GNU Linux-libre 6.8.9-gnu
[releases.git] / kernel / time / tick-broadcast.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains functions which emulate a local clock-event
4  * device via a broadcast event source.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/module.h>
19
20 #include "tick-internal.h"
21
22 /*
23  * Broadcast support for broken x86 hardware, where the local apic
24  * timer stops in C3 state.
25  */
26
27 static struct tick_device tick_broadcast_device;
28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
30 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
31 static int tick_broadcast_forced;
32
33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34
35 #ifdef CONFIG_TICK_ONESHOT
36 static DEFINE_PER_CPU(struct clock_event_device *, tick_oneshot_wakeup_device);
37
38 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc, bool from_periodic);
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 # ifdef CONFIG_HOTPLUG_CPU
42 static void tick_broadcast_oneshot_offline(unsigned int cpu);
43 # endif
44 #else
45 static inline void
46 tick_broadcast_setup_oneshot(struct clock_event_device *bc, bool from_periodic) { BUG(); }
47 static inline void tick_broadcast_clear_oneshot(int cpu) { }
48 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
49 # ifdef CONFIG_HOTPLUG_CPU
50 static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
51 # endif
52 #endif
53
54 /*
55  * Debugging: see timer_list.c
56  */
57 struct tick_device *tick_get_broadcast_device(void)
58 {
59         return &tick_broadcast_device;
60 }
61
62 struct cpumask *tick_get_broadcast_mask(void)
63 {
64         return tick_broadcast_mask;
65 }
66
67 static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu);
68
69 const struct clock_event_device *tick_get_wakeup_device(int cpu)
70 {
71         return tick_get_oneshot_wakeup_device(cpu);
72 }
73
74 /*
75  * Start the device in periodic mode
76  */
77 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
78 {
79         if (bc)
80                 tick_setup_periodic(bc, 1);
81 }
82
83 /*
84  * Check, if the device can be utilized as broadcast device:
85  */
86 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
87                                         struct clock_event_device *newdev)
88 {
89         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
90             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
91             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
92                 return false;
93
94         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
95             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
96                 return false;
97
98         return !curdev || newdev->rating > curdev->rating;
99 }
100
101 #ifdef CONFIG_TICK_ONESHOT
102 static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu)
103 {
104         return per_cpu(tick_oneshot_wakeup_device, cpu);
105 }
106
107 static void tick_oneshot_wakeup_handler(struct clock_event_device *wd)
108 {
109         /*
110          * If we woke up early and the tick was reprogrammed in the
111          * meantime then this may be spurious but harmless.
112          */
113         tick_receive_broadcast();
114 }
115
116 static bool tick_set_oneshot_wakeup_device(struct clock_event_device *newdev,
117                                            int cpu)
118 {
119         struct clock_event_device *curdev = tick_get_oneshot_wakeup_device(cpu);
120
121         if (!newdev)
122                 goto set_device;
123
124         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
125             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
126                  return false;
127
128         if (!(newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
129             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
130                 return false;
131
132         if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
133                 return false;
134
135         if (curdev && newdev->rating <= curdev->rating)
136                 return false;
137
138         if (!try_module_get(newdev->owner))
139                 return false;
140
141         newdev->event_handler = tick_oneshot_wakeup_handler;
142 set_device:
143         clockevents_exchange_device(curdev, newdev);
144         per_cpu(tick_oneshot_wakeup_device, cpu) = newdev;
145         return true;
146 }
147 #else
148 static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu)
149 {
150         return NULL;
151 }
152
153 static bool tick_set_oneshot_wakeup_device(struct clock_event_device *newdev,
154                                            int cpu)
155 {
156         return false;
157 }
158 #endif
159
160 /*
161  * Conditionally install/replace broadcast device
162  */
163 void tick_install_broadcast_device(struct clock_event_device *dev, int cpu)
164 {
165         struct clock_event_device *cur = tick_broadcast_device.evtdev;
166
167         if (tick_set_oneshot_wakeup_device(dev, cpu))
168                 return;
169
170         if (!tick_check_broadcast_device(cur, dev))
171                 return;
172
173         if (!try_module_get(dev->owner))
174                 return;
175
176         clockevents_exchange_device(cur, dev);
177         if (cur)
178                 cur->event_handler = clockevents_handle_noop;
179         tick_broadcast_device.evtdev = dev;
180         if (!cpumask_empty(tick_broadcast_mask))
181                 tick_broadcast_start_periodic(dev);
182
183         if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
184                 return;
185
186         /*
187          * If the system already runs in oneshot mode, switch the newly
188          * registered broadcast device to oneshot mode explicitly.
189          */
190         if (tick_broadcast_oneshot_active()) {
191                 tick_broadcast_switch_to_oneshot();
192                 return;
193         }
194
195         /*
196          * Inform all cpus about this. We might be in a situation
197          * where we did not switch to oneshot mode because the per cpu
198          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
199          * of a oneshot capable broadcast device. Without that
200          * notification the systems stays stuck in periodic mode
201          * forever.
202          */
203         tick_clock_notify();
204 }
205
206 /*
207  * Check, if the device is the broadcast device
208  */
209 int tick_is_broadcast_device(struct clock_event_device *dev)
210 {
211         return (dev && tick_broadcast_device.evtdev == dev);
212 }
213
214 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
215 {
216         int ret = -ENODEV;
217
218         if (tick_is_broadcast_device(dev)) {
219                 raw_spin_lock(&tick_broadcast_lock);
220                 ret = __clockevents_update_freq(dev, freq);
221                 raw_spin_unlock(&tick_broadcast_lock);
222         }
223         return ret;
224 }
225
226
227 static void err_broadcast(const struct cpumask *mask)
228 {
229         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
230 }
231
232 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
233 {
234         if (!dev->broadcast)
235                 dev->broadcast = tick_broadcast;
236         if (!dev->broadcast) {
237                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
238                              dev->name);
239                 dev->broadcast = err_broadcast;
240         }
241 }
242
243 /*
244  * Check, if the device is dysfunctional and a placeholder, which
245  * needs to be handled by the broadcast device.
246  */
247 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
248 {
249         struct clock_event_device *bc = tick_broadcast_device.evtdev;
250         unsigned long flags;
251         int ret = 0;
252
253         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
254
255         /*
256          * Devices might be registered with both periodic and oneshot
257          * mode disabled. This signals, that the device needs to be
258          * operated from the broadcast device and is a placeholder for
259          * the cpu local device.
260          */
261         if (!tick_device_is_functional(dev)) {
262                 dev->event_handler = tick_handle_periodic;
263                 tick_device_setup_broadcast_func(dev);
264                 cpumask_set_cpu(cpu, tick_broadcast_mask);
265                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
266                         tick_broadcast_start_periodic(bc);
267                 else
268                         tick_broadcast_setup_oneshot(bc, false);
269                 ret = 1;
270         } else {
271                 /*
272                  * Clear the broadcast bit for this cpu if the
273                  * device is not power state affected.
274                  */
275                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
276                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
277                 else
278                         tick_device_setup_broadcast_func(dev);
279
280                 /*
281                  * Clear the broadcast bit if the CPU is not in
282                  * periodic broadcast on state.
283                  */
284                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
285                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
286
287                 switch (tick_broadcast_device.mode) {
288                 case TICKDEV_MODE_ONESHOT:
289                         /*
290                          * If the system is in oneshot mode we can
291                          * unconditionally clear the oneshot mask bit,
292                          * because the CPU is running and therefore
293                          * not in an idle state which causes the power
294                          * state affected device to stop. Let the
295                          * caller initialize the device.
296                          */
297                         tick_broadcast_clear_oneshot(cpu);
298                         ret = 0;
299                         break;
300
301                 case TICKDEV_MODE_PERIODIC:
302                         /*
303                          * If the system is in periodic mode, check
304                          * whether the broadcast device can be
305                          * switched off now.
306                          */
307                         if (cpumask_empty(tick_broadcast_mask) && bc)
308                                 clockevents_shutdown(bc);
309                         /*
310                          * If we kept the cpu in the broadcast mask,
311                          * tell the caller to leave the per cpu device
312                          * in shutdown state. The periodic interrupt
313                          * is delivered by the broadcast device, if
314                          * the broadcast device exists and is not
315                          * hrtimer based.
316                          */
317                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
318                                 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
319                         break;
320                 default:
321                         break;
322                 }
323         }
324         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
325         return ret;
326 }
327
328 int tick_receive_broadcast(void)
329 {
330         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
331         struct clock_event_device *evt = td->evtdev;
332
333         if (!evt)
334                 return -ENODEV;
335
336         if (!evt->event_handler)
337                 return -EINVAL;
338
339         evt->event_handler(evt);
340         return 0;
341 }
342
343 /*
344  * Broadcast the event to the cpus, which are set in the mask (mangled).
345  */
346 static bool tick_do_broadcast(struct cpumask *mask)
347 {
348         int cpu = smp_processor_id();
349         struct tick_device *td;
350         bool local = false;
351
352         /*
353          * Check, if the current cpu is in the mask
354          */
355         if (cpumask_test_cpu(cpu, mask)) {
356                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
357
358                 cpumask_clear_cpu(cpu, mask);
359                 /*
360                  * We only run the local handler, if the broadcast
361                  * device is not hrtimer based. Otherwise we run into
362                  * a hrtimer recursion.
363                  *
364                  * local timer_interrupt()
365                  *   local_handler()
366                  *     expire_hrtimers()
367                  *       bc_handler()
368                  *         local_handler()
369                  *           expire_hrtimers()
370                  */
371                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
372         }
373
374         if (!cpumask_empty(mask)) {
375                 /*
376                  * It might be necessary to actually check whether the devices
377                  * have different broadcast functions. For now, just use the
378                  * one of the first device. This works as long as we have this
379                  * misfeature only on x86 (lapic)
380                  */
381                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
382                 td->evtdev->broadcast(mask);
383         }
384         return local;
385 }
386
387 /*
388  * Periodic broadcast:
389  * - invoke the broadcast handlers
390  */
391 static bool tick_do_periodic_broadcast(void)
392 {
393         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
394         return tick_do_broadcast(tmpmask);
395 }
396
397 /*
398  * Event handler for periodic broadcast ticks
399  */
400 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
401 {
402         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
403         bool bc_local;
404
405         raw_spin_lock(&tick_broadcast_lock);
406
407         /* Handle spurious interrupts gracefully */
408         if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
409                 raw_spin_unlock(&tick_broadcast_lock);
410                 return;
411         }
412
413         bc_local = tick_do_periodic_broadcast();
414
415         if (clockevent_state_oneshot(dev)) {
416                 ktime_t next = ktime_add_ns(dev->next_event, TICK_NSEC);
417
418                 clockevents_program_event(dev, next, true);
419         }
420         raw_spin_unlock(&tick_broadcast_lock);
421
422         /*
423          * We run the handler of the local cpu after dropping
424          * tick_broadcast_lock because the handler might deadlock when
425          * trying to switch to oneshot mode.
426          */
427         if (bc_local)
428                 td->evtdev->event_handler(td->evtdev);
429 }
430
431 /**
432  * tick_broadcast_control - Enable/disable or force broadcast mode
433  * @mode:       The selected broadcast mode
434  *
435  * Called when the system enters a state where affected tick devices
436  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
437  */
438 void tick_broadcast_control(enum tick_broadcast_mode mode)
439 {
440         struct clock_event_device *bc, *dev;
441         struct tick_device *td;
442         int cpu, bc_stopped;
443         unsigned long flags;
444
445         /* Protects also the local clockevent device. */
446         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
447         td = this_cpu_ptr(&tick_cpu_device);
448         dev = td->evtdev;
449
450         /*
451          * Is the device not affected by the powerstate ?
452          */
453         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
454                 goto out;
455
456         if (!tick_device_is_functional(dev))
457                 goto out;
458
459         cpu = smp_processor_id();
460         bc = tick_broadcast_device.evtdev;
461         bc_stopped = cpumask_empty(tick_broadcast_mask);
462
463         switch (mode) {
464         case TICK_BROADCAST_FORCE:
465                 tick_broadcast_forced = 1;
466                 fallthrough;
467         case TICK_BROADCAST_ON:
468                 cpumask_set_cpu(cpu, tick_broadcast_on);
469                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
470                         /*
471                          * Only shutdown the cpu local device, if:
472                          *
473                          * - the broadcast device exists
474                          * - the broadcast device is not a hrtimer based one
475                          * - the broadcast device is in periodic mode to
476                          *   avoid a hiccup during switch to oneshot mode
477                          */
478                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
479                             tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
480                                 clockevents_shutdown(dev);
481                 }
482                 break;
483
484         case TICK_BROADCAST_OFF:
485                 if (tick_broadcast_forced)
486                         break;
487                 cpumask_clear_cpu(cpu, tick_broadcast_on);
488                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
489                         if (tick_broadcast_device.mode ==
490                             TICKDEV_MODE_PERIODIC)
491                                 tick_setup_periodic(dev, 0);
492                 }
493                 break;
494         }
495
496         if (bc) {
497                 if (cpumask_empty(tick_broadcast_mask)) {
498                         if (!bc_stopped)
499                                 clockevents_shutdown(bc);
500                 } else if (bc_stopped) {
501                         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
502                                 tick_broadcast_start_periodic(bc);
503                         else
504                                 tick_broadcast_setup_oneshot(bc, false);
505                 }
506         }
507 out:
508         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
509 }
510 EXPORT_SYMBOL_GPL(tick_broadcast_control);
511
512 /*
513  * Set the periodic handler depending on broadcast on/off
514  */
515 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
516 {
517         if (!broadcast)
518                 dev->event_handler = tick_handle_periodic;
519         else
520                 dev->event_handler = tick_handle_periodic_broadcast;
521 }
522
523 #ifdef CONFIG_HOTPLUG_CPU
524 static void tick_shutdown_broadcast(void)
525 {
526         struct clock_event_device *bc = tick_broadcast_device.evtdev;
527
528         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
529                 if (bc && cpumask_empty(tick_broadcast_mask))
530                         clockevents_shutdown(bc);
531         }
532 }
533
534 /*
535  * Remove a CPU from broadcasting
536  */
537 void tick_broadcast_offline(unsigned int cpu)
538 {
539         raw_spin_lock(&tick_broadcast_lock);
540         cpumask_clear_cpu(cpu, tick_broadcast_mask);
541         cpumask_clear_cpu(cpu, tick_broadcast_on);
542         tick_broadcast_oneshot_offline(cpu);
543         tick_shutdown_broadcast();
544         raw_spin_unlock(&tick_broadcast_lock);
545 }
546
547 #endif
548
549 void tick_suspend_broadcast(void)
550 {
551         struct clock_event_device *bc;
552         unsigned long flags;
553
554         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
555
556         bc = tick_broadcast_device.evtdev;
557         if (bc)
558                 clockevents_shutdown(bc);
559
560         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
561 }
562
563 /*
564  * This is called from tick_resume_local() on a resuming CPU. That's
565  * called from the core resume function, tick_unfreeze() and the magic XEN
566  * resume hackery.
567  *
568  * In none of these cases the broadcast device mode can change and the
569  * bit of the resuming CPU in the broadcast mask is safe as well.
570  */
571 bool tick_resume_check_broadcast(void)
572 {
573         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
574                 return false;
575         else
576                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
577 }
578
579 void tick_resume_broadcast(void)
580 {
581         struct clock_event_device *bc;
582         unsigned long flags;
583
584         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
585
586         bc = tick_broadcast_device.evtdev;
587
588         if (bc) {
589                 clockevents_tick_resume(bc);
590
591                 switch (tick_broadcast_device.mode) {
592                 case TICKDEV_MODE_PERIODIC:
593                         if (!cpumask_empty(tick_broadcast_mask))
594                                 tick_broadcast_start_periodic(bc);
595                         break;
596                 case TICKDEV_MODE_ONESHOT:
597                         if (!cpumask_empty(tick_broadcast_mask))
598                                 tick_resume_broadcast_oneshot(bc);
599                         break;
600                 }
601         }
602         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
603 }
604
605 #ifdef CONFIG_TICK_ONESHOT
606
607 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
608 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
609 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
610
611 /*
612  * Exposed for debugging: see timer_list.c
613  */
614 struct cpumask *tick_get_broadcast_oneshot_mask(void)
615 {
616         return tick_broadcast_oneshot_mask;
617 }
618
619 /*
620  * Called before going idle with interrupts disabled. Checks whether a
621  * broadcast event from the other core is about to happen. We detected
622  * that in tick_broadcast_oneshot_control(). The callsite can use this
623  * to avoid a deep idle transition as we are about to get the
624  * broadcast IPI right away.
625  */
626 noinstr int tick_check_broadcast_expired(void)
627 {
628 #ifdef _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H
629         return arch_test_bit(smp_processor_id(), cpumask_bits(tick_broadcast_force_mask));
630 #else
631         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
632 #endif
633 }
634
635 /*
636  * Set broadcast interrupt affinity
637  */
638 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
639                                         const struct cpumask *cpumask)
640 {
641         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
642                 return;
643
644         if (cpumask_equal(bc->cpumask, cpumask))
645                 return;
646
647         bc->cpumask = cpumask;
648         irq_set_affinity(bc->irq, bc->cpumask);
649 }
650
651 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
652                                      ktime_t expires)
653 {
654         if (!clockevent_state_oneshot(bc))
655                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
656
657         clockevents_program_event(bc, expires, 1);
658         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
659 }
660
661 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
662 {
663         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
664 }
665
666 /*
667  * Called from irq_enter() when idle was interrupted to reenable the
668  * per cpu device.
669  */
670 void tick_check_oneshot_broadcast_this_cpu(void)
671 {
672         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
673                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
674
675                 /*
676                  * We might be in the middle of switching over from
677                  * periodic to oneshot. If the CPU has not yet
678                  * switched over, leave the device alone.
679                  */
680                 if (td->mode == TICKDEV_MODE_ONESHOT) {
681                         clockevents_switch_state(td->evtdev,
682                                               CLOCK_EVT_STATE_ONESHOT);
683                 }
684         }
685 }
686
687 /*
688  * Handle oneshot mode broadcasting
689  */
690 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
691 {
692         struct tick_device *td;
693         ktime_t now, next_event;
694         int cpu, next_cpu = 0;
695         bool bc_local;
696
697         raw_spin_lock(&tick_broadcast_lock);
698         dev->next_event = KTIME_MAX;
699         next_event = KTIME_MAX;
700         cpumask_clear(tmpmask);
701         now = ktime_get();
702         /* Find all expired events */
703         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
704                 /*
705                  * Required for !SMP because for_each_cpu() reports
706                  * unconditionally CPU0 as set on UP kernels.
707                  */
708                 if (!IS_ENABLED(CONFIG_SMP) &&
709                     cpumask_empty(tick_broadcast_oneshot_mask))
710                         break;
711
712                 td = &per_cpu(tick_cpu_device, cpu);
713                 if (td->evtdev->next_event <= now) {
714                         cpumask_set_cpu(cpu, tmpmask);
715                         /*
716                          * Mark the remote cpu in the pending mask, so
717                          * it can avoid reprogramming the cpu local
718                          * timer in tick_broadcast_oneshot_control().
719                          */
720                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
721                 } else if (td->evtdev->next_event < next_event) {
722                         next_event = td->evtdev->next_event;
723                         next_cpu = cpu;
724                 }
725         }
726
727         /*
728          * Remove the current cpu from the pending mask. The event is
729          * delivered immediately in tick_do_broadcast() !
730          */
731         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
732
733         /* Take care of enforced broadcast requests */
734         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
735         cpumask_clear(tick_broadcast_force_mask);
736
737         /*
738          * Sanity check. Catch the case where we try to broadcast to
739          * offline cpus.
740          */
741         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
742                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
743
744         /*
745          * Wakeup the cpus which have an expired event.
746          */
747         bc_local = tick_do_broadcast(tmpmask);
748
749         /*
750          * Two reasons for reprogram:
751          *
752          * - The global event did not expire any CPU local
753          * events. This happens in dyntick mode, as the maximum PIT
754          * delta is quite small.
755          *
756          * - There are pending events on sleeping CPUs which were not
757          * in the event mask
758          */
759         if (next_event != KTIME_MAX)
760                 tick_broadcast_set_event(dev, next_cpu, next_event);
761
762         raw_spin_unlock(&tick_broadcast_lock);
763
764         if (bc_local) {
765                 td = this_cpu_ptr(&tick_cpu_device);
766                 td->evtdev->event_handler(td->evtdev);
767         }
768 }
769
770 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
771 {
772         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
773                 return 0;
774         if (bc->next_event == KTIME_MAX)
775                 return 0;
776         return bc->bound_on == cpu ? -EBUSY : 0;
777 }
778
779 static void broadcast_shutdown_local(struct clock_event_device *bc,
780                                      struct clock_event_device *dev)
781 {
782         /*
783          * For hrtimer based broadcasting we cannot shutdown the cpu
784          * local device if our own event is the first one to expire or
785          * if we own the broadcast timer.
786          */
787         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
788                 if (broadcast_needs_cpu(bc, smp_processor_id()))
789                         return;
790                 if (dev->next_event < bc->next_event)
791                         return;
792         }
793         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
794 }
795
796 static int ___tick_broadcast_oneshot_control(enum tick_broadcast_state state,
797                                              struct tick_device *td,
798                                              int cpu)
799 {
800         struct clock_event_device *bc, *dev = td->evtdev;
801         int ret = 0;
802         ktime_t now;
803
804         raw_spin_lock(&tick_broadcast_lock);
805         bc = tick_broadcast_device.evtdev;
806
807         if (state == TICK_BROADCAST_ENTER) {
808                 /*
809                  * If the current CPU owns the hrtimer broadcast
810                  * mechanism, it cannot go deep idle and we do not add
811                  * the CPU to the broadcast mask. We don't have to go
812                  * through the EXIT path as the local timer is not
813                  * shutdown.
814                  */
815                 ret = broadcast_needs_cpu(bc, cpu);
816                 if (ret)
817                         goto out;
818
819                 /*
820                  * If the broadcast device is in periodic mode, we
821                  * return.
822                  */
823                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
824                         /* If it is a hrtimer based broadcast, return busy */
825                         if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
826                                 ret = -EBUSY;
827                         goto out;
828                 }
829
830                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
831                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
832
833                         /* Conditionally shut down the local timer. */
834                         broadcast_shutdown_local(bc, dev);
835
836                         /*
837                          * We only reprogram the broadcast timer if we
838                          * did not mark ourself in the force mask and
839                          * if the cpu local event is earlier than the
840                          * broadcast event. If the current CPU is in
841                          * the force mask, then we are going to be
842                          * woken by the IPI right away; we return
843                          * busy, so the CPU does not try to go deep
844                          * idle.
845                          */
846                         if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
847                                 ret = -EBUSY;
848                         } else if (dev->next_event < bc->next_event) {
849                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
850                                 /*
851                                  * In case of hrtimer broadcasts the
852                                  * programming might have moved the
853                                  * timer to this cpu. If yes, remove
854                                  * us from the broadcast mask and
855                                  * return busy.
856                                  */
857                                 ret = broadcast_needs_cpu(bc, cpu);
858                                 if (ret) {
859                                         cpumask_clear_cpu(cpu,
860                                                 tick_broadcast_oneshot_mask);
861                                 }
862                         }
863                 }
864         } else {
865                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
866                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
867                         /*
868                          * The cpu which was handling the broadcast
869                          * timer marked this cpu in the broadcast
870                          * pending mask and fired the broadcast
871                          * IPI. So we are going to handle the expired
872                          * event anyway via the broadcast IPI
873                          * handler. No need to reprogram the timer
874                          * with an already expired event.
875                          */
876                         if (cpumask_test_and_clear_cpu(cpu,
877                                        tick_broadcast_pending_mask))
878                                 goto out;
879
880                         /*
881                          * Bail out if there is no next event.
882                          */
883                         if (dev->next_event == KTIME_MAX)
884                                 goto out;
885                         /*
886                          * If the pending bit is not set, then we are
887                          * either the CPU handling the broadcast
888                          * interrupt or we got woken by something else.
889                          *
890                          * We are no longer in the broadcast mask, so
891                          * if the cpu local expiry time is already
892                          * reached, we would reprogram the cpu local
893                          * timer with an already expired event.
894                          *
895                          * This can lead to a ping-pong when we return
896                          * to idle and therefore rearm the broadcast
897                          * timer before the cpu local timer was able
898                          * to fire. This happens because the forced
899                          * reprogramming makes sure that the event
900                          * will happen in the future and depending on
901                          * the min_delta setting this might be far
902                          * enough out that the ping-pong starts.
903                          *
904                          * If the cpu local next_event has expired
905                          * then we know that the broadcast timer
906                          * next_event has expired as well and
907                          * broadcast is about to be handled. So we
908                          * avoid reprogramming and enforce that the
909                          * broadcast handler, which did not run yet,
910                          * will invoke the cpu local handler.
911                          *
912                          * We cannot call the handler directly from
913                          * here, because we might be in a NOHZ phase
914                          * and we did not go through the irq_enter()
915                          * nohz fixups.
916                          */
917                         now = ktime_get();
918                         if (dev->next_event <= now) {
919                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
920                                 goto out;
921                         }
922                         /*
923                          * We got woken by something else. Reprogram
924                          * the cpu local timer device.
925                          */
926                         tick_program_event(dev->next_event, 1);
927                 }
928         }
929 out:
930         raw_spin_unlock(&tick_broadcast_lock);
931         return ret;
932 }
933
934 static int tick_oneshot_wakeup_control(enum tick_broadcast_state state,
935                                        struct tick_device *td,
936                                        int cpu)
937 {
938         struct clock_event_device *dev, *wd;
939
940         dev = td->evtdev;
941         if (td->mode != TICKDEV_MODE_ONESHOT)
942                 return -EINVAL;
943
944         wd = tick_get_oneshot_wakeup_device(cpu);
945         if (!wd)
946                 return -ENODEV;
947
948         switch (state) {
949         case TICK_BROADCAST_ENTER:
950                 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT_STOPPED);
951                 clockevents_switch_state(wd, CLOCK_EVT_STATE_ONESHOT);
952                 clockevents_program_event(wd, dev->next_event, 1);
953                 break;
954         case TICK_BROADCAST_EXIT:
955                 /* We may have transitioned to oneshot mode while idle */
956                 if (clockevent_get_state(wd) != CLOCK_EVT_STATE_ONESHOT)
957                         return -ENODEV;
958         }
959
960         return 0;
961 }
962
963 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
964 {
965         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
966         int cpu = smp_processor_id();
967
968         if (!tick_oneshot_wakeup_control(state, td, cpu))
969                 return 0;
970
971         if (tick_broadcast_device.evtdev)
972                 return ___tick_broadcast_oneshot_control(state, td, cpu);
973
974         /*
975          * If there is no broadcast or wakeup device, tell the caller not
976          * to go into deep idle.
977          */
978         return -EBUSY;
979 }
980
981 /*
982  * Reset the one shot broadcast for a cpu
983  *
984  * Called with tick_broadcast_lock held
985  */
986 static void tick_broadcast_clear_oneshot(int cpu)
987 {
988         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
989         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
990 }
991
992 static void tick_broadcast_init_next_event(struct cpumask *mask,
993                                            ktime_t expires)
994 {
995         struct tick_device *td;
996         int cpu;
997
998         for_each_cpu(cpu, mask) {
999                 td = &per_cpu(tick_cpu_device, cpu);
1000                 if (td->evtdev)
1001                         td->evtdev->next_event = expires;
1002         }
1003 }
1004
1005 static inline ktime_t tick_get_next_period(void)
1006 {
1007         ktime_t next;
1008
1009         /*
1010          * Protect against concurrent updates (store /load tearing on
1011          * 32bit). It does not matter if the time is already in the
1012          * past. The broadcast device which is about to be programmed will
1013          * fire in any case.
1014          */
1015         raw_spin_lock(&jiffies_lock);
1016         next = tick_next_period;
1017         raw_spin_unlock(&jiffies_lock);
1018         return next;
1019 }
1020
1021 /**
1022  * tick_broadcast_setup_oneshot - setup the broadcast device
1023  */
1024 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc,
1025                                          bool from_periodic)
1026 {
1027         int cpu = smp_processor_id();
1028         ktime_t nexttick = 0;
1029
1030         if (!bc)
1031                 return;
1032
1033         /*
1034          * When the broadcast device was switched to oneshot by the first
1035          * CPU handling the NOHZ change, the other CPUs will reach this
1036          * code via hrtimer_run_queues() -> tick_check_oneshot_change()
1037          * too. Set up the broadcast device only once!
1038          */
1039         if (bc->event_handler == tick_handle_oneshot_broadcast) {
1040                 /*
1041                  * The CPU which switched from periodic to oneshot mode
1042                  * set the broadcast oneshot bit for all other CPUs which
1043                  * are in the general (periodic) broadcast mask to ensure
1044                  * that CPUs which wait for the periodic broadcast are
1045                  * woken up.
1046                  *
1047                  * Clear the bit for the local CPU as the set bit would
1048                  * prevent the first tick_broadcast_enter() after this CPU
1049                  * switched to oneshot state to program the broadcast
1050                  * device.
1051                  *
1052                  * This code can also be reached via tick_broadcast_control(),
1053                  * but this cannot avoid the tick_broadcast_clear_oneshot()
1054                  * as that would break the periodic to oneshot transition of
1055                  * secondary CPUs. But that's harmless as the below only
1056                  * clears already cleared bits.
1057                  */
1058                 tick_broadcast_clear_oneshot(cpu);
1059                 return;
1060         }
1061
1062
1063         bc->event_handler = tick_handle_oneshot_broadcast;
1064         bc->next_event = KTIME_MAX;
1065
1066         /*
1067          * When the tick mode is switched from periodic to oneshot it must
1068          * be ensured that CPUs which are waiting for periodic broadcast
1069          * get their wake-up at the next tick.  This is achieved by ORing
1070          * tick_broadcast_mask into tick_broadcast_oneshot_mask.
1071          *
1072          * For other callers, e.g. broadcast device replacement,
1073          * tick_broadcast_oneshot_mask must not be touched as this would
1074          * set bits for CPUs which are already NOHZ, but not idle. Their
1075          * next tick_broadcast_enter() would observe the bit set and fail
1076          * to update the expiry time and the broadcast event device.
1077          */
1078         if (from_periodic) {
1079                 cpumask_copy(tmpmask, tick_broadcast_mask);
1080                 /* Remove the local CPU as it is obviously not idle */
1081                 cpumask_clear_cpu(cpu, tmpmask);
1082                 cpumask_or(tick_broadcast_oneshot_mask, tick_broadcast_oneshot_mask, tmpmask);
1083
1084                 /*
1085                  * Ensure that the oneshot broadcast handler will wake the
1086                  * CPUs which are still waiting for periodic broadcast.
1087                  */
1088                 nexttick = tick_get_next_period();
1089                 tick_broadcast_init_next_event(tmpmask, nexttick);
1090
1091                 /*
1092                  * If the underlying broadcast clock event device is
1093                  * already in oneshot state, then there is nothing to do.
1094                  * The device was already armed for the next tick
1095                  * in tick_handle_broadcast_periodic()
1096                  */
1097                 if (clockevent_state_oneshot(bc))
1098                         return;
1099         }
1100
1101         /*
1102          * When switching from periodic to oneshot mode arm the broadcast
1103          * device for the next tick.
1104          *
1105          * If the broadcast device has been replaced in oneshot mode and
1106          * the oneshot broadcast mask is not empty, then arm it to expire
1107          * immediately in order to reevaluate the next expiring timer.
1108          * @nexttick is 0 and therefore in the past which will cause the
1109          * clockevent code to force an event.
1110          *
1111          * For both cases the programming can be avoided when the oneshot
1112          * broadcast mask is empty.
1113          *
1114          * tick_broadcast_set_event() implicitly switches the broadcast
1115          * device to oneshot state.
1116          */
1117         if (!cpumask_empty(tick_broadcast_oneshot_mask))
1118                 tick_broadcast_set_event(bc, cpu, nexttick);
1119 }
1120
1121 /*
1122  * Select oneshot operating mode for the broadcast device
1123  */
1124 void tick_broadcast_switch_to_oneshot(void)
1125 {
1126         struct clock_event_device *bc;
1127         enum tick_device_mode oldmode;
1128         unsigned long flags;
1129
1130         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
1131
1132         oldmode = tick_broadcast_device.mode;
1133         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
1134         bc = tick_broadcast_device.evtdev;
1135         if (bc)
1136                 tick_broadcast_setup_oneshot(bc, oldmode == TICKDEV_MODE_PERIODIC);
1137
1138         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
1139 }
1140
1141 #ifdef CONFIG_HOTPLUG_CPU
1142 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
1143 {
1144         struct clock_event_device *bc;
1145         unsigned long flags;
1146
1147         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
1148         bc = tick_broadcast_device.evtdev;
1149
1150         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
1151                 /* This moves the broadcast assignment to this CPU: */
1152                 clockevents_program_event(bc, bc->next_event, 1);
1153         }
1154         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
1155 }
1156
1157 /*
1158  * Remove a dying CPU from broadcasting
1159  */
1160 static void tick_broadcast_oneshot_offline(unsigned int cpu)
1161 {
1162         if (tick_get_oneshot_wakeup_device(cpu))
1163                 tick_set_oneshot_wakeup_device(NULL, cpu);
1164
1165         /*
1166          * Clear the broadcast masks for the dead cpu, but do not stop
1167          * the broadcast device!
1168          */
1169         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
1170         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
1171         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
1172 }
1173 #endif
1174
1175 /*
1176  * Check, whether the broadcast device is in one shot mode
1177  */
1178 int tick_broadcast_oneshot_active(void)
1179 {
1180         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
1181 }
1182
1183 /*
1184  * Check whether the broadcast device supports oneshot.
1185  */
1186 bool tick_broadcast_oneshot_available(void)
1187 {
1188         struct clock_event_device *bc = tick_broadcast_device.evtdev;
1189
1190         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
1191 }
1192
1193 #else
1194 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
1195 {
1196         struct clock_event_device *bc = tick_broadcast_device.evtdev;
1197
1198         if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1199                 return -EBUSY;
1200
1201         return 0;
1202 }
1203 #endif
1204
1205 void __init tick_broadcast_init(void)
1206 {
1207         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1208         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1209         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1210 #ifdef CONFIG_TICK_ONESHOT
1211         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1212         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1213         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1214 #endif
1215 }