cpu_buffer->committing);
2520                 goto again;
2521         }
2522 }
2523
2524 static inline void rb_event_discard(struct ring_buffer_event *event)
2525 {
2526         if (extended_time(event))
2527                 event = skip_time_extend(event);
2528
2529         /* array[0] holds the actual length for the discarded event */
2530         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2531         event->type_len = RINGBUF_TYPE_PADDING;
2532         /* time delta must be non zero */
2533         if (!event->time_delta)
2534                 event->time_delta = 1;
2535 }
2536
2537 static __always_inline bool
2538 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2539                    struct ring_buffer_event *event)
2540 {
2541         unsigned long addr = (unsigned long)event;
2542         unsigned long index;
2543
2544         index = rb_event_index(event);
2545         addr &= PAGE_MASK;
2546
2547         return cpu_buffer->commit_page->page == (void *)addr &&
2548                 rb_commit_index(cpu_buffer) == index;
2549 }
2550
2551 static __always_inline void
2552 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2553                       struct ring_buffer_event *event)
2554 {
2555         u64 delta;
2556
2557         /*
2558          * The event first in the commit queue updates the
2559          * time stamp.
2560          */
2561         if (rb_event_is_commit(cpu_buffer, event)) {
2562                 /*
2563                  * A commit event that is first on a page
2564                  * updates the write timestamp with the page stamp
2565                  */
2566                 if (!rb_event_index(event))
2567                         cpu_buffer->write_stamp =
2568                                 cpu_buffer->commit_page->page->time_stamp;
2569                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2570                         delta = ring_buffer_event_time_stamp(event);
2571                         cpu_buffer->write_stamp += delta;
2572                 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2573                         delta = ring_buffer_event_time_stamp(event);
2574                         cpu_buffer->write_stamp = delta;
2575                 } else
2576                         cpu_buffer->write_stamp += event->time_delta;
2577         }
2578 }
2579
2580 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2581                       struct ring_buffer_event *event)
2582 {
2583         local_inc(&cpu_buffer->entries);
2584         rb_update_write_stamp(cpu_buffer, event);
2585         rb_end_commit(cpu_buffer);
2586 }
2587
2588 static __always_inline void
2589 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2590 {
2591         bool pagebusy;
2592
2593         if (buffer->irq_work.waiters_pending) {
2594                 buffer->irq_work.waiters_pending = false;
2595                 /* irq_work_queue() supplies it's own memory barriers */
2596                 irq_work_queue(&buffer->irq_work.work);
2597         }
2598
2599         if (cpu_buffer->irq_work.waiters_pending) {
2600                 cpu_buffer->irq_work.waiters_pending = false;
2601                 /* irq_work_queue() supplies it's own memory barriers */
2602                 irq_work_queue(&cpu_buffer->irq_work.work);
2603         }
2604
2605         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2606
2607         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2608                 cpu_buffer->irq_work.wakeup_full = true;
2609                 cpu_buffer->irq_work.full_waiters_pending = false;
2610                 /* irq_work_queue() supplies it's own memory barriers */
2611                 irq_work_queue(&cpu_buffer->irq_work.work);
2612         }
2613 }
2614
2615 /*
2616  * The lock and unlock are done within a preempt disable section.
2617  * The current_context per_cpu variable can only be modified
2618  * by the current task between lock and unlock. But it can
2619  * be modified more than once via an interrupt. To pass this
2620  * information from the lock to the unlock without having to
2621  * access the 'in_interrupt()' functions again (which do show
2622  * a bit of overhead in something as critical as function tracing,
2623  * we use a bitmask trick.
2624  *
2625  *  bit 1 =  NMI context
2626  *  bit 2 =  IRQ context
2627  *  bit 3 =  SoftIRQ context
2628  *  bit 4 =  normal context.
2629  *
2630  * This works because this is the order of contexts that can
2631  * preempt other contexts. A SoftIRQ never preempts an IRQ
2632  * context.
2633  *
2634  * When the context is determined, the corresponding bit is
2635  * checked and set (if it was set, then a recursion of that context
2636  * happened).
2637  *
2638  * On unlock, we need to clear this bit. To do so, just subtract
2639  * 1 from the current_context and AND it to itself.
2640  *
2641  * (binary)
2642  *  101 - 1 = 100
2643  *  101 & 100 = 100 (clearing bit zero)
2644  *
2645  *  1010 - 1 = 1001
2646  *  1010 & 1001 = 1000 (clearing bit 1)
2647  *
2648  * The least significant bit can be cleared this way, and it
2649  * just so happens that it is the same bit corresponding to
2650  * the current context.
2651  *
2652  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
2653  * is set when a recursion is detected at the current context, and if
2654  * the TRANSITION bit is already set, it will fail the recursion.
2655  * This is needed because there's a lag between the changing of
2656  * interrupt context and updating the preempt count. In this case,
2657  * a false positive will be found. To handle this, one extra recursion
2658  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
2659  * bit is already set, then it is considered a recursion and the function
2660  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
2661  *
2662  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
2663  * to be cleared. Even if it wasn't the context that set it. That is,
2664  * if an interrupt comes in while NORMAL bit is set and the ring buffer
2665  * is called before preempt_count() is updated, since the check will
2666  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
2667  * NMI then comes in, it will set the NMI bit, but when the NMI code
2668  * does the trace_recursive_unlock() it will clear the TRANSTION bit
2669  * and leave the NMI bit set. But this is fine, because the interrupt
2670  * code that set the TRANSITION bit will then clear the NMI bit when it
2671  * calls trace_recursive_unlock(). If another NMI comes in, it will
2672  * set the TRANSITION bit and continue.
2673  *
2674  * Note: The TRANSITION bit only handles a single transition between context.
2675  */
2676
2677 static __always_inline int
2678 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2679 {
2680         unsigned int val = cpu_buffer->current_context;
2681         unsigned long pc = preempt_count();
2682         int bit;
2683
2684         if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2685                 bit = RB_CTX_NORMAL;
2686         else
2687                 bit = pc & NMI_MASK ? RB_CTX_NMI :
2688                         pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2689
2690         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
2691                 /*
2692                  * It is possible that this was called by transitioning
2693                  * between interrupt context, and preempt_count() has not
2694                  * been updated yet. In this case, use the TRANSITION bit.
2695                  */
2696                 bit = RB_CTX_TRANSITION;
2697                 if (val & (1 << (bit + cpu_buffer->nest)))
2698                         return 1;
2699         }
2700
2701         val |= (1 << (bit + cpu_buffer->nest));
2702         cpu_buffer->current_context = val;
2703
2704         return 0;
2705 }
2706
2707 static __always_inline void
2708 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2709 {
2710         cpu_buffer->current_context &=
2711                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2712 }
2713
2714 /* The recursive locking above uses 5 bits */
2715 #define NESTED_BITS 5
2716
2717 /**
2718  * ring_buffer_nest_start - Allow to trace while nested
2719  * @buffer: The ring buffer to modify
2720  *
2721  * The ring buffer has a safety mechanism to prevent recursion.
2722  * But there may be a case where a trace needs to be done while
2723  * tracing something else. In this case, calling this function
2724  * will allow this function to nest within a currently active
2725  * ring_buffer_lock_reserve().
2726  *
2727  * Call this function before calling another ring_buffer_lock_reserve() and
2728  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2729  */
2730 void ring_buffer_nest_start(struct ring_buffer *buffer)
2731 {
2732         struct ring_buffer_per_cpu *cpu_buffer;
2733         int cpu;
2734
2735         /* Enabled by ring_buffer_nest_end() */
2736         preempt_disable_notrace();
2737         cpu = raw_smp_processor_id();
2738         cpu_buffer = buffer->buffers[cpu];
2739         /* This is the shift value for the above recursive locking */
2740         cpu_buffer->nest += NESTED_BITS;
2741 }
2742
2743 /**
2744  * ring_buffer_nest_end - Allow to trace while nested
2745  * @buffer: The ring buffer to modify
2746  *
2747  * Must be called after ring_buffer_nest_start() and after the
2748  * ring_buffer_unlock_commit().
2749  */
2750 void ring_buffer_nest_end(struct ring_buffer *buffer)
2751 {
2752         struct ring_buffer_per_cpu *cpu_buffer;
2753         int cpu;
2754
2755         /* disabled by ring_buffer_nest_start() */
2756         cpu = raw_smp_processor_id();
2757         cpu_buffer = buffer->buffers[cpu];
2758         /* This is the shift value for the above recursive locking */
2759         cpu_buffer->nest -= NESTED_BITS;
2760         preempt_enable_notrace();
2761 }
2762
2763 /**
2764  * ring_buffer_unlock_commit - commit a reserved
2765  * @buffer: The buffer to commit to
2766  * @event: The event pointer to commit.
2767  *
2768  * This commits the data to the ring buffer, and releases any locks held.
2769  *
2770  * Must be paired with ring_buffer_lock_reserve.
2771  */
2772 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2773                               struct ring_buffer_event *event)
2774 {
2775         struct ring_buffer_per_cpu *cpu_buffer;
2776         int cpu = raw_smp_processor_id();
2777
2778         cpu_buffer = buffer->buffers[cpu];
2779
2780         rb_commit(cpu_buffer, event);
2781
2782         rb_wakeups(buffer, cpu_buffer);
2783
2784         trace_recursive_unlock(cpu_buffer);
2785
2786         preempt_enable_notrace();
2787
2788         return 0;
2789 }
2790 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2791
2792 static noinline void
2793 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2794                     struct rb_event_info *info)
2795 {
2796         WARN_ONCE(info->delta > (1ULL << 59),
2797                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2798                   (unsigned long long)info->delta,
2799                   (unsigned long long)info->ts,
2800                   (unsigned long long)cpu_buffer->write_stamp,
2801                   sched_clock_stable() ? "" :
2802                   "If you just came from a suspend/resume,\n"
2803                   "please switch to the trace global clock:\n"
2804                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2805                   "or add trace_clock=global to the kernel command line\n");
2806         info->add_timestamp = 1;
2807 }
2808
2809 static struct ring_buffer_event *
2810 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2811                   struct rb_event_info *info)
2812 {
2813         struct ring_buffer_event *event;
2814         struct buffer_page *tail_page;
2815         unsigned long tail, write;
2816
2817         /*
2818          * If the time delta since the last event is too big to
2819          * hold in the time field of the event, then we append a
2820          * TIME EXTEND event ahead of the data event.
2821          */
2822         if (unlikely(info->add_timestamp))
2823                 info->length += RB_LEN_TIME_EXTEND;
2824
2825         /* Don't let the compiler play games with cpu_buffer->tail_page */
2826         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2827         write = local_add_return(info->length, &tail_page->write);
2828
2829         /* set write to only the index of the write */
2830         write &= RB_WRITE_MASK;
2831         tail = write - info->length;
2832
2833         /*
2834          * If this is the first commit on the page, then it has the same
2835          * timestamp as the page itself.
2836          */
2837         if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2838                 info->delta = 0;
2839
2840         /* See if we shot pass the end of this buffer page */
2841         if (unlikely(write > BUF_PAGE_SIZE))
2842                 return rb_move_tail(cpu_buffer, tail, info);
2843
2844         /* We reserved something on the buffer */
2845
2846         event = __rb_page_index(tail_page, tail);
2847         rb_update_event(cpu_buffer, event, info);
2848
2849         local_inc(&tail_page->entries);
2850
2851         /*
2852          * If this is the first commit on the page, then update
2853          * its timestamp.
2854          */
2855         if (!tail)
2856                 tail_page->page->time_stamp = info->ts;
2857
2858         /* account for these added bytes */
2859         local_add(info->length, &cpu_buffer->entries_bytes);
2860
2861         return event;
2862 }
2863
2864 static __always_inline struct ring_buffer_event *
2865 rb_reserve_next_event(struct ring_buffer *buffer,
2866                       struct ring_buffer_per_cpu *cpu_buffer,
2867                       unsigned long length)
2868 {
2869         struct ring_buffer_event *event;
2870         struct rb_event_info info;
2871         int nr_loops = 0;
2872         u64 diff;
2873
2874         rb_start_commit(cpu_buffer);
2875
2876 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2877         /*
2878          * Due to the ability to swap a cpu buffer from a buffer
2879          * it is possible it was swapped before we committed.
2880          * (committing stops a swap). We check for it here and
2881          * if it happened, we have to fail the write.
2882          */
2883         barrier();
2884         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2885                 local_dec(&cpu_buffer->committing);
2886                 local_dec(&cpu_buffer->commits);
2887                 return NULL;
2888         }
2889 #endif
2890
2891         info.length = rb_calculate_event_length(length);
2892  again:
2893         info.add_timestamp = 0;
2894         info.delta = 0;
2895
2896         /*
2897          * We allow for interrupts to reenter here and do a trace.
2898          * If one does, it will cause this original code to loop
2899          * back here. Even with heavy interrupts happening, this
2900          * should only happen a few times in a row. If this happens
2901          * 1000 times in a row, there must be either an interrupt
2902          * storm or we have something buggy.
2903          * Bail!
2904          */
2905         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2906                 goto out_fail;
2907
2908         info.ts = rb_time_stamp(cpu_buffer->buffer);
2909         diff = info.ts - cpu_buffer->write_stamp;
2910
2911         /* make sure this diff is calculated here */
2912         barrier();
2913
2914         if (ring_buffer_time_stamp_abs(buffer)) {
2915                 info.delta = info.ts;
2916                 rb_handle_timestamp(cpu_buffer, &info);
2917         } else /* Did the write stamp get updated already? */
2918                 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2919                 info.delta = diff;
2920                 if (unlikely(test_time_stamp(info.delta)))
2921                         rb_handle_timestamp(cpu_buffer, &info);
2922         }
2923
2924         event = __rb_reserve_next(cpu_buffer, &info);
2925
2926         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2927                 if (info.add_timestamp)
2928                         info.length -= RB_LEN_TIME_EXTEND;
2929                 goto again;
2930         }
2931
2932         if (!event)
2933                 goto out_fail;
2934
2935         return event;
2936
2937  out_fail:
2938         rb_end_commit(cpu_buffer);
2939         return NULL;
2940 }
2941
2942 /**
2943  * ring_buffer_lock_reserve - reserve a part of the buffer
2944  * @buffer: the ring buffer to reserve from
2945  * @length: the length of the data to reserve (excluding event header)
2946  *
2947  * Returns a reserved event on the ring buffer to copy directly to.
2948  * The user of this interface will need to get the body to write into
2949  * and can use the ring_buffer_event_data() interface.
2950  *
2951  * The length is the length of the data needed, not the event length
2952  * which also includes the event header.
2953  *
2954  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2955  * If NULL is returned, then nothing has been allocated or locked.
2956  */
2957 struct ring_buffer_event *
2958 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2959 {
2960         struct ring_buffer_per_cpu *cpu_buffer;
2961         struct ring_buffer_event *event;
2962         int cpu;
2963
2964         /* If we are tracing schedule, we don't want to recurse */
2965         preempt_disable_notrace();
2966
2967         if (unlikely(atomic_read(&buffer->record_disabled)))
2968                 goto out;
2969
2970         cpu = raw_smp_processor_id();
2971
2972         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2973                 goto out;
2974
2975         cpu_buffer = buffer->buffers[cpu];
2976
2977         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2978                 goto out;
2979
2980         if (unlikely(length > BUF_MAX_DATA_SIZE))
2981                 goto out;
2982
2983         if (unlikely(trace_recursive_lock(cpu_buffer)))
2984                 goto out;
2985
2986         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2987         if (!event)
2988                 goto out_unlock;
2989
2990         return event;
2991
2992  out_unlock:
2993         trace_recursive_unlock(cpu_buffer);
2994  out:
2995         preempt_enable_notrace();
2996         return NULL;
2997 }
2998 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2999
3000 /*
3001  * Decrement the entries to the page that an event is on.
3002  * The event does not even need to exist, only the pointer
3003  * to the page it is on. This may only be called before the commit
3004  * takes place.
3005  */
3006 static inline void
3007 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3008                    struct ring_buffer_event *event)
3009 {
3010         unsigned long addr = (unsigned long)event;
3011         struct buffer_page *bpage = cpu_buffer->commit_page;
3012         struct buffer_page *start;
3013
3014         addr &= PAGE_MASK;
3015
3016         /* Do the likely case first */
3017         if (likely(bpage->page == (void *)addr)) {
3018                 local_dec(&bpage->entries);
3019                 return;
3020         }
3021
3022         /*
3023          * Because the commit page may be on the reader page we
3024          * start with the next page and check the end loop there.
3025          */
3026         rb_inc_page(cpu_buffer, &bpage);
3027         start = bpage;
3028         do {
3029                 if (bpage->page == (void *)addr) {
3030                         local_dec(&bpage->entries);
3031                         return;
3032                 }
3033                 rb_inc_page(cpu_buffer, &bpage);
3034         } while (bpage != start);
3035
3036         /* commit not part of this buffer?? */
3037         RB_WARN_ON(cpu_buffer, 1);
3038 }
3039
3040 /**
3041  * ring_buffer_commit_discard - discard an event that has not been committed
3042  * @buffer: the ring buffer
3043  * @event: non committed event to discard
3044  *
3045  * Sometimes an event that is in the ring buffer needs to be ignored.
3046  * This function lets the user discard an event in the ring buffer
3047  * and then that event will not be read later.
3048  *
3049  * This function only works if it is called before the item has been
3050  * committed. It will try to free the event from the ring buffer
3051  * if another event has not been added behind it.
3052  *
3053  * If another event has been added behind it, it will set the event
3054  * up as discarded, and perform the commit.
3055  *
3056  * If this function is called, do not call ring_buffer_unlock_commit on
3057  * the event.
3058  */
3059 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3060                                 struct ring_buffer_event *event)
3061 {
3062         struct ring_buffer_per_cpu *cpu_buffer;
3063         int cpu;
3064
3065         /* The event is discarded regardless */
3066         rb_event_discard(event);
3067
3068         cpu = smp_processor_id();
3069         cpu_buffer = buffer->buffers[cpu];
3070
3071         /*
3072          * This must only be called if the event has not been
3073          * committed yet. Thus we can assume that preemption
3074          * is still disabled.
3075          */
3076         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3077
3078         rb_decrement_entry(cpu_buffer, event);
3079         if (rb_try_to_discard(cpu_buffer, event))
3080                 goto out;
3081
3082         /*
3083          * The commit is still visible by the reader, so we
3084          * must still update the timestamp.
3085          */
3086         rb_update_write_stamp(cpu_buffer, event);
3087  out:
3088         rb_end_commit(cpu_buffer);
3089
3090         trace_recursive_unlock(cpu_buffer);
3091
3092         preempt_enable_notrace();
3093
3094 }
3095 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3096
3097 /**
3098  * ring_buffer_write - write data to the buffer without reserving
3099  * @buffer: The ring buffer to write to.
3100  * @length: The length of the data being written (excluding the event header)
3101  * @data: The data to write to the buffer.
3102  *
3103  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3104  * one function. If you already have the data to write to the buffer, it
3105  * may be easier to simply call this function.
3106  *
3107  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3108  * and not the length of the event which would hold the header.
3109  */
3110 int ring_buffer_write(struct ring_buffer *buffer,
3111                       unsigned long length,
3112                       void *data)
3113 {
3114         struct ring_buffer_per_cpu *cpu_buffer;
3115         struct ring_buffer_event *event;
3116         void *body;
3117         int ret = -EBUSY;
3118         int cpu;
3119
3120         preempt_disable_notrace();
3121
3122         if (atomic_read(&buffer->record_disabled))
3123                 goto out;
3124
3125         cpu = raw_smp_processor_id();
3126
3127         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3128                 goto out;
3129
3130         cpu_buffer = buffer->buffers[cpu];
3131
3132         if (atomic_read(&cpu_buffer->record_disabled))
3133                 goto out;
3134
3135         if (length > BUF_MAX_DATA_SIZE)
3136                 goto out;
3137
3138         if (unlikely(trace_recursive_lock(cpu_buffer)))
3139                 goto out;
3140
3141         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3142         if (!event)
3143                 goto out_unlock;
3144
3145         body = rb_event_data(event);
3146
3147         memcpy(body, data, length);
3148
3149         rb_commit(cpu_buffer, event);
3150
3151         rb_wakeups(buffer, cpu_buffer);
3152
3153         ret = 0;
3154
3155  out_unlock:
3156         trace_recursive_unlock(cpu_buffer);
3157
3158  out:
3159         preempt_enable_notrace();
3160
3161         return ret;
3162 }
3163 EXPORT_SYMBOL_GPL(ring_buffer_write);
3164
3165 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3166 {
3167         struct buffer_page *reader = cpu_buffer->reader_page;
3168         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3169         struct buffer_page *commit = cpu_buffer->commit_page;
3170
3171         /* In case of error, head will be NULL */
3172         if (unlikely(!head))
3173                 return true;
3174
3175         /* Reader should exhaust content in reader page */
3176         if (reader->read != rb_page_commit(reader))
3177                 return false;
3178
3179         /*
3180          * If writers are committing on the reader page, knowing all
3181          * committed content has been read, the ring buffer is empty.
3182          */
3183         if (commit == reader)
3184                 return true;
3185
3186         /*
3187          * If writers are committing on a page other than reader page
3188          * and head page, there should always be content to read.
3189          */
3190         if (commit != head)
3191                 return false;
3192
3193         /*
3194          * Writers are committing on the head page, we just need
3195          * to care about there're committed data, and the reader will
3196          * swap reader page with head page when it is to read data.
3197          */
3198         return rb_page_commit(commit) == 0;
3199 }
3200
3201 /**
3202  * ring_buffer_record_disable - stop all writes into the buffer
3203  * @buffer: The ring buffer to stop writes to.
3204  *
3205  * This prevents all writes to the buffer. Any attempt to write
3206  * to the buffer after this will fail and return NULL.
3207  *
3208  * The caller should call synchronize_sched() after this.
3209  */
3210 void ring_buffer_record_disable(struct ring_buffer *buffer)
3211 {
3212         atomic_inc(&buffer->record_disabled);
3213 }
3214 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3215
3216 /**
3217  * ring_buffer_record_enable - enable writes to the buffer
3218  * @buffer: The ring buffer to enable writes
3219  *
3220  * Note, multiple disables will need the same number of enables
3221  * to truly enable the writing (much like preempt_disable).
3222  */
3223 void ring_buffer_record_enable(struct ring_buffer *buffer)
3224 {
3225         atomic_dec(&buffer->record_disabled);
3226 }
3227 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3228
3229 /**
3230  * ring_buffer_record_off - stop all writes into the buffer
3231  * @buffer: The ring buffer to stop writes to.
3232  *
3233  * This prevents all writes to the buffer. Any attempt to write
3234  * to the buffer after this will fail and return NULL.
3235  *
3236  * This is different than ring_buffer_record_disable() as
3237  * it works like an on/off switch, where as the disable() version
3238  * must be paired with a enable().
3239  */
3240 void ring_buffer_record_off(struct ring_buffer *buffer)
3241 {
3242         unsigned int rd;
3243         unsigned int new_rd;
3244
3245         do {
3246                 rd = atomic_read(&buffer->record_disabled);
3247                 new_rd = rd | RB_BUFFER_OFF;
3248         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3249 }
3250 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3251
3252 /**
3253  * ring_buffer_record_on - restart writes into the buffer
3254  * @buffer: The ring buffer to start writes to.
3255  *
3256  * This enables all writes to the buffer that was disabled by
3257  * ring_buffer_record_off().
3258  *
3259  * This is different than ring_buffer_record_enable() as
3260  * it works like an on/off switch, where as the enable() version
3261  * must be paired with a disable().
3262  */
3263 void ring_buffer_record_on(struct ring_buffer *buffer)
3264 {
3265         unsigned int rd;
3266         unsigned int new_rd;
3267
3268         do {
3269                 rd = atomic_read(&buffer->record_disabled);
3270                 new_rd = rd & ~RB_BUFFER_OFF;
3271         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3272 }
3273 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3274
3275 /**
3276  * ring_buffer_record_is_on - return true if the ring buffer can write
3277  * @buffer: The ring buffer to see if write is enabled
3278  *
3279  * Returns true if the ring buffer is in a state that it accepts writes.
3280  */
3281 bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3282 {
3283         return !atomic_read(&buffer->record_disabled);
3284 }
3285
3286 /**
3287  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3288  * @buffer: The ring buffer to see if write is set enabled
3289  *
3290  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3291  * Note that this does NOT mean it is in a writable state.
3292  *
3293  * It may return true when the ring buffer has been disabled by
3294  * ring_buffer_record_disable(), as that is a temporary disabling of
3295  * the ring buffer.
3296  */
3297 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3298 {
3299         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3300 }
3301
3302 /**
3303  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3304  * @buffer: The ring buffer to stop writes to.
3305  * @cpu: The CPU buffer to stop
3306  *
3307  * This prevents all writes to the buffer. Any attempt to write
3308  * to the buffer after this will fail and return NULL.
3309  *
3310  * The caller should call synchronize_sched() after this.
3311  */
3312 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3313 {
3314         struct ring_buffer_per_cpu *cpu_buffer;
3315
3316         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3317                 return;
3318
3319         cpu_buffer = buffer->buffers[cpu];
3320         atomic_inc(&cpu_buffer->record_disabled);
3321 }
3322 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3323
3324 /**
3325  * ring_buffer_record_enable_cpu - enable writes to the buffer
3326  * @buffer: The ring buffer to enable writes
3327  * @cpu: The CPU to enable.
3328  *
3329  * Note, multiple disables will need the same number of enables
3330  * to truly enable the writing (much like preempt_disable).
3331  */
3332 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3333 {
3334         struct ring_buffer_per_cpu *cpu_buffer;
3335
3336         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3337                 return;
3338
3339         cpu_buffer = buffer->buffers[cpu];
3340         atomic_dec(&cpu_buffer->record_disabled);
3341 }
3342 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3343
3344 /*
3345  * The total entries in the ring buffer is the running counter
3346  * of entries entered into the ring buffer, minus the sum of
3347  * the entries read from the ring buffer and the number of
3348  * entries that were overwritten.
3349  */
3350 static inline unsigned long
3351 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3352 {
3353         return local_read(&cpu_buffer->entries) -
3354                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3355 }
3356
3357 /**
3358  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3359  * @buffer: The ring buffer
3360  * @cpu: The per CPU buffer to read from.
3361  */
3362 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3363 {
3364         unsigned long flags;
3365         struct ring_buffer_per_cpu *cpu_buffer;
3366         struct buffer_page *bpage;
3367         u64 ret = 0;
3368
3369         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3370                 return 0;
3371
3372         cpu_buffer = buffer->buffers[cpu];
3373         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3374         /*
3375          * if the tail is on reader_page, oldest time stamp is on the reader
3376          * page
3377          */
3378         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3379                 bpage = cpu_buffer->reader_page;
3380         else
3381                 bpage = rb_set_head_page(cpu_buffer);
3382         if (bpage)
3383                 ret = bpage->page->time_stamp;
3384         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3385
3386         return ret;
3387 }
3388 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3389
3390 /**
3391  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3392  * @buffer: The ring buffer
3393  * @cpu: The per CPU buffer to read from.
3394  */
3395 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3396 {
3397         struct ring_buffer_per_cpu *cpu_buffer;
3398         unsigned long ret;
3399
3400         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3401                 return 0;
3402
3403         cpu_buffer = buffer->buffers[cpu];
3404         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3405
3406         return ret;
3407 }
3408 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3409
3410 /**
3411  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3412  * @buffer: The ring buffer
3413  * @cpu: The per CPU buffer to get the entries from.
3414  */
3415 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3416 {
3417         struct ring_buffer_per_cpu *cpu_buffer;
3418
3419         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3420                 return 0;
3421
3422         cpu_buffer = buffer->buffers[cpu];
3423
3424         return rb_num_of_entries(cpu_buffer);
3425 }
3426 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3427
3428 /**
3429  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3430  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3431  * @buffer: The ring buffer
3432  * @cpu: The per CPU buffer to get the number of overruns from
3433  */
3434 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3435 {
3436         struct ring_buffer_per_cpu *cpu_buffer;
3437         unsigned long ret;
3438
3439         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3440                 return 0;
3441
3442         cpu_buffer = buffer->buffers[cpu];
3443         ret = local_read(&cpu_buffer->overrun);
3444
3445         return ret;
3446 }
3447 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3448
3449 /**
3450  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3451  * commits failing due to the buffer wrapping around while there are uncommitted
3452  * events, such as during an interrupt storm.
3453  * @buffer: The ring buffer
3454  * @cpu: The per CPU buffer to get the number of overruns from
3455  */
3456 unsigned long
3457 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3458 {
3459         struct ring_buffer_per_cpu *cpu_buffer;
3460         unsigned long ret;
3461
3462         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3463                 return 0;
3464
3465         cpu_buffer = buffer->buffers[cpu];
3466         ret = local_read(&cpu_buffer->commit_overrun);
3467
3468         return ret;
3469 }
3470 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3471
3472 /**
3473  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3474  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3475  * @buffer: The ring buffer
3476  * @cpu: The per CPU buffer to get the number of overruns from
3477  */
3478 unsigned long
3479 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3480 {
3481         struct ring_buffer_per_cpu *cpu_buffer;
3482         unsigned long ret;
3483
3484         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3485                 return 0;
3486
3487         cpu_buffer = buffer->buffers[cpu];
3488         ret = local_read(&cpu_buffer->dropped_events);
3489
3490         return ret;
3491 }
3492 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3493
3494 /**
3495  * ring_buffer_read_events_cpu - get the number of events successfully read
3496  * @buffer: The ring buffer
3497  * @cpu: The per CPU buffer to get the number of events read
3498  */
3499 unsigned long
3500 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3501 {
3502         struct ring_buffer_per_cpu *cpu_buffer;
3503
3504         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3505                 return 0;
3506
3507         cpu_buffer = buffer->buffers[cpu];
3508         return cpu_buffer->read;
3509 }
3510 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3511
3512 /**
3513  * ring_buffer_entries - get the number of entries in a buffer
3514  * @buffer: The ring buffer
3515  *
3516  * Returns the total number of entries in the ring buffer
3517  * (all CPU entries)
3518  */
3519 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3520 {
3521         struct ring_buffer_per_cpu *cpu_buffer;
3522         unsigned long entries = 0;
3523         int cpu;
3524
3525         /* if you care about this being correct, lock the buffer */
3526         for_each_buffer_cpu(buffer, cpu) {
3527                 cpu_buffer = buffer->buffers[cpu];
3528                 entries += rb_num_of_entries(cpu_buffer);
3529         }
3530
3531         return entries;
3532 }
3533 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3534
3535 /**
3536  * ring_buffer_overruns - get the number of overruns in buffer
3537  * @buffer: The ring buffer
3538  *
3539  * Returns the total number of overruns in the ring buffer
3540  * (all CPU entries)
3541  */
3542 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3543 {
3544         struct ring_buffer_per_cpu *cpu_buffer;
3545         unsigned long overruns = 0;
3546         int cpu;
3547
3548         /* if you care about this being correct, lock the buffer */
3549         for_each_buffer_cpu(buffer, cpu) {
3550                 cpu_buffer = buffer->buffers[cpu];
3551                 overruns += local_read(&cpu_buffer->overrun);
3552         }
3553
3554         return overruns;
3555 }
3556 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3557
3558 static void rb_iter_reset(struct ring_buffer_iter *iter)
3559 {
3560         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3561
3562         /* Iterator usage is expected to have record disabled */
3563         iter->head_page = cpu_buffer->reader_page;
3564         iter->head = cpu_buffer->reader_page->read;
3565
3566         iter->cache_reader_page = iter->head_page;
3567         iter->cache_read = cpu_buffer->read;
3568
3569         if (iter->head)
3570                 iter->read_stamp = cpu_buffer->read_stamp;
3571         else
3572                 iter->read_stamp = iter->head_page->page->time_stamp;
3573 }
3574
3575 /**
3576  * ring_buffer_iter_reset - reset an iterator
3577  * @iter: The iterator to reset
3578  *
3579  * Resets the iterator, so that it will start from the beginning
3580  * again.
3581  */
3582 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3583 {
3584         struct ring_buffer_per_cpu *cpu_buffer;
3585         unsigned long flags;
3586
3587         if (!iter)
3588                 return;
3589
3590         cpu_buffer = iter->cpu_buffer;
3591
3592         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3593         rb_iter_reset(iter);
3594         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3595 }
3596 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3597
3598 /**
3599  * ring_buffer_iter_empty - check if an iterator has no more to read
3600  * @iter: The iterator to check
3601  */
3602 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3603 {
3604         struct ring_buffer_per_cpu *cpu_buffer;
3605         struct buffer_page *reader;
3606         struct buffer_page *head_page;
3607         struct buffer_page *commit_page;
3608         unsigned commit;
3609
3610         cpu_buffer = iter->cpu_buffer;
3611
3612         /* Remember, trace recording is off when iterator is in use */
3613         reader = cpu_buffer->reader_page;
3614         head_page = cpu_buffer->head_page;
3615         commit_page = cpu_buffer->commit_page;
3616         commit = rb_page_commit(commit_page);
3617
3618         return ((iter->head_page == commit_page && iter->head == commit) ||
3619                 (iter->head_page == reader && commit_page == head_page &&
3620                  head_page->read == commit &&
3621                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3622 }
3623 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3624
3625 static void
3626 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3627                      struct ring_buffer_event *event)
3628 {
3629         u64 delta;
3630
3631         switch (event->type_len) {
3632         case RINGBUF_TYPE_PADDING:
3633                 return;
3634
3635         case RINGBUF_TYPE_TIME_EXTEND:
3636                 delta = ring_buffer_event_time_stamp(event);
3637                 cpu_buffer->read_stamp += delta;
3638                 return;
3639
3640         case RINGBUF_TYPE_TIME_STAMP:
3641                 delta = ring_buffer_event_time_stamp(event);
3642                 cpu_buffer->read_stamp = delta;
3643                 return;
3644
3645         case RINGBUF_TYPE_DATA:
3646                 cpu_buffer->read_stamp += event->time_delta;
3647                 return;
3648
3649         default:
3650                 BUG();
3651         }
3652         return;
3653 }
3654
3655 static void
3656 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3657                           struct ring_buffer_event *event)
3658 {
3659         u64 delta;
3660
3661         switch (event->type_len) {
3662         case RINGBUF_TYPE_PADDING:
3663                 return;
3664
3665         case RINGBUF_TYPE_TIME_EXTEND:
3666                 delta = ring_buffer_event_time_stamp(event);
3667                 iter->read_stamp += delta;
3668                 return;
3669
3670         case RINGBUF_TYPE_TIME_STAMP:
3671                 delta = ring_buffer_event_time_stamp(event);
3672                 iter->read_stamp = delta;
3673                 return;
3674
3675         case RINGBUF_TYPE_DATA:
3676                 iter->read_stamp += event->time_delta;
3677                 return;
3678
3679         default:
3680                 BUG();
3681         }
3682         return;
3683 }
3684
3685 static struct buffer_page *
3686 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3687 {
3688         struct buffer_page *reader = NULL;
3689         unsigned long overwrite;
3690         unsigned long flags;
3691         int nr_loops = 0;
3692         int ret;
3693
3694         local_irq_save(flags);
3695         arch_spin_lock(&cpu_buffer->lock);
3696
3697  again:
3698         /*
3699          * This should normally only loop twice. But because the
3700          * start of the reader inserts an empty page, it causes
3701          * a case where we will loop three times. There should be no
3702          * reason to loop four times (that I know of).
3703          */
3704         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3705                 reader = NULL;
3706                 goto out;
3707         }
3708
3709         reader = cpu_buffer->reader_page;
3710
3711         /* If there's more to read, return this page */
3712         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3713                 goto out;
3714
3715         /* Never should we have an index greater than the size */
3716         if (RB_WARN_ON(cpu_buffer,
3717                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3718                 goto out;
3719
3720         /* check if we caught up to the tail */
3721         reader = NULL;
3722         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3723                 goto out;
3724
3725         /* Don't bother swapping if the ring buffer is empty */
3726         if (rb_num_of_entries(cpu_buffer) == 0)
3727                 goto out;
3728
3729         /*
3730          * Reset the reader page to size zero.
3731          */
3732         local_set(&cpu_buffer->reader_page->write, 0);
3733         local_set(&cpu_buffer->reader_page->entries, 0);
3734         local_set(&cpu_buffer->reader_page->page->commit, 0);
3735         cpu_buffer->reader_page->real_end = 0;
3736
3737  spin:
3738         /*
3739          * Splice the empty reader page into the list around the head.
3740          */
3741         reader = rb_set_head_page(cpu_buffer);
3742         if (!reader)
3743                 goto out;
3744         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3745         cpu_buffer->reader_page->list.prev = reader->list.prev;
3746
3747         /*
3748          * cpu_buffer->pages just needs to point to the buffer, it
3749          *  has no specific buffer page to point to. Lets move it out
3750          *  of our way so we don't accidentally swap it.
3751          */
3752         cpu_buffer->pages = reader->list.prev;
3753
3754         /* The reader page will be pointing to the new head */
3755         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3756
3757         /*
3758          * We want to make sure we read the overruns after we set up our
3759          * pointers to the next object. The writer side does a
3760          * cmpxchg to cross pages which acts as the mb on the writer
3761          * side. Note, the reader will constantly fail the swap
3762          * while the writer is updating the pointers, so this
3763          * guarantees that the overwrite recorded here is the one we
3764          * want to compare with the last_overrun.
3765          */
3766         smp_mb();
3767         overwrite = local_read(&(cpu_buffer->overrun));
3768
3769         /*
3770          * Here's the tricky part.
3771          *
3772          * We need to move the pointer past the header page.
3773          * But we can only do that if a writer is not currently
3774          * moving it. The page before the header page has the
3775          * flag bit '1' set if it is pointing to the page we want.
3776          * but if the writer is in the process of moving it
3777          * than it will be '2' or already moved '0'.
3778          */
3779
3780         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3781
3782         /*
3783          * If we did not convert it, then we must try again.
3784          */
3785         if (!ret)
3786                 goto spin;
3787
3788         /*
3789          * Yeah! We succeeded in replacing the page.
3790          *
3791          * Now make the new head point back to the reader page.
3792          */
3793         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3794         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3795
3796         /* Finally update the reader page to the new head */
3797         cpu_buffer->reader_page = reader;
3798         cpu_buffer->reader_page->read = 0;
3799
3800         if (overwrite != cpu_buffer->last_overrun) {
3801                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3802                 cpu_buffer->last_overrun = overwrite;
3803         }
3804
3805         goto again;
3806
3807  out:
3808         /* Update the read_stamp on the first event */
3809         if (reader && reader->read == 0)
3810                 cpu_buffer->read_stamp = reader->page->time_stamp;
3811
3812         arch_spin_unlock(&cpu_buffer->lock);
3813         local_irq_restore(flags);
3814
3815         return reader;
3816 }
3817
3818 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3819 {
3820         struct ring_buffer_event *event;
3821         struct buffer_page *reader;
3822         unsigned length;
3823
3824         reader = rb_get_reader_page(cpu_buffer);
3825
3826         /* This function should not be called when buffer is empty */
3827         if (RB_WARN_ON(cpu_buffer, !reader))
3828                 return;
3829
3830         event = rb_reader_event(cpu_buffer);
3831
3832         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3833                 cpu_buffer->read++;
3834
3835         rb_update_read_stamp(cpu_buffer, event);
3836
3837         length = rb_event_length(event);
3838         cpu_buffer->reader_page->read += length;
3839 }
3840
3841 static void rb_advance_iter(struct ring_buffer_iter *iter)
3842 {
3843         struct ring_buffer_per_cpu *cpu_buffer;
3844         struct ring_buffer_event *event;
3845         unsigned length;
3846
3847         cpu_buffer = iter->cpu_buffer;
3848
3849         /*
3850          * Check if we are at the end of the buffer.
3851          */
3852         if (iter->head >= rb_page_size(iter->head_page)) {
3853                 /* discarded commits can make the page empty */
3854                 if (iter->head_page == cpu_buffer->commit_page)
3855                         return;
3856                 rb_inc_iter(iter);
3857                 return;
3858         }
3859
3860         event = rb_iter_head_event(iter);
3861
3862         length = rb_event_length(event);
3863
3864         /*
3865          * This should not be called to advance the header if we are
3866          * at the tail of the buffer.
3867          */
3868         if (RB_WARN_ON(cpu_buffer,
3869                        (iter->head_page == cpu_buffer->commit_page) &&
3870                        (iter->head + length > rb_commit_index(cpu_buffer))))
3871                 return;
3872
3873         rb_update_iter_read_stamp(iter, event);
3874
3875         iter->head += length;
3876
3877         /* check for end of page padding */
3878         if ((iter->head >= rb_page_size(iter->head_page)) &&
3879             (iter->head_page != cpu_buffer->commit_page))
3880                 rb_inc_iter(iter);
3881 }
3882
3883 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3884 {
3885         return cpu_buffer->lost_events;
3886 }
3887
3888 static struct ring_buffer_event *
3889 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3890                unsigned long *lost_events)
3891 {
3892         struct ring_buffer_event *event;
3893         struct buffer_page *reader;
3894         int nr_loops = 0;
3895
3896         if (ts)
3897                 *ts = 0;
3898  again:
3899         /*
3900          * We repeat when a time extend is encountered.
