GNU Linux-libre 4.14.290-gnu1
[releases.git] / kernel / time / posix-cpu-timers.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implement CPU time clocks for the POSIX clock interface.
4  */
5
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17
18 #include "posix-timers.h"
19
20 static void posix_cpu_timer_rearm(struct k_itimer *timer);
21
22 /*
23  * Called after updating RLIMIT_CPU to run cpu timer and update
24  * tsk->signal->cputime_expires expiration cache if necessary. Needs
25  * siglock protection since other code may update expiration cache as
26  * well.
27  */
28 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
29 {
30         u64 nsecs = rlim_new * NSEC_PER_SEC;
31
32         spin_lock_irq(&task->sighand->siglock);
33         set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
34         spin_unlock_irq(&task->sighand->siglock);
35 }
36
37 static int check_clock(const clockid_t which_clock)
38 {
39         int error = 0;
40         struct task_struct *p;
41         const pid_t pid = CPUCLOCK_PID(which_clock);
42
43         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
44                 return -EINVAL;
45
46         if (pid == 0)
47                 return 0;
48
49         rcu_read_lock();
50         p = find_task_by_vpid(pid);
51         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
52                    same_thread_group(p, current) : has_group_leader_pid(p))) {
53                 error = -EINVAL;
54         }
55         rcu_read_unlock();
56
57         return error;
58 }
59
60 /*
61  * Update expiry time from increment, and increase overrun count,
62  * given the current clock sample.
63  */
64 static void bump_cpu_timer(struct k_itimer *timer, u64 now)
65 {
66         int i;
67         u64 delta, incr;
68
69         if (timer->it.cpu.incr == 0)
70                 return;
71
72         if (now < timer->it.cpu.expires)
73                 return;
74
75         incr = timer->it.cpu.incr;
76         delta = now + incr - timer->it.cpu.expires;
77
78         /* Don't use (incr*2 < delta), incr*2 might overflow. */
79         for (i = 0; incr < delta - incr; i++)
80                 incr = incr << 1;
81
82         for (; i >= 0; incr >>= 1, i--) {
83                 if (delta < incr)
84                         continue;
85
86                 timer->it.cpu.expires += incr;
87                 timer->it_overrun += 1LL << i;
88                 delta -= incr;
89         }
90 }
91
92 /**
93  * task_cputime_zero - Check a task_cputime struct for all zero fields.
94  *
95  * @cputime:    The struct to compare.
96  *
97  * Checks @cputime to see if all fields are zero.  Returns true if all fields
98  * are zero, false if any field is nonzero.
99  */
100 static inline int task_cputime_zero(const struct task_cputime *cputime)
101 {
102         if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
103                 return 1;
104         return 0;
105 }
106
107 static inline u64 prof_ticks(struct task_struct *p)
108 {
109         u64 utime, stime;
110
111         task_cputime(p, &utime, &stime);
112
113         return utime + stime;
114 }
115 static inline u64 virt_ticks(struct task_struct *p)
116 {
117         u64 utime, stime;
118
119         task_cputime(p, &utime, &stime);
120
121         return utime;
122 }
123
124 static int
125 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
126 {
127         int error = check_clock(which_clock);
128         if (!error) {
129                 tp->tv_sec = 0;
130                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
131                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
132                         /*
133                          * If sched_clock is using a cycle counter, we
134                          * don't have any idea of its true resolution
135                          * exported, but it is much more than 1s/HZ.
136                          */
137                         tp->tv_nsec = 1;
138                 }
139         }
140         return error;
141 }
142
143 static int
144 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
145 {
146         /*
147          * You can never reset a CPU clock, but we check for other errors
148          * in the call before failing with EPERM.
149          */
150         int error = check_clock(which_clock);
151         if (error == 0) {
152                 error = -EPERM;
153         }
154         return error;
155 }
156
157
158 /*
159  * Sample a per-thread clock for the given task.
160  */
161 static int cpu_clock_sample(const clockid_t which_clock,
162                             struct task_struct *p, u64 *sample)
163 {
164         switch (CPUCLOCK_WHICH(which_clock)) {
165         default:
166                 return -EINVAL;
167         case CPUCLOCK_PROF:
168                 *sample = prof_ticks(p);
169                 break;
170         case CPUCLOCK_VIRT:
171                 *sample = virt_ticks(p);
172                 break;
173         case CPUCLOCK_SCHED:
174                 *sample = task_sched_runtime(p);
175                 break;
176         }
177         return 0;
178 }
179
180 /*
181  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
182  * to avoid race conditions with concurrent updates to cputime.
183  */
184 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
185 {
186         u64 curr_cputime;
187 retry:
188         curr_cputime = atomic64_read(cputime);
189         if (sum_cputime > curr_cputime) {
190                 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
191                         goto retry;
192         }
193 }
194
195 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
196 {
197         __update_gt_cputime(&cputime_atomic->utime, sum->utime);
198         __update_gt_cputime(&cputime_atomic->stime, sum->stime);
199         __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
200 }
201
202 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
203 static inline void sample_cputime_atomic(struct task_cputime *times,
204                                          struct task_cputime_atomic *atomic_times)
205 {
206         times->utime = atomic64_read(&atomic_times->utime);
207         times->stime = atomic64_read(&atomic_times->stime);
208         times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
209 }
210
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214         struct task_cputime sum;
215
216         /* Check if cputimer isn't running. This is accessed without locking. */
217         if (!READ_ONCE(cputimer->running)) {
218                 /*
219                  * The POSIX timer interface allows for absolute time expiry
220                  * values through the TIMER_ABSTIME flag, therefore we have
221                  * to synchronize the timer to the clock every time we start it.
222                  */
223                 thread_group_cputime(tsk, &sum);
224                 update_gt_cputime(&cputimer->cputime_atomic, &sum);
225
226                 /*
227                  * We're setting cputimer->running without a lock. Ensure
228                  * this only gets written to in one operation. We set
229                  * running after update_gt_cputime() as a small optimization,
230                  * but barriers are not required because update_gt_cputime()
231                  * can handle concurrent updates.
232                  */
233                 WRITE_ONCE(cputimer->running, true);
234         }
235         sample_cputime_atomic(times, &cputimer->cputime_atomic);
236 }
237
238 /*
239  * Sample a process (thread group) clock for the given group_leader task.
240  * Must be called with task sighand lock held for safe while_each_thread()
241  * traversal.
242  */
243 static int cpu_clock_sample_group(const clockid_t which_clock,
244                                   struct task_struct *p,
245                                   u64 *sample)
246 {
247         struct task_cputime cputime;
248
249         switch (CPUCLOCK_WHICH(which_clock)) {
250         default:
251                 return -EINVAL;
252         case CPUCLOCK_PROF:
253                 thread_group_cputime(p, &cputime);
254                 *sample = cputime.utime + cputime.stime;
255                 break;
256         case CPUCLOCK_VIRT:
257                 thread_group_cputime(p, &cputime);
258                 *sample = cputime.utime;
259                 break;
260         case CPUCLOCK_SCHED:
261                 thread_group_cputime(p, &cputime);
262                 *sample = cputime.sum_exec_runtime;
263                 break;
264         }
265         return 0;
266 }
267
268 static int posix_cpu_clock_get_task(struct task_struct *tsk,
269                                     const clockid_t which_clock,
270                                     struct timespec64 *tp)
271 {
272         int err = -EINVAL;
273         u64 rtn;
274
275         if (CPUCLOCK_PERTHREAD(which_clock)) {
276                 if (same_thread_group(tsk, current))
277                         err = cpu_clock_sample(which_clock, tsk, &rtn);
278         } else {
279                 if (tsk == current || thread_group_leader(tsk))
280                         err = cpu_clock_sample_group(which_clock, tsk, &rtn);
281         }
282
283         if (!err)
284                 *tp = ns_to_timespec64(rtn);
285
286         return err;
287 }
288
289
290 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
291 {
292         const pid_t pid = CPUCLOCK_PID(which_clock);
293         int err = -EINVAL;
294
295         if (pid == 0) {
296                 /*
297                  * Special case constant value for our own clocks.
298                  * We don't have to do any lookup to find ourselves.
299                  */
300                 err = posix_cpu_clock_get_task(current, which_clock, tp);
301         } else {
302                 /*
303                  * Find the given PID, and validate that the caller
304                  * should be able to see it.
305                  */
306                 struct task_struct *p;
307                 rcu_read_lock();
308                 p = find_task_by_vpid(pid);
309                 if (p)
310                         err = posix_cpu_clock_get_task(p, which_clock, tp);
311                 rcu_read_unlock();
312         }
313
314         return err;
315 }
316
317 /*
318  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
319  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
320  * new timer already all-zeros initialized.
321  */
322 static int posix_cpu_timer_create(struct k_itimer *new_timer)
323 {
324         int ret = 0;
325         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
326         struct task_struct *p;
327
328         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
329                 return -EINVAL;
330
331         new_timer->kclock = &clock_posix_cpu;
332
333         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
334
335         rcu_read_lock();
336         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
337                 if (pid == 0) {
338                         p = current;
339                 } else {
340                         p = find_task_by_vpid(pid);
341                         if (p && !same_thread_group(p, current))
342                                 p = NULL;
343                 }
344         } else {
345                 if (pid == 0) {
346                         p = current->group_leader;
347                 } else {
348                         p = find_task_by_vpid(pid);
349                         if (p && !has_group_leader_pid(p))
350                                 p = NULL;
351                 }
352         }
353         new_timer->it.cpu.task = p;
354         if (p) {
355                 get_task_struct(p);
356         } else {
357                 ret = -EINVAL;
358         }
359         rcu_read_unlock();
360
361         return ret;
362 }
363
364 /*
365  * Clean up a CPU-clock timer that is about to be destroyed.
366  * This is called from timer deletion with the timer already locked.
367  * If we return TIMER_RETRY, it's necessary to release the timer's lock
368  * and try again.  (This happens when the timer is in the middle of firing.)
369  */
370 static int posix_cpu_timer_del(struct k_itimer *timer)
371 {
372         int ret = 0;
373         unsigned long flags;
374         struct sighand_struct *sighand;
375         struct task_struct *p = timer->it.cpu.task;
376
377         WARN_ON_ONCE(p == NULL);
378
379         /*
380          * Protect against sighand release/switch in exit/exec and process/
381          * thread timer list entry concurrent read/writes.
382          */
383         sighand = lock_task_sighand(p, &flags);
384         if (unlikely(sighand == NULL)) {
385                 /*
386                  * We raced with the reaping of the task.
387                  * The deletion should have cleared us off the list.
388                  */
389                 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
390         } else {
391                 if (timer->it.cpu.firing)
392                         ret = TIMER_RETRY;
393                 else
394                         list_del(&timer->it.cpu.entry);
395
396                 unlock_task_sighand(p, &flags);
397         }
398
399         if (!ret)
400                 put_task_struct(p);
401
402         return ret;
403 }
404
405 static void cleanup_timers_list(struct list_head *head)
406 {
407         struct cpu_timer_list *timer, *next;
408
409         list_for_each_entry_safe(timer, next, head, entry)
410                 list_del_init(&timer->entry);
411 }
412
413 /*
414  * Clean out CPU timers still ticking when a thread exited.  The task
415  * pointer is cleared, and the expiry time is replaced with the residual
416  * time for later timer_gettime calls to return.
417  * This must be called with the siglock held.
418  */
419 static void cleanup_timers(struct list_head *head)
420 {
421         cleanup_timers_list(head);
422         cleanup_timers_list(++head);
423         cleanup_timers_list(++head);
424 }
425
426 /*
427  * These are both called with the siglock held, when the current thread
428  * is being reaped.  When the final (leader) thread in the group is reaped,
429  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
430  */
431 void posix_cpu_timers_exit(struct task_struct *tsk)
432 {
433         cleanup_timers(tsk->cpu_timers);
434 }
435 void posix_cpu_timers_exit_group(struct task_struct *tsk)
436 {
437         cleanup_timers(tsk->signal->cpu_timers);
438 }
439
440 static inline int expires_gt(u64 expires, u64 new_exp)
441 {
442         return expires == 0 || expires > new_exp;
443 }
444
445 /*
446  * Insert the timer on the appropriate list before any timers that
447  * expire later.  This must be called with the sighand lock held.
448  */
449 static void arm_timer(struct k_itimer *timer)
450 {
451         struct task_struct *p = timer->it.cpu.task;
452         struct list_head *head, *listpos;
453         struct task_cputime *cputime_expires;
454         struct cpu_timer_list *const nt = &timer->it.cpu;
455         struct cpu_timer_list *next;
456
457         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
458                 head = p->cpu_timers;
459                 cputime_expires = &p->cputime_expires;
460         } else {
461                 head = p->signal->cpu_timers;
462                 cputime_expires = &p->signal->cputime_expires;
463         }
464         head += CPUCLOCK_WHICH(timer->it_clock);
465
466         listpos = head;
467         list_for_each_entry(next, head, entry) {
468                 if (nt->expires < next->expires)
469                         break;
470                 listpos = &next->entry;
471         }
472         list_add(&nt->entry, listpos);
473
474         if (listpos == head) {
475                 u64 exp = nt->expires;
476
477                 /*
478                  * We are the new earliest-expiring POSIX 1.b timer, hence
479                  * need to update expiration cache. Take into account that
480                  * for process timers we share expiration cache with itimers
481                  * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
482                  */
483
484                 switch (CPUCLOCK_WHICH(timer->it_clock)) {
485                 case CPUCLOCK_PROF:
486                         if (expires_gt(cputime_expires->prof_exp, exp))
487                                 cputime_expires->prof_exp = exp;
488                         break;
489                 case CPUCLOCK_VIRT:
490                         if (expires_gt(cputime_expires->virt_exp, exp))
491                                 cputime_expires->virt_exp = exp;
492                         break;
493                 case CPUCLOCK_SCHED:
494                         if (expires_gt(cputime_expires->sched_exp, exp))
495                                 cputime_expires->sched_exp = exp;
496                         break;
497                 }
498                 if (CPUCLOCK_PERTHREAD(timer->it_clock))
499                         tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
500                 else
501                         tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
502         }
503 }
504
505 /*
506  * The timer is locked, fire it and arrange for its reload.
507  */
508 static void cpu_timer_fire(struct k_itimer *timer)
509 {
510         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
511                 /*
512                  * User don't want any signal.
513                  */
514                 timer->it.cpu.expires = 0;
515         } else if (unlikely(timer->sigq == NULL)) {
516                 /*
517                  * This a special case for clock_nanosleep,
518                  * not a normal timer from sys_timer_create.
519                  */
520                 wake_up_process(timer->it_process);
521                 timer->it.cpu.expires = 0;
522         } else if (timer->it.cpu.incr == 0) {
523                 /*
524                  * One-shot timer.  Clear it as soon as it's fired.
525                  */
526                 posix_timer_event(timer, 0);
527                 timer->it.cpu.expires = 0;
528         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
529                 /*
530                  * The signal did not get queued because the signal
531                  * was ignored, so we won't get any callback to
532                  * reload the timer.  But we need to keep it
533                  * ticking in case the signal is deliverable next time.
534                  */
535                 posix_cpu_timer_rearm(timer);
536                 ++timer->it_requeue_pending;
537         }
538 }
539
540 /*
541  * Sample a process (thread group) timer for the given group_leader task.
542  * Must be called with task sighand lock held for safe while_each_thread()
543  * traversal.
544  */
545 static int cpu_timer_sample_group(const clockid_t which_clock,
546                                   struct task_struct *p, u64 *sample)
547 {
548         struct task_cputime cputime;
549
550         thread_group_cputimer(p, &cputime);
551         switch (CPUCLOCK_WHICH(which_clock)) {
552         default:
553                 return -EINVAL;
554         case CPUCLOCK_PROF:
555                 *sample = cputime.utime + cputime.stime;
556                 break;
557         case CPUCLOCK_VIRT:
558                 *sample = cputime.utime;
559                 break;
560         case CPUCLOCK_SCHED:
561                 *sample = cputime.sum_exec_runtime;
562                 break;
563         }
564         return 0;
565 }
566
567 /*
568  * Guts of sys_timer_settime for CPU timers.
569  * This is called with the timer locked and interrupts disabled.
570  * If we return TIMER_RETRY, it's necessary to release the timer's lock
571  * and try again.  (This happens when the timer is in the middle of firing.)
572  */
573 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
574                                struct itimerspec64 *new, struct itimerspec64 *old)
575 {
576         unsigned long flags;
577         struct sighand_struct *sighand;
578         struct task_struct *p = timer->it.cpu.task;
579         u64 old_expires, new_expires, old_incr, val;
580         int ret;
581
582         WARN_ON_ONCE(p == NULL);
583
584         /*
585          * Use the to_ktime conversion because that clamps the maximum
586          * value to KTIME_MAX and avoid multiplication overflows.
587          */
588         new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
589
590         /*
591          * Protect against sighand release/switch in exit/exec and p->cpu_timers
592          * and p->signal->cpu_timers read/write in arm_timer()
593          */
594         sighand = lock_task_sighand(p, &flags);
595         /*
596          * If p has just been reaped, we can no
597          * longer get any information about it at all.
598          */
599         if (unlikely(sighand == NULL)) {
600                 return -ESRCH;
601         }
602
603         /*
604          * Disarm any old timer after extracting its expiry time.
605          */
606         WARN_ON_ONCE(!irqs_disabled());
607
608         ret = 0;
609         old_incr = timer->it.cpu.incr;
610         old_expires = timer->it.cpu.expires;
611         if (unlikely(timer->it.cpu.firing)) {
612                 timer->it.cpu.firing = -1;
613                 ret = TIMER_RETRY;
614         } else
615                 list_del_init(&timer->it.cpu.entry);
616
617         /*
618          * We need to sample the current value to convert the new
619          * value from to relative and absolute, and to convert the
620          * old value from absolute to relative.  To set a process
621          * timer, we need a sample to balance the thread expiry
622          * times (in arm_timer).  With an absolute time, we must
623          * check if it's already passed.  In short, we need a sample.
624          */
625         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
626                 cpu_clock_sample(timer->it_clock, p, &val);
627         } else {
628                 cpu_timer_sample_group(timer->it_clock, p, &val);
629         }
630
631         if (old) {
632                 if (old_expires == 0) {
633                         old->it_value.tv_sec = 0;
634                         old->it_value.tv_nsec = 0;
635                 } else {
636                         /*
637                          * Update the timer in case it has
638                          * overrun already.  If it has,
639                          * we'll report it as having overrun
640                          * and with the next reloaded timer
641                          * already ticking, though we are
642                          * swallowing that pending
643                          * notification here to install the
644                          * new setting.
645                          */
646                         bump_cpu_timer(timer, val);
647                         if (val < timer->it.cpu.expires) {
648                                 old_expires = timer->it.cpu.expires - val;
649                                 old->it_value = ns_to_timespec64(old_expires);
650                         } else {
651                                 old->it_value.tv_nsec = 1;
652                                 old->it_value.tv_sec = 0;
653                         }
654                 }
655         }
656
657         if (unlikely(ret)) {
658                 /*
659                  * We are colliding with the timer actually firing.
660                  * Punt after filling in the timer's old value, and
661                  * disable this firing since we are already reporting
662                  * it as an overrun (thanks to bump_cpu_timer above).
663                  */
664                 unlock_task_sighand(p, &flags);
665                 goto out;
666         }
667
668         if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
669                 new_expires += val;
670         }
671
672         /*
673          * Install the new expiry time (or zero).
674          * For a timer with no notification action, we don't actually
675          * arm the timer (we'll just fake it for timer_gettime).
676          */
677         timer->it.cpu.expires = new_expires;
678         if (new_expires != 0 && val < new_expires) {
679                 arm_timer(timer);
680         }
681
682         unlock_task_sighand(p, &flags);
683         /*
684          * Install the new reload setting, and
685          * set up the signal and overrun bookkeeping.
686          */
687         timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
688         timer->it_interval = ns_to_ktime(timer->it.cpu.incr);
689
690         /*
691          * This acts as a modification timestamp for the timer,
692          * so any automatic reload attempt will punt on seeing
693          * that we have reset the timer manually.
694          */
695         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
696                 ~REQUEUE_PENDING;
697         timer->it_overrun_last = 0;
698         timer->it_overrun = -1;
699
700         if (new_expires != 0 && !(val < new_expires)) {
701                 /*
702                  * The designated time already passed, so we notify
703                  * immediately, even if the thread never runs to
704                  * accumulate more time on this clock.
705                  */
706                 cpu_timer_fire(timer);
707         }
708
709         ret = 0;
710  out:
711         if (old)
712                 old->it_interval = ns_to_timespec64(old_incr);
713
714         return ret;
715 }
716
717 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
718 {
719         u64 now;
720         struct task_struct *p = timer->it.cpu.task;
721
722         WARN_ON_ONCE(p == NULL);
723
724         /*
725          * Easy part: convert the reload time.
726          */
727         itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
728
729         if (!timer->it.cpu.expires)
730                 return;
731
732         /*
733          * Sample the clock to take the difference with the expiry time.
734          */
735         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
736                 cpu_clock_sample(timer->it_clock, p, &now);
737         } else {
738                 struct sighand_struct *sighand;
739                 unsigned long flags;
740
741                 /*
742                  * Protect against sighand release/switch in exit/exec and
743                  * also make timer sampling safe if it ends up calling
744                  * thread_group_cputime().
745                  */
746                 sighand = lock_task_sighand(p, &flags);
747                 if (unlikely(sighand == NULL)) {
748                         /*
749                          * The process has been reaped.
750                          * We can't even collect a sample any more.
751                          * Call the timer disarmed, nothing else to do.
752                          */
753                         timer->it.cpu.expires = 0;
754                         return;
755                 } else {
756                         cpu_timer_sample_group(timer->it_clock, p, &now);
757                         unlock_task_sighand(p, &flags);
758                 }
759         }
760
761         if (now < timer->it.cpu.expires) {
762                 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
763         } else {
764                 /*
765                  * The timer should have expired already, but the firing
766                  * hasn't taken place yet.  Say it's just about to expire.
767                  */
768                 itp->it_value.tv_nsec = 1;
769                 itp->it_value.tv_sec = 0;
770         }
771 }
772
773 static unsigned long long
774 check_timers_list(struct list_head *timers,
775                   struct list_head *firing,
776                   unsigned long long curr)
777 {
778         int maxfire = 20;
779
780         while (!list_empty(timers)) {
781                 struct cpu_timer_list *t;
782
783                 t = list_first_entry(timers, struct cpu_timer_list, entry);
784
785                 if (!--maxfire || curr < t->expires)
786                         return t->expires;
787
788                 t->firing = 1;
789                 list_move_tail(&t->entry, firing);
790         }
791
792         return 0;
793 }
794
795 /*
796  * Check for any per-thread CPU timers that have fired and move them off
797  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
798  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
799  */
800 static void check_thread_timers(struct task_struct *tsk,
801                                 struct list_head *firing)
802 {
803         struct list_head *timers = tsk->cpu_timers;
804         struct task_cputime *tsk_expires = &tsk->cputime_expires;
805         u64 expires;
806         unsigned long soft;
807
808         /*
809          * If cputime_expires is zero, then there are no active
810          * per thread CPU timers.
811          */
812         if (task_cputime_zero(&tsk->cputime_expires))
813                 return;
814
815         expires = check_timers_list(timers, firing, prof_ticks(tsk));
816         tsk_expires->prof_exp = expires;
817
818         expires = check_timers_list(++timers, firing, virt_ticks(tsk));
819         tsk_expires->virt_exp = expires;
820
821         tsk_expires->sched_exp = check_timers_list(++timers, firing,
822                                                    tsk->se.sum_exec_runtime);
823
824         /*
825          * Check for the special case thread timers.
826          */
827         soft = task_rlimit(tsk, RLIMIT_RTTIME);
828         if (soft != RLIM_INFINITY) {
829                 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
830
831                 if (hard != RLIM_INFINITY &&
832                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
833                         /*
834                          * At the hard limit, we just die.
835                          * No need to calculate anything else now.
836                          */
837                         if (print_fatal_signals) {
838                                 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
839                                         tsk->comm, task_pid_nr(tsk));
840                         }
841                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
842                         return;
843                 }
844                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
845                         /*
846                          * At the soft limit, send a SIGXCPU every second.
847                          */
848                         if (soft < hard) {
849                                 soft += USEC_PER_SEC;
850                                 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
851                                         soft;
852                         }
853                         if (print_fatal_signals) {
854                                 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
855                                         tsk->comm, task_pid_nr(tsk));
856                         }
857                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
858                 }
859         }
860         if (task_cputime_zero(tsk_expires))
861                 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
862 }
863
864 static inline void stop_process_timers(struct signal_struct *sig)
865 {
866         struct thread_group_cputimer *cputimer = &sig->cputimer;
867
868         /* Turn off cputimer->running. This is done without locking. */
869         WRITE_ONCE(cputimer->running, false);
870         tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
871 }
872
873 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
874                              u64 *expires, u64 cur_time, int signo)
875 {
876         if (!it->expires)
877                 return;
878
879         if (cur_time >= it->expires) {
880                 if (it->incr)
881                         it->expires += it->incr;
882                 else
883                         it->expires = 0;
884
885                 trace_itimer_expire(signo == SIGPROF ?
886                                     ITIMER_PROF : ITIMER_VIRTUAL,
887                                     tsk->signal->leader_pid, cur_time);
888                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
889         }
890
891         if (it->expires && (!*expires || it->expires < *expires))
892                 *expires = it->expires;
893 }
894
895 /*
896  * Check for any per-thread CPU timers that have fired and move them
897  * off the tsk->*_timers list onto the firing list.  Per-thread timers
898  * have already been taken off.
899  */
900 static void check_process_timers(struct task_struct *tsk,
901                                  struct list_head *firing)
902 {
903         struct signal_struct *const sig = tsk->signal;
904         u64 utime, ptime, virt_expires, prof_expires;
905         u64 sum_sched_runtime, sched_expires;
906         struct list_head *timers = sig->cpu_timers;
907         struct task_cputime cputime;
908         unsigned long soft;
909
910         /*
911          * If cputimer is not running, then there are no active
912          * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
913          */
914         if (!READ_ONCE(tsk->signal->cputimer.running))
915                 return;
916
917         /*
918          * Signify that a thread is checking for process timers.
919          * Write access to this field is protected by the sighand lock.
920          */
921         sig->cputimer.checking_timer = true;
922
923         /*
924          * Collect the current process totals.
925          */
926         thread_group_cputimer(tsk, &cputime);
927         utime = cputime.utime;
928         ptime = utime + cputime.stime;
929         sum_sched_runtime = cputime.sum_exec_runtime;
930
931         prof_expires = check_timers_list(timers, firing, ptime);
932         virt_expires = check_timers_list(++timers, firing, utime);
933         sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
934
935         /*
936          * Check for the special case process timers.
937          */
938         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
939                          SIGPROF);
940         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
941                          SIGVTALRM);
942         soft = task_rlimit(tsk, RLIMIT_CPU);
943         if (soft != RLIM_INFINITY) {
944                 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
945                 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
946                 u64 x;
947                 if (psecs >= hard) {
948                         /*
949                          * At the hard limit, we just die.
950                          * No need to calculate anything else now.
951                          */
952                         if (print_fatal_signals) {
953                                 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
954                                         tsk->comm, task_pid_nr(tsk));
955                         }
956                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
957                         return;
958                 }
959                 if (psecs >= soft) {
960                         /*
961                          * At the soft limit, send a SIGXCPU every second.
962                          */
963                         if (print_fatal_signals) {
964                                 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
965                                         tsk->comm, task_pid_nr(tsk));
966                         }
967                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
968                         if (soft < hard) {
969                                 soft++;
970                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
971                         }
972                 }
973                 x = soft * NSEC_PER_SEC;
974                 if (!prof_expires || x < prof_expires)
975                         prof_expires = x;
976         }
977
978         sig->cputime_expires.prof_exp = prof_expires;
979         sig->cputime_expires.virt_exp = virt_expires;
980         sig->cputime_expires.sched_exp = sched_expires;
981         if (task_cputime_zero(&sig->cputime_expires))
982                 stop_process_timers(sig);
983
984         sig->cputimer.checking_timer = false;
985 }
986
987 /*
988  * This is called from the signal code (via posixtimer_rearm)
989  * when the last timer signal was delivered and we have to reload the timer.
990  */
991 static void posix_cpu_timer_rearm(struct k_itimer *timer)
992 {
993         struct sighand_struct *sighand;
994         unsigned long flags;
995         struct task_struct *p = timer->it.cpu.task;
996         u64 now;
997
998         WARN_ON_ONCE(p == NULL);
999
1000         /*
1001          * Fetch the current sample and update the timer's expiry time.
1002          */
1003         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1004                 cpu_clock_sample(timer->it_clock, p, &now);
1005                 bump_cpu_timer(timer, now);
1006                 if (unlikely(p->exit_state))
1007                         return;
1008
1009                 /* Protect timer list r/w in arm_timer() */
1010                 sighand = lock_task_sighand(p, &flags);
1011                 if (!sighand)
1012                         return;
1013         } else {
1014                 /*
1015                  * Protect arm_timer() and timer sampling in case of call to
1016                  * thread_group_cputime().
1017                  */
1018                 sighand = lock_task_sighand(p, &flags);
1019                 if (unlikely(sighand == NULL)) {
1020                         /*
1021                          * The process has been reaped.
1022                          * We can't even collect a sample any more.
1023                          */
1024                         timer->it.cpu.expires = 0;
1025                         return;
1026                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1027                         /* If the process is dying, no need to rearm */
1028                         goto unlock;
1029                 }
1030                 cpu_timer_sample_group(timer->it_clock, p, &now);
1031                 bump_cpu_timer(timer, now);
1032                 /* Leave the sighand locked for the call below.  */
1033         }
1034
1035         /*
1036          * Now re-arm for the new expiry time.
1037          */
1038         WARN_ON_ONCE(!irqs_disabled());
1039         arm_timer(timer);
1040 unlock:
1041         unlock_task_sighand(p, &flags);
1042 }
1043
1044 /**
1045  * task_cputime_expired - Compare two task_cputime entities.
1046  *
1047  * @sample:     The task_cputime structure to be checked for expiration.
1048  * @expires:    Expiration times, against which @sample will be checked.
1049  *
1050  * Checks @sample against @expires to see if any field of @sample has expired.
1051  * Returns true if any field of the former is greater than the corresponding
1052  * field of the latter if the latter field is set.  Otherwise returns false.
1053  */
1054 static inline int task_cputime_expired(const struct task_cputime *sample,
1055                                         const struct task_cputime *expires)
1056 {
1057         if (expires->utime && sample->utime >= expires->utime)
1058                 return 1;
1059         if (expires->stime && sample->utime + sample->stime >= expires->stime)
1060                 return 1;
1061         if (expires->sum_exec_runtime != 0 &&
1062             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1063                 return 1;
1064         return 0;
1065 }
1066
1067 /**
1068  * fastpath_timer_check - POSIX CPU timers fast path.
1069  *
1070  * @tsk:        The task (thread) being checked.
1071  *
1072  * Check the task and thread group timers.  If both are zero (there are no
1073  * timers set) return false.  Otherwise snapshot the task and thread group
1074  * timers and compare them with the corresponding expiration times.  Return
1075  * true if a timer has expired, else return false.
1076  */
1077 static inline int fastpath_timer_check(struct task_struct *tsk)
1078 {
1079         struct signal_struct *sig;
1080
1081         if (!task_cputime_zero(&tsk->cputime_expires)) {
1082                 struct task_cputime task_sample;
1083
1084                 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1085                 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1086                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1087                         return 1;
1088         }
1089
1090         sig = tsk->signal;
1091         /*
1092          * Check if thread group timers expired when the cputimer is
1093          * running and no other thread in the group is already checking
1094          * for thread group cputimers. These fields are read without the
1095          * sighand lock. However, this is fine because this is meant to
1096          * be a fastpath heuristic to determine whether we should try to
1097          * acquire the sighand lock to check/handle timers.
1098          *
1099          * In the worst case scenario, if 'running' or 'checking_timer' gets
1100          * set but the current thread doesn't see the change yet, we'll wait
1101          * until the next thread in the group gets a scheduler interrupt to
1102          * handle the timer. This isn't an issue in practice because these
1103          * types of delays with signals actually getting sent are expected.
1104          */
1105         if (READ_ONCE(sig->cputimer.running) &&
1106             !READ_ONCE(sig->cputimer.checking_timer)) {
1107                 struct task_cputime group_sample;
1108
1109                 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1110
1111                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1112                         return 1;
1113         }
1114
1115         return 0;
1116 }
1117
1118 /*
1119  * This is called from the timer interrupt handler.  The irq handler has
1120  * already updated our counts.  We need to check if any timers fire now.
1121  * Interrupts are disabled.
1122  */
1123 void run_posix_cpu_timers(struct task_struct *tsk)
1124 {
1125         LIST_HEAD(firing);
1126         struct k_itimer *timer, *next;
1127         unsigned long flags;
1128
1129         WARN_ON_ONCE(!irqs_disabled());
1130
1131         /*
1132          * The fast path checks that there are no expired thread or thread
1133          * group timers.  If that's so, just return.
1134          */
1135         if (!fastpath_timer_check(tsk))
1136                 return;
1137
1138         if (!lock_task_sighand(tsk, &flags))
1139                 return;
1140         /*
1141          * Here we take off tsk->signal->cpu_timers[N] and
1142          * tsk->cpu_timers[N] all the timers that are firing, and
1143          * put them on the firing list.
1144          */
1145         check_thread_timers(tsk, &firing);
1146
1147         check_process_timers(tsk, &firing);
1148
1149         /*
1150          * We must release these locks before taking any timer's lock.
1151          * There is a potential race with timer deletion here, as the
1152          * siglock now protects our private firing list.  We have set
1153          * the firing flag in each timer, so that a deletion attempt
1154          * that gets the timer lock before we do will give it up and
1155          * spin until we've taken care of that timer below.
1156          */
1157         unlock_task_sighand(tsk, &flags);
1158
1159         /*
1160          * Now that all the timers on our list have the firing flag,
1161          * no one will touch their list entries but us.  We'll take
1162          * each timer's lock before clearing its firing flag, so no
1163          * timer call will interfere.
1164          */
1165         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1166                 int cpu_firing;
1167
1168                 spin_lock(&timer->it_lock);
1169                 list_del_init(&timer->it.cpu.entry);
1170                 cpu_firing = timer->it.cpu.firing;
1171                 timer->it.cpu.firing = 0;
1172                 /*
1173                  * The firing flag is -1 if we collided with a reset
1174                  * of the timer, which already reported this
1175                  * almost-firing as an overrun.  So don't generate an event.
1176                  */
1177                 if (likely(cpu_firing >= 0))
1178                         cpu_timer_fire(timer);
1179                 spin_unlock(&timer->it_lock);
1180         }
1181 }
1182
1183 /*
1184  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1185  * The tsk->sighand->siglock must be held by the caller.
1186  */
1187 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1188                            u64 *newval, u64 *oldval)
1189 {
1190         u64 now;
1191
1192         WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1193         cpu_timer_sample_group(clock_idx, tsk, &now);
1194
1195         if (oldval) {
1196                 /*
1197                  * We are setting itimer. The *oldval is absolute and we update
1198                  * it to be relative, *newval argument is relative and we update
1199                  * it to be absolute.
1200                  */
1201                 if (*oldval) {
1202                         if (*oldval <= now) {
1203                                 /* Just about to fire. */
1204                                 *oldval = TICK_NSEC;
1205                         } else {
1206                                 *oldval -= now;
1207                         }
1208                 }
1209
1210                 if (!*newval)
1211                         return;
1212                 *newval += now;
1213         }
1214
1215         /*
1216          * Update expiration cache if we are the earliest timer, or eventually
1217          * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1218          */
1219         switch (clock_idx) {
1220         case CPUCLOCK_PROF:
1221                 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1222                         tsk->signal->cputime_expires.prof_exp = *newval;
1223                 break;
1224         case CPUCLOCK_VIRT:
1225                 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1226                         tsk->signal->cputime_expires.virt_exp = *newval;
1227                 break;
1228         }
1229
1230         tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1231 }
1232
1233 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1234                             const struct timespec64 *rqtp)
1235 {
1236         struct itimerspec64 it;
1237         struct k_itimer timer;
1238         u64 expires;
1239         int error;
1240
1241         /*
1242          * Set up a temporary timer and then wait for it to go off.
1243          */
1244         memset(&timer, 0, sizeof timer);
1245         spin_lock_init(&timer.it_lock);
1246         timer.it_clock = which_clock;
1247         timer.it_overrun = -1;
1248         error = posix_cpu_timer_create(&timer);
1249         timer.it_process = current;
1250         if (!error) {
1251                 static struct itimerspec64 zero_it;
1252                 struct restart_block *restart;
1253
1254                 memset(&it, 0, sizeof(it));
1255                 it.it_value = *rqtp;
1256
1257                 spin_lock_irq(&timer.it_lock);
1258                 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1259                 if (error) {
1260                         spin_unlock_irq(&timer.it_lock);
1261                         return error;
1262                 }
1263
1264                 while (!signal_pending(current)) {
1265                         if (timer.it.cpu.expires == 0) {
1266                                 /*
1267                                  * Our timer fired and was reset, below
1268                                  * deletion can not fail.
1269                                  */
1270                                 posix_cpu_timer_del(&timer);
1271                                 spin_unlock_irq(&timer.it_lock);
1272                                 return 0;
1273                         }
1274
1275                         /*
1276                          * Block until cpu_timer_fire (or a signal) wakes us.
1277                          */
1278                         __set_current_state(TASK_INTERRUPTIBLE);
1279                         spin_unlock_irq(&timer.it_lock);
1280                         schedule();
1281                         spin_lock_irq(&timer.it_lock);
1282                 }
1283
1284                 /*
1285                  * We were interrupted by a signal.
1286                  */
1287                 expires = timer.it.cpu.expires;
1288                 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1289                 if (!error) {
1290                         /*
1291                          * Timer is now unarmed, deletion can not fail.
1292                          */
1293                         posix_cpu_timer_del(&timer);
1294                 }
1295                 spin_unlock_irq(&timer.it_lock);
1296
1297                 while (error == TIMER_RETRY) {
1298                         /*
1299                          * We need to handle case when timer was or is in the
1300                          * middle of firing. In other cases we already freed
1301                          * resources.
1302                          */
1303                         spin_lock_irq(&timer.it_lock);
1304                         error = posix_cpu_timer_del(&timer);
1305                         spin_unlock_irq(&timer.it_lock);
1306                 }
1307
1308                 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1309                         /*
1310                          * It actually did fire already.
1311                          */
1312                         return 0;
1313                 }
1314
1315                 error = -ERESTART_RESTARTBLOCK;
1316                 /*
1317                  * Report back to the user the time still remaining.
1318                  */
1319                 restart = &current->restart_block;
1320                 restart->nanosleep.expires = expires;
1321                 if (restart->nanosleep.type != TT_NONE)
1322                         error = nanosleep_copyout(restart, &it.it_value);
1323         }
1324
1325         return error;
1326 }
1327
1328 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1329
1330 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1331                             const struct timespec64 *rqtp)
1332 {
1333         struct restart_block *restart_block = &current->restart_block;
1334         int error;
1335
1336         /*
1337          * Diagnose required errors first.
1338          */
1339         if (CPUCLOCK_PERTHREAD(which_clock) &&
1340             (CPUCLOCK_PID(which_clock) == 0 ||
1341              CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1342                 return -EINVAL;
1343
1344         error = do_cpu_nanosleep(which_clock, flags, rqtp);
1345
1346         if (error == -ERESTART_RESTARTBLOCK) {
1347
1348                 if (flags & TIMER_ABSTIME)
1349                         return -ERESTARTNOHAND;
1350
1351                 restart_block->nanosleep.clockid = which_clock;
1352                 set_restart_fn(restart_block, posix_cpu_nsleep_restart);
1353         }
1354         return error;
1355 }
1356
1357 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1358 {
1359         clockid_t which_clock = restart_block->nanosleep.clockid;
1360         struct timespec64 t;
1361
1362         t = ns_to_timespec64(restart_block->nanosleep.expires);
1363
1364         return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1365 }
1366
1367 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1368 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1369
1370 static int process_cpu_clock_getres(const clockid_t which_clock,
1371                                     struct timespec64 *tp)
1372 {
1373         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1374 }
1375 static int process_cpu_clock_get(const clockid_t which_clock,
1376                                  struct timespec64 *tp)
1377 {
1378         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1379 }
1380 static int process_cpu_timer_create(struct k_itimer *timer)
1381 {
1382         timer->it_clock = PROCESS_CLOCK;
1383         return posix_cpu_timer_create(timer);
1384 }
1385 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1386                               const struct timespec64 *rqtp)
1387 {
1388         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1389 }
1390 static int thread_cpu_clock_getres(const clockid_t which_clock,
1391                                    struct timespec64 *tp)
1392 {
1393         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1394 }
1395 static int thread_cpu_clock_get(const clockid_t which_clock,
1396                                 struct timespec64 *tp)
1397 {
1398         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1399 }
1400 static int thread_cpu_timer_create(struct k_itimer *timer)
1401 {
1402         timer->it_clock = THREAD_CLOCK;
1403         return posix_cpu_timer_create(timer);
1404 }
1405
1406 const struct k_clock clock_posix_cpu = {
1407         .clock_getres   = posix_cpu_clock_getres,
1408         .clock_set      = posix_cpu_clock_set,
1409         .clock_get      = posix_cpu_clock_get,
1410         .timer_create   = posix_cpu_timer_create,
1411         .nsleep         = posix_cpu_nsleep,
1412         .timer_set      = posix_cpu_timer_set,
1413         .timer_del      = posix_cpu_timer_del,
1414         .timer_get      = posix_cpu_timer_get,
1415         .timer_rearm    = posix_cpu_timer_rearm,
1416 };
1417
1418 const struct k_clock clock_process = {
1419         .clock_getres   = process_cpu_clock_getres,
1420         .clock_get      = process_cpu_clock_get,
1421         .timer_create   = process_cpu_timer_create,
1422         .nsleep         = process_cpu_nsleep,
1423 };
1424
1425 const struct k_clock clock_thread = {
1426         .clock_getres   = thread_cpu_clock_getres,
1427         .clock_get      = thread_cpu_clock_get,
1428         .timer_create   = thread_cpu_timer_create,
1429 };