arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB          (0xf8ULL << 56)
38 #define ABS_TS_MASK     (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47         trace_seq_puts(s, "# compressed entry header\n");
48         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50         trace_seq_puts(s, "\tarray       :   32 bits\n");
51         trace_seq_putc(s, '\n');
52         trace_seq_printf(s, "\tpadding     : type == %d\n",
53                          RINGBUF_TYPE_PADDING);
54         trace_seq_printf(s, "\ttime_extend : type == %d\n",
55                          RINGBUF_TYPE_TIME_EXTEND);
56         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57                          RINGBUF_TYPE_TIME_STAMP);
58         trace_seq_printf(s, "\tdata max type_len  == %d\n",
59                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61         return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF           (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT            4U
139 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT       0
144 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT       1
147 # define RB_ARCH_ALIGNMENT              8U
148 #endif
149
150 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156         RB_LEN_TIME_EXTEND = 8,
157         RB_LEN_TIME_STAMP =  8,
158 };
159
160 #define skip_time_extend(event) \
161         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173         /* padding has a NULL time_delta */
174         event->type_len = RINGBUF_TYPE_PADDING;
175         event->time_delta = 0;
176 }
177
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181         unsigned length;
182
183         if (event->type_len)
184                 length = event->type_len * RB_ALIGNMENT;
185         else
186                 length = event->array[0];
187         return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198         switch (event->type_len) {
199         case RINGBUF_TYPE_PADDING:
200                 if (rb_null_event(event))
201                         /* undefined */
202                         return -1;
203                 return  event->array[0] + RB_EVNT_HDR_SIZE;
204
205         case RINGBUF_TYPE_TIME_EXTEND:
206                 return RB_LEN_TIME_EXTEND;
207
208         case RINGBUF_TYPE_TIME_STAMP:
209                 return RB_LEN_TIME_STAMP;
210
211         case RINGBUF_TYPE_DATA:
212                 return rb_event_data_length(event);
213         default:
214                 WARN_ON_ONCE(1);
215         }
216         /* not hit */
217         return 0;
218 }
219
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227         unsigned len = 0;
228
229         if (extended_time(event)) {
230                 /* time extends include the data event after it */
231                 len = RB_LEN_TIME_EXTEND;
232                 event = skip_time_extend(event);
233         }
234         return len + rb_event_length(event);
235 }
236
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249         unsigned length;
250
251         if (extended_time(event))
252                 event = skip_time_extend(event);
253
254         length = rb_event_length(event);
255         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256                 return length;
257         length -= RB_EVNT_HDR_SIZE;
258         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260         return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268         if (extended_time(event))
269                 event = skip_time_extend(event);
270         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271         /* If length is in len field, then array[0] has the data */
272         if (event->type_len)
273                 return (void *)&event->array[0];
274         /* Otherwise length is in array[0] and array[1] has the data */
275         return (void *)&event->array[1];
276 }
277
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284         return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu)                \
289         for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu)         \
292         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT        27
295 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST   (~TS_MASK)
297
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300         u64 ts;
301
302         ts = event->array[0];
303         ts <<= TS_SHIFT;
304         ts += event->time_delta;
305
306         return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS        (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED        (1 << 30)
313
314 struct buffer_data_page {
315         u64              time_stamp;    /* page time stamp */
316         local_t          commit;        /* write committed index */
317         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
318 };
319
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329         struct list_head list;          /* list of buffer pages */
330         local_t          write;         /* index for next write */
331         unsigned         read;          /* index for next read */
332         local_t          entries;       /* entries on this page */
333         unsigned long    real_end;      /* real end of data */
334         struct buffer_data_page *page;  /* Actual data page */
335 };
336
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK           0xfffff
350 #define RB_WRITE_INTCNT         (1 << 20)
351
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354         local_set(&bpage->commit, 0);
355 }
356
357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
358 {
359         return local_read(&bpage->page->commit);
360 }
361
362 static void free_buffer_page(struct buffer_page *bpage)
363 {
364         free_page((unsigned long)bpage->page);
365         kfree(bpage);
366 }
367
368 /*
369  * We need to fit the time_stamp delta into 27 bits.
370  */
371 static inline bool test_time_stamp(u64 delta)
372 {
373         return !!(delta & TS_DELTA_TEST);
374 }
375
376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
377
378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
380
381 int ring_buffer_print_page_header(struct trace_seq *s)
382 {
383         struct buffer_data_page field;
384
385         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
386                          "offset:0;\tsize:%u;\tsigned:%u;\n",
387                          (unsigned int)sizeof(field.time_stamp),
388                          (unsigned int)is_signed_type(u64));
389
390         trace_seq_printf(s, "\tfield: local_t commit;\t"
391                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
392                          (unsigned int)offsetof(typeof(field), commit),
393                          (unsigned int)sizeof(field.commit),
394                          (unsigned int)is_signed_type(long));
395
396         trace_seq_printf(s, "\tfield: int overwrite;\t"
397                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
398                          (unsigned int)offsetof(typeof(field), commit),
399                          1,
400                          (unsigned int)is_signed_type(long));
401
402         trace_seq_printf(s, "\tfield: char data;\t"
403                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
404                          (unsigned int)offsetof(typeof(field), data),
405                          (unsigned int)BUF_PAGE_SIZE,
406                          (unsigned int)is_signed_type(char));
407
408         return !trace_seq_has_overflowed(s);
409 }
410
411 struct rb_irq_work {
412         struct irq_work                 work;
413         wait_queue_head_t               waiters;
414         wait_queue_head_t               full_waiters;
415         long                            wait_index;
416         bool                            waiters_pending;
417         bool                            full_waiters_pending;
418         bool                            wakeup_full;
419 };
420
421 /*
422  * Structure to hold event state and handle nested events.
423  */
424 struct rb_event_info {
425         u64                     ts;
426         u64                     delta;
427         u64                     before;
428         u64                     after;
429         unsigned long           length;
430         struct buffer_page      *tail_page;
431         int                     add_timestamp;
432 };
433
434 /*
435  * Used for the add_timestamp
436  *  NONE
437  *  EXTEND - wants a time extend
438  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
439  *  FORCE - force a full time stamp.
440  */
441 enum {
442         RB_ADD_STAMP_NONE               = 0,
443         RB_ADD_STAMP_EXTEND             = BIT(1),
444         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
445         RB_ADD_STAMP_FORCE              = BIT(3)
446 };
447 /*
448  * Used for which event context the event is in.
449  *  TRANSITION = 0
450  *  NMI     = 1
451  *  IRQ     = 2
452  *  SOFTIRQ = 3
453  *  NORMAL  = 4
454  *
455  * See trace_recursive_lock() comment below for more details.
456  */
457 enum {
458         RB_CTX_TRANSITION,
459         RB_CTX_NMI,
460         RB_CTX_IRQ,
461         RB_CTX_SOFTIRQ,
462         RB_CTX_NORMAL,
463         RB_CTX_MAX
464 };
465
466 #if BITS_PER_LONG == 32
467 #define RB_TIME_32
468 #endif
469
470 /* To test on 64 bit machines */
471 //#define RB_TIME_32
472
473 #ifdef RB_TIME_32
474
475 struct rb_time_struct {
476         local_t         cnt;
477         local_t         top;
478         local_t         bottom;
479         local_t         msb;
480 };
481 #else
482 #include <asm/local64.h>
483 struct rb_time_struct {
484         local64_t       time;
485 };
486 #endif
487 typedef struct rb_time_struct rb_time_t;
488
489 #define MAX_NEST        5
490
491 /*
492  * head_page == tail_page && head == tail then buffer is empty.
493  */
494 struct ring_buffer_per_cpu {
495         int                             cpu;
496         atomic_t                        record_disabled;
497         atomic_t                        resize_disabled;
498         struct trace_buffer     *buffer;
499         raw_spinlock_t                  reader_lock;    /* serialize readers */
500         arch_spinlock_t                 lock;
501         struct lock_class_key           lock_key;
502         struct buffer_data_page         *free_page;
503         unsigned long                   nr_pages;
504         unsigned int                    current_context;
505         struct list_head                *pages;
506         struct buffer_page              *head_page;     /* read from head */
507         struct buffer_page              *tail_page;     /* write to tail */
508         struct buffer_page              *commit_page;   /* committed pages */
509         struct buffer_page              *reader_page;
510         unsigned long                   lost_events;
511         unsigned long                   last_overrun;
512         unsigned long                   nest;
513         local_t                         entries_bytes;
514         local_t                         entries;
515         local_t                         overrun;
516         local_t                         commit_overrun;
517         local_t                         dropped_events;
518         local_t                         committing;
519         local_t                         commits;
520         local_t                         pages_touched;
521         local_t                         pages_lost;
522         local_t                         pages_read;
523         long                            last_pages_touch;
524         size_t                          shortest_full;
525         unsigned long                   read;
526         unsigned long                   read_bytes;
527         rb_time_t                       write_stamp;
528         rb_time_t                       before_stamp;
529         u64                             event_stamp[MAX_NEST];
530         u64                             read_stamp;
531         /* pages removed since last reset */
532         unsigned long                   pages_removed;
533         /* ring buffer pages to update, > 0 to add, < 0 to remove */
534         long                            nr_pages_to_update;
535         struct list_head                new_pages; /* new pages to add */
536         struct work_struct              update_pages_work;
537         struct completion               update_done;
538
539         struct rb_irq_work              irq_work;
540 };
541
542 struct trace_buffer {
543         unsigned                        flags;
544         int                             cpus;
545         atomic_t                        record_disabled;
546         atomic_t                        resizing;
547         cpumask_var_t                   cpumask;
548
549         struct lock_class_key           *reader_lock_key;
550
551         struct mutex                    mutex;
552
553         struct ring_buffer_per_cpu      **buffers;
554
555         struct hlist_node               node;
556         u64                             (*clock)(void);
557
558         struct rb_irq_work              irq_work;
559         bool                            time_stamp_abs;
560 };
561
562 struct ring_buffer_iter {
563         struct ring_buffer_per_cpu      *cpu_buffer;
564         unsigned long                   head;
565         unsigned long                   next_event;
566         struct buffer_page              *head_page;
567         struct buffer_page              *cache_reader_page;
568         unsigned long                   cache_read;
569         unsigned long                   cache_pages_removed;
570         u64                             read_stamp;
571         u64                             page_stamp;
572         struct ring_buffer_event        *event;
573         int                             missed_events;
574 };
575
576 #ifdef RB_TIME_32
577
578 /*
579  * On 32 bit machines, local64_t is very expensive. As the ring
580  * buffer doesn't need all the features of a true 64 bit atomic,
581  * on 32 bit, it uses these functions (64 still uses local64_t).
582  *
583  * For the ring buffer, 64 bit required operations for the time is
584  * the following:
585  *
586  *  - Reads may fail if it interrupted a modification of the time stamp.
587  *      It will succeed if it did not interrupt another write even if
588  *      the read itself is interrupted by a write.
589  *      It returns whether it was successful or not.
590  *
591  *  - Writes always succeed and will overwrite other writes and writes
592  *      that were done by events interrupting the current write.
593  *
594  *  - A write followed by a read of the same time stamp will always succeed,
595  *      but may not contain the same value.
596  *
597  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
598  *      Other than that, it acts like a normal cmpxchg.
599  *
600  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
601  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
602  *
603  * The two most significant bits of each half holds a 2 bit counter (0-3).
604  * Each update will increment this counter by one.
605  * When reading the top and bottom, if the two counter bits match then the
606  *  top and bottom together make a valid 60 bit number.
607  */
608 #define RB_TIME_SHIFT   30
609 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
610 #define RB_TIME_MSB_SHIFT        60
611
612 static inline int rb_time_cnt(unsigned long val)
613 {
614         return (val >> RB_TIME_SHIFT) & 3;
615 }
616
617 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
618 {
619         u64 val;
620
621         val = top & RB_TIME_VAL_MASK;
622         val <<= RB_TIME_SHIFT;
623         val |= bottom & RB_TIME_VAL_MASK;
624
625         return val;
626 }
627
628 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
629 {
630         unsigned long top, bottom, msb;
631         unsigned long c;
632
633         /*
634          * If the read is interrupted by a write, then the cnt will
635          * be different. Loop until both top and bottom have been read
636          * without interruption.
637          */
638         do {
639                 c = local_read(&t->cnt);
640                 top = local_read(&t->top);
641                 bottom = local_read(&t->bottom);
642                 msb = local_read(&t->msb);
643         } while (c != local_read(&t->cnt));
644
645         *cnt = rb_time_cnt(top);
646
647         /* If top, msb or bottom counts don't match, this interrupted a write */
648         if (*cnt != rb_time_cnt(msb) || *cnt != rb_time_cnt(bottom))
649                 return false;
650
651         /* The shift to msb will lose its cnt bits */
652         *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
653         return true;
654 }
655
656 static bool rb_time_read(rb_time_t *t, u64 *ret)
657 {
658         unsigned long cnt;
659
660         return __rb_time_read(t, ret, &cnt);
661 }
662
663 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
664 {
665         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
666 }
667
668 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
669                                  unsigned long *msb)
670 {
671         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
672         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
673         *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
674 }
675
676 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
677 {
678         val = rb_time_val_cnt(val, cnt);
679         local_set(t, val);
680 }
681
682 static void rb_time_set(rb_time_t *t, u64 val)
683 {
684         unsigned long cnt, top, bottom, msb;
685
686         rb_time_split(val, &top, &bottom, &msb);
687
688         /* Writes always succeed with a valid number even if it gets interrupted. */
689         do {
690                 cnt = local_inc_return(&t->cnt);
691                 rb_time_val_set(&t->top, top, cnt);
692                 rb_time_val_set(&t->bottom, bottom, cnt);
693                 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
694         } while (cnt != local_read(&t->cnt));
695 }
696
697 static inline bool
698 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
699 {
700         return local_try_cmpxchg(l, &expect, set);
701 }
702
703 #else /* 64 bits */
704
705 /* local64_t always succeeds */
706
707 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
708 {
709         *ret = local64_read(&t->time);
710         return true;
711 }
712 static void rb_time_set(rb_time_t *t, u64 val)
713 {
714         local64_set(&t->time, val);
715 }
716 #endif
717
718 /*
719  * Enable this to make sure that the event passed to
720  * ring_buffer_event_time_stamp() is not committed and also
721  * is on the buffer that it passed in.
722  */
723 //#define RB_VERIFY_EVENT
724 #ifdef RB_VERIFY_EVENT
725 static struct list_head *rb_list_head(struct list_head *list);
726 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
727                          void *event)
728 {
729         struct buffer_page *page = cpu_buffer->commit_page;
730         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
731         struct list_head *next;
732         long commit, write;
733         unsigned long addr = (unsigned long)event;
734         bool done = false;
735         int stop = 0;
736
737         /* Make sure the event exists and is not committed yet */
738         do {
739                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
740                         done = true;
741                 commit = local_read(&page->page->commit);
742                 write = local_read(&page->write);
743                 if (addr >= (unsigned long)&page->page->data[commit] &&
744                     addr < (unsigned long)&page->page->data[write])
745                         return;
746
747                 next = rb_list_head(page->list.next);
748                 page = list_entry(next, struct buffer_page, list);
749         } while (!done);
750         WARN_ON_ONCE(1);
751 }
752 #else
753 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
754                          void *event)
755 {
756 }
757 #endif
758
759 /*
760  * The absolute time stamp drops the 5 MSBs and some clocks may
761  * require them. The rb_fix_abs_ts() will take a previous full
762  * time stamp, and add the 5 MSB of that time stamp on to the
763  * saved absolute time stamp. Then they are compared in case of
764  * the unlikely event that the latest time stamp incremented
765  * the 5 MSB.
766  */
767 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
768 {
769         if (save_ts & TS_MSB) {
770                 abs |= save_ts & TS_MSB;
771                 /* Check for overflow */
772                 if (unlikely(abs < save_ts))
773                         abs += 1ULL << 59;
774         }
775         return abs;
776 }
777
778 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
779
780 /**
781  * ring_buffer_event_time_stamp - return the event's current time stamp
782  * @buffer: The buffer that the event is on
783  * @event: the event to get the time stamp of
784  *
785  * Note, this must be called after @event is reserved, and before it is
786  * committed to the ring buffer. And must be called from the same
787  * context where the event was reserved (normal, softirq, irq, etc).
788  *
789  * Returns the time stamp associated with the current event.
790  * If the event has an extended time stamp, then that is used as
791  * the time stamp to return.
792  * In the highly unlikely case that the event was nested more than
793  * the max nesting, then the write_stamp of the buffer is returned,
794  * otherwise  current time is returned, but that really neither of
795  * the last two cases should ever happen.
796  */
797 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
798                                  struct ring_buffer_event *event)
799 {
800         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
801         unsigned int nest;
802         u64 ts;
803
804         /* If the event includes an absolute time, then just use that */
805         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
806                 ts = rb_event_time_stamp(event);
807                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
808         }
809
810         nest = local_read(&cpu_buffer->committing);
811         verify_event(cpu_buffer, event);
812         if (WARN_ON_ONCE(!nest))
813                 goto fail;
814
815         /* Read the current saved nesting level time stamp */
816         if (likely(--nest < MAX_NEST))
817                 return cpu_buffer->event_stamp[nest];
818
819         /* Shouldn't happen, warn if it does */
820         WARN_ONCE(1, "nest (%d) greater than max", nest);
821
822  fail:
823         /* Can only fail on 32 bit */
824         if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
825                 /* Screw it, just read the current time */
826                 ts = rb_time_stamp(cpu_buffer->buffer);
827
828         return ts;
829 }
830
831 /**
832  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
833  * @buffer: The ring_buffer to get the number of pages from
834  * @cpu: The cpu of the ring_buffer to get the number of pages from
835  *
836  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
837  */
838 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
839 {
840         return buffer->buffers[cpu]->nr_pages;
841 }
842
843 /**
844  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
845  * @buffer: The ring_buffer to get the number of pages from
846  * @cpu: The cpu of the ring_buffer to get the number of pages from
847  *
848  * Returns the number of pages that have content in the ring buffer.
849  */
850 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
851 {
852         size_t read;
853         size_t lost;
854         size_t cnt;
855
856         read = local_read(&buffer->buffers[cpu]->pages_read);
857         lost = local_read(&buffer->buffers[cpu]->pages_lost);
858         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
859
860         if (WARN_ON_ONCE(cnt < lost))
861                 return 0;
862
863         cnt -= lost;
864
865         /* The reader can read an empty page, but not more than that */
866         if (cnt < read) {
867                 WARN_ON_ONCE(read > cnt + 1);
868                 return 0;
869         }
870
871         return cnt - read;
872 }
873
874 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
875 {
876         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
877         size_t nr_pages;
878         size_t dirty;
879
880         nr_pages = cpu_buffer->nr_pages;
881         if (!nr_pages || !full)
882                 return true;
883
884         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
885
886         return (dirty * 100) > (full * nr_pages);
887 }
888
889 /*
890  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
891  *
892  * Schedules a delayed work to wake up any task that is blocked on the
893  * ring buffer waiters queue.
894  */
895 static void rb_wake_up_waiters(struct irq_work *work)
896 {
897         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
898
899         wake_up_all(&rbwork->waiters);
900         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
901                 rbwork->wakeup_full = false;
902                 rbwork->full_waiters_pending = false;
903                 wake_up_all(&rbwork->full_waiters);
904         }
905 }
906
907 /**
908  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
909  * @buffer: The ring buffer to wake waiters on
910  * @cpu: The CPU buffer to wake waiters on
911  *
912  * In the case of a file that represents a ring buffer is closing,
913  * it is prudent to wake up any waiters that are on this.
914  */
915 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
916 {
917         struct ring_buffer_per_cpu *cpu_buffer;
918         struct rb_irq_work *rbwork;
919
920         if (!buffer)
921                 return;
922
923         if (cpu == RING_BUFFER_ALL_CPUS) {
924
925                 /* Wake up individual ones too. One level recursion */
926                 for_each_buffer_cpu(buffer, cpu)
927                         ring_buffer_wake_waiters(buffer, cpu);
928
929                 rbwork = &buffer->irq_work;
930         } else {
931                 if (WARN_ON_ONCE(!buffer->buffers))
932                         return;
933                 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
934                         return;
935
936                 cpu_buffer = buffer->buffers[cpu];
937                 /* The CPU buffer may not have been initialized yet */
938                 if (!cpu_buffer)
939                         return;
940                 rbwork = &cpu_buffer->irq_work;
941         }
942
943         rbwork->wait_index++;
944         /* make sure the waiters see the new index */
945         smp_wmb();
946
947         rb_wake_up_waiters(&rbwork->work);
948 }
949
950 /**
951  * ring_buffer_wait - wait for input to the ring buffer
952  * @buffer: buffer to wait on
953  * @cpu: the cpu buffer to wait on
954  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
955  *
956  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
957  * as data is added to any of the @buffer's cpu buffers. Otherwise
958  * it will wait for data to be added to a specific cpu buffer.
959  */
960 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
961 {
962         struct ring_buffer_per_cpu *cpu_buffer;
963         DEFINE_WAIT(wait);
964         struct rb_irq_work *work;
965         long wait_index;
966         int ret = 0;
967
968         /*
969          * Depending on what the caller is waiting for, either any
970          * data in any cpu buffer, or a specific buffer, put the
971          * caller on the appropriate wait queue.
972          */
973         if (cpu == RING_BUFFER_ALL_CPUS) {
974                 work = &buffer->irq_work;
975                 /* Full only makes sense on per cpu reads */
976                 full = 0;
977         } else {
978                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
979                         return -ENODEV;
980                 cpu_buffer = buffer->buffers[cpu];
981                 work = &cpu_buffer->irq_work;
982         }
983
984         wait_index = READ_ONCE(work->wait_index);
985
986         while (true) {
987                 if (full)
988                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
989                 else
990                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
991
992                 /*
993                  * The events can happen in critical sections where
994                  * checking a work queue can cause deadlocks.
995                  * After adding a task to the queue, this flag is set
996                  * only to notify events to try to wake up the queue
997                  * using irq_work.
998                  *
999                  * We don't clear it even if the buffer is no longer
1000                  * empty. The flag only causes the next event to run
1001                  * irq_work to do the work queue wake up. The worse
1002                  * that can happen if we race with !trace_empty() is that
1003                  * an event will cause an irq_work to try to wake up
1004                  * an empty queue.
