1 // SPDX-License-Identifier: GPL-2.0
3 * Scheduler topology setup/handling methods
6 #include <linux/bsearch.h>
8 DEFINE_MUTEX(sched_domains_mutex);
10 /* Protected by sched_domains_mutex: */
11 static cpumask_var_t sched_domains_tmpmask;
12 static cpumask_var_t sched_domains_tmpmask2;
14 #ifdef CONFIG_SCHED_DEBUG
16 static int __init sched_debug_setup(char *str)
18 sched_debug_verbose = true;
22 early_param("sched_verbose", sched_debug_setup);
24 static inline bool sched_debug(void)
26 return sched_debug_verbose;
29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
30 const struct sd_flag_debug sd_flag_debug[] = {
31 #include <linux/sched/sd_flags.h>
35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
36 struct cpumask *groupmask)
38 struct sched_group *group = sd->groups;
39 unsigned long flags = sd->flags;
42 cpumask_clear(groupmask);
44 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
45 printk(KERN_CONT "span=%*pbl level=%s\n",
46 cpumask_pr_args(sched_domain_span(sd)), sd->name);
48 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
49 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
51 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
52 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
55 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
56 unsigned int flag = BIT(idx);
57 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
59 if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
60 !(sd->child->flags & flag))
61 printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
62 sd_flag_debug[idx].name);
64 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
65 !(sd->parent->flags & flag))
66 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
67 sd_flag_debug[idx].name);
70 printk(KERN_DEBUG "%*s groups:", level + 1, "");
74 printk(KERN_ERR "ERROR: group is NULL\n");
78 if (cpumask_empty(sched_group_span(group))) {
79 printk(KERN_CONT "\n");
80 printk(KERN_ERR "ERROR: empty group\n");
84 if (!(sd->flags & SD_OVERLAP) &&
85 cpumask_intersects(groupmask, sched_group_span(group))) {
86 printk(KERN_CONT "\n");
87 printk(KERN_ERR "ERROR: repeated CPUs\n");
91 cpumask_or(groupmask, groupmask, sched_group_span(group));
93 printk(KERN_CONT " %d:{ span=%*pbl",
95 cpumask_pr_args(sched_group_span(group)));
97 if ((sd->flags & SD_OVERLAP) &&
98 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
99 printk(KERN_CONT " mask=%*pbl",
100 cpumask_pr_args(group_balance_mask(group)));
103 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
104 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
106 if (group == sd->groups && sd->child &&
107 !cpumask_equal(sched_domain_span(sd->child),
108 sched_group_span(group))) {
109 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
112 printk(KERN_CONT " }");
116 if (group != sd->groups)
117 printk(KERN_CONT ",");
119 } while (group != sd->groups);
120 printk(KERN_CONT "\n");
122 if (!cpumask_equal(sched_domain_span(sd), groupmask))
123 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
126 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
127 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
131 static void sched_domain_debug(struct sched_domain *sd, int cpu)
135 if (!sched_debug_verbose)
139 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
143 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
146 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
154 #else /* !CONFIG_SCHED_DEBUG */
156 # define sched_debug_verbose 0
157 # define sched_domain_debug(sd, cpu) do { } while (0)
158 static inline bool sched_debug(void)
162 #endif /* CONFIG_SCHED_DEBUG */
164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
166 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
167 #include <linux/sched/sd_flags.h>
171 static int sd_degenerate(struct sched_domain *sd)
173 if (cpumask_weight(sched_domain_span(sd)) == 1)
176 /* Following flags need at least 2 groups */
177 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
178 (sd->groups != sd->groups->next))
181 /* Following flags don't use groups */
182 if (sd->flags & (SD_WAKE_AFFINE))
189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
191 unsigned long cflags = sd->flags, pflags = parent->flags;
193 if (sd_degenerate(parent))
196 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
199 /* Flags needing groups don't count if only 1 group in parent */
200 if (parent->groups == parent->groups->next)
201 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
203 if (~cflags & pflags)
209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
210 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
211 static unsigned int sysctl_sched_energy_aware = 1;
212 static DEFINE_MUTEX(sched_energy_mutex);
213 static bool sched_energy_update;
215 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
217 bool any_asym_capacity = false;
218 struct cpufreq_policy *policy;
219 struct cpufreq_governor *gov;
222 /* EAS is enabled for asymmetric CPU capacity topologies. */
223 for_each_cpu(i, cpu_mask) {
224 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
225 any_asym_capacity = true;
229 if (!any_asym_capacity) {
231 pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
232 cpumask_pr_args(cpu_mask));
237 /* EAS definitely does *not* handle SMT */
238 if (sched_smt_active()) {
240 pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
241 cpumask_pr_args(cpu_mask));
246 if (!arch_scale_freq_invariant()) {
248 pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
249 cpumask_pr_args(cpu_mask));
254 /* Do not attempt EAS if schedutil is not being used. */
255 for_each_cpu(i, cpu_mask) {
256 policy = cpufreq_cpu_get(i);
259 pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
260 cpumask_pr_args(cpu_mask), i);
264 gov = policy->governor;
265 cpufreq_cpu_put(policy);
266 if (gov != &schedutil_gov) {
268 pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
269 cpumask_pr_args(cpu_mask));
278 void rebuild_sched_domains_energy(void)
280 mutex_lock(&sched_energy_mutex);
281 sched_energy_update = true;
282 rebuild_sched_domains();
283 sched_energy_update = false;
284 mutex_unlock(&sched_energy_mutex);
287 #ifdef CONFIG_PROC_SYSCTL
288 static int sched_energy_aware_handler(struct ctl_table *table, int write,
289 void *buffer, size_t *lenp, loff_t *ppos)
293 if (write && !capable(CAP_SYS_ADMIN))
296 if (!sched_is_eas_possible(cpu_active_mask)) {
305 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
307 state = static_branch_unlikely(&sched_energy_present);
308 if (state != sysctl_sched_energy_aware)
309 rebuild_sched_domains_energy();
315 static struct ctl_table sched_energy_aware_sysctls[] = {
317 .procname = "sched_energy_aware",
318 .data = &sysctl_sched_energy_aware,
319 .maxlen = sizeof(unsigned int),
321 .proc_handler = sched_energy_aware_handler,
322 .extra1 = SYSCTL_ZERO,
323 .extra2 = SYSCTL_ONE,
328 static int __init sched_energy_aware_sysctl_init(void)
330 register_sysctl_init("kernel", sched_energy_aware_sysctls);
334 late_initcall(sched_energy_aware_sysctl_init);
337 static void free_pd(struct perf_domain *pd)
339 struct perf_domain *tmp;
348 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
351 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
359 static struct perf_domain *pd_init(int cpu)
361 struct em_perf_domain *obj = em_cpu_get(cpu);
362 struct perf_domain *pd;
366 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
370 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
378 static void perf_domain_debug(const struct cpumask *cpu_map,
379 struct perf_domain *pd)
381 if (!sched_debug() || !pd)
384 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
387 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
388 cpumask_first(perf_domain_span(pd)),
389 cpumask_pr_args(perf_domain_span(pd)),
390 em_pd_nr_perf_states(pd->em_pd));
394 printk(KERN_CONT "\n");
397 static void destroy_perf_domain_rcu(struct rcu_head *rp)
399 struct perf_domain *pd;
401 pd = container_of(rp, struct perf_domain, rcu);
405 static void sched_energy_set(bool has_eas)
407 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
409 pr_info("%s: stopping EAS\n", __func__);
410 static_branch_disable_cpuslocked(&sched_energy_present);
411 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
413 pr_info("%s: starting EAS\n", __func__);
414 static_branch_enable_cpuslocked(&sched_energy_present);
419 * EAS can be used on a root domain if it meets all the following conditions:
420 * 1. an Energy Model (EM) is available;
421 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
422 * 3. no SMT is detected.
423 * 4. schedutil is driving the frequency of all CPUs of the rd;
424 * 5. frequency invariance support is present;
426 static bool build_perf_domains(const struct cpumask *cpu_map)
429 struct perf_domain *pd = NULL, *tmp;
430 int cpu = cpumask_first(cpu_map);
431 struct root_domain *rd = cpu_rq(cpu)->rd;
433 if (!sysctl_sched_energy_aware)
436 if (!sched_is_eas_possible(cpu_map))
439 for_each_cpu(i, cpu_map) {
440 /* Skip already covered CPUs. */
444 /* Create the new pd and add it to the local list. */
452 perf_domain_debug(cpu_map, pd);
454 /* Attach the new list of performance domains to the root domain. */
456 rcu_assign_pointer(rd->pd, pd);
458 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
465 rcu_assign_pointer(rd->pd, NULL);
467 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
472 static void free_pd(struct perf_domain *pd) { }
473 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
475 static void free_rootdomain(struct rcu_head *rcu)
477 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
479 cpupri_cleanup(&rd->cpupri);
480 cpudl_cleanup(&rd->cpudl);
481 free_cpumask_var(rd->dlo_mask);
482 free_cpumask_var(rd->rto_mask);
483 free_cpumask_var(rd->online);
484 free_cpumask_var(rd->span);
489 void rq_attach_root(struct rq *rq, struct root_domain *rd)
491 struct root_domain *old_rd = NULL;
494 rq_lock_irqsave(rq, &rf);
499 if (cpumask_test_cpu(rq->cpu, old_rd->online))
502 cpumask_clear_cpu(rq->cpu, old_rd->span);
505 * If we dont want to free the old_rd yet then
506 * set old_rd to NULL to skip the freeing later
509 if (!atomic_dec_and_test(&old_rd->refcount))
513 atomic_inc(&rd->refcount);
516 cpumask_set_cpu(rq->cpu, rd->span);
517 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
520 rq_unlock_irqrestore(rq, &rf);
523 call_rcu(&old_rd->rcu, free_rootdomain);
526 void sched_get_rd(struct root_domain *rd)
528 atomic_inc(&rd->refcount);
531 void sched_put_rd(struct root_domain *rd)
533 if (!atomic_dec_and_test(&rd->refcount))
536 call_rcu(&rd->rcu, free_rootdomain);
539 static int init_rootdomain(struct root_domain *rd)
541 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
543 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
545 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
547 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
550 #ifdef HAVE_RT_PUSH_IPI
552 raw_spin_lock_init(&rd->rto_lock);
553 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
557 init_dl_bw(&rd->dl_bw);
558 if (cpudl_init(&rd->cpudl) != 0)
561 if (cpupri_init(&rd->cpupri) != 0)
566 cpudl_cleanup(&rd->cpudl);
568 free_cpumask_var(rd->rto_mask);
570 free_cpumask_var(rd->dlo_mask);
572 free_cpumask_var(rd->online);
574 free_cpumask_var(rd->span);
580 * By default the system creates a single root-domain with all CPUs as
581 * members (mimicking the global state we have today).
583 struct root_domain def_root_domain;
585 void __init init_defrootdomain(void)
587 init_rootdomain(&def_root_domain);
589 atomic_set(&def_root_domain.refcount, 1);
592 static struct root_domain *alloc_rootdomain(void)
594 struct root_domain *rd;
596 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
600 if (init_rootdomain(rd) != 0) {
608 static void free_sched_groups(struct sched_group *sg, int free_sgc)
610 struct sched_group *tmp, *first;
619 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
622 if (atomic_dec_and_test(&sg->ref))
625 } while (sg != first);
628 static void destroy_sched_domain(struct sched_domain *sd)
631 * A normal sched domain may have multiple group references, an
632 * overlapping domain, having private groups, only one. Iterate,
633 * dropping group/capacity references, freeing where none remain.
635 free_sched_groups(sd->groups, 1);
637 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
642 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
644 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
647 struct sched_domain *parent = sd->parent;
648 destroy_sched_domain(sd);
653 static void destroy_sched_domains(struct sched_domain *sd)
656 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
660 * Keep a special pointer to the highest sched_domain that has
661 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
662 * allows us to avoid some pointer chasing select_idle_sibling().
664 * Also keep a unique ID per domain (we use the first CPU number in
665 * the cpumask of the domain), this allows us to quickly tell if
666 * two CPUs are in the same cache domain, see cpus_share_cache().
668 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
669 DEFINE_PER_CPU(int, sd_llc_size);
670 DEFINE_PER_CPU(int, sd_llc_id);
671 DEFINE_PER_CPU(int, sd_share_id);
672 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
673 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
674 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
675 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
677 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
678 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
680 static void update_top_cache_domain(int cpu)
682 struct sched_domain_shared *sds = NULL;
683 struct sched_domain *sd;
687 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
689 id = cpumask_first(sched_domain_span(sd));
690 size = cpumask_weight(sched_domain_span(sd));
694 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
695 per_cpu(sd_llc_size, cpu) = size;
696 per_cpu(sd_llc_id, cpu) = id;
697 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
699 sd = lowest_flag_domain(cpu, SD_CLUSTER);
701 id = cpumask_first(sched_domain_span(sd));
704 * This assignment should be placed after the sd_llc_id as
705 * we want this id equals to cluster id on cluster machines
706 * but equals to LLC id on non-Cluster machines.
708 per_cpu(sd_share_id, cpu) = id;
710 sd = lowest_flag_domain(cpu, SD_NUMA);
711 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
713 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
714 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
716 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
717 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
721 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
722 * hold the hotplug lock.
725 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
727 struct rq *rq = cpu_rq(cpu);
728 struct sched_domain *tmp;
730 /* Remove the sched domains which do not contribute to scheduling. */
731 for (tmp = sd; tmp; ) {
732 struct sched_domain *parent = tmp->parent;
736 if (sd_parent_degenerate(tmp, parent)) {
737 tmp->parent = parent->parent;
739 if (parent->parent) {
740 parent->parent->child = tmp;
741 parent->parent->groups->flags = tmp->flags;
745 * Transfer SD_PREFER_SIBLING down in case of a
746 * degenerate parent; the spans match for this
747 * so the property transfers.
749 if (parent->flags & SD_PREFER_SIBLING)
750 tmp->flags |= SD_PREFER_SIBLING;
751 destroy_sched_domain(parent);
756 if (sd && sd_degenerate(sd)) {
759 destroy_sched_domain(tmp);
761 struct sched_group *sg = sd->groups;
764 * sched groups hold the flags of the child sched
765 * domain for convenience. Clear such flags since
766 * the child is being destroyed.
770 } while (sg != sd->groups);
776 sched_domain_debug(sd, cpu);
778 rq_attach_root(rq, rd);
780 rcu_assign_pointer(rq->sd, sd);
781 dirty_sched_domain_sysctl(cpu);
782 destroy_sched_domains(tmp);
784 update_top_cache_domain(cpu);
788 struct sched_domain * __percpu *sd;
789 struct root_domain *rd;
800 * Return the canonical balance CPU for this group, this is the first CPU
801 * of this group that's also in the balance mask.
803 * The balance mask are all those CPUs that could actually end up at this
804 * group. See build_balance_mask().
806 * Also see should_we_balance().
808 int group_balance_cpu(struct sched_group *sg)
810 return cpumask_first(group_balance_mask(sg));
815 * NUMA topology (first read the regular topology blurb below)
817 * Given a node-distance table, for example:
825 * which represents a 4 node ring topology like:
833 * We want to construct domains and groups to represent this. The way we go
834 * about doing this is to build the domains on 'hops'. For each NUMA level we
835 * construct the mask of all nodes reachable in @level hops.
837 * For the above NUMA topology that gives 3 levels:
839 * NUMA-2 0-3 0-3 0-3 0-3
840 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
842 * NUMA-1 0-1,3 0-2 1-3 0,2-3
843 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
848 * As can be seen; things don't nicely line up as with the regular topology.
849 * When we iterate a domain in child domain chunks some nodes can be
850 * represented multiple times -- hence the "overlap" naming for this part of
853 * In order to minimize this overlap, we only build enough groups to cover the
854 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
858 * - the first group of each domain is its child domain; this
859 * gets us the first 0-1,3
860 * - the only uncovered node is 2, who's child domain is 1-3.
862 * However, because of the overlap, computing a unique CPU for each group is
863 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
864 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
865 * end up at those groups (they would end up in group: 0-1,3).
867 * To correct this we have to introduce the group balance mask. This mask
868 * will contain those CPUs in the group that can reach this group given the
869 * (child) domain tree.
871 * With this we can once again compute balance_cpu and sched_group_capacity
874 * XXX include words on how balance_cpu is unique and therefore can be
875 * used for sched_group_capacity links.
878 * Another 'interesting' topology is:
886 * Which looks a little like:
894 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
897 * This leads to a few particularly weird cases where the sched_domain's are
898 * not of the same number for each CPU. Consider:
901 * groups: {0-2},{1-3} {1-3},{0-2}
903 * NUMA-1 0-2 0-3 0-3 1-3
911 * Build the balance mask; it contains only those CPUs that can arrive at this
912 * group and should be considered to continue balancing.
914 * We do this during the group creation pass, therefore the group information
915 * isn't complete yet, however since each group represents a (child) domain we
916 * can fully construct this using the sched_domain bits (which are already
920 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
922 const struct cpumask *sg_span = sched_group_span(sg);
923 struct sd_data *sdd = sd->private;
924 struct sched_domain *sibling;
929 for_each_cpu(i, sg_span) {
930 sibling = *per_cpu_ptr(sdd->sd, i);
933 * Can happen in the asymmetric case, where these siblings are
934 * unused. The mask will not be empty because those CPUs that
935 * do have the top domain _should_ span the domain.
940 /* If we would not end up here, we can't continue from here */
941 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
944 cpumask_set_cpu(i, mask);
947 /* We must not have empty masks here */
948 WARN_ON_ONCE(cpumask_empty(mask));
952 * XXX: This creates per-node group entries; since the load-balancer will
953 * immediately access remote memory to construct this group's load-balance
954 * statistics having the groups node local is of dubious benefit.
956 static struct sched_group *
957 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
959 struct sched_group *sg;
960 struct cpumask *sg_span;
962 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
963 GFP_KERNEL, cpu_to_node(cpu));
968 sg_span = sched_group_span(sg);
970 cpumask_copy(sg_span, sched_domain_span(sd->child));
971 sg->flags = sd->child->flags;
973 cpumask_copy(sg_span, sched_domain_span(sd));
976 atomic_inc(&sg->ref);
980 static void init_overlap_sched_group(struct sched_domain *sd,
981 struct sched_group *sg)
983 struct cpumask *mask = sched_domains_tmpmask2;
984 struct sd_data *sdd = sd->private;
985 struct cpumask *sg_span;
988 build_balance_mask(sd, sg, mask);
989 cpu = cpumask_first(mask);
991 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
992 if (atomic_inc_return(&sg->sgc->ref) == 1)
993 cpumask_copy(group_balance_mask(sg), mask);
995 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
998 * Initialize sgc->capacity such that even if we mess up the
999 * domains and no possible iteration will get us here, we won't
1002 sg_span = sched_group_span(sg);
1003 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1004 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1005 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1008 static struct sched_domain *
1009 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1012 * The proper descendant would be the one whose child won't span out
1015 while (sibling->child &&
1016 !cpumask_subset(sched_domain_span(sibling->child),
1017 sched_domain_span(sd)))
1018 sibling = sibling->child;
1021 * As we are referencing sgc across different topology level, we need
1022 * to go down to skip those sched_domains which don't contribute to
1023 * scheduling because they will be degenerated in cpu_attach_domain
1025 while (sibling->child &&
1026 cpumask_equal(sched_domain_span(sibling->child),
1027 sched_domain_span(sibling)))
1028 sibling = sibling->child;
1034 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1036 struct sched_group *first = NULL, *last = NULL, *sg;
1037 const struct cpumask *span = sched_domain_span(sd);
1038 struct cpumask *covered = sched_domains_tmpmask;
1039 struct sd_data *sdd = sd->private;
1040 struct sched_domain *sibling;
1043 cpumask_clear(covered);
1045 for_each_cpu_wrap(i, span, cpu) {
1046 struct cpumask *sg_span;
1048 if (cpumask_test_cpu(i, covered))
1051 sibling = *per_cpu_ptr(sdd->sd, i);
1054 * Asymmetric node setups can result in situations where the
1055 * domain tree is of unequal depth, make sure to skip domains
1056 * that already cover the entire range.
1058 * In that case build_sched_domains() will have terminated the
1059 * iteration early and our sibling sd spans will be empty.
1060 * Domains should always include the CPU they're built on, so
1063 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1067 * Usually we build sched_group by sibling's child sched_domain
1068 * But for machines whose NUMA diameter are 3 or above, we move
1069 * to build sched_group by sibling's proper descendant's child
1070 * domain because sibling's child sched_domain will span out of
1071 * the sched_domain being built as below.
1073 * Smallest diameter=3 topology is:
1081 * 0 --- 1 --- 2 --- 3
1083 * NUMA-3 0-3 N/A N/A 0-3
1084 * groups: {0-2},{1-3} {1-3},{0-2}
1086 * NUMA-2 0-2 0-3 0-3 1-3
1087 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
1089 * NUMA-1 0-1 0-2 1-3 2-3
1090 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
1094 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1095 * group span isn't a subset of the domain span.
1097 if (sibling->child &&
1098 !cpumask_subset(sched_domain_span(sibling->child), span))
1099 sibling = find_descended_sibling(sd, sibling);
1101 sg = build_group_from_child_sched_domain(sibling, cpu);
1105 sg_span = sched_group_span(sg);
1106 cpumask_or(covered, covered, sg_span);
1108 init_overlap_sched_group(sibling, sg);
1122 free_sched_groups(first, 0);
1129 * Package topology (also see the load-balance blurb in fair.c)
1131 * The scheduler builds a tree structure to represent a number of important
1132 * topology features. By default (default_topology[]) these include:
1134 * - Simultaneous multithreading (SMT)
1135 * - Multi-Core Cache (MC)
1138 * Where the last one more or less denotes everything up to a NUMA node.
1140 * The tree consists of 3 primary data structures:
1142 * sched_domain -> sched_group -> sched_group_capacity
1146 * The sched_domains are per-CPU and have a two way link (parent & child) and
1147 * denote the ever growing mask of CPUs belonging to that level of topology.
1149 * Each sched_domain has a circular (double) linked list of sched_group's, each
1150 * denoting the domains of the level below (or individual CPUs in case of the
1151 * first domain level). The sched_group linked by a sched_domain includes the
1152 * CPU of that sched_domain [*].
1154 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1156 * CPU 0 1 2 3 4 5 6 7
1160 * SMT [ ] [ ] [ ] [ ]
1164 * PKG 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1165 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1166 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1168 * CPU 0 1 2 3 4 5 6 7
1170 * One way to think about it is: sched_domain moves you up and down among these
1171 * topology levels, while sched_group moves you sideways through it, at child
1172 * domain granularity.
1174 * sched_group_capacity ensures each unique sched_group has shared storage.
1176 * There are two related construction problems, both require a CPU that
1177 * uniquely identify each group (for a given domain):
1179 * - The first is the balance_cpu (see should_we_balance() and the
1180 * load-balance blub in fair.c); for each group we only want 1 CPU to
1181 * continue balancing at a higher domain.
1183 * - The second is the sched_group_capacity; we want all identical groups
1184 * to share a single sched_group_capacity.
1186 * Since these topologies are exclusive by construction. That is, its
1187 * impossible for an SMT thread to belong to multiple cores, and cores to
1188 * be part of multiple caches. There is a very clear and unique location
1189 * for each CPU in the hierarchy.
1191 * Therefore computing a unique CPU for each group is trivial (the iteration
1192 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1193 * group), we can simply pick the first CPU in each group.
1196 * [*] in other words, the first group of each domain is its child domain.
1199 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1201 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1202 struct sched_domain *child = sd->child;
1203 struct sched_group *sg;
1204 bool already_visited;
1207 cpu = cpumask_first(sched_domain_span(child));
1209 sg = *per_cpu_ptr(sdd->sg, cpu);
1210 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1212 /* Increase refcounts for claim_allocations: */
1213 already_visited = atomic_inc_return(&sg->ref) > 1;
1214 /* sgc visits should follow a similar trend as sg */
1215 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1217 /* If we have already visited that group, it's already initialized. */
1218 if (already_visited)
1222 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1223 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1224 sg->flags = child->flags;
1226 cpumask_set_cpu(cpu, sched_group_span(sg));
1227 cpumask_set_cpu(cpu, group_balance_mask(sg));
1230 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1231 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1232 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1238 * build_sched_groups will build a circular linked list of the groups
1239 * covered by the given span, will set each group's ->cpumask correctly,
1240 * and will initialize their ->sgc.
1242 * Assumes the sched_domain tree is fully constructed
1245 build_sched_groups(struct sched_domain *sd, int cpu)
1247 struct sched_group *first = NULL, *last = NULL;
1248 struct sd_data *sdd = sd->private;
1249 const struct cpumask *span = sched_domain_span(sd);
1250 struct cpumask *covered;
1253 lockdep_assert_held(&sched_domains_mutex);
1254 covered = sched_domains_tmpmask;
1256 cpumask_clear(covered);
1258 for_each_cpu_wrap(i, span, cpu) {
1259 struct sched_group *sg;
1261 if (cpumask_test_cpu(i, covered))
1264 sg = get_group(i, sdd);
1266 cpumask_or(covered, covered, sched_group_span(sg));
1281 * Initialize sched groups cpu_capacity.
1283 * cpu_capacity indicates the capacity of sched group, which is used while
1284 * distributing the load between different sched groups in a sched domain.
1285 * Typically cpu_capacity for all the groups in a sched domain will be same
1286 * unless there are asymmetries in the topology. If there are asymmetries,
1287 * group having more cpu_capacity will pickup more load compared to the
1288 * group having less cpu_capacity.
1290 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1292 struct sched_group *sg = sd->groups;
1293 struct cpumask *mask = sched_domains_tmpmask2;
1298 int cpu, cores = 0, max_cpu = -1;
1300 sg->group_weight = cpumask_weight(sched_group_span(sg));
1302 cpumask_copy(mask, sched_group_span(sg));
1303 for_each_cpu(cpu, mask) {
1305 #ifdef CONFIG_SCHED_SMT
1306 cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1311 if (!(sd->flags & SD_ASYM_PACKING))
1314 for_each_cpu(cpu, sched_group_span(sg)) {
1317 else if (sched_asym_prefer(cpu, max_cpu))
1320 sg->asym_prefer_cpu = max_cpu;
1324 } while (sg != sd->groups);
1326 if (cpu != group_balance_cpu(sg))
1329 update_group_capacity(sd, cpu);
1333 * Asymmetric CPU capacity bits
1335 struct asym_cap_data {
1336 struct list_head link;
1337 unsigned long capacity;
1338 unsigned long cpus[];
1342 * Set of available CPUs grouped by their corresponding capacities
1343 * Each list entry contains a CPU mask reflecting CPUs that share the same
1345 * The lifespan of data is unlimited.
1347 static LIST_HEAD(asym_cap_list);
1349 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1352 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1353 * Provides sd_flags reflecting the asymmetry scope.
1356 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1357 const struct cpumask *cpu_map)
1359 struct asym_cap_data *entry;
1360 int count = 0, miss = 0;
1363 * Count how many unique CPU capacities this domain spans across
1364 * (compare sched_domain CPUs mask with ones representing available
1365 * CPUs capacities). Take into account CPUs that might be offline:
1368 list_for_each_entry(entry, &asym_cap_list, link) {
1369 if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1371 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1375 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1377 /* No asymmetry detected */
1380 /* Some of the available CPU capacity values have not been detected */
1382 return SD_ASYM_CPUCAPACITY;
1384 /* Full asymmetry */
1385 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1389 static inline void asym_cpu_capacity_update_data(int cpu)
1391 unsigned long capacity = arch_scale_cpu_capacity(cpu);
1392 struct asym_cap_data *entry = NULL;
1394 list_for_each_entry(entry, &asym_cap_list, link) {
1395 if (capacity == entry->capacity)
1399 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1400 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1402 entry->capacity = capacity;
1403 list_add(&entry->link, &asym_cap_list);
1405 __cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1409 * Build-up/update list of CPUs grouped by their capacities
1410 * An update requires explicit request to rebuild sched domains
1411 * with state indicating CPU topology changes.
1413 static void asym_cpu_capacity_scan(void)
1415 struct asym_cap_data *entry, *next;
1418 list_for_each_entry(entry, &asym_cap_list, link)
1419 cpumask_clear(cpu_capacity_span(entry));
1421 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1422 asym_cpu_capacity_update_data(cpu);
1424 list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1425 if (cpumask_empty(cpu_capacity_span(entry))) {
1426 list_del(&entry->link);
1432 * Only one capacity value has been detected i.e. this system is symmetric.
1433 * No need to keep this data around.
1435 if (list_is_singular(&asym_cap_list)) {
1436 entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1437 list_del(&entry->link);
1443 * Initializers for schedule domains
1444 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1447 static int default_relax_domain_level = -1;
1448 int sched_domain_level_max;
1450 static int __init setup_relax_domain_level(char *str)
1452 if (kstrtoint(str, 0, &default_relax_domain_level))
1453 pr_warn("Unable to set relax_domain_level\n");
1457 __setup("relax_domain_level=", setup_relax_domain_level);
1459 static void set_domain_attribute(struct sched_domain *sd,
1460 struct sched_domain_attr *attr)
1464 if (!attr || attr->relax_domain_level < 0) {
1465 if (default_relax_domain_level < 0)
1467 request = default_relax_domain_level;
1469 request = attr->relax_domain_level;
1471 if (sd->level > request) {
1472 /* Turn off idle balance on this domain: */
1473 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1477 static void __sdt_free(const struct cpumask *cpu_map);
1478 static int __sdt_alloc(const struct cpumask *cpu_map);
1480 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1481 const struct cpumask *cpu_map)
1485 if (!atomic_read(&d->rd->refcount))
1486 free_rootdomain(&d->rd->rcu);
1492 __sdt_free(cpu_map);
1500 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1502 memset(d, 0, sizeof(*d));
1504 if (__sdt_alloc(cpu_map))
1505 return sa_sd_storage;
1506 d->sd = alloc_percpu(struct sched_domain *);
1508 return sa_sd_storage;
1509 d->rd = alloc_rootdomain();
1513 return sa_rootdomain;
1517 * NULL the sd_data elements we've used to build the sched_domain and
1518 * sched_group structure so that the subsequent __free_domain_allocs()
1519 * will not free the data we're using.
1521 static void claim_allocations(int cpu, struct sched_domain *sd)
1523 struct sd_data *sdd = sd->private;
1525 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1526 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1528 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1529 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1531 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1532 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1534 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1535 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1539 enum numa_topology_type sched_numa_topology_type;
1541 static int sched_domains_numa_levels;
1542 static int sched_domains_curr_level;
1544 int sched_max_numa_distance;
1545 static int *sched_domains_numa_distance;
1546 static struct cpumask ***sched_domains_numa_masks;
1550 * SD_flags allowed in topology descriptions.
1552 * These flags are purely descriptive of the topology and do not prescribe
1553 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1556 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1557 * SD_SHARE_PKG_RESOURCES - describes shared caches
1558 * SD_NUMA - describes NUMA topologies
1560 * Odd one out, which beside describing the topology has a quirk also
1561 * prescribes the desired behaviour that goes along with it:
1563 * SD_ASYM_PACKING - describes SMT quirks
1565 #define TOPOLOGY_SD_FLAGS \
1566 (SD_SHARE_CPUCAPACITY | \
1568 SD_SHARE_PKG_RESOURCES | \
1572 static struct sched_domain *
1573 sd_init(struct sched_domain_topology_level *tl,
1574 const struct cpumask *cpu_map,
1575 struct sched_domain *child, int cpu)
1577 struct sd_data *sdd = &tl->data;
1578 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1579 int sd_id, sd_weight, sd_flags = 0;
1580 struct cpumask *sd_span;
1584 * Ugly hack to pass state to sd_numa_mask()...
1586 sched_domains_curr_level = tl->numa_level;
1589 sd_weight = cpumask_weight(tl->mask(cpu));
1592 sd_flags = (*tl->sd_flags)();
1593 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1594 "wrong sd_flags in topology description\n"))
1595 sd_flags &= TOPOLOGY_SD_FLAGS;
1597 *sd = (struct sched_domain){
1598 .min_interval = sd_weight,
1599 .max_interval = 2*sd_weight,
1601 .imbalance_pct = 117,
1603 .cache_nice_tries = 0,
1605 .flags = 1*SD_BALANCE_NEWIDLE
1610 | 0*SD_SHARE_CPUCAPACITY
1611 | 0*SD_SHARE_PKG_RESOURCES
1613 | 1*SD_PREFER_SIBLING
1618 .last_balance = jiffies,
1619 .balance_interval = sd_weight,
1620 .max_newidle_lb_cost = 0,
1621 .last_decay_max_lb_cost = jiffies,
1623 #ifdef CONFIG_SCHED_DEBUG
1628 sd_span = sched_domain_span(sd);
1629 cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1630 sd_id = cpumask_first(sd_span);
1632 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1634 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1635 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1636 "CPU capacity asymmetry not supported on SMT\n");
1639 * Convert topological properties into behaviour.
1641 /* Don't attempt to spread across CPUs of different capacities. */
1642 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1643 sd->child->flags &= ~SD_PREFER_SIBLING;
1645 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1646 sd->imbalance_pct = 110;
1648 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1649 sd->imbalance_pct = 117;
1650 sd->cache_nice_tries = 1;
1653 } else if (sd->flags & SD_NUMA) {
1654 sd->cache_nice_tries = 2;
1656 sd->flags &= ~SD_PREFER_SIBLING;
1657 sd->flags |= SD_SERIALIZE;
1658 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1659 sd->flags &= ~(SD_BALANCE_EXEC |
1666 sd->cache_nice_tries = 1;
1670 * For all levels sharing cache; connect a sched_domain_shared
1673 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1674 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1675 atomic_inc(&sd->shared->ref);
1676 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1685 * Topology list, bottom-up.
1687 static struct sched_domain_topology_level default_topology[] = {
1688 #ifdef CONFIG_SCHED_SMT
1689 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1692 #ifdef CONFIG_SCHED_CLUSTER
1693 { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1696 #ifdef CONFIG_SCHED_MC
1697 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1699 { cpu_cpu_mask, SD_INIT_NAME(PKG) },
1703 static struct sched_domain_topology_level *sched_domain_topology =
1705 static struct sched_domain_topology_level *sched_domain_topology_saved;
1707 #define for_each_sd_topology(tl) \
1708 for (tl = sched_domain_topology; tl->mask; tl++)
1710 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1712 if (WARN_ON_ONCE(sched_smp_initialized))
1715 sched_domain_topology = tl;
1716 sched_domain_topology_saved = NULL;
1721 static const struct cpumask *sd_numa_mask(int cpu)
1723 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1726 static void sched_numa_warn(const char *str)
1728 static int done = false;
1736 printk(KERN_WARNING "ERROR: %s\n\n", str);
1738 for (i = 0; i < nr_node_ids; i++) {
1739 printk(KERN_WARNING " ");
1740 for (j = 0; j < nr_node_ids; j++) {
1741 if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1742 printk(KERN_CONT "(%02d) ", node_distance(i,j));
1744 printk(KERN_CONT " %02d ", node_distance(i,j));
1746 printk(KERN_CONT "\n");
1748 printk(KERN_WARNING "\n");
1751 bool find_numa_distance(int distance)
1756 if (distance == node_distance(0, 0))
1760 distances = rcu_dereference(sched_domains_numa_distance);
1763 for (i = 0; i < sched_domains_numa_levels; i++) {
1764 if (distances[i] == distance) {
1775 #define for_each_cpu_node_but(n, nbut) \
1776 for_each_node_state(n, N_CPU) \
1782 * A system can have three types of NUMA topology:
1783 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1784 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1785 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1787 * The difference between a glueless mesh topology and a backplane
1788 * topology lies in whether communication between not directly
1789 * connected nodes goes through intermediary nodes (where programs
1790 * could run), or through backplane controllers. This affects
1791 * placement of programs.
1793 * The type of topology can be discerned with the following tests:
1794 * - If the maximum distance between any nodes is 1 hop, the system
1795 * is directly connected.
1796 * - If for two nodes A and B, located N > 1 hops away from each other,
1797 * there is an intermediary node C, which is < N hops away from both
1798 * nodes A and B, the system is a glueless mesh.
1800 static void init_numa_topology_type(int offline_node)
1804 n = sched_max_numa_distance;
1806 if (sched_domains_numa_levels <= 2) {
1807 sched_numa_topology_type = NUMA_DIRECT;
1811 for_each_cpu_node_but(a, offline_node) {
1812 for_each_cpu_node_but(b, offline_node) {
1813 /* Find two nodes furthest removed from each other. */
1814 if (node_distance(a, b) < n)
1817 /* Is there an intermediary node between a and b? */
1818 for_each_cpu_node_but(c, offline_node) {
1819 if (node_distance(a, c) < n &&
1820 node_distance(b, c) < n) {
1821 sched_numa_topology_type =
1827 sched_numa_topology_type = NUMA_BACKPLANE;
1832 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1833 sched_numa_topology_type = NUMA_DIRECT;
1837 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1839 void sched_init_numa(int offline_node)
1841 struct sched_domain_topology_level *tl;
1842 unsigned long *distance_map;
1846 struct cpumask ***masks;
1849 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1850 * unique distances in the node_distance() table.
1852 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1856 bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1857 for_each_cpu_node_but(i, offline_node) {
1858 for_each_cpu_node_but(j, offline_node) {
1859 int distance = node_distance(i, j);
1861 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1862 sched_numa_warn("Invalid distance value range");
1863 bitmap_free(distance_map);
1867 bitmap_set(distance_map, distance, 1);
1871 * We can now figure out how many unique distance values there are and
1872 * allocate memory accordingly.
1874 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1876 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1878 bitmap_free(distance_map);
1882 for (i = 0, j = 0; i < nr_levels; i++, j++) {
1883 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1886 rcu_assign_pointer(sched_domains_numa_distance, distances);
1888 bitmap_free(distance_map);
1891 * 'nr_levels' contains the number of unique distances
1893 * The sched_domains_numa_distance[] array includes the actual distance
1898 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1899 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1900 * the array will contain less then 'nr_levels' members. This could be
1901 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1902 * in other functions.
1904 * We reset it to 'nr_levels' at the end of this function.
1906 sched_domains_numa_levels = 0;
1908 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1913 * Now for each level, construct a mask per node which contains all
1914 * CPUs of nodes that are that many hops away from us.
1916 for (i = 0; i < nr_levels; i++) {
1917 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1921 for_each_cpu_node_but(j, offline_node) {
1922 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1930 for_each_cpu_node_but(k, offline_node) {
1931 if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1932 sched_numa_warn("Node-distance not symmetric");
1934 if (node_distance(j, k) > sched_domains_numa_distance[i])
1937 cpumask_or(mask, mask, cpumask_of_node(k));
1941 rcu_assign_pointer(sched_domains_numa_masks, masks);
1943 /* Compute default topology size */
1944 for (i = 0; sched_domain_topology[i].mask; i++);
1946 tl = kzalloc((i + nr_levels + 1) *
1947 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1952 * Copy the default topology bits..
1954 for (i = 0; sched_domain_topology[i].mask; i++)
1955 tl[i] = sched_domain_topology[i];
1958 * Add the NUMA identity distance, aka single NODE.
1960 tl[i++] = (struct sched_domain_topology_level){
1961 .mask = sd_numa_mask,
1967 * .. and append 'j' levels of NUMA goodness.
1969 for (j = 1; j < nr_levels; i++, j++) {
1970 tl[i] = (struct sched_domain_topology_level){
1971 .mask = sd_numa_mask,
1972 .sd_flags = cpu_numa_flags,
1973 .flags = SDTL_OVERLAP,
1979 sched_domain_topology_saved = sched_domain_topology;
1980 sched_domain_topology = tl;
1982 sched_domains_numa_levels = nr_levels;
1983 WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1985 init_numa_topology_type(offline_node);
1989 static void sched_reset_numa(void)
1991 int nr_levels, *distances;
1992 struct cpumask ***masks;
1994 nr_levels = sched_domains_numa_levels;
1995 sched_domains_numa_levels = 0;
1996 sched_max_numa_distance = 0;
1997 sched_numa_topology_type = NUMA_DIRECT;
1998 distances = sched_domains_numa_distance;
1999 rcu_assign_pointer(sched_domains_numa_distance, NULL);
2000 masks = sched_domains_numa_masks;
2001 rcu_assign_pointer(sched_domains_numa_masks, NULL);
2002 if (distances || masks) {
2007 for (i = 0; i < nr_levels && masks; i++) {
2016 if (sched_domain_topology_saved) {
2017 kfree(sched_domain_topology);
2018 sched_domain_topology = sched_domain_topology_saved;
2019 sched_domain_topology_saved = NULL;
2024 * Call with hotplug lock held
2026 void sched_update_numa(int cpu, bool online)
2030 node = cpu_to_node(cpu);
2032 * Scheduler NUMA topology is updated when the first CPU of a
2033 * node is onlined or the last CPU of a node is offlined.
2035 if (cpumask_weight(cpumask_of_node(node)) != 1)
2039 sched_init_numa(online ? NUMA_NO_NODE : node);
2042 void sched_domains_numa_masks_set(unsigned int cpu)
2044 int node = cpu_to_node(cpu);
2047 for (i = 0; i < sched_domains_numa_levels; i++) {
2048 for (j = 0; j < nr_node_ids; j++) {
2049 if (!node_state(j, N_CPU))
2052 /* Set ourselves in the remote node's masks */
2053 if (node_distance(j, node) <= sched_domains_numa_distance[i])
2054 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2059 void sched_domains_numa_masks_clear(unsigned int cpu)
2063 for (i = 0; i < sched_domains_numa_levels; i++) {
2064 for (j = 0; j < nr_node_ids; j++) {
2065 if (sched_domains_numa_masks[i][j])
2066 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2072 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2073 * closest to @cpu from @cpumask.
2074 * cpumask: cpumask to find a cpu from
2075 * cpu: cpu to be close to
2077 * returns: cpu, or nr_cpu_ids when nothing found.
2079 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2081 int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2082 struct cpumask ***masks;
2085 masks = rcu_dereference(sched_domains_numa_masks);
2088 for (i = 0; i < sched_domains_numa_levels; i++) {
2091 cpu = cpumask_any_and(cpus, masks[i][j]);
2092 if (cpu < nr_cpu_ids) {
2104 const struct cpumask *cpus;
2105 struct cpumask ***masks;
2111 static int hop_cmp(const void *a, const void *b)
2113 struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2114 struct __cmp_key *k = (struct __cmp_key *)a;
2116 if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2119 if (b == k->masks) {
2124 prev_hop = *((struct cpumask ***)b - 1);
2125 k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2133 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2134 * from @cpus to @cpu, taking into account distance
2135 * from a given @node.
2136 * @cpus: cpumask to find a cpu from
2137 * @cpu: CPU to start searching
2138 * @node: NUMA node to order CPUs by distance
2140 * Return: cpu, or nr_cpu_ids when nothing found.
2142 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2144 struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2145 struct cpumask ***hop_masks;
2146 int hop, ret = nr_cpu_ids;
2148 if (node == NUMA_NO_NODE)
2149 return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2153 /* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2154 node = numa_nearest_node(node, N_CPU);
2157 k.masks = rcu_dereference(sched_domains_numa_masks);
2161 hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2162 hop = hop_masks - k.masks;
2165 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2166 cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2171 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2174 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2176 * @node: The node to count hops from.
2177 * @hops: Include CPUs up to that many hops away. 0 means local node.
2179 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2180 * @node, an error value otherwise.
2182 * Requires rcu_lock to be held. Returned cpumask is only valid within that
2183 * read-side section, copy it if required beyond that.
2185 * Note that not all hops are equal in distance; see sched_init_numa() for how
2186 * distances and masks are handled.
2187 * Also note that this is a reflection of sched_domains_numa_masks, which may change
2188 * during the lifetime of the system (offline nodes are taken out of the masks).
2190 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2192 struct cpumask ***masks;
2194 if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2195 return ERR_PTR(-EINVAL);
2197 masks = rcu_dereference(sched_domains_numa_masks);
2199 return ERR_PTR(-EBUSY);
2201 return masks[hops][node];
2203 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2205 #endif /* CONFIG_NUMA */
2207 static int __sdt_alloc(const struct cpumask *cpu_map)
2209 struct sched_domain_topology_level *tl;
2212 for_each_sd_topology(tl) {
2213 struct sd_data *sdd = &tl->data;
2215 sdd->sd = alloc_percpu(struct sched_domain *);
2219 sdd->sds = alloc_percpu(struct sched_domain_shared *);
2223 sdd->sg = alloc_percpu(struct sched_group *);
2227 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2231 for_each_cpu(j, cpu_map) {
2232 struct sched_domain *sd;
2233 struct sched_domain_shared *sds;
2234 struct sched_group *sg;
2235 struct sched_group_capacity *sgc;
2237 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2238 GFP_KERNEL, cpu_to_node(j));
2242 *per_cpu_ptr(sdd->sd, j) = sd;
2244 sds = kzalloc_node(sizeof(struct sched_domain_shared),
2245 GFP_KERNEL, cpu_to_node(j));
2249 *per_cpu_ptr(sdd->sds, j) = sds;
2251 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2252 GFP_KERNEL, cpu_to_node(j));
2258 *per_cpu_ptr(sdd->sg, j) = sg;
2260 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2261 GFP_KERNEL, cpu_to_node(j));
2265 #ifdef CONFIG_SCHED_DEBUG
2269 *per_cpu_ptr(sdd->sgc, j) = sgc;
2276 static void __sdt_free(const struct cpumask *cpu_map)
2278 struct sched_domain_topology_level *tl;
2281 for_each_sd_topology(tl) {
2282 struct sd_data *sdd = &tl->data;
2284 for_each_cpu(j, cpu_map) {
2285 struct sched_domain *sd;
2288 sd = *per_cpu_ptr(sdd->sd, j);
2289 if (sd && (sd->flags & SD_OVERLAP))
2290 free_sched_groups(sd->groups, 0);
2291 kfree(*per_cpu_ptr(sdd->sd, j));
2295 kfree(*per_cpu_ptr(sdd->sds, j));
2297 kfree(*per_cpu_ptr(sdd->sg, j));
2299 kfree(*per_cpu_ptr(sdd->sgc, j));
2301 free_percpu(sdd->sd);
2303 free_percpu(sdd->sds);
2305 free_percpu(sdd->sg);
2307 free_percpu(sdd->sgc);
2312 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2313 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2314 struct sched_domain *child, int cpu)
2316 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2319 sd->level = child->level + 1;
2320 sched_domain_level_max = max(sched_domain_level_max, sd->level);
2323 if (!cpumask_subset(sched_domain_span(child),
2324 sched_domain_span(sd))) {
2325 pr_err("BUG: arch topology borken\n");
2326 #ifdef CONFIG_SCHED_DEBUG
2327 pr_err(" the %s domain not a subset of the %s domain\n",
2328 child->name, sd->name);
2330 /* Fixup, ensure @sd has at least @child CPUs. */
2331 cpumask_or(sched_domain_span(sd),
2332 sched_domain_span(sd),
2333 sched_domain_span(child));
2337 set_domain_attribute(sd, attr);
2343 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2344 * any two given CPUs at this (non-NUMA) topology level.
2346 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2347 const struct cpumask *cpu_map, int cpu)
2351 /* NUMA levels are allowed to overlap */
2352 if (tl->flags & SDTL_OVERLAP)
2356 * Non-NUMA levels cannot partially overlap - they must be either
2357 * completely equal or completely disjoint. Otherwise we can end up
2358 * breaking the sched_group lists - i.e. a later get_group() pass
2359 * breaks the linking done for an earlier span.
2361 for_each_cpu(i, cpu_map) {
2365 * We should 'and' all those masks with 'cpu_map' to exactly
2366 * match the topology we're about to build, but that can only
2367 * remove CPUs, which only lessens our ability to detect
2370 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2371 cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2379 * Build sched domains for a given set of CPUs and attach the sched domains
2380 * to the individual CPUs
2383 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2385 enum s_alloc alloc_state = sa_none;
2386 struct sched_domain *sd;
2388 struct rq *rq = NULL;
2389 int i, ret = -ENOMEM;
2390 bool has_asym = false;
2391 bool has_cluster = false;
2393 if (WARN_ON(cpumask_empty(cpu_map)))
2396 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2397 if (alloc_state != sa_rootdomain)
2400 /* Set up domains for CPUs specified by the cpu_map: */
2401 for_each_cpu(i, cpu_map) {
2402 struct sched_domain_topology_level *tl;
2405 for_each_sd_topology(tl) {
2407 if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2410 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2412 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2414 if (tl == sched_domain_topology)
2415 *per_cpu_ptr(d.sd, i) = sd;
2416 if (tl->flags & SDTL_OVERLAP)
2417 sd->flags |= SD_OVERLAP;
2418 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2423 /* Build the groups for the domains */
2424 for_each_cpu(i, cpu_map) {
2425 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2426 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2427 if (sd->flags & SD_OVERLAP) {
2428 if (build_overlap_sched_groups(sd, i))
2431 if (build_sched_groups(sd, i))
2438 * Calculate an allowed NUMA imbalance such that LLCs do not get
2441 for_each_cpu(i, cpu_map) {
2442 unsigned int imb = 0;
2443 unsigned int imb_span = 1;
2445 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2446 struct sched_domain *child = sd->child;
2448 if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2449 (child->flags & SD_SHARE_PKG_RESOURCES)) {
2450 struct sched_domain __rcu *top_p;
2451 unsigned int nr_llcs;
2454 * For a single LLC per node, allow an
2455 * imbalance up to 12.5% of the node. This is
2456 * arbitrary cutoff based two factors -- SMT and
2457 * memory channels. For SMT-2, the intent is to
2458 * avoid premature sharing of HT resources but
2459 * SMT-4 or SMT-8 *may* benefit from a different
2460 * cutoff. For memory channels, this is a very
2461 * rough estimate of how many channels may be
2462 * active and is based on recent CPUs with
2465 * For multiple LLCs, allow an imbalance
2466 * until multiple tasks would share an LLC
2467 * on one node while LLCs on another node
2468 * remain idle. This assumes that there are
2469 * enough logical CPUs per LLC to avoid SMT
2470 * factors and that there is a correlation
2471 * between LLCs and memory channels.
2473 nr_llcs = sd->span_weight / child->span_weight;
2475 imb = sd->span_weight >> 3;
2479 sd->imb_numa_nr = imb;
2481 /* Set span based on the first NUMA domain. */
2483 while (top_p && !(top_p->flags & SD_NUMA)) {
2484 top_p = top_p->parent;
2486 imb_span = top_p ? top_p->span_weight : sd->span_weight;
2488 int factor = max(1U, (sd->span_weight / imb_span));
2490 sd->imb_numa_nr = imb * factor;
2495 /* Calculate CPU capacity for physical packages and nodes */
2496 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2497 if (!cpumask_test_cpu(i, cpu_map))
2500 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2501 claim_allocations(i, sd);
2502 init_sched_groups_capacity(i, sd);
2506 /* Attach the domains */
2508 for_each_cpu(i, cpu_map) {
2509 unsigned long capacity;
2512 sd = *per_cpu_ptr(d.sd, i);
2514 capacity = arch_scale_cpu_capacity(i);
2515 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2516 if (capacity > READ_ONCE(d.rd->max_cpu_capacity))
2517 WRITE_ONCE(d.rd->max_cpu_capacity, capacity);
2519 cpu_attach_domain(sd, d.rd, i);
2521 if (lowest_flag_domain(i, SD_CLUSTER))
2527 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2530 static_branch_inc_cpuslocked(&sched_cluster_active);
2532 if (rq && sched_debug_verbose) {
2533 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2534 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2539 __free_domain_allocs(&d, alloc_state, cpu_map);
2544 /* Current sched domains: */
2545 static cpumask_var_t *doms_cur;
2547 /* Number of sched domains in 'doms_cur': */
2548 static int ndoms_cur;
2550 /* Attributes of custom domains in 'doms_cur' */
2551 static struct sched_domain_attr *dattr_cur;
2554 * Special case: If a kmalloc() of a doms_cur partition (array of
2555 * cpumask) fails, then fallback to a single sched domain,
2556 * as determined by the single cpumask fallback_doms.
2558 static cpumask_var_t fallback_doms;
2561 * arch_update_cpu_topology lets virtualized architectures update the
2562 * CPU core maps. It is supposed to return 1 if the topology changed
2563 * or 0 if it stayed the same.
2565 int __weak arch_update_cpu_topology(void)
2570 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2573 cpumask_var_t *doms;
2575 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2578 for (i = 0; i < ndoms; i++) {
2579 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2580 free_sched_domains(doms, i);
2587 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2590 for (i = 0; i < ndoms; i++)
2591 free_cpumask_var(doms[i]);
2596 * Set up scheduler domains and groups. For now this just excludes isolated
2597 * CPUs, but could be used to exclude other special cases in the future.
2599 int __init sched_init_domains(const struct cpumask *cpu_map)
2603 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2604 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2605 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2607 arch_update_cpu_topology();
2608 asym_cpu_capacity_scan();
2610 doms_cur = alloc_sched_domains(ndoms_cur);
2612 doms_cur = &fallback_doms;
2613 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2614 err = build_sched_domains(doms_cur[0], NULL);
2620 * Detach sched domains from a group of CPUs specified in cpu_map
2621 * These CPUs will now be attached to the NULL domain
2623 static void detach_destroy_domains(const struct cpumask *cpu_map)
2625 unsigned int cpu = cpumask_any(cpu_map);
2628 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2629 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2631 if (static_branch_unlikely(&sched_cluster_active))
2632 static_branch_dec_cpuslocked(&sched_cluster_active);
2635 for_each_cpu(i, cpu_map)
2636 cpu_attach_domain(NULL, &def_root_domain, i);
2640 /* handle null as "default" */
2641 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2642 struct sched_domain_attr *new, int idx_new)
2644 struct sched_domain_attr tmp;
2652 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2653 new ? (new + idx_new) : &tmp,
2654 sizeof(struct sched_domain_attr));
2658 * Partition sched domains as specified by the 'ndoms_new'
2659 * cpumasks in the array doms_new[] of cpumasks. This compares
2660 * doms_new[] to the current sched domain partitioning, doms_cur[].
2661 * It destroys each deleted domain and builds each new domain.
2663 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2664 * The masks don't intersect (don't overlap.) We should setup one
2665 * sched domain for each mask. CPUs not in any of the cpumasks will
2666 * not be load balanced. If the same cpumask appears both in the
2667 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2670 * The passed in 'doms_new' should be allocated using
2671 * alloc_sched_domains. This routine takes ownership of it and will
2672 * free_sched_domains it when done with it. If the caller failed the
2673 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2674 * and partition_sched_domains() will fallback to the single partition
2675 * 'fallback_doms', it also forces the domains to be rebuilt.
2677 * If doms_new == NULL it will be replaced with cpu_online_mask.
2678 * ndoms_new == 0 is a special case for destroying existing domains,
2679 * and it will not create the default domain.
2681 * Call with hotplug lock and sched_domains_mutex held
2683 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2684 struct sched_domain_attr *dattr_new)
2686 bool __maybe_unused has_eas = false;
2690 lockdep_assert_held(&sched_domains_mutex);
2692 /* Let the architecture update CPU core mappings: */
2693 new_topology = arch_update_cpu_topology();
2694 /* Trigger rebuilding CPU capacity asymmetry data */
2696 asym_cpu_capacity_scan();
2699 WARN_ON_ONCE(dattr_new);
2701 doms_new = alloc_sched_domains(1);
2704 cpumask_and(doms_new[0], cpu_active_mask,
2705 housekeeping_cpumask(HK_TYPE_DOMAIN));
2711 /* Destroy deleted domains: */
2712 for (i = 0; i < ndoms_cur; i++) {
2713 for (j = 0; j < n && !new_topology; j++) {
2714 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2715 dattrs_equal(dattr_cur, i, dattr_new, j)) {
2716 struct root_domain *rd;
2719 * This domain won't be destroyed and as such
2720 * its dl_bw->total_bw needs to be cleared. It
2721 * will be recomputed in function
2722 * update_tasks_root_domain().
2724 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2725 dl_clear_root_domain(rd);
2729 /* No match - a current sched domain not in new doms_new[] */
2730 detach_destroy_domains(doms_cur[i]);
2738 doms_new = &fallback_doms;
2739 cpumask_and(doms_new[0], cpu_active_mask,
2740 housekeeping_cpumask(HK_TYPE_DOMAIN));
2743 /* Build new domains: */
2744 for (i = 0; i < ndoms_new; i++) {
2745 for (j = 0; j < n && !new_topology; j++) {
2746 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2747 dattrs_equal(dattr_new, i, dattr_cur, j))
2750 /* No match - add a new doms_new */
2751 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2756 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2757 /* Build perf. domains: */
2758 for (i = 0; i < ndoms_new; i++) {
2759 for (j = 0; j < n && !sched_energy_update; j++) {
2760 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2761 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2766 /* No match - add perf. domains for a new rd */
2767 has_eas |= build_perf_domains(doms_new[i]);
2771 sched_energy_set(has_eas);
2774 /* Remember the new sched domains: */
2775 if (doms_cur != &fallback_doms)
2776 free_sched_domains(doms_cur, ndoms_cur);
2779 doms_cur = doms_new;
2780 dattr_cur = dattr_new;
2781 ndoms_cur = ndoms_new;
2783 update_sched_domain_debugfs();
2787 * Call with hotplug lock held
2789 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2790 struct sched_domain_attr *dattr_new)
2792 mutex_lock(&sched_domains_mutex);
2793 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2794 mutex_unlock(&sched_domains_mutex);