GNU Linux-libre 4.19.223-gnu1
[releases.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/clock.h>
21 #include <linux/syscore_ops.h>
22 #include <linux/clocksource.h>
23 #include <linux/jiffies.h>
24 #include <linux/time.h>
25 #include <linux/tick.h>
26 #include <linux/stop_machine.h>
27 #include <linux/pvclock_gtod.h>
28 #include <linux/compiler.h>
29
30 #include "tick-internal.h"
31 #include "ntp_internal.h"
32 #include "timekeeping_internal.h"
33
34 #define TK_CLEAR_NTP            (1 << 0)
35 #define TK_MIRROR               (1 << 1)
36 #define TK_CLOCK_WAS_SET        (1 << 2)
37
38 enum timekeeping_adv_mode {
39         /* Update timekeeper when a tick has passed */
40         TK_ADV_TICK,
41
42         /* Update timekeeper on a direct frequency change */
43         TK_ADV_FREQ
44 };
45
46 /*
47  * The most important data for readout fits into a single 64 byte
48  * cache line.
49  */
50 static struct {
51         seqcount_t              seq;
52         struct timekeeper       timekeeper;
53 } tk_core ____cacheline_aligned = {
54         .seq = SEQCNT_ZERO(tk_core.seq),
55 };
56
57 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
58 static struct timekeeper shadow_timekeeper;
59
60 /**
61  * struct tk_fast - NMI safe timekeeper
62  * @seq:        Sequence counter for protecting updates. The lowest bit
63  *              is the index for the tk_read_base array
64  * @base:       tk_read_base array. Access is indexed by the lowest bit of
65  *              @seq.
66  *
67  * See @update_fast_timekeeper() below.
68  */
69 struct tk_fast {
70         seqcount_t              seq;
71         struct tk_read_base     base[2];
72 };
73
74 /* Suspend-time cycles value for halted fast timekeeper. */
75 static u64 cycles_at_suspend;
76
77 static u64 dummy_clock_read(struct clocksource *cs)
78 {
79         return cycles_at_suspend;
80 }
81
82 static struct clocksource dummy_clock = {
83         .read = dummy_clock_read,
84 };
85
86 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
87         .base[0] = { .clock = &dummy_clock, },
88         .base[1] = { .clock = &dummy_clock, },
89 };
90
91 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
92         .base[0] = { .clock = &dummy_clock, },
93         .base[1] = { .clock = &dummy_clock, },
94 };
95
96 /* flag for if timekeeping is suspended */
97 int __read_mostly timekeeping_suspended;
98
99 static inline void tk_normalize_xtime(struct timekeeper *tk)
100 {
101         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
102                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
103                 tk->xtime_sec++;
104         }
105         while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
106                 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
107                 tk->raw_sec++;
108         }
109 }
110
111 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
112 {
113         struct timespec64 ts;
114
115         ts.tv_sec = tk->xtime_sec;
116         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
117         return ts;
118 }
119
120 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
121 {
122         tk->xtime_sec = ts->tv_sec;
123         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
124 }
125
126 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
127 {
128         tk->xtime_sec += ts->tv_sec;
129         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
130         tk_normalize_xtime(tk);
131 }
132
133 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
134 {
135         struct timespec64 tmp;
136
137         /*
138          * Verify consistency of: offset_real = -wall_to_monotonic
139          * before modifying anything
140          */
141         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
142                                         -tk->wall_to_monotonic.tv_nsec);
143         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
144         tk->wall_to_monotonic = wtm;
145         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
146         tk->offs_real = timespec64_to_ktime(tmp);
147         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
148 }
149
150 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
151 {
152         tk->offs_boot = ktime_add(tk->offs_boot, delta);
153 }
154
155 /*
156  * tk_clock_read - atomic clocksource read() helper
157  *
158  * This helper is necessary to use in the read paths because, while the
159  * seqlock ensures we don't return a bad value while structures are updated,
160  * it doesn't protect from potential crashes. There is the possibility that
161  * the tkr's clocksource may change between the read reference, and the
162  * clock reference passed to the read function.  This can cause crashes if
163  * the wrong clocksource is passed to the wrong read function.
164  * This isn't necessary to use when holding the timekeeper_lock or doing
165  * a read of the fast-timekeeper tkrs (which is protected by its own locking
166  * and update logic).
167  */
168 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
169 {
170         struct clocksource *clock = READ_ONCE(tkr->clock);
171
172         return clock->read(clock);
173 }
174
175 #ifdef CONFIG_DEBUG_TIMEKEEPING
176 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
177
178 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
179 {
180
181         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
182         const char *name = tk->tkr_mono.clock->name;
183
184         if (offset > max_cycles) {
185                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
186                                 offset, name, max_cycles);
187                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
188         } else {
189                 if (offset > (max_cycles >> 1)) {
190                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
191                                         offset, name, max_cycles >> 1);
192                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
193                 }
194         }
195
196         if (tk->underflow_seen) {
197                 if (jiffies - tk->last_warning > WARNING_FREQ) {
198                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
199                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
200                         printk_deferred("         Your kernel is probably still fine.\n");
201                         tk->last_warning = jiffies;
202                 }
203                 tk->underflow_seen = 0;
204         }
205
206         if (tk->overflow_seen) {
207                 if (jiffies - tk->last_warning > WARNING_FREQ) {
208                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
209                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
210                         printk_deferred("         Your kernel is probably still fine.\n");
211                         tk->last_warning = jiffies;
212                 }
213                 tk->overflow_seen = 0;
214         }
215 }
216
217 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
218 {
219         struct timekeeper *tk = &tk_core.timekeeper;
220         u64 now, last, mask, max, delta;
221         unsigned int seq;
222
223         /*
224          * Since we're called holding a seqlock, the data may shift
225          * under us while we're doing the calculation. This can cause
226          * false positives, since we'd note a problem but throw the
227          * results away. So nest another seqlock here to atomically
228          * grab the points we are checking with.
229          */
230         do {
231                 seq = read_seqcount_begin(&tk_core.seq);
232                 now = tk_clock_read(tkr);
233                 last = tkr->cycle_last;
234                 mask = tkr->mask;
235                 max = tkr->clock->max_cycles;
236         } while (read_seqcount_retry(&tk_core.seq, seq));
237
238         delta = clocksource_delta(now, last, mask);
239
240         /*
241          * Try to catch underflows by checking if we are seeing small
242          * mask-relative negative values.
243          */
244         if (unlikely((~delta & mask) < (mask >> 3))) {
245                 tk->underflow_seen = 1;
246                 delta = 0;
247         }
248
249         /* Cap delta value to the max_cycles values to avoid mult overflows */
250         if (unlikely(delta > max)) {
251                 tk->overflow_seen = 1;
252                 delta = tkr->clock->max_cycles;
253         }
254
255         return delta;
256 }
257 #else
258 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
259 {
260 }
261 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
262 {
263         u64 cycle_now, delta;
264
265         /* read clocksource */
266         cycle_now = tk_clock_read(tkr);
267
268         /* calculate the delta since the last update_wall_time */
269         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
270
271         return delta;
272 }
273 #endif
274
275 /**
276  * tk_setup_internals - Set up internals to use clocksource clock.
277  *
278  * @tk:         The target timekeeper to setup.
279  * @clock:              Pointer to clocksource.
280  *
281  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
282  * pair and interval request.
283  *
284  * Unless you're the timekeeping code, you should not be using this!
285  */
286 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
287 {
288         u64 interval;
289         u64 tmp, ntpinterval;
290         struct clocksource *old_clock;
291
292         ++tk->cs_was_changed_seq;
293         old_clock = tk->tkr_mono.clock;
294         tk->tkr_mono.clock = clock;
295         tk->tkr_mono.mask = clock->mask;
296         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
297
298         tk->tkr_raw.clock = clock;
299         tk->tkr_raw.mask = clock->mask;
300         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
301
302         /* Do the ns -> cycle conversion first, using original mult */
303         tmp = NTP_INTERVAL_LENGTH;
304         tmp <<= clock->shift;
305         ntpinterval = tmp;
306         tmp += clock->mult/2;
307         do_div(tmp, clock->mult);
308         if (tmp == 0)
309                 tmp = 1;
310
311         interval = (u64) tmp;
312         tk->cycle_interval = interval;
313
314         /* Go back from cycles -> shifted ns */
315         tk->xtime_interval = interval * clock->mult;
316         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
317         tk->raw_interval = interval * clock->mult;
318
319          /* if changing clocks, convert xtime_nsec shift units */
320         if (old_clock) {
321                 int shift_change = clock->shift - old_clock->shift;
322                 if (shift_change < 0) {
323                         tk->tkr_mono.xtime_nsec >>= -shift_change;
324                         tk->tkr_raw.xtime_nsec >>= -shift_change;
325                 } else {
326                         tk->tkr_mono.xtime_nsec <<= shift_change;
327                         tk->tkr_raw.xtime_nsec <<= shift_change;
328                 }
329         }
330
331         tk->tkr_mono.shift = clock->shift;
332         tk->tkr_raw.shift = clock->shift;
333
334         tk->ntp_error = 0;
335         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
336         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
337
338         /*
339          * The timekeeper keeps its own mult values for the currently
340          * active clocksource. These value will be adjusted via NTP
341          * to counteract clock drifting.
342          */
343         tk->tkr_mono.mult = clock->mult;
344         tk->tkr_raw.mult = clock->mult;
345         tk->ntp_err_mult = 0;
346         tk->skip_second_overflow = 0;
347 }
348
349 /* Timekeeper helper functions. */
350
351 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
352 static u32 default_arch_gettimeoffset(void) { return 0; }
353 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
354 #else
355 static inline u32 arch_gettimeoffset(void) { return 0; }
356 #endif
357
358 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
359 {
360         u64 nsec;
361
362         nsec = delta * tkr->mult + tkr->xtime_nsec;
363         nsec >>= tkr->shift;
364
365         /* If arch requires, add in get_arch_timeoffset() */
366         return nsec + arch_gettimeoffset();
367 }
368
369 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
370 {
371         u64 delta;
372
373         delta = timekeeping_get_delta(tkr);
374         return timekeeping_delta_to_ns(tkr, delta);
375 }
376
377 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
378 {
379         u64 delta;
380
381         /* calculate the delta since the last update_wall_time */
382         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
383         return timekeeping_delta_to_ns(tkr, delta);
384 }
385
386 /**
387  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
388  * @tkr: Timekeeping readout base from which we take the update
389  *
390  * We want to use this from any context including NMI and tracing /
391  * instrumenting the timekeeping code itself.
392  *
393  * Employ the latch technique; see @raw_write_seqcount_latch.
394  *
395  * So if a NMI hits the update of base[0] then it will use base[1]
396  * which is still consistent. In the worst case this can result is a
397  * slightly wrong timestamp (a few nanoseconds). See
398  * @ktime_get_mono_fast_ns.
399  */
400 static void update_fast_timekeeper(const struct tk_read_base *tkr,
401                                    struct tk_fast *tkf)
402 {
403         struct tk_read_base *base = tkf->base;
404
405         /* Force readers off to base[1] */
406         raw_write_seqcount_latch(&tkf->seq);
407
408         /* Update base[0] */
409         memcpy(base, tkr, sizeof(*base));
410
411         /* Force readers back to base[0] */
412         raw_write_seqcount_latch(&tkf->seq);
413
414         /* Update base[1] */
415         memcpy(base + 1, base, sizeof(*base));
416 }
417
418 /**
419  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
420  *
421  * This timestamp is not guaranteed to be monotonic across an update.
422  * The timestamp is calculated by:
423  *
424  *      now = base_mono + clock_delta * slope
425  *
426  * So if the update lowers the slope, readers who are forced to the
427  * not yet updated second array are still using the old steeper slope.
428  *
429  * tmono
430  * ^
431  * |    o  n
432  * |   o n
433  * |  u
434  * | o
435  * |o
436  * |12345678---> reader order
437  *
438  * o = old slope
439  * u = update
440  * n = new slope
441  *
442  * So reader 6 will observe time going backwards versus reader 5.
443  *
444  * While other CPUs are likely to be able observe that, the only way
445  * for a CPU local observation is when an NMI hits in the middle of
446  * the update. Timestamps taken from that NMI context might be ahead
447  * of the following timestamps. Callers need to be aware of that and
448  * deal with it.
449  */
450 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
451 {
452         struct tk_read_base *tkr;
453         unsigned int seq;
454         u64 now;
455
456         do {
457                 seq = raw_read_seqcount_latch(&tkf->seq);
458                 tkr = tkf->base + (seq & 0x01);
459                 now = ktime_to_ns(tkr->base);
460
461                 now += timekeeping_delta_to_ns(tkr,
462                                 clocksource_delta(
463                                         tk_clock_read(tkr),
464                                         tkr->cycle_last,
465                                         tkr->mask));
466         } while (read_seqcount_retry(&tkf->seq, seq));
467
468         return now;
469 }
470
471 u64 ktime_get_mono_fast_ns(void)
472 {
473         return __ktime_get_fast_ns(&tk_fast_mono);
474 }
475 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
476
477 u64 ktime_get_raw_fast_ns(void)
478 {
479         return __ktime_get_fast_ns(&tk_fast_raw);
480 }
481 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
482
483 /**
484  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
485  *
486  * To keep it NMI safe since we're accessing from tracing, we're not using a
487  * separate timekeeper with updates to monotonic clock and boot offset
488  * protected with seqlocks. This has the following minor side effects:
489  *
490  * (1) Its possible that a timestamp be taken after the boot offset is updated
491  * but before the timekeeper is updated. If this happens, the new boot offset
492  * is added to the old timekeeping making the clock appear to update slightly
493  * earlier:
494  *    CPU 0                                        CPU 1
495  *    timekeeping_inject_sleeptime64()
496  *    __timekeeping_inject_sleeptime(tk, delta);
497  *                                                 timestamp();
498  *    timekeeping_update(tk, TK_CLEAR_NTP...);
499  *
500  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
501  * partially updated.  Since the tk->offs_boot update is a rare event, this
502  * should be a rare occurrence which postprocessing should be able to handle.
503  */
504 u64 notrace ktime_get_boot_fast_ns(void)
505 {
506         struct timekeeper *tk = &tk_core.timekeeper;
507
508         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
509 }
510 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
511
512
513 /*
514  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
515  */
516 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
517 {
518         struct tk_read_base *tkr;
519         unsigned int seq;
520         u64 now;
521
522         do {
523                 seq = raw_read_seqcount_latch(&tkf->seq);
524                 tkr = tkf->base + (seq & 0x01);
525                 now = ktime_to_ns(tkr->base_real);
526
527                 now += timekeeping_delta_to_ns(tkr,
528                                 clocksource_delta(
529                                         tk_clock_read(tkr),
530                                         tkr->cycle_last,
531                                         tkr->mask));
532         } while (read_seqcount_retry(&tkf->seq, seq));
533
534         return now;
535 }
536
537 /**
538  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
539  */
540 u64 ktime_get_real_fast_ns(void)
541 {
542         return __ktime_get_real_fast_ns(&tk_fast_mono);
543 }
544 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
545
546 /**
547  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
548  * @tk: Timekeeper to snapshot.
549  *
550  * It generally is unsafe to access the clocksource after timekeeping has been
551  * suspended, so take a snapshot of the readout base of @tk and use it as the
552  * fast timekeeper's readout base while suspended.  It will return the same
553  * number of cycles every time until timekeeping is resumed at which time the
554  * proper readout base for the fast timekeeper will be restored automatically.
555  */
556 static void halt_fast_timekeeper(const struct timekeeper *tk)
557 {
558         static struct tk_read_base tkr_dummy;
559         const struct tk_read_base *tkr = &tk->tkr_mono;
560
561         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
562         cycles_at_suspend = tk_clock_read(tkr);
563         tkr_dummy.clock = &dummy_clock;
564         tkr_dummy.base_real = tkr->base + tk->offs_real;
565         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
566
567         tkr = &tk->tkr_raw;
568         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
569         tkr_dummy.clock = &dummy_clock;
570         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
571 }
572
573 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
574
575 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
576 {
577         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
578 }
579
580 /**
581  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
582  */
583 int pvclock_gtod_register_notifier(struct notifier_block *nb)
584 {
585         struct timekeeper *tk = &tk_core.timekeeper;
586         unsigned long flags;
587         int ret;
588
589         raw_spin_lock_irqsave(&timekeeper_lock, flags);
590         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
591         update_pvclock_gtod(tk, true);
592         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
593
594         return ret;
595 }
596 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
597
598 /**
599  * pvclock_gtod_unregister_notifier - unregister a pvclock
600  * timedata update listener
601  */
602 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
603 {
604         unsigned long flags;
605         int ret;
606
607         raw_spin_lock_irqsave(&timekeeper_lock, flags);
608         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
609         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
610
611         return ret;
612 }
613 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
614
615 /*
616  * tk_update_leap_state - helper to update the next_leap_ktime
617  */
618 static inline void tk_update_leap_state(struct timekeeper *tk)
619 {
620         tk->next_leap_ktime = ntp_get_next_leap();
621         if (tk->next_leap_ktime != KTIME_MAX)
622                 /* Convert to monotonic time */
623                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
624 }
625
626 /*
627  * Update the ktime_t based scalar nsec members of the timekeeper
628  */
629 static inline void tk_update_ktime_data(struct timekeeper *tk)
630 {
631         u64 seconds;
632         u32 nsec;
633
634         /*
635          * The xtime based monotonic readout is:
636          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
637          * The ktime based monotonic readout is:
638          *      nsec = base_mono + now();
639          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
640          */
641         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
642         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
643         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
644
645         /*
646          * The sum of the nanoseconds portions of xtime and
647          * wall_to_monotonic can be greater/equal one second. Take
648          * this into account before updating tk->ktime_sec.
649          */
650         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
651         if (nsec >= NSEC_PER_SEC)
652                 seconds++;
653         tk->ktime_sec = seconds;
654
655         /* Update the monotonic raw base */
656         tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
657 }
658
659 /* must hold timekeeper_lock */
660 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
661 {
662         if (action & TK_CLEAR_NTP) {
663                 tk->ntp_error = 0;
664                 ntp_clear();
665         }
666
667         tk_update_leap_state(tk);
668         tk_update_ktime_data(tk);
669
670         update_vsyscall(tk);
671         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
672
673         tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
674         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
675         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
676
677         if (action & TK_CLOCK_WAS_SET)
678                 tk->clock_was_set_seq++;
679         /*
680          * The mirroring of the data to the shadow-timekeeper needs
681          * to happen last here to ensure we don't over-write the
682          * timekeeper structure on the next update with stale data
683          */
684         if (action & TK_MIRROR)
685                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
686                        sizeof(tk_core.timekeeper));
687 }
688
689 /**
690  * timekeeping_forward_now - update clock to the current time
691  *
692  * Forward the current clock to update its state since the last call to
693  * update_wall_time(). This is useful before significant clock changes,
694  * as it avoids having to deal with this time offset explicitly.
695  */
696 static void timekeeping_forward_now(struct timekeeper *tk)
697 {
698         u64 cycle_now, delta;
699
700         cycle_now = tk_clock_read(&tk->tkr_mono);
701         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
702         tk->tkr_mono.cycle_last = cycle_now;
703         tk->tkr_raw.cycle_last  = cycle_now;
704
705         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
706
707         /* If arch requires, add in get_arch_timeoffset() */
708         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
709
710
711         tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
712
713         /* If arch requires, add in get_arch_timeoffset() */
714         tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
715
716         tk_normalize_xtime(tk);
717 }
718
719 /**
720  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
721  * @ts:         pointer to the timespec to be set
722  *
723  * Returns the time of day in a timespec64 (WARN if suspended).
724  */
725 void ktime_get_real_ts64(struct timespec64 *ts)
726 {
727         struct timekeeper *tk = &tk_core.timekeeper;
728         unsigned long seq;
729         u64 nsecs;
730
731         WARN_ON(timekeeping_suspended);
732
733         do {
734                 seq = read_seqcount_begin(&tk_core.seq);
735
736                 ts->tv_sec = tk->xtime_sec;
737                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
738
739         } while (read_seqcount_retry(&tk_core.seq, seq));
740
741         ts->tv_nsec = 0;
742         timespec64_add_ns(ts, nsecs);
743 }
744 EXPORT_SYMBOL(ktime_get_real_ts64);
745
746 ktime_t ktime_get(void)
747 {
748         struct timekeeper *tk = &tk_core.timekeeper;
749         unsigned int seq;
750         ktime_t base;
751         u64 nsecs;
752
753         WARN_ON(timekeeping_suspended);
754
755         do {
756                 seq = read_seqcount_begin(&tk_core.seq);
757                 base = tk->tkr_mono.base;
758                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
759
760         } while (read_seqcount_retry(&tk_core.seq, seq));
761
762         return ktime_add_ns(base, nsecs);
763 }
764 EXPORT_SYMBOL_GPL(ktime_get);
765
766 u32 ktime_get_resolution_ns(void)
767 {
768         struct timekeeper *tk = &tk_core.timekeeper;
769         unsigned int seq;
770         u32 nsecs;
771
772         WARN_ON(timekeeping_suspended);
773
774         do {
775                 seq = read_seqcount_begin(&tk_core.seq);
776                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
777         } while (read_seqcount_retry(&tk_core.seq, seq));
778
779         return nsecs;
780 }
781 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
782
783 static ktime_t *offsets[TK_OFFS_MAX] = {
784         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
785         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
786         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
787 };
788
789 ktime_t ktime_get_with_offset(enum tk_offsets offs)
790 {
791         struct timekeeper *tk = &tk_core.timekeeper;
792         unsigned int seq;
793         ktime_t base, *offset = offsets[offs];
794         u64 nsecs;
795
796         WARN_ON(timekeeping_suspended);
797
798         do {
799                 seq = read_seqcount_begin(&tk_core.seq);
800                 base = ktime_add(tk->tkr_mono.base, *offset);
801                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
802
803         } while (read_seqcount_retry(&tk_core.seq, seq));
804
805         return ktime_add_ns(base, nsecs);
806
807 }
808 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
809
810 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
811 {
812         struct timekeeper *tk = &tk_core.timekeeper;
813         unsigned int seq;
814         ktime_t base, *offset = offsets[offs];
815         u64 nsecs;
816
817         WARN_ON(timekeeping_suspended);
818
819         do {
820                 seq = read_seqcount_begin(&tk_core.seq);
821                 base = ktime_add(tk->tkr_mono.base, *offset);
822                 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
823
824         } while (read_seqcount_retry(&tk_core.seq, seq));
825
826         return ktime_add_ns(base, nsecs);
827 }
828 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
829
830 /**
831  * ktime_mono_to_any() - convert mononotic time to any other time
832  * @tmono:      time to convert.
833  * @offs:       which offset to use
834  */
835 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
836 {
837         ktime_t *offset = offsets[offs];
838         unsigned long seq;
839         ktime_t tconv;
840
841         do {
842                 seq = read_seqcount_begin(&tk_core.seq);
843                 tconv = ktime_add(tmono, *offset);
844         } while (read_seqcount_retry(&tk_core.seq, seq));
845
846         return tconv;
847 }
848 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
849
850 /**
851  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
852  */
853 ktime_t ktime_get_raw(void)
854 {
855         struct timekeeper *tk = &tk_core.timekeeper;
856         unsigned int seq;
857         ktime_t base;
858         u64 nsecs;
859
860         do {
861                 seq = read_seqcount_begin(&tk_core.seq);
862                 base = tk->tkr_raw.base;
863                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
864
865         } while (read_seqcount_retry(&tk_core.seq, seq));
866
867         return ktime_add_ns(base, nsecs);
868 }
869 EXPORT_SYMBOL_GPL(ktime_get_raw);
870
871 /**
872  * ktime_get_ts64 - get the monotonic clock in timespec64 format
873  * @ts:         pointer to timespec variable
874  *
875  * The function calculates the monotonic clock from the realtime
876  * clock and the wall_to_monotonic offset and stores the result
877  * in normalized timespec64 format in the variable pointed to by @ts.
878  */
879 void ktime_get_ts64(struct timespec64 *ts)
880 {
881         struct timekeeper *tk = &tk_core.timekeeper;
882         struct timespec64 tomono;
883         unsigned int seq;
884         u64 nsec;
885
886         WARN_ON(timekeeping_suspended);
887
888         do {
889                 seq = read_seqcount_begin(&tk_core.seq);
890                 ts->tv_sec = tk->xtime_sec;
891                 nsec = timekeeping_get_ns(&tk->tkr_mono);
892                 tomono = tk->wall_to_monotonic;
893
894         } while (read_seqcount_retry(&tk_core.seq, seq));
895
896         ts->tv_sec += tomono.tv_sec;
897         ts->tv_nsec = 0;
898         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
899 }
900 EXPORT_SYMBOL_GPL(ktime_get_ts64);
901
902 /**
903  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
904  *
905  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
906  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
907  * works on both 32 and 64 bit systems. On 32 bit systems the readout
908  * covers ~136 years of uptime which should be enough to prevent
909  * premature wrap arounds.
910  */
911 time64_t ktime_get_seconds(void)
912 {
913         struct timekeeper *tk = &tk_core.timekeeper;
914
915         WARN_ON(timekeeping_suspended);
916         return tk->ktime_sec;
917 }
918 EXPORT_SYMBOL_GPL(ktime_get_seconds);
919
920 /**
921  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
922  *
923  * Returns the wall clock seconds since 1970. This replaces the
924  * get_seconds() interface which is not y2038 safe on 32bit systems.
925  *
926  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
927  * 32bit systems the access must be protected with the sequence
928  * counter to provide "atomic" access to the 64bit tk->xtime_sec
929  * value.
930  */
931 time64_t ktime_get_real_seconds(void)
932 {
933         struct timekeeper *tk = &tk_core.timekeeper;
934         time64_t seconds;
935         unsigned int seq;
936
937         if (IS_ENABLED(CONFIG_64BIT))
938                 return tk->xtime_sec;
939
940         do {
941                 seq = read_seqcount_begin(&tk_core.seq);
942                 seconds = tk->xtime_sec;
943
944         } while (read_seqcount_retry(&tk_core.seq, seq));
945
946         return seconds;
947 }
948 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
949
950 /**
951  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
952  * but without the sequence counter protect. This internal function
953  * is called just when timekeeping lock is already held.
954  */
955 time64_t __ktime_get_real_seconds(void)
956 {
957         struct timekeeper *tk = &tk_core.timekeeper;
958
959         return tk->xtime_sec;
960 }
961
962 /**
963  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
964  * @systime_snapshot:   pointer to struct receiving the system time snapshot
965  */
966 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
967 {
968         struct timekeeper *tk = &tk_core.timekeeper;
969         unsigned long seq;
970         ktime_t base_raw;
971         ktime_t base_real;
972         u64 nsec_raw;
973         u64 nsec_real;
974         u64 now;
975
976         WARN_ON_ONCE(timekeeping_suspended);
977
978         do {
979                 seq = read_seqcount_begin(&tk_core.seq);
980                 now = tk_clock_read(&tk->tkr_mono);
981                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
982                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
983                 base_real = ktime_add(tk->tkr_mono.base,
984                                       tk_core.timekeeper.offs_real);
985                 base_raw = tk->tkr_raw.base;
986                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
987                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
988         } while (read_seqcount_retry(&tk_core.seq, seq));
989
990         systime_snapshot->cycles = now;
991         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
992         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
993 }
994 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
995
996 /* Scale base by mult/div checking for overflow */
997 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
998 {
999         u64 tmp, rem;
1000
1001         tmp = div64_u64_rem(*base, div, &rem);
1002
1003         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1004             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1005                 return -EOVERFLOW;
1006         tmp *= mult;
1007
1008         rem = div64_u64(rem * mult, div);
1009         *base = tmp + rem;
1010         return 0;
1011 }
1012
1013 /**
1014  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1015  * @history:                    Snapshot representing start of history
1016  * @partial_history_cycles:     Cycle offset into history (fractional part)
1017  * @total_history_cycles:       Total history length in cycles
1018  * @discontinuity:              True indicates clock was set on history period
1019  * @ts:                         Cross timestamp that should be adjusted using
1020  *      partial/total ratio
1021  *
1022  * Helper function used by get_device_system_crosststamp() to correct the
1023  * crosstimestamp corresponding to the start of the current interval to the
1024  * system counter value (timestamp point) provided by the driver. The
1025  * total_history_* quantities are the total history starting at the provided
1026  * reference point and ending at the start of the current interval. The cycle
1027  * count between the driver timestamp point and the start of the current
1028  * interval is partial_history_cycles.
1029  */
1030 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1031                                          u64 partial_history_cycles,
1032                                          u64 total_history_cycles,
1033                                          bool discontinuity,
1034                                          struct system_device_crosststamp *ts)
1035 {
1036         struct timekeeper *tk = &tk_core.timekeeper;
1037         u64 corr_raw, corr_real;
1038         bool interp_forward;
1039         int ret;
1040
1041         if (total_history_cycles == 0 || partial_history_cycles == 0)
1042                 return 0;
1043
1044         /* Interpolate shortest distance from beginning or end of history */
1045         interp_forward = partial_history_cycles > total_history_cycles / 2;
1046         partial_history_cycles = interp_forward ?
1047                 total_history_cycles - partial_history_cycles :
1048                 partial_history_cycles;
1049
1050         /*
1051          * Scale the monotonic raw time delta by:
1052          *      partial_history_cycles / total_history_cycles
1053          */
1054         corr_raw = (u64)ktime_to_ns(
1055                 ktime_sub(ts->sys_monoraw, history->raw));
1056         ret = scale64_check_overflow(partial_history_cycles,
1057                                      total_history_cycles, &corr_raw);
1058         if (ret)
1059                 return ret;
1060
1061         /*
1062          * If there is a discontinuity in the history, scale monotonic raw
1063          *      correction by:
1064          *      mult(real)/mult(raw) yielding the realtime correction
1065          * Otherwise, calculate the realtime correction similar to monotonic
1066          *      raw calculation
1067          */
1068         if (discontinuity) {
1069                 corr_real = mul_u64_u32_div
1070                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1071         } else {
1072                 corr_real = (u64)ktime_to_ns(
1073                         ktime_sub(ts->sys_realtime, history->real));
1074                 ret = scale64_check_overflow(partial_history_cycles,
1075                                              total_history_cycles, &corr_real);
1076                 if (ret)
1077                         return ret;
1078         }
1079
1080         /* Fixup monotonic raw and real time time values */
1081         if (interp_forward) {
1082                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1083                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1084         } else {
1085                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1086                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1087         }
1088
1089         return 0;
1090 }
1091
1092 /*
1093  * cycle_between - true if test occurs chronologically between before and after
1094  */
1095 static bool cycle_between(u64 before, u64 test, u64 after)
1096 {
1097         if (test > before && test < after)
1098                 return true;
1099         if (test < before && before > after)
1100                 return true;
1101         return false;
1102 }
1103
1104 /**
1105  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1106  * @get_time_fn:        Callback to get simultaneous device time and
1107  *      system counter from the device driver
1108  * @ctx:                Context passed to get_time_fn()
1109  * @history_begin:      Historical reference point used to interpolate system
1110  *      time when counter provided by the driver is before the current interval
1111  * @xtstamp:            Receives simultaneously captured system and device time
1112  *
1113  * Reads a timestamp from a device and correlates it to system time
1114  */
1115 int get_device_system_crosststamp(int (*get_time_fn)
1116                                   (ktime_t *device_time,
1117                                    struct system_counterval_t *sys_counterval,
1118                                    void *ctx),
1119                                   void *ctx,
1120                                   struct system_time_snapshot *history_begin,
1121                                   struct system_device_crosststamp *xtstamp)
1122 {
1123         struct system_counterval_t system_counterval;
1124         struct timekeeper *tk = &tk_core.timekeeper;
1125         u64 cycles, now, interval_start;
1126         unsigned int clock_was_set_seq = 0;
1127         ktime_t base_real, base_raw;
1128         u64 nsec_real, nsec_raw;
1129         u8 cs_was_changed_seq;
1130         unsigned long seq;
1131         bool do_interp;
1132         int ret;
1133
1134         do {
1135                 seq = read_seqcount_begin(&tk_core.seq);
1136                 /*
1137                  * Try to synchronously capture device time and a system
1138                  * counter value calling back into the device driver
1139                  */
1140                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1141                 if (ret)
1142                         return ret;
1143
1144                 /*
1145                  * Verify that the clocksource associated with the captured
1146                  * system counter value is the same as the currently installed
1147                  * timekeeper clocksource
1148                  */
1149                 if (tk->tkr_mono.clock != system_counterval.cs)
1150                         return -ENODEV;
1151                 cycles = system_counterval.cycles;
1152
1153                 /*
1154                  * Check whether the system counter value provided by the
1155                  * device driver is on the current timekeeping interval.
1156                  */
1157                 now = tk_clock_read(&tk->tkr_mono);
1158                 interval_start = tk->tkr_mono.cycle_last;
1159                 if (!cycle_between(interval_start, cycles, now)) {
1160                         clock_was_set_seq = tk->clock_was_set_seq;
1161                         cs_was_changed_seq = tk->cs_was_changed_seq;
1162                         cycles = interval_start;
1163                         do_interp = true;
1164                 } else {
1165                         do_interp = false;
1166                 }
1167
1168                 base_real = ktime_add(tk->tkr_mono.base,
1169                                       tk_core.timekeeper.offs_real);
1170                 base_raw = tk->tkr_raw.base;
1171
1172                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1173                                                      system_counterval.cycles);
1174                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1175                                                     system_counterval.cycles);
1176         } while (read_seqcount_retry(&tk_core.seq, seq));
1177
1178         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1179         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1180
1181         /*
1182          * Interpolate if necessary, adjusting back from the start of the
1183          * current interval
1184          */
1185         if (do_interp) {
1186                 u64 partial_history_cycles, total_history_cycles;
1187                 bool discontinuity;
1188
1189                 /*
1190                  * Check that the counter value occurs after the provided
1191                  * history reference and that the history doesn't cross a
1192                  * clocksource change
1193                  */
1194                 if (!history_begin ||
1195                     !cycle_between(history_begin->cycles,
1196                                    system_counterval.cycles, cycles) ||
1197                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1198                         return -EINVAL;
1199                 partial_history_cycles = cycles - system_counterval.cycles;
1200                 total_history_cycles = cycles - history_begin->cycles;
1201                 discontinuity =
1202                         history_begin->clock_was_set_seq != clock_was_set_seq;
1203
1204                 ret = adjust_historical_crosststamp(history_begin,
1205                                                     partial_history_cycles,
1206                                                     total_history_cycles,
1207                                                     discontinuity, xtstamp);
1208                 if (ret)
1209                         return ret;
1210         }
1211
1212         return 0;
1213 }
1214 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1215
1216 /**
1217  * do_settimeofday64 - Sets the time of day.
1218  * @ts:     pointer to the timespec64 variable containing the new time
1219  *
1220  * Sets the time of day to the new time and update NTP and notify hrtimers
1221  */
1222 int do_settimeofday64(const struct timespec64 *ts)
1223 {
1224         struct timekeeper *tk = &tk_core.timekeeper;
1225         struct timespec64 ts_delta, xt;
1226         unsigned long flags;
1227         int ret = 0;
1228
1229         if (!timespec64_valid_settod(ts))
1230                 return -EINVAL;
1231
1232         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1233         write_seqcount_begin(&tk_core.seq);
1234
1235         timekeeping_forward_now(tk);
1236
1237         xt = tk_xtime(tk);
1238         ts_delta = timespec64_sub(*ts, xt);
1239
1240         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1241                 ret = -EINVAL;
1242                 goto out;
1243         }
1244
1245         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1246
1247         tk_set_xtime(tk, ts);
1248 out:
1249         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1250
1251         write_seqcount_end(&tk_core.seq);
1252         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1253
1254         /* signal hrtimers about time change */
1255         clock_was_set();
1256
1257         return ret;
1258 }
1259 EXPORT_SYMBOL(do_settimeofday64);
1260
1261 /**
1262  * timekeeping_inject_offset - Adds or subtracts from the current time.
1263  * @tv:         pointer to the timespec variable containing the offset
1264  *
1265  * Adds or subtracts an offset value from the current time.
1266  */
1267 static int timekeeping_inject_offset(const struct timespec64 *ts)
1268 {
1269         struct timekeeper *tk = &tk_core.timekeeper;
1270         unsigned long flags;
1271         struct timespec64 tmp;
1272         int ret = 0;
1273
1274         if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1275                 return -EINVAL;
1276
1277         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1278         write_seqcount_begin(&tk_core.seq);
1279
1280         timekeeping_forward_now(tk);
1281
1282         /* Make sure the proposed value is valid */
1283         tmp = timespec64_add(tk_xtime(tk), *ts);
1284         if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1285             !timespec64_valid_settod(&tmp)) {
1286                 ret = -EINVAL;
1287                 goto error;
1288         }
1289
1290         tk_xtime_add(tk, ts);
1291         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1292
1293 error: /* even if we error out, we forwarded the time, so call update */
1294         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1295
1296         write_seqcount_end(&tk_core.seq);
1297         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1298
1299         /* signal hrtimers about time change */
1300         clock_was_set();
1301
1302         return ret;
1303 }
1304
1305 /*
1306  * Indicates if there is an offset between the system clock and the hardware
1307  * clock/persistent clock/rtc.
1308  */
1309 int persistent_clock_is_local;
1310
1311 /*
1312  * Adjust the time obtained from the CMOS to be UTC time instead of
1313  * local time.
1314  *
1315  * This is ugly, but preferable to the alternatives.  Otherwise we
1316  * would either need to write a program to do it in /etc/rc (and risk
1317  * confusion if the program gets run more than once; it would also be
1318  * hard to make the program warp the clock precisely n hours)  or
1319  * compile in the timezone information into the kernel.  Bad, bad....
1320  *
1321  *                                              - TYT, 1992-01-01
1322  *
1323  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1324  * as real UNIX machines always do it. This avoids all headaches about
1325  * daylight saving times and warping kernel clocks.
1326  */
1327 void timekeeping_warp_clock(void)
1328 {
1329         if (sys_tz.tz_minuteswest != 0) {
1330                 struct timespec64 adjust;
1331
1332                 persistent_clock_is_local = 1;
1333                 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1334                 adjust.tv_nsec = 0;
1335                 timekeeping_inject_offset(&adjust);
1336         }
1337 }
1338
1339 /**
1340  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1341  *
1342  */
1343 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1344 {
1345         tk->tai_offset = tai_offset;
1346         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1347 }
1348
1349 /**
1350  * change_clocksource - Swaps clocksources if a new one is available
1351  *
1352  * Accumulates current time interval and initializes new clocksource
1353  */
1354 static int change_clocksource(void *data)
1355 {
1356         struct timekeeper *tk = &tk_core.timekeeper;
1357         struct clocksource *new, *old;
1358         unsigned long flags;
1359
1360         new = (struct clocksource *) data;
1361
1362         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1363         write_seqcount_begin(&tk_core.seq);
1364
1365         timekeeping_forward_now(tk);
1366         /*
1367          * If the cs is in module, get a module reference. Succeeds
1368          * for built-in code (owner == NULL) as well.
1369          */
1370         if (try_module_get(new->owner)) {
1371                 if (!new->enable || new->enable(new) == 0) {
1372                         old = tk->tkr_mono.clock;
1373                         tk_setup_internals(tk, new);
1374                         if (old->disable)
1375                                 old->disable(old);
1376                         module_put(old->owner);
1377                 } else {
1378                         module_put(new->owner);
1379                 }
1380         }
1381         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1382
1383         write_seqcount_end(&tk_core.seq);
1384         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1385
1386         return 0;
1387 }
1388
1389 /**
1390  * timekeeping_notify - Install a new clock source
1391  * @clock:              pointer to the clock source
1392  *
1393  * This function is called from clocksource.c after a new, better clock
1394  * source has been registered. The caller holds the clocksource_mutex.
1395  */
1396 int timekeeping_notify(struct clocksource *clock)
1397 {
1398         struct timekeeper *tk = &tk_core.timekeeper;
1399
1400         if (tk->tkr_mono.clock == clock)
1401                 return 0;
1402         stop_machine(change_clocksource, clock, NULL);
1403         tick_clock_notify();
1404         return tk->tkr_mono.clock == clock ? 0 : -1;
1405 }
1406
1407 /**
1408  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1409  * @ts:         pointer to the timespec64 to be set
1410  *
1411  * Returns the raw monotonic time (completely un-modified by ntp)
1412  */
1413 void ktime_get_raw_ts64(struct timespec64 *ts)
1414 {
1415         struct timekeeper *tk = &tk_core.timekeeper;
1416         unsigned long seq;
1417         u64 nsecs;
1418
1419         do {
1420                 seq = read_seqcount_begin(&tk_core.seq);
1421                 ts->tv_sec = tk->raw_sec;
1422                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1423
1424         } while (read_seqcount_retry(&tk_core.seq, seq));
1425
1426         ts->tv_nsec = 0;
1427         timespec64_add_ns(ts, nsecs);
1428 }
1429 EXPORT_SYMBOL(ktime_get_raw_ts64);
1430
1431
1432 /**
1433  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1434  */
1435 int timekeeping_valid_for_hres(void)
1436 {
1437         struct timekeeper *tk = &tk_core.timekeeper;
1438         unsigned long seq;
1439         int ret;
1440
1441         do {
1442                 seq = read_seqcount_begin(&tk_core.seq);
1443
1444                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1445
1446         } while (read_seqcount_retry(&tk_core.seq, seq));
1447
1448         return ret;
1449 }
1450
1451 /**
1452  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1453  */
1454 u64 timekeeping_max_deferment(void)
1455 {
1456         struct timekeeper *tk = &tk_core.timekeeper;
1457         unsigned long seq;
1458         u64 ret;
1459
1460         do {
1461                 seq = read_seqcount_begin(&tk_core.seq);
1462
1463                 ret = tk->tkr_mono.clock->max_idle_ns;
1464
1465         } while (read_seqcount_retry(&tk_core.seq, seq));
1466
1467         return ret;
1468 }
1469
1470 /**
1471  * read_persistent_clock -  Return time from the persistent clock.
1472  *
1473  * Weak dummy function for arches that do not yet support it.
1474  * Reads the time from the battery backed persistent clock.
1475  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1476  *
1477  *  XXX - Do be sure to remove it once all arches implement it.
1478  */
1479 void __weak read_persistent_clock(struct timespec *ts)
1480 {
1481         ts->tv_sec = 0;
1482         ts->tv_nsec = 0;
1483 }
1484
1485 void __weak read_persistent_clock64(struct timespec64 *ts64)
1486 {
1487         struct timespec ts;
1488
1489         read_persistent_clock(&ts);
1490         *ts64 = timespec_to_timespec64(ts);
1491 }
1492
1493 /**
1494  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1495  *                                        from the boot.
1496  *
1497  * Weak dummy function for arches that do not yet support it.
1498  * wall_time    - current time as returned by persistent clock
1499  * boot_offset  - offset that is defined as wall_time - boot_time
1500  * The default function calculates offset based on the current value of
1501  * local_clock(). This way architectures that support sched_clock() but don't
1502  * support dedicated boot time clock will provide the best estimate of the
1503  * boot time.
1504  */
1505 void __weak __init
1506 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1507                                      struct timespec64 *boot_offset)
1508 {
1509         read_persistent_clock64(wall_time);
1510         *boot_offset = ns_to_timespec64(local_clock());
1511 }
1512
1513 /*
1514  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1515  *
1516  * The flag starts of false and is only set when a suspend reaches
1517  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1518  * timekeeper clocksource is not stopping across suspend and has been
1519  * used to update sleep time. If the timekeeper clocksource has stopped
1520  * then the flag stays true and is used by the RTC resume code to decide
1521  * whether sleeptime must be injected and if so the flag gets false then.
1522  *
1523  * If a suspend fails before reaching timekeeping_resume() then the flag
1524  * stays false and prevents erroneous sleeptime injection.
1525  */
1526 static bool suspend_timing_needed;
1527
1528 /* Flag for if there is a persistent clock on this platform */
1529 static bool persistent_clock_exists;
1530
1531 /*
1532  * timekeeping_init - Initializes the clocksource and common timekeeping values
1533  */
1534 void __init timekeeping_init(void)
1535 {
1536         struct timespec64 wall_time, boot_offset, wall_to_mono;
1537         struct timekeeper *tk = &tk_core.timekeeper;
1538         struct clocksource *clock;
1539         unsigned long flags;
1540
1541         read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1542         if (timespec64_valid_settod(&wall_time) &&
1543             timespec64_to_ns(&wall_time) > 0) {
1544                 persistent_clock_exists = true;
1545         } else if (timespec64_to_ns(&wall_time) != 0) {
1546                 pr_warn("Persistent clock returned invalid value");
1547                 wall_time = (struct timespec64){0};
1548         }
1549
1550         if (timespec64_compare(&wall_time, &boot_offset) < 0)
1551                 boot_offset = (struct timespec64){0};
1552
1553         /*
1554          * We want set wall_to_mono, so the following is true:
1555          * wall time + wall_to_mono = boot time
1556          */
1557         wall_to_mono = timespec64_sub(boot_offset, wall_time);
1558
1559         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1560         write_seqcount_begin(&tk_core.seq);
1561         ntp_init();
1562
1563         clock = clocksource_default_clock();
1564         if (clock->enable)
1565                 clock->enable(clock);
1566         tk_setup_internals(tk, clock);
1567
1568         tk_set_xtime(tk, &wall_time);
1569         tk->raw_sec = 0;
1570
1571         tk_set_wall_to_mono(tk, wall_to_mono);
1572
1573         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1574
1575         write_seqcount_end(&tk_core.seq);
1576         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1577 }
1578
1579 /* time in seconds when suspend began for persistent clock */
1580 static struct timespec64 timekeeping_suspend_time;
1581
1582 /**
1583  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1584  * @delta: pointer to a timespec delta value
1585  *
1586  * Takes a timespec offset measuring a suspend interval and properly
1587  * adds the sleep offset to the timekeeping variables.
1588  */
1589 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1590                                            const struct timespec64 *delta)
1591 {
1592         if (!timespec64_valid_strict(delta)) {
1593                 printk_deferred(KERN_WARNING
1594                                 "__timekeeping_inject_sleeptime: Invalid "
1595                                 "sleep delta value!\n");
1596                 return;
1597         }
1598         tk_xtime_add(tk, delta);
1599         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1600         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1601         tk_debug_account_sleep_time(delta);
1602 }
1603
1604 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1605 /**
1606  * We have three kinds of time sources to use for sleep time
1607  * injection, the preference order is:
1608  * 1) non-stop clocksource
1609  * 2) persistent clock (ie: RTC accessible when irqs are off)
1610  * 3) RTC
1611  *
1612  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1613  * If system has neither 1) nor 2), 3) will be used finally.
1614  *
1615  *
1616  * If timekeeping has injected sleeptime via either 1) or 2),
1617  * 3) becomes needless, so in this case we don't need to call
1618  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1619  * means.
1620  */
1621 bool timekeeping_rtc_skipresume(void)
1622 {
1623         return !suspend_timing_needed;
1624 }
1625
1626 /**
1627  * 1) can be determined whether to use or not only when doing
1628  * timekeeping_resume() which is invoked after rtc_suspend(),
1629  * so we can't skip rtc_suspend() surely if system has 1).
1630  *
1631  * But if system has 2), 2) will definitely be used, so in this
1632  * case we don't need to call rtc_suspend(), and this is what
1633  * timekeeping_rtc_skipsuspend() means.
1634  */
1635 bool timekeeping_rtc_skipsuspend(void)
1636 {
1637         return persistent_clock_exists;
1638 }
1639
1640 /**
1641  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1642  * @delta: pointer to a timespec64 delta value
1643  *
1644  * This hook is for architectures that cannot support read_persistent_clock64
1645  * because their RTC/persistent clock is only accessible when irqs are enabled.
1646  * and also don't have an effective nonstop clocksource.
1647  *
1648  * This function should only be called by rtc_resume(), and allows
1649  * a suspend offset to be injected into the timekeeping values.
1650  */
1651 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1652 {
1653         struct timekeeper *tk = &tk_core.timekeeper;
1654         unsigned long flags;
1655
1656         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1657         write_seqcount_begin(&tk_core.seq);
1658
1659         suspend_timing_needed = false;
1660
1661         timekeeping_forward_now(tk);
1662
1663         __timekeeping_inject_sleeptime(tk, delta);
1664
1665         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1666
1667         write_seqcount_end(&tk_core.seq);
1668         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1669
1670         /* signal hrtimers about time change */
1671         clock_was_set();
1672 }
1673 #endif
1674
1675 /**
1676  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1677  */
1678 void timekeeping_resume(void)
1679 {
1680         struct timekeeper *tk = &tk_core.timekeeper;
1681         struct clocksource *clock = tk->tkr_mono.clock;
1682         unsigned long flags;
1683         struct timespec64 ts_new, ts_delta;
1684         u64 cycle_now, nsec;
1685         bool inject_sleeptime = false;
1686
1687         read_persistent_clock64(&ts_new);
1688
1689         clockevents_resume();
1690         clocksource_resume();
1691
1692         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1693         write_seqcount_begin(&tk_core.seq);
1694
1695         /*
1696          * After system resumes, we need to calculate the suspended time and
1697          * compensate it for the OS time. There are 3 sources that could be
1698          * used: Nonstop clocksource during suspend, persistent clock and rtc
1699          * device.
1700          *
1701          * One specific platform may have 1 or 2 or all of them, and the
1702          * preference will be:
1703          *      suspend-nonstop clocksource -> persistent clock -> rtc
1704          * The less preferred source will only be tried if there is no better
1705          * usable source. The rtc part is handled separately in rtc core code.
1706          */
1707         cycle_now = tk_clock_read(&tk->tkr_mono);
1708         nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1709         if (nsec > 0) {
1710                 ts_delta = ns_to_timespec64(nsec);
1711                 inject_sleeptime = true;
1712         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1713                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1714                 inject_sleeptime = true;
1715         }
1716
1717         if (inject_sleeptime) {
1718                 suspend_timing_needed = false;
1719                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1720         }
1721
1722         /* Re-base the last cycle value */
1723         tk->tkr_mono.cycle_last = cycle_now;
1724         tk->tkr_raw.cycle_last  = cycle_now;
1725
1726         tk->ntp_error = 0;
1727         timekeeping_suspended = 0;
1728         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1729         write_seqcount_end(&tk_core.seq);
1730         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1731
1732         touch_softlockup_watchdog();
1733
1734         tick_resume();
1735         hrtimers_resume();
1736 }
1737
1738 int timekeeping_suspend(void)
1739 {
1740         struct timekeeper *tk = &tk_core.timekeeper;
1741         unsigned long flags;
1742         struct timespec64               delta, delta_delta;
1743         static struct timespec64        old_delta;
1744         struct clocksource *curr_clock;
1745         u64 cycle_now;
1746
1747         read_persistent_clock64(&timekeeping_suspend_time);
1748
1749         /*
1750          * On some systems the persistent_clock can not be detected at
1751          * timekeeping_init by its return value, so if we see a valid
1752          * value returned, update the persistent_clock_exists flag.
1753          */
1754         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1755                 persistent_clock_exists = true;
1756
1757         suspend_timing_needed = true;
1758
1759         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1760         write_seqcount_begin(&tk_core.seq);
1761         timekeeping_forward_now(tk);
1762         timekeeping_suspended = 1;
1763
1764         /*
1765          * Since we've called forward_now, cycle_last stores the value
1766          * just read from the current clocksource. Save this to potentially
1767          * use in suspend timing.
1768          */
1769         curr_clock = tk->tkr_mono.clock;
1770         cycle_now = tk->tkr_mono.cycle_last;
1771         clocksource_start_suspend_timing(curr_clock, cycle_now);
1772
1773         if (persistent_clock_exists) {
1774                 /*
1775                  * To avoid drift caused by repeated suspend/resumes,
1776                  * which each can add ~1 second drift error,
1777                  * try to compensate so the difference in system time
1778                  * and persistent_clock time stays close to constant.
1779                  */
1780                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1781                 delta_delta = timespec64_sub(delta, old_delta);
1782                 if (abs(delta_delta.tv_sec) >= 2) {
1783                         /*
1784                          * if delta_delta is too large, assume time correction
1785                          * has occurred and set old_delta to the current delta.
1786                          */
1787                         old_delta = delta;
1788                 } else {
1789                         /* Otherwise try to adjust old_system to compensate */
1790                         timekeeping_suspend_time =
1791                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1792                 }
1793         }
1794
1795         timekeeping_update(tk, TK_MIRROR);
1796         halt_fast_timekeeper(tk);
1797         write_seqcount_end(&tk_core.seq);
1798         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1799
1800         tick_suspend();
1801         clocksource_suspend();
1802         clockevents_suspend();
1803
1804         return 0;
1805 }
1806
1807 /* sysfs resume/suspend bits for timekeeping */
1808 static struct syscore_ops timekeeping_syscore_ops = {
1809         .resume         = timekeeping_resume,
1810         .suspend        = timekeeping_suspend,
1811 };
1812
1813 static int __init timekeeping_init_ops(void)
1814 {
1815         register_syscore_ops(&timekeeping_syscore_ops);
1816         return 0;
1817 }
1818 device_initcall(timekeeping_init_ops);
1819
1820 /*
1821  * Apply a multiplier adjustment to the timekeeper
1822  */
1823 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1824                                                          s64 offset,
1825                                                          s32 mult_adj)
1826 {
1827         s64 interval = tk->cycle_interval;
1828
1829         if (mult_adj == 0) {
1830                 return;
1831         } else if (mult_adj == -1) {
1832                 interval = -interval;
1833                 offset = -offset;
1834         } else if (mult_adj != 1) {
1835                 interval *= mult_adj;
1836                 offset *= mult_adj;
1837         }
1838
1839         /*
1840          * So the following can be confusing.
1841          *
1842          * To keep things simple, lets assume mult_adj == 1 for now.
1843          *
1844          * When mult_adj != 1, remember that the interval and offset values
1845          * have been appropriately scaled so the math is the same.
1846          *
1847          * The basic idea here is that we're increasing the multiplier
1848          * by one, this causes the xtime_interval to be incremented by
1849          * one cycle_interval. This is because:
1850          *      xtime_interval = cycle_interval * mult
1851          * So if mult is being incremented by one:
1852          *      xtime_interval = cycle_interval * (mult + 1)
1853          * Its the same as:
1854          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1855          * Which can be shortened to:
1856          *      xtime_interval += cycle_interval
1857          *
1858          * So offset stores the non-accumulated cycles. Thus the current
1859          * time (in shifted nanoseconds) is:
1860          *      now = (offset * adj) + xtime_nsec
1861          * Now, even though we're adjusting the clock frequency, we have
1862          * to keep time consistent. In other words, we can't jump back
1863          * in time, and we also want to avoid jumping forward in time.
1864          *
1865          * So given the same offset value, we need the time to be the same
1866          * both before and after the freq adjustment.
1867          *      now = (offset * adj_1) + xtime_nsec_1
1868          *      now = (offset * adj_2) + xtime_nsec_2
1869          * So:
1870          *      (offset * adj_1) + xtime_nsec_1 =
1871          *              (offset * adj_2) + xtime_nsec_2
1872          * And we know:
1873          *      adj_2 = adj_1 + 1
1874          * So:
1875          *      (offset * adj_1) + xtime_nsec_1 =
1876          *              (offset * (adj_1+1)) + xtime_nsec_2
1877          *      (offset * adj_1) + xtime_nsec_1 =
1878          *              (offset * adj_1) + offset + xtime_nsec_2
1879          * Canceling the sides:
1880          *      xtime_nsec_1 = offset + xtime_nsec_2
1881          * Which gives us:
1882          *      xtime_nsec_2 = xtime_nsec_1 - offset
1883          * Which simplfies to:
1884          *      xtime_nsec -= offset
1885          */
1886         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1887                 /* NTP adjustment caused clocksource mult overflow */
1888                 WARN_ON_ONCE(1);
1889                 return;
1890         }
1891
1892         tk->tkr_mono.mult += mult_adj;
1893         tk->xtime_interval += interval;
1894         tk->tkr_mono.xtime_nsec -= offset;
1895 }
1896
1897 /*
1898  * Adjust the timekeeper's multiplier to the correct frequency
1899  * and also to reduce the accumulated error value.
1900  */
1901 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1902 {
1903         u32 mult;
1904
1905         /*
1906          * Determine the multiplier from the current NTP tick length.
1907          * Avoid expensive division when the tick length doesn't change.
1908          */
1909         if (likely(tk->ntp_tick == ntp_tick_length())) {
1910                 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1911         } else {
1912                 tk->ntp_tick = ntp_tick_length();
1913                 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1914                                  tk->xtime_remainder, tk->cycle_interval);
1915         }
1916
1917         /*
1918          * If the clock is behind the NTP time, increase the multiplier by 1
1919          * to catch up with it. If it's ahead and there was a remainder in the
1920          * tick division, the clock will slow down. Otherwise it will stay
1921          * ahead until the tick length changes to a non-divisible value.
1922          */
1923         tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1924         mult += tk->ntp_err_mult;
1925
1926         timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1927
1928         if (unlikely(tk->tkr_mono.clock->maxadj &&
1929                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1930                         > tk->tkr_mono.clock->maxadj))) {
1931                 printk_once(KERN_WARNING
1932                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1933                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1934                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1935         }
1936
1937         /*
1938          * It may be possible that when we entered this function, xtime_nsec
1939          * was very small.  Further, if we're slightly speeding the clocksource
1940          * in the code above, its possible the required corrective factor to
1941          * xtime_nsec could cause it to underflow.
1942          *
1943          * Now, since we have already accumulated the second and the NTP
1944          * subsystem has been notified via second_overflow(), we need to skip
1945          * the next update.
1946          */
1947         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1948                 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1949                                                         tk->tkr_mono.shift;
1950                 tk->xtime_sec--;
1951                 tk->skip_second_overflow = 1;
1952         }
1953 }
1954
1955 /**
1956  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1957  *
1958  * Helper function that accumulates the nsecs greater than a second
1959  * from the xtime_nsec field to the xtime_secs field.
1960  * It also calls into the NTP code to handle leapsecond processing.
1961  *
1962  */
1963 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1964 {
1965         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1966         unsigned int clock_set = 0;
1967
1968         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1969                 int leap;
1970
1971                 tk->tkr_mono.xtime_nsec -= nsecps;
1972                 tk->xtime_sec++;
1973
1974                 /*
1975                  * Skip NTP update if this second was accumulated before,
1976                  * i.e. xtime_nsec underflowed in timekeeping_adjust()
1977                  */
1978                 if (unlikely(tk->skip_second_overflow)) {
1979                         tk->skip_second_overflow = 0;
1980                         continue;
1981                 }
1982
1983                 /* Figure out if its a leap sec and apply if needed */
1984                 leap = second_overflow(tk->xtime_sec);
1985                 if (unlikely(leap)) {
1986                         struct timespec64 ts;
1987
1988                         tk->xtime_sec += leap;
1989
1990                         ts.tv_sec = leap;
1991                         ts.tv_nsec = 0;
1992                         tk_set_wall_to_mono(tk,
1993                                 timespec64_sub(tk->wall_to_monotonic, ts));
1994
1995                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1996
1997                         clock_set = TK_CLOCK_WAS_SET;
1998                 }
1999         }
2000         return clock_set;
2001 }
2002
2003 /**
2004  * logarithmic_accumulation - shifted accumulation of cycles
2005  *
2006  * This functions accumulates a shifted interval of cycles into
2007  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2008  * loop.
2009  *
2010  * Returns the unconsumed cycles.
2011  */
2012 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2013                                     u32 shift, unsigned int *clock_set)
2014 {
2015         u64 interval = tk->cycle_interval << shift;
2016         u64 snsec_per_sec;
2017
2018         /* If the offset is smaller than a shifted interval, do nothing */
2019         if (offset < interval)
2020                 return offset;
2021
2022         /* Accumulate one shifted interval */
2023         offset -= interval;
2024         tk->tkr_mono.cycle_last += interval;
2025         tk->tkr_raw.cycle_last  += interval;
2026
2027         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2028         *clock_set |= accumulate_nsecs_to_secs(tk);
2029
2030         /* Accumulate raw time */
2031         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2032         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2033         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2034                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2035                 tk->raw_sec++;
2036         }
2037
2038         /* Accumulate error between NTP and clock interval */
2039         tk->ntp_error += tk->ntp_tick << shift;
2040         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2041                                                 (tk->ntp_error_shift + shift);
2042
2043         return offset;
2044 }
2045
2046 /*
2047  * timekeeping_advance - Updates the timekeeper to the current time and
2048  * current NTP tick length
2049  */
2050 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2051 {
2052         struct timekeeper *real_tk = &tk_core.timekeeper;
2053         struct timekeeper *tk = &shadow_timekeeper;
2054         u64 offset;
2055         int shift = 0, maxshift;
2056         unsigned int clock_set = 0;
2057         unsigned long flags;
2058
2059         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2060
2061         /* Make sure we're fully resumed: */
2062         if (unlikely(timekeeping_suspended))
2063                 goto out;
2064
2065 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2066         offset = real_tk->cycle_interval;
2067
2068         if (mode != TK_ADV_TICK)
2069                 goto out;
2070 #else
2071         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2072                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2073
2074         /* Check if there's really nothing to do */
2075         if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2076                 goto out;
2077 #endif
2078
2079         /* Do some additional sanity checking */
2080         timekeeping_check_update(tk, offset);
2081
2082         /*
2083          * With NO_HZ we may have to accumulate many cycle_intervals
2084          * (think "ticks") worth of time at once. To do this efficiently,
2085          * we calculate the largest doubling multiple of cycle_intervals
2086          * that is smaller than the offset.  We then accumulate that
2087          * chunk in one go, and then try to consume the next smaller
2088          * doubled multiple.
2089          */
2090         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2091         shift = max(0, shift);
2092         /* Bound shift to one less than what overflows tick_length */
2093         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2094         shift = min(shift, maxshift);
2095         while (offset >= tk->cycle_interval) {
2096                 offset = logarithmic_accumulation(tk, offset, shift,
2097                                                         &clock_set);
2098                 if (offset < tk->cycle_interval<<shift)
2099                         shift--;
2100         }
2101
2102         /* Adjust the multiplier to correct NTP error */
2103         timekeeping_adjust(tk, offset);
2104
2105         /*
2106          * Finally, make sure that after the rounding
2107          * xtime_nsec isn't larger than NSEC_PER_SEC
2108          */
2109         clock_set |= accumulate_nsecs_to_secs(tk);
2110
2111         write_seqcount_begin(&tk_core.seq);
2112         /*
2113          * Update the real timekeeper.
2114          *
2115          * We could avoid this memcpy by switching pointers, but that
2116          * requires changes to all other timekeeper usage sites as
2117          * well, i.e. move the timekeeper pointer getter into the
2118          * spinlocked/seqcount protected sections. And we trade this
2119          * memcpy under the tk_core.seq against one before we start
2120          * updating.
2121          */
2122         timekeeping_update(tk, clock_set);
2123         memcpy(real_tk, tk, sizeof(*tk));
2124         /* The memcpy must come last. Do not put anything here! */
2125         write_seqcount_end(&tk_core.seq);
2126 out:
2127         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2128         if (clock_set)
2129                 /* Have to call _delayed version, since in irq context*/
2130                 clock_was_set_delayed();
2131 }
2132
2133 /**
2134  * update_wall_time - Uses the current clocksource to increment the wall time
2135  *
2136  */
2137 void update_wall_time(void)
2138 {
2139         timekeeping_advance(TK_ADV_TICK);
2140 }
2141
2142 /**
2143  * getboottime64 - Return the real time of system boot.
2144  * @ts:         pointer to the timespec64 to be set
2145  *
2146  * Returns the wall-time of boot in a timespec64.
2147  *
2148  * This is based on the wall_to_monotonic offset and the total suspend
2149  * time. Calls to settimeofday will affect the value returned (which
2150  * basically means that however wrong your real time clock is at boot time,
2151  * you get the right time here).
2152  */
2153 void getboottime64(struct timespec64 *ts)
2154 {
2155         struct timekeeper *tk = &tk_core.timekeeper;
2156         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2157
2158         *ts = ktime_to_timespec64(t);
2159 }
2160 EXPORT_SYMBOL_GPL(getboottime64);
2161
2162 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2163 {
2164         struct timekeeper *tk = &tk_core.timekeeper;
2165         unsigned long seq;
2166
2167         do {
2168                 seq = read_seqcount_begin(&tk_core.seq);
2169
2170                 *ts = tk_xtime(tk);
2171         } while (read_seqcount_retry(&tk_core.seq, seq));
2172 }
2173 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2174
2175 void ktime_get_coarse_ts64(struct timespec64 *ts)
2176 {
2177         struct timekeeper *tk = &tk_core.timekeeper;
2178         struct timespec64 now, mono;
2179         unsigned long seq;
2180
2181         do {
2182                 seq = read_seqcount_begin(&tk_core.seq);
2183
2184                 now = tk_xtime(tk);
2185                 mono = tk->wall_to_monotonic;
2186         } while (read_seqcount_retry(&tk_core.seq, seq));
2187
2188         set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2189                                 now.tv_nsec + mono.tv_nsec);
2190 }
2191 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2192
2193 /*
2194  * Must hold jiffies_lock
2195  */
2196 void do_timer(unsigned long ticks)
2197 {
2198         jiffies_64 += ticks;
2199         calc_global_load(ticks);
2200 }
2201
2202 /**
2203  * ktime_get_update_offsets_now - hrtimer helper
2204  * @cwsseq:     pointer to check and store the clock was set sequence number
2205  * @offs_real:  pointer to storage for monotonic -> realtime offset
2206  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2207  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2208  *
2209  * Returns current monotonic time and updates the offsets if the
2210  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2211  * different.
2212  *
2213  * Called from hrtimer_interrupt() or retrigger_next_event()
2214  */
2215 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2216                                      ktime_t *offs_boot, ktime_t *offs_tai)
2217 {
2218         struct timekeeper *tk = &tk_core.timekeeper;
2219         unsigned int seq;
2220         ktime_t base;
2221         u64 nsecs;
2222
2223         do {
2224                 seq = read_seqcount_begin(&tk_core.seq);
2225
2226                 base = tk->tkr_mono.base;
2227                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2228                 base = ktime_add_ns(base, nsecs);
2229
2230                 if (*cwsseq != tk->clock_was_set_seq) {
2231                         *cwsseq = tk->clock_was_set_seq;
2232                         *offs_real = tk->offs_real;
2233                         *offs_boot = tk->offs_boot;
2234                         *offs_tai = tk->offs_tai;
2235                 }
2236
2237                 /* Handle leapsecond insertion adjustments */
2238                 if (unlikely(base >= tk->next_leap_ktime))
2239                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2240
2241         } while (read_seqcount_retry(&tk_core.seq, seq));
2242
2243         return base;
2244 }
2245
2246 /**
2247  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2248  */
2249 static int timekeeping_validate_timex(const struct timex *txc)
2250 {
2251         if (txc->modes & ADJ_ADJTIME) {
2252                 /* singleshot must not be used with any other mode bits */
2253                 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2254                         return -EINVAL;
2255                 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2256                     !capable(CAP_SYS_TIME))
2257                         return -EPERM;
2258         } else {
2259                 /* In order to modify anything, you gotta be super-user! */
2260                 if (txc->modes && !capable(CAP_SYS_TIME))
2261                         return -EPERM;
2262                 /*
2263                  * if the quartz is off by more than 10% then
2264                  * something is VERY wrong!
2265                  */
2266                 if (txc->modes & ADJ_TICK &&
2267                     (txc->tick <  900000/USER_HZ ||
2268                      txc->tick > 1100000/USER_HZ))
2269                         return -EINVAL;
2270         }
2271
2272         if (txc->modes & ADJ_SETOFFSET) {
2273                 /* In order to inject time, you gotta be super-user! */
2274                 if (!capable(CAP_SYS_TIME))
2275                         return -EPERM;
2276
2277                 /*
2278                  * Validate if a timespec/timeval used to inject a time
2279                  * offset is valid.  Offsets can be postive or negative, so
2280                  * we don't check tv_sec. The value of the timeval/timespec
2281                  * is the sum of its fields,but *NOTE*:
2282                  * The field tv_usec/tv_nsec must always be non-negative and
2283                  * we can't have more nanoseconds/microseconds than a second.
2284                  */
2285                 if (txc->time.tv_usec < 0)
2286                         return -EINVAL;
2287
2288                 if (txc->modes & ADJ_NANO) {
2289                         if (txc->time.tv_usec >= NSEC_PER_SEC)
2290                                 return -EINVAL;
2291                 } else {
2292                         if (txc->time.tv_usec >= USEC_PER_SEC)
2293                                 return -EINVAL;
2294                 }
2295         }
2296
2297         /*
2298          * Check for potential multiplication overflows that can
2299          * only happen on 64-bit systems:
2300          */
2301         if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2302                 if (LLONG_MIN / PPM_SCALE > txc->freq)
2303                         return -EINVAL;
2304                 if (LLONG_MAX / PPM_SCALE < txc->freq)
2305                         return -EINVAL;
2306         }
2307
2308         return 0;
2309 }
2310
2311
2312 /**
2313  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2314  */
2315 int do_adjtimex(struct timex *txc)
2316 {
2317         struct timekeeper *tk = &tk_core.timekeeper;
2318         unsigned long flags;
2319         struct timespec64 ts;
2320         s32 orig_tai, tai;
2321         int ret;
2322
2323         /* Validate the data before disabling interrupts */
2324         ret = timekeeping_validate_timex(txc);
2325         if (ret)
2326                 return ret;
2327
2328         if (txc->modes & ADJ_SETOFFSET) {
2329                 struct timespec64 delta;
2330                 delta.tv_sec  = txc->time.tv_sec;
2331                 delta.tv_nsec = txc->time.tv_usec;
2332                 if (!(txc->modes & ADJ_NANO))
2333                         delta.tv_nsec *= 1000;
2334                 ret = timekeeping_inject_offset(&delta);
2335                 if (ret)
2336                         return ret;
2337         }
2338
2339         ktime_get_real_ts64(&ts);
2340
2341         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2342         write_seqcount_begin(&tk_core.seq);
2343
2344         orig_tai = tai = tk->tai_offset;
2345         ret = __do_adjtimex(txc, &ts, &tai);
2346
2347         if (tai != orig_tai) {
2348                 __timekeeping_set_tai_offset(tk, tai);
2349                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2350         }
2351         tk_update_leap_state(tk);
2352
2353         write_seqcount_end(&tk_core.seq);
2354         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2355
2356         /* Update the multiplier immediately if frequency was set directly */
2357         if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2358                 timekeeping_advance(TK_ADV_FREQ);
2359
2360         if (tai != orig_tai)
2361                 clock_was_set();
2362
2363         ntp_notify_cmos_timer();
2364
2365         return ret;
2366 }
2367
2368 #ifdef CONFIG_NTP_PPS
2369 /**
2370  * hardpps() - Accessor function to NTP __hardpps function
2371  */
2372 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2373 {
2374         unsigned long flags;
2375
2376         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2377         write_seqcount_begin(&tk_core.seq);
2378
2379         __hardpps(phase_ts, raw_ts);
2380
2381         write_seqcount_end(&tk_core.seq);
2382         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2383 }
2384 EXPORT_SYMBOL(hardpps);
2385 #endif /* CONFIG_NTP_PPS */
2386
2387 /**
2388  * xtime_update() - advances the timekeeping infrastructure
2389  * @ticks:      number of ticks, that have elapsed since the last call.
2390  *
2391  * Must be called with interrupts disabled.
2392  */
2393 void xtime_update(unsigned long ticks)
2394 {
2395         write_seqlock(&jiffies_lock);
2396         do_timer(ticks);
2397         write_sequnlock(&jiffies_lock);
2398         update_wall_time();
2399 }