arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / kernel / time / posix-timers.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * 2002-10-15  Posix Clocks & timers
4  *                           by George Anzinger george@mvista.com
5  *                           Copyright (C) 2002 2003 by MontaVista Software.
6  *
7  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8  *                           Copyright (C) 2004 Boris Hu
9  *
10  * These are all the functions necessary to implement POSIX clocks & timers
11  */
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/slab.h>
15 #include <linux/time.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/task.h>
18
19 #include <linux/uaccess.h>
20 #include <linux/list.h>
21 #include <linux/init.h>
22 #include <linux/compiler.h>
23 #include <linux/hash.h>
24 #include <linux/posix-clock.h>
25 #include <linux/posix-timers.h>
26 #include <linux/syscalls.h>
27 #include <linux/wait.h>
28 #include <linux/workqueue.h>
29 #include <linux/export.h>
30 #include <linux/hashtable.h>
31 #include <linux/compat.h>
32 #include <linux/nospec.h>
33 #include <linux/time_namespace.h>
34
35 #include "timekeeping.h"
36 #include "posix-timers.h"
37
38 static struct kmem_cache *posix_timers_cache;
39
40 /*
41  * Timers are managed in a hash table for lockless lookup. The hash key is
42  * constructed from current::signal and the timer ID and the timer is
43  * matched against current::signal and the timer ID when walking the hash
44  * bucket list.
45  *
46  * This allows checkpoint/restore to reconstruct the exact timer IDs for
47  * a process.
48  */
49 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
50 static DEFINE_SPINLOCK(hash_lock);
51
52 static const struct k_clock * const posix_clocks[];
53 static const struct k_clock *clockid_to_kclock(const clockid_t id);
54 static const struct k_clock clock_realtime, clock_monotonic;
55
56 /* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */
57 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
58                         ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
59 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
60 #endif
61
62 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
63
64 #define lock_timer(tid, flags)                                             \
65 ({      struct k_itimer *__timr;                                           \
66         __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
67         __timr;                                                            \
68 })
69
70 static int hash(struct signal_struct *sig, unsigned int nr)
71 {
72         return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
73 }
74
75 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
76                                             struct signal_struct *sig,
77                                             timer_t id)
78 {
79         struct k_itimer *timer;
80
81         hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&hash_lock)) {
82                 /* timer->it_signal can be set concurrently */
83                 if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id))
84                         return timer;
85         }
86         return NULL;
87 }
88
89 static struct k_itimer *posix_timer_by_id(timer_t id)
90 {
91         struct signal_struct *sig = current->signal;
92         struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
93
94         return __posix_timers_find(head, sig, id);
95 }
96
97 static int posix_timer_add(struct k_itimer *timer)
98 {
99         struct signal_struct *sig = current->signal;
100         struct hlist_head *head;
101         unsigned int cnt, id;
102
103         /*
104          * FIXME: Replace this by a per signal struct xarray once there is
105          * a plan to handle the resulting CRIU regression gracefully.
106          */
107         for (cnt = 0; cnt <= INT_MAX; cnt++) {
108                 spin_lock(&hash_lock);
109                 id = sig->next_posix_timer_id;
110
111                 /* Write the next ID back. Clamp it to the positive space */
112                 sig->next_posix_timer_id = (id + 1) & INT_MAX;
113
114                 head = &posix_timers_hashtable[hash(sig, id)];
115                 if (!__posix_timers_find(head, sig, id)) {
116                         hlist_add_head_rcu(&timer->t_hash, head);
117                         spin_unlock(&hash_lock);
118                         return id;
119                 }
120                 spin_unlock(&hash_lock);
121         }
122         /* POSIX return code when no timer ID could be allocated */
123         return -EAGAIN;
124 }
125
126 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
127 {
128         spin_unlock_irqrestore(&timr->it_lock, flags);
129 }
130
131 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
132 {
133         ktime_get_real_ts64(tp);
134         return 0;
135 }
136
137 static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
138 {
139         return ktime_get_real();
140 }
141
142 static int posix_clock_realtime_set(const clockid_t which_clock,
143                                     const struct timespec64 *tp)
144 {
145         return do_sys_settimeofday64(tp, NULL);
146 }
147
148 static int posix_clock_realtime_adj(const clockid_t which_clock,
149                                     struct __kernel_timex *t)
150 {
151         return do_adjtimex(t);
152 }
153
154 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
155 {
156         ktime_get_ts64(tp);
157         timens_add_monotonic(tp);
158         return 0;
159 }
160
161 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
162 {
163         return ktime_get();
164 }
165
166 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
167 {
168         ktime_get_raw_ts64(tp);
169         timens_add_monotonic(tp);
170         return 0;
171 }
172
173 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
174 {
175         ktime_get_coarse_real_ts64(tp);
176         return 0;
177 }
178
179 static int posix_get_monotonic_coarse(clockid_t which_clock,
180                                                 struct timespec64 *tp)
181 {
182         ktime_get_coarse_ts64(tp);
183         timens_add_monotonic(tp);
184         return 0;
185 }
186
187 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
188 {
189         *tp = ktime_to_timespec64(KTIME_LOW_RES);
190         return 0;
191 }
192
193 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
194 {
195         ktime_get_boottime_ts64(tp);
196         timens_add_boottime(tp);
197         return 0;
198 }
199
200 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
201 {
202         return ktime_get_boottime();
203 }
204
205 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
206 {
207         ktime_get_clocktai_ts64(tp);
208         return 0;
209 }
210
211 static ktime_t posix_get_tai_ktime(clockid_t which_clock)
212 {
213         return ktime_get_clocktai();
214 }
215
216 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
217 {
218         tp->tv_sec = 0;
219         tp->tv_nsec = hrtimer_resolution;
220         return 0;
221 }
222
223 static __init int init_posix_timers(void)
224 {
225         posix_timers_cache = kmem_cache_create("posix_timers_cache",
226                                         sizeof(struct k_itimer), 0,
227                                         SLAB_PANIC | SLAB_ACCOUNT, NULL);
228         return 0;
229 }
230 __initcall(init_posix_timers);
231
232 /*
233  * The siginfo si_overrun field and the return value of timer_getoverrun(2)
234  * are of type int. Clamp the overrun value to INT_MAX
235  */
236 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
237 {
238         s64 sum = timr->it_overrun_last + (s64)baseval;
239
240         return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
241 }
242
243 static void common_hrtimer_rearm(struct k_itimer *timr)
244 {
245         struct hrtimer *timer = &timr->it.real.timer;
246
247         timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
248                                             timr->it_interval);
249         hrtimer_restart(timer);
250 }
251
252 /*
253  * This function is called from the signal delivery code if
254  * info->si_sys_private is not zero, which indicates that the timer has to
255  * be rearmed. Restart the timer and update info::si_overrun.
256  */
257 void posixtimer_rearm(struct kernel_siginfo *info)
258 {
259         struct k_itimer *timr;
260         unsigned long flags;
261
262         timr = lock_timer(info->si_tid, &flags);
263         if (!timr)
264                 return;
265
266         if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
267                 timr->kclock->timer_rearm(timr);
268
269                 timr->it_active = 1;
270                 timr->it_overrun_last = timr->it_overrun;
271                 timr->it_overrun = -1LL;
272                 ++timr->it_requeue_pending;
273
274                 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
275         }
276
277         unlock_timer(timr, flags);
278 }
279
280 int posix_timer_event(struct k_itimer *timr, int si_private)
281 {
282         enum pid_type type;
283         int ret;
284         /*
285          * FIXME: if ->sigq is queued we can race with
286          * dequeue_signal()->posixtimer_rearm().
287          *
288          * If dequeue_signal() sees the "right" value of
289          * si_sys_private it calls posixtimer_rearm().
290          * We re-queue ->sigq and drop ->it_lock().
291          * posixtimer_rearm() locks the timer
292          * and re-schedules it while ->sigq is pending.
293          * Not really bad, but not that we want.
294          */
295         timr->sigq->info.si_sys_private = si_private;
296
297         type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
298         ret = send_sigqueue(timr->sigq, timr->it_pid, type);
299         /* If we failed to send the signal the timer stops. */
300         return ret > 0;
301 }
302
303 /*
304  * This function gets called when a POSIX.1b interval timer expires from
305  * the HRTIMER interrupt (soft interrupt on RT kernels).
306  *
307  * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI
308  * based timers.
309  */
310 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
311 {
312         enum hrtimer_restart ret = HRTIMER_NORESTART;
313         struct k_itimer *timr;
314         unsigned long flags;
315         int si_private = 0;
316
317         timr = container_of(timer, struct k_itimer, it.real.timer);
318         spin_lock_irqsave(&timr->it_lock, flags);
319
320         timr->it_active = 0;
321         if (timr->it_interval != 0)
322                 si_private = ++timr->it_requeue_pending;
323
324         if (posix_timer_event(timr, si_private)) {
325                 /*
326                  * The signal was not queued due to SIG_IGN. As a
327                  * consequence the timer is not going to be rearmed from
328                  * the signal delivery path. But as a real signal handler
329                  * can be installed later the timer must be rearmed here.
330                  */
331                 if (timr->it_interval != 0) {
332                         ktime_t now = hrtimer_cb_get_time(timer);
333
334                         /*
335                          * FIXME: What we really want, is to stop this
336                          * timer completely and restart it in case the
337                          * SIG_IGN is removed. This is a non trivial
338                          * change to the signal handling code.
339                          *
340                          * For now let timers with an interval less than a
341                          * jiffie expire every jiffie and recheck for a
342                          * valid signal handler.
343                          *
344                          * This avoids interrupt starvation in case of a
345                          * very small interval, which would expire the
346                          * timer immediately again.
347                          *
348                          * Moving now ahead of time by one jiffie tricks
349                          * hrtimer_forward() to expire the timer later,
350                          * while it still maintains the overrun accuracy
351                          * for the price of a slight inconsistency in the
352                          * timer_gettime() case. This is at least better
353                          * than a timer storm.
354                          *
355                          * Only required when high resolution timers are
356                          * enabled as the periodic tick based timers are
357                          * automatically aligned to the next tick.
358                          */
359                         if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS)) {
360                                 ktime_t kj = TICK_NSEC;
361
362                                 if (timr->it_interval < kj)
363                                         now = ktime_add(now, kj);
364                         }
365
366                         timr->it_overrun += hrtimer_forward(timer, now, timr->it_interval);
367                         ret = HRTIMER_RESTART;
368                         ++timr->it_requeue_pending;
369                         timr->it_active = 1;
370                 }
371         }
372
373         unlock_timer(timr, flags);
374         return ret;
375 }
376
377 static struct pid *good_sigevent(sigevent_t * event)
378 {
379         struct pid *pid = task_tgid(current);
380         struct task_struct *rtn;
381
382         switch (event->sigev_notify) {
383         case SIGEV_SIGNAL | SIGEV_THREAD_ID:
384                 pid = find_vpid(event->sigev_notify_thread_id);
385                 rtn = pid_task(pid, PIDTYPE_PID);
386                 if (!rtn || !same_thread_group(rtn, current))
387                         return NULL;
388                 fallthrough;
389         case SIGEV_SIGNAL:
390         case SIGEV_THREAD:
391                 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
392                         return NULL;
393                 fallthrough;
394         case SIGEV_NONE:
395                 return pid;
396         default:
397                 return NULL;
398         }
399 }
400
401 static struct k_itimer * alloc_posix_timer(void)
402 {
403         struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
404
405         if (!tmr)
406                 return tmr;
407         if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
408                 kmem_cache_free(posix_timers_cache, tmr);
409                 return NULL;
410         }
411         clear_siginfo(&tmr->sigq->info);
412         return tmr;
413 }
414
415 static void k_itimer_rcu_free(struct rcu_head *head)
416 {
417         struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
418
419         kmem_cache_free(posix_timers_cache, tmr);
420 }
421
422 static void posix_timer_free(struct k_itimer *tmr)
423 {
424         put_pid(tmr->it_pid);
425         sigqueue_free(tmr->sigq);
426         call_rcu(&tmr->rcu, k_itimer_rcu_free);
427 }
428
429 static void posix_timer_unhash_and_free(struct k_itimer *tmr)
430 {
431         spin_lock(&hash_lock);
432         hlist_del_rcu(&tmr->t_hash);
433         spin_unlock(&hash_lock);
434         posix_timer_free(tmr);
435 }
436
437 static int common_timer_create(struct k_itimer *new_timer)
438 {
439         hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
440         return 0;
441 }
442
443 /* Create a POSIX.1b interval timer. */
444 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
445                            timer_t __user *created_timer_id)
446 {
447         const struct k_clock *kc = clockid_to_kclock(which_clock);
448         struct k_itimer *new_timer;
449         int error, new_timer_id;
450
451         if (!kc)
452                 return -EINVAL;
453         if (!kc->timer_create)
454                 return -EOPNOTSUPP;
455
456         new_timer = alloc_posix_timer();
457         if (unlikely(!new_timer))
458                 return -EAGAIN;
459
460         spin_lock_init(&new_timer->it_lock);
461
462         /*
463          * Add the timer to the hash table. The timer is not yet valid
464          * because new_timer::it_signal is still NULL. The timer id is also
465          * not yet visible to user space.
466          */
467         new_timer_id = posix_timer_add(new_timer);
468         if (new_timer_id < 0) {
469                 posix_timer_free(new_timer);
470                 return new_timer_id;
471         }
472
473         new_timer->it_id = (timer_t) new_timer_id;
474         new_timer->it_clock = which_clock;
475         new_timer->kclock = kc;
476         new_timer->it_overrun = -1LL;
477
478         if (event) {
479                 rcu_read_lock();
480                 new_timer->it_pid = get_pid(good_sigevent(event));
481                 rcu_read_unlock();
482                 if (!new_timer->it_pid) {
483                         error = -EINVAL;
484                         goto out;
485                 }
486                 new_timer->it_sigev_notify     = event->sigev_notify;
487                 new_timer->sigq->info.si_signo = event->sigev_signo;
488                 new_timer->sigq->info.si_value = event->sigev_value;
489         } else {
490                 new_timer->it_sigev_notify     = SIGEV_SIGNAL;
491                 new_timer->sigq->info.si_signo = SIGALRM;
492                 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
493                 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
494                 new_timer->it_pid = get_pid(task_tgid(current));
495         }
496
497         new_timer->sigq->info.si_tid   = new_timer->it_id;
498         new_timer->sigq->info.si_code  = SI_TIMER;
499
500         if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
501                 error = -EFAULT;
502                 goto out;
503         }
504         /*
505          * After succesful copy out, the timer ID is visible to user space
506          * now but not yet valid because new_timer::signal is still NULL.
507          *
508          * Complete the initialization with the clock specific create
509          * callback.
510          */
511         error = kc->timer_create(new_timer);
512         if (error)
513                 goto out;
514
515         spin_lock_irq(&current->sighand->siglock);
516         /* This makes the timer valid in the hash table */
517         WRITE_ONCE(new_timer->it_signal, current->signal);
518         list_add(&new_timer->list, &current->signal->posix_timers);
519         spin_unlock_irq(&current->sighand->siglock);
520         /*
521          * After unlocking sighand::siglock @new_timer is subject to
522          * concurrent removal and cannot be touched anymore
523          */
524         return 0;
525 out:
526         posix_timer_unhash_and_free(new_timer);
527         return error;
528 }
529
530 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
531                 struct sigevent __user *, timer_event_spec,
532                 timer_t __user *, created_timer_id)
533 {
534         if (timer_event_spec) {
535                 sigevent_t event;
536
537                 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
538                         return -EFAULT;
539                 return do_timer_create(which_clock, &event, created_timer_id);
540         }
541         return do_timer_create(which_clock, NULL, created_timer_id);
542 }
543
544 #ifdef CONFIG_COMPAT
545 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
546                        struct compat_sigevent __user *, timer_event_spec,
547                        timer_t __user *, created_timer_id)
548 {
549         if (timer_event_spec) {
550                 sigevent_t event;
551
552                 if (get_compat_sigevent(&event, timer_event_spec))
553                         return -EFAULT;
554                 return do_timer_create(which_clock, &event, created_timer_id);
555         }
556         return do_timer_create(which_clock, NULL, created_timer_id);
557 }
558 #endif
559
560 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
561 {
562         struct k_itimer *timr;
563
564         /*
565          * timer_t could be any type >= int and we want to make sure any
566          * @timer_id outside positive int range fails lookup.
567          */
568         if ((unsigned long long)timer_id > INT_MAX)
569                 return NULL;
570
571         /*
572          * The hash lookup and the timers are RCU protected.
573          *
574          * Timers are added to the hash in invalid state where
575          * timr::it_signal == NULL. timer::it_signal is only set after the
576          * rest of the initialization succeeded.
577          *
578          * Timer destruction happens in steps:
579          *  1) Set timr::it_signal to NULL with timr::it_lock held
580          *  2) Release timr::it_lock
581          *  3) Remove from the hash under hash_lock
582          *  4) Call RCU for removal after the grace period
583          *
584          * Holding rcu_read_lock() accross the lookup ensures that
585          * the timer cannot be freed.
586          *
587          * The lookup validates locklessly that timr::it_signal ==
588          * current::it_signal and timr::it_id == @timer_id. timr::it_id
589          * can't change, but timr::it_signal becomes NULL during
590          * destruction.
591          */
592         rcu_read_lock();
593         timr = posix_timer_by_id(timer_id);
594         if (timr) {
595                 spin_lock_irqsave(&timr->it_lock, *flags);
596                 /*
597                  * Validate under timr::it_lock that timr::it_signal is
598                  * still valid. Pairs with #1 above.
599                  */
600                 if (timr->it_signal == current->signal) {
601                         rcu_read_unlock();
602                         return timr;
603                 }
604                 spin_unlock_irqrestore(&timr->it_lock, *flags);
605         }
606         rcu_read_unlock();
607
608         return NULL;
609 }
610
611 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
612 {
613         struct hrtimer *timer = &timr->it.real.timer;
614
615         return __hrtimer_expires_remaining_adjusted(timer, now);
616 }
617
618 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
619 {
620         struct hrtimer *timer = &timr->it.real.timer;
621
622         return hrtimer_forward(timer, now, timr->it_interval);
623 }
624
625 /*
626  * Get the time remaining on a POSIX.1b interval timer.
627  *
628  * Two issues to handle here:
629  *
630  *  1) The timer has a requeue pending. The return value must appear as
631  *     if the timer has been requeued right now.
632  *
633  *  2) The timer is a SIGEV_NONE timer. These timers are never enqueued
634  *     into the hrtimer queue and therefore never expired. Emulate expiry
635  *     here taking #1 into account.
636  */
637 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
638 {
639         const struct k_clock *kc = timr->kclock;
640         ktime_t now, remaining, iv;
641         bool sig_none;
642
643         sig_none = timr->it_sigev_notify == SIGEV_NONE;
644         iv = timr->it_interval;
645
646         /* interval timer ? */
647         if (iv) {
648                 cur_setting->it_interval = ktime_to_timespec64(iv);
649         } else if (!timr->it_active) {
650                 /*
651                  * SIGEV_NONE oneshot timers are never queued and therefore
652                  * timr->it_active is always false. The check below
653                  * vs. remaining time will handle this case.
654                  *
655                  * For all other timers there is nothing to update here, so
656                  * return.
657                  */
658                 if (!sig_none)
659                         return;
660         }
661
662         now = kc->clock_get_ktime(timr->it_clock);
663
664         /*
665          * If this is an interval timer and either has requeue pending or
666          * is a SIGEV_NONE timer move the expiry time forward by intervals,
667          * so expiry is > now.
668          */
669         if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
670                 timr->it_overrun += kc->timer_forward(timr, now);
671
672         remaining = kc->timer_remaining(timr, now);
673         /*
674          * As @now is retrieved before a possible timer_forward() and
675          * cannot be reevaluated by the compiler @remaining is based on the
676          * same @now value. Therefore @remaining is consistent vs. @now.
677          *
678          * Consequently all interval timers, i.e. @iv > 0, cannot have a
679          * remaining time <= 0 because timer_forward() guarantees to move
680          * them forward so that the next timer expiry is > @now.
681          */
682         if (remaining <= 0) {
683                 /*
684                  * A single shot SIGEV_NONE timer must return 0, when it is
685                  * expired! Timers which have a real signal delivery mode
686                  * must return a remaining time greater than 0 because the
687                  * signal has not yet been delivered.
688                  */
689                 if (!sig_none)
690                         cur_setting->it_value.tv_nsec = 1;
691         } else {
692                 cur_setting->it_value = ktime_to_timespec64(remaining);
693         }
694 }
695
696 static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
697 {
698         const struct k_clock *kc;
699         struct k_itimer *timr;
700         unsigned long flags;
701         int ret = 0;
702
703         timr = lock_timer(timer_id, &flags);
704         if (!timr)
705                 return -EINVAL;
706
707         memset(setting, 0, sizeof(*setting));
708         kc = timr->kclock;
709         if (WARN_ON_ONCE(!kc || !kc->timer_get))
710                 ret = -EINVAL;
711         else
712                 kc->timer_get(timr, setting);
713
714         unlock_timer(timr, flags);
715         return ret;
716 }
717
718 /* Get the time remaining on a POSIX.1b interval timer. */
719 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
720                 struct __kernel_itimerspec __user *, setting)
721 {
722         struct itimerspec64 cur_setting;
723
724         int ret = do_timer_gettime(timer_id, &cur_setting);
725         if (!ret) {
726                 if (put_itimerspec64(&cur_setting, setting))
727                         ret = -EFAULT;
728         }
729         return ret;
730 }
731
732 #ifdef CONFIG_COMPAT_32BIT_TIME
733
734 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
735                 struct old_itimerspec32 __user *, setting)
736 {
737         struct itimerspec64 cur_setting;
738
739         int ret = do_timer_gettime(timer_id, &cur_setting);
740         if (!ret) {
741                 if (put_old_itimerspec32(&cur_setting, setting))
742                         ret = -EFAULT;
743         }
744         return ret;
745 }
746
747 #endif
748
749 /**
750  * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer
751  * @timer_id:   The timer ID which identifies the timer
752  *
753  * The "overrun count" of a timer is one plus the number of expiration
754  * intervals which have elapsed between the first expiry, which queues the
755  * signal and the actual signal delivery. On signal delivery the "overrun
756  * count" is calculated and cached, so it can be returned directly here.
757  *
758  * As this is relative to the last queued signal the returned overrun count
759  * is meaningless outside of the signal delivery path and even there it
760  * does not accurately reflect the current state when user space evaluates
761  * it.
762  *
763  * Returns:
764  *      -EINVAL         @timer_id is invalid
765  *      1..INT_MAX      The number of overruns related to the last delivered signal
766  */
767 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
768 {
769         struct k_itimer *timr;
770         unsigned long flags;
771         int overrun;
772
773         timr = lock_timer(timer_id, &flags);
774         if (!timr)
775                 return -EINVAL;
776
777         overrun = timer_overrun_to_int(timr, 0);
778         unlock_timer(timr, flags);
779
780         return overrun;
781 }
782
783 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
784                                bool absolute, bool sigev_none)
785 {
786         struct hrtimer *timer = &timr->it.real.timer;
787         enum hrtimer_mode mode;
788
789         mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
790         /*
791          * Posix magic: Relative CLOCK_REALTIME timers are not affected by
792          * clock modifications, so they become CLOCK_MONOTONIC based under the
793          * hood. See hrtimer_init(). Update timr->kclock, so the generic
794          * functions which use timr->kclock->clock_get_*() work.
795          *
796          * Note: it_clock stays unmodified, because the next timer_set() might
797          * use ABSTIME, so it needs to switch back.
798          */
799         if (timr->it_clock == CLOCK_REALTIME)
800                 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
801
802         hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
803         timr->it.real.timer.function = posix_timer_fn;
804
805         if (!absolute)
806                 expires = ktime_add_safe(expires, timer->base->get_time());
807         hrtimer_set_expires(timer, expires);
808
809         if (!sigev_none)
810                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
811 }
812
813 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
814 {
815         return hrtimer_try_to_cancel(&timr->it.real.timer);
816 }
817
818 static void common_timer_wait_running(struct k_itimer *timer)
819 {
820         hrtimer_cancel_wait_running(&timer->it.real.timer);
821 }
822
823 /*
824  * On PREEMPT_RT this prevents priority inversion and a potential livelock
825  * against the ksoftirqd thread in case that ksoftirqd gets preempted while
826  * executing a hrtimer callback.
827  *
828  * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this
829  * just results in a cpu_relax().
830  *
831  * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is
832  * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this
833  * prevents spinning on an eventually scheduled out task and a livelock
834  * when the task which tries to delete or disarm the timer has preempted
835  * the task which runs the expiry in task work context.
836  */
837 static struct k_itimer *timer_wait_running(struct k_itimer *timer,
838                                            unsigned long *flags)
839 {
840         const struct k_clock *kc = READ_ONCE(timer->kclock);
841         timer_t timer_id = READ_ONCE(timer->it_id);
842
843         /* Prevent kfree(timer) after dropping the lock */
844         rcu_read_lock();
845         unlock_timer(timer, *flags);
846
847         /*
848          * kc->timer_wait_running() might drop RCU lock. So @timer
849          * cannot be touched anymore after the function returns!
850          */
851         if (!WARN_ON_ONCE(!kc->timer_wait_running))
852                 kc->timer_wait_running(timer);
853
854         rcu_read_unlock();
855         /* Relock the timer. It might be not longer hashed. */
856         return lock_timer(timer_id, flags);
857 }
858
859 /* Set a POSIX.1b interval timer. */
860 int common_timer_set(struct k_itimer *timr, int flags,
861                      struct itimerspec64 *new_setting,
862                      struct itimerspec64 *old_setting)
863 {
864         const struct k_clock *kc = timr->kclock;
865         bool sigev_none;
866         ktime_t expires;
867
868         if (old_setting)
869                 common_timer_get(timr, old_setting);
870
871         /* Prevent rearming by clearing the interval */
872         timr->it_interval = 0;
873         /*
874          * Careful here. On SMP systems the timer expiry function could be
875          * active and spinning on timr->it_lock.
876          */
877         if (kc->timer_try_to_cancel(timr) < 0)
878                 return TIMER_RETRY;
879
880         timr->it_active = 0;
881         timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
882                 ~REQUEUE_PENDING;
883         timr->it_overrun_last = 0;
884
885         /* Switch off the timer when it_value is zero */
886         if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
887                 return 0;
888
889         timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
890         expires = timespec64_to_ktime(new_setting->it_value);
891         if (flags & TIMER_ABSTIME)
892                 expires = timens_ktime_to_host(timr->it_clock, expires);
893         sigev_none = timr->it_sigev_notify == SIGEV_NONE;
894
895         kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
896         timr->it_active = !sigev_none;
897         return 0;
898 }
899
900 static int do_timer_settime(timer_t timer_id, int tmr_flags,
901                             struct itimerspec64 *new_spec64,
902                             struct itimerspec64 *old_spec64)
903 {
904         const struct k_clock *kc;
905         struct k_itimer *timr;
906         unsigned long flags;
907         int error = 0;
908
909         if (!timespec64_valid(&new_spec64->it_interval) ||
910             !timespec64_valid(&new_spec64->it_value))
911                 return -EINVAL;
912
913         if (old_spec64)
914                 memset(old_spec64, 0, sizeof(*old_spec64));
915
916         timr = lock_timer(timer_id, &flags);
917 retry:
918         if (!timr)
919                 return -EINVAL;
920
921         kc = timr->kclock;
922         if (WARN_ON_ONCE(!kc || !kc->timer_set))
923                 error = -EINVAL;
924         else
925                 error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
926
927         if (error == TIMER_RETRY) {
928                 // We already got the old time...
929                 old_spec64 = NULL;
930                 /* Unlocks and relocks the timer if it still exists */
931                 timr = timer_wait_running(timr, &flags);
932                 goto retry;
933         }
934         unlock_timer(timr, flags);
935
936         return error;
937 }
938
939 /* Set a POSIX.1b interval timer */
940 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
941                 const struct __kernel_itimerspec __user *, new_setting,
942                 struct __kernel_itimerspec __user *, old_setting)
943 {
944         struct itimerspec64 new_spec, old_spec, *rtn;
945         int error = 0;
946
947         if (!new_setting)
948                 return -EINVAL;
949
950         if (get_itimerspec64(&new_spec, new_setting))
951                 return -EFAULT;
952
953         rtn = old_setting ? &old_spec : NULL;
954         error = do_timer_settime(timer_id, flags, &new_spec, rtn);
955         if (!error && old_setting) {
956                 if (put_itimerspec64(&old_spec, old_setting))
957                         error = -EFAULT;
958         }
959         return error;
960 }
961
962 #ifdef CONFIG_COMPAT_32BIT_TIME
963 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
964                 struct old_itimerspec32 __user *, new,
965                 struct old_itimerspec32 __user *, old)
966 {
967         struct itimerspec64 new_spec, old_spec;
968         struct itimerspec64 *rtn = old ? &old_spec : NULL;
969         int error = 0;
970
971         if (!new)
972                 return -EINVAL;
973         if (get_old_itimerspec32(&new_spec, new))
974                 return -EFAULT;
975
976         error = do_timer_settime(timer_id, flags, &new_spec, rtn);
977         if (!error && old) {
978                 if (put_old_itimerspec32(&old_spec, old))
979                         error = -EFAULT;
980         }
981         return error;
982 }
983 #endif
984
985 int common_timer_del(struct k_itimer *timer)
986 {
987         const struct k_clock *kc = timer->kclock;
988
989         timer->it_interval = 0;
990         if (kc->timer_try_to_cancel(timer) < 0)
991                 return TIMER_RETRY;
992         timer->it_active = 0;
993         return 0;
994 }
995
996 static inline int timer_delete_hook(struct k_itimer *timer)
997 {
998         const struct k_clock *kc = timer->kclock;
999
1000         if (WARN_ON_ONCE(!kc || !kc->timer_del))
1001                 return -EINVAL;
1002         return kc->timer_del(timer);
1003 }
1004
1005 /* Delete a POSIX.1b interval timer. */
1006 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1007 {
1008         struct k_itimer *timer;
1009         unsigned long flags;
1010
1011         timer = lock_timer(timer_id, &flags);
1012
1013 retry_delete:
1014         if (!timer)
1015                 return -EINVAL;
1016
1017         if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
1018                 /* Unlocks and relocks the timer if it still exists */
1019                 timer = timer_wait_running(timer, &flags);
1020                 goto retry_delete;
1021         }
1022
1023         spin_lock(&current->sighand->siglock);
1024         list_del(&timer->list);
1025         spin_unlock(&current->sighand->siglock);
1026         /*
1027          * A concurrent lookup could check timer::it_signal lockless. It
1028          * will reevaluate with timer::it_lock held and observe the NULL.
1029          */
1030         WRITE_ONCE(timer->it_signal, NULL);
1031
1032         unlock_timer(timer, flags);
1033         posix_timer_unhash_and_free(timer);
1034         return 0;
1035 }
1036
1037 /*
1038  * Delete a timer if it is armed, remove it from the hash and schedule it
1039  * for RCU freeing.
1040  */
1041 static void itimer_delete(struct k_itimer *timer)
1042 {
1043         unsigned long flags;
1044
1045         /*
1046          * irqsave is required to make timer_wait_running() work.
1047          */
1048         spin_lock_irqsave(&timer->it_lock, flags);
1049
1050 retry_delete:
1051         /*
1052          * Even if the timer is not longer accessible from other tasks
1053          * it still might be armed and queued in the underlying timer
1054          * mechanism. Worse, that timer mechanism might run the expiry
1055          * function concurrently.
1056          */
1057         if (timer_delete_hook(timer) == TIMER_RETRY) {
1058                 /*
1059                  * Timer is expired concurrently, prevent livelocks
1060                  * and pointless spinning on RT.
1061                  *
1062                  * timer_wait_running() drops timer::it_lock, which opens
1063                  * the possibility for another task to delete the timer.
1064                  *
1065                  * That's not possible here because this is invoked from
1066                  * do_exit() only for the last thread of the thread group.
1067                  * So no other task can access and delete that timer.
1068                  */
1069                 if (WARN_ON_ONCE(timer_wait_running(timer, &flags) != timer))
1070                         return;
1071
1072                 goto retry_delete;
1073         }
1074         list_del(&timer->list);
1075
1076         /*
1077          * Setting timer::it_signal to NULL is technically not required
1078          * here as nothing can access the timer anymore legitimately via
1079          * the hash table. Set it to NULL nevertheless so that all deletion
1080          * paths are consistent.
1081          */
1082         WRITE_ONCE(timer->it_signal, NULL);
1083
1084         spin_unlock_irqrestore(&timer->it_lock, flags);
1085         posix_timer_unhash_and_free(timer);
1086 }
1087
1088 /*
1089  * Invoked from do_exit() when the last thread of a thread group exits.
1090  * At that point no other task can access the timers of the dying
1091  * task anymore.
1092  */
1093 void exit_itimers(struct task_struct *tsk)
1094 {
1095         struct list_head timers;
1096         struct k_itimer *tmr;
1097
1098         if (list_empty(&tsk->signal->posix_timers))
1099                 return;
1100
1101         /* Protect against concurrent read via /proc/$PID/timers */
1102         spin_lock_irq(&tsk->sighand->siglock);
1103         list_replace_init(&tsk->signal->posix_timers, &timers);
1104         spin_unlock_irq(&tsk->sighand->siglock);
1105
1106         /* The timers are not longer accessible via tsk::signal */
1107         while (!list_empty(&timers)) {
1108                 tmr = list_first_entry(&timers, struct k_itimer, list);
1109                 itimer_delete(tmr);
1110         }
1111 }
1112
1113 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1114                 const struct __kernel_timespec __user *, tp)
1115 {
1116         const struct k_clock *kc = clockid_to_kclock(which_clock);
1117         struct timespec64 new_tp;
1118
1119         if (!kc || !kc->clock_set)
1120                 return -EINVAL;
1121
1122         if (get_timespec64(&new_tp, tp))
1123                 return -EFAULT;
1124
1125         /*
1126          * Permission checks have to be done inside the clock specific
1127          * setter callback.
1128          */
1129         return kc->clock_set(which_clock, &new_tp);
1130 }
1131
1132 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1133                 struct __kernel_timespec __user *, tp)
1134 {
1135         const struct k_clock *kc = clockid_to_kclock(which_clock);
1136         struct timespec64 kernel_tp;
1137         int error;
1138
1139         if (!kc)
1140                 return -EINVAL;
1141
1142         error = kc->clock_get_timespec(which_clock, &kernel_tp);
1143
1144         if (!error && put_timespec64(&kernel_tp, tp))
1145                 error = -EFAULT;
1146
1147         return error;
1148 }
1149
1150 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1151 {
1152         const struct k_clock *kc = clockid_to_kclock(which_clock);
1153
1154         if (!kc)
1155                 return -EINVAL;
1156         if (!kc->clock_adj)
1157                 return -EOPNOTSUPP;
1158
1159         return kc->clock_adj(which_clock, ktx);
1160 }
1161
1162 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1163                 struct __kernel_timex __user *, utx)
1164 {
1165         struct __kernel_timex ktx;
1166         int err;
1167
1168         if (copy_from_user(&ktx, utx, sizeof(ktx)))
1169                 return -EFAULT;
1170
1171         err = do_clock_adjtime(which_clock, &ktx);
1172
1173         if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1174                 return -EFAULT;
1175
1176         return err;
1177 }
1178
1179 /**
1180  * sys_clock_getres - Get the resolution of a clock
1181  * @which_clock:        The clock to get the resolution for
1182  * @tp:                 Pointer to a a user space timespec64 for storage
1183  *
1184  * POSIX defines:
1185  *
1186  * "The clock_getres() function shall return the resolution of any
1187  * clock. Clock resolutions are implementation-defined and cannot be set by
1188  * a process. If the argument res is not NULL, the resolution of the
1189  * specified clock shall be stored in the location pointed to by res. If
1190  * res is NULL, the clock resolution is not returned. If the time argument
1191  * of clock_settime() is not a multiple of res, then the value is truncated
1192  * to a multiple of res."
1193  *
1194  * Due to the various hardware constraints the real resolution can vary
1195  * wildly and even change during runtime when the underlying devices are
1196  * replaced. The kernel also can use hardware devices with different
1197  * resolutions for reading the time and for arming timers.
1198  *
1199  * The kernel therefore deviates from the POSIX spec in various aspects:
1200  *
1201  * 1) The resolution returned to user space
1202  *
1203  *    For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI,
1204  *    CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW
1205  *    the kernel differentiates only two cases:
1206  *
1207  *    I)  Low resolution mode:
1208  *
1209  *        When high resolution timers are disabled at compile or runtime
1210  *        the resolution returned is nanoseconds per tick, which represents
1211  *        the precision at which timers expire.
1212  *
1213  *    II) High resolution mode:
1214  *
1215  *        When high resolution timers are enabled the resolution returned
1216  *        is always one nanosecond independent of the actual resolution of
1217  *        the underlying hardware devices.
1218  *
1219  *        For CLOCK_*_ALARM the actual resolution depends on system
1220  *        state. When system is running the resolution is the same as the
1221  *        resolution of the other clocks. During suspend the actual
1222  *        resolution is the resolution of the underlying RTC device which
1223  *        might be way less precise than the clockevent device used during
1224  *        running state.
1225  *
1226  *   For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution
1227  *   returned is always nanoseconds per tick.
1228  *
1229  *   For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution
1230  *   returned is always one nanosecond under the assumption that the
1231  *   underlying scheduler clock has a better resolution than nanoseconds
1232  *   per tick.
1233  *
1234  *   For dynamic POSIX clocks (PTP devices) the resolution returned is
1235  *   always one nanosecond.
1236  *
1237  * 2) Affect on sys_clock_settime()
1238  *
1239  *    The kernel does not truncate the time which is handed in to
1240  *    sys_clock_settime(). The kernel internal timekeeping is always using
1241  *    nanoseconds precision independent of the clocksource device which is
1242  *    used to read the time from. The resolution of that device only
1243  *    affects the presicion of the time returned by sys_clock_gettime().
1244  *
1245  * Returns:
1246  *      0               Success. @tp contains the resolution
1247  *      -EINVAL         @which_clock is not a valid clock ID
1248  *      -EFAULT         Copying the resolution to @tp faulted
1249  *      -ENODEV         Dynamic POSIX clock is not backed by a device
1250  *      -EOPNOTSUPP     Dynamic POSIX clock does not support getres()
1251  */
1252 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1253                 struct __kernel_timespec __user *, tp)
1254 {
1255         const struct k_clock *kc = clockid_to_kclock(which_clock);
1256         struct timespec64 rtn_tp;
1257         int error;
1258
1259         if (!kc)
1260                 return -EINVAL;
1261
1262         error = kc->clock_getres(which_clock, &rtn_tp);
1263
1264         if (!error && tp && put_timespec64(&rtn_tp, tp))
1265                 error = -EFAULT;
1266
1267         return error;
1268 }
1269
1270 #ifdef CONFIG_COMPAT_32BIT_TIME
1271
1272 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1273                 struct old_timespec32 __user *, tp)
1274 {
1275         const struct k_clock *kc = clockid_to_kclock(which_clock);
1276         struct timespec64 ts;
1277
1278         if (!kc || !kc->clock_set)
1279                 return -EINVAL;
1280
1281         if (get_old_timespec32(&ts, tp))
1282                 return -EFAULT;
1283
1284         return kc->clock_set(which_clock, &ts);
1285 }
1286
1287 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1288                 struct old_timespec32 __user *, tp)
1289 {
1290         const struct k_clock *kc = clockid_to_kclock(which_clock);
1291         struct timespec64 ts;
1292         int err;
1293
1294         if (!kc)
1295                 return -EINVAL;
1296
1297         err = kc->clock_get_timespec(which_clock, &ts);
1298
1299         if (!err && put_old_timespec32(&ts, tp))
1300                 err = -EFAULT;
1301
1302         return err;
1303 }
1304
1305 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1306                 struct old_timex32 __user *, utp)
1307 {
1308         struct __kernel_timex ktx;
1309         int err;
1310
1311         err = get_old_timex32(&ktx, utp);
1312         if (err)
1313                 return err;
1314
1315         err = do_clock_adjtime(which_clock, &ktx);
1316
1317         if (err >= 0 && put_old_timex32(utp, &ktx))
1318                 return -EFAULT;
1319
1320         return err;
1321 }
1322
1323 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1324                 struct old_timespec32 __user *, tp)
1325 {
1326         const struct k_clock *kc = clockid_to_kclock(which_clock);
1327         struct timespec64 ts;
1328         int err;
1329
1330         if (!kc)
1331                 return -EINVAL;
1332
1333         err = kc->clock_getres(which_clock, &ts);
1334         if (!err && tp && put_old_timespec32(&ts, tp))
1335                 return -EFAULT;
1336
1337         return err;
1338 }
1339
1340 #endif
1341
1342 /*
1343  * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI
1344  */
1345 static int common_nsleep(const clockid_t which_clock, int flags,
1346                          const struct timespec64 *rqtp)
1347 {
1348         ktime_t texp = timespec64_to_ktime(*rqtp);
1349
1350         return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1351                                  HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1352                                  which_clock);
1353 }
1354
1355 /*
1356  * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME
1357  *
1358  * Absolute nanosleeps for these clocks are time-namespace adjusted.
1359  */
1360 static int common_nsleep_timens(const clockid_t which_clock, int flags,
1361                                 const struct timespec64 *rqtp)
1362 {
1363         ktime_t texp = timespec64_to_ktime(*rqtp);
1364
1365         if (flags & TIMER_ABSTIME)
1366                 texp = timens_ktime_to_host(which_clock, texp);
1367
1368         return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1369                                  HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1370                                  which_clock);
1371 }
1372
1373 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1374                 const struct __kernel_timespec __user *, rqtp,
1375                 struct __kernel_timespec __user *, rmtp)
1376 {
1377         const struct k_clock *kc = clockid_to_kclock(which_clock);
1378         struct timespec64 t;
1379
1380         if (!kc)
1381                 return -EINVAL;
1382         if (!kc->nsleep)
1383                 return -EOPNOTSUPP;
1384
1385         if (get_timespec64(&t, rqtp))
1386                 return -EFAULT;
1387
1388         if (!timespec64_valid(&t))
1389                 return -EINVAL;
1390         if (flags & TIMER_ABSTIME)
1391                 rmtp = NULL;
1392         current->restart_block.fn = do_no_restart_syscall;
1393         current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1394         current->restart_block.nanosleep.rmtp = rmtp;
1395
1396         return kc->nsleep(which_clock, flags, &t);
1397 }
1398
1399 #ifdef CONFIG_COMPAT_32BIT_TIME
1400
1401 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1402                 struct old_timespec32 __user *, rqtp,
1403                 struct old_timespec32 __user *, rmtp)
1404 {
1405         const struct k_clock *kc = clockid_to_kclock(which_clock);
1406         struct timespec64 t;
1407
1408         if (!kc)
1409                 return -EINVAL;
1410         if (!kc->nsleep)
1411                 return -EOPNOTSUPP;
1412
1413         if (get_old_timespec32(&t, rqtp))
1414                 return -EFAULT;
1415
1416         if (!timespec64_valid(&t))
1417                 return -EINVAL;
1418         if (flags & TIMER_ABSTIME)
1419                 rmtp = NULL;
1420         current->restart_block.fn = do_no_restart_syscall;
1421         current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1422         current->restart_block.nanosleep.compat_rmtp = rmtp;
1423
1424         return kc->nsleep(which_clock, flags, &t);
1425 }
1426
1427 #endif
1428
1429 static const struct k_clock clock_realtime = {
1430         .clock_getres           = posix_get_hrtimer_res,
1431         .clock_get_timespec     = posix_get_realtime_timespec,
1432         .clock_get_ktime        = posix_get_realtime_ktime,
1433         .clock_set              = posix_clock_realtime_set,
1434         .clock_adj              = posix_clock_realtime_adj,
1435         .nsleep                 = common_nsleep,
1436         .timer_create           = common_timer_create,
1437         .timer_set              = common_timer_set,
1438         .timer_get              = common_timer_get,
1439         .timer_del              = common_timer_del,
1440         .timer_rearm            = common_hrtimer_rearm,
1441         .timer_forward          = common_hrtimer_forward,
1442         .timer_remaining        = common_hrtimer_remaining,
1443         .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1444         .timer_wait_running     = common_timer_wait_running,
1445         .timer_arm              = common_hrtimer_arm,
1446 };
1447
1448 static const struct k_clock clock_monotonic = {
1449         .clock_getres           = posix_get_hrtimer_res,
1450         .clock_get_timespec     = posix_get_monotonic_timespec,
1451         .clock_get_ktime        = posix_get_monotonic_ktime,
1452         .nsleep                 = common_nsleep_timens,
1453         .timer_create           = common_timer_create,
1454         .timer_set              = common_timer_set,
1455         .timer_get              = common_timer_get,
1456         .timer_del              = common_timer_del,
1457         .timer_rearm            = common_hrtimer_rearm,
1458         .timer_forward          = common_hrtimer_forward,
1459         .timer_remaining        = common_hrtimer_remaining,
1460         .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1461         .timer_wait_running     = common_timer_wait_running,
1462         .timer_arm              = common_hrtimer_arm,
1463 };
1464
1465 static const struct k_clock clock_monotonic_raw = {
1466         .clock_getres           = posix_get_hrtimer_res,
1467         .clock_get_timespec     = posix_get_monotonic_raw,
1468 };
1469
1470 static const struct k_clock clock_realtime_coarse = {
1471         .clock_getres           = posix_get_coarse_res,
1472         .clock_get_timespec     = posix_get_realtime_coarse,
1473 };
1474
1475 static const struct k_clock clock_monotonic_coarse = {
1476         .clock_getres           = posix_get_coarse_res,
1477         .clock_get_timespec     = posix_get_monotonic_coarse,
1478 };
1479
1480 static const struct k_clock clock_tai = {
1481         .clock_getres           = posix_get_hrtimer_res,
1482         .clock_get_ktime        = posix_get_tai_ktime,
1483         .clock_get_timespec     = posix_get_tai_timespec,
1484         .nsleep                 = common_nsleep,
1485         .timer_create           = common_timer_create,
1486         .timer_set              = common_timer_set,
1487         .timer_get              = common_timer_get,
1488         .timer_del              = common_timer_del,
1489         .timer_rearm            = common_hrtimer_rearm,
1490         .timer_forward          = common_hrtimer_forward,
1491         .timer_remaining        = common_hrtimer_remaining,
1492         .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1493         .timer_wait_running     = common_timer_wait_running,
1494         .timer_arm              = common_hrtimer_arm,
1495 };
1496
1497 static const struct k_clock clock_boottime = {
1498         .clock_getres           = posix_get_hrtimer_res,
1499         .clock_get_ktime        = posix_get_boottime_ktime,
1500         .clock_get_timespec     = posix_get_boottime_timespec,
1501         .nsleep                 = common_nsleep_timens,
1502         .timer_create           = common_timer_create,
1503         .timer_set              = common_timer_set,
1504         .timer_get              = common_timer_get,
1505         .timer_del              = common_timer_del,
1506         .timer_rearm            = common_hrtimer_rearm,
1507         .timer_forward          = common_hrtimer_forward,
1508         .timer_remaining        = common_hrtimer_remaining,
1509         .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1510         .timer_wait_running     = common_timer_wait_running,
1511         .timer_arm              = common_hrtimer_arm,
1512 };
1513
1514 static const struct k_clock * const posix_clocks[] = {
1515         [CLOCK_REALTIME]                = &clock_realtime,
1516         [CLOCK_MONOTONIC]               = &clock_monotonic,
1517         [CLOCK_PROCESS_CPUTIME_ID]      = &clock_process,
1518         [CLOCK_THREAD_CPUTIME_ID]       = &clock_thread,
1519         [CLOCK_MONOTONIC_RAW]           = &clock_monotonic_raw,
1520         [CLOCK_REALTIME_COARSE]         = &clock_realtime_coarse,
1521         [CLOCK_MONOTONIC_COARSE]        = &clock_monotonic_coarse,
1522         [CLOCK_BOOTTIME]                = &clock_boottime,
1523         [CLOCK_REALTIME_ALARM]          = &alarm_clock,
1524         [CLOCK_BOOTTIME_ALARM]          = &alarm_clock,
1525         [CLOCK_TAI]                     = &clock_tai,
1526 };
1527
1528 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1529 {
1530         clockid_t idx = id;
1531
1532         if (id < 0) {
1533                 return (id & CLOCKFD_MASK) == CLOCKFD ?
1534                         &clock_posix_dynamic : &clock_posix_cpu;
1535         }
1536
1537         if (id >= ARRAY_SIZE(posix_clocks))
1538                 return NULL;
1539
1540         return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1541 }