GNU Linux-libre 4.14.265-gnu1
[releases.git] / kernel / smpboot.c
1 /*
2  * Common SMP CPU bringup/teardown functions
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/task.h>
13 #include <linux/export.h>
14 #include <linux/percpu.h>
15 #include <linux/kthread.h>
16 #include <linux/smpboot.h>
17
18 #include "smpboot.h"
19
20 #ifdef CONFIG_SMP
21
22 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
23 /*
24  * For the hotplug case we keep the task structs around and reuse
25  * them.
26  */
27 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
28
29 struct task_struct *idle_thread_get(unsigned int cpu)
30 {
31         struct task_struct *tsk = per_cpu(idle_threads, cpu);
32
33         if (!tsk)
34                 return ERR_PTR(-ENOMEM);
35         init_idle(tsk, cpu);
36         return tsk;
37 }
38
39 void __init idle_thread_set_boot_cpu(void)
40 {
41         per_cpu(idle_threads, smp_processor_id()) = current;
42 }
43
44 /**
45  * idle_init - Initialize the idle thread for a cpu
46  * @cpu:        The cpu for which the idle thread should be initialized
47  *
48  * Creates the thread if it does not exist.
49  */
50 static inline void idle_init(unsigned int cpu)
51 {
52         struct task_struct *tsk = per_cpu(idle_threads, cpu);
53
54         if (!tsk) {
55                 tsk = fork_idle(cpu);
56                 if (IS_ERR(tsk))
57                         pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
58                 else
59                         per_cpu(idle_threads, cpu) = tsk;
60         }
61 }
62
63 /**
64  * idle_threads_init - Initialize idle threads for all cpus
65  */
66 void __init idle_threads_init(void)
67 {
68         unsigned int cpu, boot_cpu;
69
70         boot_cpu = smp_processor_id();
71
72         for_each_possible_cpu(cpu) {
73                 if (cpu != boot_cpu)
74                         idle_init(cpu);
75         }
76 }
77 #endif
78
79 #endif /* #ifdef CONFIG_SMP */
80
81 static LIST_HEAD(hotplug_threads);
82 static DEFINE_MUTEX(smpboot_threads_lock);
83
84 struct smpboot_thread_data {
85         unsigned int                    cpu;
86         unsigned int                    status;
87         struct smp_hotplug_thread       *ht;
88 };
89
90 enum {
91         HP_THREAD_NONE = 0,
92         HP_THREAD_ACTIVE,
93         HP_THREAD_PARKED,
94 };
95
96 /**
97  * smpboot_thread_fn - percpu hotplug thread loop function
98  * @data:       thread data pointer
99  *
100  * Checks for thread stop and park conditions. Calls the necessary
101  * setup, cleanup, park and unpark functions for the registered
102  * thread.
103  *
104  * Returns 1 when the thread should exit, 0 otherwise.
105  */
106 static int smpboot_thread_fn(void *data)
107 {
108         struct smpboot_thread_data *td = data;
109         struct smp_hotplug_thread *ht = td->ht;
110
111         while (1) {
112                 set_current_state(TASK_INTERRUPTIBLE);
113                 preempt_disable();
114                 if (kthread_should_stop()) {
115                         __set_current_state(TASK_RUNNING);
116                         preempt_enable();
117                         /* cleanup must mirror setup */
118                         if (ht->cleanup && td->status != HP_THREAD_NONE)
119                                 ht->cleanup(td->cpu, cpu_online(td->cpu));
120                         kfree(td);
121                         return 0;
122                 }
123
124                 if (kthread_should_park()) {
125                         __set_current_state(TASK_RUNNING);
126                         preempt_enable();
127                         if (ht->park && td->status == HP_THREAD_ACTIVE) {
128                                 BUG_ON(td->cpu != smp_processor_id());
129                                 ht->park(td->cpu);
130                                 td->status = HP_THREAD_PARKED;
131                         }
132                         kthread_parkme();
133                         /* We might have been woken for stop */
134                         continue;
135                 }
136
137                 BUG_ON(td->cpu != smp_processor_id());
138
139                 /* Check for state change setup */
140                 switch (td->status) {
141                 case HP_THREAD_NONE:
142                         __set_current_state(TASK_RUNNING);
143                         preempt_enable();
144                         if (ht->setup)
145                                 ht->setup(td->cpu);
146                         td->status = HP_THREAD_ACTIVE;
147                         continue;
148
149                 case HP_THREAD_PARKED:
150                         __set_current_state(TASK_RUNNING);
151                         preempt_enable();
152                         if (ht->unpark)
153                                 ht->unpark(td->cpu);
154                         td->status = HP_THREAD_ACTIVE;
155                         continue;
156                 }
157
158                 if (!ht->thread_should_run(td->cpu)) {
159                         preempt_enable_no_resched();
160                         schedule();
161                 } else {
162                         __set_current_state(TASK_RUNNING);
163                         preempt_enable();
164                         ht->thread_fn(td->cpu);
165                 }
166         }
167 }
168
169 static int
170 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
171 {
172         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
173         struct smpboot_thread_data *td;
174
175         if (tsk)
176                 return 0;
177
178         td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
179         if (!td)
180                 return -ENOMEM;
181         td->cpu = cpu;
182         td->ht = ht;
183
184         tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
185                                     ht->thread_comm);
186         if (IS_ERR(tsk)) {
187                 kfree(td);
188                 return PTR_ERR(tsk);
189         }
190         kthread_set_per_cpu(tsk, cpu);
191         /*
192          * Park the thread so that it could start right on the CPU
193          * when it is available.
194          */
195         kthread_park(tsk);
196         get_task_struct(tsk);
197         *per_cpu_ptr(ht->store, cpu) = tsk;
198         if (ht->create) {
199                 /*
200                  * Make sure that the task has actually scheduled out
201                  * into park position, before calling the create
202                  * callback. At least the migration thread callback
203                  * requires that the task is off the runqueue.
204                  */
205                 if (!wait_task_inactive(tsk, TASK_PARKED))
206                         WARN_ON(1);
207                 else
208                         ht->create(cpu);
209         }
210         return 0;
211 }
212
213 int smpboot_create_threads(unsigned int cpu)
214 {
215         struct smp_hotplug_thread *cur;
216         int ret = 0;
217
218         mutex_lock(&smpboot_threads_lock);
219         list_for_each_entry(cur, &hotplug_threads, list) {
220                 ret = __smpboot_create_thread(cur, cpu);
221                 if (ret)
222                         break;
223         }
224         mutex_unlock(&smpboot_threads_lock);
225         return ret;
226 }
227
228 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
229 {
230         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
231
232         if (!ht->selfparking)
233                 kthread_unpark(tsk);
234 }
235
236 int smpboot_unpark_threads(unsigned int cpu)
237 {
238         struct smp_hotplug_thread *cur;
239
240         mutex_lock(&smpboot_threads_lock);
241         list_for_each_entry(cur, &hotplug_threads, list)
242                 if (cpumask_test_cpu(cpu, cur->cpumask))
243                         smpboot_unpark_thread(cur, cpu);
244         mutex_unlock(&smpboot_threads_lock);
245         return 0;
246 }
247
248 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
249 {
250         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
251
252         if (tsk && !ht->selfparking)
253                 kthread_park(tsk);
254 }
255
256 int smpboot_park_threads(unsigned int cpu)
257 {
258         struct smp_hotplug_thread *cur;
259
260         mutex_lock(&smpboot_threads_lock);
261         list_for_each_entry_reverse(cur, &hotplug_threads, list)
262                 smpboot_park_thread(cur, cpu);
263         mutex_unlock(&smpboot_threads_lock);
264         return 0;
265 }
266
267 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
268 {
269         unsigned int cpu;
270
271         /* We need to destroy also the parked threads of offline cpus */
272         for_each_possible_cpu(cpu) {
273                 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
274
275                 if (tsk) {
276                         kthread_stop(tsk);
277                         put_task_struct(tsk);
278                         *per_cpu_ptr(ht->store, cpu) = NULL;
279                 }
280         }
281 }
282
283 /**
284  * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
285  *                                          to hotplug
286  * @plug_thread:        Hotplug thread descriptor
287  * @cpumask:            The cpumask where threads run
288  *
289  * Creates and starts the threads on all online cpus.
290  */
291 int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
292                                            const struct cpumask *cpumask)
293 {
294         unsigned int cpu;
295         int ret = 0;
296
297         if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
298                 return -ENOMEM;
299         cpumask_copy(plug_thread->cpumask, cpumask);
300
301         get_online_cpus();
302         mutex_lock(&smpboot_threads_lock);
303         for_each_online_cpu(cpu) {
304                 ret = __smpboot_create_thread(plug_thread, cpu);
305                 if (ret) {
306                         smpboot_destroy_threads(plug_thread);
307                         free_cpumask_var(plug_thread->cpumask);
308                         goto out;
309                 }
310                 if (cpumask_test_cpu(cpu, cpumask))
311                         smpboot_unpark_thread(plug_thread, cpu);
312         }
313         list_add(&plug_thread->list, &hotplug_threads);
314 out:
315         mutex_unlock(&smpboot_threads_lock);
316         put_online_cpus();
317         return ret;
318 }
319 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
320
321 /**
322  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
323  * @plug_thread:        Hotplug thread descriptor
324  *
325  * Stops all threads on all possible cpus.
326  */
327 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
328 {
329         get_online_cpus();
330         mutex_lock(&smpboot_threads_lock);
331         list_del(&plug_thread->list);
332         smpboot_destroy_threads(plug_thread);
333         mutex_unlock(&smpboot_threads_lock);
334         put_online_cpus();
335         free_cpumask_var(plug_thread->cpumask);
336 }
337 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
338
339 /**
340  * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
341  * @plug_thread:        Hotplug thread descriptor
342  * @new:                Revised mask to use
343  *
344  * The cpumask field in the smp_hotplug_thread must not be updated directly
345  * by the client, but only by calling this function.
346  * This function can only be called on a registered smp_hotplug_thread.
347  */
348 void smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
349                                           const struct cpumask *new)
350 {
351         struct cpumask *old = plug_thread->cpumask;
352         static struct cpumask tmp;
353         unsigned int cpu;
354
355         lockdep_assert_cpus_held();
356         mutex_lock(&smpboot_threads_lock);
357
358         /* Park threads that were exclusively enabled on the old mask. */
359         cpumask_andnot(&tmp, old, new);
360         for_each_cpu_and(cpu, &tmp, cpu_online_mask)
361                 smpboot_park_thread(plug_thread, cpu);
362
363         /* Unpark threads that are exclusively enabled on the new mask. */
364         cpumask_andnot(&tmp, new, old);
365         for_each_cpu_and(cpu, &tmp, cpu_online_mask)
366                 smpboot_unpark_thread(plug_thread, cpu);
367
368         cpumask_copy(old, new);
369
370         mutex_unlock(&smpboot_threads_lock);
371 }
372
373 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
374
375 /*
376  * Called to poll specified CPU's state, for example, when waiting for
377  * a CPU to come online.
378  */
379 int cpu_report_state(int cpu)
380 {
381         return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
382 }
383
384 /*
385  * If CPU has died properly, set its state to CPU_UP_PREPARE and
386  * return success.  Otherwise, return -EBUSY if the CPU died after
387  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
388  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
389  * to dying.  In the latter two cases, the CPU might not be set up
390  * properly, but it is up to the arch-specific code to decide.
391  * Finally, -EIO indicates an unanticipated problem.
392  *
393  * Note that it is permissible to omit this call entirely, as is
394  * done in architectures that do no CPU-hotplug error checking.
395  */
396 int cpu_check_up_prepare(int cpu)
397 {
398         if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
399                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
400                 return 0;
401         }
402
403         switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
404
405         case CPU_POST_DEAD:
406
407                 /* The CPU died properly, so just start it up again. */
408                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
409                 return 0;
410
411         case CPU_DEAD_FROZEN:
412
413                 /*
414                  * Timeout during CPU death, so let caller know.
415                  * The outgoing CPU completed its processing, but after
416                  * cpu_wait_death() timed out and reported the error. The
417                  * caller is free to proceed, in which case the state
418                  * will be reset properly by cpu_set_state_online().
419                  * Proceeding despite this -EBUSY return makes sense
420                  * for systems where the outgoing CPUs take themselves
421                  * offline, with no post-death manipulation required from
422                  * a surviving CPU.
423                  */
424                 return -EBUSY;
425
426         case CPU_BROKEN:
427
428                 /*
429                  * The most likely reason we got here is that there was
430                  * a timeout during CPU death, and the outgoing CPU never
431                  * did complete its processing.  This could happen on
432                  * a virtualized system if the outgoing VCPU gets preempted
433                  * for more than five seconds, and the user attempts to
434                  * immediately online that same CPU.  Trying again later
435                  * might return -EBUSY above, hence -EAGAIN.
436                  */
437                 return -EAGAIN;
438
439         default:
440
441                 /* Should not happen.  Famous last words. */
442                 return -EIO;
443         }
444 }
445
446 /*
447  * Mark the specified CPU online.
448  *
449  * Note that it is permissible to omit this call entirely, as is
450  * done in architectures that do no CPU-hotplug error checking.
451  */
452 void cpu_set_state_online(int cpu)
453 {
454         (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
455 }
456
457 #ifdef CONFIG_HOTPLUG_CPU
458
459 /*
460  * Wait for the specified CPU to exit the idle loop and die.
461  */
462 bool cpu_wait_death(unsigned int cpu, int seconds)
463 {
464         int jf_left = seconds * HZ;
465         int oldstate;
466         bool ret = true;
467         int sleep_jf = 1;
468
469         might_sleep();
470
471         /* The outgoing CPU will normally get done quite quickly. */
472         if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
473                 goto update_state;
474         udelay(5);
475
476         /* But if the outgoing CPU dawdles, wait increasingly long times. */
477         while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
478                 schedule_timeout_uninterruptible(sleep_jf);
479                 jf_left -= sleep_jf;
480                 if (jf_left <= 0)
481                         break;
482                 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
483         }
484 update_state:
485         oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
486         if (oldstate == CPU_DEAD) {
487                 /* Outgoing CPU died normally, update state. */
488                 smp_mb(); /* atomic_read() before update. */
489                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
490         } else {
491                 /* Outgoing CPU still hasn't died, set state accordingly. */
492                 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
493                                    oldstate, CPU_BROKEN) != oldstate)
494                         goto update_state;
495                 ret = false;
496         }
497         return ret;
498 }
499
500 /*
501  * Called by the outgoing CPU to report its successful death.  Return
502  * false if this report follows the surviving CPU's timing out.
503  *
504  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
505  * timed out.  This approach allows architectures to omit calls to
506  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
507  * the next cpu_wait_death()'s polling loop.
508  */
509 bool cpu_report_death(void)
510 {
511         int oldstate;
512         int newstate;
513         int cpu = smp_processor_id();
514
515         do {
516                 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
517                 if (oldstate != CPU_BROKEN)
518                         newstate = CPU_DEAD;
519                 else
520                         newstate = CPU_DEAD_FROZEN;
521         } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
522                                 oldstate, newstate) != oldstate);
523         return newstate == CPU_DEAD;
524 }
525
526 #endif /* #ifdef CONFIG_HOTPLUG_CPU */