3901          * Since the time extend is always attached to a data event,
3902          * we should never loop more than once.
3903          * (We never hit the following condition more than twice).
3904          */
3905         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3906                 return NULL;
3907
3908         reader = rb_get_reader_page(cpu_buffer);
3909         if (!reader)
3910                 return NULL;
3911
3912         event = rb_reader_event(cpu_buffer);
3913
3914         switch (event->type_len) {
3915         case RINGBUF_TYPE_PADDING:
3916                 if (rb_null_event(event))
3917                         RB_WARN_ON(cpu_buffer, 1);
3918                 /*
3919                  * Because the writer could be discarding every
3920                  * event it creates (which would probably be bad)
3921                  * if we were to go back to "again" then we may never
3922                  * catch up, and will trigger the warn on, or lock
3923                  * the box. Return the padding, and we will release
3924                  * the current locks, and try again.
3925                  */
3926                 return event;
3927
3928         case RINGBUF_TYPE_TIME_EXTEND:
3929                 /* Internal data, OK to advance */
3930                 rb_advance_reader(cpu_buffer);
3931                 goto again;
3932
3933         case RINGBUF_TYPE_TIME_STAMP:
3934                 if (ts) {
3935                         *ts = ring_buffer_event_time_stamp(event);
3936                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3937                                                          cpu_buffer->cpu, ts);
3938                 }
3939                 /* Internal data, OK to advance */
3940                 rb_advance_reader(cpu_buffer);
3941                 goto again;
3942
3943         case RINGBUF_TYPE_DATA:
3944                 if (ts && !(*ts)) {
3945                         *ts = cpu_buffer->read_stamp + event->time_delta;
3946                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3947                                                          cpu_buffer->cpu, ts);
3948                 }
3949                 if (lost_events)
3950                         *lost_events = rb_lost_events(cpu_buffer);
3951                 return event;
3952
3953         default:
3954                 BUG();
3955         }
3956
3957         return NULL;
3958 }
3959 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3960
3961 static struct ring_buffer_event *
3962 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3963 {
3964         struct ring_buffer *buffer;
3965         struct ring_buffer_per_cpu *cpu_buffer;
3966         struct ring_buffer_event *event;
3967         int nr_loops = 0;
3968
3969         if (ts)
3970                 *ts = 0;
3971
3972         cpu_buffer = iter->cpu_buffer;
3973         buffer = cpu_buffer->buffer;
3974
3975         /*
3976          * Check if someone performed a consuming read to
3977          * the buffer. A consuming read invalidates the iterator
3978          * and we need to reset the iterator in this case.
3979          */
3980         if (unlikely(iter->cache_read != cpu_buffer->read ||
3981                      iter->cache_reader_page != cpu_buffer->reader_page))
3982                 rb_iter_reset(iter);
3983
3984  again:
3985         if (ring_buffer_iter_empty(iter))
3986                 return NULL;
3987
3988         /*
3989          * We repeat when a time extend is encountered or we hit
3990          * the end of the page. Since the time extend is always attached
3991          * to a data event, we should never loop more than three times.
3992          * Once for going to next page, once on time extend, and
3993          * finally once to get the event.
3994          * (We never hit the following condition more than thrice).
3995          */
3996         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3997                 return NULL;
3998
3999         if (rb_per_cpu_empty(cpu_buffer))
4000                 return NULL;
4001
4002         if (iter->head >= rb_page_size(iter->head_page)) {
4003                 rb_inc_iter(iter);
4004                 goto again;
4005         }
4006
4007         event = rb_iter_head_event(iter);
4008
4009         switch (event->type_len) {
4010         case RINGBUF_TYPE_PADDING:
4011                 if (rb_null_event(event)) {
4012                         rb_inc_iter(iter);
4013                         goto again;
4014                 }
4015                 rb_advance_iter(iter);
4016                 return event;
4017
4018         case RINGBUF_TYPE_TIME_EXTEND:
4019                 /* Internal data, OK to advance */
4020                 rb_advance_iter(iter);
4021                 goto again;
4022
4023         case RINGBUF_TYPE_TIME_STAMP:
4024                 if (ts) {
4025                         *ts = ring_buffer_event_time_stamp(event);
4026                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4027                                                          cpu_buffer->cpu, ts);
4028                 }
4029                 /* Internal data, OK to advance */
4030                 rb_advance_iter(iter);
4031                 goto again;
4032
4033         case RINGBUF_TYPE_DATA:
4034                 if (ts && !(*ts)) {
4035                         *ts = iter->read_stamp + event->time_delta;
4036                         ring_buffer_normalize_time_stamp(buffer,
4037                                                          cpu_buffer->cpu, ts);
4038                 }
4039                 return event;
4040
4041         default:
4042                 BUG();
4043         }
4044
4045         return NULL;
4046 }
4047 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4048
4049 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4050 {
4051         if (likely(!in_nmi())) {
4052                 raw_spin_lock(&cpu_buffer->reader_lock);
4053                 return true;
4054         }
4055
4056         /*
4057          * If an NMI die dumps out the content of the ring buffer
4058          * trylock must be used to prevent a deadlock if the NMI
4059          * preempted a task that holds the ring buffer locks. If
4060          * we get the lock then all is fine, if not, then continue
4061          * to do the read, but this can corrupt the ring buffer,
4062          * so it must be permanently disabled from future writes.
4063          * Reading from NMI is a oneshot deal.
4064          */
4065         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4066                 return true;
4067
4068         /* Continue without locking, but disable the ring buffer */
4069         atomic_inc(&cpu_buffer->record_disabled);
4070         return false;
4071 }
4072
4073 static inline void
4074 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4075 {
4076         if (likely(locked))
4077                 raw_spin_unlock(&cpu_buffer->reader_lock);
4078         return;
4079 }
4080
4081 /**
4082  * ring_buffer_peek - peek at the next event to be read
4083  * @buffer: The ring buffer to read
4084  * @cpu: The cpu to peak at
4085  * @ts: The timestamp counter of this event.
4086  * @lost_events: a variable to store if events were lost (may be NULL)
4087  *
4088  * This will return the event that will be read next, but does
4089  * not consume the data.
4090  */
4091 struct ring_buffer_event *
4092 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4093                  unsigned long *lost_events)
4094 {
4095         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4096         struct ring_buffer_event *event;
4097         unsigned long flags;
4098         bool dolock;
4099
4100         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4101                 return NULL;
4102
4103  again:
4104         local_irq_save(flags);
4105         dolock = rb_reader_lock(cpu_buffer);
4106         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4107         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4108                 rb_advance_reader(cpu_buffer);
4109         rb_reader_unlock(cpu_buffer, dolock);
4110         local_irq_restore(flags);
4111
4112         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4113                 goto again;
4114
4115         return event;
4116 }
4117
4118 /**
4119  * ring_buffer_iter_peek - peek at the next event to be read
4120  * @iter: The ring buffer iterator
4121  * @ts: The timestamp counter of this event.
4122  *
4123  * This will return the event that will be read next, but does
4124  * not increment the iterator.
4125  */
4126 struct ring_buffer_event *
4127 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4128 {
4129         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4130         struct ring_buffer_event *event;
4131         unsigned long flags;
4132
4133  again:
4134         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4135         event = rb_iter_peek(iter, ts);
4136         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4137
4138         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4139                 goto again;
4140
4141         return event;
4142 }
4143
4144 /**
4145  * ring_buffer_consume - return an event and consume it
4146  * @buffer: The ring buffer to get the next event from
4147  * @cpu: the cpu to read the buffer from
4148  * @ts: a variable to store the timestamp (may be NULL)
4149  * @lost_events: a variable to store if events were lost (may be NULL)
4150  *
4151  * Returns the next event in the ring buffer, and that event is consumed.
4152  * Meaning, that sequential reads will keep returning a different event,
4153  * and eventually empty the ring buffer if the producer is slower.
4154  */
4155 struct ring_buffer_event *
4156 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4157                     unsigned long *lost_events)
4158 {
4159         struct ring_buffer_per_cpu *cpu_buffer;
4160         struct ring_buffer_event *event = NULL;
4161         unsigned long flags;
4162         bool dolock;
4163
4164  again:
4165         /* might be called in atomic */
4166         preempt_disable();
4167
4168         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4169                 goto out;
4170
4171         cpu_buffer = buffer->buffers[cpu];
4172         local_irq_save(flags);
4173         dolock = rb_reader_lock(cpu_buffer);
4174
4175         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4176         if (event) {
4177                 cpu_buffer->lost_events = 0;
4178                 rb_advance_reader(cpu_buffer);
4179         }
4180
4181         rb_reader_unlock(cpu_buffer, dolock);
4182         local_irq_restore(flags);
4183
4184  out:
4185         preempt_enable();
4186
4187         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4188                 goto again;
4189
4190         return event;
4191 }
4192 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4193
4194 /**
4195  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4196  * @buffer: The ring buffer to read from
4197  * @cpu: The cpu buffer to iterate over
4198  * @flags: gfp flags to use for memory allocation
4199  *
4200  * This performs the initial preparations necessary to iterate
4201  * through the buffer.  Memory is allocated, buffer recording
4202  * is disabled, and the iterator pointer is returned to the caller.
4203  *
4204  * Disabling buffer recording prevents the reading from being
4205  * corrupted. This is not a consuming read, so a producer is not
4206  * expected.
4207  *
4208  * After a sequence of ring_buffer_read_prepare calls, the user is
4209  * expected to make at least one call to ring_buffer_read_prepare_sync.
4210  * Afterwards, ring_buffer_read_start is invoked to get things going
4211  * for real.
4212  *
4213  * This overall must be paired with ring_buffer_read_finish.
4214  */
4215 struct ring_buffer_iter *
4216 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4217 {
4218         struct ring_buffer_per_cpu *cpu_buffer;
4219         struct ring_buffer_iter *iter;
4220
4221         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4222                 return NULL;
4223
4224         iter = kmalloc(sizeof(*iter), flags);
4225         if (!iter)
4226                 return NULL;
4227
4228         cpu_buffer = buffer->buffers[cpu];
4229
4230         iter->cpu_buffer = cpu_buffer;
4231
4232         atomic_inc(&buffer->resize_disabled);
4233         atomic_inc(&cpu_buffer->record_disabled);
4234
4235         return iter;
4236 }
4237 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4238
4239 /**
4240  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4241  *
4242  * All previously invoked ring_buffer_read_prepare calls to prepare
4243  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4244  * calls on those iterators are allowed.
4245  */
4246 void
4247 ring_buffer_read_prepare_sync(void)
4248 {
4249         synchronize_sched();
4250 }
4251 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4252
4253 /**
4254  * ring_buffer_read_start - start a non consuming read of the buffer
4255  * @iter: The iterator returned by ring_buffer_read_prepare
4256  *
4257  * This finalizes the startup of an iteration through the buffer.
4258  * The iterator comes from a call to ring_buffer_read_prepare and
4259  * an intervening ring_buffer_read_prepare_sync must have been
4260  * performed.
4261  *
4262  * Must be paired with ring_buffer_read_finish.
4263  */
4264 void
4265 ring_buffer_read_start(struct ring_buffer_iter *iter)
4266 {
4267         struct ring_buffer_per_cpu *cpu_buffer;
4268         unsigned long flags;
4269
4270         if (!iter)
4271                 return;
4272
4273         cpu_buffer = iter->cpu_buffer;
4274
4275         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4276         arch_spin_lock(&cpu_buffer->lock);
4277         rb_iter_reset(iter);
4278         arch_spin_unlock(&cpu_buffer->lock);
4279         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4280 }
4281 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4282
4283 /**
4284  * ring_buffer_read_finish - finish reading the iterator of the buffer
4285  * @iter: The iterator retrieved by ring_buffer_start
4286  *
4287  * This re-enables the recording to the buffer, and frees the
4288  * iterator.
4289  */
4290 void
4291 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4292 {
4293         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4294         unsigned long flags;
4295
4296         /*
4297          * Ring buffer is disabled from recording, here's a good place
4298          * to check the integrity of the ring buffer.
4299          * Must prevent readers from trying to read, as the check
4300          * clears the HEAD page and readers require it.
4301          */
4302         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4303         rb_check_pages(cpu_buffer);
4304         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4305
4306         atomic_dec(&cpu_buffer->record_disabled);
4307         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4308         kfree(iter);
4309 }
4310 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4311
4312 /**
4313  * ring_buffer_read - read the next item in the ring buffer by the iterator
4314  * @iter: The ring buffer iterator
4315  * @ts: The time stamp of the event read.
4316  *
4317  * This reads the next event in the ring buffer and increments the iterator.
4318  */
4319 struct ring_buffer_event *
4320 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4321 {
4322         struct ring_buffer_event *event;
4323         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4324         unsigned long flags;
4325
4326         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4327  again:
4328         event = rb_iter_peek(iter, ts);
4329         if (!event)
4330                 goto out;
4331
4332         if (event->type_len == RINGBUF_TYPE_PADDING)
4333                 goto again;
4334
4335         rb_advance_iter(iter);
4336  out:
4337         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4338
4339         return event;
4340 }
4341 EXPORT_SYMBOL_GPL(ring_buffer_read);
4342
4343 /**
4344  * ring_buffer_size - return the size of the ring buffer (in bytes)
4345  * @buffer: The ring buffer.
4346  */
4347 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4348 {
4349         /*
4350          * Earlier, this method returned
4351          *      BUF_PAGE_SIZE * buffer->nr_pages
4352          * Since the nr_pages field is now removed, we have converted this to
4353          * return the per cpu buffer value.
4354          */
4355         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4356                 return 0;
4357
4358         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4359 }
4360 EXPORT_SYMBOL_GPL(ring_buffer_size);
4361
4362 static void
4363 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4364 {
4365         rb_head_page_deactivate(cpu_buffer);
4366
4367         cpu_buffer->head_page
4368                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4369         local_set(&cpu_buffer->head_page->write, 0);
4370         local_set(&cpu_buffer->head_page->entries, 0);
4371         local_set(&cpu_buffer->head_page->page->commit, 0);
4372
4373         cpu_buffer->head_page->read = 0;
4374
4375         cpu_buffer->tail_page = cpu_buffer->head_page;
4376         cpu_buffer->commit_page = cpu_buffer->head_page;
4377
4378         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4379         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4380         local_set(&cpu_buffer->reader_page->write, 0);
4381         local_set(&cpu_buffer->reader_page->entries, 0);
4382         local_set(&cpu_buffer->reader_page->page->commit, 0);
4383         cpu_buffer->reader_page->read = 0;
4384
4385         local_set(&cpu_buffer->entries_bytes, 0);
4386         local_set(&cpu_buffer->overrun, 0);
4387         local_set(&cpu_buffer->commit_overrun, 0);
4388         local_set(&cpu_buffer->dropped_events, 0);
4389         local_set(&cpu_buffer->entries, 0);
4390         local_set(&cpu_buffer->committing, 0);
4391         local_set(&cpu_buffer->commits, 0);
4392         cpu_buffer->read = 0;
4393         cpu_buffer->read_bytes = 0;
4394
4395         cpu_buffer->write_stamp = 0;
4396         cpu_buffer->read_stamp = 0;
4397
4398         cpu_buffer->lost_events = 0;
4399         cpu_buffer->last_overrun = 0;
4400
4401         rb_head_page_activate(cpu_buffer);
4402 }
4403
4404 /**
4405  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4406  * @buffer: The ring buffer to reset a per cpu buffer of
4407  * @cpu: The CPU buffer to be reset
4408  */
4409 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4410 {
4411         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4412         unsigned long flags;
4413
4414         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4415                 return;
4416         /* prevent another thread from changing buffer sizes */
4417         mutex_lock(&buffer->mutex);
4418
4419         atomic_inc(&buffer->resize_disabled);
4420         atomic_inc(&cpu_buffer->record_disabled);
4421
4422         /* Make sure all commits have finished */
4423         synchronize_sched();
4424
4425         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4426
4427         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4428                 goto out;
4429
4430         arch_spin_lock(&cpu_buffer->lock);
4431
4432         rb_reset_cpu(cpu_buffer);
4433
4434         arch_spin_unlock(&cpu_buffer->lock);
4435
4436  out:
4437         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4438
4439         atomic_dec(&cpu_buffer->record_disabled);
4440         atomic_dec(&buffer->resize_disabled);
4441
4442         mutex_unlock(&buffer->mutex);
4443 }
4444 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4445
4446 /**
4447  * ring_buffer_reset - reset a ring buffer
4448  * @buffer: The ring buffer to reset all cpu buffers
4449  */
4450 void ring_buffer_reset(struct ring_buffer *buffer)
4451 {
4452         int cpu;
4453
4454         for_each_buffer_cpu(buffer, cpu)
4455                 ring_buffer_reset_cpu(buffer, cpu);
4456 }
4457 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4458
4459 /**
4460  * rind_buffer_empty - is the ring buffer empty?
4461  * @buffer: The ring buffer to test
4462  */
4463 bool ring_buffer_empty(struct ring_buffer *buffer)
4464 {
4465         struct ring_buffer_per_cpu *cpu_buffer;
4466         unsigned long flags;
4467         bool dolock;
4468         int cpu;
4469         int ret;
4470
4471         /* yes this is racy, but if you don't like the race, lock the buffer */
4472         for_each_buffer_cpu(buffer, cpu) {
4473                 cpu_buffer = buffer->buffers[cpu];
4474                 local_irq_save(flags);
4475                 dolock = rb_reader_lock(cpu_buffer);
4476                 ret = rb_per_cpu_empty(cpu_buffer);
4477                 rb_reader_unlock(cpu_buffer, dolock);
4478                 local_irq_restore(flags);
4479
4480                 if (!ret)
4481                         return false;
4482         }
4483
4484         return true;
4485 }
4486 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4487
4488 /**
4489  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4490  * @buffer: The ring buffer
4491  * @cpu: The CPU buffer to test
4492  */
4493 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4494 {
4495         struct ring_buffer_per_cpu *cpu_buffer;
4496         unsigned long flags;
4497         bool dolock;
4498         int ret;
4499
4500         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4501                 return true;
4502
4503         cpu_buffer = buffer->buffers[cpu];
4504         local_irq_save(flags);
4505         dolock = rb_reader_lock(cpu_buffer);
4506         ret = rb_per_cpu_empty(cpu_buffer);
4507         rb_reader_unlock(cpu_buffer, dolock);
4508         local_irq_restore(flags);
4509
4510         return ret;
4511 }
4512 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4513
4514 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4515 /**
4516  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4517  * @buffer_a: One buffer to swap with
4518  * @buffer_b: The other buffer to swap with
4519  *
4520  * This function is useful for tracers that want to take a "snapshot"
4521  * of a CPU buffer and has another back up buffer lying around.
4522  * it is expected that the tracer handles the cpu buffer not being
4523  * used at the moment.
4524  */
4525 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4526                          struct ring_buffer *buffer_b, int cpu)
4527 {
4528         struct ring_buffer_per_cpu *cpu_buffer_a;
4529         struct ring_buffer_per_cpu *cpu_buffer_b;
4530         int ret = -EINVAL;
4531
4532         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4533             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4534                 goto out;
4535
4536         cpu_buffer_a = buffer_a->buffers[cpu];
4537         cpu_buffer_b = buffer_b->buffers[cpu];
4538
4539         /* At least make sure the two buffers are somewhat the same */
4540         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4541                 goto out;
4542
4543         ret = -EAGAIN;
4544
4545         if (atomic_read(&buffer_a->record_disabled))
4546                 goto out;
4547
4548         if (atomic_read(&buffer_b->record_disabled))
4549                 goto out;
4550
4551         if (atomic_read(&cpu_buffer_a->record_disabled))
4552                 goto out;
4553
4554         if (atomic_read(&cpu_buffer_b->record_disabled))
4555                 goto out;
4556
4557         /*
4558          * We can't do a synchronize_sched here because this
4559          * function can be called in atomic context.
4560          * Normally this will be called from the same CPU as cpu.
4561          * If not it's up to the caller to protect this.
4562          */
4563         atomic_inc(&cpu_buffer_a->record_disabled);
4564         atomic_inc(&cpu_buffer_b->record_disabled);
4565
4566         ret = -EBUSY;
4567         if (local_read(&cpu_buffer_a->committing))
4568                 goto out_dec;
4569         if (local_read(&cpu_buffer_b->committing))
4570                 goto out_dec;
4571
4572         buffer_a->buffers[cpu] = cpu_buffer_b;
4573         buffer_b->buffers[cpu] = cpu_buffer_a;
4574
4575         cpu_buffer_b->buffer = buffer_a;
4576         cpu_buffer_a->buffer = buffer_b;
4577
4578         ret = 0;
4579
4580 out_dec:
4581         atomic_dec(&cpu_buffer_a->record_disabled);
4582         atomic_dec(&cpu_buffer_b->record_disabled);
4583 out:
4584         return ret;
4585 }
4586 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4587 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4588
4589 /**
4590  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4591  * @buffer: the buffer to allocate for.
4592  * @cpu: the cpu buffer to allocate.
4593  *
4594  * This function is used in conjunction with ring_buffer_read_page.
4595  * When reading a full page from the ring buffer, these functions
4596  * can be used to speed up the process. The calling function should
4597  * allocate a few pages first with this function. Then when it
4598  * needs to get pages from the ring buffer, it passes the result
4599  * of this function into ring_buffer_read_page, which will swap
4600  * the page that was allocated, with the read page of the buffer.
4601  *
4602  * Returns:
4603  *  The page allocated, or ERR_PTR
4604  */
4605 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4606 {
4607         struct ring_buffer_per_cpu *cpu_buffer;
4608         struct buffer_data_page *bpage = NULL;
4609         unsigned long flags;
4610         struct page *page;
4611
4612         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4613                 return ERR_PTR(-ENODEV);
4614
4615         cpu_buffer = buffer->buffers[cpu];
4616         local_irq_save(flags);
4617         arch_spin_lock(&cpu_buffer->lock);
4618
4619         if (cpu_buffer->free_page) {
4620                 bpage = cpu_buffer->free_page;
4621                 cpu_buffer->free_page = NULL;
4622         }
4623
4624         arch_spin_unlock(&cpu_buffer->lock);
4625         local_irq_restore(flags);
4626
4627         if (bpage)
4628                 goto out;
4629
4630         page = alloc_pages_node(cpu_to_node(cpu),
4631                                 GFP_KERNEL | __GFP_NORETRY, 0);
4632         if (!page)
4633                 return ERR_PTR(-ENOMEM);
4634
4635         bpage = page_address(page);
4636
4637  out:
4638         rb_init_page(bpage);
4639
4640         return bpage;
4641 }
4642 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4643
4644 /**
4645  * ring_buffer_free_read_page - free an allocated read page
4646  * @buffer: the buffer the page was allocate for
4647  * @cpu: the cpu buffer the page came from
4648  * @data: the page to free
4649  *
4650  * Free a page allocated from ring_buffer_alloc_read_page.
4651  */
4652 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4653 {
4654         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4655         struct buffer_data_page *bpage = data;
4656         struct page *page = virt_to_page(bpage);
4657         unsigned long flags;
4658
4659         /* If the page is still in use someplace else, we can't reuse it */
4660         if (page_ref_count(page) > 1)
4661                 goto out;
4662
4663         local_irq_save(flags);
4664         arch_spin_lock(&cpu_buffer->lock);
4665
4666         if (!cpu_buffer->free_page) {
4667                 cpu_buffer->free_page = bpage;
4668                 bpage = NULL;
4669         }
4670
4671         arch_spin_unlock(&cpu_buffer->lock);
4672         local_irq_restore(flags);
4673
4674  out:
4675         free_page((unsigned long)bpage);
4676 }
4677 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4678
4679 /**
4680  * ring_buffer_read_page - extract a page from the ring buffer
4681  * @buffer: buffer to extract from
4682  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4683  * @len: amount to extract
4684  * @cpu: the cpu of the buffer to extract
4685  * @full: should the extraction only happen when the page is full.
4686  *
4687  * This function will pull out a page from the ring buffer and consume it.
4688  * @data_page must be the address of the variable that was returned
4689  * from ring_buffer_alloc_read_page. This is because the page might be used
4690  * to swap with a page in the ring buffer.
4691  *
4692  * for example:
4693  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4694  *      if (IS_ERR(rpage))
4695  *              return PTR_ERR(rpage);
4696  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4697  *      if (ret >= 0)
4698  *              process_page(rpage, ret);
4699  *
4700  * When @full is set, the function will not return true unless
4701  * the writer is off the reader page.
4702  *
4703  * Note: it is up to the calling functions to handle sleeps and wakeups.
4704  *  The ring buffer can be used anywhere in the kernel and can not
4705  *  blindly call wake_up. The layer that uses the ring buffer must be
4706  *  responsible for that.
4707  *
4708  * Returns:
4709  *  >=0 if data has been transferred, returns the offset of consumed data.
4710  *  <0 if no data has been transferred.
4711  */
4712 int ring_buffer_read_page(struct ring_buffer *buffer,
4713                           void **data_page, size_t len, int cpu, int full)
4714 {
4715         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4716         struct ring_buffer_event *event;
4717         struct buffer_data_page *bpage;
4718         struct buffer_page *reader;
4719         unsigned long missed_events;
4720         unsigned long flags;
4721         unsigned int commit;
4722         unsigned int read;
4723         u64 save_timestamp;
4724         int ret = -1;
4725
4726         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4727                 goto out;
4728
4729         /*
4730          * If len is not big enough to hold the page header, then
4731          * we can not copy anything.
4732          */
4733         if (len <= BUF_PAGE_HDR_SIZE)
4734                 goto out;
4735
4736         len -= BUF_PAGE_HDR_SIZE;
4737
4738         if (!data_page)
4739                 goto out;
4740
4741         bpage = *data_page;
4742         if (!bpage)
4743                 goto out;
4744
4745         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4746
4747         reader = rb_get_reader_page(cpu_buffer);
4748         if (!reader)
4749                 goto out_unlock;
4750
4751         event = rb_reader_event(cpu_buffer);
4752
4753         read = reader->read;
4754         commit = rb_page_commit(reader);
4755
4756         /* Check if any events were dropped */
4757         missed_events = cpu_buffer->lost_events;
4758
4759         /*
4760          * If this page has been partially read or
4761          * if len is not big enough to read the rest of the page or
4762          * a writer is still on the page, then
4763          * we must copy the data from the page to the buffer.
4764          * Otherwise, we can simply swap the page with the one passed in.
4765          */
4766         if (read || (len < (commit - read)) ||
4767             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4768                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4769                 unsigned int rpos = read;
4770                 unsigned int pos = 0;
4771                 unsigned int size;
4772
4773                 if (full)
4774                         goto out_unlock;
4775
4776                 if (len > (commit - read))
4777                         len = (commit - read);
4778
4779                 /* Always keep the time extend and data together */
4780                 size = rb_event_ts_length(event);
4781
4782                 if (len < size)
4783                         goto out_unlock;
4784
4785                 /* save the current timestamp, since the user will need it */
4786                 save_timestamp = cpu_buffer->read_stamp;
4787
4788                 /* Need to copy one event at a time */
4789                 do {
4790                         /* We need the size of one event, because
4791                          * rb_advance_reader only advances by one event,
4792                          * whereas rb_event_ts_length may include the size of
4793                          * one or two events.
4794                          * We have already ensured there's enough space if this
4795                          * is a time extend. */
4796                         size = rb_event_length(event);
4797                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4798
4799                         len -= size;
4800
4801                         rb_advance_reader(cpu_buffer);
4802                         rpos = reader->read;
4803                         pos += size;
4804
4805                         if (rpos >= commit)
4806                                 break;
4807
4808                         event = rb_reader_event(cpu_buffer);
4809                         /* Always keep the time extend and data together */
4810                         size = rb_event_ts_length(event);
4811                 } while (len >= size);
4812
4813                 /* update bpage */
4814                 local_set(&bpage->commit, pos);
4815                 bpage->time_stamp = save_timestamp;
4816
4817                 /* we copied everything to the beginning */
4818                 read = 0;
4819         } else {
4820                 /* update the entry counter */
4821                 cpu_buffer->read += rb_page_entries(reader);
4822                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4823
4824                 /* swap the pages */
4825                 rb_init_page(bpage);
4826                 bpage = reader->page;
4827                 reader->page = *data_page;
4828                 local_set(&reader->write, 0);
4829                 local_set(&reader->entries, 0);
4830                 reader->read = 0;
4831                 *data_page = bpage;
4832
4833                 /*
4834                  * Use the real_end for the data size,
4835                  * This gives us a chance to store the lost events
4836                  * on the page.
4837                  */
4838                 if (reader->real_end)
4839                         local_set(&bpage->commit, reader->real_end);
4840         }
4841         ret = read;
4842
4843         cpu_buffer->lost_events = 0;
4844
4845         commit = local_read(&bpage->commit);
4846         /*
4847          * Set a flag in the commit field if we lost events
4848          */
4849         if (missed_events) {
4850                 /* If there is room at the end of the page to save the
4851                  * missed events, then record it there.
4852                  */
4853                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4854                         memcpy(&bpage->data[commit], &missed_events,
4855                                sizeof(missed_events));
4856                         local_add(RB_MISSED_STORED, &bpage->commit);
4857                         commit += sizeof(missed_events);
4858                 }
4859                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4860         }
4861
4862         /*
4863          * This page may be off to user land. Zero it out here.
4864          */
4865         if (commit < BUF_PAGE_SIZE)
4866                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4867
4868  out_unlock:
4869         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4870
4871  out:
4872         return ret;
4873 }
4874 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4875
4876 /*
4877  * We only allocate new buffers, never free them if the CPU goes down.
4878  * If we were to free the buffer, then the user would lose any trace that was in
4879  * the buffer.
4880  */
4881 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4882 {
4883         struct ring_buffer *buffer;
4884         long nr_pages_same;
4885         int cpu_i;
4886         unsigned long nr_pages;
4887
4888         buffer = container_of(node, struct ring_buffer, node);
4889         if (cpumask_test_cpu(cpu, buffer->cpumask))
4890                 return 0;
4891
4892         nr_pages = 0;
4893         nr_pages_same = 1;
4894         /* check if all cpu sizes are same */
4895         for_each_buffer_cpu(buffer, cpu_i) {
4896                 /* fill in the size from first enabled cpu */
4897                 if (nr_pages == 0)
4898                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4899                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4900                         nr_pages_same = 0;
4901                         break;
4902                 }
4903         }
4904         /* allocate minimum pages, user can later expand it */
4905         if (!nr_pages_same)
4906                 nr_pages = 2;
4907         buffer->buffers[cpu] =
4908                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4909         if (!buffer->buffers[cpu]) {
4910                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4911                      cpu);
4912                 return -ENOMEM;
4913         }
4914         smp_wmb();
4915         cpumask_set_cpu(cpu, buffer->cpumask);
4916         return 0;
4917 }
4918
4919 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4920 /*
4921  * This is a basic integrity check of the ring buffer.
4922  * Late in the boot cycle this test will run when configured in.
4923  * It will kick off a thread per CPU that will go into a loop
4924  * writing to the per cpu ring buffer various sizes of data.
4925  * Some of the data will be large items, some small.
4926  *
4927  * Another thread is created that goes into a spin, sending out
4928  * IPIs to the other CPUs to also write into the ring buffer.
4929  * this is to test the nesting ability of the buffer.
4930  *
4931  * Basic stats are recorded and reported. If something in the
4932  * ring buffer should happen that's not expected, a big warning
4933  * is displayed and all ring buffers are disabled.
4934  */
4935 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4936
4937 struct rb_test_data {
4938         struct ring_buffer      *buffer;
4939         unsigned long           events;
4940         unsigned long           bytes_written;
4941         unsigned long           bytes_alloc;
4942         unsigned long           bytes_dropped;
4943         unsigned long           events_nested;
4944         unsigned long           bytes_written_nested;
4945         unsigned long           bytes_alloc_nested;
4946         unsigned long           bytes_dropped_nested;
4947         int                     min_size_nested;
4948         int                     max_size_nested;
4949         int                     max_size;
4950         int                     min_size;
4951         int                     cpu;
4952         int                     cnt;
4953 };
4954
4955 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4956
4957 /* 1 meg per cpu */
4958 #define RB_TEST_BUFFER_SIZE     1048576
4959
4960 static char rb_string[] __initdata =
4961         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4962         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4963         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4964
4965 static bool rb_test_started __initdata;
4966
4967 struct rb_item {
4968         int size;
4969         char str[];
4970 };
4971
4972 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4973 {
4974         struct ring_buffer_event *event;
4975         struct rb_item *item;
4976         bool started;
4977         int event_len;
4978         int size;
4979         int len;
4980         int cnt;
4981
4982         /* Have nested writes different that what is written */
4983         cnt = data->cnt + (nested ? 27 : 0);
4984
4985         /* Multiply cnt by ~e, to make some unique increment */
4986         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4987
4988         len = size + sizeof(struct rb_item);
4989
4990         started = rb_test_started;
4991         /* read rb_test_started before checking buffer enabled */
4992         smp_rmb();
4993
4994         event = ring_buffer_lock_reserve(data->buffer, len);
4995         if (!event) {
4996                 /* Ignore dropped events before test starts. */
4997                 if (started) {
4998                         if (nested)
4999                                 data->bytes_dropped += len;
5000                         else
5001                                 data->bytes_dropped_nested += len;
5002                 }
5003                 return len;
5004         }
5005
5006         event_len = ring_buffer_event_length(event);
5007
5008         if (RB_WARN_ON(data->buffer, event_len < len))
5009                 goto out;
5010
5011         item = ring_buffer_event_data(event);
5012         item->size = size;
5013         memcpy(item->str, rb_string, size);
5014
5015         if (nested) {
5016                 data->bytes_alloc_nested += event_len;
5017                 data->bytes_written_nested += len;
5018                 data->events_nested++;
5019                 if (!data->min_size_nested || len < data->min_size_nested)
5020                         data->min_size_nested = len;
5021                 if (len > data->max_size_nested)
5022                         data->max_size_nested = len;
5023         } else {
5024                 data->bytes_alloc += event_len;
5025                 data->bytes_written += len;
5026                 data->events++;
5027                 if (!data->min_size || len < data->min_size)
5028                         data->max_size = len;
5029                 if (len > data->max_size)
5030                         data->max_size = len;
5031         }
5032
5033  out:
5034         ring_buffer_unlock_commit(data->buffer, event);
5035
5036         return 0;
5037 }
5038
5039 static __init int rb_test(void *arg)
5040 {
5041         struct rb_test_data *data = arg;
5042
5043         while (!kthread_should_stop()) {
5044                 rb_write_something(data, false);
5045                 data->cnt++;
5046
5047                 set_current_state(TASK_INTERRUPTIBLE);
5048                 /* Now sleep between a min of 100-300us and a max of 1ms */
5049                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5050         }
5051
5052         return 0;
5053 }
5054
5055 static __init void rb_ipi(void *ignore)
5056 {
5057         struct rb_test_data *data;
5058         int cpu = smp_processor_id();
5059
5060         data = &rb_data[cpu];
5061         rb_write_something(data, true);
5062 }
5063
5064 static __init int rb_hammer_test(void *arg)
5065 {
5066         while (!kthread_should_stop()) {
5067
5068                 /* Send an IPI to all cpus to write data! */
5069                 smp_call_function(rb_ipi, NULL, 1);
5070                 /* No sleep, but for non preempt, let others run */
5071                 schedule();
5072         }
5073
5074         return 0;
5075 }
5076
5077 static __init int test_ringbuffer(void)
5078 {
5079         struct task_struct *rb_hammer;
5080         struct ring_buffer *buffer;
5081         int cpu;
5082         int ret = 0;
5083
5084         pr_info("Running ring buffer tests...\n");
5085
5086         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5087         if (WARN_ON(!buffer))
5088                 return 0;
5089
5090         /* Disable buffer so that threads can't write to it yet */
5091         ring_buffer_record_off(buffer);
5092
5093         for_each_online_cpu(cpu) {
5094                 rb_data[cpu].buffer = buffer;
5095                 rb_data[cpu].cpu = cpu;
5096                 rb_data[cpu].cnt = cpu;
5097                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5098                                                  "rbtester/%d", cpu);
5099                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5100                         pr_cont("FAILED\n");
5101                         ret = PTR_ERR(rb_threads[cpu]);
5102                         goto out_free;
5103                 }
5104
5105                 kthread_bind(rb_threads[cpu], cpu);
5106                 wake_up_process(rb_threads[cpu]);
5107         }
5108
5109         /* Now create the rb hammer! */
5110         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5111         if (WARN_ON(IS_ERR(rb_hammer))) {
5112                 pr_cont("FAILED\n");
5113                 ret = PTR_ERR(rb_hammer);
5114                 goto out_free;
5115         }
5116
5117         ring_buffer_record_on(buffer);
5118         /*
5119          * Show buffer is enabled before setting rb_test_started.
5120          * Yes there's a small race window where events could be
5121          * dropped and the thread wont catch it. But when a ring
5122          * buffer gets enabled, there will always be some kind of
5123          * delay before other CPUs see it. Thus, we don't care about
5124          * those dropped events. We care about events dropped after
5125          * the threads see that the buffer is active.
5126          */
5127         smp_wmb();
5128         rb_test_started = true;
5129
5130         set_current_state(TASK_INTERRUPTIBLE);
5131         /* Just run for 10 seconds */;
5132         schedule_timeout(10 * HZ);
5133
5134         kthread_stop(rb_hammer);
5135
5136  out_free:
5137         for_each_online_cpu(cpu) {
5138                 if (!rb_threads[cpu])
5139                         break;
5140                 kthread_stop(rb_threads[cpu]);
5141         }
5142         if (ret) {
5143                 ring_buffer_free(buffer);
5144                 return ret;
5145         }
5146
5147         /* Report! */
5148         pr_info("finished\n");
5149         for_each_online_cpu(cpu) {
5150                 struct ring_buffer_event *event;
5151                 struct rb_test_data *data = &rb_data[cpu];
5152                 struct rb_item *item;
5153                 unsigned long total_events;
5154                 unsigned long total_dropped;
5155                 unsigned long total_written;
5156                 unsigned long total_alloc;
5157                 unsigned long total_read = 0;
5158                 unsigned long total_size = 0;
5159                 unsigned long total_len = 0;
5160                 unsigned long total_lost = 0;
5161                 unsigned long lost;
5162                 int big_event_size;
5163                 int small_event_size;
5164
5165                 ret = -1;
5166
5167                 total_events = data->events + data->events_nested;
5168                 total_written = data->bytes_written + data->bytes_written_nested;
5169                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5170                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5171
5172                 big_event_size = data->max_size + data->max_size_nested;
5173                 small_event_size = data->min_size + data->min_size_nested;
5174
5175                 pr_info("CPU %d:\n", cpu);
5176                 pr_info("              events:    %ld\n", total_events);
5177                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5178                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5179                 pr_info("       written bytes:    %ld\n", total_written);
5180                 pr_info("       biggest event:    %d\n", big_event_size);
5181                 pr_info("      smallest event:    %d\n", small_event_size);
5182
5183                 if (RB_WARN_ON(buffer, total_dropped))
5184                         break;
5185
5186                 ret = 0;
5187
5188                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5189                         total_lost += lost;
5190                         item = ring_buffer_event_data(event);
5191                         total_len += ring_buffer_event_length(event);
5192                         total_size += item->size + sizeof(struct rb_item);
5193                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5194                                 pr_info("FAILED!\n");
5195                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5196                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5197                                 RB_WARN_ON(buffer, 1);
5198                                 ret = -1;
5199                                 break;
5200                         }
5201                         total_read++;
5202                 }
5203                 if (ret)
5204                         break;
5205
5206                 ret = -1;
5207
5208                 pr_info("         read events:   %ld\n", total_read);
5209                 pr_info("         lost events:   %ld\n", total_lost);
5210                 pr_info("        total events:   %ld\n", total_lost + total_read);
5211                 pr_info("  recorded len bytes:   %ld\n", total_len);
5212                 pr_info(" recorded size bytes:   %ld\n", total_size);
5213                 if (total_lost)
5214                         pr_info(" With dropped events, record len and size may not match\n"
5215                                 " alloced and written from above\n");
5216                 if (!total_lost) {
5217                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5218                                        total_size != total_written))
5219                                 break;
5220                 }
5221                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5222                         break;
5223
5224                 ret = 0;
5225         }
5226         if (!ret)
5227                 pr_info("Ring buffer PASSED!\n");
5228
5229         ring_buffer_free(buffer);
5230         return 0;
5231 }
5232
5233 late_initcall(test_ringbuffer);
5234 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */