1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kthread.h> /* for self test */
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/oom.h>
28 #include <asm/local.h>
30 static void update_pages_handler(struct work_struct *work);
33 * The ring buffer header is special. We must manually up keep it.
35 int ring_buffer_print_entry_header(struct trace_seq *s)
37 trace_seq_puts(s, "# compressed entry header\n");
38 trace_seq_puts(s, "\ttype_len : 5 bits\n");
39 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
40 trace_seq_puts(s, "\tarray : 32 bits\n");
41 trace_seq_putc(s, '\n');
42 trace_seq_printf(s, "\tpadding : type == %d\n",
43 RINGBUF_TYPE_PADDING);
44 trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 RINGBUF_TYPE_TIME_EXTEND);
46 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
47 RINGBUF_TYPE_TIME_STAMP);
48 trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51 return !trace_seq_has_overflowed(s);
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
68 * Here's some silly ASCII art.
71 * |reader| RING BUFFER
73 * +------+ +---+ +---+ +---+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
100 * +------------------------------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
108 * | New +---+ +---+ +---+
111 * +------------------------------+
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
118 * We will be using cmpxchg soon to make all this lockless.
122 /* Used for individual buffers (after the counter) */
123 #define RB_BUFFER_OFF (1 << 20)
125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
128 #define RB_ALIGNMENT 4U
129 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
130 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
133 # define RB_FORCE_8BYTE_ALIGNMENT 0
134 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
136 # define RB_FORCE_8BYTE_ALIGNMENT 1
137 # define RB_ARCH_ALIGNMENT 8U
140 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
146 RB_LEN_TIME_EXTEND = 8,
147 RB_LEN_TIME_STAMP = 8,
150 #define skip_time_extend(event) \
151 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
153 #define extended_time(event) \
154 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
156 static inline int rb_null_event(struct ring_buffer_event *event)
158 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
161 static void rb_event_set_padding(struct ring_buffer_event *event)
163 /* padding has a NULL time_delta */
164 event->type_len = RINGBUF_TYPE_PADDING;
165 event->time_delta = 0;
169 rb_event_data_length(struct ring_buffer_event *event)
174 length = event->type_len * RB_ALIGNMENT;
176 length = event->array[0];
177 return length + RB_EVNT_HDR_SIZE;
181 * Return the length of the given event. Will return
182 * the length of the time extend if the event is a
185 static inline unsigned
186 rb_event_length(struct ring_buffer_event *event)
188 switch (event->type_len) {
189 case RINGBUF_TYPE_PADDING:
190 if (rb_null_event(event))
193 return event->array[0] + RB_EVNT_HDR_SIZE;
195 case RINGBUF_TYPE_TIME_EXTEND:
196 return RB_LEN_TIME_EXTEND;
198 case RINGBUF_TYPE_TIME_STAMP:
199 return RB_LEN_TIME_STAMP;
201 case RINGBUF_TYPE_DATA:
202 return rb_event_data_length(event);
211 * Return total length of time extend and data,
212 * or just the event length for all other events.
214 static inline unsigned
215 rb_event_ts_length(struct ring_buffer_event *event)
219 if (extended_time(event)) {
220 /* time extends include the data event after it */
221 len = RB_LEN_TIME_EXTEND;
222 event = skip_time_extend(event);
224 return len + rb_event_length(event);
228 * ring_buffer_event_length - return the length of the event
229 * @event: the event to get the length of
231 * Returns the size of the data load of a data event.
232 * If the event is something other than a data event, it
233 * returns the size of the event itself. With the exception
234 * of a TIME EXTEND, where it still returns the size of the
235 * data load of the data event after it.
237 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
241 if (extended_time(event))
242 event = skip_time_extend(event);
244 length = rb_event_length(event);
245 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
247 length -= RB_EVNT_HDR_SIZE;
248 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
249 length -= sizeof(event->array[0]);
252 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
254 /* inline for ring buffer fast paths */
255 static __always_inline void *
256 rb_event_data(struct ring_buffer_event *event)
258 if (extended_time(event))
259 event = skip_time_extend(event);
260 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
261 /* If length is in len field, then array[0] has the data */
263 return (void *)&event->array[0];
264 /* Otherwise length is in array[0] and array[1] has the data */
265 return (void *)&event->array[1];
269 * ring_buffer_event_data - return the data of the event
270 * @event: the event to get the data from
272 void *ring_buffer_event_data(struct ring_buffer_event *event)
274 return rb_event_data(event);
276 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
278 #define for_each_buffer_cpu(buffer, cpu) \
279 for_each_cpu(cpu, buffer->cpumask)
282 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
283 #define TS_DELTA_TEST (~TS_MASK)
286 * ring_buffer_event_time_stamp - return the event's extended timestamp
287 * @event: the event to get the timestamp of
289 * Returns the extended timestamp associated with a data event.
290 * An extended time_stamp is a 64-bit timestamp represented
291 * internally in a special way that makes the best use of space
292 * contained within a ring buffer event. This function decodes
293 * it and maps it to a straight u64 value.
295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
299 ts = event->array[0];
301 ts += event->time_delta;
306 /* Flag when events were overwritten */
307 #define RB_MISSED_EVENTS (1 << 31)
308 /* Missed count stored at end */
309 #define RB_MISSED_STORED (1 << 30)
311 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
313 struct buffer_data_page {
314 u64 time_stamp; /* page time stamp */
315 local_t commit; /* write committed index */
316 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
320 * Note, the buffer_page list must be first. The buffer pages
321 * are allocated in cache lines, which means that each buffer
322 * page will be at the beginning of a cache line, and thus
323 * the least significant bits will be zero. We use this to
324 * add flags in the list struct pointers, to make the ring buffer
328 struct list_head list; /* list of buffer pages */
329 local_t write; /* index for next write */
330 unsigned read; /* index for next read */
331 local_t entries; /* entries on this page */
332 unsigned long real_end; /* real end of data */
333 struct buffer_data_page *page; /* Actual data page */
337 * The buffer page counters, write and entries, must be reset
338 * atomically when crossing page boundaries. To synchronize this
339 * update, two counters are inserted into the number. One is
340 * the actual counter for the write position or count on the page.
342 * The other is a counter of updaters. Before an update happens
343 * the update partition of the counter is incremented. This will
344 * allow the updater to update the counter atomically.
346 * The counter is 20 bits, and the state data is 12.
348 #define RB_WRITE_MASK 0xfffff
349 #define RB_WRITE_INTCNT (1 << 20)
351 static void rb_init_page(struct buffer_data_page *bpage)
353 local_set(&bpage->commit, 0);
357 * ring_buffer_page_len - the size of data on the page.
358 * @page: The page to read
360 * Returns the amount of data on the page, including buffer page header.
362 size_t ring_buffer_page_len(void *page)
364 struct buffer_data_page *bpage = page;
366 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
371 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
374 static void free_buffer_page(struct buffer_page *bpage)
376 free_page((unsigned long)bpage->page);
381 * We need to fit the time_stamp delta into 27 bits.
383 static inline int test_time_stamp(u64 delta)
385 if (delta & TS_DELTA_TEST)
390 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
392 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
393 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
395 int ring_buffer_print_page_header(struct trace_seq *s)
397 struct buffer_data_page field;
399 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 "offset:0;\tsize:%u;\tsigned:%u;\n",
401 (unsigned int)sizeof(field.time_stamp),
402 (unsigned int)is_signed_type(u64));
404 trace_seq_printf(s, "\tfield: local_t commit;\t"
405 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 (unsigned int)offsetof(typeof(field), commit),
407 (unsigned int)sizeof(field.commit),
408 (unsigned int)is_signed_type(long));
410 trace_seq_printf(s, "\tfield: int overwrite;\t"
411 "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 (unsigned int)offsetof(typeof(field), commit),
414 (unsigned int)is_signed_type(long));
416 trace_seq_printf(s, "\tfield: char data;\t"
417 "offset:%u;\tsize:%u;\tsigned:%u;\n",
418 (unsigned int)offsetof(typeof(field), data),
419 (unsigned int)BUF_PAGE_SIZE,
420 (unsigned int)is_signed_type(char));
422 return !trace_seq_has_overflowed(s);
426 struct irq_work work;
427 wait_queue_head_t waiters;
428 wait_queue_head_t full_waiters;
429 bool waiters_pending;
430 bool full_waiters_pending;
435 * Structure to hold event state and handle nested events.
437 struct rb_event_info {
440 unsigned long length;
441 struct buffer_page *tail_page;
446 * Used for which event context the event is in.
453 * See trace_recursive_lock() comment below for more details.
465 * head_page == tail_page && head == tail then buffer is empty.
467 struct ring_buffer_per_cpu {
469 atomic_t record_disabled;
470 struct ring_buffer *buffer;
471 raw_spinlock_t reader_lock; /* serialize readers */
472 arch_spinlock_t lock;
473 struct lock_class_key lock_key;
474 struct buffer_data_page *free_page;
475 unsigned long nr_pages;
476 unsigned int current_context;
477 struct list_head *pages;
478 struct buffer_page *head_page; /* read from head */
479 struct buffer_page *tail_page; /* write to tail */
480 struct buffer_page *commit_page; /* committed pages */
481 struct buffer_page *reader_page;
482 unsigned long lost_events;
483 unsigned long last_overrun;
485 local_t entries_bytes;
488 local_t commit_overrun;
489 local_t dropped_events;
493 unsigned long read_bytes;
496 /* ring buffer pages to update, > 0 to add, < 0 to remove */
497 long nr_pages_to_update;
498 struct list_head new_pages; /* new pages to add */
499 struct work_struct update_pages_work;
500 struct completion update_done;
502 struct rb_irq_work irq_work;
508 atomic_t record_disabled;
509 atomic_t resize_disabled;
510 cpumask_var_t cpumask;
512 struct lock_class_key *reader_lock_key;
516 struct ring_buffer_per_cpu **buffers;
518 struct hlist_node node;
521 struct rb_irq_work irq_work;
525 struct ring_buffer_iter {
526 struct ring_buffer_per_cpu *cpu_buffer;
528 struct buffer_page *head_page;
529 struct buffer_page *cache_reader_page;
530 unsigned long cache_read;
535 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
537 * Schedules a delayed work to wake up any task that is blocked on the
538 * ring buffer waiters queue.
540 static void rb_wake_up_waiters(struct irq_work *work)
542 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
544 wake_up_all(&rbwork->waiters);
545 if (rbwork->wakeup_full) {
546 rbwork->wakeup_full = false;
547 wake_up_all(&rbwork->full_waiters);
552 * ring_buffer_wait - wait for input to the ring buffer
553 * @buffer: buffer to wait on
554 * @cpu: the cpu buffer to wait on
555 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
557 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
558 * as data is added to any of the @buffer's cpu buffers. Otherwise
559 * it will wait for data to be added to a specific cpu buffer.
561 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
563 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
565 struct rb_irq_work *work;
569 * Depending on what the caller is waiting for, either any
570 * data in any cpu buffer, or a specific buffer, put the
571 * caller on the appropriate wait queue.
573 if (cpu == RING_BUFFER_ALL_CPUS) {
574 work = &buffer->irq_work;
575 /* Full only makes sense on per cpu reads */
578 if (!cpumask_test_cpu(cpu, buffer->cpumask))
580 cpu_buffer = buffer->buffers[cpu];
581 work = &cpu_buffer->irq_work;
587 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
589 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
592 * The events can happen in critical sections where
593 * checking a work queue can cause deadlocks.
594 * After adding a task to the queue, this flag is set
595 * only to notify events to try to wake up the queue
598 * We don't clear it even if the buffer is no longer
599 * empty. The flag only causes the next event to run
600 * irq_work to do the work queue wake up. The worse
601 * that can happen if we race with !trace_empty() is that
602 * an event will cause an irq_work to try to wake up
605 * There's no reason to protect this flag either, as
606 * the work queue and irq_work logic will do the necessary
607 * synchronization for the wake ups. The only thing
608 * that is necessary is that the wake up happens after
609 * a task has been queued. It's OK for spurious wake ups.
612 work->full_waiters_pending = true;
614 work->waiters_pending = true;
616 if (signal_pending(current)) {
621 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
624 if (cpu != RING_BUFFER_ALL_CPUS &&
625 !ring_buffer_empty_cpu(buffer, cpu)) {
632 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
633 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
634 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
644 finish_wait(&work->full_waiters, &wait);
646 finish_wait(&work->waiters, &wait);
652 * ring_buffer_poll_wait - poll on buffer input
653 * @buffer: buffer to wait on
654 * @cpu: the cpu buffer to wait on
655 * @filp: the file descriptor
656 * @poll_table: The poll descriptor
658 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
659 * as data is added to any of the @buffer's cpu buffers. Otherwise
660 * it will wait for data to be added to a specific cpu buffer.
662 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
665 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
666 struct file *filp, poll_table *poll_table)
668 struct ring_buffer_per_cpu *cpu_buffer;
669 struct rb_irq_work *work;
671 if (cpu == RING_BUFFER_ALL_CPUS)
672 work = &buffer->irq_work;
674 if (!cpumask_test_cpu(cpu, buffer->cpumask))
677 cpu_buffer = buffer->buffers[cpu];
678 work = &cpu_buffer->irq_work;
681 poll_wait(filp, &work->waiters, poll_table);
682 work->waiters_pending = true;
684 * There's a tight race between setting the waiters_pending and
685 * checking if the ring buffer is empty. Once the waiters_pending bit
686 * is set, the next event will wake the task up, but we can get stuck
687 * if there's only a single event in.
689 * FIXME: Ideally, we need a memory barrier on the writer side as well,
690 * but adding a memory barrier to all events will cause too much of a
691 * performance hit in the fast path. We only need a memory barrier when
692 * the buffer goes from empty to having content. But as this race is
693 * extremely small, and it's not a problem if another event comes in, we
698 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
699 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
700 return EPOLLIN | EPOLLRDNORM;
704 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
705 #define RB_WARN_ON(b, cond) \
707 int _____ret = unlikely(cond); \
709 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
710 struct ring_buffer_per_cpu *__b = \
712 atomic_inc(&__b->buffer->record_disabled); \
714 atomic_inc(&b->record_disabled); \
720 /* Up this if you want to test the TIME_EXTENTS and normalization */
721 #define DEBUG_SHIFT 0
723 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
725 /* shift to debug/test normalization and TIME_EXTENTS */
726 return buffer->clock() << DEBUG_SHIFT;
729 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
733 preempt_disable_notrace();
734 time = rb_time_stamp(buffer);
735 preempt_enable_notrace();
739 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
741 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
744 /* Just stupid testing the normalize function and deltas */
747 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
750 * Making the ring buffer lockless makes things tricky.
751 * Although writes only happen on the CPU that they are on,
752 * and they only need to worry about interrupts. Reads can
755 * The reader page is always off the ring buffer, but when the
756 * reader finishes with a page, it needs to swap its page with
757 * a new one from the buffer. The reader needs to take from
758 * the head (writes go to the tail). But if a writer is in overwrite
759 * mode and wraps, it must push the head page forward.
761 * Here lies the problem.
763 * The reader must be careful to replace only the head page, and
764 * not another one. As described at the top of the file in the
765 * ASCII art, the reader sets its old page to point to the next
766 * page after head. It then sets the page after head to point to
767 * the old reader page. But if the writer moves the head page
768 * during this operation, the reader could end up with the tail.
770 * We use cmpxchg to help prevent this race. We also do something
771 * special with the page before head. We set the LSB to 1.
773 * When the writer must push the page forward, it will clear the
774 * bit that points to the head page, move the head, and then set
775 * the bit that points to the new head page.
777 * We also don't want an interrupt coming in and moving the head
778 * page on another writer. Thus we use the second LSB to catch
781 * head->list->prev->next bit 1 bit 0
784 * Points to head page 0 1
787 * Note we can not trust the prev pointer of the head page, because:
789 * +----+ +-----+ +-----+
790 * | |------>| T |---X--->| N |
792 * +----+ +-----+ +-----+
795 * +----------| R |----------+ |
799 * Key: ---X--> HEAD flag set in pointer
804 * (see __rb_reserve_next() to see where this happens)
806 * What the above shows is that the reader just swapped out
807 * the reader page with a page in the buffer, but before it
808 * could make the new header point back to the new page added
809 * it was preempted by a writer. The writer moved forward onto
810 * the new page added by the reader and is about to move forward
813 * You can see, it is legitimate for the previous pointer of
814 * the head (or any page) not to point back to itself. But only
818 #define RB_PAGE_NORMAL 0UL
819 #define RB_PAGE_HEAD 1UL
820 #define RB_PAGE_UPDATE 2UL
823 #define RB_FLAG_MASK 3UL
825 /* PAGE_MOVED is not part of the mask */
826 #define RB_PAGE_MOVED 4UL
829 * rb_list_head - remove any bit
831 static struct list_head *rb_list_head(struct list_head *list)
833 unsigned long val = (unsigned long)list;
835 return (struct list_head *)(val & ~RB_FLAG_MASK);
839 * rb_is_head_page - test if the given page is the head page
841 * Because the reader may move the head_page pointer, we can
842 * not trust what the head page is (it may be pointing to
843 * the reader page). But if the next page is a header page,
844 * its flags will be non zero.
847 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
848 struct buffer_page *page, struct list_head *list)
852 val = (unsigned long)list->next;
854 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
855 return RB_PAGE_MOVED;
857 return val & RB_FLAG_MASK;
863 * The unique thing about the reader page, is that, if the
864 * writer is ever on it, the previous pointer never points
865 * back to the reader page.
867 static bool rb_is_reader_page(struct buffer_page *page)
869 struct list_head *list = page->list.prev;
871 return rb_list_head(list->next) != &page->list;
875 * rb_set_list_to_head - set a list_head to be pointing to head.
877 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
878 struct list_head *list)
882 ptr = (unsigned long *)&list->next;
883 *ptr |= RB_PAGE_HEAD;
884 *ptr &= ~RB_PAGE_UPDATE;
888 * rb_head_page_activate - sets up head page
890 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
892 struct buffer_page *head;
894 head = cpu_buffer->head_page;
899 * Set the previous list pointer to have the HEAD flag.
901 rb_set_list_to_head(cpu_buffer, head->list.prev);
904 static void rb_list_head_clear(struct list_head *list)
906 unsigned long *ptr = (unsigned long *)&list->next;
908 *ptr &= ~RB_FLAG_MASK;
912 * rb_head_page_deactivate - clears head page ptr (for free list)
915 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
917 struct list_head *hd;
919 /* Go through the whole list and clear any pointers found. */
920 rb_list_head_clear(cpu_buffer->pages);
922 list_for_each(hd, cpu_buffer->pages)
923 rb_list_head_clear(hd);
926 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
927 struct buffer_page *head,
928 struct buffer_page *prev,
929 int old_flag, int new_flag)
931 struct list_head *list;
932 unsigned long val = (unsigned long)&head->list;
937 val &= ~RB_FLAG_MASK;
939 ret = cmpxchg((unsigned long *)&list->next,
940 val | old_flag, val | new_flag);
942 /* check if the reader took the page */
943 if ((ret & ~RB_FLAG_MASK) != val)
944 return RB_PAGE_MOVED;
946 return ret & RB_FLAG_MASK;
949 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
950 struct buffer_page *head,
951 struct buffer_page *prev,
954 return rb_head_page_set(cpu_buffer, head, prev,
955 old_flag, RB_PAGE_UPDATE);
958 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
959 struct buffer_page *head,
960 struct buffer_page *prev,
963 return rb_head_page_set(cpu_buffer, head, prev,
964 old_flag, RB_PAGE_HEAD);
967 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
968 struct buffer_page *head,
969 struct buffer_page *prev,
972 return rb_head_page_set(cpu_buffer, head, prev,
973 old_flag, RB_PAGE_NORMAL);
976 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
977 struct buffer_page **bpage)
979 struct list_head *p = rb_list_head((*bpage)->list.next);
981 *bpage = list_entry(p, struct buffer_page, list);
984 static struct buffer_page *
985 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
987 struct buffer_page *head;
988 struct buffer_page *page;
989 struct list_head *list;
992 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
996 list = cpu_buffer->pages;
997 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1000 page = head = cpu_buffer->head_page;
1002 * It is possible that the writer moves the header behind
1003 * where we started, and we miss in one loop.
1004 * A second loop should grab the header, but we'll do
1005 * three loops just because I'm paranoid.
1007 for (i = 0; i < 3; i++) {
1009 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1010 cpu_buffer->head_page = page;
1013 rb_inc_page(cpu_buffer, &page);
1014 } while (page != head);
1017 RB_WARN_ON(cpu_buffer, 1);
1022 static int rb_head_page_replace(struct buffer_page *old,
1023 struct buffer_page *new)
1025 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1029 val = *ptr & ~RB_FLAG_MASK;
1030 val |= RB_PAGE_HEAD;
1032 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1038 * rb_tail_page_update - move the tail page forward
1040 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1041 struct buffer_page *tail_page,
1042 struct buffer_page *next_page)
1044 unsigned long old_entries;
1045 unsigned long old_write;
1048 * The tail page now needs to be moved forward.
1050 * We need to reset the tail page, but without messing
1051 * with possible erasing of data brought in by interrupts
1052 * that have moved the tail page and are currently on it.
1054 * We add a counter to the write field to denote this.
1056 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1057 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1060 * Just make sure we have seen our old_write and synchronize
1061 * with any interrupts that come in.
1066 * If the tail page is still the same as what we think
1067 * it is, then it is up to us to update the tail
1070 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1071 /* Zero the write counter */
1072 unsigned long val = old_write & ~RB_WRITE_MASK;
1073 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1076 * This will only succeed if an interrupt did
1077 * not come in and change it. In which case, we
1078 * do not want to modify it.
1080 * We add (void) to let the compiler know that we do not care
1081 * about the return value of these functions. We use the
1082 * cmpxchg to only update if an interrupt did not already
1083 * do it for us. If the cmpxchg fails, we don't care.
1085 (void)local_cmpxchg(&next_page->write, old_write, val);
1086 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1089 * No need to worry about races with clearing out the commit.
1090 * it only can increment when a commit takes place. But that
1091 * only happens in the outer most nested commit.
1093 local_set(&next_page->page->commit, 0);
1095 /* Again, either we update tail_page or an interrupt does */
1096 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1100 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1101 struct buffer_page *bpage)
1103 unsigned long val = (unsigned long)bpage;
1105 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1112 * rb_check_list - make sure a pointer to a list has the last bits zero
1114 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1115 struct list_head *list)
1117 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1119 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1125 * rb_check_pages - integrity check of buffer pages
1126 * @cpu_buffer: CPU buffer with pages to test
1128 * As a safety measure we check to make sure the data pages have not
1131 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1133 struct list_head *head = cpu_buffer->pages;
1134 struct buffer_page *bpage, *tmp;
1136 /* Reset the head page if it exists */
1137 if (cpu_buffer->head_page)
1138 rb_set_head_page(cpu_buffer);
1140 rb_head_page_deactivate(cpu_buffer);
1142 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1144 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1147 if (rb_check_list(cpu_buffer, head))
1150 list_for_each_entry_safe(bpage, tmp, head, list) {
1151 if (RB_WARN_ON(cpu_buffer,
1152 bpage->list.next->prev != &bpage->list))
1154 if (RB_WARN_ON(cpu_buffer,
1155 bpage->list.prev->next != &bpage->list))
1157 if (rb_check_list(cpu_buffer, &bpage->list))
1161 rb_head_page_activate(cpu_buffer);
1166 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1168 struct buffer_page *bpage, *tmp;
1169 bool user_thread = current->mm != NULL;
1174 * Check if the available memory is there first.
1175 * Note, si_mem_available() only gives us a rough estimate of available
1176 * memory. It may not be accurate. But we don't care, we just want
1177 * to prevent doing any allocation when it is obvious that it is
1178 * not going to succeed.
1180 i = si_mem_available();
1185 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1186 * gracefully without invoking oom-killer and the system is not
1189 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1192 * If a user thread allocates too much, and si_mem_available()
1193 * reports there's enough memory, even though there is not.
1194 * Make sure the OOM killer kills this thread. This can happen
1195 * even with RETRY_MAYFAIL because another task may be doing
1196 * an allocation after this task has taken all memory.
1197 * This is the task the OOM killer needs to take out during this
1198 * loop, even if it was triggered by an allocation somewhere else.
1201 set_current_oom_origin();
1202 for (i = 0; i < nr_pages; i++) {
1205 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1206 mflags, cpu_to_node(cpu));
1210 list_add(&bpage->list, pages);
1212 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1215 bpage->page = page_address(page);
1216 rb_init_page(bpage->page);
1218 if (user_thread && fatal_signal_pending(current))
1222 clear_current_oom_origin();
1227 list_for_each_entry_safe(bpage, tmp, pages, list) {
1228 list_del_init(&bpage->list);
1229 free_buffer_page(bpage);
1232 clear_current_oom_origin();
1237 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1238 unsigned long nr_pages)
1244 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1248 * The ring buffer page list is a circular list that does not
1249 * start and end with a list head. All page list items point to
1252 cpu_buffer->pages = pages.next;
1255 cpu_buffer->nr_pages = nr_pages;
1257 rb_check_pages(cpu_buffer);
1262 static struct ring_buffer_per_cpu *
1263 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1265 struct ring_buffer_per_cpu *cpu_buffer;
1266 struct buffer_page *bpage;
1270 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1271 GFP_KERNEL, cpu_to_node(cpu));
1275 cpu_buffer->cpu = cpu;
1276 cpu_buffer->buffer = buffer;
1277 raw_spin_lock_init(&cpu_buffer->reader_lock);
1278 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1279 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1280 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1281 init_completion(&cpu_buffer->update_done);
1282 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1283 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1284 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1286 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1287 GFP_KERNEL, cpu_to_node(cpu));
1289 goto fail_free_buffer;
1291 rb_check_bpage(cpu_buffer, bpage);
1293 cpu_buffer->reader_page = bpage;
1294 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1296 goto fail_free_reader;
1297 bpage->page = page_address(page);
1298 rb_init_page(bpage->page);
1300 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1301 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1303 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1305 goto fail_free_reader;
1307 cpu_buffer->head_page
1308 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1309 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1311 rb_head_page_activate(cpu_buffer);
1316 free_buffer_page(cpu_buffer->reader_page);
1323 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1325 struct list_head *head = cpu_buffer->pages;
1326 struct buffer_page *bpage, *tmp;
1328 free_buffer_page(cpu_buffer->reader_page);
1330 rb_head_page_deactivate(cpu_buffer);
1333 list_for_each_entry_safe(bpage, tmp, head, list) {
1334 list_del_init(&bpage->list);
1335 free_buffer_page(bpage);
1337 bpage = list_entry(head, struct buffer_page, list);
1338 free_buffer_page(bpage);
1345 * __ring_buffer_alloc - allocate a new ring_buffer
1346 * @size: the size in bytes per cpu that is needed.
1347 * @flags: attributes to set for the ring buffer.
1349 * Currently the only flag that is available is the RB_FL_OVERWRITE
1350 * flag. This flag means that the buffer will overwrite old data
1351 * when the buffer wraps. If this flag is not set, the buffer will
1352 * drop data when the tail hits the head.
1354 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1355 struct lock_class_key *key)
1357 struct ring_buffer *buffer;
1363 /* keep it in its own cache line */
1364 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1369 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1370 goto fail_free_buffer;
1372 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1373 buffer->flags = flags;
1374 buffer->clock = trace_clock_local;
1375 buffer->reader_lock_key = key;
1377 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1378 init_waitqueue_head(&buffer->irq_work.waiters);
1380 /* need at least two pages */
1384 buffer->cpus = nr_cpu_ids;
1386 bsize = sizeof(void *) * nr_cpu_ids;
1387 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1389 if (!buffer->buffers)
1390 goto fail_free_cpumask;
1392 cpu = raw_smp_processor_id();
1393 cpumask_set_cpu(cpu, buffer->cpumask);
1394 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1395 if (!buffer->buffers[cpu])
1396 goto fail_free_buffers;
1398 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1400 goto fail_free_buffers;
1402 mutex_init(&buffer->mutex);
1407 for_each_buffer_cpu(buffer, cpu) {
1408 if (buffer->buffers[cpu])
1409 rb_free_cpu_buffer(buffer->buffers[cpu]);
1411 kfree(buffer->buffers);
1414 free_cpumask_var(buffer->cpumask);
1420 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1423 * ring_buffer_free - free a ring buffer.
1424 * @buffer: the buffer to free.
1427 ring_buffer_free(struct ring_buffer *buffer)
1431 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1433 for_each_buffer_cpu(buffer, cpu)
1434 rb_free_cpu_buffer(buffer->buffers[cpu]);
1436 kfree(buffer->buffers);
1437 free_cpumask_var(buffer->cpumask);
1441 EXPORT_SYMBOL_GPL(ring_buffer_free);
1443 void ring_buffer_set_clock(struct ring_buffer *buffer,
1446 buffer->clock = clock;
1449 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1451 buffer->time_stamp_abs = abs;
1454 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1456 return buffer->time_stamp_abs;
1459 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1461 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1463 return local_read(&bpage->entries) & RB_WRITE_MASK;
1466 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1468 return local_read(&bpage->write) & RB_WRITE_MASK;
1472 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1474 struct list_head *tail_page, *to_remove, *next_page;
1475 struct buffer_page *to_remove_page, *tmp_iter_page;
1476 struct buffer_page *last_page, *first_page;
1477 unsigned long nr_removed;
1478 unsigned long head_bit;
1483 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1484 atomic_inc(&cpu_buffer->record_disabled);
1486 * We don't race with the readers since we have acquired the reader
1487 * lock. We also don't race with writers after disabling recording.
1488 * This makes it easy to figure out the first and the last page to be
1489 * removed from the list. We unlink all the pages in between including
1490 * the first and last pages. This is done in a busy loop so that we
1491 * lose the least number of traces.
1492 * The pages are freed after we restart recording and unlock readers.
1494 tail_page = &cpu_buffer->tail_page->list;
1497 * tail page might be on reader page, we remove the next page
1498 * from the ring buffer
1500 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1501 tail_page = rb_list_head(tail_page->next);
1502 to_remove = tail_page;
1504 /* start of pages to remove */
1505 first_page = list_entry(rb_list_head(to_remove->next),
1506 struct buffer_page, list);
1508 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1509 to_remove = rb_list_head(to_remove)->next;
1510 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1513 next_page = rb_list_head(to_remove)->next;
1516 * Now we remove all pages between tail_page and next_page.
1517 * Make sure that we have head_bit value preserved for the
1520 tail_page->next = (struct list_head *)((unsigned long)next_page |
1522 next_page = rb_list_head(next_page);
1523 next_page->prev = tail_page;
1525 /* make sure pages points to a valid page in the ring buffer */
1526 cpu_buffer->pages = next_page;
1528 /* update head page */
1530 cpu_buffer->head_page = list_entry(next_page,
1531 struct buffer_page, list);
1534 * change read pointer to make sure any read iterators reset
1537 cpu_buffer->read = 0;
1539 /* pages are removed, resume tracing and then free the pages */
1540 atomic_dec(&cpu_buffer->record_disabled);
1541 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1543 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1545 /* last buffer page to remove */
1546 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1548 tmp_iter_page = first_page;
1553 to_remove_page = tmp_iter_page;
1554 rb_inc_page(cpu_buffer, &tmp_iter_page);
1556 /* update the counters */
1557 page_entries = rb_page_entries(to_remove_page);
1560 * If something was added to this page, it was full
1561 * since it is not the tail page. So we deduct the
1562 * bytes consumed in ring buffer from here.
1563 * Increment overrun to account for the lost events.
1565 local_add(page_entries, &cpu_buffer->overrun);
1566 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1570 * We have already removed references to this list item, just
1571 * free up the buffer_page and its page
1573 free_buffer_page(to_remove_page);
1576 } while (to_remove_page != last_page);
1578 RB_WARN_ON(cpu_buffer, nr_removed);
1580 return nr_removed == 0;
1584 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1586 struct list_head *pages = &cpu_buffer->new_pages;
1587 int retries, success;
1589 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1591 * We are holding the reader lock, so the reader page won't be swapped
1592 * in the ring buffer. Now we are racing with the writer trying to
1593 * move head page and the tail page.
1594 * We are going to adapt the reader page update process where:
1595 * 1. We first splice the start and end of list of new pages between
1596 * the head page and its previous page.
1597 * 2. We cmpxchg the prev_page->next to point from head page to the
1598 * start of new pages list.
1599 * 3. Finally, we update the head->prev to the end of new list.
1601 * We will try this process 10 times, to make sure that we don't keep
1607 struct list_head *head_page, *prev_page, *r;
1608 struct list_head *last_page, *first_page;
1609 struct list_head *head_page_with_bit;
1611 head_page = &rb_set_head_page(cpu_buffer)->list;
1614 prev_page = head_page->prev;
1616 first_page = pages->next;
1617 last_page = pages->prev;
1619 head_page_with_bit = (struct list_head *)
1620 ((unsigned long)head_page | RB_PAGE_HEAD);
1622 last_page->next = head_page_with_bit;
1623 first_page->prev = prev_page;
1625 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1627 if (r == head_page_with_bit) {
1629 * yay, we replaced the page pointer to our new list,
1630 * now, we just have to update to head page's prev
1631 * pointer to point to end of list
1633 head_page->prev = last_page;
1640 INIT_LIST_HEAD(pages);
1642 * If we weren't successful in adding in new pages, warn and stop
1645 RB_WARN_ON(cpu_buffer, !success);
1646 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1648 /* free pages if they weren't inserted */
1650 struct buffer_page *bpage, *tmp;
1651 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1653 list_del_init(&bpage->list);
1654 free_buffer_page(bpage);
1660 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1664 if (cpu_buffer->nr_pages_to_update > 0)
1665 success = rb_insert_pages(cpu_buffer);
1667 success = rb_remove_pages(cpu_buffer,
1668 -cpu_buffer->nr_pages_to_update);
1671 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1674 static void update_pages_handler(struct work_struct *work)
1676 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1677 struct ring_buffer_per_cpu, update_pages_work);
1678 rb_update_pages(cpu_buffer);
1679 complete(&cpu_buffer->update_done);
1683 * ring_buffer_resize - resize the ring buffer
1684 * @buffer: the buffer to resize.
1685 * @size: the new size.
1686 * @cpu_id: the cpu buffer to resize
1688 * Minimum size is 2 * BUF_PAGE_SIZE.
1690 * Returns 0 on success and < 0 on failure.
1692 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1695 struct ring_buffer_per_cpu *cpu_buffer;
1696 unsigned long nr_pages;
1700 * Always succeed at resizing a non-existent buffer:
1705 /* Make sure the requested buffer exists */
1706 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1707 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1710 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1712 /* we need a minimum of two pages */
1716 size = nr_pages * BUF_PAGE_SIZE;
1719 * Don't succeed if resizing is disabled, as a reader might be
1720 * manipulating the ring buffer and is expecting a sane state while
1723 if (atomic_read(&buffer->resize_disabled))
1726 /* prevent another thread from changing buffer sizes */
1727 mutex_lock(&buffer->mutex);
1729 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1730 /* calculate the pages to update */
1731 for_each_buffer_cpu(buffer, cpu) {
1732 cpu_buffer = buffer->buffers[cpu];
1734 cpu_buffer->nr_pages_to_update = nr_pages -
1735 cpu_buffer->nr_pages;
1737 * nothing more to do for removing pages or no update
1739 if (cpu_buffer->nr_pages_to_update <= 0)
1742 * to add pages, make sure all new pages can be
1743 * allocated without receiving ENOMEM
1745 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1746 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1747 &cpu_buffer->new_pages, cpu)) {
1748 /* not enough memory for new pages */
1756 * Fire off all the required work handlers
1757 * We can't schedule on offline CPUs, but it's not necessary
1758 * since we can change their buffer sizes without any race.
1760 for_each_buffer_cpu(buffer, cpu) {
1761 cpu_buffer = buffer->buffers[cpu];
1762 if (!cpu_buffer->nr_pages_to_update)
1765 /* Can't run something on an offline CPU. */
1766 if (!cpu_online(cpu)) {
1767 rb_update_pages(cpu_buffer);
1768 cpu_buffer->nr_pages_to_update = 0;
1770 schedule_work_on(cpu,
1771 &cpu_buffer->update_pages_work);
1775 /* wait for all the updates to complete */
1776 for_each_buffer_cpu(buffer, cpu) {
1777 cpu_buffer = buffer->buffers[cpu];
1778 if (!cpu_buffer->nr_pages_to_update)
1781 if (cpu_online(cpu))
1782 wait_for_completion(&cpu_buffer->update_done);
1783 cpu_buffer->nr_pages_to_update = 0;
1788 /* Make sure this CPU has been initialized */
1789 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1792 cpu_buffer = buffer->buffers[cpu_id];
1794 if (nr_pages == cpu_buffer->nr_pages)
1797 cpu_buffer->nr_pages_to_update = nr_pages -
1798 cpu_buffer->nr_pages;
1800 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1801 if (cpu_buffer->nr_pages_to_update > 0 &&
1802 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1803 &cpu_buffer->new_pages, cpu_id)) {
1810 /* Can't run something on an offline CPU. */
1811 if (!cpu_online(cpu_id))
1812 rb_update_pages(cpu_buffer);
1814 schedule_work_on(cpu_id,
1815 &cpu_buffer->update_pages_work);
1816 wait_for_completion(&cpu_buffer->update_done);
1819 cpu_buffer->nr_pages_to_update = 0;
1825 * The ring buffer resize can happen with the ring buffer
1826 * enabled, so that the update disturbs the tracing as little
1827 * as possible. But if the buffer is disabled, we do not need
1828 * to worry about that, and we can take the time to verify
1829 * that the buffer is not corrupt.
1831 if (atomic_read(&buffer->record_disabled)) {
1832 atomic_inc(&buffer->record_disabled);
1834 * Even though the buffer was disabled, we must make sure
1835 * that it is truly disabled before calling rb_check_pages.
1836 * There could have been a race between checking
1837 * record_disable and incrementing it.
1839 synchronize_sched();
1840 for_each_buffer_cpu(buffer, cpu) {
1841 cpu_buffer = buffer->buffers[cpu];
1842 rb_check_pages(cpu_buffer);
1844 atomic_dec(&buffer->record_disabled);
1847 mutex_unlock(&buffer->mutex);
1851 for_each_buffer_cpu(buffer, cpu) {
1852 struct buffer_page *bpage, *tmp;
1854 cpu_buffer = buffer->buffers[cpu];
1855 cpu_buffer->nr_pages_to_update = 0;
1857 if (list_empty(&cpu_buffer->new_pages))
1860 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1862 list_del_init(&bpage->list);
1863 free_buffer_page(bpage);
1866 mutex_unlock(&buffer->mutex);
1869 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1871 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1873 mutex_lock(&buffer->mutex);
1875 buffer->flags |= RB_FL_OVERWRITE;
1877 buffer->flags &= ~RB_FL_OVERWRITE;
1878 mutex_unlock(&buffer->mutex);
1880 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1882 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1884 return bpage->page->data + index;
1887 static __always_inline struct ring_buffer_event *
1888 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1890 return __rb_page_index(cpu_buffer->reader_page,
1891 cpu_buffer->reader_page->read);
1894 static __always_inline struct ring_buffer_event *
1895 rb_iter_head_event(struct ring_buffer_iter *iter)
1897 return __rb_page_index(iter->head_page, iter->head);
1900 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1902 return local_read(&bpage->page->commit);
1905 /* Size is determined by what has been committed */
1906 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1908 return rb_page_commit(bpage);
1911 static __always_inline unsigned
1912 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1914 return rb_page_commit(cpu_buffer->commit_page);
1917 static __always_inline unsigned
1918 rb_event_index(struct ring_buffer_event *event)
1920 unsigned long addr = (unsigned long)event;
1922 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1925 static void rb_inc_iter(struct ring_buffer_iter *iter)
1927 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1930 * The iterator could be on the reader page (it starts there).
1931 * But the head could have moved, since the reader was
1932 * found. Check for this case and assign the iterator
1933 * to the head page instead of next.
1935 if (iter->head_page == cpu_buffer->reader_page)
1936 iter->head_page = rb_set_head_page(cpu_buffer);
1938 rb_inc_page(cpu_buffer, &iter->head_page);
1940 iter->read_stamp = iter->head_page->page->time_stamp;
1945 * rb_handle_head_page - writer hit the head page
1947 * Returns: +1 to retry page
1952 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1953 struct buffer_page *tail_page,
1954 struct buffer_page *next_page)
1956 struct buffer_page *new_head;
1961 entries = rb_page_entries(next_page);
1964 * The hard part is here. We need to move the head
1965 * forward, and protect against both readers on
1966 * other CPUs and writers coming in via interrupts.
1968 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1972 * type can be one of four:
1973 * NORMAL - an interrupt already moved it for us
1974 * HEAD - we are the first to get here.
1975 * UPDATE - we are the interrupt interrupting
1977 * MOVED - a reader on another CPU moved the next
1978 * pointer to its reader page. Give up
1985 * We changed the head to UPDATE, thus
1986 * it is our responsibility to update
1989 local_add(entries, &cpu_buffer->overrun);
1990 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1993 * The entries will be zeroed out when we move the
1997 /* still more to do */
2000 case RB_PAGE_UPDATE:
2002 * This is an interrupt that interrupt the
2003 * previous update. Still more to do.
2006 case RB_PAGE_NORMAL:
2008 * An interrupt came in before the update
2009 * and processed this for us.
2010 * Nothing left to do.
2015 * The reader is on another CPU and just did
2016 * a swap with our next_page.
2021 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2026 * Now that we are here, the old head pointer is
2027 * set to UPDATE. This will keep the reader from
2028 * swapping the head page with the reader page.
2029 * The reader (on another CPU) will spin till
2032 * We just need to protect against interrupts
2033 * doing the job. We will set the next pointer
2034 * to HEAD. After that, we set the old pointer
2035 * to NORMAL, but only if it was HEAD before.
2036 * otherwise we are an interrupt, and only
2037 * want the outer most commit to reset it.
2039 new_head = next_page;
2040 rb_inc_page(cpu_buffer, &new_head);
2042 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2046 * Valid returns are:
2047 * HEAD - an interrupt came in and already set it.
2048 * NORMAL - One of two things:
2049 * 1) We really set it.
2050 * 2) A bunch of interrupts came in and moved
2051 * the page forward again.
2055 case RB_PAGE_NORMAL:
2059 RB_WARN_ON(cpu_buffer, 1);
2064 * It is possible that an interrupt came in,
2065 * set the head up, then more interrupts came in
2066 * and moved it again. When we get back here,
2067 * the page would have been set to NORMAL but we
2068 * just set it back to HEAD.
2070 * How do you detect this? Well, if that happened
2071 * the tail page would have moved.
2073 if (ret == RB_PAGE_NORMAL) {
2074 struct buffer_page *buffer_tail_page;
2076 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2078 * If the tail had moved passed next, then we need
2079 * to reset the pointer.
2081 if (buffer_tail_page != tail_page &&
2082 buffer_tail_page != next_page)
2083 rb_head_page_set_normal(cpu_buffer, new_head,
2089 * If this was the outer most commit (the one that
2090 * changed the original pointer from HEAD to UPDATE),
2091 * then it is up to us to reset it to NORMAL.
2093 if (type == RB_PAGE_HEAD) {
2094 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2097 if (RB_WARN_ON(cpu_buffer,
2098 ret != RB_PAGE_UPDATE))
2106 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2107 unsigned long tail, struct rb_event_info *info)
2109 struct buffer_page *tail_page = info->tail_page;
2110 struct ring_buffer_event *event;
2111 unsigned long length = info->length;
2114 * Only the event that crossed the page boundary
2115 * must fill the old tail_page with padding.
2117 if (tail >= BUF_PAGE_SIZE) {
2119 * If the page was filled, then we still need
2120 * to update the real_end. Reset it to zero
2121 * and the reader will ignore it.
2123 if (tail == BUF_PAGE_SIZE)
2124 tail_page->real_end = 0;
2126 local_sub(length, &tail_page->write);
2130 event = __rb_page_index(tail_page, tail);
2132 /* account for padding bytes */
2133 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2136 * Save the original length to the meta data.
2137 * This will be used by the reader to add lost event
2140 tail_page->real_end = tail;
2143 * If this event is bigger than the minimum size, then
2144 * we need to be careful that we don't subtract the
2145 * write counter enough to allow another writer to slip
2147 * We put in a discarded commit instead, to make sure
2148 * that this space is not used again.
2150 * If we are less than the minimum size, we don't need to
2153 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2154 /* No room for any events */
2156 /* Mark the rest of the page with padding */
2157 rb_event_set_padding(event);
2159 /* Set the write back to the previous setting */
2160 local_sub(length, &tail_page->write);
2164 /* Put in a discarded event */
2165 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2166 event->type_len = RINGBUF_TYPE_PADDING;
2167 /* time delta must be non zero */
2168 event->time_delta = 1;
2170 /* Set write to end of buffer */
2171 length = (tail + length) - BUF_PAGE_SIZE;
2172 local_sub(length, &tail_page->write);
2175 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2178 * This is the slow path, force gcc not to inline it.
2180 static noinline struct ring_buffer_event *
2181 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2182 unsigned long tail, struct rb_event_info *info)
2184 struct buffer_page *tail_page = info->tail_page;
2185 struct buffer_page *commit_page = cpu_buffer->commit_page;
2186 struct ring_buffer *buffer = cpu_buffer->buffer;
2187 struct buffer_page *next_page;
2190 next_page = tail_page;
2192 rb_inc_page(cpu_buffer, &next_page);
2195 * If for some reason, we had an interrupt storm that made
2196 * it all the way around the buffer, bail, and warn
2199 if (unlikely(next_page == commit_page)) {
2200 local_inc(&cpu_buffer->commit_overrun);
2205 * This is where the fun begins!
2207 * We are fighting against races between a reader that
2208 * could be on another CPU trying to swap its reader
2209 * page with the buffer head.
2211 * We are also fighting against interrupts coming in and
2212 * moving the head or tail on us as well.
2214 * If the next page is the head page then we have filled
2215 * the buffer, unless the commit page is still on the
2218 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2221 * If the commit is not on the reader page, then
2222 * move the header page.
2224 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2226 * If we are not in overwrite mode,
2227 * this is easy, just stop here.
2229 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2230 local_inc(&cpu_buffer->dropped_events);
2234 ret = rb_handle_head_page(cpu_buffer,
2243 * We need to be careful here too. The
2244 * commit page could still be on the reader
2245 * page. We could have a small buffer, and
2246 * have filled up the buffer with events
2247 * from interrupts and such, and wrapped.
2249 * Note, if the tail page is also the on the
2250 * reader_page, we let it move out.
2252 if (unlikely((cpu_buffer->commit_page !=
2253 cpu_buffer->tail_page) &&
2254 (cpu_buffer->commit_page ==
2255 cpu_buffer->reader_page))) {
2256 local_inc(&cpu_buffer->commit_overrun);
2262 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2266 rb_reset_tail(cpu_buffer, tail, info);
2268 /* Commit what we have for now. */
2269 rb_end_commit(cpu_buffer);
2270 /* rb_end_commit() decs committing */
2271 local_inc(&cpu_buffer->committing);
2273 /* fail and let the caller try again */
2274 return ERR_PTR(-EAGAIN);
2278 rb_reset_tail(cpu_buffer, tail, info);
2283 /* Slow path, do not inline */
2284 static noinline struct ring_buffer_event *
2285 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2288 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2290 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2292 /* Not the first event on the page, or not delta? */
2293 if (abs || rb_event_index(event)) {
2294 event->time_delta = delta & TS_MASK;
2295 event->array[0] = delta >> TS_SHIFT;
2297 /* nope, just zero it */
2298 event->time_delta = 0;
2299 event->array[0] = 0;
2302 return skip_time_extend(event);
2305 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2306 struct ring_buffer_event *event);
2309 * rb_update_event - update event type and data
2310 * @event: the event to update
2311 * @type: the type of event
2312 * @length: the size of the event field in the ring buffer
2314 * Update the type and data fields of the event. The length
2315 * is the actual size that is written to the ring buffer,
2316 * and with this, we can determine what to place into the
2320 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2321 struct ring_buffer_event *event,
2322 struct rb_event_info *info)
2324 unsigned length = info->length;
2325 u64 delta = info->delta;
2327 /* Only a commit updates the timestamp */
2328 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2332 * If we need to add a timestamp, then we
2333 * add it to the start of the reserved space.
2335 if (unlikely(info->add_timestamp)) {
2336 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2338 event = rb_add_time_stamp(event, abs ? info->delta : delta, abs);
2339 length -= RB_LEN_TIME_EXTEND;
2343 event->time_delta = delta;
2344 length -= RB_EVNT_HDR_SIZE;
2345 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2346 event->type_len = 0;
2347 event->array[0] = length;
2349 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2352 static unsigned rb_calculate_event_length(unsigned length)
2354 struct ring_buffer_event event; /* Used only for sizeof array */
2356 /* zero length can cause confusions */
2360 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2361 length += sizeof(event.array[0]);
2363 length += RB_EVNT_HDR_SIZE;
2364 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2367 * In case the time delta is larger than the 27 bits for it
2368 * in the header, we need to add a timestamp. If another
2369 * event comes in when trying to discard this one to increase
2370 * the length, then the timestamp will be added in the allocated
2371 * space of this event. If length is bigger than the size needed
2372 * for the TIME_EXTEND, then padding has to be used. The events
2373 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2374 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2375 * As length is a multiple of 4, we only need to worry if it
2376 * is 12 (RB_LEN_TIME_EXTEND + 4).
2378 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2379 length += RB_ALIGNMENT;
2384 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2385 static inline bool sched_clock_stable(void)
2392 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2393 struct ring_buffer_event *event)
2395 unsigned long new_index, old_index;
2396 struct buffer_page *bpage;
2397 unsigned long index;
2400 new_index = rb_event_index(event);
2401 old_index = new_index + rb_event_ts_length(event);
2402 addr = (unsigned long)event;
2405 bpage = READ_ONCE(cpu_buffer->tail_page);
2407 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2408 unsigned long write_mask =
2409 local_read(&bpage->write) & ~RB_WRITE_MASK;
2410 unsigned long event_length = rb_event_length(event);
2412 * This is on the tail page. It is possible that
2413 * a write could come in and move the tail page
2414 * and write to the next page. That is fine
2415 * because we just shorten what is on this page.
2417 old_index += write_mask;
2418 new_index += write_mask;
2419 index = local_cmpxchg(&bpage->write, old_index, new_index);
2420 if (index == old_index) {
2421 /* update counters */
2422 local_sub(event_length, &cpu_buffer->entries_bytes);
2427 /* could not discard */
2431 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2433 local_inc(&cpu_buffer->committing);
2434 local_inc(&cpu_buffer->commits);
2437 static __always_inline void
2438 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2440 unsigned long max_count;
2443 * We only race with interrupts and NMIs on this CPU.
2444 * If we own the commit event, then we can commit
2445 * all others that interrupted us, since the interruptions
2446 * are in stack format (they finish before they come
2447 * back to us). This allows us to do a simple loop to
2448 * assign the commit to the tail.
2451 max_count = cpu_buffer->nr_pages * 100;
2453 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2454 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2456 if (RB_WARN_ON(cpu_buffer,
2457 rb_is_reader_page(cpu_buffer->tail_page)))
2459 local_set(&cpu_buffer->commit_page->page->commit,
2460 rb_page_write(cpu_buffer->commit_page));
2461 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2462 /* Only update the write stamp if the page has an event */
2463 if (rb_page_write(cpu_buffer->commit_page))
2464 cpu_buffer->write_stamp =
2465 cpu_buffer->commit_page->page->time_stamp;
2466 /* add barrier to keep gcc from optimizing too much */
2469 while (rb_commit_index(cpu_buffer) !=
2470 rb_page_write(cpu_buffer->commit_page)) {
2472 local_set(&cpu_buffer->commit_page->page->commit,
2473 rb_page_write(cpu_buffer->commit_page));
2474 RB_WARN_ON(cpu_buffer,
2475 local_read(&cpu_buffer->commit_page->page->commit) &
2480 /* again, keep gcc from optimizing */
2484 * If an interrupt came in just after the first while loop
2485 * and pushed the tail page forward, we will be left with
2486 * a dangling commit that will never go forward.
2488 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2492 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2494 unsigned long commits;
2496 if (RB_WARN_ON(cpu_buffer,
2497 !local_read(&cpu_buffer->committing)))
2501 commits = local_read(&cpu_buffer->commits);
2502 /* synchronize with interrupts */
2504 if (local_read(&cpu_buffer->committing) == 1)
2505 rb_set_commit_to_write(cpu_buffer);
2507 local_dec(&cpu_buffer->committing);
2509 /* synchronize with interrupts */
2513 * Need to account for interrupts coming in between the
2514 * updating of the commit page and the clearing of the
2515 * committing counter.
2517 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2518 !local_read(&cpu_buffer->committing)) {
2519 local_inc(&cpu_buffer->committing);
2524 static inline void rb_event_discard(struct ring_buffer_event *event)
2526 if (extended_time(event))
2527 event = skip_time_extend(event);
2529 /* array[0] holds the actual length for the discarded event */
2530 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2531 event->type_len = RINGBUF_TYPE_PADDING;
2532 /* time delta must be non zero */
2533 if (!event->time_delta)
2534 event->time_delta = 1;
2537 static __always_inline bool
2538 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2539 struct ring_buffer_event *event)
2541 unsigned long addr = (unsigned long)event;
2542 unsigned long index;
2544 index = rb_event_index(event);
2547 return cpu_buffer->commit_page->page == (void *)addr &&
2548 rb_commit_index(cpu_buffer) == index;
2551 static __always_inline void
2552 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2553 struct ring_buffer_event *event)
2558 * The event first in the commit queue updates the
2561 if (rb_event_is_commit(cpu_buffer, event)) {
2563 * A commit event that is first on a page
2564 * updates the write timestamp with the page stamp
2566 if (!rb_event_index(event))
2567 cpu_buffer->write_stamp =
2568 cpu_buffer->commit_page->page->time_stamp;
2569 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2570 delta = ring_buffer_event_time_stamp(event);
2571 cpu_buffer->write_stamp += delta;
2572 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2573 delta = ring_buffer_event_time_stamp(event);
2574 cpu_buffer->write_stamp = delta;
2576 cpu_buffer->write_stamp += event->time_delta;
2580 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2581 struct ring_buffer_event *event)
2583 local_inc(&cpu_buffer->entries);
2584 rb_update_write_stamp(cpu_buffer, event);
2585 rb_end_commit(cpu_buffer);
2588 static __always_inline void
2589 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2593 if (buffer->irq_work.waiters_pending) {
2594 buffer->irq_work.waiters_pending = false;
2595 /* irq_work_queue() supplies it's own memory barriers */
2596 irq_work_queue(&buffer->irq_work.work);
2599 if (cpu_buffer->irq_work.waiters_pending) {
2600 cpu_buffer->irq_work.waiters_pending = false;
2601 /* irq_work_queue() supplies it's own memory barriers */
2602 irq_work_queue(&cpu_buffer->irq_work.work);
2605 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2607 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2608 cpu_buffer->irq_work.wakeup_full = true;
2609 cpu_buffer->irq_work.full_waiters_pending = false;
2610 /* irq_work_queue() supplies it's own memory barriers */
2611 irq_work_queue(&cpu_buffer->irq_work.work);
2616 * The lock and unlock are done within a preempt disable section.
2617 * The current_context per_cpu variable can only be modified
2618 * by the current task between lock and unlock. But it can
2619 * be modified more than once via an interrupt. To pass this
2620 * information from the lock to the unlock without having to
2621 * access the 'in_interrupt()' functions again (which do show
2622 * a bit of overhead in something as critical as function tracing,
2623 * we use a bitmask trick.
2625 * bit 1 = NMI context
2626 * bit 2 = IRQ context
2627 * bit 3 = SoftIRQ context
2628 * bit 4 = normal context.
2630 * This works because this is the order of contexts that can
2631 * preempt other contexts. A SoftIRQ never preempts an IRQ
2634 * When the context is determined, the corresponding bit is
2635 * checked and set (if it was set, then a recursion of that context
2638 * On unlock, we need to clear this bit. To do so, just subtract
2639 * 1 from the current_context and AND it to itself.
2643 * 101 & 100 = 100 (clearing bit zero)
2646 * 1010 & 1001 = 1000 (clearing bit 1)
2648 * The least significant bit can be cleared this way, and it
2649 * just so happens that it is the same bit corresponding to
2650 * the current context.
2652 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
2653 * is set when a recursion is detected at the current context, and if
2654 * the TRANSITION bit is already set, it will fail the recursion.
2655 * This is needed because there's a lag between the changing of
2656 * interrupt context and updating the preempt count. In this case,
2657 * a false positive will be found. To handle this, one extra recursion
2658 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
2659 * bit is already set, then it is considered a recursion and the function
2660 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
2662 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
2663 * to be cleared. Even if it wasn't the context that set it. That is,
2664 * if an interrupt comes in while NORMAL bit is set and the ring buffer
2665 * is called before preempt_count() is updated, since the check will
2666 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
2667 * NMI then comes in, it will set the NMI bit, but when the NMI code
2668 * does the trace_recursive_unlock() it will clear the TRANSTION bit
2669 * and leave the NMI bit set. But this is fine, because the interrupt
2670 * code that set the TRANSITION bit will then clear the NMI bit when it
2671 * calls trace_recursive_unlock(). If another NMI comes in, it will
2672 * set the TRANSITION bit and continue.
2674 * Note: The TRANSITION bit only handles a single transition between context.
2677 static __always_inline int
2678 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2680 unsigned int val = cpu_buffer->current_context;
2681 unsigned long pc = preempt_count();
2684 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2685 bit = RB_CTX_NORMAL;
2687 bit = pc & NMI_MASK ? RB_CTX_NMI :
2688 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2690 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
2692 * It is possible that this was called by transitioning
2693 * between interrupt context, and preempt_count() has not
2694 * been updated yet. In this case, use the TRANSITION bit.
2696 bit = RB_CTX_TRANSITION;
2697 if (val & (1 << (bit + cpu_buffer->nest)))
2701 val |= (1 << (bit + cpu_buffer->nest));
2702 cpu_buffer->current_context = val;
2707 static __always_inline void
2708 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2710 cpu_buffer->current_context &=
2711 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2714 /* The recursive locking above uses 5 bits */
2715 #define NESTED_BITS 5
2718 * ring_buffer_nest_start - Allow to trace while nested
2719 * @buffer: The ring buffer to modify
2721 * The ring buffer has a safety mechanism to prevent recursion.
2722 * But there may be a case where a trace needs to be done while
2723 * tracing something else. In this case, calling this function
2724 * will allow this function to nest within a currently active
2725 * ring_buffer_lock_reserve().
2727 * Call this function before calling another ring_buffer_lock_reserve() and
2728 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2730 void ring_buffer_nest_start(struct ring_buffer *buffer)
2732 struct ring_buffer_per_cpu *cpu_buffer;
2735 /* Enabled by ring_buffer_nest_end() */
2736 preempt_disable_notrace();
2737 cpu = raw_smp_processor_id();
2738 cpu_buffer = buffer->buffers[cpu];
2739 /* This is the shift value for the above recursive locking */
2740 cpu_buffer->nest += NESTED_BITS;
2744 * ring_buffer_nest_end - Allow to trace while nested
2745 * @buffer: The ring buffer to modify
2747 * Must be called after ring_buffer_nest_start() and after the
2748 * ring_buffer_unlock_commit().
2750 void ring_buffer_nest_end(struct ring_buffer *buffer)
2752 struct ring_buffer_per_cpu *cpu_buffer;
2755 /* disabled by ring_buffer_nest_start() */
2756 cpu = raw_smp_processor_id();
2757 cpu_buffer = buffer->buffers[cpu];
2758 /* This is the shift value for the above recursive locking */
2759 cpu_buffer->nest -= NESTED_BITS;
2760 preempt_enable_notrace();
2764 * ring_buffer_unlock_commit - commit a reserved
2765 * @buffer: The buffer to commit to
2766 * @event: The event pointer to commit.
2768 * This commits the data to the ring buffer, and releases any locks held.
2770 * Must be paired with ring_buffer_lock_reserve.
2772 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2773 struct ring_buffer_event *event)
2775 struct ring_buffer_per_cpu *cpu_buffer;
2776 int cpu = raw_smp_processor_id();
2778 cpu_buffer = buffer->buffers[cpu];
2780 rb_commit(cpu_buffer, event);
2782 rb_wakeups(buffer, cpu_buffer);
2784 trace_recursive_unlock(cpu_buffer);
2786 preempt_enable_notrace();
2790 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2792 static noinline void
2793 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2794 struct rb_event_info *info)
2796 WARN_ONCE(info->delta > (1ULL << 59),
2797 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2798 (unsigned long long)info->delta,
2799 (unsigned long long)info->ts,
2800 (unsigned long long)cpu_buffer->write_stamp,
2801 sched_clock_stable() ? "" :
2802 "If you just came from a suspend/resume,\n"
2803 "please switch to the trace global clock:\n"
2804 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2805 "or add trace_clock=global to the kernel command line\n");
2806 info->add_timestamp = 1;
2809 static struct ring_buffer_event *
2810 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2811 struct rb_event_info *info)
2813 struct ring_buffer_event *event;
2814 struct buffer_page *tail_page;
2815 unsigned long tail, write;
2818 * If the time delta since the last event is too big to
2819 * hold in the time field of the event, then we append a
2820 * TIME EXTEND event ahead of the data event.
2822 if (unlikely(info->add_timestamp))
2823 info->length += RB_LEN_TIME_EXTEND;
2825 /* Don't let the compiler play games with cpu_buffer->tail_page */
2826 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2827 write = local_add_return(info->length, &tail_page->write);
2829 /* set write to only the index of the write */
2830 write &= RB_WRITE_MASK;
2831 tail = write - info->length;
2834 * If this is the first commit on the page, then it has the same
2835 * timestamp as the page itself.
2837 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2840 /* See if we shot pass the end of this buffer page */
2841 if (unlikely(write > BUF_PAGE_SIZE))
2842 return rb_move_tail(cpu_buffer, tail, info);
2844 /* We reserved something on the buffer */
2846 event = __rb_page_index(tail_page, tail);
2847 rb_update_event(cpu_buffer, event, info);
2849 local_inc(&tail_page->entries);
2852 * If this is the first commit on the page, then update
2856 tail_page->page->time_stamp = info->ts;
2858 /* account for these added bytes */
2859 local_add(info->length, &cpu_buffer->entries_bytes);
2864 static __always_inline struct ring_buffer_event *
2865 rb_reserve_next_event(struct ring_buffer *buffer,
2866 struct ring_buffer_per_cpu *cpu_buffer,
2867 unsigned long length)
2869 struct ring_buffer_event *event;
2870 struct rb_event_info info;
2874 rb_start_commit(cpu_buffer);
2876 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2878 * Due to the ability to swap a cpu buffer from a buffer
2879 * it is possible it was swapped before we committed.
2880 * (committing stops a swap). We check for it here and
2881 * if it happened, we have to fail the write.
2884 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2885 local_dec(&cpu_buffer->committing);
2886 local_dec(&cpu_buffer->commits);
2891 info.length = rb_calculate_event_length(length);
2893 info.add_timestamp = 0;
2897 * We allow for interrupts to reenter here and do a trace.
2898 * If one does, it will cause this original code to loop
2899 * back here. Even with heavy interrupts happening, this
2900 * should only happen a few times in a row. If this happens
2901 * 1000 times in a row, there must be either an interrupt
2902 * storm or we have something buggy.
2905 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2908 info.ts = rb_time_stamp(cpu_buffer->buffer);
2909 diff = info.ts - cpu_buffer->write_stamp;
2911 /* make sure this diff is calculated here */
2914 if (ring_buffer_time_stamp_abs(buffer)) {
2915 info.delta = info.ts;
2916 rb_handle_timestamp(cpu_buffer, &info);
2917 } else /* Did the write stamp get updated already? */
2918 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2920 if (unlikely(test_time_stamp(info.delta)))
2921 rb_handle_timestamp(cpu_buffer, &info);
2924 event = __rb_reserve_next(cpu_buffer, &info);
2926 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2927 if (info.add_timestamp)
2928 info.length -= RB_LEN_TIME_EXTEND;
2938 rb_end_commit(cpu_buffer);
2943 * ring_buffer_lock_reserve - reserve a part of the buffer
2944 * @buffer: the ring buffer to reserve from
2945 * @length: the length of the data to reserve (excluding event header)
2947 * Returns a reserved event on the ring buffer to copy directly to.
2948 * The user of this interface will need to get the body to write into
2949 * and can use the ring_buffer_event_data() interface.
2951 * The length is the length of the data needed, not the event length
2952 * which also includes the event header.
2954 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2955 * If NULL is returned, then nothing has been allocated or locked.
2957 struct ring_buffer_event *
2958 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2960 struct ring_buffer_per_cpu *cpu_buffer;
2961 struct ring_buffer_event *event;
2964 /* If we are tracing schedule, we don't want to recurse */
2965 preempt_disable_notrace();
2967 if (unlikely(atomic_read(&buffer->record_disabled)))
2970 cpu = raw_smp_processor_id();
2972 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2975 cpu_buffer = buffer->buffers[cpu];
2977 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2980 if (unlikely(length > BUF_MAX_DATA_SIZE))
2983 if (unlikely(trace_recursive_lock(cpu_buffer)))
2986 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2993 trace_recursive_unlock(cpu_buffer);
2995 preempt_enable_notrace();
2998 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3001 * Decrement the entries to the page that an event is on.
3002 * The event does not even need to exist, only the pointer
3003 * to the page it is on. This may only be called before the commit
3007 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3008 struct ring_buffer_event *event)
3010 unsigned long addr = (unsigned long)event;
3011 struct buffer_page *bpage = cpu_buffer->commit_page;
3012 struct buffer_page *start;
3016 /* Do the likely case first */
3017 if (likely(bpage->page == (void *)addr)) {
3018 local_dec(&bpage->entries);
3023 * Because the commit page may be on the reader page we
3024 * start with the next page and check the end loop there.
3026 rb_inc_page(cpu_buffer, &bpage);
3029 if (bpage->page == (void *)addr) {
3030 local_dec(&bpage->entries);
3033 rb_inc_page(cpu_buffer, &bpage);
3034 } while (bpage != start);
3036 /* commit not part of this buffer?? */
3037 RB_WARN_ON(cpu_buffer, 1);
3041 * ring_buffer_commit_discard - discard an event that has not been committed
3042 * @buffer: the ring buffer
3043 * @event: non committed event to discard
3045 * Sometimes an event that is in the ring buffer needs to be ignored.
3046 * This function lets the user discard an event in the ring buffer
3047 * and then that event will not be read later.
3049 * This function only works if it is called before the item has been
3050 * committed. It will try to free the event from the ring buffer
3051 * if another event has not been added behind it.
3053 * If another event has been added behind it, it will set the event
3054 * up as discarded, and perform the commit.
3056 * If this function is called, do not call ring_buffer_unlock_commit on
3059 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3060 struct ring_buffer_event *event)
3062 struct ring_buffer_per_cpu *cpu_buffer;
3065 /* The event is discarded regardless */
3066 rb_event_discard(event);
3068 cpu = smp_processor_id();
3069 cpu_buffer = buffer->buffers[cpu];
3072 * This must only be called if the event has not been
3073 * committed yet. Thus we can assume that preemption
3074 * is still disabled.
3076 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3078 rb_decrement_entry(cpu_buffer, event);
3079 if (rb_try_to_discard(cpu_buffer, event))
3083 * The commit is still visible by the reader, so we
3084 * must still update the timestamp.
3086 rb_update_write_stamp(cpu_buffer, event);
3088 rb_end_commit(cpu_buffer);
3090 trace_recursive_unlock(cpu_buffer);
3092 preempt_enable_notrace();
3095 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3098 * ring_buffer_write - write data to the buffer without reserving
3099 * @buffer: The ring buffer to write to.
3100 * @length: The length of the data being written (excluding the event header)
3101 * @data: The data to write to the buffer.
3103 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3104 * one function. If you already have the data to write to the buffer, it
3105 * may be easier to simply call this function.
3107 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3108 * and not the length of the event which would hold the header.
3110 int ring_buffer_write(struct ring_buffer *buffer,
3111 unsigned long length,
3114 struct ring_buffer_per_cpu *cpu_buffer;
3115 struct ring_buffer_event *event;
3120 preempt_disable_notrace();
3122 if (atomic_read(&buffer->record_disabled))
3125 cpu = raw_smp_processor_id();
3127 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3130 cpu_buffer = buffer->buffers[cpu];
3132 if (atomic_read(&cpu_buffer->record_disabled))
3135 if (length > BUF_MAX_DATA_SIZE)
3138 if (unlikely(trace_recursive_lock(cpu_buffer)))
3141 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3145 body = rb_event_data(event);
3147 memcpy(body, data, length);
3149 rb_commit(cpu_buffer, event);
3151 rb_wakeups(buffer, cpu_buffer);
3156 trace_recursive_unlock(cpu_buffer);
3159 preempt_enable_notrace();
3163 EXPORT_SYMBOL_GPL(ring_buffer_write);
3165 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3167 struct buffer_page *reader = cpu_buffer->reader_page;
3168 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3169 struct buffer_page *commit = cpu_buffer->commit_page;
3171 /* In case of error, head will be NULL */
3172 if (unlikely(!head))
3175 /* Reader should exhaust content in reader page */
3176 if (reader->read != rb_page_commit(reader))
3180 * If writers are committing on the reader page, knowing all
3181 * committed content has been read, the ring buffer is empty.
3183 if (commit == reader)
3187 * If writers are committing on a page other than reader page
3188 * and head page, there should always be content to read.
3194 * Writers are committing on the head page, we just need
3195 * to care about there're committed data, and the reader will
3196 * swap reader page with head page when it is to read data.
3198 return rb_page_commit(commit) == 0;
3202 * ring_buffer_record_disable - stop all writes into the buffer
3203 * @buffer: The ring buffer to stop writes to.
3205 * This prevents all writes to the buffer. Any attempt to write
3206 * to the buffer after this will fail and return NULL.
3208 * The caller should call synchronize_sched() after this.
3210 void ring_buffer_record_disable(struct ring_buffer *buffer)
3212 atomic_inc(&buffer->record_disabled);
3214 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3217 * ring_buffer_record_enable - enable writes to the buffer
3218 * @buffer: The ring buffer to enable writes
3220 * Note, multiple disables will need the same number of enables
3221 * to truly enable the writing (much like preempt_disable).
3223 void ring_buffer_record_enable(struct ring_buffer *buffer)
3225 atomic_dec(&buffer->record_disabled);
3227 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3230 * ring_buffer_record_off - stop all writes into the buffer
3231 * @buffer: The ring buffer to stop writes to.
3233 * This prevents all writes to the buffer. Any attempt to write
3234 * to the buffer after this will fail and return NULL.
3236 * This is different than ring_buffer_record_disable() as
3237 * it works like an on/off switch, where as the disable() version
3238 * must be paired with a enable().
3240 void ring_buffer_record_off(struct ring_buffer *buffer)
3243 unsigned int new_rd;
3246 rd = atomic_read(&buffer->record_disabled);
3247 new_rd = rd | RB_BUFFER_OFF;
3248 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3250 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3253 * ring_buffer_record_on - restart writes into the buffer
3254 * @buffer: The ring buffer to start writes to.
3256 * This enables all writes to the buffer that was disabled by
3257 * ring_buffer_record_off().
3259 * This is different than ring_buffer_record_enable() as
3260 * it works like an on/off switch, where as the enable() version
3261 * must be paired with a disable().
3263 void ring_buffer_record_on(struct ring_buffer *buffer)
3266 unsigned int new_rd;
3269 rd = atomic_read(&buffer->record_disabled);
3270 new_rd = rd & ~RB_BUFFER_OFF;
3271 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3273 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3276 * ring_buffer_record_is_on - return true if the ring buffer can write
3277 * @buffer: The ring buffer to see if write is enabled
3279 * Returns true if the ring buffer is in a state that it accepts writes.
3281 bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3283 return !atomic_read(&buffer->record_disabled);
3287 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3288 * @buffer: The ring buffer to see if write is set enabled
3290 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3291 * Note that this does NOT mean it is in a writable state.
3293 * It may return true when the ring buffer has been disabled by
3294 * ring_buffer_record_disable(), as that is a temporary disabling of
3297 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3299 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3303 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3304 * @buffer: The ring buffer to stop writes to.
3305 * @cpu: The CPU buffer to stop
3307 * This prevents all writes to the buffer. Any attempt to write
3308 * to the buffer after this will fail and return NULL.
3310 * The caller should call synchronize_sched() after this.
3312 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3314 struct ring_buffer_per_cpu *cpu_buffer;
3316 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3319 cpu_buffer = buffer->buffers[cpu];
3320 atomic_inc(&cpu_buffer->record_disabled);
3322 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3325 * ring_buffer_record_enable_cpu - enable writes to the buffer
3326 * @buffer: The ring buffer to enable writes
3327 * @cpu: The CPU to enable.
3329 * Note, multiple disables will need the same number of enables
3330 * to truly enable the writing (much like preempt_disable).
3332 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3334 struct ring_buffer_per_cpu *cpu_buffer;
3336 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3339 cpu_buffer = buffer->buffers[cpu];
3340 atomic_dec(&cpu_buffer->record_disabled);
3342 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3345 * The total entries in the ring buffer is the running counter
3346 * of entries entered into the ring buffer, minus the sum of
3347 * the entries read from the ring buffer and the number of
3348 * entries that were overwritten.
3350 static inline unsigned long
3351 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3353 return local_read(&cpu_buffer->entries) -
3354 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3358 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3359 * @buffer: The ring buffer
3360 * @cpu: The per CPU buffer to read from.
3362 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3364 unsigned long flags;
3365 struct ring_buffer_per_cpu *cpu_buffer;
3366 struct buffer_page *bpage;
3369 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3372 cpu_buffer = buffer->buffers[cpu];
3373 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3375 * if the tail is on reader_page, oldest time stamp is on the reader
3378 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3379 bpage = cpu_buffer->reader_page;
3381 bpage = rb_set_head_page(cpu_buffer);
3383 ret = bpage->page->time_stamp;
3384 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3388 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3391 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3392 * @buffer: The ring buffer
3393 * @cpu: The per CPU buffer to read from.
3395 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3397 struct ring_buffer_per_cpu *cpu_buffer;
3400 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3403 cpu_buffer = buffer->buffers[cpu];
3404 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3408 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3411 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3412 * @buffer: The ring buffer
3413 * @cpu: The per CPU buffer to get the entries from.
3415 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3417 struct ring_buffer_per_cpu *cpu_buffer;
3419 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3422 cpu_buffer = buffer->buffers[cpu];
3424 return rb_num_of_entries(cpu_buffer);
3426 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3429 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3430 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3431 * @buffer: The ring buffer
3432 * @cpu: The per CPU buffer to get the number of overruns from
3434 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3436 struct ring_buffer_per_cpu *cpu_buffer;
3439 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3442 cpu_buffer = buffer->buffers[cpu];
3443 ret = local_read(&cpu_buffer->overrun);
3447 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3450 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3451 * commits failing due to the buffer wrapping around while there are uncommitted
3452 * events, such as during an interrupt storm.
3453 * @buffer: The ring buffer
3454 * @cpu: The per CPU buffer to get the number of overruns from
3457 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3459 struct ring_buffer_per_cpu *cpu_buffer;
3462 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3465 cpu_buffer = buffer->buffers[cpu];
3466 ret = local_read(&cpu_buffer->commit_overrun);
3470 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3473 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3474 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3475 * @buffer: The ring buffer
3476 * @cpu: The per CPU buffer to get the number of overruns from
3479 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3481 struct ring_buffer_per_cpu *cpu_buffer;
3484 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3487 cpu_buffer = buffer->buffers[cpu];
3488 ret = local_read(&cpu_buffer->dropped_events);
3492 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3495 * ring_buffer_read_events_cpu - get the number of events successfully read
3496 * @buffer: The ring buffer
3497 * @cpu: The per CPU buffer to get the number of events read
3500 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3502 struct ring_buffer_per_cpu *cpu_buffer;
3504 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3507 cpu_buffer = buffer->buffers[cpu];
3508 return cpu_buffer->read;
3510 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3513 * ring_buffer_entries - get the number of entries in a buffer
3514 * @buffer: The ring buffer
3516 * Returns the total number of entries in the ring buffer
3519 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3521 struct ring_buffer_per_cpu *cpu_buffer;
3522 unsigned long entries = 0;
3525 /* if you care about this being correct, lock the buffer */
3526 for_each_buffer_cpu(buffer, cpu) {
3527 cpu_buffer = buffer->buffers[cpu];
3528 entries += rb_num_of_entries(cpu_buffer);
3533 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3536 * ring_buffer_overruns - get the number of overruns in buffer
3537 * @buffer: The ring buffer
3539 * Returns the total number of overruns in the ring buffer
3542 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3544 struct ring_buffer_per_cpu *cpu_buffer;
3545 unsigned long overruns = 0;
3548 /* if you care about this being correct, lock the buffer */
3549 for_each_buffer_cpu(buffer, cpu) {
3550 cpu_buffer = buffer->buffers[cpu];
3551 overruns += local_read(&cpu_buffer->overrun);
3556 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3558 static void rb_iter_reset(struct ring_buffer_iter *iter)
3560 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3562 /* Iterator usage is expected to have record disabled */
3563 iter->head_page = cpu_buffer->reader_page;
3564 iter->head = cpu_buffer->reader_page->read;
3566 iter->cache_reader_page = iter->head_page;
3567 iter->cache_read = cpu_buffer->read;
3570 iter->read_stamp = cpu_buffer->read_stamp;
3572 iter->read_stamp = iter->head_page->page->time_stamp;
3576 * ring_buffer_iter_reset - reset an iterator
3577 * @iter: The iterator to reset
3579 * Resets the iterator, so that it will start from the beginning
3582 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3584 struct ring_buffer_per_cpu *cpu_buffer;
3585 unsigned long flags;
3590 cpu_buffer = iter->cpu_buffer;
3592 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3593 rb_iter_reset(iter);
3594 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3596 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3599 * ring_buffer_iter_empty - check if an iterator has no more to read
3600 * @iter: The iterator to check
3602 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3604 struct ring_buffer_per_cpu *cpu_buffer;
3605 struct buffer_page *reader;
3606 struct buffer_page *head_page;
3607 struct buffer_page *commit_page;
3610 cpu_buffer = iter->cpu_buffer;
3612 /* Remember, trace recording is off when iterator is in use */
3613 reader = cpu_buffer->reader_page;
3614 head_page = cpu_buffer->head_page;
3615 commit_page = cpu_buffer->commit_page;
3616 commit = rb_page_commit(commit_page);
3618 return ((iter->head_page == commit_page && iter->head == commit) ||
3619 (iter->head_page == reader && commit_page == head_page &&
3620 head_page->read == commit &&
3621 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3623 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3626 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3627 struct ring_buffer_event *event)
3631 switch (event->type_len) {
3632 case RINGBUF_TYPE_PADDING:
3635 case RINGBUF_TYPE_TIME_EXTEND:
3636 delta = ring_buffer_event_time_stamp(event);
3637 cpu_buffer->read_stamp += delta;
3640 case RINGBUF_TYPE_TIME_STAMP:
3641 delta = ring_buffer_event_time_stamp(event);
3642 cpu_buffer->read_stamp = delta;
3645 case RINGBUF_TYPE_DATA:
3646 cpu_buffer->read_stamp += event->time_delta;
3656 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3657 struct ring_buffer_event *event)
3661 switch (event->type_len) {
3662 case RINGBUF_TYPE_PADDING:
3665 case RINGBUF_TYPE_TIME_EXTEND:
3666 delta = ring_buffer_event_time_stamp(event);
3667 iter->read_stamp += delta;
3670 case RINGBUF_TYPE_TIME_STAMP:
3671 delta = ring_buffer_event_time_stamp(event);
3672 iter->read_stamp = delta;
3675 case RINGBUF_TYPE_DATA:
3676 iter->read_stamp += event->time_delta;
3685 static struct buffer_page *
3686 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3688 struct buffer_page *reader = NULL;
3689 unsigned long overwrite;
3690 unsigned long flags;
3694 local_irq_save(flags);
3695 arch_spin_lock(&cpu_buffer->lock);
3699 * This should normally only loop twice. But because the
3700 * start of the reader inserts an empty page, it causes
3701 * a case where we will loop three times. There should be no
3702 * reason to loop four times (that I know of).
3704 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3709 reader = cpu_buffer->reader_page;
3711 /* If there's more to read, return this page */
3712 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3715 /* Never should we have an index greater than the size */
3716 if (RB_WARN_ON(cpu_buffer,
3717 cpu_buffer->reader_page->read > rb_page_size(reader)))
3720 /* check if we caught up to the tail */
3722 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3725 /* Don't bother swapping if the ring buffer is empty */
3726 if (rb_num_of_entries(cpu_buffer) == 0)
3730 * Reset the reader page to size zero.
3732 local_set(&cpu_buffer->reader_page->write, 0);
3733 local_set(&cpu_buffer->reader_page->entries, 0);
3734 local_set(&cpu_buffer->reader_page->page->commit, 0);
3735 cpu_buffer->reader_page->real_end = 0;
3739 * Splice the empty reader page into the list around the head.
3741 reader = rb_set_head_page(cpu_buffer);
3744 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3745 cpu_buffer->reader_page->list.prev = reader->list.prev;
3748 * cpu_buffer->pages just needs to point to the buffer, it
3749 * has no specific buffer page to point to. Lets move it out
3750 * of our way so we don't accidentally swap it.
3752 cpu_buffer->pages = reader->list.prev;
3754 /* The reader page will be pointing to the new head */
3755 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3758 * We want to make sure we read the overruns after we set up our
3759 * pointers to the next object. The writer side does a
3760 * cmpxchg to cross pages which acts as the mb on the writer
3761 * side. Note, the reader will constantly fail the swap
3762 * while the writer is updating the pointers, so this
3763 * guarantees that the overwrite recorded here is the one we
3764 * want to compare with the last_overrun.
3767 overwrite = local_read(&(cpu_buffer->overrun));
3770 * Here's the tricky part.
3772 * We need to move the pointer past the header page.
3773 * But we can only do that if a writer is not currently
3774 * moving it. The page before the header page has the
3775 * flag bit '1' set if it is pointing to the page we want.
3776 * but if the writer is in the process of moving it
3777 * than it will be '2' or already moved '0'.
3780 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3783 * If we did not convert it, then we must try again.
3789 * Yeah! We succeeded in replacing the page.
3791 * Now make the new head point back to the reader page.
3793 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3794 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3796 /* Finally update the reader page to the new head */
3797 cpu_buffer->reader_page = reader;
3798 cpu_buffer->reader_page->read = 0;
3800 if (overwrite != cpu_buffer->last_overrun) {
3801 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3802 cpu_buffer->last_overrun = overwrite;
3808 /* Update the read_stamp on the first event */
3809 if (reader && reader->read == 0)
3810 cpu_buffer->read_stamp = reader->page->time_stamp;
3812 arch_spin_unlock(&cpu_buffer->lock);
3813 local_irq_restore(flags);
3818 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3820 struct ring_buffer_event *event;
3821 struct buffer_page *reader;
3824 reader = rb_get_reader_page(cpu_buffer);
3826 /* This function should not be called when buffer is empty */
3827 if (RB_WARN_ON(cpu_buffer, !reader))
3830 event = rb_reader_event(cpu_buffer);
3832 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3835 rb_update_read_stamp(cpu_buffer, event);
3837 length = rb_event_length(event);
3838 cpu_buffer->reader_page->read += length;
3841 static void rb_advance_iter(struct ring_buffer_iter *iter)
3843 struct ring_buffer_per_cpu *cpu_buffer;
3844 struct ring_buffer_event *event;
3847 cpu_buffer = iter->cpu_buffer;
3850 * Check if we are at the end of the buffer.
3852 if (iter->head >= rb_page_size(iter->head_page)) {
3853 /* discarded commits can make the page empty */
3854 if (iter->head_page == cpu_buffer->commit_page)
3860 event = rb_iter_head_event(iter);
3862 length = rb_event_length(event);
3865 * This should not be called to advance the header if we are
3866 * at the tail of the buffer.
3868 if (RB_WARN_ON(cpu_buffer,
3869 (iter->head_page == cpu_buffer->commit_page) &&
3870 (iter->head + length > rb_commit_index(cpu_buffer))))
3873 rb_update_iter_read_stamp(iter, event);
3875 iter->head += length;
3877 /* check for end of page padding */
3878 if ((iter->head >= rb_page_size(iter->head_page)) &&
3879 (iter->head_page != cpu_buffer->commit_page))
3883 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3885 return cpu_buffer->lost_events;
3888 static struct ring_buffer_event *
3889 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3890 unsigned long *lost_events)
3892 struct ring_buffer_event *event;
3893 struct buffer_page *reader;
3900 * We repeat when a time extend is encountered.
3901 * Since the time extend is always attached to a data event,
3902 * we should never loop more than once.
3903 * (We never hit the following condition more than twice).
3905 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3908 reader = rb_get_reader_page(cpu_buffer);
3912 event = rb_reader_event(cpu_buffer);
3914 switch (event->type_len) {
3915 case RINGBUF_TYPE_PADDING:
3916 if (rb_null_event(event))
3917 RB_WARN_ON(cpu_buffer, 1);
3919 * Because the writer could be discarding every
3920 * event it creates (which would probably be bad)
3921 * if we were to go back to "again" then we may never
3922 * catch up, and will trigger the warn on, or lock
3923 * the box. Return the padding, and we will release
3924 * the current locks, and try again.
3928 case RINGBUF_TYPE_TIME_EXTEND:
3929 /* Internal data, OK to advance */
3930 rb_advance_reader(cpu_buffer);
3933 case RINGBUF_TYPE_TIME_STAMP:
3935 *ts = ring_buffer_event_time_stamp(event);
3936 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3937 cpu_buffer->cpu, ts);
3939 /* Internal data, OK to advance */
3940 rb_advance_reader(cpu_buffer);
3943 case RINGBUF_TYPE_DATA:
3945 *ts = cpu_buffer->read_stamp + event->time_delta;
3946 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3947 cpu_buffer->cpu, ts);
3950 *lost_events = rb_lost_events(cpu_buffer);
3959 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3961 static struct ring_buffer_event *
3962 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3964 struct ring_buffer *buffer;
3965 struct ring_buffer_per_cpu *cpu_buffer;
3966 struct ring_buffer_event *event;
3972 cpu_buffer = iter->cpu_buffer;
3973 buffer = cpu_buffer->buffer;
3976 * Check if someone performed a consuming read to
3977 * the buffer. A consuming read invalidates the iterator
3978 * and we need to reset the iterator in this case.
3980 if (unlikely(iter->cache_read != cpu_buffer->read ||
3981 iter->cache_reader_page != cpu_buffer->reader_page))
3982 rb_iter_reset(iter);
3985 if (ring_buffer_iter_empty(iter))
3989 * We repeat when a time extend is encountered or we hit
3990 * the end of the page. Since the time extend is always attached
3991 * to a data event, we should never loop more than three times.
3992 * Once for going to next page, once on time extend, and
3993 * finally once to get the event.
3994 * (We never hit the following condition more than thrice).
3996 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3999 if (rb_per_cpu_empty(cpu_buffer))
4002 if (iter->head >= rb_page_size(iter->head_page)) {
4007 event = rb_iter_head_event(iter);
4009 switch (event->type_len) {
4010 case RINGBUF_TYPE_PADDING:
4011 if (rb_null_event(event)) {
4015 rb_advance_iter(iter);
4018 case RINGBUF_TYPE_TIME_EXTEND:
4019 /* Internal data, OK to advance */
4020 rb_advance_iter(iter);
4023 case RINGBUF_TYPE_TIME_STAMP:
4025 *ts = ring_buffer_event_time_stamp(event);
4026 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4027 cpu_buffer->cpu, ts);
4029 /* Internal data, OK to advance */
4030 rb_advance_iter(iter);
4033 case RINGBUF_TYPE_DATA:
4035 *ts = iter->read_stamp + event->time_delta;
4036 ring_buffer_normalize_time_stamp(buffer,
4037 cpu_buffer->cpu, ts);
4047 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4049 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4051 if (likely(!in_nmi())) {
4052 raw_spin_lock(&cpu_buffer->reader_lock);
4057 * If an NMI die dumps out the content of the ring buffer
4058 * trylock must be used to prevent a deadlock if the NMI
4059 * preempted a task that holds the ring buffer locks. If
4060 * we get the lock then all is fine, if not, then continue
4061 * to do the read, but this can corrupt the ring buffer,
4062 * so it must be permanently disabled from future writes.
4063 * Reading from NMI is a oneshot deal.
4065 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4068 /* Continue without locking, but disable the ring buffer */
4069 atomic_inc(&cpu_buffer->record_disabled);
4074 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4077 raw_spin_unlock(&cpu_buffer->reader_lock);
4082 * ring_buffer_peek - peek at the next event to be read
4083 * @buffer: The ring buffer to read
4084 * @cpu: The cpu to peak at
4085 * @ts: The timestamp counter of this event.
4086 * @lost_events: a variable to store if events were lost (may be NULL)
4088 * This will return the event that will be read next, but does
4089 * not consume the data.
4091 struct ring_buffer_event *
4092 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4093 unsigned long *lost_events)
4095 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4096 struct ring_buffer_event *event;
4097 unsigned long flags;
4100 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4104 local_irq_save(flags);
4105 dolock = rb_reader_lock(cpu_buffer);
4106 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4107 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4108 rb_advance_reader(cpu_buffer);
4109 rb_reader_unlock(cpu_buffer, dolock);
4110 local_irq_restore(flags);
4112 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4119 * ring_buffer_iter_peek - peek at the next event to be read
4120 * @iter: The ring buffer iterator
4121 * @ts: The timestamp counter of this event.
4123 * This will return the event that will be read next, but does
4124 * not increment the iterator.
4126 struct ring_buffer_event *
4127 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4129 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4130 struct ring_buffer_event *event;
4131 unsigned long flags;
4134 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4135 event = rb_iter_peek(iter, ts);
4136 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4138 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4145 * ring_buffer_consume - return an event and consume it
4146 * @buffer: The ring buffer to get the next event from
4147 * @cpu: the cpu to read the buffer from
4148 * @ts: a variable to store the timestamp (may be NULL)
4149 * @lost_events: a variable to store if events were lost (may be NULL)
4151 * Returns the next event in the ring buffer, and that event is consumed.
4152 * Meaning, that sequential reads will keep returning a different event,
4153 * and eventually empty the ring buffer if the producer is slower.
4155 struct ring_buffer_event *
4156 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4157 unsigned long *lost_events)
4159 struct ring_buffer_per_cpu *cpu_buffer;
4160 struct ring_buffer_event *event = NULL;
4161 unsigned long flags;
4165 /* might be called in atomic */
4168 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4171 cpu_buffer = buffer->buffers[cpu];
4172 local_irq_save(flags);
4173 dolock = rb_reader_lock(cpu_buffer);
4175 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4177 cpu_buffer->lost_events = 0;
4178 rb_advance_reader(cpu_buffer);
4181 rb_reader_unlock(cpu_buffer, dolock);
4182 local_irq_restore(flags);
4187 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4192 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4195 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4196 * @buffer: The ring buffer to read from
4197 * @cpu: The cpu buffer to iterate over
4198 * @flags: gfp flags to use for memory allocation
4200 * This performs the initial preparations necessary to iterate
4201 * through the buffer. Memory is allocated, buffer recording
4202 * is disabled, and the iterator pointer is returned to the caller.
4204 * Disabling buffer recording prevents the reading from being
4205 * corrupted. This is not a consuming read, so a producer is not
4208 * After a sequence of ring_buffer_read_prepare calls, the user is
4209 * expected to make at least one call to ring_buffer_read_prepare_sync.
4210 * Afterwards, ring_buffer_read_start is invoked to get things going
4213 * This overall must be paired with ring_buffer_read_finish.
4215 struct ring_buffer_iter *
4216 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4218 struct ring_buffer_per_cpu *cpu_buffer;
4219 struct ring_buffer_iter *iter;
4221 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4224 iter = kmalloc(sizeof(*iter), flags);
4228 cpu_buffer = buffer->buffers[cpu];
4230 iter->cpu_buffer = cpu_buffer;
4232 atomic_inc(&buffer->resize_disabled);
4233 atomic_inc(&cpu_buffer->record_disabled);
4237 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4240 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4242 * All previously invoked ring_buffer_read_prepare calls to prepare
4243 * iterators will be synchronized. Afterwards, read_buffer_read_start
4244 * calls on those iterators are allowed.
4247 ring_buffer_read_prepare_sync(void)
4249 synchronize_sched();
4251 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4254 * ring_buffer_read_start - start a non consuming read of the buffer
4255 * @iter: The iterator returned by ring_buffer_read_prepare
4257 * This finalizes the startup of an iteration through the buffer.
4258 * The iterator comes from a call to ring_buffer_read_prepare and
4259 * an intervening ring_buffer_read_prepare_sync must have been
4262 * Must be paired with ring_buffer_read_finish.
4265 ring_buffer_read_start(struct ring_buffer_iter *iter)
4267 struct ring_buffer_per_cpu *cpu_buffer;
4268 unsigned long flags;
4273 cpu_buffer = iter->cpu_buffer;
4275 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4276 arch_spin_lock(&cpu_buffer->lock);
4277 rb_iter_reset(iter);
4278 arch_spin_unlock(&cpu_buffer->lock);
4279 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4281 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4284 * ring_buffer_read_finish - finish reading the iterator of the buffer
4285 * @iter: The iterator retrieved by ring_buffer_start
4287 * This re-enables the recording to the buffer, and frees the
4291 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4293 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4294 unsigned long flags;
4297 * Ring buffer is disabled from recording, here's a good place
4298 * to check the integrity of the ring buffer.
4299 * Must prevent readers from trying to read, as the check
4300 * clears the HEAD page and readers require it.
4302 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4303 rb_check_pages(cpu_buffer);
4304 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4306 atomic_dec(&cpu_buffer->record_disabled);
4307 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4310 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4313 * ring_buffer_read - read the next item in the ring buffer by the iterator
4314 * @iter: The ring buffer iterator
4315 * @ts: The time stamp of the event read.
4317 * This reads the next event in the ring buffer and increments the iterator.
4319 struct ring_buffer_event *
4320 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4322 struct ring_buffer_event *event;
4323 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4324 unsigned long flags;
4326 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4328 event = rb_iter_peek(iter, ts);
4332 if (event->type_len == RINGBUF_TYPE_PADDING)
4335 rb_advance_iter(iter);
4337 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4341 EXPORT_SYMBOL_GPL(ring_buffer_read);
4344 * ring_buffer_size - return the size of the ring buffer (in bytes)
4345 * @buffer: The ring buffer.
4347 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4350 * Earlier, this method returned
4351 * BUF_PAGE_SIZE * buffer->nr_pages
4352 * Since the nr_pages field is now removed, we have converted this to
4353 * return the per cpu buffer value.
4355 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4358 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4360 EXPORT_SYMBOL_GPL(ring_buffer_size);
4363 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4365 rb_head_page_deactivate(cpu_buffer);
4367 cpu_buffer->head_page
4368 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4369 local_set(&cpu_buffer->head_page->write, 0);
4370 local_set(&cpu_buffer->head_page->entries, 0);
4371 local_set(&cpu_buffer->head_page->page->commit, 0);
4373 cpu_buffer->head_page->read = 0;
4375 cpu_buffer->tail_page = cpu_buffer->head_page;
4376 cpu_buffer->commit_page = cpu_buffer->head_page;
4378 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4379 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4380 local_set(&cpu_buffer->reader_page->write, 0);
4381 local_set(&cpu_buffer->reader_page->entries, 0);
4382 local_set(&cpu_buffer->reader_page->page->commit, 0);
4383 cpu_buffer->reader_page->read = 0;
4385 local_set(&cpu_buffer->entries_bytes, 0);
4386 local_set(&cpu_buffer->overrun, 0);
4387 local_set(&cpu_buffer->commit_overrun, 0);
4388 local_set(&cpu_buffer->dropped_events, 0);
4389 local_set(&cpu_buffer->entries, 0);
4390 local_set(&cpu_buffer->committing, 0);
4391 local_set(&cpu_buffer->commits, 0);
4392 cpu_buffer->read = 0;
4393 cpu_buffer->read_bytes = 0;
4395 cpu_buffer->write_stamp = 0;
4396 cpu_buffer->read_stamp = 0;
4398 cpu_buffer->lost_events = 0;
4399 cpu_buffer->last_overrun = 0;
4401 rb_head_page_activate(cpu_buffer);
4405 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4406 * @buffer: The ring buffer to reset a per cpu buffer of
4407 * @cpu: The CPU buffer to be reset
4409 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4411 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4412 unsigned long flags;
4414 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4416 /* prevent another thread from changing buffer sizes */
4417 mutex_lock(&buffer->mutex);
4419 atomic_inc(&buffer->resize_disabled);
4420 atomic_inc(&cpu_buffer->record_disabled);
4422 /* Make sure all commits have finished */
4423 synchronize_sched();
4425 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4427 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4430 arch_spin_lock(&cpu_buffer->lock);
4432 rb_reset_cpu(cpu_buffer);
4434 arch_spin_unlock(&cpu_buffer->lock);
4437 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4439 atomic_dec(&cpu_buffer->record_disabled);
4440 atomic_dec(&buffer->resize_disabled);
4442 mutex_unlock(&buffer->mutex);
4444 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4447 * ring_buffer_reset - reset a ring buffer
4448 * @buffer: The ring buffer to reset all cpu buffers
4450 void ring_buffer_reset(struct ring_buffer *buffer)
4454 for_each_buffer_cpu(buffer, cpu)
4455 ring_buffer_reset_cpu(buffer, cpu);
4457 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4460 * rind_buffer_empty - is the ring buffer empty?
4461 * @buffer: The ring buffer to test
4463 bool ring_buffer_empty(struct ring_buffer *buffer)
4465 struct ring_buffer_per_cpu *cpu_buffer;
4466 unsigned long flags;
4471 /* yes this is racy, but if you don't like the race, lock the buffer */
4472 for_each_buffer_cpu(buffer, cpu) {
4473 cpu_buffer = buffer->buffers[cpu];
4474 local_irq_save(flags);
4475 dolock = rb_reader_lock(cpu_buffer);
4476 ret = rb_per_cpu_empty(cpu_buffer);
4477 rb_reader_unlock(cpu_buffer, dolock);
4478 local_irq_restore(flags);
4486 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4489 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4490 * @buffer: The ring buffer
4491 * @cpu: The CPU buffer to test
4493 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4495 struct ring_buffer_per_cpu *cpu_buffer;
4496 unsigned long flags;
4500 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4503 cpu_buffer = buffer->buffers[cpu];
4504 local_irq_save(flags);
4505 dolock = rb_reader_lock(cpu_buffer);
4506 ret = rb_per_cpu_empty(cpu_buffer);
4507 rb_reader_unlock(cpu_buffer, dolock);
4508 local_irq_restore(flags);
4512 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4514 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4516 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4517 * @buffer_a: One buffer to swap with
4518 * @buffer_b: The other buffer to swap with
4520 * This function is useful for tracers that want to take a "snapshot"
4521 * of a CPU buffer and has another back up buffer lying around.
4522 * it is expected that the tracer handles the cpu buffer not being
4523 * used at the moment.
4525 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4526 struct ring_buffer *buffer_b, int cpu)
4528 struct ring_buffer_per_cpu *cpu_buffer_a;
4529 struct ring_buffer_per_cpu *cpu_buffer_b;
4532 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4533 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4536 cpu_buffer_a = buffer_a->buffers[cpu];
4537 cpu_buffer_b = buffer_b->buffers[cpu];
4539 /* At least make sure the two buffers are somewhat the same */
4540 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4545 if (atomic_read(&buffer_a->record_disabled))
4548 if (atomic_read(&buffer_b->record_disabled))
4551 if (atomic_read(&cpu_buffer_a->record_disabled))
4554 if (atomic_read(&cpu_buffer_b->record_disabled))
4558 * We can't do a synchronize_sched here because this
4559 * function can be called in atomic context.
4560 * Normally this will be called from the same CPU as cpu.
4561 * If not it's up to the caller to protect this.
4563 atomic_inc(&cpu_buffer_a->record_disabled);
4564 atomic_inc(&cpu_buffer_b->record_disabled);
4567 if (local_read(&cpu_buffer_a->committing))
4569 if (local_read(&cpu_buffer_b->committing))
4572 buffer_a->buffers[cpu] = cpu_buffer_b;
4573 buffer_b->buffers[cpu] = cpu_buffer_a;
4575 cpu_buffer_b->buffer = buffer_a;
4576 cpu_buffer_a->buffer = buffer_b;
4581 atomic_dec(&cpu_buffer_a->record_disabled);
4582 atomic_dec(&cpu_buffer_b->record_disabled);
4586 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4587 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4590 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4591 * @buffer: the buffer to allocate for.
4592 * @cpu: the cpu buffer to allocate.
4594 * This function is used in conjunction with ring_buffer_read_page.
4595 * When reading a full page from the ring buffer, these functions
4596 * can be used to speed up the process. The calling function should
4597 * allocate a few pages first with this function. Then when it
4598 * needs to get pages from the ring buffer, it passes the result
4599 * of this function into ring_buffer_read_page, which will swap
4600 * the page that was allocated, with the read page of the buffer.
4603 * The page allocated, or ERR_PTR
4605 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4607 struct ring_buffer_per_cpu *cpu_buffer;
4608 struct buffer_data_page *bpage = NULL;
4609 unsigned long flags;
4612 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4613 return ERR_PTR(-ENODEV);
4615 cpu_buffer = buffer->buffers[cpu];
4616 local_irq_save(flags);
4617 arch_spin_lock(&cpu_buffer->lock);
4619 if (cpu_buffer->free_page) {
4620 bpage = cpu_buffer->free_page;
4621 cpu_buffer->free_page = NULL;
4624 arch_spin_unlock(&cpu_buffer->lock);
4625 local_irq_restore(flags);
4630 page = alloc_pages_node(cpu_to_node(cpu),
4631 GFP_KERNEL | __GFP_NORETRY, 0);
4633 return ERR_PTR(-ENOMEM);
4635 bpage = page_address(page);
4638 rb_init_page(bpage);
4642 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4645 * ring_buffer_free_read_page - free an allocated read page
4646 * @buffer: the buffer the page was allocate for
4647 * @cpu: the cpu buffer the page came from
4648 * @data: the page to free
4650 * Free a page allocated from ring_buffer_alloc_read_page.
4652 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4654 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4655 struct buffer_data_page *bpage = data;
4656 struct page *page = virt_to_page(bpage);
4657 unsigned long flags;
4659 /* If the page is still in use someplace else, we can't reuse it */
4660 if (page_ref_count(page) > 1)
4663 local_irq_save(flags);
4664 arch_spin_lock(&cpu_buffer->lock);
4666 if (!cpu_buffer->free_page) {
4667 cpu_buffer->free_page = bpage;
4671 arch_spin_unlock(&cpu_buffer->lock);
4672 local_irq_restore(flags);
4675 free_page((unsigned long)bpage);
4677 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4680 * ring_buffer_read_page - extract a page from the ring buffer
4681 * @buffer: buffer to extract from
4682 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4683 * @len: amount to extract
4684 * @cpu: the cpu of the buffer to extract
4685 * @full: should the extraction only happen when the page is full.
4687 * This function will pull out a page from the ring buffer and consume it.
4688 * @data_page must be the address of the variable that was returned
4689 * from ring_buffer_alloc_read_page. This is because the page might be used
4690 * to swap with a page in the ring buffer.
4693 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4694 * if (IS_ERR(rpage))
4695 * return PTR_ERR(rpage);
4696 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4698 * process_page(rpage, ret);
4700 * When @full is set, the function will not return true unless
4701 * the writer is off the reader page.
4703 * Note: it is up to the calling functions to handle sleeps and wakeups.
4704 * The ring buffer can be used anywhere in the kernel and can not
4705 * blindly call wake_up. The layer that uses the ring buffer must be
4706 * responsible for that.
4709 * >=0 if data has been transferred, returns the offset of consumed data.
4710 * <0 if no data has been transferred.
4712 int ring_buffer_read_page(struct ring_buffer *buffer,
4713 void **data_page, size_t len, int cpu, int full)
4715 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4716 struct ring_buffer_event *event;
4717 struct buffer_data_page *bpage;
4718 struct buffer_page *reader;
4719 unsigned long missed_events;
4720 unsigned long flags;
4721 unsigned int commit;
4726 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4730 * If len is not big enough to hold the page header, then
4731 * we can not copy anything.
4733 if (len <= BUF_PAGE_HDR_SIZE)
4736 len -= BUF_PAGE_HDR_SIZE;
4745 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4747 reader = rb_get_reader_page(cpu_buffer);
4751 event = rb_reader_event(cpu_buffer);
4753 read = reader->read;
4754 commit = rb_page_commit(reader);
4756 /* Check if any events were dropped */
4757 missed_events = cpu_buffer->lost_events;
4760 * If this page has been partially read or
4761 * if len is not big enough to read the rest of the page or
4762 * a writer is still on the page, then
4763 * we must copy the data from the page to the buffer.
4764 * Otherwise, we can simply swap the page with the one passed in.
4766 if (read || (len < (commit - read)) ||
4767 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4768 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4769 unsigned int rpos = read;
4770 unsigned int pos = 0;
4776 if (len > (commit - read))
4777 len = (commit - read);
4779 /* Always keep the time extend and data together */
4780 size = rb_event_ts_length(event);
4785 /* save the current timestamp, since the user will need it */
4786 save_timestamp = cpu_buffer->read_stamp;
4788 /* Need to copy one event at a time */
4790 /* We need the size of one event, because
4791 * rb_advance_reader only advances by one event,
4792 * whereas rb_event_ts_length may include the size of
4793 * one or two events.
4794 * We have already ensured there's enough space if this
4795 * is a time extend. */
4796 size = rb_event_length(event);
4797 memcpy(bpage->data + pos, rpage->data + rpos, size);
4801 rb_advance_reader(cpu_buffer);
4802 rpos = reader->read;
4808 event = rb_reader_event(cpu_buffer);
4809 /* Always keep the time extend and data together */
4810 size = rb_event_ts_length(event);
4811 } while (len >= size);
4814 local_set(&bpage->commit, pos);
4815 bpage->time_stamp = save_timestamp;
4817 /* we copied everything to the beginning */
4820 /* update the entry counter */
4821 cpu_buffer->read += rb_page_entries(reader);
4822 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4824 /* swap the pages */
4825 rb_init_page(bpage);
4826 bpage = reader->page;
4827 reader->page = *data_page;
4828 local_set(&reader->write, 0);
4829 local_set(&reader->entries, 0);
4834 * Use the real_end for the data size,
4835 * This gives us a chance to store the lost events
4838 if (reader->real_end)
4839 local_set(&bpage->commit, reader->real_end);
4843 cpu_buffer->lost_events = 0;
4845 commit = local_read(&bpage->commit);
4847 * Set a flag in the commit field if we lost events
4849 if (missed_events) {
4850 /* If there is room at the end of the page to save the
4851 * missed events, then record it there.
4853 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4854 memcpy(&bpage->data[commit], &missed_events,
4855 sizeof(missed_events));
4856 local_add(RB_MISSED_STORED, &bpage->commit);
4857 commit += sizeof(missed_events);
4859 local_add(RB_MISSED_EVENTS, &bpage->commit);
4863 * This page may be off to user land. Zero it out here.
4865 if (commit < BUF_PAGE_SIZE)
4866 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4869 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4874 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4877 * We only allocate new buffers, never free them if the CPU goes down.
4878 * If we were to free the buffer, then the user would lose any trace that was in
4881 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4883 struct ring_buffer *buffer;
4886 unsigned long nr_pages;
4888 buffer = container_of(node, struct ring_buffer, node);
4889 if (cpumask_test_cpu(cpu, buffer->cpumask))
4894 /* check if all cpu sizes are same */
4895 for_each_buffer_cpu(buffer, cpu_i) {
4896 /* fill in the size from first enabled cpu */
4898 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4899 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4904 /* allocate minimum pages, user can later expand it */
4907 buffer->buffers[cpu] =
4908 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4909 if (!buffer->buffers[cpu]) {
4910 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4915 cpumask_set_cpu(cpu, buffer->cpumask);
4919 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4921 * This is a basic integrity check of the ring buffer.
4922 * Late in the boot cycle this test will run when configured in.
4923 * It will kick off a thread per CPU that will go into a loop
4924 * writing to the per cpu ring buffer various sizes of data.
4925 * Some of the data will be large items, some small.
4927 * Another thread is created that goes into a spin, sending out
4928 * IPIs to the other CPUs to also write into the ring buffer.
4929 * this is to test the nesting ability of the buffer.
4931 * Basic stats are recorded and reported. If something in the
4932 * ring buffer should happen that's not expected, a big warning
4933 * is displayed and all ring buffers are disabled.
4935 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4937 struct rb_test_data {
4938 struct ring_buffer *buffer;
4939 unsigned long events;
4940 unsigned long bytes_written;
4941 unsigned long bytes_alloc;
4942 unsigned long bytes_dropped;
4943 unsigned long events_nested;
4944 unsigned long bytes_written_nested;
4945 unsigned long bytes_alloc_nested;
4946 unsigned long bytes_dropped_nested;
4947 int min_size_nested;
4948 int max_size_nested;
4955 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4958 #define RB_TEST_BUFFER_SIZE 1048576
4960 static char rb_string[] __initdata =
4961 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4962 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4963 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4965 static bool rb_test_started __initdata;
4972 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4974 struct ring_buffer_event *event;
4975 struct rb_item *item;
4982 /* Have nested writes different that what is written */
4983 cnt = data->cnt + (nested ? 27 : 0);
4985 /* Multiply cnt by ~e, to make some unique increment */
4986 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4988 len = size + sizeof(struct rb_item);
4990 started = rb_test_started;
4991 /* read rb_test_started before checking buffer enabled */
4994 event = ring_buffer_lock_reserve(data->buffer, len);
4996 /* Ignore dropped events before test starts. */
4999 data->bytes_dropped += len;
5001 data->bytes_dropped_nested += len;
5006 event_len = ring_buffer_event_length(event);
5008 if (RB_WARN_ON(data->buffer, event_len < len))
5011 item = ring_buffer_event_data(event);
5013 memcpy(item->str, rb_string, size);
5016 data->bytes_alloc_nested += event_len;
5017 data->bytes_written_nested += len;
5018 data->events_nested++;
5019 if (!data->min_size_nested || len < data->min_size_nested)
5020 data->min_size_nested = len;
5021 if (len > data->max_size_nested)
5022 data->max_size_nested = len;
5024 data->bytes_alloc += event_len;
5025 data->bytes_written += len;
5027 if (!data->min_size || len < data->min_size)
5028 data->max_size = len;
5029 if (len > data->max_size)
5030 data->max_size = len;
5034 ring_buffer_unlock_commit(data->buffer, event);
5039 static __init int rb_test(void *arg)
5041 struct rb_test_data *data = arg;
5043 while (!kthread_should_stop()) {
5044 rb_write_something(data, false);
5047 set_current_state(TASK_INTERRUPTIBLE);
5048 /* Now sleep between a min of 100-300us and a max of 1ms */
5049 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5055 static __init void rb_ipi(void *ignore)
5057 struct rb_test_data *data;
5058 int cpu = smp_processor_id();
5060 data = &rb_data[cpu];
5061 rb_write_something(data, true);
5064 static __init int rb_hammer_test(void *arg)
5066 while (!kthread_should_stop()) {
5068 /* Send an IPI to all cpus to write data! */
5069 smp_call_function(rb_ipi, NULL, 1);
5070 /* No sleep, but for non preempt, let others run */
5077 static __init int test_ringbuffer(void)
5079 struct task_struct *rb_hammer;
5080 struct ring_buffer *buffer;
5084 pr_info("Running ring buffer tests...\n");
5086 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5087 if (WARN_ON(!buffer))
5090 /* Disable buffer so that threads can't write to it yet */
5091 ring_buffer_record_off(buffer);
5093 for_each_online_cpu(cpu) {
5094 rb_data[cpu].buffer = buffer;
5095 rb_data[cpu].cpu = cpu;
5096 rb_data[cpu].cnt = cpu;
5097 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5098 "rbtester/%d", cpu);
5099 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5100 pr_cont("FAILED\n");
5101 ret = PTR_ERR(rb_threads[cpu]);
5105 kthread_bind(rb_threads[cpu], cpu);
5106 wake_up_process(rb_threads[cpu]);
5109 /* Now create the rb hammer! */
5110 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5111 if (WARN_ON(IS_ERR(rb_hammer))) {
5112 pr_cont("FAILED\n");
5113 ret = PTR_ERR(rb_hammer);
5117 ring_buffer_record_on(buffer);
5119 * Show buffer is enabled before setting rb_test_started.
5120 * Yes there's a small race window where events could be
5121 * dropped and the thread wont catch it. But when a ring
5122 * buffer gets enabled, there will always be some kind of
5123 * delay before other CPUs see it. Thus, we don't care about
5124 * those dropped events. We care about events dropped after
5125 * the threads see that the buffer is active.
5128 rb_test_started = true;
5130 set_current_state(TASK_INTERRUPTIBLE);
5131 /* Just run for 10 seconds */;
5132 schedule_timeout(10 * HZ);
5134 kthread_stop(rb_hammer);
5137 for_each_online_cpu(cpu) {
5138 if (!rb_threads[cpu])
5140 kthread_stop(rb_threads[cpu]);
5143 ring_buffer_free(buffer);
5148 pr_info("finished\n");
5149 for_each_online_cpu(cpu) {
5150 struct ring_buffer_event *event;
5151 struct rb_test_data *data = &rb_data[cpu];
5152 struct rb_item *item;
5153 unsigned long total_events;
5154 unsigned long total_dropped;
5155 unsigned long total_written;
5156 unsigned long total_alloc;
5157 unsigned long total_read = 0;
5158 unsigned long total_size = 0;
5159 unsigned long total_len = 0;
5160 unsigned long total_lost = 0;
5163 int small_event_size;
5167 total_events = data->events + data->events_nested;
5168 total_written = data->bytes_written + data->bytes_written_nested;
5169 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5170 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5172 big_event_size = data->max_size + data->max_size_nested;
5173 small_event_size = data->min_size + data->min_size_nested;
5175 pr_info("CPU %d:\n", cpu);
5176 pr_info(" events: %ld\n", total_events);
5177 pr_info(" dropped bytes: %ld\n", total_dropped);
5178 pr_info(" alloced bytes: %ld\n", total_alloc);
5179 pr_info(" written bytes: %ld\n", total_written);
5180 pr_info(" biggest event: %d\n", big_event_size);
5181 pr_info(" smallest event: %d\n", small_event_size);
5183 if (RB_WARN_ON(buffer, total_dropped))
5188 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5190 item = ring_buffer_event_data(event);
5191 total_len += ring_buffer_event_length(event);
5192 total_size += item->size + sizeof(struct rb_item);
5193 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5194 pr_info("FAILED!\n");
5195 pr_info("buffer had: %.*s\n", item->size, item->str);
5196 pr_info("expected: %.*s\n", item->size, rb_string);
5197 RB_WARN_ON(buffer, 1);
5208 pr_info(" read events: %ld\n", total_read);
5209 pr_info(" lost events: %ld\n", total_lost);
5210 pr_info(" total events: %ld\n", total_lost + total_read);
5211 pr_info(" recorded len bytes: %ld\n", total_len);
5212 pr_info(" recorded size bytes: %ld\n", total_size);
5214 pr_info(" With dropped events, record len and size may not match\n"
5215 " alloced and written from above\n");
5217 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5218 total_size != total_written))
5221 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5227 pr_info("Ring buffer PASSED!\n");
5229 ring_buffer_free(buffer);
5233 late_initcall(test_ringbuffer);
5234 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */