GNU Linux-libre 4.9.330-gnu1
[releases.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/timex.h>
23 #include <linux/tick.h>
24 #include <linux/stop_machine.h>
25 #include <linux/pvclock_gtod.h>
26 #include <linux/compiler.h>
27
28 #include "tick-internal.h"
29 #include "ntp_internal.h"
30 #include "timekeeping_internal.h"
31
32 #define TK_CLEAR_NTP            (1 << 0)
33 #define TK_MIRROR               (1 << 1)
34 #define TK_CLOCK_WAS_SET        (1 << 2)
35
36 /*
37  * The most important data for readout fits into a single 64 byte
38  * cache line.
39  */
40 static struct {
41         seqcount_t              seq;
42         struct timekeeper       timekeeper;
43 } tk_core ____cacheline_aligned = {
44         .seq = SEQCNT_ZERO(tk_core.seq),
45 };
46
47 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48 static struct timekeeper shadow_timekeeper;
49
50 /**
51  * struct tk_fast - NMI safe timekeeper
52  * @seq:        Sequence counter for protecting updates. The lowest bit
53  *              is the index for the tk_read_base array
54  * @base:       tk_read_base array. Access is indexed by the lowest bit of
55  *              @seq.
56  *
57  * See @update_fast_timekeeper() below.
58  */
59 struct tk_fast {
60         seqcount_t              seq;
61         struct tk_read_base     base[2];
62 };
63
64 static struct tk_fast tk_fast_mono ____cacheline_aligned;
65 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
66
67 /* flag for if timekeeping is suspended */
68 int __read_mostly timekeeping_suspended;
69
70 static inline void tk_normalize_xtime(struct timekeeper *tk)
71 {
72         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
73                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
74                 tk->xtime_sec++;
75         }
76 }
77
78 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
79 {
80         struct timespec64 ts;
81
82         ts.tv_sec = tk->xtime_sec;
83         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
84         return ts;
85 }
86
87 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
88 {
89         tk->xtime_sec = ts->tv_sec;
90         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
91 }
92
93 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
94 {
95         tk->xtime_sec += ts->tv_sec;
96         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
97         tk_normalize_xtime(tk);
98 }
99
100 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
101 {
102         struct timespec64 tmp;
103
104         /*
105          * Verify consistency of: offset_real = -wall_to_monotonic
106          * before modifying anything
107          */
108         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
109                                         -tk->wall_to_monotonic.tv_nsec);
110         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
111         tk->wall_to_monotonic = wtm;
112         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
113         tk->offs_real = timespec64_to_ktime(tmp);
114         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
115 }
116
117 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
118 {
119         tk->offs_boot = ktime_add(tk->offs_boot, delta);
120 }
121
122 /*
123  * tk_clock_read - atomic clocksource read() helper
124  *
125  * This helper is necessary to use in the read paths because, while the
126  * seqlock ensures we don't return a bad value while structures are updated,
127  * it doesn't protect from potential crashes. There is the possibility that
128  * the tkr's clocksource may change between the read reference, and the
129  * clock reference passed to the read function.  This can cause crashes if
130  * the wrong clocksource is passed to the wrong read function.
131  * This isn't necessary to use when holding the timekeeper_lock or doing
132  * a read of the fast-timekeeper tkrs (which is protected by its own locking
133  * and update logic).
134  */
135 static inline u64 tk_clock_read(struct tk_read_base *tkr)
136 {
137         struct clocksource *clock = READ_ONCE(tkr->clock);
138
139         return clock->read(clock);
140 }
141
142 #ifdef CONFIG_DEBUG_TIMEKEEPING
143 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
144
145 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
146 {
147
148         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
149         const char *name = tk->tkr_mono.clock->name;
150
151         if (offset > max_cycles) {
152                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
153                                 offset, name, max_cycles);
154                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
155         } else {
156                 if (offset > (max_cycles >> 1)) {
157                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
158                                         offset, name, max_cycles >> 1);
159                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
160                 }
161         }
162
163         if (tk->underflow_seen) {
164                 if (jiffies - tk->last_warning > WARNING_FREQ) {
165                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
166                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
167                         printk_deferred("         Your kernel is probably still fine.\n");
168                         tk->last_warning = jiffies;
169                 }
170                 tk->underflow_seen = 0;
171         }
172
173         if (tk->overflow_seen) {
174                 if (jiffies - tk->last_warning > WARNING_FREQ) {
175                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
176                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
177                         printk_deferred("         Your kernel is probably still fine.\n");
178                         tk->last_warning = jiffies;
179                 }
180                 tk->overflow_seen = 0;
181         }
182 }
183
184 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
185 {
186         struct timekeeper *tk = &tk_core.timekeeper;
187         cycle_t now, last, mask, max, delta;
188         unsigned int seq;
189
190         /*
191          * Since we're called holding a seqlock, the data may shift
192          * under us while we're doing the calculation. This can cause
193          * false positives, since we'd note a problem but throw the
194          * results away. So nest another seqlock here to atomically
195          * grab the points we are checking with.
196          */
197         do {
198                 seq = read_seqcount_begin(&tk_core.seq);
199                 now = tk_clock_read(tkr);
200                 last = tkr->cycle_last;
201                 mask = tkr->mask;
202                 max = tkr->clock->max_cycles;
203         } while (read_seqcount_retry(&tk_core.seq, seq));
204
205         delta = clocksource_delta(now, last, mask);
206
207         /*
208          * Try to catch underflows by checking if we are seeing small
209          * mask-relative negative values.
210          */
211         if (unlikely((~delta & mask) < (mask >> 3))) {
212                 tk->underflow_seen = 1;
213                 delta = 0;
214         }
215
216         /* Cap delta value to the max_cycles values to avoid mult overflows */
217         if (unlikely(delta > max)) {
218                 tk->overflow_seen = 1;
219                 delta = tkr->clock->max_cycles;
220         }
221
222         return delta;
223 }
224 #else
225 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
226 {
227 }
228 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
229 {
230         cycle_t cycle_now, delta;
231
232         /* read clocksource */
233         cycle_now = tk_clock_read(tkr);
234
235         /* calculate the delta since the last update_wall_time */
236         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
237
238         return delta;
239 }
240 #endif
241
242 /**
243  * tk_setup_internals - Set up internals to use clocksource clock.
244  *
245  * @tk:         The target timekeeper to setup.
246  * @clock:              Pointer to clocksource.
247  *
248  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
249  * pair and interval request.
250  *
251  * Unless you're the timekeeping code, you should not be using this!
252  */
253 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
254 {
255         cycle_t interval;
256         u64 tmp, ntpinterval;
257         struct clocksource *old_clock;
258
259         ++tk->cs_was_changed_seq;
260         old_clock = tk->tkr_mono.clock;
261         tk->tkr_mono.clock = clock;
262         tk->tkr_mono.mask = clock->mask;
263         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
264
265         tk->tkr_raw.clock = clock;
266         tk->tkr_raw.mask = clock->mask;
267         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
268
269         /* Do the ns -> cycle conversion first, using original mult */
270         tmp = NTP_INTERVAL_LENGTH;
271         tmp <<= clock->shift;
272         ntpinterval = tmp;
273         tmp += clock->mult/2;
274         do_div(tmp, clock->mult);
275         if (tmp == 0)
276                 tmp = 1;
277
278         interval = (cycle_t) tmp;
279         tk->cycle_interval = interval;
280
281         /* Go back from cycles -> shifted ns */
282         tk->xtime_interval = (u64) interval * clock->mult;
283         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
284         tk->raw_interval = interval * clock->mult;
285
286          /* if changing clocks, convert xtime_nsec shift units */
287         if (old_clock) {
288                 int shift_change = clock->shift - old_clock->shift;
289                 if (shift_change < 0)
290                         tk->tkr_mono.xtime_nsec >>= -shift_change;
291                 else
292                         tk->tkr_mono.xtime_nsec <<= shift_change;
293         }
294         tk->tkr_raw.xtime_nsec = 0;
295
296         tk->tkr_mono.shift = clock->shift;
297         tk->tkr_raw.shift = clock->shift;
298
299         tk->ntp_error = 0;
300         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
301         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
302
303         /*
304          * The timekeeper keeps its own mult values for the currently
305          * active clocksource. These value will be adjusted via NTP
306          * to counteract clock drifting.
307          */
308         tk->tkr_mono.mult = clock->mult;
309         tk->tkr_raw.mult = clock->mult;
310         tk->ntp_err_mult = 0;
311 }
312
313 /* Timekeeper helper functions. */
314
315 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
316 static u32 default_arch_gettimeoffset(void) { return 0; }
317 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
318 #else
319 static inline u32 arch_gettimeoffset(void) { return 0; }
320 #endif
321
322 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
323                                           cycle_t delta)
324 {
325         u64 nsec;
326
327         nsec = delta * tkr->mult + tkr->xtime_nsec;
328         nsec >>= tkr->shift;
329
330         /* If arch requires, add in get_arch_timeoffset() */
331         return nsec + arch_gettimeoffset();
332 }
333
334 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
335 {
336         cycle_t delta;
337
338         delta = timekeeping_get_delta(tkr);
339         return timekeeping_delta_to_ns(tkr, delta);
340 }
341
342 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
343                                             cycle_t cycles)
344 {
345         cycle_t delta;
346
347         /* calculate the delta since the last update_wall_time */
348         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
349         return timekeeping_delta_to_ns(tkr, delta);
350 }
351
352 /**
353  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
354  * @tkr: Timekeeping readout base from which we take the update
355  *
356  * We want to use this from any context including NMI and tracing /
357  * instrumenting the timekeeping code itself.
358  *
359  * Employ the latch technique; see @raw_write_seqcount_latch.
360  *
361  * So if a NMI hits the update of base[0] then it will use base[1]
362  * which is still consistent. In the worst case this can result is a
363  * slightly wrong timestamp (a few nanoseconds). See
364  * @ktime_get_mono_fast_ns.
365  */
366 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
367 {
368         struct tk_read_base *base = tkf->base;
369
370         /* Force readers off to base[1] */
371         raw_write_seqcount_latch(&tkf->seq);
372
373         /* Update base[0] */
374         memcpy(base, tkr, sizeof(*base));
375
376         /* Force readers back to base[0] */
377         raw_write_seqcount_latch(&tkf->seq);
378
379         /* Update base[1] */
380         memcpy(base + 1, base, sizeof(*base));
381 }
382
383 /**
384  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
385  *
386  * This timestamp is not guaranteed to be monotonic across an update.
387  * The timestamp is calculated by:
388  *
389  *      now = base_mono + clock_delta * slope
390  *
391  * So if the update lowers the slope, readers who are forced to the
392  * not yet updated second array are still using the old steeper slope.
393  *
394  * tmono
395  * ^
396  * |    o  n
397  * |   o n
398  * |  u
399  * | o
400  * |o
401  * |12345678---> reader order
402  *
403  * o = old slope
404  * u = update
405  * n = new slope
406  *
407  * So reader 6 will observe time going backwards versus reader 5.
408  *
409  * While other CPUs are likely to be able observe that, the only way
410  * for a CPU local observation is when an NMI hits in the middle of
411  * the update. Timestamps taken from that NMI context might be ahead
412  * of the following timestamps. Callers need to be aware of that and
413  * deal with it.
414  */
415 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
416 {
417         struct tk_read_base *tkr;
418         unsigned int seq;
419         u64 now;
420
421         do {
422                 seq = raw_read_seqcount_latch(&tkf->seq);
423                 tkr = tkf->base + (seq & 0x01);
424                 now = ktime_to_ns(tkr->base);
425
426                 now += timekeeping_delta_to_ns(tkr,
427                                 clocksource_delta(
428                                         tk_clock_read(tkr),
429                                         tkr->cycle_last,
430                                         tkr->mask));
431         } while (read_seqcount_retry(&tkf->seq, seq));
432
433         return now;
434 }
435
436 u64 ktime_get_mono_fast_ns(void)
437 {
438         return __ktime_get_fast_ns(&tk_fast_mono);
439 }
440 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
441
442 u64 ktime_get_raw_fast_ns(void)
443 {
444         return __ktime_get_fast_ns(&tk_fast_raw);
445 }
446 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
447
448 /* Suspend-time cycles value for halted fast timekeeper. */
449 static cycle_t cycles_at_suspend;
450
451 static cycle_t dummy_clock_read(struct clocksource *cs)
452 {
453         return cycles_at_suspend;
454 }
455
456 static struct clocksource dummy_clock = {
457         .read = dummy_clock_read,
458 };
459
460 /**
461  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
462  * @tk: Timekeeper to snapshot.
463  *
464  * It generally is unsafe to access the clocksource after timekeeping has been
465  * suspended, so take a snapshot of the readout base of @tk and use it as the
466  * fast timekeeper's readout base while suspended.  It will return the same
467  * number of cycles every time until timekeeping is resumed at which time the
468  * proper readout base for the fast timekeeper will be restored automatically.
469  */
470 static void halt_fast_timekeeper(struct timekeeper *tk)
471 {
472         static struct tk_read_base tkr_dummy;
473         struct tk_read_base *tkr = &tk->tkr_mono;
474
475         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
476         cycles_at_suspend = tk_clock_read(tkr);
477         tkr_dummy.clock = &dummy_clock;
478         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
479
480         tkr = &tk->tkr_raw;
481         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
482         tkr_dummy.clock = &dummy_clock;
483         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
484 }
485
486 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
487
488 static inline void update_vsyscall(struct timekeeper *tk)
489 {
490         struct timespec xt, wm;
491
492         xt = timespec64_to_timespec(tk_xtime(tk));
493         wm = timespec64_to_timespec(tk->wall_to_monotonic);
494         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
495                             tk->tkr_mono.cycle_last);
496 }
497
498 static inline void old_vsyscall_fixup(struct timekeeper *tk)
499 {
500         s64 remainder;
501
502         /*
503         * Store only full nanoseconds into xtime_nsec after rounding
504         * it up and add the remainder to the error difference.
505         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
506         * by truncating the remainder in vsyscalls. However, it causes
507         * additional work to be done in timekeeping_adjust(). Once
508         * the vsyscall implementations are converted to use xtime_nsec
509         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
510         * users are removed, this can be killed.
511         */
512         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
513         if (remainder != 0) {
514                 tk->tkr_mono.xtime_nsec -= remainder;
515                 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
516                 tk->ntp_error += remainder << tk->ntp_error_shift;
517                 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
518         }
519 }
520 #else
521 #define old_vsyscall_fixup(tk)
522 #endif
523
524 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
525
526 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
527 {
528         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
529 }
530
531 /**
532  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
533  */
534 int pvclock_gtod_register_notifier(struct notifier_block *nb)
535 {
536         struct timekeeper *tk = &tk_core.timekeeper;
537         unsigned long flags;
538         int ret;
539
540         raw_spin_lock_irqsave(&timekeeper_lock, flags);
541         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
542         update_pvclock_gtod(tk, true);
543         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
544
545         return ret;
546 }
547 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
548
549 /**
550  * pvclock_gtod_unregister_notifier - unregister a pvclock
551  * timedata update listener
552  */
553 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
554 {
555         unsigned long flags;
556         int ret;
557
558         raw_spin_lock_irqsave(&timekeeper_lock, flags);
559         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
560         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
561
562         return ret;
563 }
564 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
565
566 /*
567  * tk_update_leap_state - helper to update the next_leap_ktime
568  */
569 static inline void tk_update_leap_state(struct timekeeper *tk)
570 {
571         tk->next_leap_ktime = ntp_get_next_leap();
572         if (tk->next_leap_ktime.tv64 != KTIME_MAX)
573                 /* Convert to monotonic time */
574                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
575 }
576
577 /*
578  * Update the ktime_t based scalar nsec members of the timekeeper
579  */
580 static inline void tk_update_ktime_data(struct timekeeper *tk)
581 {
582         u64 seconds;
583         u32 nsec;
584
585         /*
586          * The xtime based monotonic readout is:
587          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
588          * The ktime based monotonic readout is:
589          *      nsec = base_mono + now();
590          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
591          */
592         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
593         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
594         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
595
596         /* Update the monotonic raw base */
597         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
598
599         /*
600          * The sum of the nanoseconds portions of xtime and
601          * wall_to_monotonic can be greater/equal one second. Take
602          * this into account before updating tk->ktime_sec.
603          */
604         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
605         if (nsec >= NSEC_PER_SEC)
606                 seconds++;
607         tk->ktime_sec = seconds;
608 }
609
610 /* must hold timekeeper_lock */
611 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
612 {
613         if (action & TK_CLEAR_NTP) {
614                 tk->ntp_error = 0;
615                 ntp_clear();
616         }
617
618         tk_update_leap_state(tk);
619         tk_update_ktime_data(tk);
620
621         update_vsyscall(tk);
622         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
623
624         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
625         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
626
627         if (action & TK_CLOCK_WAS_SET)
628                 tk->clock_was_set_seq++;
629         /*
630          * The mirroring of the data to the shadow-timekeeper needs
631          * to happen last here to ensure we don't over-write the
632          * timekeeper structure on the next update with stale data
633          */
634         if (action & TK_MIRROR)
635                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
636                        sizeof(tk_core.timekeeper));
637 }
638
639 /**
640  * timekeeping_forward_now - update clock to the current time
641  *
642  * Forward the current clock to update its state since the last call to
643  * update_wall_time(). This is useful before significant clock changes,
644  * as it avoids having to deal with this time offset explicitly.
645  */
646 static void timekeeping_forward_now(struct timekeeper *tk)
647 {
648         cycle_t cycle_now, delta;
649         s64 nsec;
650
651         cycle_now = tk_clock_read(&tk->tkr_mono);
652         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
653         tk->tkr_mono.cycle_last = cycle_now;
654         tk->tkr_raw.cycle_last  = cycle_now;
655
656         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
657
658         /* If arch requires, add in get_arch_timeoffset() */
659         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
660
661         tk_normalize_xtime(tk);
662
663         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
664         timespec64_add_ns(&tk->raw_time, nsec);
665 }
666
667 /**
668  * __getnstimeofday64 - Returns the time of day in a timespec64.
669  * @ts:         pointer to the timespec to be set
670  *
671  * Updates the time of day in the timespec.
672  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
673  */
674 int __getnstimeofday64(struct timespec64 *ts)
675 {
676         struct timekeeper *tk = &tk_core.timekeeper;
677         unsigned long seq;
678         s64 nsecs = 0;
679
680         do {
681                 seq = read_seqcount_begin(&tk_core.seq);
682
683                 ts->tv_sec = tk->xtime_sec;
684                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
685
686         } while (read_seqcount_retry(&tk_core.seq, seq));
687
688         ts->tv_nsec = 0;
689         timespec64_add_ns(ts, nsecs);
690
691         /*
692          * Do not bail out early, in case there were callers still using
693          * the value, even in the face of the WARN_ON.
694          */
695         if (unlikely(timekeeping_suspended))
696                 return -EAGAIN;
697         return 0;
698 }
699 EXPORT_SYMBOL(__getnstimeofday64);
700
701 /**
702  * getnstimeofday64 - Returns the time of day in a timespec64.
703  * @ts:         pointer to the timespec64 to be set
704  *
705  * Returns the time of day in a timespec64 (WARN if suspended).
706  */
707 void getnstimeofday64(struct timespec64 *ts)
708 {
709         WARN_ON(__getnstimeofday64(ts));
710 }
711 EXPORT_SYMBOL(getnstimeofday64);
712
713 ktime_t ktime_get(void)
714 {
715         struct timekeeper *tk = &tk_core.timekeeper;
716         unsigned int seq;
717         ktime_t base;
718         s64 nsecs;
719
720         WARN_ON(timekeeping_suspended);
721
722         do {
723                 seq = read_seqcount_begin(&tk_core.seq);
724                 base = tk->tkr_mono.base;
725                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
726
727         } while (read_seqcount_retry(&tk_core.seq, seq));
728
729         return ktime_add_ns(base, nsecs);
730 }
731 EXPORT_SYMBOL_GPL(ktime_get);
732
733 u32 ktime_get_resolution_ns(void)
734 {
735         struct timekeeper *tk = &tk_core.timekeeper;
736         unsigned int seq;
737         u32 nsecs;
738
739         WARN_ON(timekeeping_suspended);
740
741         do {
742                 seq = read_seqcount_begin(&tk_core.seq);
743                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
744         } while (read_seqcount_retry(&tk_core.seq, seq));
745
746         return nsecs;
747 }
748 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
749
750 static ktime_t *offsets[TK_OFFS_MAX] = {
751         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
752         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
753         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
754 };
755
756 ktime_t ktime_get_with_offset(enum tk_offsets offs)
757 {
758         struct timekeeper *tk = &tk_core.timekeeper;
759         unsigned int seq;
760         ktime_t base, *offset = offsets[offs];
761         s64 nsecs;
762
763         WARN_ON(timekeeping_suspended);
764
765         do {
766                 seq = read_seqcount_begin(&tk_core.seq);
767                 base = ktime_add(tk->tkr_mono.base, *offset);
768                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
769
770         } while (read_seqcount_retry(&tk_core.seq, seq));
771
772         return ktime_add_ns(base, nsecs);
773
774 }
775 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
776
777 /**
778  * ktime_mono_to_any() - convert mononotic time to any other time
779  * @tmono:      time to convert.
780  * @offs:       which offset to use
781  */
782 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
783 {
784         ktime_t *offset = offsets[offs];
785         unsigned long seq;
786         ktime_t tconv;
787
788         do {
789                 seq = read_seqcount_begin(&tk_core.seq);
790                 tconv = ktime_add(tmono, *offset);
791         } while (read_seqcount_retry(&tk_core.seq, seq));
792
793         return tconv;
794 }
795 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
796
797 /**
798  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
799  */
800 ktime_t ktime_get_raw(void)
801 {
802         struct timekeeper *tk = &tk_core.timekeeper;
803         unsigned int seq;
804         ktime_t base;
805         s64 nsecs;
806
807         do {
808                 seq = read_seqcount_begin(&tk_core.seq);
809                 base = tk->tkr_raw.base;
810                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
811
812         } while (read_seqcount_retry(&tk_core.seq, seq));
813
814         return ktime_add_ns(base, nsecs);
815 }
816 EXPORT_SYMBOL_GPL(ktime_get_raw);
817
818 /**
819  * ktime_get_ts64 - get the monotonic clock in timespec64 format
820  * @ts:         pointer to timespec variable
821  *
822  * The function calculates the monotonic clock from the realtime
823  * clock and the wall_to_monotonic offset and stores the result
824  * in normalized timespec64 format in the variable pointed to by @ts.
825  */
826 void ktime_get_ts64(struct timespec64 *ts)
827 {
828         struct timekeeper *tk = &tk_core.timekeeper;
829         struct timespec64 tomono;
830         s64 nsec;
831         unsigned int seq;
832
833         WARN_ON(timekeeping_suspended);
834
835         do {
836                 seq = read_seqcount_begin(&tk_core.seq);
837                 ts->tv_sec = tk->xtime_sec;
838                 nsec = timekeeping_get_ns(&tk->tkr_mono);
839                 tomono = tk->wall_to_monotonic;
840
841         } while (read_seqcount_retry(&tk_core.seq, seq));
842
843         ts->tv_sec += tomono.tv_sec;
844         ts->tv_nsec = 0;
845         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
846 }
847 EXPORT_SYMBOL_GPL(ktime_get_ts64);
848
849 /**
850  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
851  *
852  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
853  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
854  * works on both 32 and 64 bit systems. On 32 bit systems the readout
855  * covers ~136 years of uptime which should be enough to prevent
856  * premature wrap arounds.
857  */
858 time64_t ktime_get_seconds(void)
859 {
860         struct timekeeper *tk = &tk_core.timekeeper;
861
862         WARN_ON(timekeeping_suspended);
863         return tk->ktime_sec;
864 }
865 EXPORT_SYMBOL_GPL(ktime_get_seconds);
866
867 /**
868  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
869  *
870  * Returns the wall clock seconds since 1970. This replaces the
871  * get_seconds() interface which is not y2038 safe on 32bit systems.
872  *
873  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
874  * 32bit systems the access must be protected with the sequence
875  * counter to provide "atomic" access to the 64bit tk->xtime_sec
876  * value.
877  */
878 time64_t ktime_get_real_seconds(void)
879 {
880         struct timekeeper *tk = &tk_core.timekeeper;
881         time64_t seconds;
882         unsigned int seq;
883
884         if (IS_ENABLED(CONFIG_64BIT))
885                 return tk->xtime_sec;
886
887         do {
888                 seq = read_seqcount_begin(&tk_core.seq);
889                 seconds = tk->xtime_sec;
890
891         } while (read_seqcount_retry(&tk_core.seq, seq));
892
893         return seconds;
894 }
895 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
896
897 /**
898  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
899  * but without the sequence counter protect. This internal function
900  * is called just when timekeeping lock is already held.
901  */
902 time64_t __ktime_get_real_seconds(void)
903 {
904         struct timekeeper *tk = &tk_core.timekeeper;
905
906         return tk->xtime_sec;
907 }
908
909 /**
910  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
911  * @systime_snapshot:   pointer to struct receiving the system time snapshot
912  */
913 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
914 {
915         struct timekeeper *tk = &tk_core.timekeeper;
916         unsigned long seq;
917         ktime_t base_raw;
918         ktime_t base_real;
919         s64 nsec_raw;
920         s64 nsec_real;
921         cycle_t now;
922
923         WARN_ON_ONCE(timekeeping_suspended);
924
925         do {
926                 seq = read_seqcount_begin(&tk_core.seq);
927                 now = tk_clock_read(&tk->tkr_mono);
928                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
929                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
930                 base_real = ktime_add(tk->tkr_mono.base,
931                                       tk_core.timekeeper.offs_real);
932                 base_raw = tk->tkr_raw.base;
933                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
934                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
935         } while (read_seqcount_retry(&tk_core.seq, seq));
936
937         systime_snapshot->cycles = now;
938         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
939         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
940 }
941 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
942
943 /* Scale base by mult/div checking for overflow */
944 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
945 {
946         u64 tmp, rem;
947
948         tmp = div64_u64_rem(*base, div, &rem);
949
950         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
951             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
952                 return -EOVERFLOW;
953         tmp *= mult;
954
955         rem = div64_u64(rem * mult, div);
956         *base = tmp + rem;
957         return 0;
958 }
959
960 /**
961  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
962  * @history:                    Snapshot representing start of history
963  * @partial_history_cycles:     Cycle offset into history (fractional part)
964  * @total_history_cycles:       Total history length in cycles
965  * @discontinuity:              True indicates clock was set on history period
966  * @ts:                         Cross timestamp that should be adjusted using
967  *      partial/total ratio
968  *
969  * Helper function used by get_device_system_crosststamp() to correct the
970  * crosstimestamp corresponding to the start of the current interval to the
971  * system counter value (timestamp point) provided by the driver. The
972  * total_history_* quantities are the total history starting at the provided
973  * reference point and ending at the start of the current interval. The cycle
974  * count between the driver timestamp point and the start of the current
975  * interval is partial_history_cycles.
976  */
977 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
978                                          cycle_t partial_history_cycles,
979                                          cycle_t total_history_cycles,
980                                          bool discontinuity,
981                                          struct system_device_crosststamp *ts)
982 {
983         struct timekeeper *tk = &tk_core.timekeeper;
984         u64 corr_raw, corr_real;
985         bool interp_forward;
986         int ret;
987
988         if (total_history_cycles == 0 || partial_history_cycles == 0)
989                 return 0;
990
991         /* Interpolate shortest distance from beginning or end of history */
992         interp_forward = partial_history_cycles > total_history_cycles/2 ?
993                 true : false;
994         partial_history_cycles = interp_forward ?
995                 total_history_cycles - partial_history_cycles :
996                 partial_history_cycles;
997
998         /*
999          * Scale the monotonic raw time delta by:
1000          *      partial_history_cycles / total_history_cycles
1001          */
1002         corr_raw = (u64)ktime_to_ns(
1003                 ktime_sub(ts->sys_monoraw, history->raw));
1004         ret = scale64_check_overflow(partial_history_cycles,
1005                                      total_history_cycles, &corr_raw);
1006         if (ret)
1007                 return ret;
1008
1009         /*
1010          * If there is a discontinuity in the history, scale monotonic raw
1011          *      correction by:
1012          *      mult(real)/mult(raw) yielding the realtime correction
1013          * Otherwise, calculate the realtime correction similar to monotonic
1014          *      raw calculation
1015          */
1016         if (discontinuity) {
1017                 corr_real = mul_u64_u32_div
1018                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1019         } else {
1020                 corr_real = (u64)ktime_to_ns(
1021                         ktime_sub(ts->sys_realtime, history->real));
1022                 ret = scale64_check_overflow(partial_history_cycles,
1023                                              total_history_cycles, &corr_real);
1024                 if (ret)
1025                         return ret;
1026         }
1027
1028         /* Fixup monotonic raw and real time time values */
1029         if (interp_forward) {
1030                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1031                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1032         } else {
1033                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1034                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1035         }
1036
1037         return 0;
1038 }
1039
1040 /*
1041  * cycle_between - true if test occurs chronologically between before and after
1042  */
1043 static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1044 {
1045         if (test > before && test < after)
1046                 return true;
1047         if (test < before && before > after)
1048                 return true;
1049         return false;
1050 }
1051
1052 /**
1053  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1054  * @get_time_fn:        Callback to get simultaneous device time and
1055  *      system counter from the device driver
1056  * @ctx:                Context passed to get_time_fn()
1057  * @history_begin:      Historical reference point used to interpolate system
1058  *      time when counter provided by the driver is before the current interval
1059  * @xtstamp:            Receives simultaneously captured system and device time
1060  *
1061  * Reads a timestamp from a device and correlates it to system time
1062  */
1063 int get_device_system_crosststamp(int (*get_time_fn)
1064                                   (ktime_t *device_time,
1065                                    struct system_counterval_t *sys_counterval,
1066                                    void *ctx),
1067                                   void *ctx,
1068                                   struct system_time_snapshot *history_begin,
1069                                   struct system_device_crosststamp *xtstamp)
1070 {
1071         struct system_counterval_t system_counterval;
1072         struct timekeeper *tk = &tk_core.timekeeper;
1073         cycle_t cycles, now, interval_start;
1074         unsigned int clock_was_set_seq = 0;
1075         ktime_t base_real, base_raw;
1076         s64 nsec_real, nsec_raw;
1077         u8 cs_was_changed_seq;
1078         unsigned long seq;
1079         bool do_interp;
1080         int ret;
1081
1082         do {
1083                 seq = read_seqcount_begin(&tk_core.seq);
1084                 /*
1085                  * Try to synchronously capture device time and a system
1086                  * counter value calling back into the device driver
1087                  */
1088                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1089                 if (ret)
1090                         return ret;
1091
1092                 /*
1093                  * Verify that the clocksource associated with the captured
1094                  * system counter value is the same as the currently installed
1095                  * timekeeper clocksource
1096                  */
1097                 if (tk->tkr_mono.clock != system_counterval.cs)
1098                         return -ENODEV;
1099                 cycles = system_counterval.cycles;
1100
1101                 /*
1102                  * Check whether the system counter value provided by the
1103                  * device driver is on the current timekeeping interval.
1104                  */
1105                 now = tk_clock_read(&tk->tkr_mono);
1106                 interval_start = tk->tkr_mono.cycle_last;
1107                 if (!cycle_between(interval_start, cycles, now)) {
1108                         clock_was_set_seq = tk->clock_was_set_seq;
1109                         cs_was_changed_seq = tk->cs_was_changed_seq;
1110                         cycles = interval_start;
1111                         do_interp = true;
1112                 } else {
1113                         do_interp = false;
1114                 }
1115
1116                 base_real = ktime_add(tk->tkr_mono.base,
1117                                       tk_core.timekeeper.offs_real);
1118                 base_raw = tk->tkr_raw.base;
1119
1120                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1121                                                      system_counterval.cycles);
1122                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1123                                                     system_counterval.cycles);
1124         } while (read_seqcount_retry(&tk_core.seq, seq));
1125
1126         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1127         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1128
1129         /*
1130          * Interpolate if necessary, adjusting back from the start of the
1131          * current interval
1132          */
1133         if (do_interp) {
1134                 cycle_t partial_history_cycles, total_history_cycles;
1135                 bool discontinuity;
1136
1137                 /*
1138                  * Check that the counter value occurs after the provided
1139                  * history reference and that the history doesn't cross a
1140                  * clocksource change
1141                  */
1142                 if (!history_begin ||
1143                     !cycle_between(history_begin->cycles,
1144                                    system_counterval.cycles, cycles) ||
1145                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1146                         return -EINVAL;
1147                 partial_history_cycles = cycles - system_counterval.cycles;
1148                 total_history_cycles = cycles - history_begin->cycles;
1149                 discontinuity =
1150                         history_begin->clock_was_set_seq != clock_was_set_seq;
1151
1152                 ret = adjust_historical_crosststamp(history_begin,
1153                                                     partial_history_cycles,
1154                                                     total_history_cycles,
1155                                                     discontinuity, xtstamp);
1156                 if (ret)
1157                         return ret;
1158         }
1159
1160         return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1163
1164 /**
1165  * do_gettimeofday - Returns the time of day in a timeval
1166  * @tv:         pointer to the timeval to be set
1167  *
1168  * NOTE: Users should be converted to using getnstimeofday()
1169  */
1170 void do_gettimeofday(struct timeval *tv)
1171 {
1172         struct timespec64 now;
1173
1174         getnstimeofday64(&now);
1175         tv->tv_sec = now.tv_sec;
1176         tv->tv_usec = now.tv_nsec/1000;
1177 }
1178 EXPORT_SYMBOL(do_gettimeofday);
1179
1180 /**
1181  * do_settimeofday64 - Sets the time of day.
1182  * @ts:     pointer to the timespec64 variable containing the new time
1183  *
1184  * Sets the time of day to the new time and update NTP and notify hrtimers
1185  */
1186 int do_settimeofday64(const struct timespec64 *ts)
1187 {
1188         struct timekeeper *tk = &tk_core.timekeeper;
1189         struct timespec64 ts_delta, xt;
1190         unsigned long flags;
1191         int ret = 0;
1192
1193         if (!timespec64_valid_strict(ts))
1194                 return -EINVAL;
1195
1196         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1197         write_seqcount_begin(&tk_core.seq);
1198
1199         timekeeping_forward_now(tk);
1200
1201         xt = tk_xtime(tk);
1202         ts_delta = timespec64_sub(*ts, xt);
1203
1204         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1205                 ret = -EINVAL;
1206                 goto out;
1207         }
1208
1209         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1210
1211         tk_set_xtime(tk, ts);
1212 out:
1213         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1214
1215         write_seqcount_end(&tk_core.seq);
1216         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1217
1218         /* signal hrtimers about time change */
1219         clock_was_set();
1220
1221         return ret;
1222 }
1223 EXPORT_SYMBOL(do_settimeofday64);
1224
1225 /**
1226  * timekeeping_inject_offset - Adds or subtracts from the current time.
1227  * @tv:         pointer to the timespec variable containing the offset
1228  *
1229  * Adds or subtracts an offset value from the current time.
1230  */
1231 int timekeeping_inject_offset(struct timespec *ts)
1232 {
1233         struct timekeeper *tk = &tk_core.timekeeper;
1234         unsigned long flags;
1235         struct timespec64 ts64, tmp;
1236         int ret = 0;
1237
1238         if (!timespec_inject_offset_valid(ts))
1239                 return -EINVAL;
1240
1241         ts64 = timespec_to_timespec64(*ts);
1242
1243         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1244         write_seqcount_begin(&tk_core.seq);
1245
1246         timekeeping_forward_now(tk);
1247
1248         /* Make sure the proposed value is valid */
1249         tmp = timespec64_add(tk_xtime(tk),  ts64);
1250         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1251             !timespec64_valid_strict(&tmp)) {
1252                 ret = -EINVAL;
1253                 goto error;
1254         }
1255
1256         tk_xtime_add(tk, &ts64);
1257         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1258
1259 error: /* even if we error out, we forwarded the time, so call update */
1260         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1261
1262         write_seqcount_end(&tk_core.seq);
1263         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1264
1265         /* signal hrtimers about time change */
1266         clock_was_set();
1267
1268         return ret;
1269 }
1270 EXPORT_SYMBOL(timekeeping_inject_offset);
1271
1272
1273 /**
1274  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1275  *
1276  */
1277 s32 timekeeping_get_tai_offset(void)
1278 {
1279         struct timekeeper *tk = &tk_core.timekeeper;
1280         unsigned int seq;
1281         s32 ret;
1282
1283         do {
1284                 seq = read_seqcount_begin(&tk_core.seq);
1285                 ret = tk->tai_offset;
1286         } while (read_seqcount_retry(&tk_core.seq, seq));
1287
1288         return ret;
1289 }
1290
1291 /**
1292  * __timekeeping_set_tai_offset - Lock free worker function
1293  *
1294  */
1295 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1296 {
1297         tk->tai_offset = tai_offset;
1298         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1299 }
1300
1301 /**
1302  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1303  *
1304  */
1305 void timekeeping_set_tai_offset(s32 tai_offset)
1306 {
1307         struct timekeeper *tk = &tk_core.timekeeper;
1308         unsigned long flags;
1309
1310         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1311         write_seqcount_begin(&tk_core.seq);
1312         __timekeeping_set_tai_offset(tk, tai_offset);
1313         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1314         write_seqcount_end(&tk_core.seq);
1315         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1316         clock_was_set();
1317 }
1318
1319 /**
1320  * change_clocksource - Swaps clocksources if a new one is available
1321  *
1322  * Accumulates current time interval and initializes new clocksource
1323  */
1324 static int change_clocksource(void *data)
1325 {
1326         struct timekeeper *tk = &tk_core.timekeeper;
1327         struct clocksource *new, *old;
1328         unsigned long flags;
1329
1330         new = (struct clocksource *) data;
1331
1332         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1333         write_seqcount_begin(&tk_core.seq);
1334
1335         timekeeping_forward_now(tk);
1336         /*
1337          * If the cs is in module, get a module reference. Succeeds
1338          * for built-in code (owner == NULL) as well.
1339          */
1340         if (try_module_get(new->owner)) {
1341                 if (!new->enable || new->enable(new) == 0) {
1342                         old = tk->tkr_mono.clock;
1343                         tk_setup_internals(tk, new);
1344                         if (old->disable)
1345                                 old->disable(old);
1346                         module_put(old->owner);
1347                 } else {
1348                         module_put(new->owner);
1349                 }
1350         }
1351         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1352
1353         write_seqcount_end(&tk_core.seq);
1354         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1355
1356         return 0;
1357 }
1358
1359 /**
1360  * timekeeping_notify - Install a new clock source
1361  * @clock:              pointer to the clock source
1362  *
1363  * This function is called from clocksource.c after a new, better clock
1364  * source has been registered. The caller holds the clocksource_mutex.
1365  */
1366 int timekeeping_notify(struct clocksource *clock)
1367 {
1368         struct timekeeper *tk = &tk_core.timekeeper;
1369
1370         if (tk->tkr_mono.clock == clock)
1371                 return 0;
1372         stop_machine(change_clocksource, clock, NULL);
1373         tick_clock_notify();
1374         return tk->tkr_mono.clock == clock ? 0 : -1;
1375 }
1376
1377 /**
1378  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1379  * @ts:         pointer to the timespec64 to be set
1380  *
1381  * Returns the raw monotonic time (completely un-modified by ntp)
1382  */
1383 void getrawmonotonic64(struct timespec64 *ts)
1384 {
1385         struct timekeeper *tk = &tk_core.timekeeper;
1386         struct timespec64 ts64;
1387         unsigned long seq;
1388         s64 nsecs;
1389
1390         do {
1391                 seq = read_seqcount_begin(&tk_core.seq);
1392                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1393                 ts64 = tk->raw_time;
1394
1395         } while (read_seqcount_retry(&tk_core.seq, seq));
1396
1397         timespec64_add_ns(&ts64, nsecs);
1398         *ts = ts64;
1399 }
1400 EXPORT_SYMBOL(getrawmonotonic64);
1401
1402
1403 /**
1404  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1405  */
1406 int timekeeping_valid_for_hres(void)
1407 {
1408         struct timekeeper *tk = &tk_core.timekeeper;
1409         unsigned long seq;
1410         int ret;
1411
1412         do {
1413                 seq = read_seqcount_begin(&tk_core.seq);
1414
1415                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1416
1417         } while (read_seqcount_retry(&tk_core.seq, seq));
1418
1419         return ret;
1420 }
1421
1422 /**
1423  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1424  */
1425 u64 timekeeping_max_deferment(void)
1426 {
1427         struct timekeeper *tk = &tk_core.timekeeper;
1428         unsigned long seq;
1429         u64 ret;
1430
1431         do {
1432                 seq = read_seqcount_begin(&tk_core.seq);
1433
1434                 ret = tk->tkr_mono.clock->max_idle_ns;
1435
1436         } while (read_seqcount_retry(&tk_core.seq, seq));
1437
1438         return ret;
1439 }
1440
1441 /**
1442  * read_persistent_clock -  Return time from the persistent clock.
1443  *
1444  * Weak dummy function for arches that do not yet support it.
1445  * Reads the time from the battery backed persistent clock.
1446  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1447  *
1448  *  XXX - Do be sure to remove it once all arches implement it.
1449  */
1450 void __weak read_persistent_clock(struct timespec *ts)
1451 {
1452         ts->tv_sec = 0;
1453         ts->tv_nsec = 0;
1454 }
1455
1456 void __weak read_persistent_clock64(struct timespec64 *ts64)
1457 {
1458         struct timespec ts;
1459
1460         read_persistent_clock(&ts);
1461         *ts64 = timespec_to_timespec64(ts);
1462 }
1463
1464 /**
1465  * read_boot_clock64 -  Return time of the system start.
1466  *
1467  * Weak dummy function for arches that do not yet support it.
1468  * Function to read the exact time the system has been started.
1469  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1470  *
1471  *  XXX - Do be sure to remove it once all arches implement it.
1472  */
1473 void __weak read_boot_clock64(struct timespec64 *ts)
1474 {
1475         ts->tv_sec = 0;
1476         ts->tv_nsec = 0;
1477 }
1478
1479 /* Flag for if timekeeping_resume() has injected sleeptime */
1480 static bool sleeptime_injected;
1481
1482 /* Flag for if there is a persistent clock on this platform */
1483 static bool persistent_clock_exists;
1484
1485 /*
1486  * timekeeping_init - Initializes the clocksource and common timekeeping values
1487  */
1488 void __init timekeeping_init(void)
1489 {
1490         struct timekeeper *tk = &tk_core.timekeeper;
1491         struct clocksource *clock;
1492         unsigned long flags;
1493         struct timespec64 now, boot, tmp;
1494
1495         read_persistent_clock64(&now);
1496         if (!timespec64_valid_strict(&now)) {
1497                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1498                         "         Check your CMOS/BIOS settings.\n");
1499                 now.tv_sec = 0;
1500                 now.tv_nsec = 0;
1501         } else if (now.tv_sec || now.tv_nsec)
1502                 persistent_clock_exists = true;
1503
1504         read_boot_clock64(&boot);
1505         if (!timespec64_valid_strict(&boot)) {
1506                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1507                         "         Check your CMOS/BIOS settings.\n");
1508                 boot.tv_sec = 0;
1509                 boot.tv_nsec = 0;
1510         }
1511
1512         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1513         write_seqcount_begin(&tk_core.seq);
1514         ntp_init();
1515
1516         clock = clocksource_default_clock();
1517         if (clock->enable)
1518                 clock->enable(clock);
1519         tk_setup_internals(tk, clock);
1520
1521         tk_set_xtime(tk, &now);
1522         tk->raw_time.tv_sec = 0;
1523         tk->raw_time.tv_nsec = 0;
1524         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1525                 boot = tk_xtime(tk);
1526
1527         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1528         tk_set_wall_to_mono(tk, tmp);
1529
1530         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1531
1532         write_seqcount_end(&tk_core.seq);
1533         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1534 }
1535
1536 /* time in seconds when suspend began for persistent clock */
1537 static struct timespec64 timekeeping_suspend_time;
1538
1539 /**
1540  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1541  * @delta: pointer to a timespec delta value
1542  *
1543  * Takes a timespec offset measuring a suspend interval and properly
1544  * adds the sleep offset to the timekeeping variables.
1545  */
1546 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1547                                            struct timespec64 *delta)
1548 {
1549         if (!timespec64_valid_strict(delta)) {
1550                 printk_deferred(KERN_WARNING
1551                                 "__timekeeping_inject_sleeptime: Invalid "
1552                                 "sleep delta value!\n");
1553                 return;
1554         }
1555         tk_xtime_add(tk, delta);
1556         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1557         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1558         tk_debug_account_sleep_time(delta);
1559 }
1560
1561 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1562 /**
1563  * We have three kinds of time sources to use for sleep time
1564  * injection, the preference order is:
1565  * 1) non-stop clocksource
1566  * 2) persistent clock (ie: RTC accessible when irqs are off)
1567  * 3) RTC
1568  *
1569  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1570  * If system has neither 1) nor 2), 3) will be used finally.
1571  *
1572  *
1573  * If timekeeping has injected sleeptime via either 1) or 2),
1574  * 3) becomes needless, so in this case we don't need to call
1575  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1576  * means.
1577  */
1578 bool timekeeping_rtc_skipresume(void)
1579 {
1580         return sleeptime_injected;
1581 }
1582
1583 /**
1584  * 1) can be determined whether to use or not only when doing
1585  * timekeeping_resume() which is invoked after rtc_suspend(),
1586  * so we can't skip rtc_suspend() surely if system has 1).
1587  *
1588  * But if system has 2), 2) will definitely be used, so in this
1589  * case we don't need to call rtc_suspend(), and this is what
1590  * timekeeping_rtc_skipsuspend() means.
1591  */
1592 bool timekeeping_rtc_skipsuspend(void)
1593 {
1594         return persistent_clock_exists;
1595 }
1596
1597 /**
1598  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1599  * @delta: pointer to a timespec64 delta value
1600  *
1601  * This hook is for architectures that cannot support read_persistent_clock64
1602  * because their RTC/persistent clock is only accessible when irqs are enabled.
1603  * and also don't have an effective nonstop clocksource.
1604  *
1605  * This function should only be called by rtc_resume(), and allows
1606  * a suspend offset to be injected into the timekeeping values.
1607  */
1608 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1609 {
1610         struct timekeeper *tk = &tk_core.timekeeper;
1611         unsigned long flags;
1612
1613         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1614         write_seqcount_begin(&tk_core.seq);
1615
1616         timekeeping_forward_now(tk);
1617
1618         __timekeeping_inject_sleeptime(tk, delta);
1619
1620         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1621
1622         write_seqcount_end(&tk_core.seq);
1623         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1624
1625         /* signal hrtimers about time change */
1626         clock_was_set();
1627 }
1628 #endif
1629
1630 /**
1631  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1632  */
1633 void timekeeping_resume(void)
1634 {
1635         struct timekeeper *tk = &tk_core.timekeeper;
1636         struct clocksource *clock = tk->tkr_mono.clock;
1637         unsigned long flags;
1638         struct timespec64 ts_new, ts_delta;
1639         cycle_t cycle_now, cycle_delta;
1640
1641         sleeptime_injected = false;
1642         read_persistent_clock64(&ts_new);
1643
1644         clockevents_resume();
1645         clocksource_resume();
1646
1647         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1648         write_seqcount_begin(&tk_core.seq);
1649
1650         /*
1651          * After system resumes, we need to calculate the suspended time and
1652          * compensate it for the OS time. There are 3 sources that could be
1653          * used: Nonstop clocksource during suspend, persistent clock and rtc
1654          * device.
1655          *
1656          * One specific platform may have 1 or 2 or all of them, and the
1657          * preference will be:
1658          *      suspend-nonstop clocksource -> persistent clock -> rtc
1659          * The less preferred source will only be tried if there is no better
1660          * usable source. The rtc part is handled separately in rtc core code.
1661          */
1662         cycle_now = tk_clock_read(&tk->tkr_mono);
1663         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1664                 cycle_now > tk->tkr_mono.cycle_last) {
1665                 u64 num, max = ULLONG_MAX;
1666                 u32 mult = clock->mult;
1667                 u32 shift = clock->shift;
1668                 s64 nsec = 0;
1669
1670                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1671                                                 tk->tkr_mono.mask);
1672
1673                 /*
1674                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1675                  * suspended time is too long. In that case we need do the
1676                  * 64 bits math carefully
1677                  */
1678                 do_div(max, mult);
1679                 if (cycle_delta > max) {
1680                         num = div64_u64(cycle_delta, max);
1681                         nsec = (((u64) max * mult) >> shift) * num;
1682                         cycle_delta -= num * max;
1683                 }
1684                 nsec += ((u64) cycle_delta * mult) >> shift;
1685
1686                 ts_delta = ns_to_timespec64(nsec);
1687                 sleeptime_injected = true;
1688         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1689                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1690                 sleeptime_injected = true;
1691         }
1692
1693         if (sleeptime_injected)
1694                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1695
1696         /* Re-base the last cycle value */
1697         tk->tkr_mono.cycle_last = cycle_now;
1698         tk->tkr_raw.cycle_last  = cycle_now;
1699
1700         tk->ntp_error = 0;
1701         timekeeping_suspended = 0;
1702         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1703         write_seqcount_end(&tk_core.seq);
1704         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1705
1706         touch_softlockup_watchdog();
1707
1708         tick_resume();
1709         hrtimers_resume();
1710 }
1711
1712 int timekeeping_suspend(void)
1713 {
1714         struct timekeeper *tk = &tk_core.timekeeper;
1715         unsigned long flags;
1716         struct timespec64               delta, delta_delta;
1717         static struct timespec64        old_delta;
1718
1719         read_persistent_clock64(&timekeeping_suspend_time);
1720
1721         /*
1722          * On some systems the persistent_clock can not be detected at
1723          * timekeeping_init by its return value, so if we see a valid
1724          * value returned, update the persistent_clock_exists flag.
1725          */
1726         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1727                 persistent_clock_exists = true;
1728
1729         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1730         write_seqcount_begin(&tk_core.seq);
1731         timekeeping_forward_now(tk);
1732         timekeeping_suspended = 1;
1733
1734         if (persistent_clock_exists) {
1735                 /*
1736                  * To avoid drift caused by repeated suspend/resumes,
1737                  * which each can add ~1 second drift error,
1738                  * try to compensate so the difference in system time
1739                  * and persistent_clock time stays close to constant.
1740                  */
1741                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1742                 delta_delta = timespec64_sub(delta, old_delta);
1743                 if (abs(delta_delta.tv_sec) >= 2) {
1744                         /*
1745                          * if delta_delta is too large, assume time correction
1746                          * has occurred and set old_delta to the current delta.
1747                          */
1748                         old_delta = delta;
1749                 } else {
1750                         /* Otherwise try to adjust old_system to compensate */
1751                         timekeeping_suspend_time =
1752                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1753                 }
1754         }
1755
1756         timekeeping_update(tk, TK_MIRROR);
1757         halt_fast_timekeeper(tk);
1758         write_seqcount_end(&tk_core.seq);
1759         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1760
1761         tick_suspend();
1762         clocksource_suspend();
1763         clockevents_suspend();
1764
1765         return 0;
1766 }
1767
1768 /* sysfs resume/suspend bits for timekeeping */
1769 static struct syscore_ops timekeeping_syscore_ops = {
1770         .resume         = timekeeping_resume,
1771         .suspend        = timekeeping_suspend,
1772 };
1773
1774 static int __init timekeeping_init_ops(void)
1775 {
1776         register_syscore_ops(&timekeeping_syscore_ops);
1777         return 0;
1778 }
1779 device_initcall(timekeeping_init_ops);
1780
1781 /*
1782  * Apply a multiplier adjustment to the timekeeper
1783  */
1784 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1785                                                          s64 offset,
1786                                                          bool negative,
1787                                                          int adj_scale)
1788 {
1789         s64 interval = tk->cycle_interval;
1790         s32 mult_adj = 1;
1791
1792         if (negative) {
1793                 mult_adj = -mult_adj;
1794                 interval = -interval;
1795                 offset  = -offset;
1796         }
1797         mult_adj <<= adj_scale;
1798         interval <<= adj_scale;
1799         offset <<= adj_scale;
1800
1801         /*
1802          * So the following can be confusing.
1803          *
1804          * To keep things simple, lets assume mult_adj == 1 for now.
1805          *
1806          * When mult_adj != 1, remember that the interval and offset values
1807          * have been appropriately scaled so the math is the same.
1808          *
1809          * The basic idea here is that we're increasing the multiplier
1810          * by one, this causes the xtime_interval to be incremented by
1811          * one cycle_interval. This is because:
1812          *      xtime_interval = cycle_interval * mult
1813          * So if mult is being incremented by one:
1814          *      xtime_interval = cycle_interval * (mult + 1)
1815          * Its the same as:
1816          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1817          * Which can be shortened to:
1818          *      xtime_interval += cycle_interval
1819          *
1820          * So offset stores the non-accumulated cycles. Thus the current
1821          * time (in shifted nanoseconds) is:
1822          *      now = (offset * adj) + xtime_nsec
1823          * Now, even though we're adjusting the clock frequency, we have
1824          * to keep time consistent. In other words, we can't jump back
1825          * in time, and we also want to avoid jumping forward in time.
1826          *
1827          * So given the same offset value, we need the time to be the same
1828          * both before and after the freq adjustment.
1829          *      now = (offset * adj_1) + xtime_nsec_1
1830          *      now = (offset * adj_2) + xtime_nsec_2
1831          * So:
1832          *      (offset * adj_1) + xtime_nsec_1 =
1833          *              (offset * adj_2) + xtime_nsec_2
1834          * And we know:
1835          *      adj_2 = adj_1 + 1
1836          * So:
1837          *      (offset * adj_1) + xtime_nsec_1 =
1838          *              (offset * (adj_1+1)) + xtime_nsec_2
1839          *      (offset * adj_1) + xtime_nsec_1 =
1840          *              (offset * adj_1) + offset + xtime_nsec_2
1841          * Canceling the sides:
1842          *      xtime_nsec_1 = offset + xtime_nsec_2
1843          * Which gives us:
1844          *      xtime_nsec_2 = xtime_nsec_1 - offset
1845          * Which simplfies to:
1846          *      xtime_nsec -= offset
1847          *
1848          * XXX - TODO: Doc ntp_error calculation.
1849          */
1850         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1851                 /* NTP adjustment caused clocksource mult overflow */
1852                 WARN_ON_ONCE(1);
1853                 return;
1854         }
1855
1856         tk->tkr_mono.mult += mult_adj;
1857         tk->xtime_interval += interval;
1858         tk->tkr_mono.xtime_nsec -= offset;
1859         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1860 }
1861
1862 /*
1863  * Calculate the multiplier adjustment needed to match the frequency
1864  * specified by NTP
1865  */
1866 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1867                                                         s64 offset)
1868 {
1869         s64 interval = tk->cycle_interval;
1870         s64 xinterval = tk->xtime_interval;
1871         u32 base = tk->tkr_mono.clock->mult;
1872         u32 max = tk->tkr_mono.clock->maxadj;
1873         u32 cur_adj = tk->tkr_mono.mult;
1874         s64 tick_error;
1875         bool negative;
1876         u32 adj_scale;
1877
1878         /* Remove any current error adj from freq calculation */
1879         if (tk->ntp_err_mult)
1880                 xinterval -= tk->cycle_interval;
1881
1882         tk->ntp_tick = ntp_tick_length();
1883
1884         /* Calculate current error per tick */
1885         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1886         tick_error -= (xinterval + tk->xtime_remainder);
1887
1888         /* Don't worry about correcting it if its small */
1889         if (likely((tick_error >= 0) && (tick_error <= interval)))
1890                 return;
1891
1892         /* preserve the direction of correction */
1893         negative = (tick_error < 0);
1894
1895         /* If any adjustment would pass the max, just return */
1896         if (negative && (cur_adj - 1) <= (base - max))
1897                 return;
1898         if (!negative && (cur_adj + 1) >= (base + max))
1899                 return;
1900         /*
1901          * Sort out the magnitude of the correction, but
1902          * avoid making so large a correction that we go
1903          * over the max adjustment.
1904          */
1905         adj_scale = 0;
1906         tick_error = abs(tick_error);
1907         while (tick_error > interval) {
1908                 u32 adj = 1 << (adj_scale + 1);
1909
1910                 /* Check if adjustment gets us within 1 unit from the max */
1911                 if (negative && (cur_adj - adj) <= (base - max))
1912                         break;
1913                 if (!negative && (cur_adj + adj) >= (base + max))
1914                         break;
1915
1916                 adj_scale++;
1917                 tick_error >>= 1;
1918         }
1919
1920         /* scale the corrections */
1921         timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1922 }
1923
1924 /*
1925  * Adjust the timekeeper's multiplier to the correct frequency
1926  * and also to reduce the accumulated error value.
1927  */
1928 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1929 {
1930         /* Correct for the current frequency error */
1931         timekeeping_freqadjust(tk, offset);
1932
1933         /* Next make a small adjustment to fix any cumulative error */
1934         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1935                 tk->ntp_err_mult = 1;
1936                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1937         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1938                 /* Undo any existing error adjustment */
1939                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1940                 tk->ntp_err_mult = 0;
1941         }
1942
1943         if (unlikely(tk->tkr_mono.clock->maxadj &&
1944                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1945                         > tk->tkr_mono.clock->maxadj))) {
1946                 printk_once(KERN_WARNING
1947                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1948                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1949                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1950         }
1951
1952         /*
1953          * It may be possible that when we entered this function, xtime_nsec
1954          * was very small.  Further, if we're slightly speeding the clocksource
1955          * in the code above, its possible the required corrective factor to
1956          * xtime_nsec could cause it to underflow.
1957          *
1958          * Now, since we already accumulated the second, cannot simply roll
1959          * the accumulated second back, since the NTP subsystem has been
1960          * notified via second_overflow. So instead we push xtime_nsec forward
1961          * by the amount we underflowed, and add that amount into the error.
1962          *
1963          * We'll correct this error next time through this function, when
1964          * xtime_nsec is not as small.
1965          */
1966         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1967                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1968                 tk->tkr_mono.xtime_nsec = 0;
1969                 tk->ntp_error += neg << tk->ntp_error_shift;
1970         }
1971 }
1972
1973 /**
1974  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1975  *
1976  * Helper function that accumulates the nsecs greater than a second
1977  * from the xtime_nsec field to the xtime_secs field.
1978  * It also calls into the NTP code to handle leapsecond processing.
1979  *
1980  */
1981 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1982 {
1983         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1984         unsigned int clock_set = 0;
1985
1986         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1987                 int leap;
1988
1989                 tk->tkr_mono.xtime_nsec -= nsecps;
1990                 tk->xtime_sec++;
1991
1992                 /* Figure out if its a leap sec and apply if needed */
1993                 leap = second_overflow(tk->xtime_sec);
1994                 if (unlikely(leap)) {
1995                         struct timespec64 ts;
1996
1997                         tk->xtime_sec += leap;
1998
1999                         ts.tv_sec = leap;
2000                         ts.tv_nsec = 0;
2001                         tk_set_wall_to_mono(tk,
2002                                 timespec64_sub(tk->wall_to_monotonic, ts));
2003
2004                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2005
2006                         clock_set = TK_CLOCK_WAS_SET;
2007                 }
2008         }
2009         return clock_set;
2010 }
2011
2012 /**
2013  * logarithmic_accumulation - shifted accumulation of cycles
2014  *
2015  * This functions accumulates a shifted interval of cycles into
2016  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2017  * loop.
2018  *
2019  * Returns the unconsumed cycles.
2020  */
2021 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
2022                                                 u32 shift,
2023                                                 unsigned int *clock_set)
2024 {
2025         cycle_t interval = tk->cycle_interval << shift;
2026         u64 snsec_per_sec;
2027
2028         /* If the offset is smaller than a shifted interval, do nothing */
2029         if (offset < interval)
2030                 return offset;
2031
2032         /* Accumulate one shifted interval */
2033         offset -= interval;
2034         tk->tkr_mono.cycle_last += interval;
2035         tk->tkr_raw.cycle_last  += interval;
2036
2037         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2038         *clock_set |= accumulate_nsecs_to_secs(tk);
2039
2040         /* Accumulate raw time */
2041         tk->tkr_raw.xtime_nsec += (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift;
2042         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2043         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2044         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2045                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2046                 tk->raw_time.tv_sec++;
2047         }
2048         tk->raw_time.tv_nsec = tk->tkr_raw.xtime_nsec >> tk->tkr_raw.shift;
2049         tk->tkr_raw.xtime_nsec -= (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift;
2050
2051         /* Accumulate error between NTP and clock interval */
2052         tk->ntp_error += tk->ntp_tick << shift;
2053         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2054                                                 (tk->ntp_error_shift + shift);
2055
2056         return offset;
2057 }
2058
2059 /**
2060  * update_wall_time - Uses the current clocksource to increment the wall time
2061  *
2062  */
2063 void update_wall_time(void)
2064 {
2065         struct timekeeper *real_tk = &tk_core.timekeeper;
2066         struct timekeeper *tk = &shadow_timekeeper;
2067         cycle_t offset;
2068         int shift = 0, maxshift;
2069         unsigned int clock_set = 0;
2070         unsigned long flags;
2071
2072         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2073
2074         /* Make sure we're fully resumed: */
2075         if (unlikely(timekeeping_suspended))
2076                 goto out;
2077
2078 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2079         offset = real_tk->cycle_interval;
2080 #else
2081         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2082                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2083 #endif
2084
2085         /* Check if there's really nothing to do */
2086         if (offset < real_tk->cycle_interval)
2087                 goto out;
2088
2089         /* Do some additional sanity checking */
2090         timekeeping_check_update(real_tk, offset);
2091
2092         /*
2093          * With NO_HZ we may have to accumulate many cycle_intervals
2094          * (think "ticks") worth of time at once. To do this efficiently,
2095          * we calculate the largest doubling multiple of cycle_intervals
2096          * that is smaller than the offset.  We then accumulate that
2097          * chunk in one go, and then try to consume the next smaller
2098          * doubled multiple.
2099          */
2100         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2101         shift = max(0, shift);
2102         /* Bound shift to one less than what overflows tick_length */
2103         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2104         shift = min(shift, maxshift);
2105         while (offset >= tk->cycle_interval) {
2106                 offset = logarithmic_accumulation(tk, offset, shift,
2107                                                         &clock_set);
2108                 if (offset < tk->cycle_interval<<shift)
2109                         shift--;
2110         }
2111
2112         /* correct the clock when NTP error is too big */
2113         timekeeping_adjust(tk, offset);
2114
2115         /*
2116          * XXX This can be killed once everyone converts
2117          * to the new update_vsyscall.
2118          */
2119         old_vsyscall_fixup(tk);
2120
2121         /*
2122          * Finally, make sure that after the rounding
2123          * xtime_nsec isn't larger than NSEC_PER_SEC
2124          */
2125         clock_set |= accumulate_nsecs_to_secs(tk);
2126
2127         write_seqcount_begin(&tk_core.seq);
2128         /*
2129          * Update the real timekeeper.
2130          *
2131          * We could avoid this memcpy by switching pointers, but that
2132          * requires changes to all other timekeeper usage sites as
2133          * well, i.e. move the timekeeper pointer getter into the
2134          * spinlocked/seqcount protected sections. And we trade this
2135          * memcpy under the tk_core.seq against one before we start
2136          * updating.
2137          */
2138         timekeeping_update(tk, clock_set);
2139         memcpy(real_tk, tk, sizeof(*tk));
2140         /* The memcpy must come last. Do not put anything here! */
2141         write_seqcount_end(&tk_core.seq);
2142 out:
2143         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2144         if (clock_set)
2145                 /* Have to call _delayed version, since in irq context*/
2146                 clock_was_set_delayed();
2147 }
2148
2149 /**
2150  * getboottime64 - Return the real time of system boot.
2151  * @ts:         pointer to the timespec64 to be set
2152  *
2153  * Returns the wall-time of boot in a timespec64.
2154  *
2155  * This is based on the wall_to_monotonic offset and the total suspend
2156  * time. Calls to settimeofday will affect the value returned (which
2157  * basically means that however wrong your real time clock is at boot time,
2158  * you get the right time here).
2159  */
2160 void getboottime64(struct timespec64 *ts)
2161 {
2162         struct timekeeper *tk = &tk_core.timekeeper;
2163         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2164
2165         *ts = ktime_to_timespec64(t);
2166 }
2167 EXPORT_SYMBOL_GPL(getboottime64);
2168
2169 unsigned long get_seconds(void)
2170 {
2171         struct timekeeper *tk = &tk_core.timekeeper;
2172
2173         return tk->xtime_sec;
2174 }
2175 EXPORT_SYMBOL(get_seconds);
2176
2177 struct timespec __current_kernel_time(void)
2178 {
2179         struct timekeeper *tk = &tk_core.timekeeper;
2180
2181         return timespec64_to_timespec(tk_xtime(tk));
2182 }
2183
2184 struct timespec64 current_kernel_time64(void)
2185 {
2186         struct timekeeper *tk = &tk_core.timekeeper;
2187         struct timespec64 now;
2188         unsigned long seq;
2189
2190         do {
2191                 seq = read_seqcount_begin(&tk_core.seq);
2192
2193                 now = tk_xtime(tk);
2194         } while (read_seqcount_retry(&tk_core.seq, seq));
2195
2196         return now;
2197 }
2198 EXPORT_SYMBOL(current_kernel_time64);
2199
2200 struct timespec64 get_monotonic_coarse64(void)
2201 {
2202         struct timekeeper *tk = &tk_core.timekeeper;
2203         struct timespec64 now, mono;
2204         unsigned long seq;
2205
2206         do {
2207                 seq = read_seqcount_begin(&tk_core.seq);
2208
2209                 now = tk_xtime(tk);
2210                 mono = tk->wall_to_monotonic;
2211         } while (read_seqcount_retry(&tk_core.seq, seq));
2212
2213         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2214                                 now.tv_nsec + mono.tv_nsec);
2215
2216         return now;
2217 }
2218 EXPORT_SYMBOL(get_monotonic_coarse64);
2219
2220 /*
2221  * Must hold jiffies_lock
2222  */
2223 void do_timer(unsigned long ticks)
2224 {
2225         jiffies_64 += ticks;
2226         calc_global_load(ticks);
2227 }
2228
2229 /**
2230  * ktime_get_update_offsets_now - hrtimer helper
2231  * @cwsseq:     pointer to check and store the clock was set sequence number
2232  * @offs_real:  pointer to storage for monotonic -> realtime offset
2233  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2234  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2235  *
2236  * Returns current monotonic time and updates the offsets if the
2237  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2238  * different.
2239  *
2240  * Called from hrtimer_interrupt() or retrigger_next_event()
2241  */
2242 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2243                                      ktime_t *offs_boot, ktime_t *offs_tai)
2244 {
2245         struct timekeeper *tk = &tk_core.timekeeper;
2246         unsigned int seq;
2247         ktime_t base;
2248         u64 nsecs;
2249
2250         do {
2251                 seq = read_seqcount_begin(&tk_core.seq);
2252
2253                 base = tk->tkr_mono.base;
2254                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2255                 base = ktime_add_ns(base, nsecs);
2256
2257                 if (*cwsseq != tk->clock_was_set_seq) {
2258                         *cwsseq = tk->clock_was_set_seq;
2259                         *offs_real = tk->offs_real;
2260                         *offs_boot = tk->offs_boot;
2261                         *offs_tai = tk->offs_tai;
2262                 }
2263
2264                 /* Handle leapsecond insertion adjustments */
2265                 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2266                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2267
2268         } while (read_seqcount_retry(&tk_core.seq, seq));
2269
2270         return base;
2271 }
2272
2273 /**
2274  * random_get_entropy_fallback - Returns the raw clock source value,
2275  * used by random.c for platforms with no valid random_get_entropy().
2276  */
2277 unsigned long random_get_entropy_fallback(void)
2278 {
2279         struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2280         struct clocksource *clock = READ_ONCE(tkr->clock);
2281
2282         if (unlikely(timekeeping_suspended || !clock))
2283                 return 0;
2284         return clock->read(clock);
2285 }
2286 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2287
2288 /**
2289  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2290  */
2291 int do_adjtimex(struct timex *txc)
2292 {
2293         struct timekeeper *tk = &tk_core.timekeeper;
2294         unsigned long flags;
2295         struct timespec64 ts;
2296         s32 orig_tai, tai;
2297         int ret;
2298
2299         /* Validate the data before disabling interrupts */
2300         ret = ntp_validate_timex(txc);
2301         if (ret)
2302                 return ret;
2303
2304         if (txc->modes & ADJ_SETOFFSET) {
2305                 struct timespec delta;
2306                 delta.tv_sec  = txc->time.tv_sec;
2307                 delta.tv_nsec = txc->time.tv_usec;
2308                 if (!(txc->modes & ADJ_NANO))
2309                         delta.tv_nsec *= 1000;
2310                 ret = timekeeping_inject_offset(&delta);
2311                 if (ret)
2312                         return ret;
2313         }
2314
2315         getnstimeofday64(&ts);
2316
2317         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2318         write_seqcount_begin(&tk_core.seq);
2319
2320         orig_tai = tai = tk->tai_offset;
2321         ret = __do_adjtimex(txc, &ts, &tai);
2322
2323         if (tai != orig_tai) {
2324                 __timekeeping_set_tai_offset(tk, tai);
2325                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2326         }
2327         tk_update_leap_state(tk);
2328
2329         write_seqcount_end(&tk_core.seq);
2330         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2331
2332         if (tai != orig_tai)
2333                 clock_was_set();
2334
2335         ntp_notify_cmos_timer();
2336
2337         return ret;
2338 }
2339
2340 #ifdef CONFIG_NTP_PPS
2341 /**
2342  * hardpps() - Accessor function to NTP __hardpps function
2343  */
2344 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2345 {
2346         unsigned long flags;
2347
2348         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2349         write_seqcount_begin(&tk_core.seq);
2350
2351         __hardpps(phase_ts, raw_ts);
2352
2353         write_seqcount_end(&tk_core.seq);
2354         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2355 }
2356 EXPORT_SYMBOL(hardpps);
2357 #endif
2358
2359 /**
2360  * xtime_update() - advances the timekeeping infrastructure
2361  * @ticks:      number of ticks, that have elapsed since the last call.
2362  *
2363  * Must be called with interrupts disabled.
2364  */
2365 void xtime_update(unsigned long ticks)
2366 {
2367         write_seqlock(&jiffies_lock);
2368         do_timer(ticks);
2369         write_sequnlock(&jiffies_lock);
2370         update_wall_time();
2371 }