GNU Linux-libre 4.14.254-gnu1
[releases.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF           (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT            4U
125 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT       0
130 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT       1
133 # define RB_ARCH_ALIGNMENT              8U
134 #endif
135
136 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142         RB_LEN_TIME_EXTEND = 8,
143         RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156         /* padding has a NULL time_delta */
157         event->type_len = RINGBUF_TYPE_PADDING;
158         event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164         unsigned length;
165
166         if (event->type_len)
167                 length = event->type_len * RB_ALIGNMENT;
168         else
169                 length = event->array[0];
170         return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181         switch (event->type_len) {
182         case RINGBUF_TYPE_PADDING:
183                 if (rb_null_event(event))
184                         /* undefined */
185                         return -1;
186                 return  event->array[0] + RB_EVNT_HDR_SIZE;
187
188         case RINGBUF_TYPE_TIME_EXTEND:
189                 return RB_LEN_TIME_EXTEND;
190
191         case RINGBUF_TYPE_TIME_STAMP:
192                 return RB_LEN_TIME_STAMP;
193
194         case RINGBUF_TYPE_DATA:
195                 return rb_event_data_length(event);
196         default:
197                 BUG();
198         }
199         /* not hit */
200         return 0;
201 }
202
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210         unsigned len = 0;
211
212         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213                 /* time extends include the data event after it */
214                 len = RB_LEN_TIME_EXTEND;
215                 event = skip_time_extend(event);
216         }
217         return len + rb_event_length(event);
218 }
219
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235                 event = skip_time_extend(event);
236
237         length = rb_event_length(event);
238         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239                 return length;
240         length -= RB_EVNT_HDR_SIZE;
241         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243         return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252                 event = skip_time_extend(event);
253         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254         /* If length is in len field, then array[0] has the data */
255         if (event->type_len)
256                 return (void *)&event->array[0];
257         /* Otherwise length is in array[0] and array[1] has the data */
258         return (void *)&event->array[1];
259 }
260
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267         return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu)                \
272         for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT        27
275 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST   (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS        (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED        (1 << 30)
282
283 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
285 struct buffer_data_page {
286         u64              time_stamp;    /* page time stamp */
287         local_t          commit;        /* write committed index */
288         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
289 };
290
291 /*
292  * Note, the buffer_page list must be first. The buffer pages
293  * are allocated in cache lines, which means that each buffer
294  * page will be at the beginning of a cache line, and thus
295  * the least significant bits will be zero. We use this to
296  * add flags in the list struct pointers, to make the ring buffer
297  * lockless.
298  */
299 struct buffer_page {
300         struct list_head list;          /* list of buffer pages */
301         local_t          write;         /* index for next write */
302         unsigned         read;          /* index for next read */
303         local_t          entries;       /* entries on this page */
304         unsigned long    real_end;      /* real end of data */
305         struct buffer_data_page *page;  /* Actual data page */
306 };
307
308 /*
309  * The buffer page counters, write and entries, must be reset
310  * atomically when crossing page boundaries. To synchronize this
311  * update, two counters are inserted into the number. One is
312  * the actual counter for the write position or count on the page.
313  *
314  * The other is a counter of updaters. Before an update happens
315  * the update partition of the counter is incremented. This will
316  * allow the updater to update the counter atomically.
317  *
318  * The counter is 20 bits, and the state data is 12.
319  */
320 #define RB_WRITE_MASK           0xfffff
321 #define RB_WRITE_INTCNT         (1 << 20)
322
323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325         local_set(&bpage->commit, 0);
326 }
327
328 /**
329  * ring_buffer_page_len - the size of data on the page.
330  * @page: The page to read
331  *
332  * Returns the amount of data on the page, including buffer page header.
333  */
334 size_t ring_buffer_page_len(void *page)
335 {
336         struct buffer_data_page *bpage = page;
337
338         return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339                 + BUF_PAGE_HDR_SIZE;
340 }
341
342 /*
343  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344  * this issue out.
345  */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348         free_page((unsigned long)bpage->page);
349         kfree(bpage);
350 }
351
352 /*
353  * We need to fit the time_stamp delta into 27 bits.
354  */
355 static inline int test_time_stamp(u64 delta)
356 {
357         if (delta & TS_DELTA_TEST)
358                 return 1;
359         return 0;
360 }
361
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369         struct buffer_data_page field;
370
371         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372                          "offset:0;\tsize:%u;\tsigned:%u;\n",
373                          (unsigned int)sizeof(field.time_stamp),
374                          (unsigned int)is_signed_type(u64));
375
376         trace_seq_printf(s, "\tfield: local_t commit;\t"
377                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
378                          (unsigned int)offsetof(typeof(field), commit),
379                          (unsigned int)sizeof(field.commit),
380                          (unsigned int)is_signed_type(long));
381
382         trace_seq_printf(s, "\tfield: int overwrite;\t"
383                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
384                          (unsigned int)offsetof(typeof(field), commit),
385                          1,
386                          (unsigned int)is_signed_type(long));
387
388         trace_seq_printf(s, "\tfield: char data;\t"
389                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
390                          (unsigned int)offsetof(typeof(field), data),
391                          (unsigned int)BUF_PAGE_SIZE,
392                          (unsigned int)is_signed_type(char));
393
394         return !trace_seq_has_overflowed(s);
395 }
396
397 struct rb_irq_work {
398         struct irq_work                 work;
399         wait_queue_head_t               waiters;
400         wait_queue_head_t               full_waiters;
401         bool                            waiters_pending;
402         bool                            full_waiters_pending;
403         bool                            wakeup_full;
404 };
405
406 /*
407  * Structure to hold event state and handle nested events.
408  */
409 struct rb_event_info {
410         u64                     ts;
411         u64                     delta;
412         unsigned long           length;
413         struct buffer_page      *tail_page;
414         int                     add_timestamp;
415 };
416
417 /*
418  * Used for which event context the event is in.
419  *  TRANSITION = 0
420  *  NMI     = 1
421  *  IRQ     = 2
422  *  SOFTIRQ = 3
423  *  NORMAL  = 4
424  *
425  * See trace_recursive_lock() comment below for more details.
426  */
427 enum {
428         RB_CTX_TRANSITION,
429         RB_CTX_NMI,
430         RB_CTX_IRQ,
431         RB_CTX_SOFTIRQ,
432         RB_CTX_NORMAL,
433         RB_CTX_MAX
434 };
435
436 /*
437  * head_page == tail_page && head == tail then buffer is empty.
438  */
439 struct ring_buffer_per_cpu {
440         int                             cpu;
441         atomic_t                        record_disabled;
442         struct ring_buffer              *buffer;
443         raw_spinlock_t                  reader_lock;    /* serialize readers */
444         arch_spinlock_t                 lock;
445         struct lock_class_key           lock_key;
446         struct buffer_data_page         *free_page;
447         unsigned long                   nr_pages;
448         unsigned int                    current_context;
449         struct list_head                *pages;
450         struct buffer_page              *head_page;     /* read from head */
451         struct buffer_page              *tail_page;     /* write to tail */
452         struct buffer_page              *commit_page;   /* committed pages */
453         struct buffer_page              *reader_page;
454         unsigned long                   lost_events;
455         unsigned long                   last_overrun;
456         local_t                         entries_bytes;
457         local_t                         entries;
458         local_t                         overrun;
459         local_t                         commit_overrun;
460         local_t                         dropped_events;
461         local_t                         committing;
462         local_t                         commits;
463         unsigned long                   read;
464         unsigned long                   read_bytes;
465         u64                             write_stamp;
466         u64                             read_stamp;
467         /* ring buffer pages to update, > 0 to add, < 0 to remove */
468         long                            nr_pages_to_update;
469         struct list_head                new_pages; /* new pages to add */
470         struct work_struct              update_pages_work;
471         struct completion               update_done;
472
473         struct rb_irq_work              irq_work;
474 };
475
476 struct ring_buffer {
477         unsigned                        flags;
478         int                             cpus;
479         atomic_t                        record_disabled;
480         atomic_t                        resize_disabled;
481         cpumask_var_t                   cpumask;
482
483         struct lock_class_key           *reader_lock_key;
484
485         struct mutex                    mutex;
486
487         struct ring_buffer_per_cpu      **buffers;
488
489         struct hlist_node               node;
490         u64                             (*clock)(void);
491
492         struct rb_irq_work              irq_work;
493 };
494
495 struct ring_buffer_iter {
496         struct ring_buffer_per_cpu      *cpu_buffer;
497         unsigned long                   head;
498         struct buffer_page              *head_page;
499         struct buffer_page              *cache_reader_page;
500         unsigned long                   cache_read;
501         u64                             read_stamp;
502 };
503
504 /*
505  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
506  *
507  * Schedules a delayed work to wake up any task that is blocked on the
508  * ring buffer waiters queue.
509  */
510 static void rb_wake_up_waiters(struct irq_work *work)
511 {
512         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
513
514         wake_up_all(&rbwork->waiters);
515         if (rbwork->wakeup_full) {
516                 rbwork->wakeup_full = false;
517                 wake_up_all(&rbwork->full_waiters);
518         }
519 }
520
521 /**
522  * ring_buffer_wait - wait for input to the ring buffer
523  * @buffer: buffer to wait on
524  * @cpu: the cpu buffer to wait on
525  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
526  *
527  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
528  * as data is added to any of the @buffer's cpu buffers. Otherwise
529  * it will wait for data to be added to a specific cpu buffer.
530  */
531 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
532 {
533         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
534         DEFINE_WAIT(wait);
535         struct rb_irq_work *work;
536         int ret = 0;
537
538         /*
539          * Depending on what the caller is waiting for, either any
540          * data in any cpu buffer, or a specific buffer, put the
541          * caller on the appropriate wait queue.
542          */
543         if (cpu == RING_BUFFER_ALL_CPUS) {
544                 work = &buffer->irq_work;
545                 /* Full only makes sense on per cpu reads */
546                 full = false;
547         } else {
548                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
549                         return -ENODEV;
550                 cpu_buffer = buffer->buffers[cpu];
551                 work = &cpu_buffer->irq_work;
552         }
553
554
555         while (true) {
556                 if (full)
557                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
558                 else
559                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
560
561                 /*
562                  * The events can happen in critical sections where
563                  * checking a work queue can cause deadlocks.
564                  * After adding a task to the queue, this flag is set
565                  * only to notify events to try to wake up the queue
566                  * using irq_work.
567                  *
568                  * We don't clear it even if the buffer is no longer
569                  * empty. The flag only causes the next event to run
570                  * irq_work to do the work queue wake up. The worse
571                  * that can happen if we race with !trace_empty() is that
572                  * an event will cause an irq_work to try to wake up
573                  * an empty queue.
574                  *
575                  * There's no reason to protect this flag either, as
576                  * the work queue and irq_work logic will do the necessary
577                  * synchronization for the wake ups. The only thing
578                  * that is necessary is that the wake up happens after
579                  * a task has been queued. It's OK for spurious wake ups.
580                  */
581                 if (full)
582                         work->full_waiters_pending = true;
583                 else
584                         work->waiters_pending = true;
585
586                 if (signal_pending(current)) {
587                         ret = -EINTR;
588                         break;
589                 }
590
591                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
592                         break;
593
594                 if (cpu != RING_BUFFER_ALL_CPUS &&
595                     !ring_buffer_empty_cpu(buffer, cpu)) {
596                         unsigned long flags;
597                         bool pagebusy;
598
599                         if (!full)
600                                 break;
601
602                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
603                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
604                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
605
606                         if (!pagebusy)
607                                 break;
608                 }
609
610                 schedule();
611         }
612
613         if (full)
614                 finish_wait(&work->full_waiters, &wait);
615         else
616                 finish_wait(&work->waiters, &wait);
617
618         return ret;
619 }
620
621 /**
622  * ring_buffer_poll_wait - poll on buffer input
623  * @buffer: buffer to wait on
624  * @cpu: the cpu buffer to wait on
625  * @filp: the file descriptor
626  * @poll_table: The poll descriptor
627  *
628  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
629  * as data is added to any of the @buffer's cpu buffers. Otherwise
630  * it will wait for data to be added to a specific cpu buffer.
631  *
632  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
633  * zero otherwise.
634  */
635 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
636                           struct file *filp, poll_table *poll_table)
637 {
638         struct ring_buffer_per_cpu *cpu_buffer;
639         struct rb_irq_work *work;
640
641         if (cpu == RING_BUFFER_ALL_CPUS)
642                 work = &buffer->irq_work;
643         else {
644                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
645                         return -EINVAL;
646
647                 cpu_buffer = buffer->buffers[cpu];
648                 work = &cpu_buffer->irq_work;
649         }
650
651         poll_wait(filp, &work->waiters, poll_table);
652         work->waiters_pending = true;
653         /*
654          * There's a tight race between setting the waiters_pending and
655          * checking if the ring buffer is empty.  Once the waiters_pending bit
656          * is set, the next event will wake the task up, but we can get stuck
657          * if there's only a single event in.
658          *
659          * FIXME: Ideally, we need a memory barrier on the writer side as well,
660          * but adding a memory barrier to all events will cause too much of a
661          * performance hit in the fast path.  We only need a memory barrier when
662          * the buffer goes from empty to having content.  But as this race is
663          * extremely small, and it's not a problem if another event comes in, we
664          * will fix it later.
665          */
666         smp_mb();
667
668         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
669             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
670                 return POLLIN | POLLRDNORM;
671         return 0;
672 }
673
674 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
675 #define RB_WARN_ON(b, cond)                                             \
676         ({                                                              \
677                 int _____ret = unlikely(cond);                          \
678                 if (_____ret) {                                         \
679                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
680                                 struct ring_buffer_per_cpu *__b =       \
681                                         (void *)b;                      \
682                                 atomic_inc(&__b->buffer->record_disabled); \
683                         } else                                          \
684                                 atomic_inc(&b->record_disabled);        \
685                         WARN_ON(1);                                     \
686                 }                                                       \
687                 _____ret;                                               \
688         })
689
690 /* Up this if you want to test the TIME_EXTENTS and normalization */
691 #define DEBUG_SHIFT 0
692
693 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
694 {
695         /* shift to debug/test normalization and TIME_EXTENTS */
696         return buffer->clock() << DEBUG_SHIFT;
697 }
698
699 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
700 {
701         u64 time;
702
703         preempt_disable_notrace();
704         time = rb_time_stamp(buffer);
705         preempt_enable_notrace();
706
707         return time;
708 }
709 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
710
711 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
712                                       int cpu, u64 *ts)
713 {
714         /* Just stupid testing the normalize function and deltas */
715         *ts >>= DEBUG_SHIFT;
716 }
717 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
718
719 /*
720  * Making the ring buffer lockless makes things tricky.
721  * Although writes only happen on the CPU that they are on,
722  * and they only need to worry about interrupts. Reads can
723  * happen on any CPU.
724  *
725  * The reader page is always off the ring buffer, but when the
726  * reader finishes with a page, it needs to swap its page with
727  * a new one from the buffer. The reader needs to take from
728  * the head (writes go to the tail). But if a writer is in overwrite
729  * mode and wraps, it must push the head page forward.
730  *
731  * Here lies the problem.
732  *
733  * The reader must be careful to replace only the head page, and
734  * not another one. As described at the top of the file in the
735  * ASCII art, the reader sets its old page to point to the next
736  * page after head. It then sets the page after head to point to
737  * the old reader page. But if the writer moves the head page
738  * during this operation, the reader could end up with the tail.
739  *
740  * We use cmpxchg to help prevent this race. We also do something
741  * special with the page before head. We set the LSB to 1.
742  *
743  * When the writer must push the page forward, it will clear the
744  * bit that points to the head page, move the head, and then set
745  * the bit that points to the new head page.
746  *
747  * We also don't want an interrupt coming in and moving the head
748  * page on another writer. Thus we use the second LSB to catch
749  * that too. Thus:
750  *
751  * head->list->prev->next        bit 1          bit 0
752  *                              -------        -------
753  * Normal page                     0              0
754  * Points to head page             0              1
755  * New head page                   1              0
756  *
757  * Note we can not trust the prev pointer of the head page, because:
758  *
759  * +----+       +-----+        +-----+
760  * |    |------>|  T  |---X--->|  N  |
761  * |    |<------|     |        |     |
762  * +----+       +-----+        +-----+
763  *   ^                           ^ |
764  *   |          +-----+          | |
765  *   +----------|  R  |----------+ |
766  *              |     |<-----------+
767  *              +-----+
768  *
769  * Key:  ---X-->  HEAD flag set in pointer
770  *         T      Tail page
771  *         R      Reader page
772  *         N      Next page
773  *
774  * (see __rb_reserve_next() to see where this happens)
775  *
776  *  What the above shows is that the reader just swapped out
777  *  the reader page with a page in the buffer, but before it
778  *  could make the new header point back to the new page added
779  *  it was preempted by a writer. The writer moved forward onto
780  *  the new page added by the reader and is about to move forward
781  *  again.
782  *
783  *  You can see, it is legitimate for the previous pointer of
784  *  the head (or any page) not to point back to itself. But only
785  *  temporarially.
786  */
787
788 #define RB_PAGE_NORMAL          0UL
789 #define RB_PAGE_HEAD            1UL
790 #define RB_PAGE_UPDATE          2UL
791
792
793 #define RB_FLAG_MASK            3UL
794
795 /* PAGE_MOVED is not part of the mask */
796 #define RB_PAGE_MOVED           4UL
797
798 /*
799  * rb_list_head - remove any bit
800  */
801 static struct list_head *rb_list_head(struct list_head *list)
802 {
803         unsigned long val = (unsigned long)list;
804
805         return (struct list_head *)(val & ~RB_FLAG_MASK);
806 }
807
808 /*
809  * rb_is_head_page - test if the given page is the head page
810  *
811  * Because the reader may move the head_page pointer, we can
812  * not trust what the head page is (it may be pointing to
813  * the reader page). But if the next page is a header page,
814  * its flags will be non zero.
815  */
816 static inline int
817 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
818                 struct buffer_page *page, struct list_head *list)
819 {
820         unsigned long val;
821
822         val = (unsigned long)list->next;
823
824         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
825                 return RB_PAGE_MOVED;
826
827         return val & RB_FLAG_MASK;
828 }
829
830 /*
831  * rb_is_reader_page
832  *
833  * The unique thing about the reader page, is that, if the
834  * writer is ever on it, the previous pointer never points
835  * back to the reader page.
836  */
837 static bool rb_is_reader_page(struct buffer_page *page)
838 {
839         struct list_head *list = page->list.prev;
840
841         return rb_list_head(list->next) != &page->list;
842 }
843
844 /*
845  * rb_set_list_to_head - set a list_head to be pointing to head.
846  */
847 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
848                                 struct list_head *list)
849 {
850         unsigned long *ptr;
851
852         ptr = (unsigned long *)&list->next;
853         *ptr |= RB_PAGE_HEAD;
854         *ptr &= ~RB_PAGE_UPDATE;
855 }
856
857 /*
858  * rb_head_page_activate - sets up head page
859  */
860 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
861 {
862         struct buffer_page *head;
863
864         head = cpu_buffer->head_page;
865         if (!head)
866                 return;
867
868         /*
869          * Set the previous list pointer to have the HEAD flag.
870          */
871         rb_set_list_to_head(cpu_buffer, head->list.prev);
872 }
873
874 static void rb_list_head_clear(struct list_head *list)
875 {
876         unsigned long *ptr = (unsigned long *)&list->next;
877
878         *ptr &= ~RB_FLAG_MASK;
879 }
880
881 /*
882  * rb_head_page_dactivate - clears head page ptr (for free list)
883  */
884 static void
885 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
886 {
887         struct list_head *hd;
888
889         /* Go through the whole list and clear any pointers found. */
890         rb_list_head_clear(cpu_buffer->pages);
891
892         list_for_each(hd, cpu_buffer->pages)
893                 rb_list_head_clear(hd);
894 }
895
896 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
897                             struct buffer_page *head,
898                             struct buffer_page *prev,
899                             int old_flag, int new_flag)
900 {
901         struct list_head *list;
902         unsigned long val = (unsigned long)&head->list;
903         unsigned long ret;
904
905         list = &prev->list;
906
907         val &= ~RB_FLAG_MASK;
908
909         ret = cmpxchg((unsigned long *)&list->next,
910                       val | old_flag, val | new_flag);
911
912         /* check if the reader took the page */
913         if ((ret & ~RB_FLAG_MASK) != val)
914                 return RB_PAGE_MOVED;
915
916         return ret & RB_FLAG_MASK;
917 }
918
919 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
920                                    struct buffer_page *head,
921                                    struct buffer_page *prev,
922                                    int old_flag)
923 {
924         return rb_head_page_set(cpu_buffer, head, prev,
925                                 old_flag, RB_PAGE_UPDATE);
926 }
927
928 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
929                                  struct buffer_page *head,
930                                  struct buffer_page *prev,
931                                  int old_flag)
932 {
933         return rb_head_page_set(cpu_buffer, head, prev,
934                                 old_flag, RB_PAGE_HEAD);
935 }
936
937 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
938                                    struct buffer_page *head,
939                                    struct buffer_page *prev,
940                                    int old_flag)
941 {
942         return rb_head_page_set(cpu_buffer, head, prev,
943                                 old_flag, RB_PAGE_NORMAL);
944 }
945
946 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
947                                struct buffer_page **bpage)
948 {
949         struct list_head *p = rb_list_head((*bpage)->list.next);
950
951         *bpage = list_entry(p, struct buffer_page, list);
952 }
953
954 static struct buffer_page *
955 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
956 {
957         struct buffer_page *head;
958         struct buffer_page *page;
959         struct list_head *list;
960         int i;
961
962         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
963                 return NULL;
964
965         /* sanity check */
966         list = cpu_buffer->pages;
967         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
968                 return NULL;
969
970         page = head = cpu_buffer->head_page;
971         /*
972          * It is possible that the writer moves the header behind
973          * where we started, and we miss in one loop.
974          * A second loop should grab the header, but we'll do
975          * three loops just because I'm paranoid.
976          */
977         for (i = 0; i < 3; i++) {
978                 do {
979                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
980                                 cpu_buffer->head_page = page;
981                                 return page;
982                         }
983                         rb_inc_page(cpu_buffer, &page);
984                 } while (page != head);
985         }
986
987         RB_WARN_ON(cpu_buffer, 1);
988
989         return NULL;
990 }
991
992 static int rb_head_page_replace(struct buffer_page *old,
993                                 struct buffer_page *new)
994 {
995         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
996         unsigned long val;
997         unsigned long ret;
998
999         val = *ptr & ~RB_FLAG_MASK;
1000         val |= RB_PAGE_HEAD;
1001
1002         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1003
1004         return ret == val;
1005 }
1006
1007 /*
1008  * rb_tail_page_update - move the tail page forward
1009  */
1010 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1011                                struct buffer_page *tail_page,
1012                                struct buffer_page *next_page)
1013 {
1014         unsigned long old_entries;
1015         unsigned long old_write;
1016
1017         /*
1018          * The tail page now needs to be moved forward.
1019          *
1020          * We need to reset the tail page, but without messing
1021          * with possible erasing of data brought in by interrupts
1022          * that have moved the tail page and are currently on it.
1023          *
1024          * We add a counter to the write field to denote this.
1025          */
1026         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1027         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1028
1029         /*
1030          * Just make sure we have seen our old_write and synchronize
1031          * with any interrupts that come in.
1032          */
1033         barrier();
1034
1035         /*
1036          * If the tail page is still the same as what we think
1037          * it is, then it is up to us to update the tail
1038          * pointer.
1039          */
1040         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1041                 /* Zero the write counter */
1042                 unsigned long val = old_write & ~RB_WRITE_MASK;
1043                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1044
1045                 /*
1046                  * This will only succeed if an interrupt did
1047                  * not come in and change it. In which case, we
1048                  * do not want to modify it.
1049                  *
1050                  * We add (void) to let the compiler know that we do not care
1051                  * about the return value of these functions. We use the
1052                  * cmpxchg to only update if an interrupt did not already
1053                  * do it for us. If the cmpxchg fails, we don't care.
1054                  */
1055                 (void)local_cmpxchg(&next_page->write, old_write, val);
1056                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1057
1058                 /*
1059                  * No need to worry about races with clearing out the commit.
1060                  * it only can increment when a commit takes place. But that
1061                  * only happens in the outer most nested commit.
1062                  */
1063                 local_set(&next_page->page->commit, 0);
1064
1065                 /* Again, either we update tail_page or an interrupt does */
1066                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1067         }
1068 }
1069
1070 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1071                           struct buffer_page *bpage)
1072 {
1073         unsigned long val = (unsigned long)bpage;
1074
1075         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1076                 return 1;
1077
1078         return 0;
1079 }
1080
1081 /**
1082  * rb_check_list - make sure a pointer to a list has the last bits zero
1083  */
1084 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1085                          struct list_head *list)
1086 {
1087         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1088                 return 1;
1089         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1090                 return 1;
1091         return 0;
1092 }
1093
1094 /**
1095  * rb_check_pages - integrity check of buffer pages
1096  * @cpu_buffer: CPU buffer with pages to test
1097  *
1098  * As a safety measure we check to make sure the data pages have not
1099  * been corrupted.
1100  */
1101 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1102 {
1103         struct list_head *head = cpu_buffer->pages;
1104         struct buffer_page *bpage, *tmp;
1105
1106         /* Reset the head page if it exists */
1107         if (cpu_buffer->head_page)
1108                 rb_set_head_page(cpu_buffer);
1109
1110         rb_head_page_deactivate(cpu_buffer);
1111
1112         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1113                 return -1;
1114         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1115                 return -1;
1116
1117         if (rb_check_list(cpu_buffer, head))
1118                 return -1;
1119
1120         list_for_each_entry_safe(bpage, tmp, head, list) {
1121                 if (RB_WARN_ON(cpu_buffer,
1122                                bpage->list.next->prev != &bpage->list))
1123                         return -1;
1124                 if (RB_WARN_ON(cpu_buffer,
1125                                bpage->list.prev->next != &bpage->list))
1126                         return -1;
1127                 if (rb_check_list(cpu_buffer, &bpage->list))
1128                         return -1;
1129         }
1130
1131         rb_head_page_activate(cpu_buffer);
1132
1133         return 0;
1134 }
1135
1136 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1137 {
1138         struct buffer_page *bpage, *tmp;
1139         long i;
1140
1141         /* Check if the available memory is there first */
1142         i = si_mem_available();
1143         if (i < nr_pages)
1144                 return -ENOMEM;
1145
1146         for (i = 0; i < nr_pages; i++) {
1147                 struct page *page;
1148                 /*
1149                  * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1150                  * gracefully without invoking oom-killer and the system is not
1151                  * destabilized.
1152                  */
1153                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1154                                     GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1155                                     cpu_to_node(cpu));
1156                 if (!bpage)
1157                         goto free_pages;
1158
1159                 list_add(&bpage->list, pages);
1160
1161                 page = alloc_pages_node(cpu_to_node(cpu),
1162                                         GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1163                 if (!page)
1164                         goto free_pages;
1165                 bpage->page = page_address(page);
1166                 rb_init_page(bpage->page);
1167         }
1168
1169         return 0;
1170
1171 free_pages:
1172         list_for_each_entry_safe(bpage, tmp, pages, list) {
1173                 list_del_init(&bpage->list);
1174                 free_buffer_page(bpage);
1175         }
1176
1177         return -ENOMEM;
1178 }
1179
1180 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1181                              unsigned long nr_pages)
1182 {
1183         LIST_HEAD(pages);
1184
1185         WARN_ON(!nr_pages);
1186
1187         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1188                 return -ENOMEM;
1189
1190         /*
1191          * The ring buffer page list is a circular list that does not
1192          * start and end with a list head. All page list items point to
1193          * other pages.
1194          */
1195         cpu_buffer->pages = pages.next;
1196         list_del(&pages);
1197
1198         cpu_buffer->nr_pages = nr_pages;
1199
1200         rb_check_pages(cpu_buffer);
1201
1202         return 0;
1203 }
1204
1205 static struct ring_buffer_per_cpu *
1206 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1207 {
1208         struct ring_buffer_per_cpu *cpu_buffer;
1209         struct buffer_page *bpage;
1210         struct page *page;
1211         int ret;
1212
1213         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1214                                   GFP_KERNEL, cpu_to_node(cpu));
1215         if (!cpu_buffer)
1216                 return NULL;
1217
1218         cpu_buffer->cpu = cpu;
1219         cpu_buffer->buffer = buffer;
1220         raw_spin_lock_init(&cpu_buffer->reader_lock);
1221         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1222         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1223         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1224         init_completion(&cpu_buffer->update_done);
1225         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1226         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1227         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1228
1229         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1230                             GFP_KERNEL, cpu_to_node(cpu));
1231         if (!bpage)
1232                 goto fail_free_buffer;
1233
1234         rb_check_bpage(cpu_buffer, bpage);
1235
1236         cpu_buffer->reader_page = bpage;
1237         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1238         if (!page)
1239                 goto fail_free_reader;
1240         bpage->page = page_address(page);
1241         rb_init_page(bpage->page);
1242
1243         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1244         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1245
1246         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1247         if (ret < 0)
1248                 goto fail_free_reader;
1249
1250         cpu_buffer->head_page
1251                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1252         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1253
1254         rb_head_page_activate(cpu_buffer);
1255
1256         return cpu_buffer;
1257
1258  fail_free_reader:
1259         free_buffer_page(cpu_buffer->reader_page);
1260
1261  fail_free_buffer:
1262         kfree(cpu_buffer);
1263         return NULL;
1264 }
1265
1266 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1267 {
1268         struct list_head *head = cpu_buffer->pages;
1269         struct buffer_page *bpage, *tmp;
1270
1271         free_buffer_page(cpu_buffer->reader_page);
1272
1273         rb_head_page_deactivate(cpu_buffer);
1274
1275         if (head) {
1276                 list_for_each_entry_safe(bpage, tmp, head, list) {
1277                         list_del_init(&bpage->list);
1278                         free_buffer_page(bpage);
1279                 }
1280                 bpage = list_entry(head, struct buffer_page, list);
1281                 free_buffer_page(bpage);
1282         }
1283
1284         kfree(cpu_buffer);
1285 }
1286
1287 /**
1288  * __ring_buffer_alloc - allocate a new ring_buffer
1289  * @size: the size in bytes per cpu that is needed.
1290  * @flags: attributes to set for the ring buffer.
1291  *
1292  * Currently the only flag that is available is the RB_FL_OVERWRITE
1293  * flag. This flag means that the buffer will overwrite old data
1294  * when the buffer wraps. If this flag is not set, the buffer will
1295  * drop data when the tail hits the head.
1296  */
1297 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1298                                         struct lock_class_key *key)
1299 {
1300         struct ring_buffer *buffer;
1301         long nr_pages;
1302         int bsize;
1303         int cpu;
1304         int ret;
1305
1306         /* keep it in its own cache line */
1307         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1308                          GFP_KERNEL);
1309         if (!buffer)
1310                 return NULL;
1311
1312         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1313                 goto fail_free_buffer;
1314
1315         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1316         buffer->flags = flags;
1317         buffer->clock = trace_clock_local;
1318         buffer->reader_lock_key = key;
1319
1320         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1321         init_waitqueue_head(&buffer->irq_work.waiters);
1322
1323         /* need at least two pages */
1324         if (nr_pages < 2)
1325                 nr_pages = 2;
1326
1327         buffer->cpus = nr_cpu_ids;
1328
1329         bsize = sizeof(void *) * nr_cpu_ids;
1330         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1331                                   GFP_KERNEL);
1332         if (!buffer->buffers)
1333                 goto fail_free_cpumask;
1334
1335         cpu = raw_smp_processor_id();
1336         cpumask_set_cpu(cpu, buffer->cpumask);
1337         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1338         if (!buffer->buffers[cpu])
1339                 goto fail_free_buffers;
1340
1341         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1342         if (ret < 0)
1343                 goto fail_free_buffers;
1344
1345         mutex_init(&buffer->mutex);
1346
1347         return buffer;
1348
1349  fail_free_buffers:
1350         for_each_buffer_cpu(buffer, cpu) {
1351                 if (buffer->buffers[cpu])
1352                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1353         }
1354         kfree(buffer->buffers);
1355
1356  fail_free_cpumask:
1357         free_cpumask_var(buffer->cpumask);
1358
1359  fail_free_buffer:
1360         kfree(buffer);
1361         return NULL;
1362 }
1363 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1364
1365 /**
1366  * ring_buffer_free - free a ring buffer.
1367  * @buffer: the buffer to free.
1368  */
1369 void
1370 ring_buffer_free(struct ring_buffer *buffer)
1371 {
1372         int cpu;
1373
1374         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1375
1376         for_each_buffer_cpu(buffer, cpu)
1377                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1378
1379         kfree(buffer->buffers);
1380         free_cpumask_var(buffer->cpumask);
1381
1382         kfree(buffer);
1383 }
1384 EXPORT_SYMBOL_GPL(ring_buffer_free);
1385
1386 void ring_buffer_set_clock(struct ring_buffer *buffer,
1387                            u64 (*clock)(void))
1388 {
1389         buffer->clock = clock;
1390 }
1391
1392 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1393
1394 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1395 {
1396         return local_read(&bpage->entries) & RB_WRITE_MASK;
1397 }
1398
1399 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1400 {
1401         return local_read(&bpage->write) & RB_WRITE_MASK;
1402 }
1403
1404 static int
1405 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1406 {
1407         struct list_head *tail_page, *to_remove, *next_page;
1408         struct buffer_page *to_remove_page, *tmp_iter_page;
1409         struct buffer_page *last_page, *first_page;
1410         unsigned long nr_removed;
1411         unsigned long head_bit;
1412         int page_entries;
1413
1414         head_bit = 0;
1415
1416         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1417         atomic_inc(&cpu_buffer->record_disabled);
1418         /*
1419          * We don't race with the readers since we have acquired the reader
1420          * lock. We also don't race with writers after disabling recording.
1421          * This makes it easy to figure out the first and the last page to be
1422          * removed from the list. We unlink all the pages in between including
1423          * the first and last pages. This is done in a busy loop so that we
1424          * lose the least number of traces.
1425          * The pages are freed after we restart recording and unlock readers.
1426          */
1427         tail_page = &cpu_buffer->tail_page->list;
1428
1429         /*
1430          * tail page might be on reader page, we remove the next page
1431          * from the ring buffer
1432          */
1433         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1434                 tail_page = rb_list_head(tail_page->next);
1435         to_remove = tail_page;
1436
1437         /* start of pages to remove */
1438         first_page = list_entry(rb_list_head(to_remove->next),
1439                                 struct buffer_page, list);
1440
1441         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1442                 to_remove = rb_list_head(to_remove)->next;
1443                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1444         }
1445
1446         next_page = rb_list_head(to_remove)->next;
1447
1448         /*
1449          * Now we remove all pages between tail_page and next_page.
1450          * Make sure that we have head_bit value preserved for the
1451          * next page
1452          */
1453         tail_page->next = (struct list_head *)((unsigned long)next_page |
1454                                                 head_bit);
1455         next_page = rb_list_head(next_page);
1456         next_page->prev = tail_page;
1457
1458         /* make sure pages points to a valid page in the ring buffer */
1459         cpu_buffer->pages = next_page;
1460
1461         /* update head page */
1462         if (head_bit)
1463                 cpu_buffer->head_page = list_entry(next_page,
1464                                                 struct buffer_page, list);
1465
1466         /*
1467          * change read pointer to make sure any read iterators reset
1468          * themselves
1469          */
1470         cpu_buffer->read = 0;
1471
1472         /* pages are removed, resume tracing and then free the pages */
1473         atomic_dec(&cpu_buffer->record_disabled);
1474         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1475
1476         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1477
1478         /* last buffer page to remove */
1479         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1480                                 list);
1481         tmp_iter_page = first_page;
1482
1483         do {
1484                 cond_resched();
1485
1486                 to_remove_page = tmp_iter_page;
1487                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1488
1489                 /* update the counters */
1490                 page_entries = rb_page_entries(to_remove_page);
1491                 if (page_entries) {
1492                         /*
1493                          * If something was added to this page, it was full
1494                          * since it is not the tail page. So we deduct the
1495                          * bytes consumed in ring buffer from here.
1496                          * Increment overrun to account for the lost events.
1497                          */
1498                         local_add(page_entries, &cpu_buffer->overrun);
1499                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1500                 }
1501
1502                 /*
1503                  * We have already removed references to this list item, just
1504                  * free up the buffer_page and its page
1505                  */
1506                 free_buffer_page(to_remove_page);
1507                 nr_removed--;
1508
1509         } while (to_remove_page != last_page);
1510
1511         RB_WARN_ON(cpu_buffer, nr_removed);
1512
1513         return nr_removed == 0;
1514 }
1515
1516 static int
1517 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1518 {
1519         struct list_head *pages = &cpu_buffer->new_pages;
1520         int retries, success;
1521
1522         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1523         /*
1524          * We are holding the reader lock, so the reader page won't be swapped
1525          * in the ring buffer. Now we are racing with the writer trying to
1526          * move head page and the tail page.
1527          * We are going to adapt the reader page update process where:
1528          * 1. We first splice the start and end of list of new pages between
1529          *    the head page and its previous page.
1530          * 2. We cmpxchg the prev_page->next to point from head page to the
1531          *    start of new pages list.
1532          * 3. Finally, we update the head->prev to the end of new list.
1533          *
1534          * We will try this process 10 times, to make sure that we don't keep
1535          * spinning.
1536          */
1537         retries = 10;
1538         success = 0;
1539         while (retries--) {
1540                 struct list_head *head_page, *prev_page, *r;
1541                 struct list_head *last_page, *first_page;
1542                 struct list_head *head_page_with_bit;
1543
1544                 head_page = &rb_set_head_page(cpu_buffer)->list;
1545                 if (!head_page)
1546                         break;
1547                 prev_page = head_page->prev;
1548
1549                 first_page = pages->next;
1550                 last_page  = pages->prev;
1551
1552                 head_page_with_bit = (struct list_head *)
1553                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1554
1555                 last_page->next = head_page_with_bit;
1556                 first_page->prev = prev_page;
1557
1558                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1559
1560                 if (r == head_page_with_bit) {
1561                         /*
1562                          * yay, we replaced the page pointer to our new list,
1563                          * now, we just have to update to head page's prev
1564                          * pointer to point to end of list
1565                          */
1566                         head_page->prev = last_page;
1567                         success = 1;
1568                         break;
1569                 }
1570         }
1571
1572         if (success)
1573                 INIT_LIST_HEAD(pages);
1574         /*
1575          * If we weren't successful in adding in new pages, warn and stop
1576          * tracing
1577          */
1578         RB_WARN_ON(cpu_buffer, !success);
1579         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1580
1581         /* free pages if they weren't inserted */
1582         if (!success) {
1583                 struct buffer_page *bpage, *tmp;
1584                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1585                                          list) {
1586                         list_del_init(&bpage->list);
1587                         free_buffer_page(bpage);
1588                 }
1589         }
1590         return success;
1591 }
1592
1593 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1594 {
1595         int success;
1596
1597         if (cpu_buffer->nr_pages_to_update > 0)
1598                 success = rb_insert_pages(cpu_buffer);
1599         else
1600                 success = rb_remove_pages(cpu_buffer,
1601                                         -cpu_buffer->nr_pages_to_update);
1602
1603         if (success)
1604                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1605 }
1606
1607 static void update_pages_handler(struct work_struct *work)
1608 {
1609         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1610                         struct ring_buffer_per_cpu, update_pages_work);
1611         rb_update_pages(cpu_buffer);
1612         complete(&cpu_buffer->update_done);
1613 }
1614
1615 /**
1616  * ring_buffer_resize - resize the ring buffer
1617  * @buffer: the buffer to resize.
1618  * @size: the new size.
1619  * @cpu_id: the cpu buffer to resize
1620  *
1621  * Minimum size is 2 * BUF_PAGE_SIZE.
1622  *
1623  * Returns 0 on success and < 0 on failure.
1624  */
1625 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1626                         int cpu_id)
1627 {
1628         struct ring_buffer_per_cpu *cpu_buffer;
1629         unsigned long nr_pages;
1630         int cpu, err;
1631
1632         /*
1633          * Always succeed at resizing a non-existent buffer:
1634          */
1635         if (!buffer)
1636                 return 0;
1637
1638         /* Make sure the requested buffer exists */
1639         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1640             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1641                 return 0;
1642
1643         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1644
1645         /* we need a minimum of two pages */
1646         if (nr_pages < 2)
1647                 nr_pages = 2;
1648
1649         size = nr_pages * BUF_PAGE_SIZE;
1650
1651         /*
1652          * Don't succeed if resizing is disabled, as a reader might be
1653          * manipulating the ring buffer and is expecting a sane state while
1654          * this is true.
1655          */
1656         if (atomic_read(&buffer->resize_disabled))
1657                 return -EBUSY;
1658
1659         /* prevent another thread from changing buffer sizes */
1660         mutex_lock(&buffer->mutex);
1661
1662         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1663                 /* calculate the pages to update */
1664                 for_each_buffer_cpu(buffer, cpu) {
1665                         cpu_buffer = buffer->buffers[cpu];
1666
1667                         cpu_buffer->nr_pages_to_update = nr_pages -
1668                                                         cpu_buffer->nr_pages;
1669                         /*
1670                          * nothing more to do for removing pages or no update
1671                          */
1672                         if (cpu_buffer->nr_pages_to_update <= 0)
1673                                 continue;
1674                         /*
1675                          * to add pages, make sure all new pages can be
1676                          * allocated without receiving ENOMEM
1677                          */
1678                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1679                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1680                                                 &cpu_buffer->new_pages, cpu)) {
1681                                 /* not enough memory for new pages */
1682                                 err = -ENOMEM;
1683                                 goto out_err;
1684                         }
1685                 }
1686
1687                 get_online_cpus();
1688                 /*
1689                  * Fire off all the required work handlers
1690                  * We can't schedule on offline CPUs, but it's not necessary
1691                  * since we can change their buffer sizes without any race.
1692                  */
1693                 for_each_buffer_cpu(buffer, cpu) {
1694                         cpu_buffer = buffer->buffers[cpu];
1695                         if (!cpu_buffer->nr_pages_to_update)
1696                                 continue;
1697
1698                         /* Can't run something on an offline CPU. */
1699                         if (!cpu_online(cpu)) {
1700                                 rb_update_pages(cpu_buffer);
1701                                 cpu_buffer->nr_pages_to_update = 0;
1702                         } else {
1703                                 schedule_work_on(cpu,
1704                                                 &cpu_buffer->update_pages_work);
1705                         }
1706                 }
1707
1708                 /* wait for all the updates to complete */
1709                 for_each_buffer_cpu(buffer, cpu) {
1710                         cpu_buffer = buffer->buffers[cpu];
1711                         if (!cpu_buffer->nr_pages_to_update)
1712                                 continue;
1713
1714                         if (cpu_online(cpu))
1715                                 wait_for_completion(&cpu_buffer->update_done);
1716                         cpu_buffer->nr_pages_to_update = 0;
1717                 }
1718
1719                 put_online_cpus();
1720         } else {
1721                 /* Make sure this CPU has been intitialized */
1722                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1723                         goto out;
1724
1725                 cpu_buffer = buffer->buffers[cpu_id];
1726
1727                 if (nr_pages == cpu_buffer->nr_pages)
1728                         goto out;
1729
1730                 cpu_buffer->nr_pages_to_update = nr_pages -
1731                                                 cpu_buffer->nr_pages;
1732
1733                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1734                 if (cpu_buffer->nr_pages_to_update > 0 &&
1735                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1736                                             &cpu_buffer->new_pages, cpu_id)) {
1737                         err = -ENOMEM;
1738                         goto out_err;
1739                 }
1740
1741                 get_online_cpus();
1742
1743                 /* Can't run something on an offline CPU. */
1744                 if (!cpu_online(cpu_id))
1745                         rb_update_pages(cpu_buffer);
1746                 else {
1747                         schedule_work_on(cpu_id,
1748                                          &cpu_buffer->update_pages_work);
1749                         wait_for_completion(&cpu_buffer->update_done);
1750                 }
1751
1752                 cpu_buffer->nr_pages_to_update = 0;
1753                 put_online_cpus();
1754         }
1755
1756  out:
1757         /*
1758          * The ring buffer resize can happen with the ring buffer
1759          * enabled, so that the update disturbs the tracing as little
1760          * as possible. But if the buffer is disabled, we do not need
1761          * to worry about that, and we can take the time to verify
1762          * that the buffer is not corrupt.
1763          */
1764         if (atomic_read(&buffer->record_disabled)) {
1765                 atomic_inc(&buffer->record_disabled);
1766                 /*
1767                  * Even though the buffer was disabled, we must make sure
1768                  * that it is truly disabled before calling rb_check_pages.
1769                  * There could have been a race between checking
1770                  * record_disable and incrementing it.
1771                  */
1772                 synchronize_sched();
1773                 for_each_buffer_cpu(buffer, cpu) {
1774                         cpu_buffer = buffer->buffers[cpu];
1775                         rb_check_pages(cpu_buffer);
1776                 }
1777                 atomic_dec(&buffer->record_disabled);
1778         }
1779
1780         mutex_unlock(&buffer->mutex);
1781         return 0;
1782
1783  out_err:
1784         for_each_buffer_cpu(buffer, cpu) {
1785                 struct buffer_page *bpage, *tmp;
1786
1787                 cpu_buffer = buffer->buffers[cpu];
1788                 cpu_buffer->nr_pages_to_update = 0;
1789
1790                 if (list_empty(&cpu_buffer->new_pages))
1791                         continue;
1792
1793                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1794                                         list) {
1795                         list_del_init(&bpage->list);
1796                         free_buffer_page(bpage);
1797                 }
1798         }
1799         mutex_unlock(&buffer->mutex);
1800         return err;
1801 }
1802 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1803
1804 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1805 {
1806         mutex_lock(&buffer->mutex);
1807         if (val)
1808                 buffer->flags |= RB_FL_OVERWRITE;
1809         else
1810                 buffer->flags &= ~RB_FL_OVERWRITE;
1811         mutex_unlock(&buffer->mutex);
1812 }
1813 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1814
1815 static __always_inline void *
1816 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1817 {
1818         return bpage->data + index;
1819 }
1820
1821 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1822 {
1823         return bpage->page->data + index;
1824 }
1825
1826 static __always_inline struct ring_buffer_event *
1827 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1828 {
1829         return __rb_page_index(cpu_buffer->reader_page,
1830                                cpu_buffer->reader_page->read);
1831 }
1832
1833 static __always_inline struct ring_buffer_event *
1834 rb_iter_head_event(struct ring_buffer_iter *iter)
1835 {
1836         return __rb_page_index(iter->head_page, iter->head);
1837 }
1838
1839 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1840 {
1841         return local_read(&bpage->page->commit);
1842 }
1843
1844 /* Size is determined by what has been committed */
1845 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1846 {
1847         return rb_page_commit(bpage);
1848 }
1849
1850 static __always_inline unsigned
1851 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1852 {
1853         return rb_page_commit(cpu_buffer->commit_page);
1854 }
1855
1856 static __always_inline unsigned
1857 rb_event_index(struct ring_buffer_event *event)
1858 {
1859         unsigned long addr = (unsigned long)event;
1860
1861         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1862 }
1863
1864 static void rb_inc_iter(struct ring_buffer_iter *iter)
1865 {
1866         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1867
1868         /*
1869          * The iterator could be on the reader page (it starts there).
1870          * But the head could have moved, since the reader was
1871          * found. Check for this case and assign the iterator
1872          * to the head page instead of next.
1873          */
1874         if (iter->head_page == cpu_buffer->reader_page)
1875                 iter->head_page = rb_set_head_page(cpu_buffer);
1876         else
1877                 rb_inc_page(cpu_buffer, &iter->head_page);
1878
1879         iter->read_stamp = iter->head_page->page->time_stamp;
1880         iter->head = 0;
1881 }
1882
1883 /*
1884  * rb_handle_head_page - writer hit the head page
1885  *
1886  * Returns: +1 to retry page
1887  *           0 to continue
1888  *          -1 on error
1889  */
1890 static int
1891 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1892                     struct buffer_page *tail_page,
1893                     struct buffer_page *next_page)
1894 {
1895         struct buffer_page *new_head;
1896         int entries;
1897         int type;
1898         int ret;
1899
1900         entries = rb_page_entries(next_page);
1901
1902         /*
1903          * The hard part is here. We need to move the head
1904          * forward, and protect against both readers on
1905          * other CPUs and writers coming in via interrupts.
1906          */
1907         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1908                                        RB_PAGE_HEAD);
1909
1910         /*
1911          * type can be one of four:
1912          *  NORMAL - an interrupt already moved it for us
1913          *  HEAD   - we are the first to get here.
1914          *  UPDATE - we are the interrupt interrupting
1915          *           a current move.
1916          *  MOVED  - a reader on another CPU moved the next
1917          *           pointer to its reader page. Give up
1918          *           and try again.
1919          */
1920
1921         switch (type) {
1922         case RB_PAGE_HEAD:
1923                 /*
1924                  * We changed the head to UPDATE, thus
1925                  * it is our responsibility to update
1926                  * the counters.
1927                  */
1928                 local_add(entries, &cpu_buffer->overrun);
1929                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1930
1931                 /*
1932                  * The entries will be zeroed out when we move the
1933                  * tail page.
1934                  */
1935
1936                 /* still more to do */
1937                 break;
1938
1939         case RB_PAGE_UPDATE:
1940                 /*
1941                  * This is an interrupt that interrupt the
1942                  * previous update. Still more to do.
1943                  */
1944                 break;
1945         case RB_PAGE_NORMAL:
1946                 /*
1947                  * An interrupt came in before the update
1948                  * and processed this for us.
1949                  * Nothing left to do.
1950                  */
1951                 return 1;
1952         case RB_PAGE_MOVED:
1953                 /*
1954                  * The reader is on another CPU and just did
1955                  * a swap with our next_page.
1956                  * Try again.
1957                  */
1958                 return 1;
1959         default:
1960                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1961                 return -1;
1962         }
1963
1964         /*
1965          * Now that we are here, the old head pointer is
1966          * set to UPDATE. This will keep the reader from
1967          * swapping the head page with the reader page.
1968          * The reader (on another CPU) will spin till
1969          * we are finished.
1970          *
1971          * We just need to protect against interrupts
1972          * doing the job. We will set the next pointer
1973          * to HEAD. After that, we set the old pointer
1974          * to NORMAL, but only if it was HEAD before.
1975          * otherwise we are an interrupt, and only
1976          * want the outer most commit to reset it.
1977          */
1978         new_head = next_page;
1979         rb_inc_page(cpu_buffer, &new_head);
1980
1981         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1982                                     RB_PAGE_NORMAL);
1983
1984         /*
1985          * Valid returns are:
1986          *  HEAD   - an interrupt came in and already set it.
1987          *  NORMAL - One of two things:
1988          *            1) We really set it.
1989          *            2) A bunch of interrupts came in and moved
1990          *               the page forward again.
1991          */
1992         switch (ret) {
1993         case RB_PAGE_HEAD:
1994         case RB_PAGE_NORMAL:
1995                 /* OK */
1996                 break;
1997         default:
1998                 RB_WARN_ON(cpu_buffer, 1);
1999                 return -1;
2000         }
2001
2002         /*
2003          * It is possible that an interrupt came in,
2004          * set the head up, then more interrupts came in
2005          * and moved it again. When we get back here,
2006          * the page would have been set to NORMAL but we
2007          * just set it back to HEAD.
2008          *
2009          * How do you detect this? Well, if that happened
2010          * the tail page would have moved.
2011          */
2012         if (ret == RB_PAGE_NORMAL) {
2013                 struct buffer_page *buffer_tail_page;
2014
2015                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2016                 /*
2017                  * If the tail had moved passed next, then we need
2018                  * to reset the pointer.
2019                  */
2020                 if (buffer_tail_page != tail_page &&
2021                     buffer_tail_page != next_page)
2022                         rb_head_page_set_normal(cpu_buffer, new_head,
2023                                                 next_page,
2024                                                 RB_PAGE_HEAD);
2025         }
2026
2027         /*
2028          * If this was the outer most commit (the one that
2029          * changed the original pointer from HEAD to UPDATE),
2030          * then it is up to us to reset it to NORMAL.
2031          */
2032         if (type == RB_PAGE_HEAD) {
2033                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2034                                               tail_page,
2035                                               RB_PAGE_UPDATE);
2036                 if (RB_WARN_ON(cpu_buffer,
2037                                ret != RB_PAGE_UPDATE))
2038                         return -1;
2039         }
2040
2041         return 0;
2042 }
2043
2044 static inline void
2045 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2046               unsigned long tail, struct rb_event_info *info)
2047 {
2048         struct buffer_page *tail_page = info->tail_page;
2049         struct ring_buffer_event *event;
2050         unsigned long length = info->length;
2051
2052         /*
2053          * Only the event that crossed the page boundary
2054          * must fill the old tail_page with padding.
2055          */
2056         if (tail >= BUF_PAGE_SIZE) {
2057                 /*
2058                  * If the page was filled, then we still need
2059                  * to update the real_end. Reset it to zero
2060                  * and the reader will ignore it.
2061                  */
2062                 if (tail == BUF_PAGE_SIZE)
2063                         tail_page->real_end = 0;
2064
2065                 local_sub(length, &tail_page->write);
2066                 return;
2067         }
2068
2069         event = __rb_page_index(tail_page, tail);
2070
2071         /* account for padding bytes */
2072         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2073
2074         /*
2075          * Save the original length to the meta data.
2076          * This will be used by the reader to add lost event
2077          * counter.
2078          */
2079         tail_page->real_end = tail;
2080
2081         /*
2082          * If this event is bigger than the minimum size, then
2083          * we need to be careful that we don't subtract the
2084          * write counter enough to allow another writer to slip
2085          * in on this page.
2086          * We put in a discarded commit instead, to make sure
2087          * that this space is not used again.
2088          *
2089          * If we are less than the minimum size, we don't need to
2090          * worry about it.
2091          */
2092         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2093                 /* No room for any events */
2094
2095                 /* Mark the rest of the page with padding */
2096                 rb_event_set_padding(event);
2097
2098                 /* Set the write back to the previous setting */
2099                 local_sub(length, &tail_page->write);
2100                 return;
2101         }
2102
2103         /* Put in a discarded event */
2104         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2105         event->type_len = RINGBUF_TYPE_PADDING;
2106         /* time delta must be non zero */
2107         event->time_delta = 1;
2108
2109         /* Set write to end of buffer */
2110         length = (tail + length) - BUF_PAGE_SIZE;
2111         local_sub(length, &tail_page->write);
2112 }
2113
2114 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2115
2116 /*
2117  * This is the slow path, force gcc not to inline it.
2118  */
2119 static noinline struct ring_buffer_event *
2120 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2121              unsigned long tail, struct rb_event_info *info)
2122 {
2123         struct buffer_page *tail_page = info->tail_page;
2124         struct buffer_page *commit_page = cpu_buffer->commit_page;
2125         struct ring_buffer *buffer = cpu_buffer->buffer;
2126         struct buffer_page *next_page;
2127         int ret;
2128
2129         next_page = tail_page;
2130
2131         rb_inc_page(cpu_buffer, &next_page);
2132
2133         /*
2134          * If for some reason, we had an interrupt storm that made
2135          * it all the way around the buffer, bail, and warn
2136          * about it.
2137          */
2138         if (unlikely(next_page == commit_page)) {
2139                 local_inc(&cpu_buffer->commit_overrun);
2140                 goto out_reset;
2141         }
2142
2143         /*
2144          * This is where the fun begins!
2145          *
2146          * We are fighting against races between a reader that
2147          * could be on another CPU trying to swap its reader
2148          * page with the buffer head.
2149          *
2150          * We are also fighting against interrupts coming in and
2151          * moving the head or tail on us as well.
2152          *
2153          * If the next page is the head page then we have filled
2154          * the buffer, unless the commit page is still on the
2155          * reader page.
2156          */
2157         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2158
2159                 /*
2160                  * If the commit is not on the reader page, then
2161                  * move the header page.
2162                  */
2163                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2164                         /*
2165                          * If we are not in overwrite mode,
2166                          * this is easy, just stop here.
2167                          */
2168                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2169                                 local_inc(&cpu_buffer->dropped_events);
2170                                 goto out_reset;
2171                         }
2172
2173                         ret = rb_handle_head_page(cpu_buffer,
2174                                                   tail_page,
2175                                                   next_page);
2176                         if (ret < 0)
2177                                 goto out_reset;
2178                         if (ret)
2179                                 goto out_again;
2180                 } else {
2181                         /*
2182                          * We need to be careful here too. The
2183                          * commit page could still be on the reader
2184                          * page. We could have a small buffer, and
2185                          * have filled up the buffer with events
2186                          * from interrupts and such, and wrapped.
2187                          *
2188                          * Note, if the tail page is also the on the
2189                          * reader_page, we let it move out.
2190                          */
2191                         if (unlikely((cpu_buffer->commit_page !=
2192                                       cpu_buffer->tail_page) &&
2193                                      (cpu_buffer->commit_page ==
2194                                       cpu_buffer->reader_page))) {
2195                                 local_inc(&cpu_buffer->commit_overrun);
2196                                 goto out_reset;
2197                         }
2198                 }
2199         }
2200
2201         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2202
2203  out_again:
2204
2205         rb_reset_tail(cpu_buffer, tail, info);
2206
2207         /* Commit what we have for now. */
2208         rb_end_commit(cpu_buffer);
2209         /* rb_end_commit() decs committing */
2210         local_inc(&cpu_buffer->committing);
2211
2212         /* fail and let the caller try again */
2213         return ERR_PTR(-EAGAIN);
2214
2215  out_reset:
2216         /* reset write */
2217         rb_reset_tail(cpu_buffer, tail, info);
2218
2219         return NULL;
2220 }
2221
2222 /* Slow path, do not inline */
2223 static noinline struct ring_buffer_event *
2224 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2225 {
2226         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2227
2228         /* Not the first event on the page? */
2229         if (rb_event_index(event)) {
2230                 event->time_delta = delta & TS_MASK;
2231                 event->array[0] = delta >> TS_SHIFT;
2232         } else {
2233                 /* nope, just zero it */
2234                 event->time_delta = 0;
2235                 event->array[0] = 0;
2236         }
2237
2238         return skip_time_extend(event);
2239 }
2240
2241 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2242                                      struct ring_buffer_event *event);
2243
2244 /**
2245  * rb_update_event - update event type and data
2246  * @event: the event to update
2247  * @type: the type of event
2248  * @length: the size of the event field in the ring buffer
2249  *
2250  * Update the type and data fields of the event. The length
2251  * is the actual size that is written to the ring buffer,
2252  * and with this, we can determine what to place into the
2253  * data field.
2254  */
2255 static void
2256 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2257                 struct ring_buffer_event *event,
2258                 struct rb_event_info *info)
2259 {
2260         unsigned length = info->length;
2261         u64 delta = info->delta;
2262
2263         /* Only a commit updates the timestamp */
2264         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2265                 delta = 0;
2266
2267         /*
2268          * If we need to add a timestamp, then we
2269          * add it to the start of the resevered space.
2270          */
2271         if (unlikely(info->add_timestamp)) {
2272                 event = rb_add_time_stamp(event, delta);
2273                 length -= RB_LEN_TIME_EXTEND;
2274                 delta = 0;
2275         }
2276
2277         event->time_delta = delta;
2278         length -= RB_EVNT_HDR_SIZE;
2279         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2280                 event->type_len = 0;
2281                 event->array[0] = length;
2282         } else
2283                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2284 }
2285
2286 static unsigned rb_calculate_event_length(unsigned length)
2287 {
2288         struct ring_buffer_event event; /* Used only for sizeof array */
2289
2290         /* zero length can cause confusions */
2291         if (!length)
2292                 length++;
2293
2294         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2295                 length += sizeof(event.array[0]);
2296
2297         length += RB_EVNT_HDR_SIZE;
2298         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2299
2300         /*
2301          * In case the time delta is larger than the 27 bits for it
2302          * in the header, we need to add a timestamp. If another
2303          * event comes in when trying to discard this one to increase
2304          * the length, then the timestamp will be added in the allocated
2305          * space of this event. If length is bigger than the size needed
2306          * for the TIME_EXTEND, then padding has to be used. The events
2307          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2308          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2309          * As length is a multiple of 4, we only need to worry if it
2310          * is 12 (RB_LEN_TIME_EXTEND + 4).
2311          */
2312         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2313                 length += RB_ALIGNMENT;
2314
2315         return length;
2316 }
2317
2318 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2319 static inline bool sched_clock_stable(void)
2320 {
2321         return true;
2322 }
2323 #endif
2324
2325 static inline int
2326 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2327                   struct ring_buffer_event *event)
2328 {
2329         unsigned long new_index, old_index;
2330         struct buffer_page *bpage;
2331         unsigned long index;
2332         unsigned long addr;
2333
2334         new_index = rb_event_index(event);
2335         old_index = new_index + rb_event_ts_length(event);
2336         addr = (unsigned long)event;
2337         addr &= PAGE_MASK;
2338
2339         bpage = READ_ONCE(cpu_buffer->tail_page);
2340
2341         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2342                 unsigned long write_mask =
2343                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2344                 unsigned long event_length = rb_event_length(event);
2345                 /*
2346                  * This is on the tail page. It is possible that
2347                  * a write could come in and move the tail page
2348                  * and write to the next page. That is fine
2349                  * because we just shorten what is on this page.
2350                  */
2351                 old_index += write_mask;
2352                 new_index += write_mask;
2353                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2354                 if (index == old_index) {
2355                         /* update counters */
2356                         local_sub(event_length, &cpu_buffer->entries_bytes);
2357                         return 1;
2358                 }
2359         }
2360
2361         /* could not discard */
2362         return 0;
2363 }
2364
2365 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2366 {
2367         local_inc(&cpu_buffer->committing);
2368         local_inc(&cpu_buffer->commits);
2369 }
2370
2371 static __always_inline void
2372 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2373 {
2374         unsigned long max_count;
2375
2376         /*
2377          * We only race with interrupts and NMIs on this CPU.
2378          * If we own the commit event, then we can commit
2379          * all others that interrupted us, since the interruptions
2380          * are in stack format (they finish before they come
2381          * back to us). This allows us to do a simple loop to
2382          * assign the commit to the tail.
2383          */
2384  again:
2385         max_count = cpu_buffer->nr_pages * 100;
2386
2387         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2388                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2389                         return;
2390                 if (RB_WARN_ON(cpu_buffer,
2391                                rb_is_reader_page(cpu_buffer->tail_page)))
2392                         return;
2393                 local_set(&cpu_buffer->commit_page->page->commit,
2394                           rb_page_write(cpu_buffer->commit_page));
2395                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2396                 /* Only update the write stamp if the page has an event */
2397                 if (rb_page_write(cpu_buffer->commit_page))
2398                         cpu_buffer->write_stamp =
2399                                 cpu_buffer->commit_page->page->time_stamp;
2400                 /* add barrier to keep gcc from optimizing too much */
2401                 barrier();
2402         }
2403         while (rb_commit_index(cpu_buffer) !=
2404                rb_page_write(cpu_buffer->commit_page)) {
2405
2406                 local_set(&cpu_buffer->commit_page->page->commit,
2407                           rb_page_write(cpu_buffer->commit_page));
2408                 RB_WARN_ON(cpu_buffer,
2409                            local_read(&cpu_buffer->commit_page->page->commit) &
2410                            ~RB_WRITE_MASK);
2411                 barrier();
2412         }
2413
2414         /* again, keep gcc from optimizing */
2415         barrier();
2416
2417         /*
2418          * If an interrupt came in just after the first while loop
2419          * and pushed the tail page forward, we will be left with
2420          * a dangling commit that will never go forward.
2421          */
2422         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2423                 goto again;
2424 }
2425
2426 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2427 {
2428         unsigned long commits;
2429
2430         if (RB_WARN_ON(cpu_buffer,
2431                        !local_read(&cpu_buffer->committing)))
2432                 return;
2433
2434  again:
2435         commits = local_read(&cpu_buffer->commits);
2436         /* synchronize with interrupts */
2437         barrier();
2438         if (local_read(&cpu_buffer->committing) == 1)
2439                 rb_set_commit_to_write(cpu_buffer);
2440
2441         local_dec(&cpu_buffer->committing);
2442
2443         /* synchronize with interrupts */
2444         barrier();
2445
2446         /*
2447          * Need to account for interrupts coming in between the
2448          * updating of the commit page and the clearing of the
2449          * committing counter.
2450          */
2451         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2452             !local_read(&cpu_buffer->committing)) {
2453                 local_inc(&cpu_buffer->committing);
2454                 goto again;
2455         }
2456 }
2457
2458 static inline void rb_event_discard(struct ring_buffer_event *event)
2459 {
2460         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2461                 event = skip_time_extend(event);
2462
2463         /* array[0] holds the actual length for the discarded event */
2464         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2465         event->type_len = RINGBUF_TYPE_PADDING;
2466         /* time delta must be non zero */
2467         if (!event->time_delta)
2468                 event->time_delta = 1;
2469 }
2470
2471 static __always_inline bool
2472 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2473                    struct ring_buffer_event *event)
2474 {
2475         unsigned long addr = (unsigned long)event;
2476         unsigned long index;
2477
2478         index = rb_event_index(event);
2479         addr &= PAGE_MASK;
2480
2481         return cpu_buffer->commit_page->page == (void *)addr &&
2482                 rb_commit_index(cpu_buffer) == index;
2483 }
2484
2485 static __always_inline void
2486 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2487                       struct ring_buffer_event *event)
2488 {
2489         u64 delta;
2490
2491         /*
2492          * The event first in the commit queue updates the
2493          * time stamp.
2494          */
2495         if (rb_event_is_commit(cpu_buffer, event)) {
2496                 /*
2497                  * A commit event that is first on a page
2498                  * updates the write timestamp with the page stamp
2499                  */
2500                 if (!rb_event_index(event))
2501                         cpu_buffer->write_stamp =
2502                                 cpu_buffer->commit_page->page->time_stamp;
2503                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2504                         delta = event->array[0];
2505                         delta <<= TS_SHIFT;
2506                         delta += event->time_delta;
2507                         cpu_buffer->write_stamp += delta;
2508                 } else
2509                         cpu_buffer->write_stamp += event->time_delta;
2510         }
2511 }
2512
2513 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2514                       struct ring_buffer_event *event)
2515 {
2516         local_inc(&cpu_buffer->entries);
2517         rb_update_write_stamp(cpu_buffer, event);
2518         rb_end_commit(cpu_buffer);
2519 }
2520
2521 static __always_inline void
2522 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2523 {
2524         bool pagebusy;
2525
2526         if (buffer->irq_work.waiters_pending) {
2527                 buffer->irq_work.waiters_pending = false;
2528                 /* irq_work_queue() supplies it's own memory barriers */
2529                 irq_work_queue(&buffer->irq_work.work);
2530         }
2531
2532         if (cpu_buffer->irq_work.waiters_pending) {
2533                 cpu_buffer->irq_work.waiters_pending = false;
2534                 /* irq_work_queue() supplies it's own memory barriers */
2535                 irq_work_queue(&cpu_buffer->irq_work.work);
2536         }
2537
2538         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2539
2540         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2541                 cpu_buffer->irq_work.wakeup_full = true;
2542                 cpu_buffer->irq_work.full_waiters_pending = false;
2543                 /* irq_work_queue() supplies it's own memory barriers */
2544                 irq_work_queue(&cpu_buffer->irq_work.work);
2545         }
2546 }
2547
2548 /*
2549  * The lock and unlock are done within a preempt disable section.
2550  * The current_context per_cpu variable can only be modified
2551  * by the current task between lock and unlock. But it can
2552  * be modified more than once via an interrupt. To pass this
2553  * information from the lock to the unlock without having to
2554  * access the 'in_interrupt()' functions again (which do show
2555  * a bit of overhead in something as critical as function tracing,
2556  * we use a bitmask trick.
2557  *
2558  *  bit 1 =  NMI context
2559  *  bit 2 =  IRQ context
2560  *  bit 3 =  SoftIRQ context
2561  *  bit 4 =  normal context.
2562  *
2563  * This works because this is the order of contexts that can
2564  * preempt other contexts. A SoftIRQ never preempts an IRQ
2565  * context.
2566  *
2567  * When the context is determined, the corresponding bit is
2568  * checked and set (if it was set, then a recursion of that context
2569  * happened).
2570  *
2571  * On unlock, we need to clear this bit. To do so, just subtract
2572  * 1 from the current_context and AND it to itself.
2573  *
2574  * (binary)
2575  *  101 - 1 = 100
2576  *  101 & 100 = 100 (clearing bit zero)
2577  *
2578  *  1010 - 1 = 1001
2579  *  1010 & 1001 = 1000 (clearing bit 1)
2580  *
2581  * The least significant bit can be cleared this way, and it
2582  * just so happens that it is the same bit corresponding to
2583  * the current context.
2584  *
2585  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
2586  * is set when a recursion is detected at the current context, and if
2587  * the TRANSITION bit is already set, it will fail the recursion.
2588  * This is needed because there's a lag between the changing of
2589  * interrupt context and updating the preempt count. In this case,
2590  * a false positive will be found. To handle this, one extra recursion
2591  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
2592  * bit is already set, then it is considered a recursion and the function
2593  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
2594  *
2595  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
2596  * to be cleared. Even if it wasn't the context that set it. That is,
2597  * if an interrupt comes in while NORMAL bit is set and the ring buffer
2598  * is called before preempt_count() is updated, since the check will
2599  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
2600  * NMI then comes in, it will set the NMI bit, but when the NMI code
2601  * does the trace_recursive_unlock() it will clear the TRANSTION bit
2602  * and leave the NMI bit set. But this is fine, because the interrupt
2603  * code that set the TRANSITION bit will then clear the NMI bit when it
2604  * calls trace_recursive_unlock(). If another NMI comes in, it will
2605  * set the TRANSITION bit and continue.
2606  *
2607  * Note: The TRANSITION bit only handles a single transition between context.
2608  */
2609
2610 static __always_inline int
2611 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2612 {
2613         unsigned int val = cpu_buffer->current_context;
2614         int bit;
2615
2616         if (in_interrupt()) {
2617                 if (in_nmi())
2618                         bit = RB_CTX_NMI;
2619                 else if (in_irq())
2620                         bit = RB_CTX_IRQ;
2621                 else
2622                         bit = RB_CTX_SOFTIRQ;
2623         } else
2624                 bit = RB_CTX_NORMAL;
2625
2626         if (unlikely(val & (1 << bit))) {
2627                 /*
2628                  * It is possible that this was called by transitioning
2629                  * between interrupt context, and preempt_count() has not
2630                  * been updated yet. In this case, use the TRANSITION bit.
2631                  */
2632                 bit = RB_CTX_TRANSITION;
2633                 if (val & (1 << bit))
2634                         return 1;
2635         }
2636
2637         val |= (1 << bit);
2638         cpu_buffer->current_context = val;
2639
2640         return 0;
2641 }
2642
2643 static __always_inline void
2644 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2645 {
2646         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2647 }
2648
2649 /**
2650  * ring_buffer_unlock_commit - commit a reserved
2651  * @buffer: The buffer to commit to
2652  * @event: The event pointer to commit.
2653  *
2654  * This commits the data to the ring buffer, and releases any locks held.
2655  *
2656  * Must be paired with ring_buffer_lock_reserve.
2657  */
2658 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2659                               struct ring_buffer_event *event)
2660 {
2661         struct ring_buffer_per_cpu *cpu_buffer;
2662         int cpu = raw_smp_processor_id();
2663
2664         cpu_buffer = buffer->buffers[cpu];
2665
2666         rb_commit(cpu_buffer, event);
2667
2668         rb_wakeups(buffer, cpu_buffer);
2669
2670         trace_recursive_unlock(cpu_buffer);
2671
2672         preempt_enable_notrace();
2673
2674         return 0;
2675 }
2676 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2677
2678 static noinline void
2679 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2680                     struct rb_event_info *info)
2681 {
2682         WARN_ONCE(info->delta > (1ULL << 59),
2683                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2684                   (unsigned long long)info->delta,
2685                   (unsigned long long)info->ts,
2686                   (unsigned long long)cpu_buffer->write_stamp,
2687                   sched_clock_stable() ? "" :
2688                   "If you just came from a suspend/resume,\n"
2689                   "please switch to the trace global clock:\n"
2690                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2691         info->add_timestamp = 1;
2692 }
2693
2694 static struct ring_buffer_event *
2695 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2696                   struct rb_event_info *info)
2697 {
2698         struct ring_buffer_event *event;
2699         struct buffer_page *tail_page;
2700         unsigned long tail, write;
2701
2702         /*
2703          * If the time delta since the last event is too big to
2704          * hold in the time field of the event, then we append a
2705          * TIME EXTEND event ahead of the data event.
2706          */
2707         if (unlikely(info->add_timestamp))
2708                 info->length += RB_LEN_TIME_EXTEND;
2709
2710         /* Don't let the compiler play games with cpu_buffer->tail_page */
2711         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2712         write = local_add_return(info->length, &tail_page->write);
2713
2714         /* set write to only the index of the write */
2715         write &= RB_WRITE_MASK;
2716         tail = write - info->length;
2717
2718         /*
2719          * If this is the first commit on the page, then it has the same
2720          * timestamp as the page itself.
2721          */
2722         if (!tail)
2723                 info->delta = 0;
2724
2725         /* See if we shot pass the end of this buffer page */
2726         if (unlikely(write > BUF_PAGE_SIZE))
2727                 return rb_move_tail(cpu_buffer, tail, info);
2728
2729         /* We reserved something on the buffer */
2730
2731         event = __rb_page_index(tail_page, tail);
2732         rb_update_event(cpu_buffer, event, info);
2733
2734         local_inc(&tail_page->entries);
2735
2736         /*
2737          * If this is the first commit on the page, then update
2738          * its timestamp.
2739          */
2740         if (!tail)
2741                 tail_page->page->time_stamp = info->ts;
2742
2743         /* account for these added bytes */
2744         local_add(info->length, &cpu_buffer->entries_bytes);
2745
2746         return event;
2747 }
2748
2749 static __always_inline struct ring_buffer_event *
2750 rb_reserve_next_event(struct ring_buffer *buffer,
2751                       struct ring_buffer_per_cpu *cpu_buffer,
2752                       unsigned long length)
2753 {
2754         struct ring_buffer_event *event;
2755         struct rb_event_info info;
2756         int nr_loops = 0;
2757         u64 diff;
2758
2759         rb_start_commit(cpu_buffer);
2760
2761 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2762         /*
2763          * Due to the ability to swap a cpu buffer from a buffer
2764          * it is possible it was swapped before we committed.
2765          * (committing stops a swap). We check for it here and
2766          * if it happened, we have to fail the write.
2767          */
2768         barrier();
2769         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2770                 local_dec(&cpu_buffer->committing);
2771                 local_dec(&cpu_buffer->commits);
2772                 return NULL;
2773         }
2774 #endif
2775
2776         info.length = rb_calculate_event_length(length);
2777  again:
2778         info.add_timestamp = 0;
2779         info.delta = 0;
2780
2781         /*
2782          * We allow for interrupts to reenter here and do a trace.
2783          * If one does, it will cause this original code to loop
2784          * back here. Even with heavy interrupts happening, this
2785          * should only happen a few times in a row. If this happens
2786          * 1000 times in a row, there must be either an interrupt
2787          * storm or we have something buggy.
2788          * Bail!
2789          */
2790         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2791                 goto out_fail;
2792
2793         info.ts = rb_time_stamp(cpu_buffer->buffer);
2794         diff = info.ts - cpu_buffer->write_stamp;
2795
2796         /* make sure this diff is calculated here */
2797         barrier();
2798
2799         /* Did the write stamp get updated already? */
2800         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2801                 info.delta = diff;
2802                 if (unlikely(test_time_stamp(info.delta)))
2803                         rb_handle_timestamp(cpu_buffer, &info);
2804         }
2805
2806         event = __rb_reserve_next(cpu_buffer, &info);
2807
2808         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2809                 if (info.add_timestamp)
2810                         info.length -= RB_LEN_TIME_EXTEND;
2811                 goto again;
2812         }
2813
2814         if (!event)
2815                 goto out_fail;
2816
2817         return event;
2818
2819  out_fail:
2820         rb_end_commit(cpu_buffer);
2821         return NULL;
2822 }
2823
2824 /**
2825  * ring_buffer_lock_reserve - reserve a part of the buffer
2826  * @buffer: the ring buffer to reserve from
2827  * @length: the length of the data to reserve (excluding event header)
2828  *
2829  * Returns a reseverd event on the ring buffer to copy directly to.
2830  * The user of this interface will need to get the body to write into
2831  * and can use the ring_buffer_event_data() interface.
2832  *
2833  * The length is the length of the data needed, not the event length
2834  * which also includes the event header.
2835  *
2836  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2837  * If NULL is returned, then nothing has been allocated or locked.
2838  */
2839 struct ring_buffer_event *
2840 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2841 {
2842         struct ring_buffer_per_cpu *cpu_buffer;
2843         struct ring_buffer_event *event;
2844         int cpu;
2845
2846         /* If we are tracing schedule, we don't want to recurse */
2847         preempt_disable_notrace();
2848
2849         if (unlikely(atomic_read(&buffer->record_disabled)))
2850                 goto out;
2851
2852         cpu = raw_smp_processor_id();
2853
2854         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2855                 goto out;
2856
2857         cpu_buffer = buffer->buffers[cpu];
2858
2859         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2860                 goto out;
2861
2862         if (unlikely(length > BUF_MAX_DATA_SIZE))
2863                 goto out;
2864
2865         if (unlikely(trace_recursive_lock(cpu_buffer)))
2866                 goto out;
2867
2868         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2869         if (!event)
2870                 goto out_unlock;
2871
2872         return event;
2873
2874  out_unlock:
2875         trace_recursive_unlock(cpu_buffer);
2876  out:
2877         preempt_enable_notrace();
2878         return NULL;
2879 }
2880 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2881
2882 /*
2883  * Decrement the entries to the page that an event is on.
2884  * The event does not even need to exist, only the pointer
2885  * to the page it is on. This may only be called before the commit
2886  * takes place.
2887  */
2888 static inline void
2889 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2890                    struct ring_buffer_event *event)
2891 {
2892         unsigned long addr = (unsigned long)event;
2893         struct buffer_page *bpage = cpu_buffer->commit_page;
2894         struct buffer_page *start;
2895
2896         addr &= PAGE_MASK;
2897
2898         /* Do the likely case first */
2899         if (likely(bpage->page == (void *)addr)) {
2900                 local_dec(&bpage->entries);
2901                 return;
2902         }
2903
2904         /*
2905          * Because the commit page may be on the reader page we
2906          * start with the next page and check the end loop there.
2907          */
2908         rb_inc_page(cpu_buffer, &bpage);
2909         start = bpage;
2910         do {
2911                 if (bpage->page == (void *)addr) {
2912                         local_dec(&bpage->entries);
2913                         return;
2914                 }
2915                 rb_inc_page(cpu_buffer, &bpage);
2916         } while (bpage != start);
2917
2918         /* commit not part of this buffer?? */
2919         RB_WARN_ON(cpu_buffer, 1);
2920 }
2921
2922 /**
2923  * ring_buffer_commit_discard - discard an event that has not been committed
2924  * @buffer: the ring buffer
2925  * @event: non committed event to discard
2926  *
2927  * Sometimes an event that is in the ring buffer needs to be ignored.
2928  * This function lets the user discard an event in the ring buffer
2929  * and then that event will not be read later.
2930  *
2931  * This function only works if it is called before the the item has been
2932  * committed. It will try to free the event from the ring buffer
2933  * if another event has not been added behind it.
2934  *
2935  * If another event has been added behind it, it will set the event
2936  * up as discarded, and perform the commit.
2937  *
2938  * If this function is called, do not call ring_buffer_unlock_commit on
2939  * the event.
2940  */
2941 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2942                                 struct ring_buffer_event *event)
2943 {
2944         struct ring_buffer_per_cpu *cpu_buffer;
2945         int cpu;
2946
2947         /* The event is discarded regardless */
2948         rb_event_discard(event);
2949
2950         cpu = smp_processor_id();
2951         cpu_buffer = buffer->buffers[cpu];
2952
2953         /*
2954          * This must only be called if the event has not been
2955          * committed yet. Thus we can assume that preemption
2956          * is still disabled.
2957          */
2958         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2959
2960         rb_decrement_entry(cpu_buffer, event);
2961         if (rb_try_to_discard(cpu_buffer, event))
2962                 goto out;
2963
2964         /*
2965          * The commit is still visible by the reader, so we
2966          * must still update the timestamp.
2967          */
2968         rb_update_write_stamp(cpu_buffer, event);
2969  out:
2970         rb_end_commit(cpu_buffer);
2971
2972         trace_recursive_unlock(cpu_buffer);
2973
2974         preempt_enable_notrace();
2975
2976 }
2977 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2978
2979 /**
2980  * ring_buffer_write - write data to the buffer without reserving
2981  * @buffer: The ring buffer to write to.
2982  * @length: The length of the data being written (excluding the event header)
2983  * @data: The data to write to the buffer.
2984  *
2985  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2986  * one function. If you already have the data to write to the buffer, it
2987  * may be easier to simply call this function.
2988  *
2989  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2990  * and not the length of the event which would hold the header.
2991  */
2992 int ring_buffer_write(struct ring_buffer *buffer,
2993                       unsigned long length,
2994                       void *data)
2995 {
2996         struct ring_buffer_per_cpu *cpu_buffer;
2997         struct ring_buffer_event *event;
2998         void *body;
2999         int ret = -EBUSY;
3000         int cpu;
3001
3002         preempt_disable_notrace();
3003
3004         if (atomic_read(&buffer->record_disabled))
3005                 goto out;
3006
3007         cpu = raw_smp_processor_id();
3008
3009         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3010                 goto out;
3011
3012         cpu_buffer = buffer->buffers[cpu];
3013
3014         if (atomic_read(&cpu_buffer->record_disabled))
3015                 goto out;
3016
3017         if (length > BUF_MAX_DATA_SIZE)
3018                 goto out;
3019
3020         if (unlikely(trace_recursive_lock(cpu_buffer)))
3021                 goto out;
3022
3023         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3024         if (!event)
3025                 goto out_unlock;
3026
3027         body = rb_event_data(event);
3028
3029         memcpy(body, data, length);
3030
3031         rb_commit(cpu_buffer, event);
3032
3033         rb_wakeups(buffer, cpu_buffer);
3034
3035         ret = 0;
3036
3037  out_unlock:
3038         trace_recursive_unlock(cpu_buffer);
3039
3040  out:
3041         preempt_enable_notrace();
3042
3043         return ret;
3044 }
3045 EXPORT_SYMBOL_GPL(ring_buffer_write);
3046
3047 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3048 {
3049         struct buffer_page *reader = cpu_buffer->reader_page;
3050         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3051         struct buffer_page *commit = cpu_buffer->commit_page;
3052
3053         /* In case of error, head will be NULL */
3054         if (unlikely(!head))
3055                 return true;
3056
3057         /* Reader should exhaust content in reader page */
3058         if (reader->read != rb_page_commit(reader))
3059                 return false;
3060
3061         /*
3062          * If writers are committing on the reader page, knowing all
3063          * committed content has been read, the ring buffer is empty.
3064          */
3065         if (commit == reader)
3066                 return true;
3067
3068         /*
3069          * If writers are committing on a page other than reader page
3070          * and head page, there should always be content to read.
3071          */
3072         if (commit != head)
3073                 return false;
3074
3075         /*
3076          * Writers are committing on the head page, we just need
3077          * to care about there're committed data, and the reader will
3078          * swap reader page with head page when it is to read data.
3079          */
3080         return rb_page_commit(commit) == 0;
3081 }
3082
3083 /**
3084  * ring_buffer_record_disable - stop all writes into the buffer
3085  * @buffer: The ring buffer to stop writes to.
3086  *
3087  * This prevents all writes to the buffer. Any attempt to write
3088  * to the buffer after this will fail and return NULL.
3089  *
3090  * The caller should call synchronize_sched() after this.
3091  */
3092 void ring_buffer_record_disable(struct ring_buffer *buffer)
3093 {
3094         atomic_inc(&buffer->record_disabled);
3095 }
3096 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3097
3098 /**
3099  * ring_buffer_record_enable - enable writes to the buffer
3100  * @buffer: The ring buffer to enable writes
3101  *
3102  * Note, multiple disables will need the same number of enables
3103  * to truly enable the writing (much like preempt_disable).
3104  */
3105 void ring_buffer_record_enable(struct ring_buffer *buffer)
3106 {
3107         atomic_dec(&buffer->record_disabled);
3108 }
3109 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3110
3111 /**
3112  * ring_buffer_record_off - stop all writes into the buffer
3113  * @buffer: The ring buffer to stop writes to.
3114  *
3115  * This prevents all writes to the buffer. Any attempt to write
3116  * to the buffer after this will fail and return NULL.
3117  *
3118  * This is different than ring_buffer_record_disable() as
3119  * it works like an on/off switch, where as the disable() version
3120  * must be paired with a enable().
3121  */
3122 void ring_buffer_record_off(struct ring_buffer *buffer)
3123 {
3124         unsigned int rd;
3125         unsigned int new_rd;
3126
3127         do {
3128                 rd = atomic_read(&buffer->record_disabled);
3129                 new_rd = rd | RB_BUFFER_OFF;
3130         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3131 }
3132 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3133
3134 /**
3135  * ring_buffer_record_on - restart writes into the buffer
3136  * @buffer: The ring buffer to start writes to.
3137  *
3138  * This enables all writes to the buffer that was disabled by
3139  * ring_buffer_record_off().
3140  *
3141  * This is different than ring_buffer_record_enable() as
3142  * it works like an on/off switch, where as the enable() version
3143  * must be paired with a disable().
3144  */
3145 void ring_buffer_record_on(struct ring_buffer *buffer)
3146 {
3147         unsigned int rd;
3148         unsigned int new_rd;
3149
3150         do {
3151                 rd = atomic_read(&buffer->record_disabled);
3152                 new_rd = rd & ~RB_BUFFER_OFF;
3153         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3154 }
3155 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3156
3157 /**
3158  * ring_buffer_record_is_on - return true if the ring buffer can write
3159  * @buffer: The ring buffer to see if write is enabled
3160  *
3161  * Returns true if the ring buffer is in a state that it accepts writes.
3162  */
3163 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3164 {
3165         return !atomic_read(&buffer->record_disabled);
3166 }
3167
3168 /**
3169  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3170  * @buffer: The ring buffer to see if write is set enabled
3171  *
3172  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3173  * Note that this does NOT mean it is in a writable state.
3174  *
3175  * It may return true when the ring buffer has been disabled by
3176  * ring_buffer_record_disable(), as that is a temporary disabling of
3177  * the ring buffer.
3178  */
3179 int ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3180 {
3181         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3182 }
3183
3184 /**
3185  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3186  * @buffer: The ring buffer to stop writes to.
3187  * @cpu: The CPU buffer to stop
3188  *
3189  * This prevents all writes to the buffer. Any attempt to write
3190  * to the buffer after this will fail and return NULL.
3191  *
3192  * The caller should call synchronize_sched() after this.
3193  */
3194 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3195 {
3196         struct ring_buffer_per_cpu *cpu_buffer;
3197
3198         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3199                 return;
3200
3201         cpu_buffer = buffer->buffers[cpu];
3202         atomic_inc(&cpu_buffer->record_disabled);
3203 }
3204 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3205
3206 /**
3207  * ring_buffer_record_enable_cpu - enable writes to the buffer
3208  * @buffer: The ring buffer to enable writes
3209  * @cpu: The CPU to enable.
3210  *
3211  * Note, multiple disables will need the same number of enables
3212  * to truly enable the writing (much like preempt_disable).
3213  */
3214 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3215 {
3216         struct ring_buffer_per_cpu *cpu_buffer;
3217
3218         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3219                 return;
3220
3221         cpu_buffer = buffer->buffers[cpu];
3222         atomic_dec(&cpu_buffer->record_disabled);
3223 }
3224 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3225
3226 /*
3227  * The total entries in the ring buffer is the running counter
3228  * of entries entered into the ring buffer, minus the sum of
3229  * the entries read from the ring buffer and the number of
3230  * entries that were overwritten.
3231  */
3232 static inline unsigned long
3233 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3234 {
3235         return local_read(&cpu_buffer->entries) -
3236                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3237 }
3238
3239 /**
3240  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3241  * @buffer: The ring buffer
3242  * @cpu: The per CPU buffer to read from.
3243  */
3244 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3245 {
3246         unsigned long flags;
3247         struct ring_buffer_per_cpu *cpu_buffer;
3248         struct buffer_page *bpage;
3249         u64 ret = 0;
3250
3251         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3252                 return 0;
3253
3254         cpu_buffer = buffer->buffers[cpu];
3255         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3256         /*
3257          * if the tail is on reader_page, oldest time stamp is on the reader
3258          * page
3259          */
3260         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3261                 bpage = cpu_buffer->reader_page;
3262         else
3263                 bpage = rb_set_head_page(cpu_buffer);
3264         if (bpage)
3265                 ret = bpage->page->time_stamp;
3266         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3267
3268         return ret;
3269 }
3270 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3271
3272 /**
3273  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3274  * @buffer: The ring buffer
3275  * @cpu: The per CPU buffer to read from.
3276  */
3277 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3278 {
3279         struct ring_buffer_per_cpu *cpu_buffer;
3280         unsigned long ret;
3281
3282         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283                 return 0;
3284
3285         cpu_buffer = buffer->buffers[cpu];
3286         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3287
3288         return ret;
3289 }
3290 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3291
3292 /**
3293  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3294  * @buffer: The ring buffer
3295  * @cpu: The per CPU buffer to get the entries from.
3296  */
3297 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3298 {
3299         struct ring_buffer_per_cpu *cpu_buffer;
3300
3301         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302                 return 0;
3303
3304         cpu_buffer = buffer->buffers[cpu];
3305
3306         return rb_num_of_entries(cpu_buffer);
3307 }
3308 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3309
3310 /**
3311  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3312  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3313  * @buffer: The ring buffer
3314  * @cpu: The per CPU buffer to get the number of overruns from
3315  */
3316 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3317 {
3318         struct ring_buffer_per_cpu *cpu_buffer;
3319         unsigned long ret;
3320
3321         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3322                 return 0;
3323
3324         cpu_buffer = buffer->buffers[cpu];
3325         ret = local_read(&cpu_buffer->overrun);
3326
3327         return ret;
3328 }
3329 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3330
3331 /**
3332  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3333  * commits failing due to the buffer wrapping around while there are uncommitted
3334  * events, such as during an interrupt storm.
3335  * @buffer: The ring buffer
3336  * @cpu: The per CPU buffer to get the number of overruns from
3337  */
3338 unsigned long
3339 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3340 {
3341         struct ring_buffer_per_cpu *cpu_buffer;
3342         unsigned long ret;
3343
3344         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3345                 return 0;
3346
3347         cpu_buffer = buffer->buffers[cpu];
3348         ret = local_read(&cpu_buffer->commit_overrun);
3349
3350         return ret;
3351 }
3352 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3353
3354 /**
3355  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3356  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3357  * @buffer: The ring buffer
3358  * @cpu: The per CPU buffer to get the number of overruns from
3359  */
3360 unsigned long
3361 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3362 {
3363         struct ring_buffer_per_cpu *cpu_buffer;
3364         unsigned long ret;
3365
3366         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3367                 return 0;
3368
3369         cpu_buffer = buffer->buffers[cpu];
3370         ret = local_read(&cpu_buffer->dropped_events);
3371
3372         return ret;
3373 }
3374 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3375
3376 /**
3377  * ring_buffer_read_events_cpu - get the number of events successfully read
3378  * @buffer: The ring buffer
3379  * @cpu: The per CPU buffer to get the number of events read
3380  */
3381 unsigned long
3382 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3383 {
3384         struct ring_buffer_per_cpu *cpu_buffer;
3385
3386         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3387                 return 0;
3388
3389         cpu_buffer = buffer->buffers[cpu];
3390         return cpu_buffer->read;
3391 }
3392 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3393
3394 /**
3395  * ring_buffer_entries - get the number of entries in a buffer
3396  * @buffer: The ring buffer
3397  *
3398  * Returns the total number of entries in the ring buffer
3399  * (all CPU entries)
3400  */
3401 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3402 {
3403         struct ring_buffer_per_cpu *cpu_buffer;
3404         unsigned long entries = 0;
3405         int cpu;
3406
3407         /* if you care about this being correct, lock the buffer */
3408         for_each_buffer_cpu(buffer, cpu) {
3409                 cpu_buffer = buffer->buffers[cpu];
3410                 entries += rb_num_of_entries(cpu_buffer);
3411         }
3412
3413         return entries;
3414 }
3415 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3416
3417 /**
3418  * ring_buffer_overruns - get the number of overruns in buffer
3419  * @buffer: The ring buffer
3420  *
3421  * Returns the total number of overruns in the ring buffer
3422  * (all CPU entries)
3423  */
3424 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3425 {
3426         struct ring_buffer_per_cpu *cpu_buffer;
3427         unsigned long overruns = 0;
3428         int cpu;
3429
3430         /* if you care about this being correct, lock the buffer */
3431         for_each_buffer_cpu(buffer, cpu) {
3432                 cpu_buffer = buffer->buffers[cpu];
3433                 overruns += local_read(&cpu_buffer->overrun);
3434         }
3435
3436         return overruns;
3437 }
3438 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3439
3440 static void rb_iter_reset(struct ring_buffer_iter *iter)
3441 {
3442         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3443
3444         /* Iterator usage is expected to have record disabled */
3445         iter->head_page = cpu_buffer->reader_page;
3446         iter->head = cpu_buffer->reader_page->read;
3447
3448         iter->cache_reader_page = iter->head_page;
3449         iter->cache_read = cpu_buffer->read;
3450
3451         if (iter->head)
3452                 iter->read_stamp = cpu_buffer->read_stamp;
3453         else
3454                 iter->read_stamp = iter->head_page->page->time_stamp;
3455 }
3456
3457 /**
3458  * ring_buffer_iter_reset - reset an iterator
3459  * @iter: The iterator to reset
3460  *
3461  * Resets the iterator, so that it will start from the beginning
3462  * again.
3463  */
3464 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3465 {
3466         struct ring_buffer_per_cpu *cpu_buffer;
3467         unsigned long flags;
3468
3469         if (!iter)
3470                 return;
3471
3472         cpu_buffer = iter->cpu_buffer;
3473
3474         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3475         rb_iter_reset(iter);
3476         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3477 }
3478 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3479
3480 /**
3481  * ring_buffer_iter_empty - check if an iterator has no more to read
3482  * @iter: The iterator to check
3483  */
3484 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3485 {
3486         struct ring_buffer_per_cpu *cpu_buffer;
3487         struct buffer_page *reader;
3488         struct buffer_page *head_page;
3489         struct buffer_page *commit_page;
3490         unsigned commit;
3491
3492         cpu_buffer = iter->cpu_buffer;
3493
3494         /* Remember, trace recording is off when iterator is in use */
3495         reader = cpu_buffer->reader_page;
3496         head_page = cpu_buffer->head_page;
3497         commit_page = cpu_buffer->commit_page;
3498         commit = rb_page_commit(commit_page);
3499
3500         return ((iter->head_page == commit_page && iter->head == commit) ||
3501                 (iter->head_page == reader && commit_page == head_page &&
3502                  head_page->read == commit &&
3503                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3504 }
3505 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3506
3507 static void
3508 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3509                      struct ring_buffer_event *event)
3510 {
3511         u64 delta;
3512
3513         switch (event->type_len) {
3514         case RINGBUF_TYPE_PADDING:
3515                 return;
3516
3517         case RINGBUF_TYPE_TIME_EXTEND:
3518                 delta = event->array[0];
3519                 delta <<= TS_SHIFT;
3520                 delta += event->time_delta;
3521                 cpu_buffer->read_stamp += delta;
3522                 return;
3523
3524         case RINGBUF_TYPE_TIME_STAMP:
3525                 /* FIXME: not implemented */
3526                 return;
3527
3528         case RINGBUF_TYPE_DATA:
3529                 cpu_buffer->read_stamp += event->time_delta;
3530                 return;
3531
3532         default:
3533                 BUG();
3534         }
3535         return;
3536 }
3537
3538 static void
3539 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3540                           struct ring_buffer_event *event)
3541 {
3542         u64 delta;
3543
3544         switch (event->type_len) {
3545         case RINGBUF_TYPE_PADDING:
3546                 return;
3547
3548         case RINGBUF_TYPE_TIME_EXTEND:
3549                 delta = event->array[0];
3550                 delta <<= TS_SHIFT;
3551                 delta += event->time_delta;
3552                 iter->read_stamp += delta;
3553                 return;
3554
3555         case RINGBUF_TYPE_TIME_STAMP:
3556                 /* FIXME: not implemented */
3557                 return;
3558
3559         case RINGBUF_TYPE_DATA:
3560                 iter->read_stamp += event->time_delta;
3561                 return;
3562
3563         default:
3564                 BUG();
3565         }
3566         return;
3567 }
3568
3569 static struct buffer_page *
3570 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3571 {
3572         struct buffer_page *reader = NULL;
3573         unsigned long overwrite;
3574         unsigned long flags;
3575         int nr_loops = 0;
3576         int ret;
3577
3578         local_irq_save(flags);
3579         arch_spin_lock(&cpu_buffer->lock);
3580
3581  again:
3582         /*
3583          * This should normally only loop twice. But because the
3584          * start of the reader inserts an empty page, it causes
3585          * a case where we will loop three times. There should be no
3586          * reason to loop four times (that I know of).
3587          */
3588         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3589                 reader = NULL;
3590                 goto out;
3591         }
3592
3593         reader = cpu_buffer->reader_page;
3594
3595         /* If there's more to read, return this page */
3596         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3597                 goto out;
3598
3599         /* Never should we have an index greater than the size */
3600         if (RB_WARN_ON(cpu_buffer,
3601                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3602                 goto out;
3603
3604         /* check if we caught up to the tail */
3605         reader = NULL;
3606         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3607                 goto out;
3608
3609         /* Don't bother swapping if the ring buffer is empty */
3610         if (rb_num_of_entries(cpu_buffer) == 0)
3611                 goto out;
3612
3613         /*
3614          * Reset the reader page to size zero.
3615          */
3616         local_set(&cpu_buffer->reader_page->write, 0);
3617         local_set(&cpu_buffer->reader_page->entries, 0);
3618         local_set(&cpu_buffer->reader_page->page->commit, 0);
3619         cpu_buffer->reader_page->real_end = 0;
3620
3621  spin:
3622         /*
3623          * Splice the empty reader page into the list around the head.
3624          */
3625         reader = rb_set_head_page(cpu_buffer);
3626         if (!reader)
3627                 goto out;
3628         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3629         cpu_buffer->reader_page->list.prev = reader->list.prev;
3630
3631         /*
3632          * cpu_buffer->pages just needs to point to the buffer, it
3633          *  has no specific buffer page to point to. Lets move it out
3634          *  of our way so we don't accidentally swap it.
3635          */
3636         cpu_buffer->pages = reader->list.prev;
3637
3638         /* The reader page will be pointing to the new head */
3639         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3640
3641         /*
3642          * We want to make sure we read the overruns after we set up our
3643          * pointers to the next object. The writer side does a
3644          * cmpxchg to cross pages which acts as the mb on the writer
3645          * side. Note, the reader will constantly fail the swap
3646          * while the writer is updating the pointers, so this
3647          * guarantees that the overwrite recorded here is the one we
3648          * want to compare with the last_overrun.
3649          */
3650         smp_mb();
3651         overwrite = local_read(&(cpu_buffer->overrun));
3652
3653         /*
3654          * Here's the tricky part.
3655          *
3656          * We need to move the pointer past the header page.
3657          * But we can only do that if a writer is not currently
3658          * moving it. The page before the header page has the
3659          * flag bit '1' set if it is pointing to the page we want.
3660          * but if the writer is in the process of moving it
3661          * than it will be '2' or already moved '0'.
3662          */
3663
3664         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3665
3666         /*
3667          * If we did not convert it, then we must try again.
3668          */
3669         if (!ret)
3670                 goto spin;
3671
3672         /*
3673          * Yeah! We succeeded in replacing the page.
3674          *
3675          * Now make the new head point back to the reader page.
3676          */
3677         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3678         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3679
3680         /* Finally update the reader page to the new head */
3681         cpu_buffer->reader_page = reader;
3682         cpu_buffer->reader_page->read = 0;
3683
3684         if (overwrite != cpu_buffer->last_overrun) {
3685                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3686                 cpu_buffer->last_overrun = overwrite;
3687         }
3688
3689         goto again;
3690
3691  out:
3692         /* Update the read_stamp on the first event */
3693         if (reader && reader->read == 0)
3694                 cpu_buffer->read_stamp = reader->page->time_stamp;
3695
3696         arch_spin_unlock(&cpu_buffer->lock);
3697         local_irq_restore(flags);
3698
3699         return reader;
3700 }
3701
3702 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3703 {
3704         struct ring_buffer_event *event;
3705         struct buffer_page *reader;
3706         unsigned length;
3707
3708         reader = rb_get_reader_page(cpu_buffer);
3709
3710         /* This function should not be called when buffer is empty */
3711         if (RB_WARN_ON(cpu_buffer, !reader))
3712                 return;
3713
3714         event = rb_reader_event(cpu_buffer);
3715
3716         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3717                 cpu_buffer->read++;
3718
3719         rb_update_read_stamp(cpu_buffer, event);
3720
3721         length = rb_event_length(event);
3722         cpu_buffer->reader_page->read += length;
3723 }
3724
3725 static void rb_advance_iter(struct ring_buffer_iter *iter)
3726 {
3727         struct ring_buffer_per_cpu *cpu_buffer;
3728         struct ring_buffer_event *event;
3729         unsigned length;
3730
3731         cpu_buffer = iter->cpu_buffer;
3732
3733         /*
3734          * Check if we are at the end of the buffer.
3735          */
3736         if (iter->head >= rb_page_size(iter->head_page)) {
3737                 /* discarded commits can make the page empty */
3738                 if (iter->head_page == cpu_buffer->commit_page)
3739                         return;
3740                 rb_inc_iter(iter);
3741                 return;
3742         }
3743
3744         event = rb_iter_head_event(iter);
3745
3746         length = rb_event_length(event);
3747
3748         /*
3749          * This should not be called to advance the header if we are
3750          * at the tail of the buffer.
3751          */
3752         if (RB_WARN_ON(cpu_buffer,
3753                        (iter->head_page == cpu_buffer->commit_page) &&
3754                        (iter->head + length > rb_commit_index(cpu_buffer))))
3755                 return;
3756
3757         rb_update_iter_read_stamp(iter, event);
3758
3759         iter->head += length;
3760
3761         /* check for end of page padding */
3762         if ((iter->head >= rb_page_size(iter->head_page)) &&
3763             (iter->head_page != cpu_buffer->commit_page))
3764                 rb_inc_iter(iter);
3765 }
3766
3767 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3768 {
3769         return cpu_buffer->lost_events;
3770 }
3771
3772 static struct ring_buffer_event *
3773 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3774                unsigned long *lost_events)
3775 {
3776         struct ring_buffer_event *event;
3777         struct buffer_page *reader;
3778         int nr_loops = 0;
3779
3780  again:
3781         /*
3782          * We repeat when a time extend is encountered.
3783          * Since the time extend is always attached to a data event,
3784          * we should never loop more than once.
3785          * (We never hit the following condition more than twice).
3786          */
3787         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3788                 return NULL;
3789
3790         reader = rb_get_reader_page(cpu_buffer);
3791         if (!reader)
3792                 return NULL;
3793
3794         event = rb_reader_event(cpu_buffer);
3795
3796         switch (event->type_len) {
3797         case RINGBUF_TYPE_PADDING:
3798                 if (rb_null_event(event))
3799                         RB_WARN_ON(cpu_buffer, 1);
3800                 /*
3801                  * Because the writer could be discarding every
3802                  * event it creates (which would probably be bad)
3803                  * if we were to go back to "again" then we may never
3804                  * catch up, and will trigger the warn on, or lock
3805                  * the box. Return the padding, and we will release
3806                  * the current locks, and try again.
3807                  */
3808                 return event;
3809
3810         case RINGBUF_TYPE_TIME_EXTEND:
3811                 /* Internal data, OK to advance */
3812                 rb_advance_reader(cpu_buffer);
3813                 goto again;
3814
3815         case RINGBUF_TYPE_TIME_STAMP:
3816                 /* FIXME: not implemented */
3817                 rb_advance_reader(cpu_buffer);
3818                 goto again;
3819
3820         case RINGBUF_TYPE_DATA:
3821                 if (ts) {
3822                         *ts = cpu_buffer->read_stamp + event->time_delta;
3823                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3824                                                          cpu_buffer->cpu, ts);
3825                 }
3826                 if (lost_events)
3827                         *lost_events = rb_lost_events(cpu_buffer);
3828                 return event;
3829
3830         default:
3831                 BUG();
3832         }
3833
3834         return NULL;
3835 }
3836 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3837
3838 static struct ring_buffer_event *
3839 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3840 {
3841         struct ring_buffer *buffer;
3842         struct ring_buffer_per_cpu *cpu_buffer;
3843         struct ring_buffer_event *event;
3844         int nr_loops = 0;
3845
3846         cpu_buffer = iter->cpu_buffer;
3847         buffer = cpu_buffer->buffer;
3848
3849         /*
3850          * Check if someone performed a consuming read to
3851          * the buffer. A consuming read invalidates the iterator
3852          * and we need to reset the iterator in this case.
3853          */
3854         if (unlikely(iter->cache_read != cpu_buffer->read ||
3855                      iter->cache_reader_page != cpu_buffer->reader_page))
3856                 rb_iter_reset(iter);
3857
3858  again:
3859         if (ring_buffer_iter_empty(iter))
3860                 return NULL;
3861
3862         /*
3863          * We repeat when a time extend is encountered or we hit
3864          * the end of the page. Since the time extend is always attached
3865          * to a data event, we should never loop more than three times.
3866          * Once for going to next page, once on time extend, and
3867          * finally once to get the event.
3868          * (We never hit the following condition more than thrice).
3869          */
3870         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3871                 return NULL;
3872
3873         if (rb_per_cpu_empty(cpu_buffer))
3874                 return NULL;
3875
3876         if (iter->head >= rb_page_size(iter->head_page)) {
3877                 rb_inc_iter(iter);
3878                 goto again;
3879         }
3880
3881         event = rb_iter_head_event(iter);
3882
3883         switch (event->type_len) {
3884         case RINGBUF_TYPE_PADDING:
3885                 if (rb_null_event(event)) {
3886                         rb_inc_iter(iter);
3887                         goto again;
3888                 }
3889                 rb_advance_iter(iter);
3890                 return event;
3891
3892         case RINGBUF_TYPE_TIME_EXTEND:
3893                 /* Internal data, OK to advance */
3894                 rb_advance_iter(iter);
3895                 goto again;
3896
3897         case RINGBUF_TYPE_TIME_STAMP:
3898                 /* FIXME: not implemented */
3899                 rb_advance_iter(iter);
3900                 goto again;
3901
3902         case RINGBUF_TYPE_DATA:
3903                 if (ts) {
3904                         *ts = iter->read_stamp + event->time_delta;
3905                         ring_buffer_normalize_time_stamp(buffer,
3906                                                          cpu_buffer->cpu, ts);
3907                 }
3908                 return event;
3909
3910         default:
3911                 BUG();
3912         }
3913
3914         return NULL;
3915 }
3916 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3917
3918 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3919 {
3920         if (likely(!in_nmi())) {
3921                 raw_spin_lock(&cpu_buffer->reader_lock);
3922                 return true;
3923         }
3924
3925         /*
3926          * If an NMI die dumps out the content of the ring buffer
3927          * trylock must be used to prevent a deadlock if the NMI
3928          * preempted a task that holds the ring buffer locks. If
3929          * we get the lock then all is fine, if not, then continue
3930          * to do the read, but this can corrupt the ring buffer,
3931          * so it must be permanently disabled from future writes.
3932          * Reading from NMI is a oneshot deal.
3933          */
3934         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3935                 return true;
3936
3937         /* Continue without locking, but disable the ring buffer */
3938         atomic_inc(&cpu_buffer->record_disabled);
3939         return false;
3940 }
3941
3942 static inline void
3943 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3944 {
3945         if (likely(locked))
3946                 raw_spin_unlock(&cpu_buffer->reader_lock);
3947         return;
3948 }
3949
3950 /**
3951  * ring_buffer_peek - peek at the next event to be read
3952  * @buffer: The ring buffer to read
3953  * @cpu: The cpu to peak at
3954  * @ts: The timestamp counter of this event.
3955  * @lost_events: a variable to store if events were lost (may be NULL)
3956  *
3957  * This will return the event that will be read next, but does
3958  * not consume the data.
3959  */
3960 struct ring_buffer_event *
3961 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3962                  unsigned long *lost_events)
3963 {
3964         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3965         struct ring_buffer_event *event;
3966         unsigned long flags;
3967         bool dolock;
3968
3969         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3970                 return NULL;
3971
3972  again:
3973         local_irq_save(flags);
3974         dolock = rb_reader_lock(cpu_buffer);
3975         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3976         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3977                 rb_advance_reader(cpu_buffer);
3978         rb_reader_unlock(cpu_buffer, dolock);
3979         local_irq_restore(flags);
3980
3981         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3982                 goto again;
3983
3984         return event;
3985 }
3986
3987 /**
3988  * ring_buffer_iter_peek - peek at the next event to be read
3989  * @iter: The ring buffer iterator
3990  * @ts: The timestamp counter of this event.
3991  *
3992  * This will return the event that will be read next, but does
3993  * not increment the iterator.
3994  */
3995 struct ring_buffer_event *
3996 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3997 {
3998         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3999         struct ring_buffer_event *event;
4000         unsigned long flags;
4001
4002  again:
4003         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4004         event = rb_iter_peek(iter, ts);
4005         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4006
4007         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4008                 goto again;
4009
4010         return event;
4011 }
4012
4013 /**
4014  * ring_buffer_consume - return an event and consume it
4015  * @buffer: The ring buffer to get the next event from
4016  * @cpu: the cpu to read the buffer from
4017  * @ts: a variable to store the timestamp (may be NULL)
4018  * @lost_events: a variable to store if events were lost (may be NULL)
4019  *
4020  * Returns the next event in the ring buffer, and that event is consumed.
4021  * Meaning, that sequential reads will keep returning a different event,
4022  * and eventually empty the ring buffer if the producer is slower.
4023  */
4024 struct ring_buffer_event *
4025 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4026                     unsigned long *lost_events)
4027 {
4028         struct ring_buffer_per_cpu *cpu_buffer;
4029         struct ring_buffer_event *event = NULL;
4030         unsigned long flags;
4031         bool dolock;
4032
4033  again:
4034         /* might be called in atomic */
4035         preempt_disable();
4036
4037         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4038                 goto out;
4039
4040         cpu_buffer = buffer->buffers[cpu];
4041         local_irq_save(flags);
4042         dolock = rb_reader_lock(cpu_buffer);
4043
4044         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4045         if (event) {
4046                 cpu_buffer->lost_events = 0;
4047                 rb_advance_reader(cpu_buffer);
4048         }
4049
4050         rb_reader_unlock(cpu_buffer, dolock);
4051         local_irq_restore(flags);
4052
4053  out:
4054         preempt_enable();
4055
4056         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4057                 goto again;
4058
4059         return event;
4060 }
4061 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4062
4063 /**
4064  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4065  * @buffer: The ring buffer to read from
4066  * @cpu: The cpu buffer to iterate over
4067  * @flags: gfp flags to use for memory allocation
4068  *
4069  * This performs the initial preparations necessary to iterate
4070  * through the buffer.  Memory is allocated, buffer recording
4071  * is disabled, and the iterator pointer is returned to the caller.
4072  *
4073  * Disabling buffer recordng prevents the reading from being
4074  * corrupted. This is not a consuming read, so a producer is not
4075  * expected.
4076  *
4077  * After a sequence of ring_buffer_read_prepare calls, the user is
4078  * expected to make at least one call to ring_buffer_read_prepare_sync.
4079  * Afterwards, ring_buffer_read_start is invoked to get things going
4080  * for real.
4081  *
4082  * This overall must be paired with ring_buffer_read_finish.
4083  */
4084 struct ring_buffer_iter *
4085 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4086 {
4087         struct ring_buffer_per_cpu *cpu_buffer;
4088         struct ring_buffer_iter *iter;
4089
4090         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4091                 return NULL;
4092
4093         iter = kmalloc(sizeof(*iter), flags);
4094         if (!iter)
4095                 return NULL;
4096
4097         cpu_buffer = buffer->buffers[cpu];
4098
4099         iter->cpu_buffer = cpu_buffer;
4100
4101         atomic_inc(&buffer->resize_disabled);
4102         atomic_inc(&cpu_buffer->record_disabled);
4103
4104         return iter;
4105 }
4106 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4107
4108 /**
4109  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4110  *
4111  * All previously invoked ring_buffer_read_prepare calls to prepare
4112  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4113  * calls on those iterators are allowed.
4114  */
4115 void
4116 ring_buffer_read_prepare_sync(void)
4117 {
4118         synchronize_sched();
4119 }
4120 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4121
4122 /**
4123  * ring_buffer_read_start - start a non consuming read of the buffer
4124  * @iter: The iterator returned by ring_buffer_read_prepare
4125  *
4126  * This finalizes the startup of an iteration through the buffer.
4127  * The iterator comes from a call to ring_buffer_read_prepare and
4128  * an intervening ring_buffer_read_prepare_sync must have been
4129  * performed.
4130  *
4131  * Must be paired with ring_buffer_read_finish.
4132  */
4133 void
4134 ring_buffer_read_start(struct ring_buffer_iter *iter)
4135 {
4136         struct ring_buffer_per_cpu *cpu_buffer;
4137         unsigned long flags;
4138
4139         if (!iter)
4140                 return;
4141
4142         cpu_buffer = iter->cpu_buffer;
4143
4144         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4145         arch_spin_lock(&cpu_buffer->lock);
4146         rb_iter_reset(iter);
4147         arch_spin_unlock(&cpu_buffer->lock);
4148         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4149 }
4150 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4151
4152 /**
4153  * ring_buffer_read_finish - finish reading the iterator of the buffer
4154  * @iter: The iterator retrieved by ring_buffer_start
4155  *
4156  * This re-enables the recording to the buffer, and frees the
4157  * iterator.
4158  */
4159 void
4160 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4161 {
4162         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4163         unsigned long flags;
4164
4165         /*
4166          * Ring buffer is disabled from recording, here's a good place
4167          * to check the integrity of the ring buffer.
4168          * Must prevent readers from trying to read, as the check
4169          * clears the HEAD page and readers require it.
4170          */
4171         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4172         rb_check_pages(cpu_buffer);
4173         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4174
4175         atomic_dec(&cpu_buffer->record_disabled);
4176         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4177         kfree(iter);
4178 }
4179 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4180
4181 /**
4182  * ring_buffer_read - read the next item in the ring buffer by the iterator
4183  * @iter: The ring buffer iterator
4184  * @ts: The time stamp of the event read.
4185  *
4186  * This reads the next event in the ring buffer and increments the iterator.
4187  */
4188 struct ring_buffer_event *
4189 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4190 {
4191         struct ring_buffer_event *event;
4192         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4193         unsigned long flags;
4194
4195         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4196  again:
4197         event = rb_iter_peek(iter, ts);
4198         if (!event)
4199                 goto out;
4200
4201         if (event->type_len == RINGBUF_TYPE_PADDING)
4202                 goto again;
4203
4204         rb_advance_iter(iter);
4205  out:
4206         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4207
4208         return event;
4209 }
4210 EXPORT_SYMBOL_GPL(ring_buffer_read);
4211
4212 /**
4213  * ring_buffer_size - return the size of the ring buffer (in bytes)
4214  * @buffer: The ring buffer.
4215  */
4216 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4217 {
4218         /*
4219          * Earlier, this method returned
4220          *      BUF_PAGE_SIZE * buffer->nr_pages
4221          * Since the nr_pages field is now removed, we have converted this to
4222          * return the per cpu buffer value.
4223          */
4224         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4225                 return 0;
4226
4227         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4228 }
4229 EXPORT_SYMBOL_GPL(ring_buffer_size);
4230
4231 static void
4232 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4233 {
4234         rb_head_page_deactivate(cpu_buffer);
4235
4236         cpu_buffer->head_page
4237                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4238         local_set(&cpu_buffer->head_page->write, 0);
4239         local_set(&cpu_buffer->head_page->entries, 0);
4240         local_set(&cpu_buffer->head_page->page->commit, 0);
4241
4242         cpu_buffer->head_page->read = 0;
4243
4244         cpu_buffer->tail_page = cpu_buffer->head_page;
4245         cpu_buffer->commit_page = cpu_buffer->head_page;
4246
4247         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4248         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4249         local_set(&cpu_buffer->reader_page->write, 0);
4250         local_set(&cpu_buffer->reader_page->entries, 0);
4251         local_set(&cpu_buffer->reader_page->page->commit, 0);
4252         cpu_buffer->reader_page->read = 0;
4253
4254         local_set(&cpu_buffer->entries_bytes, 0);
4255         local_set(&cpu_buffer->overrun, 0);
4256         local_set(&cpu_buffer->commit_overrun, 0);
4257         local_set(&cpu_buffer->dropped_events, 0);
4258         local_set(&cpu_buffer->entries, 0);
4259         local_set(&cpu_buffer->committing, 0);
4260         local_set(&cpu_buffer->commits, 0);
4261         cpu_buffer->read = 0;
4262         cpu_buffer->read_bytes = 0;
4263
4264         cpu_buffer->write_stamp = 0;
4265         cpu_buffer->read_stamp = 0;
4266
4267         cpu_buffer->lost_events = 0;
4268         cpu_buffer->last_overrun = 0;
4269
4270         rb_head_page_activate(cpu_buffer);
4271 }
4272
4273 /**
4274  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4275  * @buffer: The ring buffer to reset a per cpu buffer of
4276  * @cpu: The CPU buffer to be reset
4277  */
4278 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4279 {
4280         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4281         unsigned long flags;
4282
4283         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4284                 return;
4285         /* prevent another thread from changing buffer sizes */
4286         mutex_lock(&buffer->mutex);
4287
4288         atomic_inc(&buffer->resize_disabled);
4289         atomic_inc(&cpu_buffer->record_disabled);
4290
4291         /* Make sure all commits have finished */
4292         synchronize_sched();
4293
4294         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4295
4296         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4297                 goto out;
4298
4299         arch_spin_lock(&cpu_buffer->lock);
4300
4301         rb_reset_cpu(cpu_buffer);
4302
4303         arch_spin_unlock(&cpu_buffer->lock);
4304
4305  out:
4306         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4307
4308         atomic_dec(&cpu_buffer->record_disabled);
4309         atomic_dec(&buffer->resize_disabled);
4310
4311         mutex_unlock(&buffer->mutex);
4312 }
4313 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4314
4315 /**
4316  * ring_buffer_reset - reset a ring buffer
4317  * @buffer: The ring buffer to reset all cpu buffers
4318  */
4319 void ring_buffer_reset(struct ring_buffer *buffer)
4320 {
4321         int cpu;
4322
4323         for_each_buffer_cpu(buffer, cpu)
4324                 ring_buffer_reset_cpu(buffer, cpu);
4325 }
4326 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4327
4328 /**
4329  * rind_buffer_empty - is the ring buffer empty?
4330  * @buffer: The ring buffer to test
4331  */
4332 bool ring_buffer_empty(struct ring_buffer *buffer)
4333 {
4334         struct ring_buffer_per_cpu *cpu_buffer;
4335         unsigned long flags;
4336         bool dolock;
4337         int cpu;
4338         int ret;
4339
4340         /* yes this is racy, but if you don't like the race, lock the buffer */
4341         for_each_buffer_cpu(buffer, cpu) {
4342                 cpu_buffer = buffer->buffers[cpu];
4343                 local_irq_save(flags);
4344                 dolock = rb_reader_lock(cpu_buffer);
4345                 ret = rb_per_cpu_empty(cpu_buffer);
4346                 rb_reader_unlock(cpu_buffer, dolock);
4347                 local_irq_restore(flags);
4348
4349                 if (!ret)
4350                         return false;
4351         }
4352
4353         return true;
4354 }
4355 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4356
4357 /**
4358  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4359  * @buffer: The ring buffer
4360  * @cpu: The CPU buffer to test
4361  */
4362 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4363 {
4364         struct ring_buffer_per_cpu *cpu_buffer;
4365         unsigned long flags;
4366         bool dolock;
4367         int ret;
4368
4369         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4370                 return true;
4371
4372         cpu_buffer = buffer->buffers[cpu];
4373         local_irq_save(flags);
4374         dolock = rb_reader_lock(cpu_buffer);
4375         ret = rb_per_cpu_empty(cpu_buffer);
4376         rb_reader_unlock(cpu_buffer, dolock);
4377         local_irq_restore(flags);
4378
4379         return ret;
4380 }
4381 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4382
4383 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4384 /**
4385  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4386  * @buffer_a: One buffer to swap with
4387  * @buffer_b: The other buffer to swap with
4388  *
4389  * This function is useful for tracers that want to take a "snapshot"
4390  * of a CPU buffer and has another back up buffer lying around.
4391  * it is expected that the tracer handles the cpu buffer not being
4392  * used at the moment.
4393  */
4394 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4395                          struct ring_buffer *buffer_b, int cpu)
4396 {
4397         struct ring_buffer_per_cpu *cpu_buffer_a;
4398         struct ring_buffer_per_cpu *cpu_buffer_b;
4399         int ret = -EINVAL;
4400
4401         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4402             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4403                 goto out;
4404
4405         cpu_buffer_a = buffer_a->buffers[cpu];
4406         cpu_buffer_b = buffer_b->buffers[cpu];
4407
4408         /* At least make sure the two buffers are somewhat the same */
4409         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4410                 goto out;
4411
4412         ret = -EAGAIN;
4413
4414         if (atomic_read(&buffer_a->record_disabled))
4415                 goto out;
4416
4417         if (atomic_read(&buffer_b->record_disabled))
4418                 goto out;
4419
4420         if (atomic_read(&cpu_buffer_a->record_disabled))
4421                 goto out;
4422
4423         if (atomic_read(&cpu_buffer_b->record_disabled))
4424                 goto out;
4425
4426         /*
4427          * We can't do a synchronize_sched here because this
4428          * function can be called in atomic context.
4429          * Normally this will be called from the same CPU as cpu.
4430          * If not it's up to the caller to protect this.
4431          */
4432         atomic_inc(&cpu_buffer_a->record_disabled);
4433         atomic_inc(&cpu_buffer_b->record_disabled);
4434
4435         ret = -EBUSY;
4436         if (local_read(&cpu_buffer_a->committing))
4437                 goto out_dec;
4438         if (local_read(&cpu_buffer_b->committing))
4439                 goto out_dec;
4440
4441         buffer_a->buffers[cpu] = cpu_buffer_b;
4442         buffer_b->buffers[cpu] = cpu_buffer_a;
4443
4444         cpu_buffer_b->buffer = buffer_a;
4445         cpu_buffer_a->buffer = buffer_b;
4446
4447         ret = 0;
4448
4449 out_dec:
4450         atomic_dec(&cpu_buffer_a->record_disabled);
4451         atomic_dec(&cpu_buffer_b->record_disabled);
4452 out:
4453         return ret;
4454 }
4455 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4456 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4457
4458 /**
4459  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4460  * @buffer: the buffer to allocate for.
4461  * @cpu: the cpu buffer to allocate.
4462  *
4463  * This function is used in conjunction with ring_buffer_read_page.
4464  * When reading a full page from the ring buffer, these functions
4465  * can be used to speed up the process. The calling function should
4466  * allocate a few pages first with this function. Then when it
4467  * needs to get pages from the ring buffer, it passes the result
4468  * of this function into ring_buffer_read_page, which will swap
4469  * the page that was allocated, with the read page of the buffer.
4470  *
4471  * Returns:
4472  *  The page allocated, or ERR_PTR
4473  */
4474 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4475 {
4476         struct ring_buffer_per_cpu *cpu_buffer;
4477         struct buffer_data_page *bpage = NULL;
4478         unsigned long flags;
4479         struct page *page;
4480
4481         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4482                 return ERR_PTR(-ENODEV);
4483
4484         cpu_buffer = buffer->buffers[cpu];
4485         local_irq_save(flags);
4486         arch_spin_lock(&cpu_buffer->lock);
4487
4488         if (cpu_buffer->free_page) {
4489                 bpage = cpu_buffer->free_page;
4490                 cpu_buffer->free_page = NULL;
4491         }
4492
4493         arch_spin_unlock(&cpu_buffer->lock);
4494         local_irq_restore(flags);
4495
4496         if (bpage)
4497                 goto out;
4498
4499         page = alloc_pages_node(cpu_to_node(cpu),
4500                                 GFP_KERNEL | __GFP_NORETRY, 0);
4501         if (!page)
4502                 return ERR_PTR(-ENOMEM);
4503
4504         bpage = page_address(page);
4505
4506  out:
4507         rb_init_page(bpage);
4508
4509         return bpage;
4510 }
4511 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4512
4513 /**
4514  * ring_buffer_free_read_page - free an allocated read page
4515  * @buffer: the buffer the page was allocate for
4516  * @cpu: the cpu buffer the page came from
4517  * @data: the page to free
4518  *
4519  * Free a page allocated from ring_buffer_alloc_read_page.
4520  */
4521 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4522 {
4523         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4524         struct buffer_data_page *bpage = data;
4525         struct page *page = virt_to_page(bpage);
4526         unsigned long flags;
4527
4528         /* If the page is still in use someplace else, we can't reuse it */
4529         if (page_ref_count(page) > 1)
4530                 goto out;
4531
4532         local_irq_save(flags);
4533         arch_spin_lock(&cpu_buffer->lock);
4534
4535         if (!cpu_buffer->free_page) {
4536                 cpu_buffer->free_page = bpage;
4537                 bpage = NULL;
4538         }
4539
4540         arch_spin_unlock(&cpu_buffer->lock);
4541         local_irq_restore(flags);
4542
4543  out:
4544         free_page((unsigned long)bpage);
4545 }
4546 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4547
4548 /**
4549  * ring_buffer_read_page - extract a page from the ring buffer
4550  * @buffer: buffer to extract from
4551  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4552  * @len: amount to extract
4553  * @cpu: the cpu of the buffer to extract
4554  * @full: should the extraction only happen when the page is full.
4555  *
4556  * This function will pull out a page from the ring buffer and consume it.
4557  * @data_page must be the address of the variable that was returned
4558  * from ring_buffer_alloc_read_page. This is because the page might be used
4559  * to swap with a page in the ring buffer.
4560  *
4561  * for example:
4562  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4563  *      if (IS_ERR(rpage))
4564  *              return PTR_ERR(rpage);
4565  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4566  *      if (ret >= 0)
4567  *              process_page(rpage, ret);
4568  *
4569  * When @full is set, the function will not return true unless
4570  * the writer is off the reader page.
4571  *
4572  * Note: it is up to the calling functions to handle sleeps and wakeups.
4573  *  The ring buffer can be used anywhere in the kernel and can not
4574  *  blindly call wake_up. The layer that uses the ring buffer must be
4575  *  responsible for that.
4576  *
4577  * Returns:
4578  *  >=0 if data has been transferred, returns the offset of consumed data.
4579  *  <0 if no data has been transferred.
4580  */
4581 int ring_buffer_read_page(struct ring_buffer *buffer,
4582                           void **data_page, size_t len, int cpu, int full)
4583 {
4584         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4585         struct ring_buffer_event *event;
4586         struct buffer_data_page *bpage;
4587         struct buffer_page *reader;
4588         unsigned long missed_events;
4589         unsigned long flags;
4590         unsigned int commit;
4591         unsigned int read;
4592         u64 save_timestamp;
4593         int ret = -1;
4594
4595         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4596                 goto out;
4597
4598         /*
4599          * If len is not big enough to hold the page header, then
4600          * we can not copy anything.
4601          */
4602         if (len <= BUF_PAGE_HDR_SIZE)
4603                 goto out;
4604
4605         len -= BUF_PAGE_HDR_SIZE;
4606
4607         if (!data_page)
4608                 goto out;
4609
4610         bpage = *data_page;
4611         if (!bpage)
4612                 goto out;
4613
4614         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4615
4616         reader = rb_get_reader_page(cpu_buffer);
4617         if (!reader)
4618                 goto out_unlock;
4619
4620         event = rb_reader_event(cpu_buffer);
4621
4622         read = reader->read;
4623         commit = rb_page_commit(reader);
4624
4625         /* Check if any events were dropped */
4626         missed_events = cpu_buffer->lost_events;
4627
4628         /*
4629          * If this page has been partially read or
4630          * if len is not big enough to read the rest of the page or
4631          * a writer is still on the page, then
4632          * we must copy the data from the page to the buffer.
4633          * Otherwise, we can simply swap the page with the one passed in.
4634          */
4635         if (read || (len < (commit - read)) ||
4636             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4637                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4638                 unsigned int rpos = read;
4639                 unsigned int pos = 0;
4640                 unsigned int size;
4641
4642                 if (full)
4643                         goto out_unlock;
4644
4645                 if (len > (commit - read))
4646                         len = (commit - read);
4647
4648                 /* Always keep the time extend and data together */
4649                 size = rb_event_ts_length(event);
4650
4651                 if (len < size)
4652                         goto out_unlock;
4653
4654                 /* save the current timestamp, since the user will need it */
4655                 save_timestamp = cpu_buffer->read_stamp;
4656
4657                 /* Need to copy one event at a time */
4658                 do {
4659                         /* We need the size of one event, because
4660                          * rb_advance_reader only advances by one event,
4661                          * whereas rb_event_ts_length may include the size of
4662                          * one or two events.
4663                          * We have already ensured there's enough space if this
4664                          * is a time extend. */
4665                         size = rb_event_length(event);
4666                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4667
4668                         len -= size;
4669
4670                         rb_advance_reader(cpu_buffer);
4671                         rpos = reader->read;
4672                         pos += size;
4673
4674                         if (rpos >= commit)
4675                                 break;
4676
4677                         event = rb_reader_event(cpu_buffer);
4678                         /* Always keep the time extend and data together */
4679                         size = rb_event_ts_length(event);
4680                 } while (len >= size);
4681
4682                 /* update bpage */
4683                 local_set(&bpage->commit, pos);
4684                 bpage->time_stamp = save_timestamp;
4685
4686                 /* we copied everything to the beginning */
4687                 read = 0;
4688         } else {
4689                 /* update the entry counter */
4690                 cpu_buffer->read += rb_page_entries(reader);
4691                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4692
4693                 /* swap the pages */
4694                 rb_init_page(bpage);
4695                 bpage = reader->page;
4696                 reader->page = *data_page;
4697                 local_set(&reader->write, 0);
4698                 local_set(&reader->entries, 0);
4699                 reader->read = 0;
4700                 *data_page = bpage;
4701
4702                 /*
4703                  * Use the real_end for the data size,
4704                  * This gives us a chance to store the lost events
4705                  * on the page.
4706                  */
4707                 if (reader->real_end)
4708                         local_set(&bpage->commit, reader->real_end);
4709         }
4710         ret = read;
4711
4712         cpu_buffer->lost_events = 0;
4713
4714         commit = local_read(&bpage->commit);
4715         /*
4716          * Set a flag in the commit field if we lost events
4717          */
4718         if (missed_events) {
4719                 /* If there is room at the end of the page to save the
4720                  * missed events, then record it there.
4721                  */
4722                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4723                         memcpy(&bpage->data[commit], &missed_events,
4724                                sizeof(missed_events));
4725                         local_add(RB_MISSED_STORED, &bpage->commit);
4726                         commit += sizeof(missed_events);
4727                 }
4728                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4729         }
4730
4731         /*
4732          * This page may be off to user land. Zero it out here.
4733          */
4734         if (commit < BUF_PAGE_SIZE)
4735                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4736
4737  out_unlock:
4738         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4739
4740  out:
4741         return ret;
4742 }
4743 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4744
4745 /*
4746  * We only allocate new buffers, never free them if the CPU goes down.
4747  * If we were to free the buffer, then the user would lose any trace that was in
4748  * the buffer.
4749  */
4750 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4751 {
4752         struct ring_buffer *buffer;
4753         long nr_pages_same;
4754         int cpu_i;
4755         unsigned long nr_pages;
4756
4757         buffer = container_of(node, struct ring_buffer, node);
4758         if (cpumask_test_cpu(cpu, buffer->cpumask))
4759                 return 0;
4760
4761         nr_pages = 0;
4762         nr_pages_same = 1;
4763         /* check if all cpu sizes are same */
4764         for_each_buffer_cpu(buffer, cpu_i) {
4765                 /* fill in the size from first enabled cpu */
4766                 if (nr_pages == 0)
4767                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4768                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4769                         nr_pages_same = 0;
4770                         break;
4771                 }
4772         }
4773         /* allocate minimum pages, user can later expand it */
4774         if (!nr_pages_same)
4775                 nr_pages = 2;
4776         buffer->buffers[cpu] =
4777                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4778         if (!buffer->buffers[cpu]) {
4779                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4780                      cpu);
4781                 return -ENOMEM;
4782         }
4783         smp_wmb();
4784         cpumask_set_cpu(cpu, buffer->cpumask);
4785         return 0;
4786 }
4787
4788 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4789 /*
4790  * This is a basic integrity check of the ring buffer.
4791  * Late in the boot cycle this test will run when configured in.
4792  * It will kick off a thread per CPU that will go into a loop
4793  * writing to the per cpu ring buffer various sizes of data.
4794  * Some of the data will be large items, some small.
4795  *
4796  * Another thread is created that goes into a spin, sending out
4797  * IPIs to the other CPUs to also write into the ring buffer.
4798  * this is to test the nesting ability of the buffer.
4799  *
4800  * Basic stats are recorded and reported. If something in the
4801  * ring buffer should happen that's not expected, a big warning
4802  * is displayed and all ring buffers are disabled.
4803  */
4804 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4805
4806 struct rb_test_data {
4807         struct ring_buffer      *buffer;
4808         unsigned long           events;
4809         unsigned long           bytes_written;
4810         unsigned long           bytes_alloc;
4811         unsigned long           bytes_dropped;
4812         unsigned long           events_nested;
4813         unsigned long           bytes_written_nested;
4814         unsigned long           bytes_alloc_nested;
4815         unsigned long           bytes_dropped_nested;
4816         int                     min_size_nested;
4817         int                     max_size_nested;
4818         int                     max_size;
4819         int                     min_size;
4820         int                     cpu;
4821         int                     cnt;
4822 };
4823
4824 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4825
4826 /* 1 meg per cpu */
4827 #define RB_TEST_BUFFER_SIZE     1048576
4828
4829 static char rb_string[] __initdata =
4830         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4831         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4832         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4833
4834 static bool rb_test_started __initdata;
4835
4836 struct rb_item {
4837         int size;
4838         char str[];
4839 };
4840
4841 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4842 {
4843         struct ring_buffer_event *event;
4844         struct rb_item *item;
4845         bool started;
4846         int event_len;
4847         int size;
4848         int len;
4849         int cnt;
4850
4851         /* Have nested writes different that what is written */
4852         cnt = data->cnt + (nested ? 27 : 0);
4853
4854         /* Multiply cnt by ~e, to make some unique increment */
4855         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4856
4857         len = size + sizeof(struct rb_item);
4858
4859         started = rb_test_started;
4860         /* read rb_test_started before checking buffer enabled */
4861         smp_rmb();
4862
4863         event = ring_buffer_lock_reserve(data->buffer, len);
4864         if (!event) {
4865                 /* Ignore dropped events before test starts. */
4866                 if (started) {
4867                         if (nested)
4868                                 data->bytes_dropped += len;
4869                         else
4870                                 data->bytes_dropped_nested += len;
4871                 }
4872                 return len;
4873         }
4874
4875         event_len = ring_buffer_event_length(event);
4876
4877         if (RB_WARN_ON(data->buffer, event_len < len))
4878                 goto out;
4879
4880         item = ring_buffer_event_data(event);
4881         item->size = size;
4882         memcpy(item->str, rb_string, size);
4883
4884         if (nested) {
4885                 data->bytes_alloc_nested += event_len;
4886                 data->bytes_written_nested += len;
4887                 data->events_nested++;
4888                 if (!data->min_size_nested || len < data->min_size_nested)
4889                         data->min_size_nested = len;
4890                 if (len > data->max_size_nested)
4891                         data->max_size_nested = len;
4892         } else {
4893                 data->bytes_alloc += event_len;
4894                 data->bytes_written += len;
4895                 data->events++;
4896                 if (!data->min_size || len < data->min_size)
4897                         data->max_size = len;
4898                 if (len > data->max_size)
4899                         data->max_size = len;
4900         }
4901
4902  out:
4903         ring_buffer_unlock_commit(data->buffer, event);
4904
4905         return 0;
4906 }
4907
4908 static __init int rb_test(void *arg)
4909 {
4910         struct rb_test_data *data = arg;
4911
4912         while (!kthread_should_stop()) {
4913                 rb_write_something(data, false);
4914                 data->cnt++;
4915
4916                 set_current_state(TASK_INTERRUPTIBLE);
4917                 /* Now sleep between a min of 100-300us and a max of 1ms */
4918                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4919         }
4920
4921         return 0;
4922 }
4923
4924 static __init void rb_ipi(void *ignore)
4925 {
4926         struct rb_test_data *data;
4927         int cpu = smp_processor_id();
4928
4929         data = &rb_data[cpu];
4930         rb_write_something(data, true);
4931 }
4932
4933 static __init int rb_hammer_test(void *arg)
4934 {
4935         while (!kthread_should_stop()) {
4936
4937                 /* Send an IPI to all cpus to write data! */
4938                 smp_call_function(rb_ipi, NULL, 1);
4939                 /* No sleep, but for non preempt, let others run */
4940                 schedule();
4941         }
4942
4943         return 0;
4944 }
4945
4946 static __init int test_ringbuffer(void)
4947 {
4948         struct task_struct *rb_hammer;
4949         struct ring_buffer *buffer;
4950         int cpu;
4951         int ret = 0;
4952
4953         pr_info("Running ring buffer tests...\n");
4954
4955         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4956         if (WARN_ON(!buffer))
4957                 return 0;
4958
4959         /* Disable buffer so that threads can't write to it yet */
4960         ring_buffer_record_off(buffer);
4961
4962         for_each_online_cpu(cpu) {
4963                 rb_data[cpu].buffer = buffer;
4964                 rb_data[cpu].cpu = cpu;
4965                 rb_data[cpu].cnt = cpu;
4966                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4967                                                  "rbtester/%d", cpu);
4968                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4969                         pr_cont("FAILED\n");
4970                         ret = PTR_ERR(rb_threads[cpu]);
4971                         goto out_free;
4972                 }
4973
4974                 kthread_bind(rb_threads[cpu], cpu);
4975                 wake_up_process(rb_threads[cpu]);
4976         }
4977
4978         /* Now create the rb hammer! */
4979         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4980         if (WARN_ON(IS_ERR(rb_hammer))) {
4981                 pr_cont("FAILED\n");
4982                 ret = PTR_ERR(rb_hammer);
4983                 goto out_free;
4984         }
4985
4986         ring_buffer_record_on(buffer);
4987         /*
4988          * Show buffer is enabled before setting rb_test_started.
4989          * Yes there's a small race window where events could be
4990          * dropped and the thread wont catch it. But when a ring
4991          * buffer gets enabled, there will always be some kind of
4992          * delay before other CPUs see it. Thus, we don't care about
4993          * those dropped events. We care about events dropped after
4994          * the threads see that the buffer is active.
4995          */
4996         smp_wmb();
4997         rb_test_started = true;
4998
4999         set_current_state(TASK_INTERRUPTIBLE);
5000         /* Just run for 10 seconds */;
5001         schedule_timeout(10 * HZ);
5002
5003         kthread_stop(rb_hammer);
5004
5005  out_free:
5006         for_each_online_cpu(cpu) {
5007                 if (!rb_threads[cpu])
5008                         break;
5009                 kthread_stop(rb_threads[cpu]);
5010         }
5011         if (ret) {
5012                 ring_buffer_free(buffer);
5013                 return ret;
5014         }
5015
5016         /* Report! */
5017         pr_info("finished\n");
5018         for_each_online_cpu(cpu) {
5019                 struct ring_buffer_event *event;
5020                 struct rb_test_data *data = &rb_data[cpu];
5021                 struct rb_item *item;
5022                 unsigned long total_events;
5023                 unsigned long total_dropped;
5024                 unsigned long total_written;
5025                 unsigned long total_alloc;
5026                 unsigned long total_read = 0;
5027                 unsigned long total_size = 0;
5028                 unsigned long total_len = 0;
5029                 unsigned long total_lost = 0;
5030                 unsigned long lost;
5031                 int big_event_size;
5032                 int small_event_size;
5033
5034                 ret = -1;
5035
5036                 total_events = data->events + data->events_nested;
5037                 total_written = data->bytes_written + data->bytes_written_nested;
5038                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5039                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5040
5041                 big_event_size = data->max_size + data->max_size_nested;
5042                 small_event_size = data->min_size + data->min_size_nested;
5043
5044                 pr_info("CPU %d:\n", cpu);
5045                 pr_info("              events:    %ld\n", total_events);
5046                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5047                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5048                 pr_info("       written bytes:    %ld\n", total_written);
5049                 pr_info("       biggest event:    %d\n", big_event_size);
5050                 pr_info("      smallest event:    %d\n", small_event_size);
5051
5052                 if (RB_WARN_ON(buffer, total_dropped))
5053                         break;
5054
5055                 ret = 0;
5056
5057                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5058                         total_lost += lost;
5059                         item = ring_buffer_event_data(event);
5060                         total_len += ring_buffer_event_length(event);
5061                         total_size += item->size + sizeof(struct rb_item);
5062                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5063                                 pr_info("FAILED!\n");
5064                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5065                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5066                                 RB_WARN_ON(buffer, 1);
5067                                 ret = -1;
5068                                 break;
5069                         }
5070                         total_read++;
5071                 }
5072                 if (ret)
5073                         break;
5074
5075                 ret = -1;
5076
5077                 pr_info("         read events:   %ld\n", total_read);
5078                 pr_info("         lost events:   %ld\n", total_lost);
5079                 pr_info("        total events:   %ld\n", total_lost + total_read);
5080                 pr_info("  recorded len bytes:   %ld\n", total_len);
5081                 pr_info(" recorded size bytes:   %ld\n", total_size);
5082                 if (total_lost)
5083                         pr_info(" With dropped events, record len and size may not match\n"
5084                                 " alloced and written from above\n");
5085                 if (!total_lost) {
5086                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5087                                        total_size != total_written))
5088                                 break;
5089                 }
5090                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5091                         break;
5092
5093                 ret = 0;
5094         }
5095         if (!ret)
5096                 pr_info("Ring buffer PASSED!\n");
5097
5098         ring_buffer_free(buffer);
5099         return 0;
5100 }
5101
5102 late_initcall(test_ringbuffer);
5103 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */