GNU Linux-libre 5.10.217-gnu1
[releases.git] / kernel / time / alarmtimer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Alarmtimer interface
4  *
5  * This interface provides a timer which is similarto hrtimers,
6  * but triggers a RTC alarm if the box is suspend.
7  *
8  * This interface is influenced by the Android RTC Alarm timer
9  * interface.
10  *
11  * Copyright (C) 2010 IBM Corperation
12  *
13  * Author: John Stultz <john.stultz@linaro.org>
14  */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29 #include <linux/time_namespace.h>
30
31 #include "posix-timers.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35
36 /**
37  * struct alarm_base - Alarm timer bases
38  * @lock:               Lock for syncrhonized access to the base
39  * @timerqueue:         Timerqueue head managing the list of events
40  * @get_ktime:          Function to read the time correlating to the base
41  * @get_timespec:       Function to read the namespace time correlating to the base
42  * @base_clockid:       clockid for the base
43  */
44 static struct alarm_base {
45         spinlock_t              lock;
46         struct timerqueue_head  timerqueue;
47         ktime_t                 (*get_ktime)(void);
48         void                    (*get_timespec)(struct timespec64 *tp);
49         clockid_t               base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 /* rtc timer and device for setting alarm wakeups at suspend */
62 static struct rtc_timer         rtctimer;
63 static struct rtc_device        *rtcdev;
64 static DEFINE_SPINLOCK(rtcdev_lock);
65
66 /**
67  * alarmtimer_get_rtcdev - Return selected rtcdevice
68  *
69  * This function returns the rtc device to use for wakealarms.
70  */
71 struct rtc_device *alarmtimer_get_rtcdev(void)
72 {
73         unsigned long flags;
74         struct rtc_device *ret;
75
76         spin_lock_irqsave(&rtcdev_lock, flags);
77         ret = rtcdev;
78         spin_unlock_irqrestore(&rtcdev_lock, flags);
79
80         return ret;
81 }
82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83
84 static int alarmtimer_rtc_add_device(struct device *dev,
85                                 struct class_interface *class_intf)
86 {
87         unsigned long flags;
88         struct rtc_device *rtc = to_rtc_device(dev);
89         struct platform_device *pdev;
90         int ret = 0;
91
92         if (rtcdev)
93                 return -EBUSY;
94
95         if (!rtc->ops->set_alarm)
96                 return -1;
97         if (!device_may_wakeup(rtc->dev.parent))
98                 return -1;
99
100         pdev = platform_device_register_data(dev, "alarmtimer",
101                                              PLATFORM_DEVID_AUTO, NULL, 0);
102         if (!IS_ERR(pdev))
103                 device_init_wakeup(&pdev->dev, true);
104
105         spin_lock_irqsave(&rtcdev_lock, flags);
106         if (!IS_ERR(pdev) && !rtcdev) {
107                 if (!try_module_get(rtc->owner)) {
108                         ret = -1;
109                         goto unlock;
110                 }
111
112                 rtcdev = rtc;
113                 /* hold a reference so it doesn't go away */
114                 get_device(dev);
115                 pdev = NULL;
116         } else {
117                 ret = -1;
118         }
119 unlock:
120         spin_unlock_irqrestore(&rtcdev_lock, flags);
121
122         platform_device_unregister(pdev);
123
124         return ret;
125 }
126
127 static inline void alarmtimer_rtc_timer_init(void)
128 {
129         rtc_timer_init(&rtctimer, NULL, NULL);
130 }
131
132 static struct class_interface alarmtimer_rtc_interface = {
133         .add_dev = &alarmtimer_rtc_add_device,
134 };
135
136 static int alarmtimer_rtc_interface_setup(void)
137 {
138         alarmtimer_rtc_interface.class = rtc_class;
139         return class_interface_register(&alarmtimer_rtc_interface);
140 }
141 static void alarmtimer_rtc_interface_remove(void)
142 {
143         class_interface_unregister(&alarmtimer_rtc_interface);
144 }
145 #else
146 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
147 static inline void alarmtimer_rtc_interface_remove(void) { }
148 static inline void alarmtimer_rtc_timer_init(void) { }
149 #endif
150
151 /**
152  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153  * @base: pointer to the base where the timer is being run
154  * @alarm: pointer to alarm being enqueued.
155  *
156  * Adds alarm to a alarm_base timerqueue
157  *
158  * Must hold base->lock when calling.
159  */
160 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161 {
162         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163                 timerqueue_del(&base->timerqueue, &alarm->node);
164
165         timerqueue_add(&base->timerqueue, &alarm->node);
166         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167 }
168
169 /**
170  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171  * @base: pointer to the base where the timer is running
172  * @alarm: pointer to alarm being removed
173  *
174  * Removes alarm to a alarm_base timerqueue
175  *
176  * Must hold base->lock when calling.
177  */
178 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179 {
180         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181                 return;
182
183         timerqueue_del(&base->timerqueue, &alarm->node);
184         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185 }
186
187
188 /**
189  * alarmtimer_fired - Handles alarm hrtimer being fired.
190  * @timer: pointer to hrtimer being run
191  *
192  * When a alarm timer fires, this runs through the timerqueue to
193  * see which alarms expired, and runs those. If there are more alarm
194  * timers queued for the future, we set the hrtimer to fire when
195  * the next future alarm timer expires.
196  */
197 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198 {
199         struct alarm *alarm = container_of(timer, struct alarm, timer);
200         struct alarm_base *base = &alarm_bases[alarm->type];
201         unsigned long flags;
202         int ret = HRTIMER_NORESTART;
203         int restart = ALARMTIMER_NORESTART;
204
205         spin_lock_irqsave(&base->lock, flags);
206         alarmtimer_dequeue(base, alarm);
207         spin_unlock_irqrestore(&base->lock, flags);
208
209         if (alarm->function)
210                 restart = alarm->function(alarm, base->get_ktime());
211
212         spin_lock_irqsave(&base->lock, flags);
213         if (restart != ALARMTIMER_NORESTART) {
214                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215                 alarmtimer_enqueue(base, alarm);
216                 ret = HRTIMER_RESTART;
217         }
218         spin_unlock_irqrestore(&base->lock, flags);
219
220         trace_alarmtimer_fired(alarm, base->get_ktime());
221         return ret;
222
223 }
224
225 ktime_t alarm_expires_remaining(const struct alarm *alarm)
226 {
227         struct alarm_base *base = &alarm_bases[alarm->type];
228         return ktime_sub(alarm->node.expires, base->get_ktime());
229 }
230 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232 #ifdef CONFIG_RTC_CLASS
233 /**
234  * alarmtimer_suspend - Suspend time callback
235  * @dev: unused
236  *
237  * When we are going into suspend, we look through the bases
238  * to see which is the soonest timer to expire. We then
239  * set an rtc timer to fire that far into the future, which
240  * will wake us from suspend.
241  */
242 static int alarmtimer_suspend(struct device *dev)
243 {
244         ktime_t min, now, expires;
245         int i, ret, type;
246         struct rtc_device *rtc;
247         unsigned long flags;
248         struct rtc_time tm;
249
250         spin_lock_irqsave(&freezer_delta_lock, flags);
251         min = freezer_delta;
252         expires = freezer_expires;
253         type = freezer_alarmtype;
254         freezer_delta = 0;
255         spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257         rtc = alarmtimer_get_rtcdev();
258         /* If we have no rtcdev, just return */
259         if (!rtc)
260                 return 0;
261
262         /* Find the soonest timer to expire*/
263         for (i = 0; i < ALARM_NUMTYPE; i++) {
264                 struct alarm_base *base = &alarm_bases[i];
265                 struct timerqueue_node *next;
266                 ktime_t delta;
267
268                 spin_lock_irqsave(&base->lock, flags);
269                 next = timerqueue_getnext(&base->timerqueue);
270                 spin_unlock_irqrestore(&base->lock, flags);
271                 if (!next)
272                         continue;
273                 delta = ktime_sub(next->expires, base->get_ktime());
274                 if (!min || (delta < min)) {
275                         expires = next->expires;
276                         min = delta;
277                         type = i;
278                 }
279         }
280         if (min == 0)
281                 return 0;
282
283         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284                 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
285                 return -EBUSY;
286         }
287
288         trace_alarmtimer_suspend(expires, type);
289
290         /* Setup an rtc timer to fire that far in the future */
291         rtc_timer_cancel(rtc, &rtctimer);
292         rtc_read_time(rtc, &tm);
293         now = rtc_tm_to_ktime(tm);
294         now = ktime_add(now, min);
295
296         /* Set alarm, if in the past reject suspend briefly to handle */
297         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298         if (ret < 0)
299                 pm_wakeup_event(dev, MSEC_PER_SEC);
300         return ret;
301 }
302
303 static int alarmtimer_resume(struct device *dev)
304 {
305         struct rtc_device *rtc;
306
307         rtc = alarmtimer_get_rtcdev();
308         if (rtc)
309                 rtc_timer_cancel(rtc, &rtctimer);
310         return 0;
311 }
312
313 #else
314 static int alarmtimer_suspend(struct device *dev)
315 {
316         return 0;
317 }
318
319 static int alarmtimer_resume(struct device *dev)
320 {
321         return 0;
322 }
323 #endif
324
325 static void
326 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327              enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328 {
329         timerqueue_init(&alarm->node);
330         alarm->timer.function = alarmtimer_fired;
331         alarm->function = function;
332         alarm->type = type;
333         alarm->state = ALARMTIMER_STATE_INACTIVE;
334 }
335
336 /**
337  * alarm_init - Initialize an alarm structure
338  * @alarm: ptr to alarm to be initialized
339  * @type: the type of the alarm
340  * @function: callback that is run when the alarm fires
341  */
342 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344 {
345         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346                      HRTIMER_MODE_ABS);
347         __alarm_init(alarm, type, function);
348 }
349 EXPORT_SYMBOL_GPL(alarm_init);
350
351 /**
352  * alarm_start - Sets an absolute alarm to fire
353  * @alarm: ptr to alarm to set
354  * @start: time to run the alarm
355  */
356 void alarm_start(struct alarm *alarm, ktime_t start)
357 {
358         struct alarm_base *base = &alarm_bases[alarm->type];
359         unsigned long flags;
360
361         spin_lock_irqsave(&base->lock, flags);
362         alarm->node.expires = start;
363         alarmtimer_enqueue(base, alarm);
364         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365         spin_unlock_irqrestore(&base->lock, flags);
366
367         trace_alarmtimer_start(alarm, base->get_ktime());
368 }
369 EXPORT_SYMBOL_GPL(alarm_start);
370
371 /**
372  * alarm_start_relative - Sets a relative alarm to fire
373  * @alarm: ptr to alarm to set
374  * @start: time relative to now to run the alarm
375  */
376 void alarm_start_relative(struct alarm *alarm, ktime_t start)
377 {
378         struct alarm_base *base = &alarm_bases[alarm->type];
379
380         start = ktime_add_safe(start, base->get_ktime());
381         alarm_start(alarm, start);
382 }
383 EXPORT_SYMBOL_GPL(alarm_start_relative);
384
385 void alarm_restart(struct alarm *alarm)
386 {
387         struct alarm_base *base = &alarm_bases[alarm->type];
388         unsigned long flags;
389
390         spin_lock_irqsave(&base->lock, flags);
391         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392         hrtimer_restart(&alarm->timer);
393         alarmtimer_enqueue(base, alarm);
394         spin_unlock_irqrestore(&base->lock, flags);
395 }
396 EXPORT_SYMBOL_GPL(alarm_restart);
397
398 /**
399  * alarm_try_to_cancel - Tries to cancel an alarm timer
400  * @alarm: ptr to alarm to be canceled
401  *
402  * Returns 1 if the timer was canceled, 0 if it was not running,
403  * and -1 if the callback was running
404  */
405 int alarm_try_to_cancel(struct alarm *alarm)
406 {
407         struct alarm_base *base = &alarm_bases[alarm->type];
408         unsigned long flags;
409         int ret;
410
411         spin_lock_irqsave(&base->lock, flags);
412         ret = hrtimer_try_to_cancel(&alarm->timer);
413         if (ret >= 0)
414                 alarmtimer_dequeue(base, alarm);
415         spin_unlock_irqrestore(&base->lock, flags);
416
417         trace_alarmtimer_cancel(alarm, base->get_ktime());
418         return ret;
419 }
420 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423 /**
424  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425  * @alarm: ptr to alarm to be canceled
426  *
427  * Returns 1 if the timer was canceled, 0 if it was not active.
428  */
429 int alarm_cancel(struct alarm *alarm)
430 {
431         for (;;) {
432                 int ret = alarm_try_to_cancel(alarm);
433                 if (ret >= 0)
434                         return ret;
435                 hrtimer_cancel_wait_running(&alarm->timer);
436         }
437 }
438 EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
441 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442 {
443         u64 overrun = 1;
444         ktime_t delta;
445
446         delta = ktime_sub(now, alarm->node.expires);
447
448         if (delta < 0)
449                 return 0;
450
451         if (unlikely(delta >= interval)) {
452                 s64 incr = ktime_to_ns(interval);
453
454                 overrun = ktime_divns(delta, incr);
455
456                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
457                                                         incr*overrun);
458
459                 if (alarm->node.expires > now)
460                         return overrun;
461                 /*
462                  * This (and the ktime_add() below) is the
463                  * correction for exact:
464                  */
465                 overrun++;
466         }
467
468         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469         return overrun;
470 }
471 EXPORT_SYMBOL_GPL(alarm_forward);
472
473 static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
474 {
475         struct alarm_base *base = &alarm_bases[alarm->type];
476         ktime_t now = base->get_ktime();
477
478         if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
479                 /*
480                  * Same issue as with posix_timer_fn(). Timers which are
481                  * periodic but the signal is ignored can starve the system
482                  * with a very small interval. The real fix which was
483                  * promised in the context of posix_timer_fn() never
484                  * materialized, but someone should really work on it.
485                  *
486                  * To prevent DOS fake @now to be 1 jiffie out which keeps
487                  * the overrun accounting correct but creates an
488                  * inconsistency vs. timer_gettime(2).
489                  */
490                 ktime_t kj = NSEC_PER_SEC / HZ;
491
492                 if (interval < kj)
493                         now = ktime_add(now, kj);
494         }
495
496         return alarm_forward(alarm, now, interval);
497 }
498
499 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
500 {
501         return __alarm_forward_now(alarm, interval, false);
502 }
503 EXPORT_SYMBOL_GPL(alarm_forward_now);
504
505 #ifdef CONFIG_POSIX_TIMERS
506
507 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
508 {
509         struct alarm_base *base;
510         unsigned long flags;
511         ktime_t delta;
512
513         switch(type) {
514         case ALARM_REALTIME:
515                 base = &alarm_bases[ALARM_REALTIME];
516                 type = ALARM_REALTIME_FREEZER;
517                 break;
518         case ALARM_BOOTTIME:
519                 base = &alarm_bases[ALARM_BOOTTIME];
520                 type = ALARM_BOOTTIME_FREEZER;
521                 break;
522         default:
523                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
524                 return;
525         }
526
527         delta = ktime_sub(absexp, base->get_ktime());
528
529         spin_lock_irqsave(&freezer_delta_lock, flags);
530         if (!freezer_delta || (delta < freezer_delta)) {
531                 freezer_delta = delta;
532                 freezer_expires = absexp;
533                 freezer_alarmtype = type;
534         }
535         spin_unlock_irqrestore(&freezer_delta_lock, flags);
536 }
537
538 /**
539  * clock2alarm - helper that converts from clockid to alarmtypes
540  * @clockid: clockid.
541  */
542 static enum alarmtimer_type clock2alarm(clockid_t clockid)
543 {
544         if (clockid == CLOCK_REALTIME_ALARM)
545                 return ALARM_REALTIME;
546         if (clockid == CLOCK_BOOTTIME_ALARM)
547                 return ALARM_BOOTTIME;
548         return -1;
549 }
550
551 /**
552  * alarm_handle_timer - Callback for posix timers
553  * @alarm: alarm that fired
554  *
555  * Posix timer callback for expired alarm timers.
556  */
557 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
558                                                         ktime_t now)
559 {
560         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
561                                             it.alarm.alarmtimer);
562         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
563         unsigned long flags;
564         int si_private = 0;
565
566         spin_lock_irqsave(&ptr->it_lock, flags);
567
568         ptr->it_active = 0;
569         if (ptr->it_interval)
570                 si_private = ++ptr->it_requeue_pending;
571
572         if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
573                 /*
574                  * Handle ignored signals and rearm the timer. This will go
575                  * away once we handle ignored signals proper. Ensure that
576                  * small intervals cannot starve the system.
577                  */
578                 ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
579                 ++ptr->it_requeue_pending;
580                 ptr->it_active = 1;
581                 result = ALARMTIMER_RESTART;
582         }
583         spin_unlock_irqrestore(&ptr->it_lock, flags);
584
585         return result;
586 }
587
588 /**
589  * alarm_timer_rearm - Posix timer callback for rearming timer
590  * @timr:       Pointer to the posixtimer data struct
591  */
592 static void alarm_timer_rearm(struct k_itimer *timr)
593 {
594         struct alarm *alarm = &timr->it.alarm.alarmtimer;
595
596         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
597         alarm_start(alarm, alarm->node.expires);
598 }
599
600 /**
601  * alarm_timer_forward - Posix timer callback for forwarding timer
602  * @timr:       Pointer to the posixtimer data struct
603  * @now:        Current time to forward the timer against
604  */
605 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
606 {
607         struct alarm *alarm = &timr->it.alarm.alarmtimer;
608
609         return alarm_forward(alarm, timr->it_interval, now);
610 }
611
612 /**
613  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
614  * @timr:       Pointer to the posixtimer data struct
615  * @now:        Current time to calculate against
616  */
617 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
618 {
619         struct alarm *alarm = &timr->it.alarm.alarmtimer;
620
621         return ktime_sub(alarm->node.expires, now);
622 }
623
624 /**
625  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
626  * @timr:       Pointer to the posixtimer data struct
627  */
628 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
629 {
630         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
631 }
632
633 /**
634  * alarm_timer_wait_running - Posix timer callback to wait for a timer
635  * @timr:       Pointer to the posixtimer data struct
636  *
637  * Called from the core code when timer cancel detected that the callback
638  * is running. @timr is unlocked and rcu read lock is held to prevent it
639  * from being freed.
640  */
641 static void alarm_timer_wait_running(struct k_itimer *timr)
642 {
643         hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
644 }
645
646 /**
647  * alarm_timer_arm - Posix timer callback to arm a timer
648  * @timr:       Pointer to the posixtimer data struct
649  * @expires:    The new expiry time
650  * @absolute:   Expiry value is absolute time
651  * @sigev_none: Posix timer does not deliver signals
652  */
653 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
654                             bool absolute, bool sigev_none)
655 {
656         struct alarm *alarm = &timr->it.alarm.alarmtimer;
657         struct alarm_base *base = &alarm_bases[alarm->type];
658
659         if (!absolute)
660                 expires = ktime_add_safe(expires, base->get_ktime());
661         if (sigev_none)
662                 alarm->node.expires = expires;
663         else
664                 alarm_start(&timr->it.alarm.alarmtimer, expires);
665 }
666
667 /**
668  * alarm_clock_getres - posix getres interface
669  * @which_clock: clockid
670  * @tp: timespec to fill
671  *
672  * Returns the granularity of underlying alarm base clock
673  */
674 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
675 {
676         if (!alarmtimer_get_rtcdev())
677                 return -EINVAL;
678
679         tp->tv_sec = 0;
680         tp->tv_nsec = hrtimer_resolution;
681         return 0;
682 }
683
684 /**
685  * alarm_clock_get_timespec - posix clock_get_timespec interface
686  * @which_clock: clockid
687  * @tp: timespec to fill.
688  *
689  * Provides the underlying alarm base time in a tasks time namespace.
690  */
691 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
692 {
693         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
694
695         if (!alarmtimer_get_rtcdev())
696                 return -EINVAL;
697
698         base->get_timespec(tp);
699
700         return 0;
701 }
702
703 /**
704  * alarm_clock_get_ktime - posix clock_get_ktime interface
705  * @which_clock: clockid
706  *
707  * Provides the underlying alarm base time in the root namespace.
708  */
709 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
710 {
711         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
712
713         if (!alarmtimer_get_rtcdev())
714                 return -EINVAL;
715
716         return base->get_ktime();
717 }
718
719 /**
720  * alarm_timer_create - posix timer_create interface
721  * @new_timer: k_itimer pointer to manage
722  *
723  * Initializes the k_itimer structure.
724  */
725 static int alarm_timer_create(struct k_itimer *new_timer)
726 {
727         enum  alarmtimer_type type;
728
729         if (!alarmtimer_get_rtcdev())
730                 return -EOPNOTSUPP;
731
732         if (!capable(CAP_WAKE_ALARM))
733                 return -EPERM;
734
735         type = clock2alarm(new_timer->it_clock);
736         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
737         return 0;
738 }
739
740 /**
741  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
742  * @alarm: ptr to alarm that fired
743  *
744  * Wakes up the task that set the alarmtimer
745  */
746 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
747                                                                 ktime_t now)
748 {
749         struct task_struct *task = (struct task_struct *)alarm->data;
750
751         alarm->data = NULL;
752         if (task)
753                 wake_up_process(task);
754         return ALARMTIMER_NORESTART;
755 }
756
757 /**
758  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
759  * @alarm: ptr to alarmtimer
760  * @absexp: absolute expiration time
761  *
762  * Sets the alarm timer and sleeps until it is fired or interrupted.
763  */
764 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
765                                 enum alarmtimer_type type)
766 {
767         struct restart_block *restart;
768         alarm->data = (void *)current;
769         do {
770                 set_current_state(TASK_INTERRUPTIBLE);
771                 alarm_start(alarm, absexp);
772                 if (likely(alarm->data))
773                         schedule();
774
775                 alarm_cancel(alarm);
776         } while (alarm->data && !signal_pending(current));
777
778         __set_current_state(TASK_RUNNING);
779
780         destroy_hrtimer_on_stack(&alarm->timer);
781
782         if (!alarm->data)
783                 return 0;
784
785         if (freezing(current))
786                 alarmtimer_freezerset(absexp, type);
787         restart = &current->restart_block;
788         if (restart->nanosleep.type != TT_NONE) {
789                 struct timespec64 rmt;
790                 ktime_t rem;
791
792                 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
793
794                 if (rem <= 0)
795                         return 0;
796                 rmt = ktime_to_timespec64(rem);
797
798                 return nanosleep_copyout(restart, &rmt);
799         }
800         return -ERESTART_RESTARTBLOCK;
801 }
802
803 static void
804 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
805                     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
806 {
807         hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
808                               HRTIMER_MODE_ABS);
809         __alarm_init(alarm, type, function);
810 }
811
812 /**
813  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
814  * @restart: ptr to restart block
815  *
816  * Handles restarted clock_nanosleep calls
817  */
818 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
819 {
820         enum  alarmtimer_type type = restart->nanosleep.clockid;
821         ktime_t exp = restart->nanosleep.expires;
822         struct alarm alarm;
823
824         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
825
826         return alarmtimer_do_nsleep(&alarm, exp, type);
827 }
828
829 /**
830  * alarm_timer_nsleep - alarmtimer nanosleep
831  * @which_clock: clockid
832  * @flags: determins abstime or relative
833  * @tsreq: requested sleep time (abs or rel)
834  * @rmtp: remaining sleep time saved
835  *
836  * Handles clock_nanosleep calls against _ALARM clockids
837  */
838 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
839                               const struct timespec64 *tsreq)
840 {
841         enum  alarmtimer_type type = clock2alarm(which_clock);
842         struct restart_block *restart = &current->restart_block;
843         struct alarm alarm;
844         ktime_t exp;
845         int ret = 0;
846
847         if (!alarmtimer_get_rtcdev())
848                 return -EOPNOTSUPP;
849
850         if (flags & ~TIMER_ABSTIME)
851                 return -EINVAL;
852
853         if (!capable(CAP_WAKE_ALARM))
854                 return -EPERM;
855
856         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
857
858         exp = timespec64_to_ktime(*tsreq);
859         /* Convert (if necessary) to absolute time */
860         if (flags != TIMER_ABSTIME) {
861                 ktime_t now = alarm_bases[type].get_ktime();
862
863                 exp = ktime_add_safe(now, exp);
864         } else {
865                 exp = timens_ktime_to_host(which_clock, exp);
866         }
867
868         ret = alarmtimer_do_nsleep(&alarm, exp, type);
869         if (ret != -ERESTART_RESTARTBLOCK)
870                 return ret;
871
872         /* abs timers don't set remaining time or restart */
873         if (flags == TIMER_ABSTIME)
874                 return -ERESTARTNOHAND;
875
876         restart->nanosleep.clockid = type;
877         restart->nanosleep.expires = exp;
878         set_restart_fn(restart, alarm_timer_nsleep_restart);
879         return ret;
880 }
881
882 const struct k_clock alarm_clock = {
883         .clock_getres           = alarm_clock_getres,
884         .clock_get_ktime        = alarm_clock_get_ktime,
885         .clock_get_timespec     = alarm_clock_get_timespec,
886         .timer_create           = alarm_timer_create,
887         .timer_set              = common_timer_set,
888         .timer_del              = common_timer_del,
889         .timer_get              = common_timer_get,
890         .timer_arm              = alarm_timer_arm,
891         .timer_rearm            = alarm_timer_rearm,
892         .timer_forward          = alarm_timer_forward,
893         .timer_remaining        = alarm_timer_remaining,
894         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
895         .timer_wait_running     = alarm_timer_wait_running,
896         .nsleep                 = alarm_timer_nsleep,
897 };
898 #endif /* CONFIG_POSIX_TIMERS */
899
900
901 /* Suspend hook structures */
902 static const struct dev_pm_ops alarmtimer_pm_ops = {
903         .suspend = alarmtimer_suspend,
904         .resume = alarmtimer_resume,
905 };
906
907 static struct platform_driver alarmtimer_driver = {
908         .driver = {
909                 .name = "alarmtimer",
910                 .pm = &alarmtimer_pm_ops,
911         }
912 };
913
914 static void get_boottime_timespec(struct timespec64 *tp)
915 {
916         ktime_get_boottime_ts64(tp);
917         timens_add_boottime(tp);
918 }
919
920 /**
921  * alarmtimer_init - Initialize alarm timer code
922  *
923  * This function initializes the alarm bases and registers
924  * the posix clock ids.
925  */
926 static int __init alarmtimer_init(void)
927 {
928         int error;
929         int i;
930
931         alarmtimer_rtc_timer_init();
932
933         /* Initialize alarm bases */
934         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
935         alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
936         alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
937         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
938         alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
939         alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
940         for (i = 0; i < ALARM_NUMTYPE; i++) {
941                 timerqueue_init_head(&alarm_bases[i].timerqueue);
942                 spin_lock_init(&alarm_bases[i].lock);
943         }
944
945         error = alarmtimer_rtc_interface_setup();
946         if (error)
947                 return error;
948
949         error = platform_driver_register(&alarmtimer_driver);
950         if (error)
951                 goto out_if;
952
953         return 0;
954 out_if:
955         alarmtimer_rtc_interface_remove();
956         return error;
957 }
958 device_initcall(alarmtimer_init);