GNU Linux-libre 5.4.274-gnu1
[releases.git] / kernel / time / timer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 #include <linux/random.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
52 #include <asm/io.h>
53
54 #include "tick-internal.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
58
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
60
61 EXPORT_SYMBOL(jiffies_64);
62
63 /*
64  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66  * level has a different granularity.
67  *
68  * The level granularity is:            LVL_CLK_DIV ^ lvl
69  * The level clock frequency is:        HZ / (LVL_CLK_DIV ^ level)
70  *
71  * The array level of a newly armed timer depends on the relative expiry
72  * time. The farther the expiry time is away the higher the array level and
73  * therefor the granularity becomes.
74  *
75  * Contrary to the original timer wheel implementation, which aims for 'exact'
76  * expiry of the timers, this implementation removes the need for recascading
77  * the timers into the lower array levels. The previous 'classic' timer wheel
78  * implementation of the kernel already violated the 'exact' expiry by adding
79  * slack to the expiry time to provide batched expiration. The granularity
80  * levels provide implicit batching.
81  *
82  * This is an optimization of the original timer wheel implementation for the
83  * majority of the timer wheel use cases: timeouts. The vast majority of
84  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85  * the timeout expires it indicates that normal operation is disturbed, so it
86  * does not matter much whether the timeout comes with a slight delay.
87  *
88  * The only exception to this are networking timers with a small expiry
89  * time. They rely on the granularity. Those fit into the first wheel level,
90  * which has HZ granularity.
91  *
92  * We don't have cascading anymore. timers with a expiry time above the
93  * capacity of the last wheel level are force expired at the maximum timeout
94  * value of the last wheel level. From data sampling we know that the maximum
95  * value observed is 5 days (network connection tracking), so this should not
96  * be an issue.
97  *
98  * The currently chosen array constants values are a good compromise between
99  * array size and granularity.
100  *
101  * This results in the following granularity and range levels:
102  *
103  * HZ 1000 steps
104  * Level Offset  Granularity            Range
105  *  0      0         1 ms                0 ms -         63 ms
106  *  1     64         8 ms               64 ms -        511 ms
107  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
108  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
109  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
110  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
111  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
112  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
113  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
114  *
115  * HZ  300
116  * Level Offset  Granularity            Range
117  *  0      0         3 ms                0 ms -        210 ms
118  *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
119  *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
120  *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
121  *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
122  *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
123  *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
124  *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
125  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126  *
127  * HZ  250
128  * Level Offset  Granularity            Range
129  *  0      0         4 ms                0 ms -        255 ms
130  *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
131  *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
132  *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
133  *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
134  *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
135  *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
136  *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
137  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138  *
139  * HZ  100
140  * Level Offset  Granularity            Range
141  *  0      0         10 ms               0 ms -        630 ms
142  *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
143  *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
144  *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
145  *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
146  *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
147  *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
148  *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
149  */
150
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT   3
153 #define LVL_CLK_DIV     (1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n)     (1UL << LVL_SHIFT(n))
157
158 /*
159  * The time start value for each level to select the bucket at enqueue
160  * time.
161  */
162 #define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163
164 /* Size of each clock level */
165 #define LVL_BITS        6
166 #define LVL_SIZE        (1UL << LVL_BITS)
167 #define LVL_MASK        (LVL_SIZE - 1)
168 #define LVL_OFFS(n)     ((n) * LVL_SIZE)
169
170 /* Level depth */
171 #if HZ > 100
172 # define LVL_DEPTH      9
173 # else
174 # define LVL_DEPTH      8
175 #endif
176
177 /* The cutoff (max. capacity of the wheel) */
178 #define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
179 #define WHEEL_TIMEOUT_MAX       (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
180
181 /*
182  * The resulting wheel size. If NOHZ is configured we allocate two
183  * wheels so we have a separate storage for the deferrable timers.
184  */
185 #define WHEEL_SIZE      (LVL_SIZE * LVL_DEPTH)
186
187 #ifdef CONFIG_NO_HZ_COMMON
188 # define NR_BASES       2
189 # define BASE_STD       0
190 # define BASE_DEF       1
191 #else
192 # define NR_BASES       1
193 # define BASE_STD       0
194 # define BASE_DEF       0
195 #endif
196
197 struct timer_base {
198         raw_spinlock_t          lock;
199         struct timer_list       *running_timer;
200 #ifdef CONFIG_PREEMPT_RT
201         spinlock_t              expiry_lock;
202         atomic_t                timer_waiters;
203 #endif
204         unsigned long           clk;
205         unsigned long           next_expiry;
206         unsigned int            cpu;
207         bool                    is_idle;
208         bool                    must_forward_clk;
209         DECLARE_BITMAP(pending_map, WHEEL_SIZE);
210         struct hlist_head       vectors[WHEEL_SIZE];
211 } ____cacheline_aligned;
212
213 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
214
215 #ifdef CONFIG_NO_HZ_COMMON
216
217 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
218 static DEFINE_MUTEX(timer_keys_mutex);
219
220 static void timer_update_keys(struct work_struct *work);
221 static DECLARE_WORK(timer_update_work, timer_update_keys);
222
223 #ifdef CONFIG_SMP
224 unsigned int sysctl_timer_migration = 1;
225
226 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
227
228 static void timers_update_migration(void)
229 {
230         if (sysctl_timer_migration && tick_nohz_active)
231                 static_branch_enable(&timers_migration_enabled);
232         else
233                 static_branch_disable(&timers_migration_enabled);
234 }
235 #else
236 static inline void timers_update_migration(void) { }
237 #endif /* !CONFIG_SMP */
238
239 static void timer_update_keys(struct work_struct *work)
240 {
241         mutex_lock(&timer_keys_mutex);
242         timers_update_migration();
243         static_branch_enable(&timers_nohz_active);
244         mutex_unlock(&timer_keys_mutex);
245 }
246
247 void timers_update_nohz(void)
248 {
249         schedule_work(&timer_update_work);
250 }
251
252 int timer_migration_handler(struct ctl_table *table, int write,
253                             void __user *buffer, size_t *lenp,
254                             loff_t *ppos)
255 {
256         int ret;
257
258         mutex_lock(&timer_keys_mutex);
259         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
260         if (!ret && write)
261                 timers_update_migration();
262         mutex_unlock(&timer_keys_mutex);
263         return ret;
264 }
265
266 static inline bool is_timers_nohz_active(void)
267 {
268         return static_branch_unlikely(&timers_nohz_active);
269 }
270 #else
271 static inline bool is_timers_nohz_active(void) { return false; }
272 #endif /* NO_HZ_COMMON */
273
274 static unsigned long round_jiffies_common(unsigned long j, int cpu,
275                 bool force_up)
276 {
277         int rem;
278         unsigned long original = j;
279
280         /*
281          * We don't want all cpus firing their timers at once hitting the
282          * same lock or cachelines, so we skew each extra cpu with an extra
283          * 3 jiffies. This 3 jiffies came originally from the mm/ code which
284          * already did this.
285          * The skew is done by adding 3*cpunr, then round, then subtract this
286          * extra offset again.
287          */
288         j += cpu * 3;
289
290         rem = j % HZ;
291
292         /*
293          * If the target jiffie is just after a whole second (which can happen
294          * due to delays of the timer irq, long irq off times etc etc) then
295          * we should round down to the whole second, not up. Use 1/4th second
296          * as cutoff for this rounding as an extreme upper bound for this.
297          * But never round down if @force_up is set.
298          */
299         if (rem < HZ/4 && !force_up) /* round down */
300                 j = j - rem;
301         else /* round up */
302                 j = j - rem + HZ;
303
304         /* now that we have rounded, subtract the extra skew again */
305         j -= cpu * 3;
306
307         /*
308          * Make sure j is still in the future. Otherwise return the
309          * unmodified value.
310          */
311         return time_is_after_jiffies(j) ? j : original;
312 }
313
314 /**
315  * __round_jiffies - function to round jiffies to a full second
316  * @j: the time in (absolute) jiffies that should be rounded
317  * @cpu: the processor number on which the timeout will happen
318  *
319  * __round_jiffies() rounds an absolute time in the future (in jiffies)
320  * up or down to (approximately) full seconds. This is useful for timers
321  * for which the exact time they fire does not matter too much, as long as
322  * they fire approximately every X seconds.
323  *
324  * By rounding these timers to whole seconds, all such timers will fire
325  * at the same time, rather than at various times spread out. The goal
326  * of this is to have the CPU wake up less, which saves power.
327  *
328  * The exact rounding is skewed for each processor to avoid all
329  * processors firing at the exact same time, which could lead
330  * to lock contention or spurious cache line bouncing.
331  *
332  * The return value is the rounded version of the @j parameter.
333  */
334 unsigned long __round_jiffies(unsigned long j, int cpu)
335 {
336         return round_jiffies_common(j, cpu, false);
337 }
338 EXPORT_SYMBOL_GPL(__round_jiffies);
339
340 /**
341  * __round_jiffies_relative - function to round jiffies to a full second
342  * @j: the time in (relative) jiffies that should be rounded
343  * @cpu: the processor number on which the timeout will happen
344  *
345  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
346  * up or down to (approximately) full seconds. This is useful for timers
347  * for which the exact time they fire does not matter too much, as long as
348  * they fire approximately every X seconds.
349  *
350  * By rounding these timers to whole seconds, all such timers will fire
351  * at the same time, rather than at various times spread out. The goal
352  * of this is to have the CPU wake up less, which saves power.
353  *
354  * The exact rounding is skewed for each processor to avoid all
355  * processors firing at the exact same time, which could lead
356  * to lock contention or spurious cache line bouncing.
357  *
358  * The return value is the rounded version of the @j parameter.
359  */
360 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
361 {
362         unsigned long j0 = jiffies;
363
364         /* Use j0 because jiffies might change while we run */
365         return round_jiffies_common(j + j0, cpu, false) - j0;
366 }
367 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
368
369 /**
370  * round_jiffies - function to round jiffies to a full second
371  * @j: the time in (absolute) jiffies that should be rounded
372  *
373  * round_jiffies() rounds an absolute time in the future (in jiffies)
374  * up or down to (approximately) full seconds. This is useful for timers
375  * for which the exact time they fire does not matter too much, as long as
376  * they fire approximately every X seconds.
377  *
378  * By rounding these timers to whole seconds, all such timers will fire
379  * at the same time, rather than at various times spread out. The goal
380  * of this is to have the CPU wake up less, which saves power.
381  *
382  * The return value is the rounded version of the @j parameter.
383  */
384 unsigned long round_jiffies(unsigned long j)
385 {
386         return round_jiffies_common(j, raw_smp_processor_id(), false);
387 }
388 EXPORT_SYMBOL_GPL(round_jiffies);
389
390 /**
391  * round_jiffies_relative - function to round jiffies to a full second
392  * @j: the time in (relative) jiffies that should be rounded
393  *
394  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
395  * up or down to (approximately) full seconds. This is useful for timers
396  * for which the exact time they fire does not matter too much, as long as
397  * they fire approximately every X seconds.
398  *
399  * By rounding these timers to whole seconds, all such timers will fire
400  * at the same time, rather than at various times spread out. The goal
401  * of this is to have the CPU wake up less, which saves power.
402  *
403  * The return value is the rounded version of the @j parameter.
404  */
405 unsigned long round_jiffies_relative(unsigned long j)
406 {
407         return __round_jiffies_relative(j, raw_smp_processor_id());
408 }
409 EXPORT_SYMBOL_GPL(round_jiffies_relative);
410
411 /**
412  * __round_jiffies_up - function to round jiffies up to a full second
413  * @j: the time in (absolute) jiffies that should be rounded
414  * @cpu: the processor number on which the timeout will happen
415  *
416  * This is the same as __round_jiffies() except that it will never
417  * round down.  This is useful for timeouts for which the exact time
418  * of firing does not matter too much, as long as they don't fire too
419  * early.
420  */
421 unsigned long __round_jiffies_up(unsigned long j, int cpu)
422 {
423         return round_jiffies_common(j, cpu, true);
424 }
425 EXPORT_SYMBOL_GPL(__round_jiffies_up);
426
427 /**
428  * __round_jiffies_up_relative - function to round jiffies up to a full second
429  * @j: the time in (relative) jiffies that should be rounded
430  * @cpu: the processor number on which the timeout will happen
431  *
432  * This is the same as __round_jiffies_relative() except that it will never
433  * round down.  This is useful for timeouts for which the exact time
434  * of firing does not matter too much, as long as they don't fire too
435  * early.
436  */
437 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
438 {
439         unsigned long j0 = jiffies;
440
441         /* Use j0 because jiffies might change while we run */
442         return round_jiffies_common(j + j0, cpu, true) - j0;
443 }
444 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
445
446 /**
447  * round_jiffies_up - function to round jiffies up to a full second
448  * @j: the time in (absolute) jiffies that should be rounded
449  *
450  * This is the same as round_jiffies() except that it will never
451  * round down.  This is useful for timeouts for which the exact time
452  * of firing does not matter too much, as long as they don't fire too
453  * early.
454  */
455 unsigned long round_jiffies_up(unsigned long j)
456 {
457         return round_jiffies_common(j, raw_smp_processor_id(), true);
458 }
459 EXPORT_SYMBOL_GPL(round_jiffies_up);
460
461 /**
462  * round_jiffies_up_relative - function to round jiffies up to a full second
463  * @j: the time in (relative) jiffies that should be rounded
464  *
465  * This is the same as round_jiffies_relative() except that it will never
466  * round down.  This is useful for timeouts for which the exact time
467  * of firing does not matter too much, as long as they don't fire too
468  * early.
469  */
470 unsigned long round_jiffies_up_relative(unsigned long j)
471 {
472         return __round_jiffies_up_relative(j, raw_smp_processor_id());
473 }
474 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
475
476
477 static inline unsigned int timer_get_idx(struct timer_list *timer)
478 {
479         return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
480 }
481
482 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
483 {
484         timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
485                         idx << TIMER_ARRAYSHIFT;
486 }
487
488 /*
489  * Helper function to calculate the array index for a given expiry
490  * time.
491  */
492 static inline unsigned calc_index(unsigned expires, unsigned lvl)
493 {
494         expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
495         return LVL_OFFS(lvl) + (expires & LVL_MASK);
496 }
497
498 static int calc_wheel_index(unsigned long expires, unsigned long clk)
499 {
500         unsigned long delta = expires - clk;
501         unsigned int idx;
502
503         if (delta < LVL_START(1)) {
504                 idx = calc_index(expires, 0);
505         } else if (delta < LVL_START(2)) {
506                 idx = calc_index(expires, 1);
507         } else if (delta < LVL_START(3)) {
508                 idx = calc_index(expires, 2);
509         } else if (delta < LVL_START(4)) {
510                 idx = calc_index(expires, 3);
511         } else if (delta < LVL_START(5)) {
512                 idx = calc_index(expires, 4);
513         } else if (delta < LVL_START(6)) {
514                 idx = calc_index(expires, 5);
515         } else if (delta < LVL_START(7)) {
516                 idx = calc_index(expires, 6);
517         } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
518                 idx = calc_index(expires, 7);
519         } else if ((long) delta < 0) {
520                 idx = clk & LVL_MASK;
521         } else {
522                 /*
523                  * Force expire obscene large timeouts to expire at the
524                  * capacity limit of the wheel.
525                  */
526                 if (delta >= WHEEL_TIMEOUT_CUTOFF)
527                         expires = clk + WHEEL_TIMEOUT_MAX;
528
529                 idx = calc_index(expires, LVL_DEPTH - 1);
530         }
531         return idx;
532 }
533
534 /*
535  * Enqueue the timer into the hash bucket, mark it pending in
536  * the bitmap and store the index in the timer flags.
537  */
538 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
539                           unsigned int idx)
540 {
541         hlist_add_head(&timer->entry, base->vectors + idx);
542         __set_bit(idx, base->pending_map);
543         timer_set_idx(timer, idx);
544
545         trace_timer_start(timer, timer->expires, timer->flags);
546 }
547
548 static void
549 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
550 {
551         unsigned int idx;
552
553         idx = calc_wheel_index(timer->expires, base->clk);
554         enqueue_timer(base, timer, idx);
555 }
556
557 static void
558 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
559 {
560         if (!is_timers_nohz_active())
561                 return;
562
563         /*
564          * TODO: This wants some optimizing similar to the code below, but we
565          * will do that when we switch from push to pull for deferrable timers.
566          */
567         if (timer->flags & TIMER_DEFERRABLE) {
568                 if (tick_nohz_full_cpu(base->cpu))
569                         wake_up_nohz_cpu(base->cpu);
570                 return;
571         }
572
573         /*
574          * We might have to IPI the remote CPU if the base is idle and the
575          * timer is not deferrable. If the other CPU is on the way to idle
576          * then it can't set base->is_idle as we hold the base lock:
577          */
578         if (!base->is_idle)
579                 return;
580
581         /* Check whether this is the new first expiring timer: */
582         if (time_after_eq(timer->expires, base->next_expiry))
583                 return;
584
585         /*
586          * Set the next expiry time and kick the CPU so it can reevaluate the
587          * wheel:
588          */
589         if (time_before(timer->expires, base->clk)) {
590                 /*
591                  * Prevent from forward_timer_base() moving the base->clk
592                  * backward
593                  */
594                 base->next_expiry = base->clk;
595         } else {
596                 base->next_expiry = timer->expires;
597         }
598         wake_up_nohz_cpu(base->cpu);
599 }
600
601 static void
602 internal_add_timer(struct timer_base *base, struct timer_list *timer)
603 {
604         __internal_add_timer(base, timer);
605         trigger_dyntick_cpu(base, timer);
606 }
607
608 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
609
610 static struct debug_obj_descr timer_debug_descr;
611
612 static void *timer_debug_hint(void *addr)
613 {
614         return ((struct timer_list *) addr)->function;
615 }
616
617 static bool timer_is_static_object(void *addr)
618 {
619         struct timer_list *timer = addr;
620
621         return (timer->entry.pprev == NULL &&
622                 timer->entry.next == TIMER_ENTRY_STATIC);
623 }
624
625 /*
626  * fixup_init is called when:
627  * - an active object is initialized
628  */
629 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
630 {
631         struct timer_list *timer = addr;
632
633         switch (state) {
634         case ODEBUG_STATE_ACTIVE:
635                 del_timer_sync(timer);
636                 debug_object_init(timer, &timer_debug_descr);
637                 return true;
638         default:
639                 return false;
640         }
641 }
642
643 /* Stub timer callback for improperly used timers. */
644 static void stub_timer(struct timer_list *unused)
645 {
646         WARN_ON(1);
647 }
648
649 /*
650  * fixup_activate is called when:
651  * - an active object is activated
652  * - an unknown non-static object is activated
653  */
654 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
655 {
656         struct timer_list *timer = addr;
657
658         switch (state) {
659         case ODEBUG_STATE_NOTAVAILABLE:
660                 timer_setup(timer, stub_timer, 0);
661                 return true;
662
663         case ODEBUG_STATE_ACTIVE:
664                 WARN_ON(1);
665                 /* fall through */
666         default:
667                 return false;
668         }
669 }
670
671 /*
672  * fixup_free is called when:
673  * - an active object is freed
674  */
675 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
676 {
677         struct timer_list *timer = addr;
678
679         switch (state) {
680         case ODEBUG_STATE_ACTIVE:
681                 del_timer_sync(timer);
682                 debug_object_free(timer, &timer_debug_descr);
683                 return true;
684         default:
685                 return false;
686         }
687 }
688
689 /*
690  * fixup_assert_init is called when:
691  * - an untracked/uninit-ed object is found
692  */
693 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
694 {
695         struct timer_list *timer = addr;
696
697         switch (state) {
698         case ODEBUG_STATE_NOTAVAILABLE:
699                 timer_setup(timer, stub_timer, 0);
700                 return true;
701         default:
702                 return false;
703         }
704 }
705
706 static struct debug_obj_descr timer_debug_descr = {
707         .name                   = "timer_list",
708         .debug_hint             = timer_debug_hint,
709         .is_static_object       = timer_is_static_object,
710         .fixup_init             = timer_fixup_init,
711         .fixup_activate         = timer_fixup_activate,
712         .fixup_free             = timer_fixup_free,
713         .fixup_assert_init      = timer_fixup_assert_init,
714 };
715
716 static inline void debug_timer_init(struct timer_list *timer)
717 {
718         debug_object_init(timer, &timer_debug_descr);
719 }
720
721 static inline void debug_timer_activate(struct timer_list *timer)
722 {
723         debug_object_activate(timer, &timer_debug_descr);
724 }
725
726 static inline void debug_timer_deactivate(struct timer_list *timer)
727 {
728         debug_object_deactivate(timer, &timer_debug_descr);
729 }
730
731 static inline void debug_timer_free(struct timer_list *timer)
732 {
733         debug_object_free(timer, &timer_debug_descr);
734 }
735
736 static inline void debug_timer_assert_init(struct timer_list *timer)
737 {
738         debug_object_assert_init(timer, &timer_debug_descr);
739 }
740
741 static void do_init_timer(struct timer_list *timer,
742                           void (*func)(struct timer_list *),
743                           unsigned int flags,
744                           const char *name, struct lock_class_key *key);
745
746 void init_timer_on_stack_key(struct timer_list *timer,
747                              void (*func)(struct timer_list *),
748                              unsigned int flags,
749                              const char *name, struct lock_class_key *key)
750 {
751         debug_object_init_on_stack(timer, &timer_debug_descr);
752         do_init_timer(timer, func, flags, name, key);
753 }
754 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
755
756 void destroy_timer_on_stack(struct timer_list *timer)
757 {
758         debug_object_free(timer, &timer_debug_descr);
759 }
760 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
761
762 #else
763 static inline void debug_timer_init(struct timer_list *timer) { }
764 static inline void debug_timer_activate(struct timer_list *timer) { }
765 static inline void debug_timer_deactivate(struct timer_list *timer) { }
766 static inline void debug_timer_assert_init(struct timer_list *timer) { }
767 #endif
768
769 static inline void debug_init(struct timer_list *timer)
770 {
771         debug_timer_init(timer);
772         trace_timer_init(timer);
773 }
774
775 static inline void debug_deactivate(struct timer_list *timer)
776 {
777         debug_timer_deactivate(timer);
778         trace_timer_cancel(timer);
779 }
780
781 static inline void debug_assert_init(struct timer_list *timer)
782 {
783         debug_timer_assert_init(timer);
784 }
785
786 static void do_init_timer(struct timer_list *timer,
787                           void (*func)(struct timer_list *),
788                           unsigned int flags,
789                           const char *name, struct lock_class_key *key)
790 {
791         timer->entry.pprev = NULL;
792         timer->function = func;
793         timer->flags = flags | raw_smp_processor_id();
794         lockdep_init_map(&timer->lockdep_map, name, key, 0);
795 }
796
797 /**
798  * init_timer_key - initialize a timer
799  * @timer: the timer to be initialized
800  * @func: timer callback function
801  * @flags: timer flags
802  * @name: name of the timer
803  * @key: lockdep class key of the fake lock used for tracking timer
804  *       sync lock dependencies
805  *
806  * init_timer_key() must be done to a timer prior calling *any* of the
807  * other timer functions.
808  */
809 void init_timer_key(struct timer_list *timer,
810                     void (*func)(struct timer_list *), unsigned int flags,
811                     const char *name, struct lock_class_key *key)
812 {
813         debug_init(timer);
814         do_init_timer(timer, func, flags, name, key);
815 }
816 EXPORT_SYMBOL(init_timer_key);
817
818 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
819 {
820         struct hlist_node *entry = &timer->entry;
821
822         debug_deactivate(timer);
823
824         __hlist_del(entry);
825         if (clear_pending)
826                 entry->pprev = NULL;
827         entry->next = LIST_POISON2;
828 }
829
830 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
831                              bool clear_pending)
832 {
833         unsigned idx = timer_get_idx(timer);
834
835         if (!timer_pending(timer))
836                 return 0;
837
838         if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
839                 __clear_bit(idx, base->pending_map);
840
841         detach_timer(timer, clear_pending);
842         return 1;
843 }
844
845 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
846 {
847         struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
848
849         /*
850          * If the timer is deferrable and NO_HZ_COMMON is set then we need
851          * to use the deferrable base.
852          */
853         if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
854                 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
855         return base;
856 }
857
858 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
859 {
860         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
861
862         /*
863          * If the timer is deferrable and NO_HZ_COMMON is set then we need
864          * to use the deferrable base.
865          */
866         if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
867                 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
868         return base;
869 }
870
871 static inline struct timer_base *get_timer_base(u32 tflags)
872 {
873         return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
874 }
875
876 static inline struct timer_base *
877 get_target_base(struct timer_base *base, unsigned tflags)
878 {
879 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
880         if (static_branch_likely(&timers_migration_enabled) &&
881             !(tflags & TIMER_PINNED))
882                 return get_timer_cpu_base(tflags, get_nohz_timer_target());
883 #endif
884         return get_timer_this_cpu_base(tflags);
885 }
886
887 static inline void forward_timer_base(struct timer_base *base)
888 {
889 #ifdef CONFIG_NO_HZ_COMMON
890         unsigned long jnow;
891
892         /*
893          * We only forward the base when we are idle or have just come out of
894          * idle (must_forward_clk logic), and have a delta between base clock
895          * and jiffies. In the common case, run_timers will take care of it.
896          */
897         if (likely(!base->must_forward_clk))
898                 return;
899
900         jnow = READ_ONCE(jiffies);
901         base->must_forward_clk = base->is_idle;
902         if ((long)(jnow - base->clk) < 2)
903                 return;
904
905         /*
906          * If the next expiry value is > jiffies, then we fast forward to
907          * jiffies otherwise we forward to the next expiry value.
908          */
909         if (time_after(base->next_expiry, jnow)) {
910                 base->clk = jnow;
911         } else {
912                 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
913                         return;
914                 base->clk = base->next_expiry;
915         }
916 #endif
917 }
918
919
920 /*
921  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
922  * that all timers which are tied to this base are locked, and the base itself
923  * is locked too.
924  *
925  * So __run_timers/migrate_timers can safely modify all timers which could
926  * be found in the base->vectors array.
927  *
928  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
929  * to wait until the migration is done.
930  */
931 static struct timer_base *lock_timer_base(struct timer_list *timer,
932                                           unsigned long *flags)
933         __acquires(timer->base->lock)
934 {
935         for (;;) {
936                 struct timer_base *base;
937                 u32 tf;
938
939                 /*
940                  * We need to use READ_ONCE() here, otherwise the compiler
941                  * might re-read @tf between the check for TIMER_MIGRATING
942                  * and spin_lock().
943                  */
944                 tf = READ_ONCE(timer->flags);
945
946                 if (!(tf & TIMER_MIGRATING)) {
947                         base = get_timer_base(tf);
948                         raw_spin_lock_irqsave(&base->lock, *flags);
949                         if (timer->flags == tf)
950                                 return base;
951                         raw_spin_unlock_irqrestore(&base->lock, *flags);
952                 }
953                 cpu_relax();
954         }
955 }
956
957 #define MOD_TIMER_PENDING_ONLY          0x01
958 #define MOD_TIMER_REDUCE                0x02
959
960 static inline int
961 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
962 {
963         struct timer_base *base, *new_base;
964         unsigned int idx = UINT_MAX;
965         unsigned long clk = 0, flags;
966         int ret = 0;
967
968         BUG_ON(!timer->function);
969
970         /*
971          * This is a common optimization triggered by the networking code - if
972          * the timer is re-modified to have the same timeout or ends up in the
973          * same array bucket then just return:
974          */
975         if (timer_pending(timer)) {
976                 /*
977                  * The downside of this optimization is that it can result in
978                  * larger granularity than you would get from adding a new
979                  * timer with this expiry.
980                  */
981                 long diff = timer->expires - expires;
982
983                 if (!diff)
984                         return 1;
985                 if (options & MOD_TIMER_REDUCE && diff <= 0)
986                         return 1;
987
988                 /*
989                  * We lock timer base and calculate the bucket index right
990                  * here. If the timer ends up in the same bucket, then we
991                  * just update the expiry time and avoid the whole
992                  * dequeue/enqueue dance.
993                  */
994                 base = lock_timer_base(timer, &flags);
995                 forward_timer_base(base);
996
997                 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
998                     time_before_eq(timer->expires, expires)) {
999                         ret = 1;
1000                         goto out_unlock;
1001                 }
1002
1003                 clk = base->clk;
1004                 idx = calc_wheel_index(expires, clk);
1005
1006                 /*
1007                  * Retrieve and compare the array index of the pending
1008                  * timer. If it matches set the expiry to the new value so a
1009                  * subsequent call will exit in the expires check above.
1010                  */
1011                 if (idx == timer_get_idx(timer)) {
1012                         if (!(options & MOD_TIMER_REDUCE))
1013                                 timer->expires = expires;
1014                         else if (time_after(timer->expires, expires))
1015                                 timer->expires = expires;
1016                         ret = 1;
1017                         goto out_unlock;
1018                 }
1019         } else {
1020                 base = lock_timer_base(timer, &flags);
1021                 forward_timer_base(base);
1022         }
1023
1024         ret = detach_if_pending(timer, base, false);
1025         if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1026                 goto out_unlock;
1027
1028         new_base = get_target_base(base, timer->flags);
1029
1030         if (base != new_base) {
1031                 /*
1032                  * We are trying to schedule the timer on the new base.
1033                  * However we can't change timer's base while it is running,
1034                  * otherwise timer_delete_sync() can't detect that the timer's
1035                  * handler yet has not finished. This also guarantees that the
1036                  * timer is serialized wrt itself.
1037                  */
1038                 if (likely(base->running_timer != timer)) {
1039                         /* See the comment in lock_timer_base() */
1040                         timer->flags |= TIMER_MIGRATING;
1041
1042                         raw_spin_unlock(&base->lock);
1043                         base = new_base;
1044                         raw_spin_lock(&base->lock);
1045                         WRITE_ONCE(timer->flags,
1046                                    (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1047                         forward_timer_base(base);
1048                 }
1049         }
1050
1051         debug_timer_activate(timer);
1052
1053         timer->expires = expires;
1054         /*
1055          * If 'idx' was calculated above and the base time did not advance
1056          * between calculating 'idx' and possibly switching the base, only
1057          * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1058          * we need to (re)calculate the wheel index via
1059          * internal_add_timer().
1060          */
1061         if (idx != UINT_MAX && clk == base->clk) {
1062                 enqueue_timer(base, timer, idx);
1063                 trigger_dyntick_cpu(base, timer);
1064         } else {
1065                 internal_add_timer(base, timer);
1066         }
1067
1068 out_unlock:
1069         raw_spin_unlock_irqrestore(&base->lock, flags);
1070
1071         return ret;
1072 }
1073
1074 /**
1075  * mod_timer_pending - Modify a pending timer's timeout
1076  * @timer:      The pending timer to be modified
1077  * @expires:    New absolute timeout in jiffies
1078  *
1079  * mod_timer_pending() is the same for pending timers as mod_timer(), but
1080  * will not activate inactive timers.
1081  *
1082  * Return:
1083  * * %0 - The timer was inactive and not modified
1084  * * %1 - The timer was active and requeued to expire at @expires
1085  */
1086 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1087 {
1088         return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1089 }
1090 EXPORT_SYMBOL(mod_timer_pending);
1091
1092 /**
1093  * mod_timer - Modify a timer's timeout
1094  * @timer:      The timer to be modified
1095  * @expires:    New absolute timeout in jiffies
1096  *
1097  * mod_timer(timer, expires) is equivalent to:
1098  *
1099  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1100  *
1101  * mod_timer() is more efficient than the above open coded sequence. In
1102  * case that the timer is inactive, the del_timer() part is a NOP. The
1103  * timer is in any case activated with the new expiry time @expires.
1104  *
1105  * Note that if there are multiple unserialized concurrent users of the
1106  * same timer, then mod_timer() is the only safe way to modify the timeout,
1107  * since add_timer() cannot modify an already running timer.
1108  *
1109  * Return:
1110  * * %0 - The timer was inactive and started
1111  * * %1 - The timer was active and requeued to expire at @expires or
1112  *        the timer was active and not modified because @expires did
1113  *        not change the effective expiry time
1114  */
1115 int mod_timer(struct timer_list *timer, unsigned long expires)
1116 {
1117         return __mod_timer(timer, expires, 0);
1118 }
1119 EXPORT_SYMBOL(mod_timer);
1120
1121 /**
1122  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1123  * @timer:      The timer to be modified
1124  * @expires:    New absolute timeout in jiffies
1125  *
1126  * timer_reduce() is very similar to mod_timer(), except that it will only
1127  * modify an enqueued timer if that would reduce the expiration time. If
1128  * @timer is not enqueued it starts the timer.
1129  *
1130  * Return:
1131  * * %0 - The timer was inactive and started
1132  * * %1 - The timer was active and requeued to expire at @expires or
1133  *        the timer was active and not modified because @expires
1134  *        did not change the effective expiry time such that the
1135  *        timer would expire earlier than already scheduled
1136  */
1137 int timer_reduce(struct timer_list *timer, unsigned long expires)
1138 {
1139         return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1140 }
1141 EXPORT_SYMBOL(timer_reduce);
1142
1143 /**
1144  * add_timer - Start a timer
1145  * @timer:      The timer to be started
1146  *
1147  * Start @timer to expire at @timer->expires in the future. @timer->expires
1148  * is the absolute expiry time measured in 'jiffies'. When the timer expires
1149  * timer->function(timer) will be invoked from soft interrupt context.
1150  *
1151  * The @timer->expires and @timer->function fields must be set prior
1152  * to calling this function.
1153  *
1154  * If @timer->expires is already in the past @timer will be queued to
1155  * expire at the next timer tick.
1156  *
1157  * This can only operate on an inactive timer. Attempts to invoke this on
1158  * an active timer are rejected with a warning.
1159  */
1160 void add_timer(struct timer_list *timer)
1161 {
1162         BUG_ON(timer_pending(timer));
1163         mod_timer(timer, timer->expires);
1164 }
1165 EXPORT_SYMBOL(add_timer);
1166
1167 /**
1168  * add_timer_on - Start a timer on a particular CPU
1169  * @timer:      The timer to be started
1170  * @cpu:        The CPU to start it on
1171  *
1172  * Same as add_timer() except that it starts the timer on the given CPU.
1173  *
1174  * See add_timer() for further details.
1175  */
1176 void add_timer_on(struct timer_list *timer, int cpu)
1177 {
1178         struct timer_base *new_base, *base;
1179         unsigned long flags;
1180
1181         BUG_ON(timer_pending(timer) || !timer->function);
1182
1183         new_base = get_timer_cpu_base(timer->flags, cpu);
1184
1185         /*
1186          * If @timer was on a different CPU, it should be migrated with the
1187          * old base locked to prevent other operations proceeding with the
1188          * wrong base locked.  See lock_timer_base().
1189          */
1190         base = lock_timer_base(timer, &flags);
1191         if (base != new_base) {
1192                 timer->flags |= TIMER_MIGRATING;
1193
1194                 raw_spin_unlock(&base->lock);
1195                 base = new_base;
1196                 raw_spin_lock(&base->lock);
1197                 WRITE_ONCE(timer->flags,
1198                            (timer->flags & ~TIMER_BASEMASK) | cpu);
1199         }
1200         forward_timer_base(base);
1201
1202         debug_timer_activate(timer);
1203         internal_add_timer(base, timer);
1204         raw_spin_unlock_irqrestore(&base->lock, flags);
1205 }
1206 EXPORT_SYMBOL_GPL(add_timer_on);
1207
1208 /**
1209  * del_timer - Deactivate a timer.
1210  * @timer:      The timer to be deactivated
1211  *
1212  * The function only deactivates a pending timer, but contrary to
1213  * timer_delete_sync() it does not take into account whether the timer's
1214  * callback function is concurrently executed on a different CPU or not.
1215  * It neither prevents rearming of the timer. If @timer can be rearmed
1216  * concurrently then the return value of this function is meaningless.
1217  *
1218  * Return:
1219  * * %0 - The timer was not pending
1220  * * %1 - The timer was pending and deactivated
1221  */
1222 int del_timer(struct timer_list *timer)
1223 {
1224         struct timer_base *base;
1225         unsigned long flags;
1226         int ret = 0;
1227
1228         debug_assert_init(timer);
1229
1230         if (timer_pending(timer)) {
1231                 base = lock_timer_base(timer, &flags);
1232                 ret = detach_if_pending(timer, base, true);
1233                 raw_spin_unlock_irqrestore(&base->lock, flags);
1234         }
1235
1236         return ret;
1237 }
1238 EXPORT_SYMBOL(del_timer);
1239
1240 /**
1241  * try_to_del_timer_sync - Try to deactivate a timer
1242  * @timer:      Timer to deactivate
1243  *
1244  * This function tries to deactivate a timer. On success the timer is not
1245  * queued and the timer callback function is not running on any CPU.
1246  *
1247  * This function does not guarantee that the timer cannot be rearmed right
1248  * after dropping the base lock. That needs to be prevented by the calling
1249  * code if necessary.
1250  *
1251  * Return:
1252  * * %0  - The timer was not pending
1253  * * %1  - The timer was pending and deactivated
1254  * * %-1 - The timer callback function is running on a different CPU
1255  */
1256 int try_to_del_timer_sync(struct timer_list *timer)
1257 {
1258         struct timer_base *base;
1259         unsigned long flags;
1260         int ret = -1;
1261
1262         debug_assert_init(timer);
1263
1264         base = lock_timer_base(timer, &flags);
1265
1266         if (base->running_timer != timer)
1267                 ret = detach_if_pending(timer, base, true);
1268
1269         raw_spin_unlock_irqrestore(&base->lock, flags);
1270
1271         return ret;
1272 }
1273 EXPORT_SYMBOL(try_to_del_timer_sync);
1274
1275 #ifdef CONFIG_PREEMPT_RT
1276 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1277 {
1278         spin_lock_init(&base->expiry_lock);
1279 }
1280
1281 static inline void timer_base_lock_expiry(struct timer_base *base)
1282 {
1283         spin_lock(&base->expiry_lock);
1284 }
1285
1286 static inline void timer_base_unlock_expiry(struct timer_base *base)
1287 {
1288         spin_unlock(&base->expiry_lock);
1289 }
1290
1291 /*
1292  * The counterpart to del_timer_wait_running().
1293  *
1294  * If there is a waiter for base->expiry_lock, then it was waiting for the
1295  * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1296  * the waiter to acquire the lock and make progress.
1297  */
1298 static void timer_sync_wait_running(struct timer_base *base)
1299 {
1300         if (atomic_read(&base->timer_waiters)) {
1301                 raw_spin_unlock_irq(&base->lock);
1302                 spin_unlock(&base->expiry_lock);
1303                 spin_lock(&base->expiry_lock);
1304                 raw_spin_lock_irq(&base->lock);
1305         }
1306 }
1307
1308 /*
1309  * This function is called on PREEMPT_RT kernels when the fast path
1310  * deletion of a timer failed because the timer callback function was
1311  * running.
1312  *
1313  * This prevents priority inversion, if the softirq thread on a remote CPU
1314  * got preempted, and it prevents a life lock when the task which tries to
1315  * delete a timer preempted the softirq thread running the timer callback
1316  * function.
1317  */
1318 static void del_timer_wait_running(struct timer_list *timer)
1319 {
1320         u32 tf;
1321
1322         tf = READ_ONCE(timer->flags);
1323         if (!(tf & TIMER_MIGRATING)) {
1324                 struct timer_base *base = get_timer_base(tf);
1325
1326                 /*
1327                  * Mark the base as contended and grab the expiry lock,
1328                  * which is held by the softirq across the timer
1329                  * callback. Drop the lock immediately so the softirq can
1330                  * expire the next timer. In theory the timer could already
1331                  * be running again, but that's more than unlikely and just
1332                  * causes another wait loop.
1333                  */
1334                 atomic_inc(&base->timer_waiters);
1335                 spin_lock_bh(&base->expiry_lock);
1336                 atomic_dec(&base->timer_waiters);
1337                 spin_unlock_bh(&base->expiry_lock);
1338         }
1339 }
1340 #else
1341 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1342 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1343 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1344 static inline void timer_sync_wait_running(struct timer_base *base) { }
1345 static inline void del_timer_wait_running(struct timer_list *timer) { }
1346 #endif
1347
1348 /**
1349  * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1350  * @timer:      The timer to be deactivated
1351  *
1352  * Synchronization rules: Callers must prevent restarting of the timer,
1353  * otherwise this function is meaningless. It must not be called from
1354  * interrupt contexts unless the timer is an irqsafe one. The caller must
1355  * not hold locks which would prevent completion of the timer's callback
1356  * function. The timer's handler must not call add_timer_on(). Upon exit
1357  * the timer is not queued and the handler is not running on any CPU.
1358  *
1359  * For !irqsafe timers, the caller must not hold locks that are held in
1360  * interrupt context. Even if the lock has nothing to do with the timer in
1361  * question.  Here's why::
1362  *
1363  *    CPU0                             CPU1
1364  *    ----                             ----
1365  *                                     <SOFTIRQ>
1366  *                                       call_timer_fn();
1367  *                                       base->running_timer = mytimer;
1368  *    spin_lock_irq(somelock);
1369  *                                     <IRQ>
1370  *                                        spin_lock(somelock);
1371  *    timer_delete_sync(mytimer);
1372  *    while (base->running_timer == mytimer);
1373  *
1374  * Now timer_delete_sync() will never return and never release somelock.
1375  * The interrupt on the other CPU is waiting to grab somelock but it has
1376  * interrupted the softirq that CPU0 is waiting to finish.
1377  *
1378  * This function cannot guarantee that the timer is not rearmed again by
1379  * some concurrent or preempting code, right after it dropped the base
1380  * lock. If there is the possibility of a concurrent rearm then the return
1381  * value of the function is meaningless.
1382  *
1383  * Return:
1384  * * %0 - The timer was not pending
1385  * * %1 - The timer was pending and deactivated
1386  */
1387 int timer_delete_sync(struct timer_list *timer)
1388 {
1389         int ret;
1390
1391 #ifdef CONFIG_LOCKDEP
1392         unsigned long flags;
1393
1394         /*
1395          * If lockdep gives a backtrace here, please reference
1396          * the synchronization rules above.
1397          */
1398         local_irq_save(flags);
1399         lock_map_acquire(&timer->lockdep_map);
1400         lock_map_release(&timer->lockdep_map);
1401         local_irq_restore(flags);
1402 #endif
1403         /*
1404          * don't use it in hardirq context, because it
1405          * could lead to deadlock.
1406          */
1407         WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1408
1409         do {
1410                 ret = try_to_del_timer_sync(timer);
1411
1412                 if (unlikely(ret < 0)) {
1413                         del_timer_wait_running(timer);
1414                         cpu_relax();
1415                 }
1416         } while (ret < 0);
1417
1418         return ret;
1419 }
1420 EXPORT_SYMBOL(timer_delete_sync);
1421
1422 static void call_timer_fn(struct timer_list *timer,
1423                           void (*fn)(struct timer_list *),
1424                           unsigned long baseclk)
1425 {
1426         int count = preempt_count();
1427
1428 #ifdef CONFIG_LOCKDEP
1429         /*
1430          * It is permissible to free the timer from inside the
1431          * function that is called from it, this we need to take into
1432          * account for lockdep too. To avoid bogus "held lock freed"
1433          * warnings as well as problems when looking into
1434          * timer->lockdep_map, make a copy and use that here.
1435          */
1436         struct lockdep_map lockdep_map;
1437
1438         lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1439 #endif
1440         /*
1441          * Couple the lock chain with the lock chain at
1442          * timer_delete_sync() by acquiring the lock_map around the fn()
1443          * call here and in timer_delete_sync().
1444          */
1445         lock_map_acquire(&lockdep_map);
1446
1447         trace_timer_expire_entry(timer, baseclk);
1448         fn(timer);
1449         trace_timer_expire_exit(timer);
1450
1451         lock_map_release(&lockdep_map);
1452
1453         if (count != preempt_count()) {
1454                 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1455                           fn, count, preempt_count());
1456                 /*
1457                  * Restore the preempt count. That gives us a decent
1458                  * chance to survive and extract information. If the
1459                  * callback kept a lock held, bad luck, but not worse
1460                  * than the BUG() we had.
1461                  */
1462                 preempt_count_set(count);
1463         }
1464 }
1465
1466 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1467 {
1468         /*
1469          * This value is required only for tracing. base->clk was
1470          * incremented directly before expire_timers was called. But expiry
1471          * is related to the old base->clk value.
1472          */
1473         unsigned long baseclk = base->clk - 1;
1474
1475         while (!hlist_empty(head)) {
1476                 struct timer_list *timer;
1477                 void (*fn)(struct timer_list *);
1478
1479                 timer = hlist_entry(head->first, struct timer_list, entry);
1480
1481                 base->running_timer = timer;
1482                 detach_timer(timer, true);
1483
1484                 fn = timer->function;
1485
1486                 if (timer->flags & TIMER_IRQSAFE) {
1487                         raw_spin_unlock(&base->lock);
1488                         call_timer_fn(timer, fn, baseclk);
1489                         raw_spin_lock(&base->lock);
1490                         base->running_timer = NULL;
1491                 } else {
1492                         raw_spin_unlock_irq(&base->lock);
1493                         call_timer_fn(timer, fn, baseclk);
1494                         raw_spin_lock_irq(&base->lock);
1495                         base->running_timer = NULL;
1496                         timer_sync_wait_running(base);
1497                 }
1498         }
1499 }
1500
1501 static int __collect_expired_timers(struct timer_base *base,
1502                                     struct hlist_head *heads)
1503 {
1504         unsigned long clk = base->clk;
1505         struct hlist_head *vec;
1506         int i, levels = 0;
1507         unsigned int idx;
1508
1509         for (i = 0; i < LVL_DEPTH; i++) {
1510                 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1511
1512                 if (__test_and_clear_bit(idx, base->pending_map)) {
1513                         vec = base->vectors + idx;
1514                         hlist_move_list(vec, heads++);
1515                         levels++;
1516                 }
1517                 /* Is it time to look at the next level? */
1518                 if (clk & LVL_CLK_MASK)
1519                         break;
1520                 /* Shift clock for the next level granularity */
1521                 clk >>= LVL_CLK_SHIFT;
1522         }
1523         return levels;
1524 }
1525
1526 #ifdef CONFIG_NO_HZ_COMMON
1527 /*
1528  * Find the next pending bucket of a level. Search from level start (@offset)
1529  * + @clk upwards and if nothing there, search from start of the level
1530  * (@offset) up to @offset + clk.
1531  */
1532 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1533                                unsigned clk)
1534 {
1535         unsigned pos, start = offset + clk;
1536         unsigned end = offset + LVL_SIZE;
1537
1538         pos = find_next_bit(base->pending_map, end, start);
1539         if (pos < end)
1540                 return pos - start;
1541
1542         pos = find_next_bit(base->pending_map, start, offset);
1543         return pos < start ? pos + LVL_SIZE - start : -1;
1544 }
1545
1546 /*
1547  * Search the first expiring timer in the various clock levels. Caller must
1548  * hold base->lock.
1549  */
1550 static unsigned long __next_timer_interrupt(struct timer_base *base)
1551 {
1552         unsigned long clk, next, adj;
1553         unsigned lvl, offset = 0;
1554
1555         next = base->clk + NEXT_TIMER_MAX_DELTA;
1556         clk = base->clk;
1557         for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1558                 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1559
1560                 if (pos >= 0) {
1561                         unsigned long tmp = clk + (unsigned long) pos;
1562
1563                         tmp <<= LVL_SHIFT(lvl);
1564                         if (time_before(tmp, next))
1565                                 next = tmp;
1566                 }
1567                 /*
1568                  * Clock for the next level. If the current level clock lower
1569                  * bits are zero, we look at the next level as is. If not we
1570                  * need to advance it by one because that's going to be the
1571                  * next expiring bucket in that level. base->clk is the next
1572                  * expiring jiffie. So in case of:
1573                  *
1574                  * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1575                  *  0    0    0    0    0    0
1576                  *
1577                  * we have to look at all levels @index 0. With
1578                  *
1579                  * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1580                  *  0    0    0    0    0    2
1581                  *
1582                  * LVL0 has the next expiring bucket @index 2. The upper
1583                  * levels have the next expiring bucket @index 1.
1584                  *
1585                  * In case that the propagation wraps the next level the same
1586                  * rules apply:
1587                  *
1588                  * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1589                  *  0    0    0    0    F    2
1590                  *
1591                  * So after looking at LVL0 we get:
1592                  *
1593                  * LVL5 LVL4 LVL3 LVL2 LVL1
1594                  *  0    0    0    1    0
1595                  *
1596                  * So no propagation from LVL1 to LVL2 because that happened
1597                  * with the add already, but then we need to propagate further
1598                  * from LVL2 to LVL3.
1599                  *
1600                  * So the simple check whether the lower bits of the current
1601                  * level are 0 or not is sufficient for all cases.
1602                  */
1603                 adj = clk & LVL_CLK_MASK ? 1 : 0;
1604                 clk >>= LVL_CLK_SHIFT;
1605                 clk += adj;
1606         }
1607         return next;
1608 }
1609
1610 /*
1611  * Check, if the next hrtimer event is before the next timer wheel
1612  * event:
1613  */
1614 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1615 {
1616         u64 nextevt = hrtimer_get_next_event();
1617
1618         /*
1619          * If high resolution timers are enabled
1620          * hrtimer_get_next_event() returns KTIME_MAX.
1621          */
1622         if (expires <= nextevt)
1623                 return expires;
1624
1625         /*
1626          * If the next timer is already expired, return the tick base
1627          * time so the tick is fired immediately.
1628          */
1629         if (nextevt <= basem)
1630                 return basem;
1631
1632         /*
1633          * Round up to the next jiffie. High resolution timers are
1634          * off, so the hrtimers are expired in the tick and we need to
1635          * make sure that this tick really expires the timer to avoid
1636          * a ping pong of the nohz stop code.
1637          *
1638          * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1639          */
1640         return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1641 }
1642
1643 /**
1644  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1645  * @basej:      base time jiffies
1646  * @basem:      base time clock monotonic
1647  *
1648  * Returns the tick aligned clock monotonic time of the next pending
1649  * timer or KTIME_MAX if no timer is pending.
1650  */
1651 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1652 {
1653         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1654         u64 expires = KTIME_MAX;
1655         unsigned long nextevt;
1656         bool is_max_delta;
1657
1658         /*
1659          * Pretend that there is no timer pending if the cpu is offline.
1660          * Possible pending timers will be migrated later to an active cpu.
1661          */
1662         if (cpu_is_offline(smp_processor_id()))
1663                 return expires;
1664
1665         raw_spin_lock(&base->lock);
1666         nextevt = __next_timer_interrupt(base);
1667         is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1668         base->next_expiry = nextevt;
1669         /*
1670          * We have a fresh next event. Check whether we can forward the
1671          * base. We can only do that when @basej is past base->clk
1672          * otherwise we might rewind base->clk.
1673          */
1674         if (time_after(basej, base->clk)) {
1675                 if (time_after(nextevt, basej))
1676                         base->clk = basej;
1677                 else if (time_after(nextevt, base->clk))
1678                         base->clk = nextevt;
1679         }
1680
1681         if (time_before_eq(nextevt, basej)) {
1682                 expires = basem;
1683                 base->is_idle = false;
1684         } else {
1685                 if (!is_max_delta)
1686                         expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1687                 /*
1688                  * If we expect to sleep more than a tick, mark the base idle.
1689                  * Also the tick is stopped so any added timer must forward
1690                  * the base clk itself to keep granularity small. This idle
1691                  * logic is only maintained for the BASE_STD base, deferrable
1692                  * timers may still see large granularity skew (by design).
1693                  */
1694                 if ((expires - basem) > TICK_NSEC) {
1695                         base->must_forward_clk = true;
1696                         base->is_idle = true;
1697                 }
1698         }
1699         raw_spin_unlock(&base->lock);
1700
1701         return cmp_next_hrtimer_event(basem, expires);
1702 }
1703
1704 /**
1705  * timer_clear_idle - Clear the idle state of the timer base
1706  *
1707  * Called with interrupts disabled
1708  */
1709 void timer_clear_idle(void)
1710 {
1711         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1712
1713         /*
1714          * We do this unlocked. The worst outcome is a remote enqueue sending
1715          * a pointless IPI, but taking the lock would just make the window for
1716          * sending the IPI a few instructions smaller for the cost of taking
1717          * the lock in the exit from idle path.
1718          */
1719         base->is_idle = false;
1720 }
1721
1722 static int collect_expired_timers(struct timer_base *base,
1723                                   struct hlist_head *heads)
1724 {
1725         unsigned long now = READ_ONCE(jiffies);
1726
1727         /*
1728          * NOHZ optimization. After a long idle sleep we need to forward the
1729          * base to current jiffies. Avoid a loop by searching the bitfield for
1730          * the next expiring timer.
1731          */
1732         if ((long)(now - base->clk) > 2) {
1733                 unsigned long next = __next_timer_interrupt(base);
1734
1735                 /*
1736                  * If the next timer is ahead of time forward to current
1737                  * jiffies, otherwise forward to the next expiry time:
1738                  */
1739                 if (time_after(next, now)) {
1740                         /*
1741                          * The call site will increment base->clk and then
1742                          * terminate the expiry loop immediately.
1743                          */
1744                         base->clk = now;
1745                         return 0;
1746                 }
1747                 base->clk = next;
1748         }
1749         return __collect_expired_timers(base, heads);
1750 }
1751 #else
1752 static inline int collect_expired_timers(struct timer_base *base,
1753                                          struct hlist_head *heads)
1754 {
1755         return __collect_expired_timers(base, heads);
1756 }
1757 #endif
1758
1759 /*
1760  * Called from the timer interrupt handler to charge one tick to the current
1761  * process.  user_tick is 1 if the tick is user time, 0 for system.
1762  */
1763 void update_process_times(int user_tick)
1764 {
1765         struct task_struct *p = current;
1766
1767         /* Note: this timer irq context must be accounted for as well. */
1768         account_process_tick(p, user_tick);
1769         run_local_timers();
1770         rcu_sched_clock_irq(user_tick);
1771 #ifdef CONFIG_IRQ_WORK
1772         if (in_irq())
1773                 irq_work_tick();
1774 #endif
1775         scheduler_tick();
1776         if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1777                 run_posix_cpu_timers();
1778 }
1779
1780 /**
1781  * __run_timers - run all expired timers (if any) on this CPU.
1782  * @base: the timer vector to be processed.
1783  */
1784 static inline void __run_timers(struct timer_base *base)
1785 {
1786         struct hlist_head heads[LVL_DEPTH];
1787         int levels;
1788
1789         if (!time_after_eq(jiffies, base->clk))
1790                 return;
1791
1792         timer_base_lock_expiry(base);
1793         raw_spin_lock_irq(&base->lock);
1794
1795         /*
1796          * timer_base::must_forward_clk must be cleared before running
1797          * timers so that any timer functions that call mod_timer() will
1798          * not try to forward the base. Idle tracking / clock forwarding
1799          * logic is only used with BASE_STD timers.
1800          *
1801          * The must_forward_clk flag is cleared unconditionally also for
1802          * the deferrable base. The deferrable base is not affected by idle
1803          * tracking and never forwarded, so clearing the flag is a NOOP.
1804          *
1805          * The fact that the deferrable base is never forwarded can cause
1806          * large variations in granularity for deferrable timers, but they
1807          * can be deferred for long periods due to idle anyway.
1808          */
1809         base->must_forward_clk = false;
1810
1811         while (time_after_eq(jiffies, base->clk)) {
1812
1813                 levels = collect_expired_timers(base, heads);
1814                 base->clk++;
1815
1816                 while (levels--)
1817                         expire_timers(base, heads + levels);
1818         }
1819         raw_spin_unlock_irq(&base->lock);
1820         timer_base_unlock_expiry(base);
1821 }
1822
1823 /*
1824  * This function runs timers and the timer-tq in bottom half context.
1825  */
1826 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1827 {
1828         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1829
1830         __run_timers(base);
1831         if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1832                 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1833 }
1834
1835 /*
1836  * Called by the local, per-CPU timer interrupt on SMP.
1837  */
1838 void run_local_timers(void)
1839 {
1840         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1841
1842         hrtimer_run_queues();
1843         /* Raise the softirq only if required. */
1844         if (time_before(jiffies, base->clk)) {
1845                 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1846                         return;
1847                 /* CPU is awake, so check the deferrable base. */
1848                 base++;
1849                 if (time_before(jiffies, base->clk))
1850                         return;
1851         }
1852         raise_softirq(TIMER_SOFTIRQ);
1853 }
1854
1855 /*
1856  * Since schedule_timeout()'s timer is defined on the stack, it must store
1857  * the target task on the stack as well.
1858  */
1859 struct process_timer {
1860         struct timer_list timer;
1861         struct task_struct *task;
1862 };
1863
1864 static void process_timeout(struct timer_list *t)
1865 {
1866         struct process_timer *timeout = from_timer(timeout, t, timer);
1867
1868         wake_up_process(timeout->task);
1869 }
1870
1871 /**
1872  * schedule_timeout - sleep until timeout
1873  * @timeout: timeout value in jiffies
1874  *
1875  * Make the current task sleep until @timeout jiffies have
1876  * elapsed. The routine will return immediately unless
1877  * the current task state has been set (see set_current_state()).
1878  *
1879  * You can set the task state as follows -
1880  *
1881  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1882  * pass before the routine returns unless the current task is explicitly
1883  * woken up, (e.g. by wake_up_process())".
1884  *
1885  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1886  * delivered to the current task or the current task is explicitly woken
1887  * up.
1888  *
1889  * The current task state is guaranteed to be TASK_RUNNING when this
1890  * routine returns.
1891  *
1892  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1893  * the CPU away without a bound on the timeout. In this case the return
1894  * value will be %MAX_SCHEDULE_TIMEOUT.
1895  *
1896  * Returns 0 when the timer has expired otherwise the remaining time in
1897  * jiffies will be returned.  In all cases the return value is guaranteed
1898  * to be non-negative.
1899  */
1900 signed long __sched schedule_timeout(signed long timeout)
1901 {
1902         struct process_timer timer;
1903         unsigned long expire;
1904
1905         switch (timeout)
1906         {
1907         case MAX_SCHEDULE_TIMEOUT:
1908                 /*
1909                  * These two special cases are useful to be comfortable
1910                  * in the caller. Nothing more. We could take
1911                  * MAX_SCHEDULE_TIMEOUT from one of the negative value
1912                  * but I' d like to return a valid offset (>=0) to allow
1913                  * the caller to do everything it want with the retval.
1914                  */
1915                 schedule();
1916                 goto out;
1917         default:
1918                 /*
1919                  * Another bit of PARANOID. Note that the retval will be
1920                  * 0 since no piece of kernel is supposed to do a check
1921                  * for a negative retval of schedule_timeout() (since it
1922                  * should never happens anyway). You just have the printk()
1923                  * that will tell you if something is gone wrong and where.
1924                  */
1925                 if (timeout < 0) {
1926                         printk(KERN_ERR "schedule_timeout: wrong timeout "
1927                                 "value %lx\n", timeout);
1928                         dump_stack();
1929                         current->state = TASK_RUNNING;
1930                         goto out;
1931                 }
1932         }
1933
1934         expire = timeout + jiffies;
1935
1936         timer.task = current;
1937         timer_setup_on_stack(&timer.timer, process_timeout, 0);
1938         __mod_timer(&timer.timer, expire, 0);
1939         schedule();
1940         del_singleshot_timer_sync(&timer.timer);
1941
1942         /* Remove the timer from the object tracker */
1943         destroy_timer_on_stack(&timer.timer);
1944
1945         timeout = expire - jiffies;
1946
1947  out:
1948         return timeout < 0 ? 0 : timeout;
1949 }
1950 EXPORT_SYMBOL(schedule_timeout);
1951
1952 /*
1953  * We can use __set_current_state() here because schedule_timeout() calls
1954  * schedule() unconditionally.
1955  */
1956 signed long __sched schedule_timeout_interruptible(signed long timeout)
1957 {
1958         __set_current_state(TASK_INTERRUPTIBLE);
1959         return schedule_timeout(timeout);
1960 }
1961 EXPORT_SYMBOL(schedule_timeout_interruptible);
1962
1963 signed long __sched schedule_timeout_killable(signed long timeout)
1964 {
1965         __set_current_state(TASK_KILLABLE);
1966         return schedule_timeout(timeout);
1967 }
1968 EXPORT_SYMBOL(schedule_timeout_killable);
1969
1970 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1971 {
1972         __set_current_state(TASK_UNINTERRUPTIBLE);
1973         return schedule_timeout(timeout);
1974 }
1975 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1976
1977 /*
1978  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1979  * to load average.
1980  */
1981 signed long __sched schedule_timeout_idle(signed long timeout)
1982 {
1983         __set_current_state(TASK_IDLE);
1984         return schedule_timeout(timeout);
1985 }
1986 EXPORT_SYMBOL(schedule_timeout_idle);
1987
1988 #ifdef CONFIG_HOTPLUG_CPU
1989 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1990 {
1991         struct timer_list *timer;
1992         int cpu = new_base->cpu;
1993
1994         while (!hlist_empty(head)) {
1995                 timer = hlist_entry(head->first, struct timer_list, entry);
1996                 detach_timer(timer, false);
1997                 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1998                 internal_add_timer(new_base, timer);
1999         }
2000 }
2001
2002 int timers_prepare_cpu(unsigned int cpu)
2003 {
2004         struct timer_base *base;
2005         int b;
2006
2007         for (b = 0; b < NR_BASES; b++) {
2008                 base = per_cpu_ptr(&timer_bases[b], cpu);
2009                 base->clk = jiffies;
2010                 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2011                 base->is_idle = false;
2012                 base->must_forward_clk = true;
2013         }
2014         return 0;
2015 }
2016
2017 int timers_dead_cpu(unsigned int cpu)
2018 {
2019         struct timer_base *old_base;
2020         struct timer_base *new_base;
2021         int b, i;
2022
2023         BUG_ON(cpu_online(cpu));
2024
2025         for (b = 0; b < NR_BASES; b++) {
2026                 old_base = per_cpu_ptr(&timer_bases[b], cpu);
2027                 new_base = get_cpu_ptr(&timer_bases[b]);
2028                 /*
2029                  * The caller is globally serialized and nobody else
2030                  * takes two locks at once, deadlock is not possible.
2031                  */
2032                 raw_spin_lock_irq(&new_base->lock);
2033                 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2034
2035                 /*
2036                  * The current CPUs base clock might be stale. Update it
2037                  * before moving the timers over.
2038                  */
2039                 forward_timer_base(new_base);
2040
2041                 BUG_ON(old_base->running_timer);
2042
2043                 for (i = 0; i < WHEEL_SIZE; i++)
2044                         migrate_timer_list(new_base, old_base->vectors + i);
2045
2046                 raw_spin_unlock(&old_base->lock);
2047                 raw_spin_unlock_irq(&new_base->lock);
2048                 put_cpu_ptr(&timer_bases);
2049         }
2050         return 0;
2051 }
2052
2053 #endif /* CONFIG_HOTPLUG_CPU */
2054
2055 static void __init init_timer_cpu(int cpu)
2056 {
2057         struct timer_base *base;
2058         int i;
2059
2060         for (i = 0; i < NR_BASES; i++) {
2061                 base = per_cpu_ptr(&timer_bases[i], cpu);
2062                 base->cpu = cpu;
2063                 raw_spin_lock_init(&base->lock);
2064                 base->clk = jiffies;
2065                 timer_base_init_expiry_lock(base);
2066         }
2067 }
2068
2069 static void __init init_timer_cpus(void)
2070 {
2071         int cpu;
2072
2073         for_each_possible_cpu(cpu)
2074                 init_timer_cpu(cpu);
2075 }
2076
2077 void __init init_timers(void)
2078 {
2079         init_timer_cpus();
2080         open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2081 }
2082
2083 /**
2084  * msleep - sleep safely even with waitqueue interruptions
2085  * @msecs: Time in milliseconds to sleep for
2086  */
2087 void msleep(unsigned int msecs)
2088 {
2089         unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2090
2091         while (timeout)
2092                 timeout = schedule_timeout_uninterruptible(timeout);
2093 }
2094
2095 EXPORT_SYMBOL(msleep);
2096
2097 /**
2098  * msleep_interruptible - sleep waiting for signals
2099  * @msecs: Time in milliseconds to sleep for
2100  */
2101 unsigned long msleep_interruptible(unsigned int msecs)
2102 {
2103         unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2104
2105         while (timeout && !signal_pending(current))
2106                 timeout = schedule_timeout_interruptible(timeout);
2107         return jiffies_to_msecs(timeout);
2108 }
2109
2110 EXPORT_SYMBOL(msleep_interruptible);
2111
2112 /**
2113  * usleep_range - Sleep for an approximate time
2114  * @min: Minimum time in usecs to sleep
2115  * @max: Maximum time in usecs to sleep
2116  *
2117  * In non-atomic context where the exact wakeup time is flexible, use
2118  * usleep_range() instead of udelay().  The sleep improves responsiveness
2119  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2120  * power usage by allowing hrtimers to take advantage of an already-
2121  * scheduled interrupt instead of scheduling a new one just for this sleep.
2122  */
2123 void __sched usleep_range(unsigned long min, unsigned long max)
2124 {
2125         ktime_t exp = ktime_add_us(ktime_get(), min);
2126         u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2127
2128         for (;;) {
2129                 __set_current_state(TASK_UNINTERRUPTIBLE);
2130                 /* Do not return before the requested sleep time has elapsed */
2131                 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2132                         break;
2133         }
2134 }
2135 EXPORT_SYMBOL(usleep_range);