1005                  *
1006                  * There's no reason to protect this flag either, as
1007                  * the work queue and irq_work logic will do the necessary
1008                  * synchronization for the wake ups. The only thing
1009                  * that is necessary is that the wake up happens after
1010                  * a task has been queued. It's OK for spurious wake ups.
1011                  */
1012                 if (full)
1013                         work->full_waiters_pending = true;
1014                 else
1015                         work->waiters_pending = true;
1016
1017                 if (signal_pending(current)) {
1018                         ret = -EINTR;
1019                         break;
1020                 }
1021
1022                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1023                         break;
1024
1025                 if (cpu != RING_BUFFER_ALL_CPUS &&
1026                     !ring_buffer_empty_cpu(buffer, cpu)) {
1027                         unsigned long flags;
1028                         bool pagebusy;
1029                         bool done;
1030
1031                         if (!full)
1032                                 break;
1033
1034                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1035                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1036                         done = !pagebusy && full_hit(buffer, cpu, full);
1037
1038                         if (!cpu_buffer->shortest_full ||
1039                             cpu_buffer->shortest_full > full)
1040                                 cpu_buffer->shortest_full = full;
1041                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1042                         if (done)
1043                                 break;
1044                 }
1045
1046                 schedule();
1047
1048                 /* Make sure to see the new wait index */
1049                 smp_rmb();
1050                 if (wait_index != work->wait_index)
1051                         break;
1052         }
1053
1054         if (full)
1055                 finish_wait(&work->full_waiters, &wait);
1056         else
1057                 finish_wait(&work->waiters, &wait);
1058
1059         return ret;
1060 }
1061
1062 /**
1063  * ring_buffer_poll_wait - poll on buffer input
1064  * @buffer: buffer to wait on
1065  * @cpu: the cpu buffer to wait on
1066  * @filp: the file descriptor
1067  * @poll_table: The poll descriptor
1068  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1069  *
1070  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1071  * as data is added to any of the @buffer's cpu buffers. Otherwise
1072  * it will wait for data to be added to a specific cpu buffer.
1073  *
1074  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1075  * zero otherwise.
1076  */
1077 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1078                           struct file *filp, poll_table *poll_table, int full)
1079 {
1080         struct ring_buffer_per_cpu *cpu_buffer;
1081         struct rb_irq_work *work;
1082
1083         if (cpu == RING_BUFFER_ALL_CPUS) {
1084                 work = &buffer->irq_work;
1085                 full = 0;
1086         } else {
1087                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1088                         return -EINVAL;
1089
1090                 cpu_buffer = buffer->buffers[cpu];
1091                 work = &cpu_buffer->irq_work;
1092         }
1093
1094         if (full) {
1095                 poll_wait(filp, &work->full_waiters, poll_table);
1096                 work->full_waiters_pending = true;
1097                 if (!cpu_buffer->shortest_full ||
1098                     cpu_buffer->shortest_full > full)
1099                         cpu_buffer->shortest_full = full;
1100         } else {
1101                 poll_wait(filp, &work->waiters, poll_table);
1102                 work->waiters_pending = true;
1103         }
1104
1105         /*
1106          * There's a tight race between setting the waiters_pending and
1107          * checking if the ring buffer is empty.  Once the waiters_pending bit
1108          * is set, the next event will wake the task up, but we can get stuck
1109          * if there's only a single event in.
1110          *
1111          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1112          * but adding a memory barrier to all events will cause too much of a
1113          * performance hit in the fast path.  We only need a memory barrier when
1114          * the buffer goes from empty to having content.  But as this race is
1115          * extremely small, and it's not a problem if another event comes in, we
1116          * will fix it later.
1117          */
1118         smp_mb();
1119
1120         if (full)
1121                 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1122
1123         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1124             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1125                 return EPOLLIN | EPOLLRDNORM;
1126         return 0;
1127 }
1128
1129 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1130 #define RB_WARN_ON(b, cond)                                             \
1131         ({                                                              \
1132                 int _____ret = unlikely(cond);                          \
1133                 if (_____ret) {                                         \
1134                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1135                                 struct ring_buffer_per_cpu *__b =       \
1136                                         (void *)b;                      \
1137                                 atomic_inc(&__b->buffer->record_disabled); \
1138                         } else                                          \
1139                                 atomic_inc(&b->record_disabled);        \
1140                         WARN_ON(1);                                     \
1141                 }                                                       \
1142                 _____ret;                                               \
1143         })
1144
1145 /* Up this if you want to test the TIME_EXTENTS and normalization */
1146 #define DEBUG_SHIFT 0
1147
1148 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1149 {
1150         u64 ts;
1151
1152         /* Skip retpolines :-( */
1153         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1154                 ts = trace_clock_local();
1155         else
1156                 ts = buffer->clock();
1157
1158         /* shift to debug/test normalization and TIME_EXTENTS */
1159         return ts << DEBUG_SHIFT;
1160 }
1161
1162 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1163 {
1164         u64 time;
1165
1166         preempt_disable_notrace();
1167         time = rb_time_stamp(buffer);
1168         preempt_enable_notrace();
1169
1170         return time;
1171 }
1172 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1173
1174 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1175                                       int cpu, u64 *ts)
1176 {
1177         /* Just stupid testing the normalize function and deltas */
1178         *ts >>= DEBUG_SHIFT;
1179 }
1180 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1181
1182 /*
1183  * Making the ring buffer lockless makes things tricky.
1184  * Although writes only happen on the CPU that they are on,
1185  * and they only need to worry about interrupts. Reads can
1186  * happen on any CPU.
1187  *
1188  * The reader page is always off the ring buffer, but when the
1189  * reader finishes with a page, it needs to swap its page with
1190  * a new one from the buffer. The reader needs to take from
1191  * the head (writes go to the tail). But if a writer is in overwrite
1192  * mode and wraps, it must push the head page forward.
1193  *
1194  * Here lies the problem.
1195  *
1196  * The reader must be careful to replace only the head page, and
1197  * not another one. As described at the top of the file in the
1198  * ASCII art, the reader sets its old page to point to the next
1199  * page after head. It then sets the page after head to point to
1200  * the old reader page. But if the writer moves the head page
1201  * during this operation, the reader could end up with the tail.
1202  *
1203  * We use cmpxchg to help prevent this race. We also do something
1204  * special with the page before head. We set the LSB to 1.
1205  *
1206  * When the writer must push the page forward, it will clear the
1207  * bit that points to the head page, move the head, and then set
1208  * the bit that points to the new head page.
1209  *
1210  * We also don't want an interrupt coming in and moving the head
1211  * page on another writer. Thus we use the second LSB to catch
1212  * that too. Thus:
1213  *
1214  * head->list->prev->next        bit 1          bit 0
1215  *                              -------        -------
1216  * Normal page                     0              0
1217  * Points to head page             0              1
1218  * New head page                   1              0
1219  *
1220  * Note we can not trust the prev pointer of the head page, because:
1221  *
1222  * +----+       +-----+        +-----+
1223  * |    |------>|  T  |---X--->|  N  |
1224  * |    |<------|     |        |     |
1225  * +----+       +-----+        +-----+
1226  *   ^                           ^ |
1227  *   |          +-----+          | |
1228  *   +----------|  R  |----------+ |
1229  *              |     |<-----------+
1230  *              +-----+
1231  *
1232  * Key:  ---X-->  HEAD flag set in pointer
1233  *         T      Tail page
1234  *         R      Reader page
1235  *         N      Next page
1236  *
1237  * (see __rb_reserve_next() to see where this happens)
1238  *
1239  *  What the above shows is that the reader just swapped out
1240  *  the reader page with a page in the buffer, but before it
1241  *  could make the new header point back to the new page added
1242  *  it was preempted by a writer. The writer moved forward onto
1243  *  the new page added by the reader and is about to move forward
1244  *  again.
1245  *
1246  *  You can see, it is legitimate for the previous pointer of
1247  *  the head (or any page) not to point back to itself. But only
1248  *  temporarily.
1249  */
1250
1251 #define RB_PAGE_NORMAL          0UL
1252 #define RB_PAGE_HEAD            1UL
1253 #define RB_PAGE_UPDATE          2UL
1254
1255
1256 #define RB_FLAG_MASK            3UL
1257
1258 /* PAGE_MOVED is not part of the mask */
1259 #define RB_PAGE_MOVED           4UL
1260
1261 /*
1262  * rb_list_head - remove any bit
1263  */
1264 static struct list_head *rb_list_head(struct list_head *list)
1265 {
1266         unsigned long val = (unsigned long)list;
1267
1268         return (struct list_head *)(val & ~RB_FLAG_MASK);
1269 }
1270
1271 /*
1272  * rb_is_head_page - test if the given page is the head page
1273  *
1274  * Because the reader may move the head_page pointer, we can
1275  * not trust what the head page is (it may be pointing to
1276  * the reader page). But if the next page is a header page,
1277  * its flags will be non zero.
1278  */
1279 static inline int
1280 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1281 {
1282         unsigned long val;
1283
1284         val = (unsigned long)list->next;
1285
1286         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1287                 return RB_PAGE_MOVED;
1288
1289         return val & RB_FLAG_MASK;
1290 }
1291
1292 /*
1293  * rb_is_reader_page
1294  *
1295  * The unique thing about the reader page, is that, if the
1296  * writer is ever on it, the previous pointer never points
1297  * back to the reader page.
1298  */
1299 static bool rb_is_reader_page(struct buffer_page *page)
1300 {
1301         struct list_head *list = page->list.prev;
1302
1303         return rb_list_head(list->next) != &page->list;
1304 }
1305
1306 /*
1307  * rb_set_list_to_head - set a list_head to be pointing to head.
1308  */
1309 static void rb_set_list_to_head(struct list_head *list)
1310 {
1311         unsigned long *ptr;
1312
1313         ptr = (unsigned long *)&list->next;
1314         *ptr |= RB_PAGE_HEAD;
1315         *ptr &= ~RB_PAGE_UPDATE;
1316 }
1317
1318 /*
1319  * rb_head_page_activate - sets up head page
1320  */
1321 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1322 {
1323         struct buffer_page *head;
1324
1325         head = cpu_buffer->head_page;
1326         if (!head)
1327                 return;
1328
1329         /*
1330          * Set the previous list pointer to have the HEAD flag.
1331          */
1332         rb_set_list_to_head(head->list.prev);
1333 }
1334
1335 static void rb_list_head_clear(struct list_head *list)
1336 {
1337         unsigned long *ptr = (unsigned long *)&list->next;
1338
1339         *ptr &= ~RB_FLAG_MASK;
1340 }
1341
1342 /*
1343  * rb_head_page_deactivate - clears head page ptr (for free list)
1344  */
1345 static void
1346 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1347 {
1348         struct list_head *hd;
1349
1350         /* Go through the whole list and clear any pointers found. */
1351         rb_list_head_clear(cpu_buffer->pages);
1352
1353         list_for_each(hd, cpu_buffer->pages)
1354                 rb_list_head_clear(hd);
1355 }
1356
1357 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1358                             struct buffer_page *head,
1359                             struct buffer_page *prev,
1360                             int old_flag, int new_flag)
1361 {
1362         struct list_head *list;
1363         unsigned long val = (unsigned long)&head->list;
1364         unsigned long ret;
1365
1366         list = &prev->list;
1367
1368         val &= ~RB_FLAG_MASK;
1369
1370         ret = cmpxchg((unsigned long *)&list->next,
1371                       val | old_flag, val | new_flag);
1372
1373         /* check if the reader took the page */
1374         if ((ret & ~RB_FLAG_MASK) != val)
1375                 return RB_PAGE_MOVED;
1376
1377         return ret & RB_FLAG_MASK;
1378 }
1379
1380 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1381                                    struct buffer_page *head,
1382                                    struct buffer_page *prev,
1383                                    int old_flag)
1384 {
1385         return rb_head_page_set(cpu_buffer, head, prev,
1386                                 old_flag, RB_PAGE_UPDATE);
1387 }
1388
1389 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1390                                  struct buffer_page *head,
1391                                  struct buffer_page *prev,
1392                                  int old_flag)
1393 {
1394         return rb_head_page_set(cpu_buffer, head, prev,
1395                                 old_flag, RB_PAGE_HEAD);
1396 }
1397
1398 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1399                                    struct buffer_page *head,
1400                                    struct buffer_page *prev,
1401                                    int old_flag)
1402 {
1403         return rb_head_page_set(cpu_buffer, head, prev,
1404                                 old_flag, RB_PAGE_NORMAL);
1405 }
1406
1407 static inline void rb_inc_page(struct buffer_page **bpage)
1408 {
1409         struct list_head *p = rb_list_head((*bpage)->list.next);
1410
1411         *bpage = list_entry(p, struct buffer_page, list);
1412 }
1413
1414 static struct buffer_page *
1415 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1416 {
1417         struct buffer_page *head;
1418         struct buffer_page *page;
1419         struct list_head *list;
1420         int i;
1421
1422         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1423                 return NULL;
1424
1425         /* sanity check */
1426         list = cpu_buffer->pages;
1427         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1428                 return NULL;
1429
1430         page = head = cpu_buffer->head_page;
1431         /*
1432          * It is possible that the writer moves the header behind
1433          * where we started, and we miss in one loop.
1434          * A second loop should grab the header, but we'll do
1435          * three loops just because I'm paranoid.
1436          */
1437         for (i = 0; i < 3; i++) {
1438                 do {
1439                         if (rb_is_head_page(page, page->list.prev)) {
1440                                 cpu_buffer->head_page = page;
1441                                 return page;
1442                         }
1443                         rb_inc_page(&page);
1444                 } while (page != head);
1445         }
1446
1447         RB_WARN_ON(cpu_buffer, 1);
1448
1449         return NULL;
1450 }
1451
1452 static bool rb_head_page_replace(struct buffer_page *old,
1453                                 struct buffer_page *new)
1454 {
1455         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1456         unsigned long val;
1457
1458         val = *ptr & ~RB_FLAG_MASK;
1459         val |= RB_PAGE_HEAD;
1460
1461         return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1462 }
1463
1464 /*
1465  * rb_tail_page_update - move the tail page forward
1466  */
1467 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1468                                struct buffer_page *tail_page,
1469                                struct buffer_page *next_page)
1470 {
1471         unsigned long old_entries;
1472         unsigned long old_write;
1473
1474         /*
1475          * The tail page now needs to be moved forward.
1476          *
1477          * We need to reset the tail page, but without messing
1478          * with possible erasing of data brought in by interrupts
1479          * that have moved the tail page and are currently on it.
1480          *
1481          * We add a counter to the write field to denote this.
1482          */
1483         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1484         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1485
1486         local_inc(&cpu_buffer->pages_touched);
1487         /*
1488          * Just make sure we have seen our old_write and synchronize
1489          * with any interrupts that come in.
1490          */
1491         barrier();
1492
1493         /*
1494          * If the tail page is still the same as what we think
1495          * it is, then it is up to us to update the tail
1496          * pointer.
1497          */
1498         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1499                 /* Zero the write counter */
1500                 unsigned long val = old_write & ~RB_WRITE_MASK;
1501                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1502
1503                 /*
1504                  * This will only succeed if an interrupt did
1505                  * not come in and change it. In which case, we
1506                  * do not want to modify it.
1507                  *
1508                  * We add (void) to let the compiler know that we do not care
1509                  * about the return value of these functions. We use the
1510                  * cmpxchg to only update if an interrupt did not already
1511                  * do it for us. If the cmpxchg fails, we don't care.
1512                  */
1513                 (void)local_cmpxchg(&next_page->write, old_write, val);
1514                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1515
1516                 /*
1517                  * No need to worry about races with clearing out the commit.
1518                  * it only can increment when a commit takes place. But that
1519                  * only happens in the outer most nested commit.
1520                  */
1521                 local_set(&next_page->page->commit, 0);
1522
1523                 /* Again, either we update tail_page or an interrupt does */
1524                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1525         }
1526 }
1527
1528 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1529                           struct buffer_page *bpage)
1530 {
1531         unsigned long val = (unsigned long)bpage;
1532
1533         RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1534 }
1535
1536 /**
1537  * rb_check_pages - integrity check of buffer pages
1538  * @cpu_buffer: CPU buffer with pages to test
1539  *
1540  * As a safety measure we check to make sure the data pages have not
1541  * been corrupted.
1542  */
1543 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1544 {
1545         struct list_head *head = rb_list_head(cpu_buffer->pages);
1546         struct list_head *tmp;
1547
1548         if (RB_WARN_ON(cpu_buffer,
1549                         rb_list_head(rb_list_head(head->next)->prev) != head))
1550                 return;
1551
1552         if (RB_WARN_ON(cpu_buffer,
1553                         rb_list_head(rb_list_head(head->prev)->next) != head))
1554                 return;
1555
1556         for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1557                 if (RB_WARN_ON(cpu_buffer,
1558                                 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1559                         return;
1560
1561                 if (RB_WARN_ON(cpu_buffer,
1562                                 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1563                         return;
1564         }
1565 }
1566
1567 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1568                 long nr_pages, struct list_head *pages)
1569 {
1570         struct buffer_page *bpage, *tmp;
1571         bool user_thread = current->mm != NULL;
1572         gfp_t mflags;
1573         long i;
1574
1575         /*
1576          * Check if the available memory is there first.
1577          * Note, si_mem_available() only gives us a rough estimate of available
1578          * memory. It may not be accurate. But we don't care, we just want
1579          * to prevent doing any allocation when it is obvious that it is
1580          * not going to succeed.
1581          */
1582         i = si_mem_available();
1583         if (i < nr_pages)
1584                 return -ENOMEM;
1585
1586         /*
1587          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1588          * gracefully without invoking oom-killer and the system is not
1589          * destabilized.
1590          */
1591         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1592
1593         /*
1594          * If a user thread allocates too much, and si_mem_available()
1595          * reports there's enough memory, even though there is not.
1596          * Make sure the OOM killer kills this thread. This can happen
1597          * even with RETRY_MAYFAIL because another task may be doing
1598          * an allocation after this task has taken all memory.
1599          * This is the task the OOM killer needs to take out during this
1600          * loop, even if it was triggered by an allocation somewhere else.
1601          */
1602         if (user_thread)
1603                 set_current_oom_origin();
1604         for (i = 0; i < nr_pages; i++) {
1605                 struct page *page;
1606
1607                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1608                                     mflags, cpu_to_node(cpu_buffer->cpu));
1609                 if (!bpage)
1610                         goto free_pages;
1611
1612                 rb_check_bpage(cpu_buffer, bpage);
1613
1614                 list_add(&bpage->list, pages);
1615
1616                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1617                 if (!page)
1618                         goto free_pages;
1619                 bpage->page = page_address(page);
1620                 rb_init_page(bpage->page);
1621
1622                 if (user_thread && fatal_signal_pending(current))
1623                         goto free_pages;
1624         }
1625         if (user_thread)
1626                 clear_current_oom_origin();
1627
1628         return 0;
1629
1630 free_pages:
1631         list_for_each_entry_safe(bpage, tmp, pages, list) {
1632                 list_del_init(&bpage->list);
1633                 free_buffer_page(bpage);
1634         }
1635         if (user_thread)
1636                 clear_current_oom_origin();
1637
1638         return -ENOMEM;
1639 }
1640
1641 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1642                              unsigned long nr_pages)
1643 {
1644         LIST_HEAD(pages);
1645
1646         WARN_ON(!nr_pages);
1647
1648         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1649                 return -ENOMEM;
1650
1651         /*
1652          * The ring buffer page list is a circular list that does not
1653          * start and end with a list head. All page list items point to
1654          * other pages.
1655          */
1656         cpu_buffer->pages = pages.next;
1657         list_del(&pages);
1658
1659         cpu_buffer->nr_pages = nr_pages;
1660
1661         rb_check_pages(cpu_buffer);
1662
1663         return 0;
1664 }
1665
1666 static struct ring_buffer_per_cpu *
1667 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1668 {
1669         struct ring_buffer_per_cpu *cpu_buffer;
1670         struct buffer_page *bpage;
1671         struct page *page;
1672         int ret;
1673
1674         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1675                                   GFP_KERNEL, cpu_to_node(cpu));
1676         if (!cpu_buffer)
1677                 return NULL;
1678
1679         cpu_buffer->cpu = cpu;
1680         cpu_buffer->buffer = buffer;
1681         raw_spin_lock_init(&cpu_buffer->reader_lock);
1682         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1683         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1684         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1685         init_completion(&cpu_buffer->update_done);
1686         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1687         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1688         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1689
1690         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1691                             GFP_KERNEL, cpu_to_node(cpu));
1692         if (!bpage)
1693                 goto fail_free_buffer;
1694
1695         rb_check_bpage(cpu_buffer, bpage);
1696
1697         cpu_buffer->reader_page = bpage;
1698         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1699         if (!page)
1700                 goto fail_free_reader;
1701         bpage->page = page_address(page);
1702         rb_init_page(bpage->page);
1703
1704         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1705         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1706
1707         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1708         if (ret < 0)
1709                 goto fail_free_reader;
1710
1711         cpu_buffer->head_page
1712                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1713         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1714
1715         rb_head_page_activate(cpu_buffer);
1716
1717         return cpu_buffer;
1718
1719  fail_free_reader:
1720         free_buffer_page(cpu_buffer->reader_page);
1721
1722  fail_free_buffer:
1723         kfree(cpu_buffer);
1724         return NULL;
1725 }
1726
1727 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1728 {
1729         struct list_head *head = cpu_buffer->pages;
1730         struct buffer_page *bpage, *tmp;
1731
1732         irq_work_sync(&cpu_buffer->irq_work.work);
1733
1734         free_buffer_page(cpu_buffer->reader_page);
1735
1736         if (head) {
1737                 rb_head_page_deactivate(cpu_buffer);
1738
1739                 list_for_each_entry_safe(bpage, tmp, head, list) {
1740                         list_del_init(&bpage->list);
1741                         free_buffer_page(bpage);
1742                 }
1743                 bpage = list_entry(head, struct buffer_page, list);
1744                 free_buffer_page(bpage);
1745         }
1746
1747         free_page((unsigned long)cpu_buffer->free_page);
1748
1749         kfree(cpu_buffer);
1750 }
1751
1752 /**
1753  * __ring_buffer_alloc - allocate a new ring_buffer
1754  * @size: the size in bytes per cpu that is needed.
1755  * @flags: attributes to set for the ring buffer.
1756  * @key: ring buffer reader_lock_key.
1757  *
1758  * Currently the only flag that is available is the RB_FL_OVERWRITE
1759  * flag. This flag means that the buffer will overwrite old data
1760  * when the buffer wraps. If this flag is not set, the buffer will
1761  * drop data when the tail hits the head.
1762  */
1763 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1764                                         struct lock_class_key *key)
1765 {
1766         struct trace_buffer *buffer;
1767         long nr_pages;
1768         int bsize;
1769         int cpu;
1770         int ret;
1771
1772         /* keep it in its own cache line */
1773         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1774                          GFP_KERNEL);
1775         if (!buffer)
1776                 return NULL;
1777
1778         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1779                 goto fail_free_buffer;
1780
1781         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1782         buffer->flags = flags;
1783         buffer->clock = trace_clock_local;
1784         buffer->reader_lock_key = key;
1785
1786         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1787         init_waitqueue_head(&buffer->irq_work.waiters);
1788
1789         /* need at least two pages */
1790         if (nr_pages < 2)
1791                 nr_pages = 2;
1792
1793         buffer->cpus = nr_cpu_ids;
1794
1795         bsize = sizeof(void *) * nr_cpu_ids;
1796         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1797                                   GFP_KERNEL);
1798         if (!buffer->buffers)
1799                 goto fail_free_cpumask;
1800
1801         cpu = raw_smp_processor_id();
1802         cpumask_set_cpu(cpu, buffer->cpumask);
1803         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1804         if (!buffer->buffers[cpu])
1805                 goto fail_free_buffers;
1806
1807         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1808         if (ret < 0)
1809                 goto fail_free_buffers;
1810
1811         mutex_init(&buffer->mutex);
1812
1813         return buffer;
1814
1815  fail_free_buffers:
1816         for_each_buffer_cpu(buffer, cpu) {
1817                 if (buffer->buffers[cpu])
1818                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1819         }
1820         kfree(buffer->buffers);
1821
1822  fail_free_cpumask:
1823         free_cpumask_var(buffer->cpumask);
1824
1825  fail_free_buffer:
1826         kfree(buffer);
1827         return NULL;
1828 }
1829 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1830
1831 /**
1832  * ring_buffer_free - free a ring buffer.
1833  * @buffer: the buffer to free.
1834  */
1835 void
1836 ring_buffer_free(struct trace_buffer *buffer)
1837 {
1838         int cpu;
1839
1840         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1841
1842         irq_work_sync(&buffer->irq_work.work);
1843
1844         for_each_buffer_cpu(buffer, cpu)
1845                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1846
1847         kfree(buffer->buffers);
1848         free_cpumask_var(buffer->cpumask);
1849
1850         kfree(buffer);
1851 }
1852 EXPORT_SYMBOL_GPL(ring_buffer_free);
1853
1854 void ring_buffer_set_clock(struct trace_buffer *buffer,
1855                            u64 (*clock)(void))
1856 {
1857         buffer->clock = clock;
1858 }
1859
1860 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1861 {
1862         buffer->time_stamp_abs = abs;
1863 }
1864
1865 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1866 {
1867         return buffer->time_stamp_abs;
1868 }
1869
1870 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1871
1872 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1873 {
1874         return local_read(&bpage->entries) & RB_WRITE_MASK;
1875 }
1876
1877 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1878 {
1879         return local_read(&bpage->write) & RB_WRITE_MASK;
1880 }
1881
1882 static bool
1883 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1884 {
1885         struct list_head *tail_page, *to_remove, *next_page;
1886         struct buffer_page *to_remove_page, *tmp_iter_page;
1887         struct buffer_page *last_page, *first_page;
1888         unsigned long nr_removed;
1889         unsigned long head_bit;
1890         int page_entries;
1891
1892         head_bit = 0;
1893
1894         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1895         atomic_inc(&cpu_buffer->record_disabled);
1896         /*
1897          * We don't race with the readers since we have acquired the reader
1898          * lock. We also don't race with writers after disabling recording.
1899          * This makes it easy to figure out the first and the last page to be
1900          * removed from the list. We unlink all the pages in between including
1901          * the first and last pages. This is done in a busy loop so that we
1902          * lose the least number of traces.
1903          * The pages are freed after we restart recording and unlock readers.
1904          */
1905         tail_page = &cpu_buffer->tail_page->list;
1906
1907         /*
1908          * tail page might be on reader page, we remove the next page
1909          * from the ring buffer
1910          */
1911         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1912                 tail_page = rb_list_head(tail_page->next);
1913         to_remove = tail_page;
1914
1915         /* start of pages to remove */
1916         first_page = list_entry(rb_list_head(to_remove->next),
1917                                 struct buffer_page, list);
1918
1919         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1920                 to_remove = rb_list_head(to_remove)->next;
1921                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1922         }
1923         /* Read iterators need to reset themselves when some pages removed */
1924         cpu_buffer->pages_removed += nr_removed;
1925
1926         next_page = rb_list_head(to_remove)->next;
1927
1928         /*
1929          * Now we remove all pages between tail_page and next_page.
1930          * Make sure that we have head_bit value preserved for the
1931          * next page
1932          */
1933         tail_page->next = (struct list_head *)((unsigned long)next_page |
1934                                                 head_bit);
1935         next_page = rb_list_head(next_page);
1936         next_page->prev = tail_page;
1937
1938         /* make sure pages points to a valid page in the ring buffer */
1939         cpu_buffer->pages = next_page;
1940
1941         /* update head page */
1942         if (head_bit)
1943                 cpu_buffer->head_page = list_entry(next_page,
1944                                                 struct buffer_page, list);
1945
1946         /* pages are removed, resume tracing and then free the pages */
1947         atomic_dec(&cpu_buffer->record_disabled);
1948         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1949
1950         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1951
1952         /* last buffer page to remove */
1953         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1954                                 list);
1955         tmp_iter_page = first_page;
1956
1957         do {
1958                 cond_resched();
1959
1960                 to_remove_page = tmp_iter_page;
1961                 rb_inc_page(&tmp_iter_page);
1962
1963                 /* update the counters */
1964                 page_entries = rb_page_entries(to_remove_page);
1965                 if (page_entries) {
1966                         /*
1967                          * If something was added to this page, it was full
1968                          * since it is not the tail page. So we deduct the
1969                          * bytes consumed in ring buffer from here.
1970                          * Increment overrun to account for the lost events.
1971                          */
1972                         local_add(page_entries, &cpu_buffer->overrun);
1973                         local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1974                         local_inc(&cpu_buffer->pages_lost);
1975                 }
1976
1977                 /*
1978                  * We have already removed references to this list item, just
1979                  * free up the buffer_page and its page
1980                  */
1981                 free_buffer_page(to_remove_page);
1982                 nr_removed--;
1983
1984         } while (to_remove_page != last_page);
1985
1986         RB_WARN_ON(cpu_buffer, nr_removed);
1987
1988         return nr_removed == 0;
1989 }
1990
1991 static bool
1992 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1993 {
1994         struct list_head *pages = &cpu_buffer->new_pages;
1995         unsigned long flags;
1996         bool success;
1997         int retries;
1998
1999         /* Can be called at early boot up, where interrupts must not been enabled */
2000         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2001         /*
2002          * We are holding the reader lock, so the reader page won't be swapped
2003          * in the ring buffer. Now we are racing with the writer trying to
2004          * move head page and the tail page.
2005          * We are going to adapt the reader page update process where:
2006          * 1. We first splice the start and end of list of new pages between
2007          *    the head page and its previous page.
2008          * 2. We cmpxchg the prev_page->next to point from head page to the
2009          *    start of new pages list.
2010          * 3. Finally, we update the head->prev to the end of new list.
2011          *
2012          * We will try this process 10 times, to make sure that we don't keep
2013          * spinning.
2014          */
2015         retries = 10;
2016         success = false;
2017         while (retries--) {
2018                 struct list_head *head_page, *prev_page;
2019                 struct list_head *last_page, *first_page;
2020                 struct list_head *head_page_with_bit;
2021                 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2022
2023                 if (!hpage)
2024                         break;
2025                 head_page = &hpage->list;
2026                 prev_page = head_page->prev;
2027
2028                 first_page = pages->next;
2029                 last_page  = pages->prev;
2030
2031                 head_page_with_bit = (struct list_head *)
2032                                      ((unsigned long)head_page | RB_PAGE_HEAD);
2033
2034                 last_page->next = head_page_with_bit;
2035                 first_page->prev = prev_page;
2036
2037                 /* caution: head_page_with_bit gets updated on cmpxchg failure */
2038                 if (try_cmpxchg(&prev_page->next,
2039                                 &head_page_with_bit, first_page)) {
2040                         /*
2041                          * yay, we replaced the page pointer to our new list,
2042                          * now, we just have to update to head page's prev
2043                          * pointer to point to end of list
2044                          */
2045                         head_page->prev = last_page;
2046                         success = true;
2047                         break;
2048                 }
2049         }
2050
2051         if (success)
2052                 INIT_LIST_HEAD(pages);
2053         /*
2054          * If we weren't successful in adding in new pages, warn and stop
2055          * tracing
2056          */
2057         RB_WARN_ON(cpu_buffer, !success);
2058         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2059
2060         /* free pages if they weren't inserted */
2061         if (!success) {
2062                 struct buffer_page *bpage, *tmp;
2063                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2064                                          list) {
2065                         list_del_init(&bpage->list);
2066                         free_buffer_page(bpage);
2067                 }
2068         }
2069         return success;
2070 }
2071
2072 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2073 {
2074         bool success;
2075
2076         if (cpu_buffer->nr_pages_to_update > 0)
2077                 success = rb_insert_pages(cpu_buffer);
2078         else
2079                 success = rb_remove_pages(cpu_buffer,
2080                                         -cpu_buffer->nr_pages_to_update);
2081
2082         if (success)
2083                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2084 }
2085
2086 static void update_pages_handler(struct work_struct *work)
2087 {
2088         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2089                         struct ring_buffer_per_cpu, update_pages_work);
2090         rb_update_pages(cpu_buffer);
2091         complete(&cpu_buffer->update_done);
2092 }
2093
2094 /**
2095  * ring_buffer_resize - resize the ring buffer
2096  * @buffer: the buffer to resize.
2097  * @size: the new size.
2098  * @cpu_id: the cpu buffer to resize
2099  *
2100  * Minimum size is 2 * BUF_PAGE_SIZE.
2101  *
2102  * Returns 0 on success and < 0 on failure.
2103  */
2104 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2105                         int cpu_id)
2106 {
2107         struct ring_buffer_per_cpu *cpu_buffer;
2108         unsigned long nr_pages;
2109         int cpu, err;
2110
2111         /*
2112          * Always succeed at resizing a non-existent buffer:
2113          */
2114         if (!buffer)
2115                 return 0;
2116
2117         /* Make sure the requested buffer exists */
2118         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2119             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2120                 return 0;
2121
2122         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2123
2124         /* we need a minimum of two pages */
2125         if (nr_pages < 2)
2126                 nr_pages = 2;
2127
2128         /* prevent another thread from changing buffer sizes */
2129         mutex_lock(&buffer->mutex);
2130         atomic_inc(&buffer->resizing);
2131
2132         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2133                 /*
2134                  * Don't succeed if resizing is disabled, as a reader might be
2135                  * manipulating the ring buffer and is expecting a sane state while
2136                  * this is true.
2137                  */
2138                 for_each_buffer_cpu(buffer, cpu) {
2139                         cpu_buffer = buffer->buffers[cpu];
2140                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2141                                 err = -EBUSY;
2142                                 goto out_err_unlock;
2143                         }
2144                 }
2145
2146                 /* calculate the pages to update */
2147                 for_each_buffer_cpu(buffer, cpu) {
2148                         cpu_buffer = buffer->buffers[cpu];
2149
2150                         cpu_buffer->nr_pages_to_update = nr_pages -
2151                                                         cpu_buffer->nr_pages;
2152                         /*
2153                          * nothing more to do for removing pages or no update
2154                          */
2155                         if (cpu_buffer->nr_pages_to_update <= 0)
2156                                 continue;
2157                         /*
2158                          * to add pages, make sure all new pages can be
2159                          * allocated without receiving ENOMEM
2160                          */
2161                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2162                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2163                                                 &cpu_buffer->new_pages)) {
2164                                 /* not enough memory for new pages */
2165                                 err = -ENOMEM;
2166                                 goto out_err;
2167                         }
2168
2169                         cond_resched();
2170                 }
2171
2172                 cpus_read_lock();
2173                 /*
2174                  * Fire off all the required work handlers
2175                  * We can't schedule on offline CPUs, but it's not necessary
2176                  * since we can change their buffer sizes without any race.
2177                  */
2178                 for_each_buffer_cpu(buffer, cpu) {
2179                         cpu_buffer = buffer->buffers[cpu];
2180                         if (!cpu_buffer->nr_pages_to_update)
2181                                 continue;
2182
2183                         /* Can't run something on an offline CPU. */
2184                         if (!cpu_online(cpu)) {
2185                                 rb_update_pages(cpu_buffer);
2186                                 cpu_buffer->nr_pages_to_update = 0;
2187                         } else {
2188                                 /* Run directly if possible. */
2189                                 migrate_disable();
2190                                 if (cpu != smp_processor_id()) {
2191                                         migrate_enable();
2192                                         schedule_work_on(cpu,
2193                                                          &cpu_buffer->update_pages_work);
2194                                 } else {
2195                                         update_pages_handler(&cpu_buffer->update_pages_work);
2196                                         migrate_enable();
2197                                 }
2198                         }
2199                 }
2200
2201                 /* wait for all the updates to complete */
2202                 for_each_buffer_cpu(buffer, cpu) {
2203                         cpu_buffer = buffer->buffers[cpu];
2204                         if (!cpu_buffer->nr_pages_to_update)
2205                                 continue;
2206
2207                         if (cpu_online(cpu))
2208                                 wait_for_completion(&cpu_buffer->update_done);
2209                         cpu_buffer->nr_pages_to_update = 0;
2210                 }
2211
2212                 cpus_read_unlock();
2213         } else {
2214                 cpu_buffer = buffer->buffers[cpu_id];
2215
2216                 if (nr_pages == cpu_buffer->nr_pages)
2217                         goto out;
2218
2219                 /*
2220                  * Don't succeed if resizing is disabled, as a reader might be
2221                  * manipulating the ring buffer and is expecting a sane state while
2222                  * this is true.
2223                  */
2224                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2225                         err = -EBUSY;
2226                         goto out_err_unlock;
2227                 }
2228
2229                 cpu_buffer->nr_pages_to_update = nr_pages -
2230                                                 cpu_buffer->nr_pages;
2231
2232                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2233                 if (cpu_buffer->nr_pages_to_update > 0 &&
2234                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2235                                             &cpu_buffer->new_pages)) {
2236                         err = -ENOMEM;
2237                         goto out_err;
2238                 }
2239
2240                 cpus_read_lock();
2241
2242                 /* Can't run something on an offline CPU. */
2243                 if (!cpu_online(cpu_id))
2244                         rb_update_pages(cpu_buffer);
2245                 else {
2246                         /* Run directly if possible. */
2247                         migrate_disable();
2248                         if (cpu_id == smp_processor_id()) {
2249                                 rb_update_pages(cpu_buffer);
2250                                 migrate_enable();
2251                         } else {
2252                                 migrate_enable();
2253                                 schedule_work_on(cpu_id,
2254                                                  &cpu_buffer->update_pages_work);
2255                                 wait_for_completion(&cpu_buffer->update_done);
2256                         }
2257                 }
2258
2259                 cpu_buffer->nr_pages_to_update = 0;
2260                 cpus_read_unlock();
2261         }
2262
2263  out:
2264         /*
2265          * The ring buffer resize can happen with the ring buffer
2266          * enabled, so that the update disturbs the tracing as little
2267          * as possible. But if the buffer is disabled, we do not need
2268          * to worry about that, and we can take the time to verify
2269          * that the buffer is not corrupt.
2270          */
2271         if (atomic_read(&buffer->record_disabled)) {
2272                 atomic_inc(&buffer->record_disabled);
2273                 /*
2274                  * Even though the buffer was disabled, we must make sure
2275                  * that it is truly disabled before calling rb_check_pages.
2276                  * There could have been a race between checking
2277                  * record_disable and incrementing it.
2278                  */
2279                 synchronize_rcu();
2280                 for_each_buffer_cpu(buffer, cpu) {
2281                         cpu_buffer = buffer->buffers[cpu];
2282                         rb_check_pages(cpu_buffer);
2283                 }
2284                 atomic_dec(&buffer->record_disabled);
2285         }
2286
2287         atomic_dec(&buffer->resizing);
2288         mutex_unlock(&buffer->mutex);
2289         return 0;
2290
2291  out_err:
2292         for_each_buffer_cpu(buffer, cpu) {
2293                 struct buffer_page *bpage, *tmp;
2294
2295                 cpu_buffer = buffer->buffers[cpu];
2296                 cpu_buffer->nr_pages_to_update = 0;
2297
2298                 if (list_empty(&cpu_buffer->new_pages))
2299                         continue;
2300
2301                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2302                                         list) {
2303                         list_del_init(&bpage->list);
2304                         free_buffer_page(bpage);
2305                 }
2306         }
2307  out_err_unlock:
2308         atomic_dec(&buffer->resizing);
2309         mutex_unlock(&buffer->mutex);
2310         return err;
2311 }
2312 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2313
2314 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2315 {
2316         mutex_lock(&buffer->mutex);
2317         if (val)
2318                 buffer->flags |= RB_FL_OVERWRITE;
2319         else
2320                 buffer->flags &= ~RB_FL_OVERWRITE;
2321         mutex_unlock(&buffer->mutex);
2322 }
2323 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2324
2325 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2326 {
2327         return bpage->page->data + index;
2328 }
2329
2330 static __always_inline struct ring_buffer_event *
2331 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2332 {
2333         return __rb_page_index(cpu_buffer->reader_page,
2334                                cpu_buffer->reader_page->read);
2335 }
2336
2337 static struct ring_buffer_event *
2338 rb_iter_head_event(struct ring_buffer_iter *iter)
2339 {
2340         struct ring_buffer_event *event;
2341         struct buffer_page *iter_head_page = iter->head_page;
2342         unsigned long commit;
2343         unsigned length;
2344
2345         if (iter->head != iter->next_event)
2346                 return iter->event;
2347
2348         /*
2349          * When the writer goes across pages, it issues a cmpxchg which
2350          * is a mb(), which will synchronize with the rmb here.
2351          * (see rb_tail_page_update() and __rb_reserve_next())
2352          */
2353         commit = rb_page_commit(iter_head_page);
2354         smp_rmb();
2355
2356         /* An event needs to be at least 8 bytes in size */
2357         if (iter->head > commit - 8)
2358                 goto reset;
2359
2360         event = __rb_page_index(iter_head_page, iter->head);
2361         length = rb_event_length(event);
2362
2363         /*
2364          * READ_ONCE() doesn't work on functions and we don't want the
2365          * compiler doing any crazy optimizations with length.
2366          */
2367         barrier();
2368
2369         if ((iter->head + length) > commit || length > BUF_PAGE_SIZE)
2370                 /* Writer corrupted the read? */
2371                 goto reset;
2372
2373         memcpy(iter->event, event, length);
2374         /*
2375          * If the page stamp is still the same after this rmb() then the
2376          * event was safely copied without the writer entering the page.
2377          */
2378         smp_rmb();
2379
2380         /* Make sure the page didn't change since we read this */
2381         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2382             commit > rb_page_commit(iter_head_page))
2383                 goto reset;
2384
2385         iter->next_event = iter->head + length;
2386         return iter->event;
2387  reset:
2388         /* Reset to the beginning */
2389         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2390         iter->head = 0;
2391         iter->next_event = 0;
2392         iter->missed_events = 1;
2393         return NULL;
2394 }
2395
2396 /* Size is determined by what has been committed */
2397 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2398 {
2399         return rb_page_commit(bpage);
2400 }
2401
2402 static __always_inline unsigned
2403 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2404 {
2405         return rb_page_commit(cpu_buffer->commit_page);
2406 }
2407
2408 static __always_inline unsigned
2409 rb_event_index(struct ring_buffer_event *event)
2410 {
2411         unsigned long addr = (unsigned long)event;
2412
2413         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2414 }
2415
2416 static void rb_inc_iter(struct ring_buffer_iter *iter)
2417 {
2418         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2419
2420         /*
2421          * The iterator could be on the reader page (it starts there).
2422          * But the head could have moved, since the reader was
2423          * found. Check for this case and assign the iterator
2424          * to the head page instead of next.
2425          */
2426         if (iter->head_page == cpu_buffer->reader_page)
2427                 iter->head_page = rb_set_head_page(cpu_buffer);
2428         else
2429                 rb_inc_page(&iter->head_page);
2430
2431         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2432         iter->head = 0;
2433         iter->next_event = 0;
2434 }
2435
2436 /*
2437  * rb_handle_head_page - writer hit the head page
2438  *
2439  * Returns: +1 to retry page
2440  *           0 to continue
2441  *          -1 on error
2442  */
2443 static int
2444 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2445                     struct buffer_page *tail_page,
2446                     struct buffer_page *next_page)
2447 {
2448         struct buffer_page *new_head;
2449         int entries;
2450         int type;
2451         int ret;
2452
2453         entries = rb_page_entries(next_page);
2454
2455         /*
2456          * The hard part is here. We need to move the head
2457          * forward, and protect against both readers on
2458          * other CPUs and writers coming in via interrupts.
2459          */
2460         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2461                                        RB_PAGE_HEAD);
2462
2463         /*
2464          * type can be one of four:
2465          *  NORMAL - an interrupt already moved it for us
2466          *  HEAD   - we are the first to get here.
2467          *  UPDATE - we are the interrupt interrupting
2468          *           a current move.
2469          *  MOVED  - a reader on another CPU moved the next
2470          *           pointer to its reader page. Give up
2471          *           and try again.
2472          */
2473
2474         switch (type) {
2475         case RB_PAGE_HEAD:
2476                 /*
2477                  * We changed the head to UPDATE, thus
2478                  * it is our responsibility to update
2479                  * the counters.
2480                  */
2481                 local_add(entries, &cpu_buffer->overrun);
2482                 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2483                 local_inc(&cpu_buffer->pages_lost);
2484
2485                 /*
2486                  * The entries will be zeroed out when we move the
2487                  * tail page.
2488                  */
2489
2490                 /* still more to do */
2491                 break;
2492
2493         case RB_PAGE_UPDATE:
2494                 /*
2495                  * This is an interrupt that interrupt the
2496                  * previous update. Still more to do.
2497                  */
2498                 break;
2499         case RB_PAGE_NORMAL:
2500                 /*
2501                  * An interrupt came in before the update
2502                  * and processed this for us.
2503                  * Nothing left to do.
2504                  */
2505                 return 1;
2506         case RB_PAGE_MOVED:
2507                 /*
2508                  * The reader is on another CPU and just did
2509                  * a swap with our next_page.
2510                  * Try again.
2511                  */
2512                 return 1;
2513         default:
2514                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2515                 return -1;
2516         }
2517
2518         /*
2519          * Now that we are here, the old head pointer is
2520          * set to UPDATE. This will keep the reader from
2521          * swapping the head page with the reader page.
2522          * The reader (on another CPU) will spin till
2523          * we are finished.
2524          *
2525          * We just need to protect against interrupts
2526          * doing the job. We will set the next pointer
2527          * to HEAD. After that, we set the old pointer
2528          * to NORMAL, but only if it was HEAD before.
2529          * otherwise we are an interrupt, and only
2530          * want the outer most commit to reset it.
2531          */
2532         new_head = next_page;
2533         rb_inc_page(&new_head);
2534
2535         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2536                                     RB_PAGE_NORMAL);
2537
2538         /*
2539          * Valid returns are:
2540          *  HEAD   - an interrupt came in and already set it.
2541          *  NORMAL - One of two things:
2542          *            1) We really set it.
2543          *            2) A bunch of interrupts came in and moved
2544          *               the page forward again.
2545          */
2546         switch (ret) {
2547         case RB_PAGE_HEAD:
2548         case RB_PAGE_NORMAL:
2549                 /* OK */
2550                 break;
2551         default:
2552                 RB_WARN_ON(cpu_buffer, 1);
2553                 return -1;
2554         }
2555
2556         /*
2557          * It is possible that an interrupt came in,
2558          * set the head up, then more interrupts came in
2559          * and moved it again. When we get back here,
2560          * the page would have been set to NORMAL but we
2561          * just set it back to HEAD.
2562          *
2563          * How do you detect this? Well, if that happened
2564          * the tail page would have moved.
2565          */
2566         if (ret == RB_PAGE_NORMAL) {
2567                 struct buffer_page *buffer_tail_page;
2568
2569                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2570                 /*
2571                  * If the tail had moved passed next, then we need
2572                  * to reset the pointer.
2573                  */
2574                 if (buffer_tail_page != tail_page &&
2575                     buffer_tail_page != next_page)
2576                         rb_head_page_set_normal(cpu_buffer, new_head,
2577                                                 next_page,
2578                                                 RB_PAGE_HEAD);
2579         }
2580
2581         /*
2582          * If this was the outer most commit (the one that
2583          * changed the original pointer from HEAD to UPDATE),
2584          * then it is up to us to reset it to NORMAL.
2585          */
2586         if (type == RB_PAGE_HEAD) {
2587                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2588                                               tail_page,
2589                                               RB_PAGE_UPDATE);
2590                 if (RB_WARN_ON(cpu_buffer,
2591                                ret != RB_PAGE_UPDATE))
2592                         return -1;
2593         }
2594
2595         return 0;
2596 }
2597
2598 static inline void
2599 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2600               unsigned long tail, struct rb_event_info *info)
2601 {
2602         struct buffer_page *tail_page = info->tail_page;
2603         struct ring_buffer_event *event;
2604         unsigned long length = info->length;
2605
2606         /*
2607          * Only the event that crossed the page boundary
2608          * must fill the old tail_page with padding.
2609          */
2610         if (tail >= BUF_PAGE_SIZE) {
2611                 /*
2612                  * If the page was filled, then we still need
2613                  * to update the real_end. Reset it to zero
2614                  * and the reader will ignore it.
2615                  */
2616                 if (tail == BUF_PAGE_SIZE)
2617                         tail_page->real_end = 0;
2618
2619                 local_sub(length, &tail_page->write);
2620                 return;
2621         }
2622
2623         event = __rb_page_index(tail_page, tail);
2624
2625         /*
2626          * Save the original length to the meta data.
2627          * This will be used by the reader to add lost event
2628          * counter.
2629          */
2630         tail_page->real_end = tail;
2631
2632         /*
2633          * If this event is bigger than the minimum size, then
2634          * we need to be careful that we don't subtract the
2635          * write counter enough to allow another writer to slip
2636          * in on this page.
2637          * We put in a discarded commit instead, to make sure
2638          * that this space is not used again, and this space will
2639          * not be accounted into 'entries_bytes'.
2640          *
2641          * If we are less than the minimum size, we don't need to
2642          * worry about it.
2643          */
2644         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2645                 /* No room for any events */
2646
2647                 /* Mark the rest of the page with padding */
2648                 rb_event_set_padding(event);
2649
2650                 /* Make sure the padding is visible before the write update */
2651                 smp_wmb();
2652
2653                 /* Set the write back to the previous setting */
2654                 local_sub(length, &tail_page->write);
2655                 return;
2656         }
2657
2658         /* Put in a discarded event */
2659         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2660         event->type_len = RINGBUF_TYPE_PADDING;
2661         /* time delta must be non zero */
2662         event->time_delta = 1;
2663
2664         /* account for padding bytes */
2665         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2666
2667         /* Make sure the padding is visible before the tail_page->write update */
2668         smp_wmb();
2669
2670         /* Set write to end of buffer */
2671         length = (tail + length) - BUF_PAGE_SIZE;
2672         local_sub(length, &tail_page->write);
2673 }
2674
2675 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2676
2677 /*
2678  * This is the slow path, force gcc not to inline it.
2679  */
2680 static noinline struct ring_buffer_event *
2681 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2682              unsigned long tail, struct rb_event_info *info)
2683 {
2684         struct buffer_page *tail_page = info->tail_page;
2685         struct buffer_page *commit_page = cpu_buffer->commit_page;
2686         struct trace_buffer *buffer = cpu_buffer->buffer;
2687         struct buffer_page *next_page;
2688         int ret;
2689
2690         next_page = tail_page;
2691
2692         rb_inc_page(&next_page);
2693
2694         /*
2695          * If for some reason, we had an interrupt storm that made
2696          * it all the way around the buffer, bail, and warn
2697          * about it.
2698          */
2699         if (unlikely(next_page == commit_page)) {
2700                 local_inc(&cpu_buffer->commit_overrun);
2701                 goto out_reset;
2702         }
2703
2704         /*
2705          * This is where the fun begins!
2706          *
2707          * We are fighting against races between a reader that
2708          * could be on another CPU trying to swap its reader
2709          * page with the buffer head.
2710          *
2711          * We are also fighting against interrupts coming in and
2712          * moving the head or tail on us as well.
2713          *
2714          * If the next page is the head page then we have filled
2715          * the buffer, unless the commit page is still on the
2716          * reader page.
2717          */
2718         if (rb_is_head_page(next_page, &tail_page->list)) {
2719
2720                 /*
2721                  * If the commit is not on the reader page, then
2722                  * move the header page.
2723                  */
2724                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2725                         /*
2726                          * If we are not in overwrite mode,
2727                          * this is easy, just stop here.
2728                          */
2729                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2730                                 local_inc(&cpu_buffer->dropped_events);
2731                                 goto out_reset;
2732                         }
2733
2734                         ret = rb_handle_head_page(cpu_buffer,
2735                                                   tail_page,
2736                                                   next_page);
2737                         if (ret < 0)
2738                                 goto out_reset;
2739                         if (ret)
2740                                 goto out_again;
2741                 } else {
2742                         /*
2743                          * We need to be careful here too. The
2744                          * commit page could still be on the reader
2745                          * page. We could have a small buffer, and
2746                          * have filled up the buffer with events
2747                          * from interrupts and such, and wrapped.
2748                          *
2749                          * Note, if the tail page is also on the
2750                          * reader_page, we let it move out.
2751                          */
2752                         if (unlikely((cpu_buffer->commit_page !=
2753                                       cpu_buffer->tail_page) &&
2754                                      (cpu_buffer->commit_page ==
2755                                       cpu_buffer->reader_page))) {
2756                                 local_inc(&cpu_buffer->commit_overrun);
2757                                 goto out_reset;
2758                         }
2759                 }
2760         }
2761
2762         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2763
2764  out_again:
2765
2766         rb_reset_tail(cpu_buffer, tail, info);
2767
2768         /* Commit what we have for now. */
2769         rb_end_commit(cpu_buffer);
2770         /* rb_end_commit() decs committing */
2771         local_inc(&cpu_buffer->committing);
2772
2773         /* fail and let the caller try again */
2774         return ERR_PTR(-EAGAIN);
2775
2776  out_reset:
2777         /* reset write */
2778         rb_reset_tail(cpu_buffer, tail, info);
2779
2780         return NULL;
2781 }
2782
2783 /* Slow path */
2784 static struct ring_buffer_event *
2785 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2786 {
2787         if (abs)
2788                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2789         else
2790                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2791
2792         /* Not the first event on the page, or not delta? */
2793         if (abs || rb_event_index(event)) {
2794                 event->time_delta = delta & TS_MASK;
2795                 event->array[0] = delta >> TS_SHIFT;
2796         } else {
2797                 /* nope, just zero it */
2798                 event->time_delta = 0;
2799                 event->array[0] = 0;
2800         }
2801
2802         return skip_time_extend(event);
2803 }
2804
2805 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2806 static inline bool sched_clock_stable(void)
2807 {
2808         return true;
2809 }
2810 #endif
2811
2812 static void
2813 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2814                    struct rb_event_info *info)
2815 {
2816         u64 write_stamp;
2817
2818         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2819                   (unsigned long long)info->delta,
2820                   (unsigned long long)info->ts,
2821                   (unsigned long long)info->before,
2822                   (unsigned long long)info->after,
2823                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2824                   sched_clock_stable() ? "" :
2825                   "If you just came from a suspend/resume,\n"
2826                   "please switch to the trace global clock:\n"
2827                   "  echo global > /sys/kernel/tracing/trace_clock\n"
2828                   "or add trace_clock=global to the kernel command line\n");
2829 }
2830
2831 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2832                                       struct ring_buffer_event **event,
2833                                       struct rb_event_info *info,
2834                                       u64 *delta,
2835                                       unsigned int *length)
2836 {
2837         bool abs = info->add_timestamp &
2838                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2839
2840         if (unlikely(info->delta > (1ULL << 59))) {
2841                 /*
2842                  * Some timers can use more than 59 bits, and when a timestamp
2843                  * is added to the buffer, it will lose those bits.
2844                  */
2845                 if (abs && (info->ts & TS_MSB)) {
2846                         info->delta &= ABS_TS_MASK;
2847
2848                 /* did the clock go backwards */
2849                 } else if (info->before == info->after && info->before > info->ts) {
2850                         /* not interrupted */
2851                         static int once;
2852
2853                         /*
2854                          * This is possible with a recalibrating of the TSC.
2855                          * Do not produce a call stack, but just report it.
2856                          */
2857                         if (!once) {
2858                                 once++;
2859                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2860                                         info->before, info->ts);
2861                         }
2862                 } else
2863                         rb_check_timestamp(cpu_buffer, info);
2864                 if (!abs)
2865                         info->delta = 0;
2866         }
2867         *event = rb_add_time_stamp(*event, info->delta, abs);
2868         *length -= RB_LEN_TIME_EXTEND;
2869         *delta = 0;
2870 }
2871
2872 /**
2873  * rb_update_event - update event type and data
2874  * @cpu_buffer: The per cpu buffer of the @event
2875  * @event: the event to update
2876  * @info: The info to update the @event with (contains length and delta)
2877  *
2878  * Update the type and data fields of the @event. The length
2879  * is the actual size that is written to the ring buffer,
2880  * and with this, we can determine what to place into the
2881  * data field.
2882  */
2883 static void
2884 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2885                 struct ring_buffer_event *event,
2886                 struct rb_event_info *info)
2887 {
2888         unsigned length = info->length;
2889         u64 delta = info->delta;
2890         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2891
2892         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2893                 cpu_buffer->event_stamp[nest] = info->ts;
2894
2895         /*
2896          * If we need to add a timestamp, then we
2897          * add it to the start of the reserved space.
2898          */
2899         if (unlikely(info->add_timestamp))
2900                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2901
2902         event->time_delta = delta;
2903         length -= RB_EVNT_HDR_SIZE;
2904         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2905                 event->type_len = 0;
2906                 event->array[0] = length;
2907         } else
2908                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2909 }
2910
2911 static unsigned rb_calculate_event_length(unsigned length)
2912 {
2913         struct ring_buffer_event event; /* Used only for sizeof array */
2914
2915         /* zero length can cause confusions */
2916         if (!length)
2917                 length++;
2918
2919         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2920                 length += sizeof(event.array[0]);
2921
2922         length += RB_EVNT_HDR_SIZE;
2923         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2924
2925         /*
2926          * In case the time delta is larger than the 27 bits for it
2927          * in the header, we need to add a timestamp. If another
2928          * event comes in when trying to discard this one to increase
2929          * the length, then the timestamp will be added in the allocated
2930          * space of this event. If length is bigger than the size needed
2931          * for the TIME_EXTEND, then padding has to be used. The events
2932          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2933          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2934          * As length is a multiple of 4, we only need to worry if it
2935          * is 12 (RB_LEN_TIME_EXTEND + 4).
2936          */
2937         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2938                 length += RB_ALIGNMENT;
2939
2940         return length;
2941 }
2942
2943 static inline bool
2944 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2945                   struct ring_buffer_event *event)
2946 {
2947         unsigned long new_index, old_index;
2948         struct buffer_page *bpage;
2949         unsigned long addr;
2950
2951         new_index = rb_event_index(event);
2952         old_index = new_index + rb_event_ts_length(event);
2953         addr = (unsigned long)event;
2954         addr &= PAGE_MASK;
2955
2956         bpage = READ_ONCE(cpu_buffer->tail_page);
2957
2958         /*
2959          * Make sure the tail_page is still the same and
2960          * the next write location is the end of this event
2961          */
2962         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2963                 unsigned long write_mask =
2964                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2965                 unsigned long event_length = rb_event_length(event);
2966
2967                 /*
2968                  * For the before_stamp to be different than the write_stamp
2969                  * to make sure that the next event adds an absolute
2970                  * value and does not rely on the saved write stamp, which
2971                  * is now going to be bogus.
2972                  *
2973                  * By setting the before_stamp to zero, the next event
2974                  * is not going to use the write_stamp and will instead
2975                  * create an absolute timestamp. This means there's no
2976                  * reason to update the wirte_stamp!
2977                  */
2978                 rb_time_set(&cpu_buffer->before_stamp, 0);
2979
2980                 /*
2981                  * If an event were to come in now, it would see that the
2982                  * write_stamp and the before_stamp are different, and assume
2983                  * that this event just added itself before updating
2984                  * the write stamp. The interrupting event will fix the
2985                  * write stamp for us, and use an absolute timestamp.
2986                  */
2987
2988                 /*
2989                  * This is on the tail page. It is possible that
2990                  * a write could come in and move the tail page
2991                  * and write to the next page. That is fine
2992                  * because we just shorten what is on this page.
2993                  */
2994                 old_index += write_mask;
2995                 new_index += write_mask;
2996
2997                 /* caution: old_index gets updated on cmpxchg failure */
2998                 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2999                         /* update counters */
3000                         local_sub(event_length, &cpu_buffer->entries_bytes);
3001                         return true;
3002                 }
3003         }
3004
3005         /* could not discard */
3006         return false;
3007 }
3008
3009 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3010 {
3011         local_inc(&cpu_buffer->committing);
3012         local_inc(&cpu_buffer->commits);
3013 }
3014
3015 static __always_inline void
3016 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3017 {
3018         unsigned long max_count;
3019
3020         /*
3021          * We only race with interrupts and NMIs on this CPU.
3022          * If we own the commit event, then we can commit
3023          * all others that interrupted us, since the interruptions
3024          * are in stack format (they finish before they come
3025          * back to us). This allows us to do a simple loop to
3026          * assign the commit to the tail.
3027          */
3028  again:
3029         max_count = cpu_buffer->nr_pages * 100;
3030
3031         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3032                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3033                         return;
3034                 if (RB_WARN_ON(cpu_buffer,
3035                                rb_is_reader_page(cpu_buffer->tail_page)))
3036                         return;
3037                 /*
3038                  * No need for a memory barrier here, as the update
3039                  * of the tail_page did it for this page.
3040                  */
3041                 local_set(&cpu_buffer->commit_page->page->commit,
3042                           rb_page_write(cpu_buffer->commit_page));
3043                 rb_inc_page(&cpu_buffer->commit_page);
3044                 /* add barrier to keep gcc from optimizing too much */
3045                 barrier();
3046         }
3047         while (rb_commit_index(cpu_buffer) !=
3048                rb_page_write(cpu_buffer->commit_page)) {
3049
3050                 /* Make sure the readers see the content of what is committed. */
3051                 smp_wmb();
3052                 local_set(&cpu_buffer->commit_page->page->commit,
3053                           rb_page_write(cpu_buffer->commit_page));
3054                 RB_WARN_ON(cpu_buffer,
3055                            local_read(&cpu_buffer->commit_page->page->commit) &
3056                            ~RB_WRITE_MASK);
3057                 barrier();
3058         }
3059
3060         /* again, keep gcc from optimizing */
3061         barrier();
3062
3063         /*
3064          * If an interrupt came in just after the first while loop
3065          * and pushed the tail page forward, we will be left with
3066          * a dangling commit that will never go forward.
3067          */
3068         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3069                 goto again;
3070 }
3071
3072 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3073 {
3074         unsigned long commits;
3075
3076         if (RB_WARN_ON(cpu_buffer,
3077                        !local_read(&cpu_buffer->committing)))
3078                 return;
3079
3080  again:
3081         commits = local_read(&cpu_buffer->commits);
3082         /* synchronize with interrupts */
3083         barrier();
3084         if (local_read(&cpu_buffer->committing) == 1)
3085                 rb_set_commit_to_write(cpu_buffer);
3086
3087         local_dec(&cpu_buffer->committing);
3088
3089         /* synchronize with interrupts */
3090         barrier();
3091
3092         /*
3093          * Need to account for interrupts coming in between the
3094          * updating of the commit page and the clearing of the
3095          * committing counter.
3096          */
3097         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3098             !local_read(&cpu_buffer->committing)) {
3099                 local_inc(&cpu_buffer->committing);
3100                 goto again;
3101         }
3102 }
3103
3104 static inline void rb_event_discard(struct ring_buffer_event *event)
3105 {
3106         if (extended_time(event))
3107                 event = skip_time_extend(event);
3108
3109         /* array[0] holds the actual length for the discarded event */
3110         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3111         event->type_len = RINGBUF_TYPE_PADDING;
3112         /* time delta must be non zero */
3113         if (!event->time_delta)
3114                 event->time_delta = 1;
3115 }
3116
3117 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3118 {
3119         local_inc(&cpu_buffer->entries);
3120         rb_end_commit(cpu_buffer);
3121 }
3122
3123 static __always_inline void
3124 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3125 {
3126         if (buffer->irq_work.waiters_pending) {
3127                 buffer->irq_work.waiters_pending = false;
3128                 /* irq_work_queue() supplies it's own memory barriers */
3129                 irq_work_queue(&buffer->irq_work.work);
3130         }
3131
3132         if (cpu_buffer->irq_work.waiters_pending) {
3133                 cpu_buffer->irq_work.waiters_pending = false;
3134                 /* irq_work_queue() supplies it's own memory barriers */
3135                 irq_work_queue(&cpu_buffer->irq_work.work);
3136         }
3137
3138         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3139                 return;
3140
3141         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3142                 return;
3143
3144         if (!cpu_buffer->irq_work.full_waiters_pending)
3145                 return;
3146
3147         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3148
3149         if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3150                 return;
3151
3152         cpu_buffer->irq_work.wakeup_full = true;
3153         cpu_buffer->irq_work.full_waiters_pending = false;
3154         /* irq_work_queue() supplies it's own memory barriers */
3155         irq_work_queue(&cpu_buffer->irq_work.work);
3156 }
3157
3158 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3159 # define do_ring_buffer_record_recursion()      \
3160         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3161 #else
3162 # define do_ring_buffer_record_recursion() do { } while (0)
3163 #endif
3164
3165 /*
3166  * The lock and unlock are done within a preempt disable section.
3167  * The current_context per_cpu variable can only be modified
3168  * by the current task between lock and unlock. But it can
3169  * be modified more than once via an interrupt. To pass this
3170  * information from the lock to the unlock without having to
3171  * access the 'in_interrupt()' functions again (which do show
3172  * a bit of overhead in something as critical as function tracing,
3173  * we use a bitmask trick.
3174  *
3175  *  bit 1 =  NMI context
3176  *  bit 2 =  IRQ context
3177  *  bit 3 =  SoftIRQ context
3178  *  bit 4 =  normal context.
3179  *
3180  * This works because this is the order of contexts that can
3181  * preempt other contexts. A SoftIRQ never preempts an IRQ
3182  * context.
3183  *
3184  * When the context is determined, the corresponding bit is
3185  * checked and set (if it was set, then a recursion of that context
3186  * happened).
3187  *
3188  * On unlock, we need to clear this bit. To do so, just subtract
3189  * 1 from the current_context and AND it to itself.
3190  *
3191  * (binary)
3192  *  101 - 1 = 100
3193  *  101 & 100 = 100 (clearing bit zero)
3194  *
3195  *  1010 - 1 = 1001
3196  *  1010 & 1001 = 1000 (clearing bit 1)
3197  *
3198  * The least significant bit can be cleared this way, and it
3199  * just so happens that it is the same bit corresponding to
3200  * the current context.
3201  *
3202  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3203  * is set when a recursion is detected at the current context, and if
3204  * the TRANSITION bit is already set, it will fail the recursion.
3205  * This is needed because there's a lag between the changing of
3206  * interrupt context and updating the preempt count. In this case,
3207  * a false positive will be found. To handle this, one extra recursion
3208  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3209  * bit is already set, then it is considered a recursion and the function
3210  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3211  *
3212  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3213  * to be cleared. Even if it wasn't the context that set it. That is,
3214  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3215  * is called before preempt_count() is updated, since the check will
3216  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3217  * NMI then comes in, it will set the NMI bit, but when the NMI code
3218  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3219  * and leave the NMI bit set. But this is fine, because the interrupt
3220  * code that set the TRANSITION bit will then clear the NMI bit when it
3221  * calls trace_recursive_unlock(). If another NMI comes in, it will
3222  * set the TRANSITION bit and continue.
3223  *
3224  * Note: The TRANSITION bit only handles a single transition between context.
3225  */
3226
3227 static __always_inline bool
3228 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3229 {
3230         unsigned int val = cpu_buffer->current_context;
3231         int bit = interrupt_context_level();
3232
3233         bit = RB_CTX_NORMAL - bit;
3234
3235         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3236                 /*
3237                  * It is possible that this was called by transitioning
3238                  * between interrupt context, and preempt_count() has not
3239                  * been updated yet. In this case, use the TRANSITION bit.
3240                  */
3241                 bit = RB_CTX_TRANSITION;
3242                 if (val & (1 << (bit + cpu_buffer->nest))) {
3243                         do_ring_buffer_record_recursion();
3244                         return true;
3245                 }
3246         }
3247
3248         val |= (1 << (bit + cpu_buffer->nest));
3249         cpu_buffer->current_context = val;
3250
3251         return false;
3252 }
3253
3254 static __always_inline void
3255 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3256 {
3257         cpu_buffer->current_context &=
3258                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3259 }
3260
3261 /* The recursive locking above uses 5 bits */
3262 #define NESTED_BITS 5
3263
3264 /**
3265  * ring_buffer_nest_start - Allow to trace while nested
3266  * @buffer: The ring buffer to modify
3267  *
3268  * The ring buffer has a safety mechanism to prevent recursion.
3269  * But there may be a case where a trace needs to be done while
3270  * tracing something else. In this case, calling this function
3271  * will allow this function to nest within a currently active
3272  * ring_buffer_lock_reserve().
3273  *
3274  * Call this function before calling another ring_buffer_lock_reserve() and
3275  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3276  */
3277 void ring_buffer_nest_start(struct trace_buffer *buffer)
3278 {
3279         struct ring_buffer_per_cpu *cpu_buffer;
3280         int cpu;
3281
3282         /* Enabled by ring_buffer_nest_end() */
3283         preempt_disable_notrace();
3284         cpu = raw_smp_processor_id();
3285         cpu_buffer = buffer->buffers[cpu];
3286         /* This is the shift value for the above recursive locking */
3287         cpu_buffer->nest += NESTED_BITS;
3288 }
3289
3290 /**
3291  * ring_buffer_nest_end - Allow to trace while nested
3292  * @buffer: The ring buffer to modify
3293  *
3294  * Must be called after ring_buffer_nest_start() and after the
3295  * ring_buffer_unlock_commit().
3296  */
3297 void ring_buffer_nest_end(struct trace_buffer *buffer)
3298 {
3299         struct ring_buffer_per_cpu *cpu_buffer;
3300         int cpu;
3301
3302         /* disabled by ring_buffer_nest_start() */
3303         cpu = raw_smp_processor_id();
3304         cpu_buffer = buffer->buffers[cpu];
3305         /* This is the shift value for the above recursive locking */
3306         cpu_buffer->nest -= NESTED_BITS;
3307         preempt_enable_notrace();
3308 }
3309
3310 /**
3311  * ring_buffer_unlock_commit - commit a reserved
3312  * @buffer: The buffer to commit to
3313  *
3314  * This commits the data to the ring buffer, and releases any locks held.
3315  *
3316  * Must be paired with ring_buffer_lock_reserve.
3317  */
3318 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3319 {
3320         struct ring_buffer_per_cpu *cpu_buffer;
3321         int cpu = raw_smp_processor_id();
3322
3323         cpu_buffer = buffer->buffers[cpu];
3324
3325         rb_commit(cpu_buffer);
3326
3327         rb_wakeups(buffer, cpu_buffer);
3328
3329         trace_recursive_unlock(cpu_buffer);
3330
3331         preempt_enable_notrace();
3332
3333         return 0;
3334 }
3335 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3336
3337 /* Special value to validate all deltas on a page. */
3338 #define CHECK_FULL_PAGE         1L
3339
3340 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3341 static void dump_buffer_page(struct buffer_data_page *bpage,
3342                              struct rb_event_info *info,
3343                              unsigned long tail)
3344 {
3345         struct ring_buffer_event *event;
3346         u64 ts, delta;
3347         int e;
3348
3349         ts = bpage->time_stamp;
3350         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3351
3352         for (e = 0; e < tail; e += rb_event_length(event)) {
3353
3354                 event = (struct ring_buffer_event *)(bpage->data + e);
3355
3356                 switch (event->type_len) {
3357
3358                 case RINGBUF_TYPE_TIME_EXTEND:
3359                         delta = rb_event_time_stamp(event);
3360                         ts += delta;
3361                         pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3362                         break;
3363
3364                 case RINGBUF_TYPE_TIME_STAMP:
3365                         delta = rb_event_time_stamp(event);
3366                         ts = rb_fix_abs_ts(delta, ts);
3367                         pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3368                         break;
3369
3370                 case RINGBUF_TYPE_PADDING:
3371                         ts += event->time_delta;
3372                         pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3373                         break;
3374
3375                 case RINGBUF_TYPE_DATA:
3376                         ts += event->time_delta;
3377                         pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3378                         break;
3379
3380                 default:
3381                         break;
3382                 }
3383         }
3384 }
3385
3386 static DEFINE_PER_CPU(atomic_t, checking);
3387 static atomic_t ts_dump;
3388
3389 /*
3390  * Check if the current event time stamp matches the deltas on
3391  * the buffer page.
3392  */
3393 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3394                          struct rb_event_info *info,
3395                          unsigned long tail)
3396 {
3397         struct ring_buffer_event *event;
3398         struct buffer_data_page *bpage;
3399         u64 ts, delta;
3400         bool full = false;
3401         int e;
3402
3403         bpage = info->tail_page->page;
3404
3405         if (tail == CHECK_FULL_PAGE) {
3406                 full = true;
3407                 tail = local_read(&bpage->commit);
3408         } else if (info->add_timestamp &
3409                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3410                 /* Ignore events with absolute time stamps */
3411                 return;
3412         }
3413
3414         /*
3415          * Do not check the first event (skip possible extends too).
3416          * Also do not check if previous events have not been committed.
3417          */
3418         if (tail <= 8 || tail > local_read(&bpage->commit))
3419                 return;
3420
3421         /*
3422          * If this interrupted another event,
3423          */
3424         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3425                 goto out;
3426
3427         ts = bpage->time_stamp;
3428
3429         for (e = 0; e < tail; e += rb_event_length(event)) {
3430
3431                 event = (struct ring_buffer_event *)(bpage->data + e);
3432
3433                 switch (event->type_len) {
3434
3435                 case RINGBUF_TYPE_TIME_EXTEND:
3436                         delta = rb_event_time_stamp(event);
3437                         ts += delta;
3438                         break;
3439
3440                 case RINGBUF_TYPE_TIME_STAMP:
3441                         delta = rb_event_time_stamp(event);
3442                         ts = rb_fix_abs_ts(delta, ts);
3443                         break;
3444
3445                 case RINGBUF_TYPE_PADDING:
3446                         if (event->time_delta == 1)
3447                                 break;
3448                         fallthrough;
3449                 case RINGBUF_TYPE_DATA:
3450                         ts += event->time_delta;
3451                         break;
3452
3453                 default:
3454                         RB_WARN_ON(cpu_buffer, 1);
3455                 }
3456         }
3457         if ((full && ts > info->ts) ||
3458             (!full && ts + info->delta != info->ts)) {
3459                 /* If another report is happening, ignore this one */
3460                 if (atomic_inc_return(&ts_dump) != 1) {
3461                         atomic_dec(&ts_dump);
3462                         goto out;
3463                 }
3464                 atomic_inc(&cpu_buffer->record_disabled);
3465                 /* There's some cases in boot up that this can happen */
3466                 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3467                 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3468                         cpu_buffer->cpu,
3469                         ts + info->delta, info->ts, info->delta,
3470                         info->before, info->after,
3471                         full ? " (full)" : "");
3472                 dump_buffer_page(bpage, info, tail);
3473                 atomic_dec(&ts_dump);
3474                 /* Do not re-enable checking */
3475                 return;
3476         }
3477 out:
3478         atomic_dec(this_cpu_ptr(&checking));
3479 }
3480 #else
3481 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3482                          struct rb_event_info *info,
3483                          unsigned long tail)
3484 {
3485 }
3486 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3487
3488 static struct ring_buffer_event *
3489 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3490                   struct rb_event_info *info)
3491 {
3492         struct ring_buffer_event *event;
3493         struct buffer_page *tail_page;
3494         unsigned long tail, write, w;
3495         bool a_ok;
3496         bool b_ok;
3497
3498         /* Don't let the compiler play games with cpu_buffer->tail_page */
3499         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3500
3501  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3502         barrier();
3503         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3504         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3505         barrier();
3506         info->ts = rb_time_stamp(cpu_buffer->buffer);
3507
3508         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3509                 info->delta = info->ts;
3510         } else {
3511                 /*
3512                  * If interrupting an event time update, we may need an
3513                  * absolute timestamp.
3514                  * Don't bother if this is the start of a new page (w == 0).
3515                  */
3516                 if (!w) {
3517                         /* Use the sub-buffer timestamp */
3518                         info->delta = 0;
3519                 } else if (unlikely(!a_ok || !b_ok || info->before != info->after)) {
3520                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3521                         info->length += RB_LEN_TIME_EXTEND;
3522                 } else {
3523                         info->delta = info->ts - info->after;
3524                         if (unlikely(test_time_stamp(info->delta))) {
3525                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3526                                 info->length += RB_LEN_TIME_EXTEND;
3527                         }
3528                 }
3529         }
3530
3531  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3532
3533  /*C*/  write = local_add_return(info->length, &tail_page->write);
3534
3535         /* set write to only the index of the write */
3536         write &= RB_WRITE_MASK;
3537
3538         tail = write - info->length;
3539
3540         /* See if we shot pass the end of this buffer page */
3541         if (unlikely(write > BUF_PAGE_SIZE)) {
3542                 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3543                 return rb_move_tail(cpu_buffer, tail, info);
3544         }
3545
3546         if (likely(tail == w)) {
3547                 /* Nothing interrupted us between A and C */
3548  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3549                 /*
3550                  * If something came in between C and D, the write stamp
3551                  * may now not be in sync. But that's fine as the before_stamp
3552                  * will be different and then next event will just be forced
3553                  * to use an absolute timestamp.
3554                  */
3555                 if (likely(!(info->add_timestamp &
3556                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3557                         /* This did not interrupt any time update */
3558                         info->delta = info->ts - info->after;
3559                 else
3560                         /* Just use full timestamp for interrupting event */
3561                         info->delta = info->ts;
3562                 check_buffer(cpu_buffer, info, tail);
3563         } else {
3564                 u64 ts;
3565                 /* SLOW PATH - Interrupted between A and C */
3566
3567                 /* Save the old before_stamp */
3568                 a_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3569                 RB_WARN_ON(cpu_buffer, !a_ok);
3570
3571                 /*
3572                  * Read a new timestamp and update the before_stamp to make
3573                  * the next event after this one force using an absolute
3574                  * timestamp. This is in case an interrupt were to come in
3575                  * between E and F.
3576                  */
3577                 ts = rb_time_stamp(cpu_buffer->buffer);
3578                 rb_time_set(&cpu_buffer->before_stamp, ts);
3579
3580                 barrier();
3581  /*E*/          a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3582                 /* Was interrupted before here, write_stamp must be valid */
3583                 RB_WARN_ON(cpu_buffer, !a_ok);
3584                 barrier();
3585  /*F*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3586                     info->after == info->before && info->after < ts) {
3587                         /*
3588                          * Nothing came after this event between C and F, it is
3589                          * safe to use info->after for the delta as it
3590                          * matched info->before and is still valid.
3591                          */
3592                         info->delta = ts - info->after;
3593                 } else {
3594                         /*
3595                          * Interrupted between C and F:
3596                          * Lost the previous events time stamp. Just set the
3597                          * delta to zero, and this will be the same time as
3598                          * the event this event interrupted. And the events that
3599                          * came after this will still be correct (as they would
3600                          * have built their delta on the previous event.
3601                          */
3602                         info->delta = 0;
3603                 }
3604                 info->ts = ts;
3605                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3606         }
3607
3608         /*
3609          * If this is the first commit on the page, then it has the same
3610          * timestamp as the page itself.
3611          */
3612         if (unlikely(!tail && !(info->add_timestamp &
3613                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3614                 info->delta = 0;
3615
3616         /* We reserved something on the buffer */
3617
3618         event = __rb_page_index(tail_page, tail);
3619         rb_update_event(cpu_buffer, event, info);
3620
3621         local_inc(&tail_page->entries);
3622
3623         /*
3624          * If this is the first commit on the page, then update
3625          * its timestamp.
3626          */
3627         if (unlikely(!tail))
3628                 tail_page->page->time_stamp = info->ts;
3629
3630         /* account for these added bytes */
3631         local_add(info->length, &cpu_buffer->entries_bytes);
3632
3633         return event;
3634 }
3635
3636 static __always_inline struct ring_buffer_event *
3637 rb_reserve_next_event(struct trace_buffer *buffer,
3638                       struct ring_buffer_per_cpu *cpu_buffer,
3639                       unsigned long length)
3640 {
3641         struct ring_buffer_event *event;
3642         struct rb_event_info info;
3643         int nr_loops = 0;
3644         int add_ts_default;
3645
3646         /* ring buffer does cmpxchg, make sure it is safe in NMI context */
3647         if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3648             (unlikely(in_nmi()))) {
3649                 return NULL;
3650         }
3651
3652         rb_start_commit(cpu_buffer);
3653         /* The commit page can not change after this */
3654
3655 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3656         /*
3657          * Due to the ability to swap a cpu buffer from a buffer
3658          * it is possible it was swapped before we committed.
3659          * (committing stops a swap). We check for it here and
3660          * if it happened, we have to fail the write.
3661          */
3662         barrier();
3663         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3664                 local_dec(&cpu_buffer->committing);
3665                 local_dec(&cpu_buffer->commits);
3666                 return NULL;
3667         }
3668 #endif
3669
3670         info.length = rb_calculate_event_length(length);
3671
3672         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3673                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3674                 info.length += RB_LEN_TIME_EXTEND;
3675                 if (info.length > BUF_MAX_DATA_SIZE)
3676                         goto out_fail;
3677         } else {
3678                 add_ts_default = RB_ADD_STAMP_NONE;
3679         }
3680
3681  again:
3682         info.add_timestamp = add_ts_default;
3683         info.delta = 0;
3684
3685         /*
3686          * We allow for interrupts to reenter here and do a trace.
3687          * If one does, it will cause this original code to loop
3688          * back here. Even with heavy interrupts happening, this
3689          * should only happen a few times in a row. If this happens
3690          * 1000 times in a row, there must be either an interrupt
3691          * storm or we have something buggy.
3692          * Bail!
3693          */
3694         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3695                 goto out_fail;
3696
3697         event = __rb_reserve_next(cpu_buffer, &info);
3698
3699         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3700                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3701                         info.length -= RB_LEN_TIME_EXTEND;
3702                 goto again;
3703         }
3704
3705         if (likely(event))
3706                 return event;
3707  out_fail:
3708         rb_end_commit(cpu_buffer);
3709         return NULL;
3710 }
3711
3712 /**
3713  * ring_buffer_lock_reserve - reserve a part of the buffer
3714  * @buffer: the ring buffer to reserve from
3715  * @length: the length of the data to reserve (excluding event header)
3716  *
3717  * Returns a reserved event on the ring buffer to copy directly to.
3718  * The user of this interface will need to get the body to write into
3719  * and can use the ring_buffer_event_data() interface.
3720  *
3721  * The length is the length of the data needed, not the event length
3722  * which also includes the event header.
3723  *
3724  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3725  * If NULL is returned, then nothing has been allocated or locked.
3726  */
3727 struct ring_buffer_event *
3728 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3729 {
3730         struct ring_buffer_per_cpu *cpu_buffer;
3731         struct ring_buffer_event *event;
3732         int cpu;
3733
3734         /* If we are tracing schedule, we don't want to recurse */
3735         preempt_disable_notrace();
3736
3737         if (unlikely(atomic_read(&buffer->record_disabled)))
3738                 goto out;
3739
3740         cpu = raw_smp_processor_id();
3741
3742         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3743                 goto out;
3744
3745         cpu_buffer = buffer->buffers[cpu];
3746
3747         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3748                 goto out;
3749
3750         if (unlikely(length > BUF_MAX_DATA_SIZE))
3751                 goto out;
3752
3753         if (unlikely(trace_recursive_lock(cpu_buffer)))
3754                 goto out;
3755
3756         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3757         if (!event)
3758                 goto out_unlock;
3759
3760         return event;
3761
3762  out_unlock:
3763         trace_recursive_unlock(cpu_buffer);
3764  out:
3765         preempt_enable_notrace();
3766         return NULL;
3767 }
3768 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3769
3770 /*
3771  * Decrement the entries to the page that an event is on.
3772  * The event does not even need to exist, only the pointer
3773  * to the page it is on. This may only be called before the commit
3774  * takes place.
3775  */
3776 static inline void
3777 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3778                    struct ring_buffer_event *event)
3779 {
3780         unsigned long addr = (unsigned long)event;
3781         struct buffer_page *bpage = cpu_buffer->commit_page;
3782         struct buffer_page *start;
3783
3784         addr &= PAGE_MASK;
3785
3786         /* Do the likely case first */
3787         if (likely(bpage->page == (void *)addr)) {
3788                 local_dec(&bpage->entries);
3789                 return;
3790         }
3791
3792         /*
3793          * Because the commit page may be on the reader page we
3794          * start with the next page and check the end loop there.
3795          */
3796         rb_inc_page(&bpage);
3797         start = bpage;
3798         do {
3799                 if (bpage->page == (void *)addr) {
3800                         local_dec(&bpage->entries);
3801                         return;
3802                 }
3803                 rb_inc_page(&bpage);
3804         } while (bpage != start);
3805
3806         /* commit not part of this buffer?? */
3807         RB_WARN_ON(cpu_buffer, 1);
3808 }
3809
3810 /**
3811  * ring_buffer_discard_commit - discard an event that has not been committed
3812  * @buffer: the ring buffer
3813  * @event: non committed event to discard
3814  *
3815  * Sometimes an event that is in the ring buffer needs to be ignored.
3816  * This function lets the user discard an event in the ring buffer
3817  * and then that event will not be read later.
3818  *
3819  * This function only works if it is called before the item has been
3820  * committed. It will try to free the event from the ring buffer
3821  * if another event has not been added behind it.
3822  *
3823  * If another event has been added behind it, it will set the event
3824  * up as discarded, and perform the commit.
3825  *
3826  * If this function is called, do not call ring_buffer_unlock_commit on
3827  * the event.
3828  */
3829 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3830                                 struct ring_buffer_event *event)
3831 {
3832         struct ring_buffer_per_cpu *cpu_buffer;
3833         int cpu;
3834
3835         /* The event is discarded regardless */
3836         rb_event_discard(event);
3837
3838         cpu = smp_processor_id();
3839         cpu_buffer = buffer->buffers[cpu];
3840
3841         /*
3842          * This must only be called if the event has not been
3843          * committed yet. Thus we can assume that preemption
3844          * is still disabled.
3845          */
3846         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3847
3848         rb_decrement_entry(cpu_buffer, event);
3849         if (rb_try_to_discard(cpu_buffer, event))
3850                 goto out;
3851
3852  out:
3853         rb_end_commit(cpu_buffer);
3854
3855         trace_recursive_unlock(cpu_buffer);
3856
3857         preempt_enable_notrace();
3858
3859 }
3860 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3861
3862 /**
3863  * ring_buffer_write - write data to the buffer without reserving
3864  * @buffer: The ring buffer to write to.
3865  * @length: The length of the data being written (excluding the event header)
3866  * @data: The data to write to the buffer.
3867  *
3868  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3869  * one function. If you already have the data to write to the buffer, it
3870  * may be easier to simply call this function.
3871  *
3872  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3873  * and not the length of the event which would hold the header.
3874  */
3875 int ring_buffer_write(struct trace_buffer *buffer,
3876                       unsigned long length,
3877                       void *data)
3878 {
3879         struct ring_buffer_per_cpu *cpu_buffer;
3880         struct ring_buffer_event *event;
3881         void *body;
3882         int ret = -EBUSY;
3883         int cpu;
3884
3885         preempt_disable_notrace();
3886
3887         if (atomic_read(&buffer->record_disabled))
3888                 goto out;
3889
3890         cpu = raw_smp_processor_id();
3891
3892         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3893                 goto out;
3894
3895         cpu_buffer = buffer->buffers[cpu];
3896
3897         if (atomic_read(&cpu_buffer->record_disabled))
3898                 goto out;
3899
3900         if (length > BUF_MAX_DATA_SIZE)
3901                 goto out;
3902
3903         if (unlikely(trace_recursive_lock(cpu_buffer)))
3904                 goto out;
3905
3906         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3907         if (!event)
3908                 goto out_unlock;
3909
3910         body = rb_event_data(event);
3911
3912         memcpy(body, data, length);
3913
3914         rb_commit(cpu_buffer);
3915
3916         rb_wakeups(buffer, cpu_buffer);
3917
3918         ret = 0;
3919
3920  out_unlock:
3921         trace_recursive_unlock(cpu_buffer);
3922
3923  out:
3924         preempt_enable_notrace();
3925
3926         return ret;
3927 }
3928 EXPORT_SYMBOL_GPL(ring_buffer_write);
3929
3930 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3931 {
3932         struct buffer_page *reader = cpu_buffer->reader_page;
3933         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3934         struct buffer_page *commit = cpu_buffer->commit_page;
3935
3936         /* In case of error, head will be NULL */
3937         if (unlikely(!head))
3938                 return true;
3939
3940         /* Reader should exhaust content in reader page */
3941         if (reader->read != rb_page_commit(reader))
3942                 return false;
3943
3944         /*
3945          * If writers are committing on the reader page, knowing all
3946          * committed content has been read, the ring buffer is empty.
3947          */
3948         if (commit == reader)
3949                 return true;
3950
3951         /*
3952          * If writers are committing on a page other than reader page
3953          * and head page, there should always be content to read.
3954          */
3955         if (commit != head)
3956                 return false;
3957
3958         /*
3959          * Writers are committing on the head page, we just need
3960          * to care about there're committed data, and the reader will
3961          * swap reader page with head page when it is to read data.
3962          */
3963         return rb_page_commit(commit) == 0;
3964 }
3965
3966 /**
3967  * ring_buffer_record_disable - stop all writes into the buffer
3968  * @buffer: The ring buffer to stop writes to.
3969  *
3970  * This prevents all writes to the buffer. Any attempt to write
3971  * to the buffer after this will fail and return NULL.
3972  *
3973  * The caller should call synchronize_rcu() after this.
3974  */
3975 void ring_buffer_record_disable(struct trace_buffer *buffer)
3976 {
3977         atomic_inc(&buffer->record_disabled);
3978 }
3979 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3980
3981 /**
3982  * ring_buffer_record_enable - enable writes to the buffer
3983  * @buffer: The ring buffer to enable writes
3984  *
3985  * Note, multiple disables will need the same number of enables
3986  * to truly enable the writing (much like preempt_disable).
3987  */
3988 void ring_buffer_record_enable(struct trace_buffer *buffer)
3989 {
3990         atomic_dec(&buffer->record_disabled);
3991 }
3992 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3993
3994 /**
3995  * ring_buffer_record_off - stop all writes into the buffer
3996  * @buffer: The ring buffer to stop writes to.
3997  *
3998  * This prevents all writes to the buffer. Any attempt to write
3999  * to the buffer after this will fail and return NULL.
4000  *
4001  * This is different than ring_buffer_record_disable() as
4002  * it works like an on/off switch, where as the disable() version
4003  * must be paired with a enable().
4004  */
4005 void ring_buffer_record_off(struct trace_buffer *buffer)
4006 {
4007         unsigned int rd;
4008         unsigned int new_rd;
4009
4010         rd = atomic_read(&buffer->record_disabled);
4011         do {
4012                 new_rd = rd | RB_BUFFER_OFF;
4013         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4014 }
4015 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4016
4017 /**
4018  * ring_buffer_record_on - restart writes into the buffer
4019  * @buffer: The ring buffer to start writes to.
4020  *
4021  * This enables all writes to the buffer that was disabled by
4022  * ring_buffer_record_off().
4023  *
4024  * This is different than ring_buffer_record_enable() as
4025  * it works like an on/off switch, where as the enable() version
4026  * must be paired with a disable().
4027  */
4028 void ring_buffer_record_on(struct trace_buffer *buffer)
4029 {
4030         unsigned int rd;
4031         unsigned int new_rd;
4032
4033         rd = atomic_read(&buffer->record_disabled);
4034         do {
4035                 new_rd = rd & ~RB_BUFFER_OFF;
4036         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4037 }
4038 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4039
4040 /**
4041  * ring_buffer_record_is_on - return true if the ring buffer can write
4042  * @buffer: The ring buffer to see if write is enabled
4043  *
4044  * Returns true if the ring buffer is in a state that it accepts writes.
4045  */
4046 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4047 {
4048         return !atomic_read(&buffer->record_disabled);
4049 }
4050
4051 /**
4052  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4053  * @buffer: The ring buffer to see if write is set enabled
4054  *
4055  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4056  * Note that this does NOT mean it is in a writable state.
4057  *
4058  * It may return true when the ring buffer has been disabled by
4059  * ring_buffer_record_disable(), as that is a temporary disabling of
4060  * the ring buffer.
4061  */
4062 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4063 {
4064         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4065 }
4066
4067 /**
4068  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4069  * @buffer: The ring buffer to stop writes to.
4070  * @cpu: The CPU buffer to stop
4071  *
4072  * This prevents all writes to the buffer. Any attempt to write
4073  * to the buffer after this will fail and return NULL.
4074  *
4075  * The caller should call synchronize_rcu() after this.
4076  */
4077 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4078 {
4079         struct ring_buffer_per_cpu *cpu_buffer;
4080
4081         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4082                 return;
4083
4084         cpu_buffer = buffer->buffers[cpu];
4085         atomic_inc(&cpu_buffer->record_disabled);
4086 }
4087 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4088
4089 /**
4090  * ring_buffer_record_enable_cpu - enable writes to the buffer
4091  * @buffer: The ring buffer to enable writes
4092  * @cpu: The CPU to enable.
4093  *
4094  * Note, multiple disables will need the same number of enables
4095  * to truly enable the writing (much like preempt_disable).
4096  */
4097 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4098 {
4099         struct ring_buffer_per_cpu *cpu_buffer;
4100
4101         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4102                 return;
4103
4104         cpu_buffer = buffer->buffers[cpu];
4105         atomic_dec(&cpu_buffer->record_disabled);
4106 }
4107 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4108
4109 /*
4110  * The total entries in the ring buffer is the running counter
4111  * of entries entered into the ring buffer, minus the sum of
4112  * the entries read from the ring buffer and the number of
4113  * entries that were overwritten.
4114  */
4115 static inline unsigned long
4116 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4117 {
4118         return local_read(&cpu_buffer->entries) -
4119                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4120 }
4121
4122 /**
4123  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4124  * @buffer: The ring buffer
4125  * @cpu: The per CPU buffer to read from.
4126  */
4127 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4128 {
4129         unsigned long flags;
4130         struct ring_buffer_per_cpu *cpu_buffer;
4131         struct buffer_page *bpage;
4132         u64 ret = 0;
4133
4134         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4135                 return 0;
4136
4137         cpu_buffer = buffer->buffers[cpu];
4138         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4139         /*
4140          * if the tail is on reader_page, oldest time stamp is on the reader
4141          * page
4142          */
4143         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4144                 bpage = cpu_buffer->reader_page;
4145         else
4146                 bpage = rb_set_head_page(cpu_buffer);
4147         if (bpage)
4148                 ret = bpage->page->time_stamp;
4149         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4150
4151         return ret;
4152 }
4153 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4154
4155 /**
4156  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4157  * @buffer: The ring buffer
4158  * @cpu: The per CPU buffer to read from.
4159  */
4160 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4161 {
4162         struct ring_buffer_per_cpu *cpu_buffer;
4163         unsigned long ret;
4164
4165         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4166                 return 0;
4167
4168         cpu_buffer = buffer->buffers[cpu];
4169         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4170
4171         return ret;
4172 }
4173 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4174
4175 /**
4176  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4177  * @buffer: The ring buffer
4178  * @cpu: The per CPU buffer to get the entries from.
4179  */
4180 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4181 {
4182         struct ring_buffer_per_cpu *cpu_buffer;
4183
4184         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4185                 return 0;
4186
4187         cpu_buffer = buffer->buffers[cpu];
4188
4189         return rb_num_of_entries(cpu_buffer);
4190 }
4191 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4192
4193 /**
4194  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4195  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4196  * @buffer: The ring buffer
4197  * @cpu: The per CPU buffer to get the number of overruns from
4198  */
4199 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4200 {
4201         struct ring_buffer_per_cpu *cpu_buffer;
4202         unsigned long ret;
4203
4204         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4205                 return 0;
4206
4207         cpu_buffer = buffer->buffers[cpu];
4208         ret = local_read(&cpu_buffer->overrun);
4209
4210         return ret;
4211 }
4212 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4213
4214 /**
4215  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4216  * commits failing due to the buffer wrapping around while there are uncommitted
4217  * events, such as during an interrupt storm.
4218  * @buffer: The ring buffer
4219  * @cpu: The per CPU buffer to get the number of overruns from
4220  */
4221 unsigned long
4222 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4223 {
4224         struct ring_buffer_per_cpu *cpu_buffer;
4225         unsigned long ret;
4226
4227         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4228                 return 0;
4229
4230         cpu_buffer = buffer->buffers[cpu];
4231         ret = local_read(&cpu_buffer->commit_overrun);
4232
4233         return ret;
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4236
4237 /**
4238  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4239  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4240  * @buffer: The ring buffer
4241  * @cpu: The per CPU buffer to get the number of overruns from
4242  */
4243 unsigned long
4244 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4245 {
4246         struct ring_buffer_per_cpu *cpu_buffer;
4247         unsigned long ret;
4248
4249         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4250                 return 0;
4251
4252         cpu_buffer = buffer->buffers[cpu];
4253         ret = local_read(&cpu_buffer->dropped_events);
4254
4255         return ret;
4256 }
4257 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4258
4259 /**
4260  * ring_buffer_read_events_cpu - get the number of events successfully read
4261  * @buffer: The ring buffer
4262  * @cpu: The per CPU buffer to get the number of events read
4263  */
4264 unsigned long
4265 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4266 {
4267         struct ring_buffer_per_cpu *cpu_buffer;
4268
4269         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4270                 return 0;
4271
4272         cpu_buffer = buffer->buffers[cpu];
4273         return cpu_buffer->read;
4274 }
4275 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4276
4277 /**
4278  * ring_buffer_entries - get the number of entries in a buffer
4279  * @buffer: The ring buffer
4280  *
4281  * Returns the total number of entries in the ring buffer
4282  * (all CPU entries)
4283  */
4284 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4285 {
4286         struct ring_buffer_per_cpu *cpu_buffer;
4287         unsigned long entries = 0;
4288         int cpu;
4289
4290         /* if you care about this being correct, lock the buffer */
4291         for_each_buffer_cpu(buffer, cpu) {
4292                 cpu_buffer = buffer->buffers[cpu];
4293                 entries += rb_num_of_entries(cpu_buffer);
4294         }
4295
4296         return entries;
4297 }
4298 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4299
4300 /**
4301  * ring_buffer_overruns - get the number of overruns in buffer
4302  * @buffer: The ring buffer
4303  *
4304  * Returns the total number of overruns in the ring buffer
4305  * (all CPU entries)
4306  */
4307 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4308 {
4309         struct ring_buffer_per_cpu *cpu_buffer;
4310         unsigned long overruns = 0;
4311         int cpu;
4312
4313         /* if you care about this being correct, lock the buffer */
4314         for_each_buffer_cpu(buffer, cpu) {
4315                 cpu_buffer = buffer->buffers[cpu];
4316                 overruns += local_read(&cpu_buffer->overrun);
4317         }
4318
4319         return overruns;
4320 }
4321 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4322
4323 static void rb_iter_reset(struct ring_buffer_iter *iter)
4324 {
4325         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4326
4327         /* Iterator usage is expected to have record disabled */
4328         iter->head_page = cpu_buffer->reader_page;
4329         iter->head = cpu_buffer->reader_page->read;
4330         iter->next_event = iter->head;
4331
4332         iter->cache_reader_page = iter->head_page;
4333         iter->cache_read = cpu_buffer->read;
4334         iter->cache_pages_removed = cpu_buffer->pages_removed;
4335
4336         if (iter->head) {
4337                 iter->read_stamp = cpu_buffer->read_stamp;
4338                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4339         } else {
4340                 iter->read_stamp = iter->head_page->page->time_stamp;
4341                 iter->page_stamp = iter->read_stamp;
4342         }
4343 }
4344
4345 /**
4346  * ring_buffer_iter_reset - reset an iterator
4347  * @iter: The iterator to reset
4348  *
4349  * Resets the iterator, so that it will start from the beginning
4350  * again.
4351  */
4352 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4353 {
4354         struct ring_buffer_per_cpu *cpu_buffer;
4355         unsigned long flags;
4356
4357         if (!iter)
4358                 return;
4359
4360         cpu_buffer = iter->cpu_buffer;
4361
4362         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4363         rb_iter_reset(iter);
4364         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4365 }
4366 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4367
4368 /**
4369  * ring_buffer_iter_empty - check if an iterator has no more to read
4370  * @iter: The iterator to check
4371  */
4372 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4373 {
4374         struct ring_buffer_per_cpu *cpu_buffer;
4375         struct buffer_page *reader;
4376         struct buffer_page *head_page;
4377         struct buffer_page *commit_page;
4378         struct buffer_page *curr_commit_page;
4379         unsigned commit;
4380         u64 curr_commit_ts;
4381         u64 commit_ts;
4382
4383         cpu_buffer = iter->cpu_buffer;
4384         reader = cpu_buffer->reader_page;
4385         head_page = cpu_buffer->head_page;
4386         commit_page = cpu_buffer->commit_page;
4387         commit_ts = commit_page->page->time_stamp;
4388
4389         /*
4390          * When the writer goes across pages, it issues a cmpxchg which
4391          * is a mb(), which will synchronize with the rmb here.
4392          * (see rb_tail_page_update())
4393          */
4394         smp_rmb();
4395         commit = rb_page_commit(commit_page);
4396         /* We want to make sure that the commit page doesn't change */
4397         smp_rmb();
4398
4399         /* Make sure commit page didn't change */
4400         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4401         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4402
4403         /* If the commit page changed, then there's more data */
4404         if (curr_commit_page != commit_page ||
4405             curr_commit_ts != commit_ts)
4406                 return 0;
4407
4408         /* Still racy, as it may return a false positive, but that's OK */
4409         return ((iter->head_page == commit_page && iter->head >= commit) ||
4410                 (iter->head_page == reader && commit_page == head_page &&
4411                  head_page->read == commit &&
4412                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4413 }
4414 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4415
4416 static void
4417 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4418                      struct ring_buffer_event *event)
4419 {
4420         u64 delta;
4421
4422         switch (event->type_len) {
4423         case RINGBUF_TYPE_PADDING:
4424                 return;
4425
4426         case RINGBUF_TYPE_TIME_EXTEND:
4427                 delta = rb_event_time_stamp(event);
4428                 cpu_buffer->read_stamp += delta;
4429                 return;
4430
4431         case RINGBUF_TYPE_TIME_STAMP:
4432                 delta = rb_event_time_stamp(event);
4433                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4434                 cpu_buffer->read_stamp = delta;
4435                 return;
4436
4437         case RINGBUF_TYPE_DATA:
4438                 cpu_buffer->read_stamp += event->time_delta;
4439                 return;
4440
4441         default:
4442                 RB_WARN_ON(cpu_buffer, 1);
4443         }
4444 }
4445
4446 static void
4447 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4448                           struct ring_buffer_event *event)
4449 {
4450         u64 delta;
4451
4452         switch (event->type_len) {
4453         case RINGBUF_TYPE_PADDING:
4454                 return;
4455
4456         case RINGBUF_TYPE_TIME_EXTEND:
4457                 delta = rb_event_time_stamp(event);
4458                 iter->read_stamp += delta;
4459                 return;
4460
4461         case RINGBUF_TYPE_TIME_STAMP:
4462                 delta = rb_event_time_stamp(event);
4463                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4464                 iter->read_stamp = delta;
4465                 return;
4466
4467         case RINGBUF_TYPE_DATA:
4468                 iter->read_stamp += event->time_delta;
4469                 return;
4470
4471         default:
4472                 RB_WARN_ON(iter->cpu_buffer, 1);
4473         }
4474 }
4475
4476 static struct buffer_page *
4477 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4478 {
4479         struct buffer_page *reader = NULL;
4480         unsigned long overwrite;
4481         unsigned long flags;
4482         int nr_loops = 0;
4483         bool ret;
4484
4485         local_irq_save(flags);
4486         arch_spin_lock(&cpu_buffer->lock);
4487
4488  again:
4489         /*
4490          * This should normally only loop twice. But because the
4491          * start of the reader inserts an empty page, it causes
4492          * a case where we will loop three times. There should be no
4493          * reason to loop four times (that I know of).
4494          */
4495         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4496                 reader = NULL;
4497                 goto out;
4498         }
4499
4500         reader = cpu_buffer->reader_page;
4501
4502         /* If there's more to read, return this page */
4503         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4504                 goto out;
4505
4506         /* Never should we have an index greater than the size */
4507         if (RB_WARN_ON(cpu_buffer,
4508                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4509                 goto out;
4510
4511         /* check if we caught up to the tail */
4512         reader = NULL;
4513         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4514                 goto out;
4515
4516         /* Don't bother swapping if the ring buffer is empty */
4517         if (rb_num_of_entries(cpu_buffer) == 0)
4518                 goto out;
4519
4520         /*
4521          * Reset the reader page to size zero.
4522          */
4523         local_set(&cpu_buffer->reader_page->write, 0);
4524         local_set(&cpu_buffer->reader_page->entries, 0);
4525         local_set(&cpu_buffer->reader_page->page->commit, 0);
4526         cpu_buffer->reader_page->real_end = 0;
4527
4528  spin:
4529         /*
4530          * Splice the empty reader page into the list around the head.
4531          */
4532         reader = rb_set_head_page(cpu_buffer);
4533         if (!reader)
4534                 goto out;
4535         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4536         cpu_buffer->reader_page->list.prev = reader->list.prev;
4537
4538         /*
4539          * cpu_buffer->pages just needs to point to the buffer, it
4540          *  has no specific buffer page to point to. Lets move it out
4541          *  of our way so we don't accidentally swap it.
4542          */
4543         cpu_buffer->pages = reader->list.prev;
4544
4545         /* The reader page will be pointing to the new head */
4546         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4547
4548         /*
4549          * We want to make sure we read the overruns after we set up our
4550          * pointers to the next object. The writer side does a
4551          * cmpxchg to cross pages which acts as the mb on the writer
4552          * side. Note, the reader will constantly fail the swap
4553          * while the writer is updating the pointers, so this
4554          * guarantees that the overwrite recorded here is the one we
4555          * want to compare with the last_overrun.
4556          */
4557         smp_mb();
4558         overwrite = local_read(&(cpu_buffer->overrun));
4559
4560         /*
4561          * Here's the tricky part.
4562          *
4563          * We need to move the pointer past the header page.
4564          * But we can only do that if a writer is not currently
4565          * moving it. The page before the header page has the
4566          * flag bit '1' set if it is pointing to the page we want.
4567          * but if the writer is in the process of moving it
4568          * than it will be '2' or already moved '0'.
4569          */
4570
4571         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4572
4573         /*
4574          * If we did not convert it, then we must try again.
4575          */
4576         if (!ret)
4577                 goto spin;
4578
4579         /*
4580          * Yay! We succeeded in replacing the page.
4581          *
4582          * Now make the new head point back to the reader page.
4583          */
4584         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4585         rb_inc_page(&cpu_buffer->head_page);
4586
4587         local_inc(&cpu_buffer->pages_read);
4588
4589         /* Finally update the reader page to the new head */
4590         cpu_buffer->reader_page = reader;
4591         cpu_buffer->reader_page->read = 0;
4592
4593         if (overwrite != cpu_buffer->last_overrun) {
4594                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4595                 cpu_buffer->last_overrun = overwrite;
4596         }
4597
4598         goto again;
4599
4600  out:
4601         /* Update the read_stamp on the first event */
4602         if (reader && reader->read == 0)
4603                 cpu_buffer->read_stamp = reader->page->time_stamp;
4604
4605         arch_spin_unlock(&cpu_buffer->lock);
4606         local_irq_restore(flags);
4607
4608         /*
4609          * The writer has preempt disable, wait for it. But not forever
4610          * Although, 1 second is pretty much "forever"
4611          */
4612 #define USECS_WAIT      1000000
4613         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4614                 /* If the write is past the end of page, a writer is still updating it */
4615                 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4616                         break;
4617
4618                 udelay(1);
4619
4620                 /* Get the latest version of the reader write value */
4621                 smp_rmb();
4622         }
4623
4624         /* The writer is not moving forward? Something is wrong */
4625         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4626                 reader = NULL;
4627
4628         /*
4629          * Make sure we see any padding after the write update
4630          * (see rb_reset_tail()).
4631          *
4632          * In addition, a writer may be writing on the reader page
4633          * if the page has not been fully filled, so the read barrier
4634          * is also needed to make sure we see the content of what is
4635          * committed by the writer (see rb_set_commit_to_write()).
4636          */
4637         smp_rmb();
4638
4639
4640         return reader;
4641 }
4642
4643 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4644 {
4645         struct ring_buffer_event *event;
4646         struct buffer_page *reader;
4647         unsigned length;
4648
4649         reader = rb_get_reader_page(cpu_buffer);
4650
4651         /* This function should not be called when buffer is empty */
4652         if (RB_WARN_ON(cpu_buffer, !reader))
4653                 return;
4654
4655         event = rb_reader_event(cpu_buffer);
4656
4657         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4658                 cpu_buffer->read++;
4659
4660         rb_update_read_stamp(cpu_buffer, event);
4661
4662         length = rb_event_length(event);
4663         cpu_buffer->reader_page->read += length;
4664         cpu_buffer->read_bytes += length;
4665 }
4666
4667 static void rb_advance_iter(struct ring_buffer_iter *iter)
4668 {
4669         struct ring_buffer_per_cpu *cpu_buffer;
4670
4671         cpu_buffer = iter->cpu_buffer;
4672
4673         /* If head == next_event then we need to jump to the next event */
4674         if (iter->head == iter->next_event) {
4675                 /* If the event gets overwritten again, there's nothing to do */
4676                 if (rb_iter_head_event(iter) == NULL)
4677                         return;
4678         }
4679
4680         iter->head = iter->next_event;
4681
4682         /*
4683          * Check if we are at the end of the buffer.
4684          */
4685         if (iter->next_event >= rb_page_size(iter->head_page)) {
4686                 /* discarded commits can make the page empty */
4687                 if (iter->head_page == cpu_buffer->commit_page)
4688                         return;
4689                 rb_inc_iter(iter);
4690                 return;
4691         }
4692
4693         rb_update_iter_read_stamp(iter, iter->event);
4694 }
4695
4696 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4697 {
4698         return cpu_buffer->lost_events;
4699 }
4700
4701 static struct ring_buffer_event *
4702 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4703                unsigned long *lost_events)
4704 {
4705         struct ring_buffer_event *event;
4706         struct buffer_page *reader;
4707         int nr_loops = 0;
4708
4709         if (ts)
4710                 *ts = 0;
4711  again:
4712         /*
4713          * We repeat when a time extend is encountered.
4714          * Since the time extend is always attached to a data event,
4715          * we should never loop more than once.
4716          * (We never hit the following condition more than twice).
4717          */
4718         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4719                 return NULL;
4720
4721         reader = rb_get_reader_page(cpu_buffer);
4722         if (!reader)
4723                 return NULL;
4724
4725         event = rb_reader_event(cpu_buffer);
4726
4727         switch (event->type_len) {
4728         case RINGBUF_TYPE_PADDING:
4729                 if (rb_null_event(event))
4730                         RB_WARN_ON(cpu_buffer, 1);
4731                 /*
4732                  * Because the writer could be discarding every
4733                  * event it creates (which would probably be bad)
4734                  * if we were to go back to "again" then we may never
4735                  * catch up, and will trigger the warn on, or lock
4736                  * the box. Return the padding, and we will release
4737                  * the current locks, and try again.
4738                  */
4739                 return event;
4740
4741         case RINGBUF_TYPE_TIME_EXTEND:
4742                 /* Internal data, OK to advance */
4743                 rb_advance_reader(cpu_buffer);
4744                 goto again;
4745
4746         case RINGBUF_TYPE_TIME_STAMP:
4747                 if (ts) {
4748                         *ts = rb_event_time_stamp(event);
4749                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4750                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4751                                                          cpu_buffer->cpu, ts);
4752                 }
4753                 /* Internal data, OK to advance */
4754                 rb_advance_reader(cpu_buffer);
4755                 goto again;
4756
4757         case RINGBUF_TYPE_DATA:
4758                 if (ts && !(*ts)) {
4759                         *ts = cpu_buffer->read_stamp + event->time_delta;
4760                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4761                                                          cpu_buffer->cpu, ts);
4762                 }
4763                 if (lost_events)
4764                         *lost_events = rb_lost_events(cpu_buffer);
4765                 return event;
4766
4767         default:
4768                 RB_WARN_ON(cpu_buffer, 1);
4769         }
4770
4771         return NULL;
4772 }
4773 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4774
4775 static struct ring_buffer_event *
4776 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4777 {
4778         struct trace_buffer *buffer;
4779         struct ring_buffer_per_cpu *cpu_buffer;
4780         struct ring_buffer_event *event;
4781         int nr_loops = 0;
4782
4783         if (ts)
4784                 *ts = 0;
4785
4786         cpu_buffer = iter->cpu_buffer;
4787         buffer = cpu_buffer->buffer;
4788
4789         /*
4790          * Check if someone performed a consuming read to the buffer
4791          * or removed some pages from the buffer. In these cases,
4792          * iterator was invalidated and we need to reset it.
4793          */
4794         if (unlikely(iter->cache_read != cpu_buffer->read ||
4795                      iter->cache_reader_page != cpu_buffer->reader_page ||
4796                      iter->cache_pages_removed != cpu_buffer->pages_removed))
4797                 rb_iter_reset(iter);
4798
4799  again:
4800         if (ring_buffer_iter_empty(iter))
4801                 return NULL;
4802
4803         /*
4804          * As the writer can mess with what the iterator is trying
4805          * to read, just give up if we fail to get an event after
4806          * three tries. The iterator is not as reliable when reading
4807          * the ring buffer with an active write as the consumer is.
4808          * Do not warn if the three failures is reached.
4809          */
4810         if (++nr_loops > 3)
4811                 return NULL;
4812
4813         if (rb_per_cpu_empty(cpu_buffer))
4814                 return NULL;
4815
4816         if (iter->head >= rb_page_size(iter->head_page)) {
4817                 rb_inc_iter(iter);
4818                 goto again;
4819         }
4820
4821         event = rb_iter_head_event(iter);
4822         if (!event)
4823                 goto again;
4824
4825         switch (event->type_len) {
4826         case RINGBUF_TYPE_PADDING:
4827                 if (rb_null_event(event)) {
4828                         rb_inc_iter(iter);
4829                         goto again;
4830                 }
4831                 rb_advance_iter(iter);
4832                 return event;
4833
4834         case RINGBUF_TYPE_TIME_EXTEND:
4835                 /* Internal data, OK to advance */
4836                 rb_advance_iter(iter);
4837                 goto again;
4838
4839         case RINGBUF_TYPE_TIME_STAMP:
4840                 if (ts) {
4841                         *ts = rb_event_time_stamp(event);
4842                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4843                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4844                                                          cpu_buffer->cpu, ts);
4845                 }
4846                 /* Internal data, OK to advance */
4847                 rb_advance_iter(iter);
4848                 goto again;
4849
4850         case RINGBUF_TYPE_DATA:
4851                 if (ts && !(*ts)) {
4852                         *ts = iter->read_stamp + event->time_delta;
4853                         ring_buffer_normalize_time_stamp(buffer,
4854                                                          cpu_buffer->cpu, ts);
4855                 }
4856                 return event;
4857
4858         default:
4859                 RB_WARN_ON(cpu_buffer, 1);
4860         }
4861
4862         return NULL;
4863 }
4864 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4865
4866 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4867 {
4868         if (likely(!in_nmi())) {
4869                 raw_spin_lock(&cpu_buffer->reader_lock);
4870                 return true;
4871         }
4872
4873         /*
4874          * If an NMI die dumps out the content of the ring buffer
4875          * trylock must be used to prevent a deadlock if the NMI
4876          * preempted a task that holds the ring buffer locks. If
4877          * we get the lock then all is fine, if not, then continue
4878          * to do the read, but this can corrupt the ring buffer,
4879          * so it must be permanently disabled from future writes.
4880          * Reading from NMI is a oneshot deal.
4881          */
4882         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4883                 return true;
4884
4885         /* Continue without locking, but disable the ring buffer */
4886         atomic_inc(&cpu_buffer->record_disabled);
4887         return false;
4888 }
4889
4890 static inline void
4891 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4892 {
4893         if (likely(locked))
4894                 raw_spin_unlock(&cpu_buffer->reader_lock);
4895 }
4896
4897 /**
4898  * ring_buffer_peek - peek at the next event to be read
4899  * @buffer: The ring buffer to read
4900  * @cpu: The cpu to peak at
4901  * @ts: The timestamp counter of this event.
4902  * @lost_events: a variable to store if events were lost (may be NULL)
4903  *
4904  * This will return the event that will be read next, but does
4905  * not consume the data.
4906  */
4907 struct ring_buffer_event *
4908 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4909                  unsigned long *lost_events)
4910 {
4911         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4912         struct ring_buffer_event *event;
4913         unsigned long flags;
4914         bool dolock;
4915
4916         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4917                 return NULL;
4918
4919  again:
4920         local_irq_save(flags);
4921         dolock = rb_reader_lock(cpu_buffer);
4922         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4923         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4924                 rb_advance_reader(cpu_buffer);
4925         rb_reader_unlock(cpu_buffer, dolock);
4926         local_irq_restore(flags);
4927
4928         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4929                 goto again;
4930
4931         return event;
4932 }
4933
4934 /** ring_buffer_iter_dropped - report if there are dropped events
4935  * @iter: The ring buffer iterator
4936  *
4937  * Returns true if there was dropped events since the last peek.
4938  */
4939 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4940 {
4941         bool ret = iter->missed_events != 0;
4942
4943         iter->missed_events = 0;
4944         return ret;
4945 }
4946 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4947
4948 /**
4949  * ring_buffer_iter_peek - peek at the next event to be read
4950  * @iter: The ring buffer iterator
4951  * @ts: The timestamp counter of this event.
4952  *
4953  * This will return the event that will be read next, but does
4954  * not increment the iterator.
4955  */
4956 struct ring_buffer_event *
4957 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4958 {
4959         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4960         struct ring_buffer_event *event;
4961         unsigned long flags;
4962
4963  again:
4964         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4965         event = rb_iter_peek(iter, ts);
4966         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4967
4968         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4969                 goto again;
4970
4971         return event;
4972 }
4973
4974 /**
4975  * ring_buffer_consume - return an event and consume it
4976  * @buffer: The ring buffer to get the next event from
4977  * @cpu: the cpu to read the buffer from
4978  * @ts: a variable to store the timestamp (may be NULL)
4979  * @lost_events: a variable to store if events were lost (may be NULL)
4980  *
4981  * Returns the next event in the ring buffer, and that event is consumed.
4982  * Meaning, that sequential reads will keep returning a different event,
4983  * and eventually empty the ring buffer if the producer is slower.
4984  */
4985 struct ring_buffer_event *
4986 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4987                     unsigned long *lost_events)
4988 {
4989         struct ring_buffer_per_cpu *cpu_buffer;
4990         struct ring_buffer_event *event = NULL;
4991         unsigned long flags;
4992         bool dolock;
4993
4994  again:
4995         /* might be called in atomic */
4996         preempt_disable();
4997
4998         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4999                 goto out;
5000
5001         cpu_buffer = buffer->buffers[cpu];
5002         local_irq_save(flags);
5003         dolock = rb_reader_lock(cpu_buffer);
5004
5005         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5006         if (event) {
5007                 cpu_buffer->lost_events = 0;
5008                 rb_advance_reader(cpu_buffer);
5009         }
5010
5011         rb_reader_unlock(cpu_buffer, dolock);
5012         local_irq_restore(flags);
5013
5014  out:
5015         preempt_enable();
5016
5017         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5018                 goto again;
5019
5020         return event;
5021 }
5022 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5023
5024 /**
5025  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5026  * @buffer: The ring buffer to read from
5027  * @cpu: The cpu buffer to iterate over
5028  * @flags: gfp flags to use for memory allocation
5029  *
5030  * This performs the initial preparations necessary to iterate
5031  * through the buffer.  Memory is allocated, buffer recording
5032  * is disabled, and the iterator pointer is returned to the caller.
5033  *
5034  * Disabling buffer recording prevents the reading from being
5035  * corrupted. This is not a consuming read, so a producer is not
5036  * expected.
5037  *
5038  * After a sequence of ring_buffer_read_prepare calls, the user is
5039  * expected to make at least one call to ring_buffer_read_prepare_sync.
5040  * Afterwards, ring_buffer_read_start is invoked to get things going
5041  * for real.
5042  *
5043  * This overall must be paired with ring_buffer_read_finish.
5044  */
5045 struct ring_buffer_iter *
5046 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5047 {
5048         struct ring_buffer_per_cpu *cpu_buffer;
5049         struct ring_buffer_iter *iter;
5050
5051         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5052                 return NULL;
5053
5054         iter = kzalloc(sizeof(*iter), flags);
5055         if (!iter)
5056                 return NULL;
5057
5058         /* Holds the entire event: data and meta data */
5059         iter->event = kmalloc(BUF_PAGE_SIZE, flags);
5060         if (!iter->event) {
5061                 kfree(iter);
5062                 return NULL;
5063         }
5064
5065         cpu_buffer = buffer->buffers[cpu];
5066
5067         iter->cpu_buffer = cpu_buffer;
5068
5069         atomic_inc(&cpu_buffer->resize_disabled);
5070
5071         return iter;
5072 }
5073 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5074
5075 /**
5076  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5077  *
5078  * All previously invoked ring_buffer_read_prepare calls to prepare
5079  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5080  * calls on those iterators are allowed.
5081  */
5082 void
5083 ring_buffer_read_prepare_sync(void)
5084 {
5085         synchronize_rcu();
5086 }
5087 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5088
5089 /**
5090  * ring_buffer_read_start - start a non consuming read of the buffer
5091  * @iter: The iterator returned by ring_buffer_read_prepare
5092  *
5093  * This finalizes the startup of an iteration through the buffer.
5094  * The iterator comes from a call to ring_buffer_read_prepare and
5095  * an intervening ring_buffer_read_prepare_sync must have been
5096  * performed.
5097  *
5098  * Must be paired with ring_buffer_read_finish.
5099  */
5100 void
5101 ring_buffer_read_start(struct ring_buffer_iter *iter)
5102 {
5103         struct ring_buffer_per_cpu *cpu_buffer;
5104         unsigned long flags;
5105
5106         if (!iter)
5107                 return;
5108
5109         cpu_buffer = iter->cpu_buffer;
5110
5111         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5112         arch_spin_lock(&cpu_buffer->lock);
5113         rb_iter_reset(iter);
5114         arch_spin_unlock(&cpu_buffer->lock);
5115         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5116 }
5117 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5118
5119 /**
5120  * ring_buffer_read_finish - finish reading the iterator of the buffer
5121  * @iter: The iterator retrieved by ring_buffer_start
5122  *
5123  * This re-enables the recording to the buffer, and frees the
5124  * iterator.
5125  */
5126 void
5127 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5128 {
5129         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5130         unsigned long flags;
5131
5132         /*
5133          * Ring buffer is disabled from recording, here's a good place
5134          * to check the integrity of the ring buffer.
5135          * Must prevent readers from trying to read, as the check
5136          * clears the HEAD page and readers require it.
5137          */
5138         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5139         rb_check_pages(cpu_buffer);
5140         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5141
5142         atomic_dec(&cpu_buffer->resize_disabled);
5143         kfree(iter->event);
5144         kfree(iter);
5145 }
5146 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5147
5148 /**
5149  * ring_buffer_iter_advance - advance the iterator to the next location
5150  * @iter: The ring buffer iterator
5151  *
5152  * Move the location of the iterator such that the next read will
5153  * be the next location of the iterator.
5154  */
5155 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5156 {
5157         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5158         unsigned long flags;
5159
5160         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5161
5162         rb_advance_iter(iter);
5163
5164         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5165 }
5166 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5167
5168 /**
5169  * ring_buffer_size - return the size of the ring buffer (in bytes)
5170  * @buffer: The ring buffer.
5171  * @cpu: The CPU to get ring buffer size from.
5172  */
5173 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5174 {
5175         /*
5176          * Earlier, this method returned
5177          *      BUF_PAGE_SIZE * buffer->nr_pages
5178          * Since the nr_pages field is now removed, we have converted this to
5179          * return the per cpu buffer value.
5180          */
5181         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5182                 return 0;
5183
5184         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5185 }
5186 EXPORT_SYMBOL_GPL(ring_buffer_size);
5187
5188 static void rb_clear_buffer_page(struct buffer_page *page)
5189 {
5190         local_set(&page->write, 0);
5191         local_set(&page->entries, 0);
5192         rb_init_page(page->page);
5193         page->read = 0;
5194 }
5195
5196 static void
5197 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5198 {
5199         struct buffer_page *page;
5200
5201         rb_head_page_deactivate(cpu_buffer);
5202
5203         cpu_buffer->head_page
5204                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5205         rb_clear_buffer_page(cpu_buffer->head_page);
5206         list_for_each_entry(page, cpu_buffer->pages, list) {
5207                 rb_clear_buffer_page(page);
5208         }
5209
5210         cpu_buffer->tail_page = cpu_buffer->head_page;
5211         cpu_buffer->commit_page = cpu_buffer->head_page;
5212
5213         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5214         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5215         rb_clear_buffer_page(cpu_buffer->reader_page);
5216
5217         local_set(&cpu_buffer->entries_bytes, 0);
5218         local_set(&cpu_buffer->overrun, 0);
5219         local_set(&cpu_buffer->commit_overrun, 0);
5220         local_set(&cpu_buffer->dropped_events, 0);
5221         local_set(&cpu_buffer->entries, 0);
5222         local_set(&cpu_buffer->committing, 0);
5223         local_set(&cpu_buffer->commits, 0);
5224         local_set(&cpu_buffer->pages_touched, 0);
5225         local_set(&cpu_buffer->pages_lost, 0);
5226         local_set(&cpu_buffer->pages_read, 0);
5227         cpu_buffer->last_pages_touch = 0;
5228         cpu_buffer->shortest_full = 0;
5229         cpu_buffer->read = 0;
5230         cpu_buffer->read_bytes = 0;
5231
5232         rb_time_set(&cpu_buffer->write_stamp, 0);
5233         rb_time_set(&cpu_buffer->before_stamp, 0);
5234
5235         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5236
5237         cpu_buffer->lost_events = 0;
5238         cpu_buffer->last_overrun = 0;
5239
5240         rb_head_page_activate(cpu_buffer);
5241         cpu_buffer->pages_removed = 0;
5242 }
5243
5244 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5245 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5246 {
5247         unsigned long flags;
5248
5249         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5250
5251         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5252                 goto out;
5253
5254         arch_spin_lock(&cpu_buffer->lock);
5255
5256         rb_reset_cpu(cpu_buffer);
5257
5258         arch_spin_unlock(&cpu_buffer->lock);
5259
5260  out:
5261         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5262 }
5263
5264 /**
5265  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5266  * @buffer: The ring buffer to reset a per cpu buffer of
5267  * @cpu: The CPU buffer to be reset
5268  */
5269 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5270 {
5271         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5272
5273         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5274                 return;
5275
5276         /* prevent another thread from changing buffer sizes */
5277         mutex_lock(&buffer->mutex);
5278
5279         atomic_inc(&cpu_buffer->resize_disabled);
5280         atomic_inc(&cpu_buffer->record_disabled);
5281
5282         /* Make sure all commits have finished */
5283         synchronize_rcu();
5284
5285         reset_disabled_cpu_buffer(cpu_buffer);
5286
5287         atomic_dec(&cpu_buffer->record_disabled);
5288         atomic_dec(&cpu_buffer->resize_disabled);
5289
5290         mutex_unlock(&buffer->mutex);
5291 }
5292 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5293
5294 /* Flag to ensure proper resetting of atomic variables */
5295 #define RESET_BIT       (1 << 30)
5296
5297 /**
5298  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5299  * @buffer: The ring buffer to reset a per cpu buffer of
5300  */
5301 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5302 {
5303         struct ring_buffer_per_cpu *cpu_buffer;
5304         int cpu;
5305
5306         /* prevent another thread from changing buffer sizes */
5307         mutex_lock(&buffer->mutex);
5308
5309         for_each_online_buffer_cpu(buffer, cpu) {
5310                 cpu_buffer = buffer->buffers[cpu];
5311
5312                 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5313                 atomic_inc(&cpu_buffer->record_disabled);
5314         }
5315
5316         /* Make sure all commits have finished */
5317         synchronize_rcu();
5318
5319         for_each_buffer_cpu(buffer, cpu) {
5320                 cpu_buffer = buffer->buffers[cpu];
5321
5322                 /*
5323                  * If a CPU came online during the synchronize_rcu(), then
5324                  * ignore it.
5325                  */
5326                 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5327                         continue;
5328
5329                 reset_disabled_cpu_buffer(cpu_buffer);
5330
5331                 atomic_dec(&cpu_buffer->record_disabled);
5332                 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5333         }
5334
5335         mutex_unlock(&buffer->mutex);
5336 }
5337
5338 /**
5339  * ring_buffer_reset - reset a ring buffer
5340  * @buffer: The ring buffer to reset all cpu buffers
5341  */
5342 void ring_buffer_reset(struct trace_buffer *buffer)
5343 {
5344         struct ring_buffer_per_cpu *cpu_buffer;
5345         int cpu;
5346
5347         /* prevent another thread from changing buffer sizes */
5348         mutex_lock(&buffer->mutex);
5349
5350         for_each_buffer_cpu(buffer, cpu) {
5351                 cpu_buffer = buffer->buffers[cpu];
5352
5353                 atomic_inc(&cpu_buffer->resize_disabled);
5354                 atomic_inc(&cpu_buffer->record_disabled);
5355         }
5356
5357         /* Make sure all commits have finished */
5358         synchronize_rcu();
5359
5360         for_each_buffer_cpu(buffer, cpu) {
5361                 cpu_buffer = buffer->buffers[cpu];
5362
5363                 reset_disabled_cpu_buffer(cpu_buffer);
5364
5365                 atomic_dec(&cpu_buffer->record_disabled);
5366                 atomic_dec(&cpu_buffer->resize_disabled);
5367         }
5368
5369         mutex_unlock(&buffer->mutex);
5370 }
5371 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5372
5373 /**
5374  * ring_buffer_empty - is the ring buffer empty?
5375  * @buffer: The ring buffer to test
5376  */
5377 bool ring_buffer_empty(struct trace_buffer *buffer)
5378 {
5379         struct ring_buffer_per_cpu *cpu_buffer;
5380         unsigned long flags;
5381         bool dolock;
5382         bool ret;
5383         int cpu;
5384
5385         /* yes this is racy, but if you don't like the race, lock the buffer */
5386         for_each_buffer_cpu(buffer, cpu) {
5387                 cpu_buffer = buffer->buffers[cpu];
5388                 local_irq_save(flags);
5389                 dolock = rb_reader_lock(cpu_buffer);
5390                 ret = rb_per_cpu_empty(cpu_buffer);
5391                 rb_reader_unlock(cpu_buffer, dolock);
5392                 local_irq_restore(flags);
5393
5394                 if (!ret)
5395                         return false;
5396         }
5397
5398         return true;
5399 }
5400 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5401
5402 /**
5403  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5404  * @buffer: The ring buffer
5405  * @cpu: The CPU buffer to test
5406  */
5407 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5408 {
5409         struct ring_buffer_per_cpu *cpu_buffer;
5410         unsigned long flags;
5411         bool dolock;
5412         bool ret;
5413
5414         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5415                 return true;
5416
5417         cpu_buffer = buffer->buffers[cpu];
5418         local_irq_save(flags);
5419         dolock = rb_reader_lock(cpu_buffer);
5420         ret = rb_per_cpu_empty(cpu_buffer);
5421         rb_reader_unlock(cpu_buffer, dolock);
5422         local_irq_restore(flags);
5423
5424         return ret;
5425 }
5426 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5427
5428 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5429 /**
5430  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5431  * @buffer_a: One buffer to swap with
5432  * @buffer_b: The other buffer to swap with
5433  * @cpu: the CPU of the buffers to swap
5434  *
5435  * This function is useful for tracers that want to take a "snapshot"
5436  * of a CPU buffer and has another back up buffer lying around.
5437  * it is expected that the tracer handles the cpu buffer not being
5438  * used at the moment.
5439  */
5440 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5441                          struct trace_buffer *buffer_b, int cpu)
5442 {
5443         struct ring_buffer_per_cpu *cpu_buffer_a;
5444         struct ring_buffer_per_cpu *cpu_buffer_b;
5445         int ret = -EINVAL;
5446
5447         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5448             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5449                 goto out;
5450
5451         cpu_buffer_a = buffer_a->buffers[cpu];
5452         cpu_buffer_b = buffer_b->buffers[cpu];
5453
5454         /* At least make sure the two buffers are somewhat the same */
5455         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5456                 goto out;
5457
5458         ret = -EAGAIN;
5459
5460         if (atomic_read(&buffer_a->record_disabled))
5461                 goto out;
5462
5463         if (atomic_read(&buffer_b->record_disabled))
5464                 goto out;
5465
5466         if (atomic_read(&cpu_buffer_a->record_disabled))
5467                 goto out;
5468
5469         if (atomic_read(&cpu_buffer_b->record_disabled))
5470                 goto out;
5471
5472         /*
5473          * We can't do a synchronize_rcu here because this
5474          * function can be called in atomic context.
5475          * Normally this will be called from the same CPU as cpu.
5476          * If not it's up to the caller to protect this.
5477          */
5478         atomic_inc(&cpu_buffer_a->record_disabled);
5479         atomic_inc(&cpu_buffer_b->record_disabled);
5480
5481         ret = -EBUSY;
5482         if (local_read(&cpu_buffer_a->committing))
5483                 goto out_dec;
5484         if (local_read(&cpu_buffer_b->committing))
5485                 goto out_dec;
5486
5487         /*
5488          * When resize is in progress, we cannot swap it because
5489          * it will mess the state of the cpu buffer.
5490          */
5491         if (atomic_read(&buffer_a->resizing))
5492                 goto out_dec;
5493         if (atomic_read(&buffer_b->resizing))
5494                 goto out_dec;
5495
5496         buffer_a->buffers[cpu] = cpu_buffer_b;
5497         buffer_b->buffers[cpu] = cpu_buffer_a;
5498
5499         cpu_buffer_b->buffer = buffer_a;
5500         cpu_buffer_a->buffer = buffer_b;
5501
5502         ret = 0;
5503
5504 out_dec:
5505         atomic_dec(&cpu_buffer_a->record_disabled);
5506         atomic_dec(&cpu_buffer_b->record_disabled);
5507 out:
5508         return ret;
5509 }
5510 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5511 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5512
5513 /**
5514  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5515  * @buffer: the buffer to allocate for.
5516  * @cpu: the cpu buffer to allocate.
5517  *
5518  * This function is used in conjunction with ring_buffer_read_page.
5519  * When reading a full page from the ring buffer, these functions
5520  * can be used to speed up the process. The calling function should
5521  * allocate a few pages first with this function. Then when it
5522  * needs to get pages from the ring buffer, it passes the result
5523  * of this function into ring_buffer_read_page, which will swap
5524  * the page that was allocated, with the read page of the buffer.
5525  *
5526  * Returns:
5527  *  The page allocated, or ERR_PTR
5528  */
5529 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5530 {
5531         struct ring_buffer_per_cpu *cpu_buffer;
5532         struct buffer_data_page *bpage = NULL;
5533         unsigned long flags;
5534         struct page *page;
5535
5536         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5537                 return ERR_PTR(-ENODEV);
5538
5539         cpu_buffer = buffer->buffers[cpu];
5540         local_irq_save(flags);
5541         arch_spin_lock(&cpu_buffer->lock);
5542
5543         if (cpu_buffer->free_page) {
5544                 bpage = cpu_buffer->free_page;
5545                 cpu_buffer->free_page = NULL;
5546         }
5547
5548         arch_spin_unlock(&cpu_buffer->lock);
5549         local_irq_restore(flags);
5550
5551         if (bpage)
5552                 goto out;
5553
5554         page = alloc_pages_node(cpu_to_node(cpu),
5555                                 GFP_KERNEL | __GFP_NORETRY, 0);
5556         if (!page)
5557                 return ERR_PTR(-ENOMEM);
5558
5559         bpage = page_address(page);
5560
5561  out:
5562         rb_init_page(bpage);
5563
5564         return bpage;
5565 }
5566 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5567
5568 /**
5569  * ring_buffer_free_read_page - free an allocated read page
5570  * @buffer: the buffer the page was allocate for
5571  * @cpu: the cpu buffer the page came from
5572  * @data: the page to free
5573  *
5574  * Free a page allocated from ring_buffer_alloc_read_page.
5575  */
5576 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5577 {
5578         struct ring_buffer_per_cpu *cpu_buffer;
5579         struct buffer_data_page *bpage = data;
5580         struct page *page = virt_to_page(bpage);
5581         unsigned long flags;
5582
5583         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5584                 return;
5585
5586         cpu_buffer = buffer->buffers[cpu];
5587
5588         /* If the page is still in use someplace else, we can't reuse it */
5589         if (page_ref_count(page) > 1)
5590                 goto out;
5591
5592         local_irq_save(flags);
5593         arch_spin_lock(&cpu_buffer->lock);
5594
5595         if (!cpu_buffer->free_page) {
5596                 cpu_buffer->free_page = bpage;
5597                 bpage = NULL;
5598         }
5599
5600         arch_spin_unlock(&cpu_buffer->lock);
5601         local_irq_restore(flags);
5602
5603  out:
5604         free_page((unsigned long)bpage);
5605 }
5606 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5607
5608 /**
5609  * ring_buffer_read_page - extract a page from the ring buffer
5610  * @buffer: buffer to extract from
5611  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5612  * @len: amount to extract
5613  * @cpu: the cpu of the buffer to extract
5614  * @full: should the extraction only happen when the page is full.
5615  *
5616  * This function will pull out a page from the ring buffer and consume it.
5617  * @data_page must be the address of the variable that was returned
5618  * from ring_buffer_alloc_read_page. This is because the page might be used
5619  * to swap with a page in the ring buffer.
5620  *
5621  * for example:
5622  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5623  *      if (IS_ERR(rpage))
5624  *              return PTR_ERR(rpage);
5625  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5626  *      if (ret >= 0)
5627  *              process_page(rpage, ret);
5628  *
5629  * When @full is set, the function will not return true unless
5630  * the writer is off the reader page.
5631  *
5632  * Note: it is up to the calling functions to handle sleeps and wakeups.
5633  *  The ring buffer can be used anywhere in the kernel and can not
5634  *  blindly call wake_up. The layer that uses the ring buffer must be
5635  *  responsible for that.
5636  *
5637  * Returns:
5638  *  >=0 if data has been transferred, returns the offset of consumed data.
5639  *  <0 if no data has been transferred.
5640  */
5641 int ring_buffer_read_page(struct trace_buffer *buffer,
5642                           void **data_page, size_t len, int cpu, int full)
5643 {
5644         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5645         struct ring_buffer_event *event;
5646         struct buffer_data_page *bpage;
5647         struct buffer_page *reader;
5648         unsigned long missed_events;
5649         unsigned long flags;
5650         unsigned int commit;
5651         unsigned int read;
5652         u64 save_timestamp;
5653         int ret = -1;
5654
5655         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5656                 goto out;
5657
5658         /*
5659          * If len is not big enough to hold the page header, then
5660          * we can not copy anything.
5661          */
5662         if (len <= BUF_PAGE_HDR_SIZE)
5663                 goto out;
5664
5665         len -= BUF_PAGE_HDR_SIZE;
5666
5667         if (!data_page)
5668                 goto out;
5669
5670         bpage = *data_page;
5671         if (!bpage)
5672                 goto out;
5673
5674         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5675
5676         reader = rb_get_reader_page(cpu_buffer);
5677         if (!reader)
5678                 goto out_unlock;
5679
5680         event = rb_reader_event(cpu_buffer);
5681
5682         read = reader->read;
5683         commit = rb_page_commit(reader);
5684
5685         /* Check if any events were dropped */
5686         missed_events = cpu_buffer->lost_events;
5687
5688         /*
5689          * If this page has been partially read or
5690          * if len is not big enough to read the rest of the page or
5691          * a writer is still on the page, then
5692          * we must copy the data from the page to the buffer.
5693          * Otherwise, we can simply swap the page with the one passed in.
5694          */
5695         if (read || (len < (commit - read)) ||
5696             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5697                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5698                 unsigned int rpos = read;
5699                 unsigned int pos = 0;
5700                 unsigned int size;
5701
5702                 /*
5703                  * If a full page is expected, this can still be returned
5704                  * if there's been a previous partial read and the
5705                  * rest of the page can be read and the commit page is off
5706                  * the reader page.
5707                  */
5708                 if (full &&
5709                     (!read || (len < (commit - read)) ||
5710                      cpu_buffer->reader_page == cpu_buffer->commit_page))
5711                         goto out_unlock;
5712
5713                 if (len > (commit - read))
5714                         len = (commit - read);
5715
5716                 /* Always keep the time extend and data together */
5717                 size = rb_event_ts_length(event);
5718
5719                 if (len < size)
5720                         goto out_unlock;
5721
5722                 /* save the current timestamp, since the user will need it */
5723                 save_timestamp = cpu_buffer->read_stamp;
5724
5725                 /* Need to copy one event at a time */
5726                 do {
5727                         /* We need the size of one event, because
5728                          * rb_advance_reader only advances by one event,
5729                          * whereas rb_event_ts_length may include the size of
5730                          * one or two events.
5731                          * We have already ensured there's enough space if this
5732                          * is a time extend. */
5733                         size = rb_event_length(event);
5734                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5735
5736                         len -= size;
5737
5738                         rb_advance_reader(cpu_buffer);
5739                         rpos = reader->read;
5740                         pos += size;
5741
5742                         if (rpos >= commit)
5743                                 break;
5744
5745                         event = rb_reader_event(cpu_buffer);
5746                         /* Always keep the time extend and data together */
5747                         size = rb_event_ts_length(event);
5748                 } while (len >= size);
5749
5750                 /* update bpage */
5751                 local_set(&bpage->commit, pos);
5752                 bpage->time_stamp = save_timestamp;
5753
5754                 /* we copied everything to the beginning */
5755                 read = 0;
5756         } else {
5757                 /* update the entry counter */
5758                 cpu_buffer->read += rb_page_entries(reader);
5759                 cpu_buffer->read_bytes += rb_page_commit(reader);
5760
5761                 /* swap the pages */
5762                 rb_init_page(bpage);
5763                 bpage = reader->page;
5764                 reader->page = *data_page;
5765                 local_set(&reader->write, 0);
5766                 local_set(&reader->entries, 0);
5767                 reader->read = 0;
5768                 *data_page = bpage;
5769
5770                 /*
5771                  * Use the real_end for the data size,
5772                  * This gives us a chance to store the lost events
5773                  * on the page.
5774                  */
5775                 if (reader->real_end)
5776                         local_set(&bpage->commit, reader->real_end);
5777         }
5778         ret = read;
5779
5780         cpu_buffer->lost_events = 0;
5781
5782         commit = local_read(&bpage->commit);
5783         /*
5784          * Set a flag in the commit field if we lost events
5785          */
5786         if (missed_events) {
5787                 /* If there is room at the end of the page to save the
5788                  * missed events, then record it there.
5789                  */
5790                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5791                         memcpy(&bpage->data[commit], &missed_events,
5792                                sizeof(missed_events));
5793                         local_add(RB_MISSED_STORED, &bpage->commit);
5794                         commit += sizeof(missed_events);
5795                 }
5796                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5797         }
5798
5799         /*
5800          * This page may be off to user land. Zero it out here.
5801          */
5802         if (commit < BUF_PAGE_SIZE)
5803                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5804
5805  out_unlock:
5806         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5807
5808  out:
5809         return ret;
5810 }
5811 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5812
5813 /*
5814  * We only allocate new buffers, never free them if the CPU goes down.
5815  * If we were to free the buffer, then the user would lose any trace that was in
5816  * the buffer.
5817  */
5818 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5819 {
5820         struct trace_buffer *buffer;
5821         long nr_pages_same;
5822         int cpu_i;
5823         unsigned long nr_pages;
5824
5825         buffer = container_of(node, struct trace_buffer, node);
5826         if (cpumask_test_cpu(cpu, buffer->cpumask))
5827                 return 0;
5828
5829         nr_pages = 0;
5830         nr_pages_same = 1;
5831         /* check if all cpu sizes are same */
5832         for_each_buffer_cpu(buffer, cpu_i) {
5833                 /* fill in the size from first enabled cpu */
5834                 if (nr_pages == 0)
5835                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5836                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5837                         nr_pages_same = 0;
5838                         break;
5839                 }
5840         }
5841         /* allocate minimum pages, user can later expand it */
5842         if (!nr_pages_same)
5843                 nr_pages = 2;
5844         buffer->buffers[cpu] =
5845                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5846         if (!buffer->buffers[cpu]) {
5847                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5848                      cpu);
5849                 return -ENOMEM;
5850         }
5851         smp_wmb();
5852         cpumask_set_cpu(cpu, buffer->cpumask);
5853         return 0;
5854 }
5855
5856 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5857 /*
5858  * This is a basic integrity check of the ring buffer.
5859  * Late in the boot cycle this test will run when configured in.
5860  * It will kick off a thread per CPU that will go into a loop
5861  * writing to the per cpu ring buffer various sizes of data.
5862  * Some of the data will be large items, some small.
5863  *
5864  * Another thread is created that goes into a spin, sending out
5865  * IPIs to the other CPUs to also write into the ring buffer.
5866  * this is to test the nesting ability of the buffer.
5867  *
5868  * Basic stats are recorded and reported. If something in the
5869  * ring buffer should happen that's not expected, a big warning
5870  * is displayed and all ring buffers are disabled.
5871  */
5872 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5873
5874 struct rb_test_data {
5875         struct trace_buffer *buffer;
5876         unsigned long           events;
5877         unsigned long           bytes_written;
5878         unsigned long           bytes_alloc;
5879         unsigned long           bytes_dropped;
5880         unsigned long           events_nested;
5881         unsigned long           bytes_written_nested;
5882         unsigned long           bytes_alloc_nested;
5883         unsigned long           bytes_dropped_nested;
5884         int                     min_size_nested;
5885         int                     max_size_nested;
5886         int                     max_size;
5887         int                     min_size;
5888         int                     cpu;
5889         int                     cnt;
5890 };
5891
5892 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5893
5894 /* 1 meg per cpu */
5895 #define RB_TEST_BUFFER_SIZE     1048576
5896
5897 static char rb_string[] __initdata =
5898         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5899         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5900         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5901
5902 static bool rb_test_started __initdata;
5903
5904 struct rb_item {
5905         int size;
5906         char str[];
5907 };
5908
5909 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5910 {
5911         struct ring_buffer_event *event;
5912         struct rb_item *item;
5913         bool started;
5914         int event_len;
5915         int size;
5916         int len;
5917         int cnt;
5918
5919         /* Have nested writes different that what is written */
5920         cnt = data->cnt + (nested ? 27 : 0);
5921
5922         /* Multiply cnt by ~e, to make some unique increment */
5923         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5924
5925         len = size + sizeof(struct rb_item);
5926
5927         started = rb_test_started;
5928         /* read rb_test_started before checking buffer enabled */
5929         smp_rmb();
5930
5931         event = ring_buffer_lock_reserve(data->buffer, len);
5932         if (!event) {
5933                 /* Ignore dropped events before test starts. */
5934                 if (started) {
5935                         if (nested)
5936                                 data->bytes_dropped += len;
5937                         else
5938                                 data->bytes_dropped_nested += len;
5939                 }
5940                 return len;
5941         }
5942
5943         event_len = ring_buffer_event_length(event);
5944
5945         if (RB_WARN_ON(data->buffer, event_len < len))
5946                 goto out;
5947
5948         item = ring_buffer_event_data(event);
5949         item->size = size;
5950         memcpy(item->str, rb_string, size);
5951
5952         if (nested) {
5953                 data->bytes_alloc_nested += event_len;
5954                 data->bytes_written_nested += len;
5955                 data->events_nested++;
5956                 if (!data->min_size_nested || len < data->min_size_nested)
5957                         data->min_size_nested = len;
5958                 if (len > data->max_size_nested)
5959                         data->max_size_nested = len;
5960         } else {
5961                 data->bytes_alloc += event_len;
5962                 data->bytes_written += len;
5963                 data->events++;
5964                 if (!data->min_size || len < data->min_size)
5965                         data->max_size = len;
5966                 if (len > data->max_size)
5967                         data->max_size = len;
5968         }
5969
5970  out:
5971         ring_buffer_unlock_commit(data->buffer);
5972
5973         return 0;
5974 }
5975
5976 static __init int rb_test(void *arg)
5977 {
5978         struct rb_test_data *data = arg;
5979
5980         while (!kthread_should_stop()) {
5981                 rb_write_something(data, false);
5982                 data->cnt++;
5983
5984                 set_current_state(TASK_INTERRUPTIBLE);
5985                 /* Now sleep between a min of 100-300us and a max of 1ms */
5986                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5987         }
5988
5989         return 0;
5990 }
5991
5992 static __init void rb_ipi(void *ignore)
5993 {
5994         struct rb_test_data *data;
5995         int cpu = smp_processor_id();
5996
5997         data = &rb_data[cpu];
5998         rb_write_something(data, true);
5999 }
6000
6001 static __init int rb_hammer_test(void *arg)
6002 {
6003         while (!kthread_should_stop()) {
6004
6005                 /* Send an IPI to all cpus to write data! */
6006                 smp_call_function(rb_ipi, NULL, 1);
6007                 /* No sleep, but for non preempt, let others run */
6008                 schedule();
6009         }
6010
6011         return 0;
6012 }
6013
6014 static __init int test_ringbuffer(void)
6015 {
6016         struct task_struct *rb_hammer;
6017         struct trace_buffer *buffer;
6018         int cpu;
6019         int ret = 0;
6020
6021         if (security_locked_down(LOCKDOWN_TRACEFS)) {
6022                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6023                 return 0;
6024         }
6025
6026         pr_info("Running ring buffer tests...\n");
6027
6028         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6029         if (WARN_ON(!buffer))
6030                 return 0;
6031
6032         /* Disable buffer so that threads can't write to it yet */
6033         ring_buffer_record_off(buffer);
6034
6035         for_each_online_cpu(cpu) {
6036                 rb_data[cpu].buffer = buffer;
6037                 rb_data[cpu].cpu = cpu;
6038                 rb_data[cpu].cnt = cpu;
6039                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6040                                                      cpu, "rbtester/%u");
6041                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6042                         pr_cont("FAILED\n");
6043                         ret = PTR_ERR(rb_threads[cpu]);
6044                         goto out_free;
6045                 }
6046         }
6047
6048         /* Now create the rb hammer! */
6049         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6050         if (WARN_ON(IS_ERR(rb_hammer))) {
6051                 pr_cont("FAILED\n");
6052                 ret = PTR_ERR(rb_hammer);
6053                 goto out_free;
6054         }
6055
6056         ring_buffer_record_on(buffer);
6057         /*
6058          * Show buffer is enabled before setting rb_test_started.
6059          * Yes there's a small race window where events could be
6060          * dropped and the thread wont catch it. But when a ring
6061          * buffer gets enabled, there will always be some kind of
6062          * delay before other CPUs see it. Thus, we don't care about
6063          * those dropped events. We care about events dropped after
6064          * the threads see that the buffer is active.
6065          */
6066         smp_wmb();
6067         rb_test_started = true;
6068
6069         set_current_state(TASK_INTERRUPTIBLE);
6070         /* Just run for 10 seconds */;
6071         schedule_timeout(10 * HZ);
6072
6073         kthread_stop(rb_hammer);
6074
6075  out_free:
6076         for_each_online_cpu(cpu) {
6077                 if (!rb_threads[cpu])
6078                         break;
6079                 kthread_stop(rb_threads[cpu]);
6080         }
6081         if (ret) {
6082                 ring_buffer_free(buffer);
6083                 return ret;
6084         }
6085
6086         /* Report! */
6087         pr_info("finished\n");
6088         for_each_online_cpu(cpu) {
6089                 struct ring_buffer_event *event;
6090                 struct rb_test_data *data = &rb_data[cpu];
6091                 struct rb_item *item;
6092                 unsigned long total_events;
6093                 unsigned long total_dropped;
6094                 unsigned long total_written;
6095                 unsigned long total_alloc;
6096                 unsigned long total_read = 0;
6097                 unsigned long total_size = 0;
6098                 unsigned long total_len = 0;
6099                 unsigned long total_lost = 0;
6100                 unsigned long lost;
6101                 int big_event_size;
6102                 int small_event_size;
6103
6104                 ret = -1;
6105
6106                 total_events = data->events + data->events_nested;
6107                 total_written = data->bytes_written + data->bytes_written_nested;
6108                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6109                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6110
6111                 big_event_size = data->max_size + data->max_size_nested;
6112                 small_event_size = data->min_size + data->min_size_nested;
6113
6114                 pr_info("CPU %d:\n", cpu);
6115                 pr_info("              events:    %ld\n", total_events);
6116                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6117                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6118                 pr_info("       written bytes:    %ld\n", total_written);
6119                 pr_info("       biggest event:    %d\n", big_event_size);
6120                 pr_info("      smallest event:    %d\n", small_event_size);
6121
6122                 if (RB_WARN_ON(buffer, total_dropped))
6123                         break;
6124
6125                 ret = 0;
6126
6127                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6128                         total_lost += lost;
6129                         item = ring_buffer_event_data(event);
6130                         total_len += ring_buffer_event_length(event);
6131                         total_size += item->size + sizeof(struct rb_item);
6132                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6133                                 pr_info("FAILED!\n");
6134                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6135                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6136                                 RB_WARN_ON(buffer, 1);
6137                                 ret = -1;
6138                                 break;
6139                         }
6140                         total_read++;
6141                 }
6142                 if (ret)
6143                         break;
6144
6145                 ret = -1;
6146
6147                 pr_info("         read events:   %ld\n", total_read);
6148                 pr_info("         lost events:   %ld\n", total_lost);
6149                 pr_info("        total events:   %ld\n", total_lost + total_read);
6150                 pr_info("  recorded len bytes:   %ld\n", total_len);
6151                 pr_info(" recorded size bytes:   %ld\n", total_size);
6152                 if (total_lost) {
6153                         pr_info(" With dropped events, record len and size may not match\n"
6154                                 " alloced and written from above\n");
6155                 } else {
6156                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6157                                        total_size != total_written))
6158                                 break;
6159                 }
6160                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6161                         break;
6162
6163                 ret = 0;
6164         }
6165         if (!ret)
6166                 pr_info("Ring buffer PASSED!\n");
6167
6168         ring_buffer_free(buffer);
6169         return 0;
6170 }
6171
6172 late_initcall(test_ringbuffer);
6173 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */