Linux 6.7-rc7
[linux-modified.git] / kernel / sched / topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5
6 #include <linux/bsearch.h>
7
8 DEFINE_MUTEX(sched_domains_mutex);
9
10 /* Protected by sched_domains_mutex: */
11 static cpumask_var_t sched_domains_tmpmask;
12 static cpumask_var_t sched_domains_tmpmask2;
13
14 #ifdef CONFIG_SCHED_DEBUG
15
16 static int __init sched_debug_setup(char *str)
17 {
18         sched_debug_verbose = true;
19
20         return 0;
21 }
22 early_param("sched_verbose", sched_debug_setup);
23
24 static inline bool sched_debug(void)
25 {
26         return sched_debug_verbose;
27 }
28
29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
30 const struct sd_flag_debug sd_flag_debug[] = {
31 #include <linux/sched/sd_flags.h>
32 };
33 #undef SD_FLAG
34
35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
36                                   struct cpumask *groupmask)
37 {
38         struct sched_group *group = sd->groups;
39         unsigned long flags = sd->flags;
40         unsigned int idx;
41
42         cpumask_clear(groupmask);
43
44         printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
45         printk(KERN_CONT "span=%*pbl level=%s\n",
46                cpumask_pr_args(sched_domain_span(sd)), sd->name);
47
48         if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
49                 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
50         }
51         if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
52                 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
53         }
54
55         for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
56                 unsigned int flag = BIT(idx);
57                 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
58
59                 if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
60                     !(sd->child->flags & flag))
61                         printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
62                                sd_flag_debug[idx].name);
63
64                 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
65                     !(sd->parent->flags & flag))
66                         printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
67                                sd_flag_debug[idx].name);
68         }
69
70         printk(KERN_DEBUG "%*s groups:", level + 1, "");
71         do {
72                 if (!group) {
73                         printk("\n");
74                         printk(KERN_ERR "ERROR: group is NULL\n");
75                         break;
76                 }
77
78                 if (cpumask_empty(sched_group_span(group))) {
79                         printk(KERN_CONT "\n");
80                         printk(KERN_ERR "ERROR: empty group\n");
81                         break;
82                 }
83
84                 if (!(sd->flags & SD_OVERLAP) &&
85                     cpumask_intersects(groupmask, sched_group_span(group))) {
86                         printk(KERN_CONT "\n");
87                         printk(KERN_ERR "ERROR: repeated CPUs\n");
88                         break;
89                 }
90
91                 cpumask_or(groupmask, groupmask, sched_group_span(group));
92
93                 printk(KERN_CONT " %d:{ span=%*pbl",
94                                 group->sgc->id,
95                                 cpumask_pr_args(sched_group_span(group)));
96
97                 if ((sd->flags & SD_OVERLAP) &&
98                     !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
99                         printk(KERN_CONT " mask=%*pbl",
100                                 cpumask_pr_args(group_balance_mask(group)));
101                 }
102
103                 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
104                         printk(KERN_CONT " cap=%lu", group->sgc->capacity);
105
106                 if (group == sd->groups && sd->child &&
107                     !cpumask_equal(sched_domain_span(sd->child),
108                                    sched_group_span(group))) {
109                         printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
110                 }
111
112                 printk(KERN_CONT " }");
113
114                 group = group->next;
115
116                 if (group != sd->groups)
117                         printk(KERN_CONT ",");
118
119         } while (group != sd->groups);
120         printk(KERN_CONT "\n");
121
122         if (!cpumask_equal(sched_domain_span(sd), groupmask))
123                 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
124
125         if (sd->parent &&
126             !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
127                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
128         return 0;
129 }
130
131 static void sched_domain_debug(struct sched_domain *sd, int cpu)
132 {
133         int level = 0;
134
135         if (!sched_debug_verbose)
136                 return;
137
138         if (!sd) {
139                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
140                 return;
141         }
142
143         printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
144
145         for (;;) {
146                 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
147                         break;
148                 level++;
149                 sd = sd->parent;
150                 if (!sd)
151                         break;
152         }
153 }
154 #else /* !CONFIG_SCHED_DEBUG */
155
156 # define sched_debug_verbose 0
157 # define sched_domain_debug(sd, cpu) do { } while (0)
158 static inline bool sched_debug(void)
159 {
160         return false;
161 }
162 #endif /* CONFIG_SCHED_DEBUG */
163
164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
166 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
167 #include <linux/sched/sd_flags.h>
168 0;
169 #undef SD_FLAG
170
171 static int sd_degenerate(struct sched_domain *sd)
172 {
173         if (cpumask_weight(sched_domain_span(sd)) == 1)
174                 return 1;
175
176         /* Following flags need at least 2 groups */
177         if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
178             (sd->groups != sd->groups->next))
179                 return 0;
180
181         /* Following flags don't use groups */
182         if (sd->flags & (SD_WAKE_AFFINE))
183                 return 0;
184
185         return 1;
186 }
187
188 static int
189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
190 {
191         unsigned long cflags = sd->flags, pflags = parent->flags;
192
193         if (sd_degenerate(parent))
194                 return 1;
195
196         if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
197                 return 0;
198
199         /* Flags needing groups don't count if only 1 group in parent */
200         if (parent->groups == parent->groups->next)
201                 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
202
203         if (~cflags & pflags)
204                 return 0;
205
206         return 1;
207 }
208
209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
210 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
211 static unsigned int sysctl_sched_energy_aware = 1;
212 static DEFINE_MUTEX(sched_energy_mutex);
213 static bool sched_energy_update;
214
215 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
216 {
217         bool any_asym_capacity = false;
218         struct cpufreq_policy *policy;
219         struct cpufreq_governor *gov;
220         int i;
221
222         /* EAS is enabled for asymmetric CPU capacity topologies. */
223         for_each_cpu(i, cpu_mask) {
224                 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
225                         any_asym_capacity = true;
226                         break;
227                 }
228         }
229         if (!any_asym_capacity) {
230                 if (sched_debug()) {
231                         pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
232                                 cpumask_pr_args(cpu_mask));
233                 }
234                 return false;
235         }
236
237         /* EAS definitely does *not* handle SMT */
238         if (sched_smt_active()) {
239                 if (sched_debug()) {
240                         pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
241                                 cpumask_pr_args(cpu_mask));
242                 }
243                 return false;
244         }
245
246         if (!arch_scale_freq_invariant()) {
247                 if (sched_debug()) {
248                         pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
249                                 cpumask_pr_args(cpu_mask));
250                 }
251                 return false;
252         }
253
254         /* Do not attempt EAS if schedutil is not being used. */
255         for_each_cpu(i, cpu_mask) {
256                 policy = cpufreq_cpu_get(i);
257                 if (!policy) {
258                         if (sched_debug()) {
259                                 pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
260                                         cpumask_pr_args(cpu_mask), i);
261                         }
262                         return false;
263                 }
264                 gov = policy->governor;
265                 cpufreq_cpu_put(policy);
266                 if (gov != &schedutil_gov) {
267                         if (sched_debug()) {
268                                 pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
269                                         cpumask_pr_args(cpu_mask));
270                         }
271                         return false;
272                 }
273         }
274
275         return true;
276 }
277
278 void rebuild_sched_domains_energy(void)
279 {
280         mutex_lock(&sched_energy_mutex);
281         sched_energy_update = true;
282         rebuild_sched_domains();
283         sched_energy_update = false;
284         mutex_unlock(&sched_energy_mutex);
285 }
286
287 #ifdef CONFIG_PROC_SYSCTL
288 static int sched_energy_aware_handler(struct ctl_table *table, int write,
289                 void *buffer, size_t *lenp, loff_t *ppos)
290 {
291         int ret, state;
292
293         if (write && !capable(CAP_SYS_ADMIN))
294                 return -EPERM;
295
296         if (!sched_is_eas_possible(cpu_active_mask)) {
297                 if (write) {
298                         return -EOPNOTSUPP;
299                 } else {
300                         *lenp = 0;
301                         return 0;
302                 }
303         }
304
305         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
306         if (!ret && write) {
307                 state = static_branch_unlikely(&sched_energy_present);
308                 if (state != sysctl_sched_energy_aware)
309                         rebuild_sched_domains_energy();
310         }
311
312         return ret;
313 }
314
315 static struct ctl_table sched_energy_aware_sysctls[] = {
316         {
317                 .procname       = "sched_energy_aware",
318                 .data           = &sysctl_sched_energy_aware,
319                 .maxlen         = sizeof(unsigned int),
320                 .mode           = 0644,
321                 .proc_handler   = sched_energy_aware_handler,
322                 .extra1         = SYSCTL_ZERO,
323                 .extra2         = SYSCTL_ONE,
324         },
325         {}
326 };
327
328 static int __init sched_energy_aware_sysctl_init(void)
329 {
330         register_sysctl_init("kernel", sched_energy_aware_sysctls);
331         return 0;
332 }
333
334 late_initcall(sched_energy_aware_sysctl_init);
335 #endif
336
337 static void free_pd(struct perf_domain *pd)
338 {
339         struct perf_domain *tmp;
340
341         while (pd) {
342                 tmp = pd->next;
343                 kfree(pd);
344                 pd = tmp;
345         }
346 }
347
348 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
349 {
350         while (pd) {
351                 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
352                         return pd;
353                 pd = pd->next;
354         }
355
356         return NULL;
357 }
358
359 static struct perf_domain *pd_init(int cpu)
360 {
361         struct em_perf_domain *obj = em_cpu_get(cpu);
362         struct perf_domain *pd;
363
364         if (!obj) {
365                 if (sched_debug())
366                         pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
367                 return NULL;
368         }
369
370         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
371         if (!pd)
372                 return NULL;
373         pd->em_pd = obj;
374
375         return pd;
376 }
377
378 static void perf_domain_debug(const struct cpumask *cpu_map,
379                                                 struct perf_domain *pd)
380 {
381         if (!sched_debug() || !pd)
382                 return;
383
384         printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
385
386         while (pd) {
387                 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
388                                 cpumask_first(perf_domain_span(pd)),
389                                 cpumask_pr_args(perf_domain_span(pd)),
390                                 em_pd_nr_perf_states(pd->em_pd));
391                 pd = pd->next;
392         }
393
394         printk(KERN_CONT "\n");
395 }
396
397 static void destroy_perf_domain_rcu(struct rcu_head *rp)
398 {
399         struct perf_domain *pd;
400
401         pd = container_of(rp, struct perf_domain, rcu);
402         free_pd(pd);
403 }
404
405 static void sched_energy_set(bool has_eas)
406 {
407         if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
408                 if (sched_debug())
409                         pr_info("%s: stopping EAS\n", __func__);
410                 static_branch_disable_cpuslocked(&sched_energy_present);
411         } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
412                 if (sched_debug())
413                         pr_info("%s: starting EAS\n", __func__);
414                 static_branch_enable_cpuslocked(&sched_energy_present);
415         }
416 }
417
418 /*
419  * EAS can be used on a root domain if it meets all the following conditions:
420  *    1. an Energy Model (EM) is available;
421  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
422  *    3. no SMT is detected.
423  *    4. schedutil is driving the frequency of all CPUs of the rd;
424  *    5. frequency invariance support is present;
425  */
426 static bool build_perf_domains(const struct cpumask *cpu_map)
427 {
428         int i;
429         struct perf_domain *pd = NULL, *tmp;
430         int cpu = cpumask_first(cpu_map);
431         struct root_domain *rd = cpu_rq(cpu)->rd;
432
433         if (!sysctl_sched_energy_aware)
434                 goto free;
435
436         if (!sched_is_eas_possible(cpu_map))
437                 goto free;
438
439         for_each_cpu(i, cpu_map) {
440                 /* Skip already covered CPUs. */
441                 if (find_pd(pd, i))
442                         continue;
443
444                 /* Create the new pd and add it to the local list. */
445                 tmp = pd_init(i);
446                 if (!tmp)
447                         goto free;
448                 tmp->next = pd;
449                 pd = tmp;
450         }
451
452         perf_domain_debug(cpu_map, pd);
453
454         /* Attach the new list of performance domains to the root domain. */
455         tmp = rd->pd;
456         rcu_assign_pointer(rd->pd, pd);
457         if (tmp)
458                 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
459
460         return !!pd;
461
462 free:
463         free_pd(pd);
464         tmp = rd->pd;
465         rcu_assign_pointer(rd->pd, NULL);
466         if (tmp)
467                 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
468
469         return false;
470 }
471 #else
472 static void free_pd(struct perf_domain *pd) { }
473 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
474
475 static void free_rootdomain(struct rcu_head *rcu)
476 {
477         struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
478
479         cpupri_cleanup(&rd->cpupri);
480         cpudl_cleanup(&rd->cpudl);
481         free_cpumask_var(rd->dlo_mask);
482         free_cpumask_var(rd->rto_mask);
483         free_cpumask_var(rd->online);
484         free_cpumask_var(rd->span);
485         free_pd(rd->pd);
486         kfree(rd);
487 }
488
489 void rq_attach_root(struct rq *rq, struct root_domain *rd)
490 {
491         struct root_domain *old_rd = NULL;
492         struct rq_flags rf;
493
494         rq_lock_irqsave(rq, &rf);
495
496         if (rq->rd) {
497                 old_rd = rq->rd;
498
499                 if (cpumask_test_cpu(rq->cpu, old_rd->online))
500                         set_rq_offline(rq);
501
502                 cpumask_clear_cpu(rq->cpu, old_rd->span);
503
504                 /*
505                  * If we dont want to free the old_rd yet then
506                  * set old_rd to NULL to skip the freeing later
507                  * in this function:
508                  */
509                 if (!atomic_dec_and_test(&old_rd->refcount))
510                         old_rd = NULL;
511         }
512
513         atomic_inc(&rd->refcount);
514         rq->rd = rd;
515
516         cpumask_set_cpu(rq->cpu, rd->span);
517         if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
518                 set_rq_online(rq);
519
520         rq_unlock_irqrestore(rq, &rf);
521
522         if (old_rd)
523                 call_rcu(&old_rd->rcu, free_rootdomain);
524 }
525
526 void sched_get_rd(struct root_domain *rd)
527 {
528         atomic_inc(&rd->refcount);
529 }
530
531 void sched_put_rd(struct root_domain *rd)
532 {
533         if (!atomic_dec_and_test(&rd->refcount))
534                 return;
535
536         call_rcu(&rd->rcu, free_rootdomain);
537 }
538
539 static int init_rootdomain(struct root_domain *rd)
540 {
541         if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
542                 goto out;
543         if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
544                 goto free_span;
545         if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
546                 goto free_online;
547         if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
548                 goto free_dlo_mask;
549
550 #ifdef HAVE_RT_PUSH_IPI
551         rd->rto_cpu = -1;
552         raw_spin_lock_init(&rd->rto_lock);
553         rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
554 #endif
555
556         rd->visit_gen = 0;
557         init_dl_bw(&rd->dl_bw);
558         if (cpudl_init(&rd->cpudl) != 0)
559                 goto free_rto_mask;
560
561         if (cpupri_init(&rd->cpupri) != 0)
562                 goto free_cpudl;
563         return 0;
564
565 free_cpudl:
566         cpudl_cleanup(&rd->cpudl);
567 free_rto_mask:
568         free_cpumask_var(rd->rto_mask);
569 free_dlo_mask:
570         free_cpumask_var(rd->dlo_mask);
571 free_online:
572         free_cpumask_var(rd->online);
573 free_span:
574         free_cpumask_var(rd->span);
575 out:
576         return -ENOMEM;
577 }
578
579 /*
580  * By default the system creates a single root-domain with all CPUs as
581  * members (mimicking the global state we have today).
582  */
583 struct root_domain def_root_domain;
584
585 void __init init_defrootdomain(void)
586 {
587         init_rootdomain(&def_root_domain);
588
589         atomic_set(&def_root_domain.refcount, 1);
590 }
591
592 static struct root_domain *alloc_rootdomain(void)
593 {
594         struct root_domain *rd;
595
596         rd = kzalloc(sizeof(*rd), GFP_KERNEL);
597         if (!rd)
598                 return NULL;
599
600         if (init_rootdomain(rd) != 0) {
601                 kfree(rd);
602                 return NULL;
603         }
604
605         return rd;
606 }
607
608 static void free_sched_groups(struct sched_group *sg, int free_sgc)
609 {
610         struct sched_group *tmp, *first;
611
612         if (!sg)
613                 return;
614
615         first = sg;
616         do {
617                 tmp = sg->next;
618
619                 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
620                         kfree(sg->sgc);
621
622                 if (atomic_dec_and_test(&sg->ref))
623                         kfree(sg);
624                 sg = tmp;
625         } while (sg != first);
626 }
627
628 static void destroy_sched_domain(struct sched_domain *sd)
629 {
630         /*
631          * A normal sched domain may have multiple group references, an
632          * overlapping domain, having private groups, only one.  Iterate,
633          * dropping group/capacity references, freeing where none remain.
634          */
635         free_sched_groups(sd->groups, 1);
636
637         if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
638                 kfree(sd->shared);
639         kfree(sd);
640 }
641
642 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
643 {
644         struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
645
646         while (sd) {
647                 struct sched_domain *parent = sd->parent;
648                 destroy_sched_domain(sd);
649                 sd = parent;
650         }
651 }
652
653 static void destroy_sched_domains(struct sched_domain *sd)
654 {
655         if (sd)
656                 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
657 }
658
659 /*
660  * Keep a special pointer to the highest sched_domain that has
661  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
662  * allows us to avoid some pointer chasing select_idle_sibling().
663  *
664  * Also keep a unique ID per domain (we use the first CPU number in
665  * the cpumask of the domain), this allows us to quickly tell if
666  * two CPUs are in the same cache domain, see cpus_share_cache().
667  */
668 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
669 DEFINE_PER_CPU(int, sd_llc_size);
670 DEFINE_PER_CPU(int, sd_llc_id);
671 DEFINE_PER_CPU(int, sd_share_id);
672 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
673 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
674 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
675 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
676
677 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
678 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
679
680 static void update_top_cache_domain(int cpu)
681 {
682         struct sched_domain_shared *sds = NULL;
683         struct sched_domain *sd;
684         int id = cpu;
685         int size = 1;
686
687         sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
688         if (sd) {
689                 id = cpumask_first(sched_domain_span(sd));
690                 size = cpumask_weight(sched_domain_span(sd));
691                 sds = sd->shared;
692         }
693
694         rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
695         per_cpu(sd_llc_size, cpu) = size;
696         per_cpu(sd_llc_id, cpu) = id;
697         rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
698
699         sd = lowest_flag_domain(cpu, SD_CLUSTER);
700         if (sd)
701                 id = cpumask_first(sched_domain_span(sd));
702
703         /*
704          * This assignment should be placed after the sd_llc_id as
705          * we want this id equals to cluster id on cluster machines
706          * but equals to LLC id on non-Cluster machines.
707          */
708         per_cpu(sd_share_id, cpu) = id;
709
710         sd = lowest_flag_domain(cpu, SD_NUMA);
711         rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
712
713         sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
714         rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
715
716         sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
717         rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
718 }
719
720 /*
721  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
722  * hold the hotplug lock.
723  */
724 static void
725 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
726 {
727         struct rq *rq = cpu_rq(cpu);
728         struct sched_domain *tmp;
729
730         /* Remove the sched domains which do not contribute to scheduling. */
731         for (tmp = sd; tmp; ) {
732                 struct sched_domain *parent = tmp->parent;
733                 if (!parent)
734                         break;
735
736                 if (sd_parent_degenerate(tmp, parent)) {
737                         tmp->parent = parent->parent;
738
739                         if (parent->parent) {
740                                 parent->parent->child = tmp;
741                                 parent->parent->groups->flags = tmp->flags;
742                         }
743
744                         /*
745                          * Transfer SD_PREFER_SIBLING down in case of a
746                          * degenerate parent; the spans match for this
747                          * so the property transfers.
748                          */
749                         if (parent->flags & SD_PREFER_SIBLING)
750                                 tmp->flags |= SD_PREFER_SIBLING;
751                         destroy_sched_domain(parent);
752                 } else
753                         tmp = tmp->parent;
754         }
755
756         if (sd && sd_degenerate(sd)) {
757                 tmp = sd;
758                 sd = sd->parent;
759                 destroy_sched_domain(tmp);
760                 if (sd) {
761                         struct sched_group *sg = sd->groups;
762
763                         /*
764                          * sched groups hold the flags of the child sched
765                          * domain for convenience. Clear such flags since
766                          * the child is being destroyed.
767                          */
768                         do {
769                                 sg->flags = 0;
770                         } while (sg != sd->groups);
771
772                         sd->child = NULL;
773                 }
774         }
775
776         sched_domain_debug(sd, cpu);
777
778         rq_attach_root(rq, rd);
779         tmp = rq->sd;
780         rcu_assign_pointer(rq->sd, sd);
781         dirty_sched_domain_sysctl(cpu);
782         destroy_sched_domains(tmp);
783
784         update_top_cache_domain(cpu);
785 }
786
787 struct s_data {
788         struct sched_domain * __percpu *sd;
789         struct root_domain      *rd;
790 };
791
792 enum s_alloc {
793         sa_rootdomain,
794         sa_sd,
795         sa_sd_storage,
796         sa_none,
797 };
798
799 /*
800  * Return the canonical balance CPU for this group, this is the first CPU
801  * of this group that's also in the balance mask.
802  *
803  * The balance mask are all those CPUs that could actually end up at this
804  * group. See build_balance_mask().
805  *
806  * Also see should_we_balance().
807  */
808 int group_balance_cpu(struct sched_group *sg)
809 {
810         return cpumask_first(group_balance_mask(sg));
811 }
812
813
814 /*
815  * NUMA topology (first read the regular topology blurb below)
816  *
817  * Given a node-distance table, for example:
818  *
819  *   node   0   1   2   3
820  *     0:  10  20  30  20
821  *     1:  20  10  20  30
822  *     2:  30  20  10  20
823  *     3:  20  30  20  10
824  *
825  * which represents a 4 node ring topology like:
826  *
827  *   0 ----- 1
828  *   |       |
829  *   |       |
830  *   |       |
831  *   3 ----- 2
832  *
833  * We want to construct domains and groups to represent this. The way we go
834  * about doing this is to build the domains on 'hops'. For each NUMA level we
835  * construct the mask of all nodes reachable in @level hops.
836  *
837  * For the above NUMA topology that gives 3 levels:
838  *
839  * NUMA-2       0-3             0-3             0-3             0-3
840  *  groups:     {0-1,3},{1-3}   {0-2},{0,2-3}   {1-3},{0-1,3}   {0,2-3},{0-2}
841  *
842  * NUMA-1       0-1,3           0-2             1-3             0,2-3
843  *  groups:     {0},{1},{3}     {0},{1},{2}     {1},{2},{3}     {0},{2},{3}
844  *
845  * NUMA-0       0               1               2               3
846  *
847  *
848  * As can be seen; things don't nicely line up as with the regular topology.
849  * When we iterate a domain in child domain chunks some nodes can be
850  * represented multiple times -- hence the "overlap" naming for this part of
851  * the topology.
852  *
853  * In order to minimize this overlap, we only build enough groups to cover the
854  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
855  *
856  * Because:
857  *
858  *  - the first group of each domain is its child domain; this
859  *    gets us the first 0-1,3
860  *  - the only uncovered node is 2, who's child domain is 1-3.
861  *
862  * However, because of the overlap, computing a unique CPU for each group is
863  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
864  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
865  * end up at those groups (they would end up in group: 0-1,3).
866  *
867  * To correct this we have to introduce the group balance mask. This mask
868  * will contain those CPUs in the group that can reach this group given the
869  * (child) domain tree.
870  *
871  * With this we can once again compute balance_cpu and sched_group_capacity
872  * relations.
873  *
874  * XXX include words on how balance_cpu is unique and therefore can be
875  * used for sched_group_capacity links.
876  *
877  *
878  * Another 'interesting' topology is:
879  *
880  *   node   0   1   2   3
881  *     0:  10  20  20  30
882  *     1:  20  10  20  20
883  *     2:  20  20  10  20
884  *     3:  30  20  20  10
885  *
886  * Which looks a little like:
887  *
888  *   0 ----- 1
889  *   |     / |
890  *   |   /   |
891  *   | /     |
892  *   2 ----- 3
893  *
894  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
895  * are not.
896  *
897  * This leads to a few particularly weird cases where the sched_domain's are
898  * not of the same number for each CPU. Consider:
899  *
900  * NUMA-2       0-3                                             0-3
901  *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
902  *
903  * NUMA-1       0-2             0-3             0-3             1-3
904  *
905  * NUMA-0       0               1               2               3
906  *
907  */
908
909
910 /*
911  * Build the balance mask; it contains only those CPUs that can arrive at this
912  * group and should be considered to continue balancing.
913  *
914  * We do this during the group creation pass, therefore the group information
915  * isn't complete yet, however since each group represents a (child) domain we
916  * can fully construct this using the sched_domain bits (which are already
917  * complete).
918  */
919 static void
920 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
921 {
922         const struct cpumask *sg_span = sched_group_span(sg);
923         struct sd_data *sdd = sd->private;
924         struct sched_domain *sibling;
925         int i;
926
927         cpumask_clear(mask);
928
929         for_each_cpu(i, sg_span) {
930                 sibling = *per_cpu_ptr(sdd->sd, i);
931
932                 /*
933                  * Can happen in the asymmetric case, where these siblings are
934                  * unused. The mask will not be empty because those CPUs that
935                  * do have the top domain _should_ span the domain.
936                  */
937                 if (!sibling->child)
938                         continue;
939
940                 /* If we would not end up here, we can't continue from here */
941                 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
942                         continue;
943
944                 cpumask_set_cpu(i, mask);
945         }
946
947         /* We must not have empty masks here */
948         WARN_ON_ONCE(cpumask_empty(mask));
949 }
950
951 /*
952  * XXX: This creates per-node group entries; since the load-balancer will
953  * immediately access remote memory to construct this group's load-balance
954  * statistics having the groups node local is of dubious benefit.
955  */
956 static struct sched_group *
957 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
958 {
959         struct sched_group *sg;
960         struct cpumask *sg_span;
961
962         sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
963                         GFP_KERNEL, cpu_to_node(cpu));
964
965         if (!sg)
966                 return NULL;
967
968         sg_span = sched_group_span(sg);
969         if (sd->child) {
970                 cpumask_copy(sg_span, sched_domain_span(sd->child));
971                 sg->flags = sd->child->flags;
972         } else {
973                 cpumask_copy(sg_span, sched_domain_span(sd));
974         }
975
976         atomic_inc(&sg->ref);
977         return sg;
978 }
979
980 static void init_overlap_sched_group(struct sched_domain *sd,
981                                      struct sched_group *sg)
982 {
983         struct cpumask *mask = sched_domains_tmpmask2;
984         struct sd_data *sdd = sd->private;
985         struct cpumask *sg_span;
986         int cpu;
987
988         build_balance_mask(sd, sg, mask);
989         cpu = cpumask_first(mask);
990
991         sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
992         if (atomic_inc_return(&sg->sgc->ref) == 1)
993                 cpumask_copy(group_balance_mask(sg), mask);
994         else
995                 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
996
997         /*
998          * Initialize sgc->capacity such that even if we mess up the
999          * domains and no possible iteration will get us here, we won't
1000          * die on a /0 trap.
1001          */
1002         sg_span = sched_group_span(sg);
1003         sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1004         sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1005         sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1006 }
1007
1008 static struct sched_domain *
1009 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1010 {
1011         /*
1012          * The proper descendant would be the one whose child won't span out
1013          * of sd
1014          */
1015         while (sibling->child &&
1016                !cpumask_subset(sched_domain_span(sibling->child),
1017                                sched_domain_span(sd)))
1018                 sibling = sibling->child;
1019
1020         /*
1021          * As we are referencing sgc across different topology level, we need
1022          * to go down to skip those sched_domains which don't contribute to
1023          * scheduling because they will be degenerated in cpu_attach_domain
1024          */
1025         while (sibling->child &&
1026                cpumask_equal(sched_domain_span(sibling->child),
1027                              sched_domain_span(sibling)))
1028                 sibling = sibling->child;
1029
1030         return sibling;
1031 }
1032
1033 static int
1034 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1035 {
1036         struct sched_group *first = NULL, *last = NULL, *sg;
1037         const struct cpumask *span = sched_domain_span(sd);
1038         struct cpumask *covered = sched_domains_tmpmask;
1039         struct sd_data *sdd = sd->private;
1040         struct sched_domain *sibling;
1041         int i;
1042
1043         cpumask_clear(covered);
1044
1045         for_each_cpu_wrap(i, span, cpu) {
1046                 struct cpumask *sg_span;
1047
1048                 if (cpumask_test_cpu(i, covered))
1049                         continue;
1050
1051                 sibling = *per_cpu_ptr(sdd->sd, i);
1052
1053                 /*
1054                  * Asymmetric node setups can result in situations where the
1055                  * domain tree is of unequal depth, make sure to skip domains
1056                  * that already cover the entire range.
1057                  *
1058                  * In that case build_sched_domains() will have terminated the
1059                  * iteration early and our sibling sd spans will be empty.
1060                  * Domains should always include the CPU they're built on, so
1061                  * check that.
1062                  */
1063                 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1064                         continue;
1065
1066                 /*
1067                  * Usually we build sched_group by sibling's child sched_domain
1068                  * But for machines whose NUMA diameter are 3 or above, we move
1069                  * to build sched_group by sibling's proper descendant's child
1070                  * domain because sibling's child sched_domain will span out of
1071                  * the sched_domain being built as below.
1072                  *
1073                  * Smallest diameter=3 topology is:
1074                  *
1075                  *   node   0   1   2   3
1076                  *     0:  10  20  30  40
1077                  *     1:  20  10  20  30
1078                  *     2:  30  20  10  20
1079                  *     3:  40  30  20  10
1080                  *
1081                  *   0 --- 1 --- 2 --- 3
1082                  *
1083                  * NUMA-3       0-3             N/A             N/A             0-3
1084                  *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1085                  *
1086                  * NUMA-2       0-2             0-3             0-3             1-3
1087                  *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1088                  *
1089                  * NUMA-1       0-1             0-2             1-3             2-3
1090                  *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1091                  *
1092                  * NUMA-0       0               1               2               3
1093                  *
1094                  * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1095                  * group span isn't a subset of the domain span.
1096                  */
1097                 if (sibling->child &&
1098                     !cpumask_subset(sched_domain_span(sibling->child), span))
1099                         sibling = find_descended_sibling(sd, sibling);
1100
1101                 sg = build_group_from_child_sched_domain(sibling, cpu);
1102                 if (!sg)
1103                         goto fail;
1104
1105                 sg_span = sched_group_span(sg);
1106                 cpumask_or(covered, covered, sg_span);
1107
1108                 init_overlap_sched_group(sibling, sg);
1109
1110                 if (!first)
1111                         first = sg;
1112                 if (last)
1113                         last->next = sg;
1114                 last = sg;
1115                 last->next = first;
1116         }
1117         sd->groups = first;
1118
1119         return 0;
1120
1121 fail:
1122         free_sched_groups(first, 0);
1123
1124         return -ENOMEM;
1125 }
1126
1127
1128 /*
1129  * Package topology (also see the load-balance blurb in fair.c)
1130  *
1131  * The scheduler builds a tree structure to represent a number of important
1132  * topology features. By default (default_topology[]) these include:
1133  *
1134  *  - Simultaneous multithreading (SMT)
1135  *  - Multi-Core Cache (MC)
1136  *  - Package (PKG)
1137  *
1138  * Where the last one more or less denotes everything up to a NUMA node.
1139  *
1140  * The tree consists of 3 primary data structures:
1141  *
1142  *      sched_domain -> sched_group -> sched_group_capacity
1143  *          ^ ^             ^ ^
1144  *          `-'             `-'
1145  *
1146  * The sched_domains are per-CPU and have a two way link (parent & child) and
1147  * denote the ever growing mask of CPUs belonging to that level of topology.
1148  *
1149  * Each sched_domain has a circular (double) linked list of sched_group's, each
1150  * denoting the domains of the level below (or individual CPUs in case of the
1151  * first domain level). The sched_group linked by a sched_domain includes the
1152  * CPU of that sched_domain [*].
1153  *
1154  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1155  *
1156  * CPU   0   1   2   3   4   5   6   7
1157  *
1158  * PKG  [                             ]
1159  * MC   [             ] [             ]
1160  * SMT  [     ] [     ] [     ] [     ]
1161  *
1162  *  - or -
1163  *
1164  * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1165  * MC   0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1166  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1167  *
1168  * CPU   0   1   2   3   4   5   6   7
1169  *
1170  * One way to think about it is: sched_domain moves you up and down among these
1171  * topology levels, while sched_group moves you sideways through it, at child
1172  * domain granularity.
1173  *
1174  * sched_group_capacity ensures each unique sched_group has shared storage.
1175  *
1176  * There are two related construction problems, both require a CPU that
1177  * uniquely identify each group (for a given domain):
1178  *
1179  *  - The first is the balance_cpu (see should_we_balance() and the
1180  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1181  *    continue balancing at a higher domain.
1182  *
1183  *  - The second is the sched_group_capacity; we want all identical groups
1184  *    to share a single sched_group_capacity.
1185  *
1186  * Since these topologies are exclusive by construction. That is, its
1187  * impossible for an SMT thread to belong to multiple cores, and cores to
1188  * be part of multiple caches. There is a very clear and unique location
1189  * for each CPU in the hierarchy.
1190  *
1191  * Therefore computing a unique CPU for each group is trivial (the iteration
1192  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1193  * group), we can simply pick the first CPU in each group.
1194  *
1195  *
1196  * [*] in other words, the first group of each domain is its child domain.
1197  */
1198
1199 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1200 {
1201         struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1202         struct sched_domain *child = sd->child;
1203         struct sched_group *sg;
1204         bool already_visited;
1205
1206         if (child)
1207                 cpu = cpumask_first(sched_domain_span(child));
1208
1209         sg = *per_cpu_ptr(sdd->sg, cpu);
1210         sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1211
1212         /* Increase refcounts for claim_allocations: */
1213         already_visited = atomic_inc_return(&sg->ref) > 1;
1214         /* sgc visits should follow a similar trend as sg */
1215         WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1216
1217         /* If we have already visited that group, it's already initialized. */
1218         if (already_visited)
1219                 return sg;
1220
1221         if (child) {
1222                 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1223                 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1224                 sg->flags = child->flags;
1225         } else {
1226                 cpumask_set_cpu(cpu, sched_group_span(sg));
1227                 cpumask_set_cpu(cpu, group_balance_mask(sg));
1228         }
1229
1230         sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1231         sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1232         sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1233
1234         return sg;
1235 }
1236
1237 /*
1238  * build_sched_groups will build a circular linked list of the groups
1239  * covered by the given span, will set each group's ->cpumask correctly,
1240  * and will initialize their ->sgc.
1241  *
1242  * Assumes the sched_domain tree is fully constructed
1243  */
1244 static int
1245 build_sched_groups(struct sched_domain *sd, int cpu)
1246 {
1247         struct sched_group *first = NULL, *last = NULL;
1248         struct sd_data *sdd = sd->private;
1249         const struct cpumask *span = sched_domain_span(sd);
1250         struct cpumask *covered;
1251         int i;
1252
1253         lockdep_assert_held(&sched_domains_mutex);
1254         covered = sched_domains_tmpmask;
1255
1256         cpumask_clear(covered);
1257
1258         for_each_cpu_wrap(i, span, cpu) {
1259                 struct sched_group *sg;
1260
1261                 if (cpumask_test_cpu(i, covered))
1262                         continue;
1263
1264                 sg = get_group(i, sdd);
1265
1266                 cpumask_or(covered, covered, sched_group_span(sg));
1267
1268                 if (!first)
1269                         first = sg;
1270                 if (last)
1271                         last->next = sg;
1272                 last = sg;
1273         }
1274         last->next = first;
1275         sd->groups = first;
1276
1277         return 0;
1278 }
1279
1280 /*
1281  * Initialize sched groups cpu_capacity.
1282  *
1283  * cpu_capacity indicates the capacity of sched group, which is used while
1284  * distributing the load between different sched groups in a sched domain.
1285  * Typically cpu_capacity for all the groups in a sched domain will be same
1286  * unless there are asymmetries in the topology. If there are asymmetries,
1287  * group having more cpu_capacity will pickup more load compared to the
1288  * group having less cpu_capacity.
1289  */
1290 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1291 {
1292         struct sched_group *sg = sd->groups;
1293         struct cpumask *mask = sched_domains_tmpmask2;
1294
1295         WARN_ON(!sg);
1296
1297         do {
1298                 int cpu, cores = 0, max_cpu = -1;
1299
1300                 sg->group_weight = cpumask_weight(sched_group_span(sg));
1301
1302                 cpumask_copy(mask, sched_group_span(sg));
1303                 for_each_cpu(cpu, mask) {
1304                         cores++;
1305 #ifdef CONFIG_SCHED_SMT
1306                         cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1307 #endif
1308                 }
1309                 sg->cores = cores;
1310
1311                 if (!(sd->flags & SD_ASYM_PACKING))
1312                         goto next;
1313
1314                 for_each_cpu(cpu, sched_group_span(sg)) {
1315                         if (max_cpu < 0)
1316                                 max_cpu = cpu;
1317                         else if (sched_asym_prefer(cpu, max_cpu))
1318                                 max_cpu = cpu;
1319                 }
1320                 sg->asym_prefer_cpu = max_cpu;
1321
1322 next:
1323                 sg = sg->next;
1324         } while (sg != sd->groups);
1325
1326         if (cpu != group_balance_cpu(sg))
1327                 return;
1328
1329         update_group_capacity(sd, cpu);
1330 }
1331
1332 /*
1333  * Asymmetric CPU capacity bits
1334  */
1335 struct asym_cap_data {
1336         struct list_head link;
1337         unsigned long capacity;
1338         unsigned long cpus[];
1339 };
1340
1341 /*
1342  * Set of available CPUs grouped by their corresponding capacities
1343  * Each list entry contains a CPU mask reflecting CPUs that share the same
1344  * capacity.
1345  * The lifespan of data is unlimited.
1346  */
1347 static LIST_HEAD(asym_cap_list);
1348
1349 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1350
1351 /*
1352  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1353  * Provides sd_flags reflecting the asymmetry scope.
1354  */
1355 static inline int
1356 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1357                            const struct cpumask *cpu_map)
1358 {
1359         struct asym_cap_data *entry;
1360         int count = 0, miss = 0;
1361
1362         /*
1363          * Count how many unique CPU capacities this domain spans across
1364          * (compare sched_domain CPUs mask with ones representing  available
1365          * CPUs capacities). Take into account CPUs that might be offline:
1366          * skip those.
1367          */
1368         list_for_each_entry(entry, &asym_cap_list, link) {
1369                 if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1370                         ++count;
1371                 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1372                         ++miss;
1373         }
1374
1375         WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1376
1377         /* No asymmetry detected */
1378         if (count < 2)
1379                 return 0;
1380         /* Some of the available CPU capacity values have not been detected */
1381         if (miss)
1382                 return SD_ASYM_CPUCAPACITY;
1383
1384         /* Full asymmetry */
1385         return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1386
1387 }
1388
1389 static inline void asym_cpu_capacity_update_data(int cpu)
1390 {
1391         unsigned long capacity = arch_scale_cpu_capacity(cpu);
1392         struct asym_cap_data *entry = NULL;
1393
1394         list_for_each_entry(entry, &asym_cap_list, link) {
1395                 if (capacity == entry->capacity)
1396                         goto done;
1397         }
1398
1399         entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1400         if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1401                 return;
1402         entry->capacity = capacity;
1403         list_add(&entry->link, &asym_cap_list);
1404 done:
1405         __cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1406 }
1407
1408 /*
1409  * Build-up/update list of CPUs grouped by their capacities
1410  * An update requires explicit request to rebuild sched domains
1411  * with state indicating CPU topology changes.
1412  */
1413 static void asym_cpu_capacity_scan(void)
1414 {
1415         struct asym_cap_data *entry, *next;
1416         int cpu;
1417
1418         list_for_each_entry(entry, &asym_cap_list, link)
1419                 cpumask_clear(cpu_capacity_span(entry));
1420
1421         for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1422                 asym_cpu_capacity_update_data(cpu);
1423
1424         list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1425                 if (cpumask_empty(cpu_capacity_span(entry))) {
1426                         list_del(&entry->link);
1427                         kfree(entry);
1428                 }
1429         }
1430
1431         /*
1432          * Only one capacity value has been detected i.e. this system is symmetric.
1433          * No need to keep this data around.
1434          */
1435         if (list_is_singular(&asym_cap_list)) {
1436                 entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1437                 list_del(&entry->link);
1438                 kfree(entry);
1439         }
1440 }
1441
1442 /*
1443  * Initializers for schedule domains
1444  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1445  */
1446
1447 static int default_relax_domain_level = -1;
1448 int sched_domain_level_max;
1449
1450 static int __init setup_relax_domain_level(char *str)
1451 {
1452         if (kstrtoint(str, 0, &default_relax_domain_level))
1453                 pr_warn("Unable to set relax_domain_level\n");
1454
1455         return 1;
1456 }
1457 __setup("relax_domain_level=", setup_relax_domain_level);
1458
1459 static void set_domain_attribute(struct sched_domain *sd,
1460                                  struct sched_domain_attr *attr)
1461 {
1462         int request;
1463
1464         if (!attr || attr->relax_domain_level < 0) {
1465                 if (default_relax_domain_level < 0)
1466                         return;
1467                 request = default_relax_domain_level;
1468         } else
1469                 request = attr->relax_domain_level;
1470
1471         if (sd->level > request) {
1472                 /* Turn off idle balance on this domain: */
1473                 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1474         }
1475 }
1476
1477 static void __sdt_free(const struct cpumask *cpu_map);
1478 static int __sdt_alloc(const struct cpumask *cpu_map);
1479
1480 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1481                                  const struct cpumask *cpu_map)
1482 {
1483         switch (what) {
1484         case sa_rootdomain:
1485                 if (!atomic_read(&d->rd->refcount))
1486                         free_rootdomain(&d->rd->rcu);
1487                 fallthrough;
1488         case sa_sd:
1489                 free_percpu(d->sd);
1490                 fallthrough;
1491         case sa_sd_storage:
1492                 __sdt_free(cpu_map);
1493                 fallthrough;
1494         case sa_none:
1495                 break;
1496         }
1497 }
1498
1499 static enum s_alloc
1500 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1501 {
1502         memset(d, 0, sizeof(*d));
1503
1504         if (__sdt_alloc(cpu_map))
1505                 return sa_sd_storage;
1506         d->sd = alloc_percpu(struct sched_domain *);
1507         if (!d->sd)
1508                 return sa_sd_storage;
1509         d->rd = alloc_rootdomain();
1510         if (!d->rd)
1511                 return sa_sd;
1512
1513         return sa_rootdomain;
1514 }
1515
1516 /*
1517  * NULL the sd_data elements we've used to build the sched_domain and
1518  * sched_group structure so that the subsequent __free_domain_allocs()
1519  * will not free the data we're using.
1520  */
1521 static void claim_allocations(int cpu, struct sched_domain *sd)
1522 {
1523         struct sd_data *sdd = sd->private;
1524
1525         WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1526         *per_cpu_ptr(sdd->sd, cpu) = NULL;
1527
1528         if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1529                 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1530
1531         if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1532                 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1533
1534         if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1535                 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1536 }
1537
1538 #ifdef CONFIG_NUMA
1539 enum numa_topology_type sched_numa_topology_type;
1540
1541 static int                      sched_domains_numa_levels;
1542 static int                      sched_domains_curr_level;
1543
1544 int                             sched_max_numa_distance;
1545 static int                      *sched_domains_numa_distance;
1546 static struct cpumask           ***sched_domains_numa_masks;
1547 #endif
1548
1549 /*
1550  * SD_flags allowed in topology descriptions.
1551  *
1552  * These flags are purely descriptive of the topology and do not prescribe
1553  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1554  * function:
1555  *
1556  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1557  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1558  *   SD_NUMA                - describes NUMA topologies
1559  *
1560  * Odd one out, which beside describing the topology has a quirk also
1561  * prescribes the desired behaviour that goes along with it:
1562  *
1563  *   SD_ASYM_PACKING        - describes SMT quirks
1564  */
1565 #define TOPOLOGY_SD_FLAGS               \
1566         (SD_SHARE_CPUCAPACITY   |       \
1567          SD_CLUSTER             |       \
1568          SD_SHARE_PKG_RESOURCES |       \
1569          SD_NUMA                |       \
1570          SD_ASYM_PACKING)
1571
1572 static struct sched_domain *
1573 sd_init(struct sched_domain_topology_level *tl,
1574         const struct cpumask *cpu_map,
1575         struct sched_domain *child, int cpu)
1576 {
1577         struct sd_data *sdd = &tl->data;
1578         struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1579         int sd_id, sd_weight, sd_flags = 0;
1580         struct cpumask *sd_span;
1581
1582 #ifdef CONFIG_NUMA
1583         /*
1584          * Ugly hack to pass state to sd_numa_mask()...
1585          */
1586         sched_domains_curr_level = tl->numa_level;
1587 #endif
1588
1589         sd_weight = cpumask_weight(tl->mask(cpu));
1590
1591         if (tl->sd_flags)
1592                 sd_flags = (*tl->sd_flags)();
1593         if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1594                         "wrong sd_flags in topology description\n"))
1595                 sd_flags &= TOPOLOGY_SD_FLAGS;
1596
1597         *sd = (struct sched_domain){
1598                 .min_interval           = sd_weight,
1599                 .max_interval           = 2*sd_weight,
1600                 .busy_factor            = 16,
1601                 .imbalance_pct          = 117,
1602
1603                 .cache_nice_tries       = 0,
1604
1605                 .flags                  = 1*SD_BALANCE_NEWIDLE
1606                                         | 1*SD_BALANCE_EXEC
1607                                         | 1*SD_BALANCE_FORK
1608                                         | 0*SD_BALANCE_WAKE
1609                                         | 1*SD_WAKE_AFFINE
1610                                         | 0*SD_SHARE_CPUCAPACITY
1611                                         | 0*SD_SHARE_PKG_RESOURCES
1612                                         | 0*SD_SERIALIZE
1613                                         | 1*SD_PREFER_SIBLING
1614                                         | 0*SD_NUMA
1615                                         | sd_flags
1616                                         ,
1617
1618                 .last_balance           = jiffies,
1619                 .balance_interval       = sd_weight,
1620                 .max_newidle_lb_cost    = 0,
1621                 .last_decay_max_lb_cost = jiffies,
1622                 .child                  = child,
1623 #ifdef CONFIG_SCHED_DEBUG
1624                 .name                   = tl->name,
1625 #endif
1626         };
1627
1628         sd_span = sched_domain_span(sd);
1629         cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1630         sd_id = cpumask_first(sd_span);
1631
1632         sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1633
1634         WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1635                   (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1636                   "CPU capacity asymmetry not supported on SMT\n");
1637
1638         /*
1639          * Convert topological properties into behaviour.
1640          */
1641         /* Don't attempt to spread across CPUs of different capacities. */
1642         if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1643                 sd->child->flags &= ~SD_PREFER_SIBLING;
1644
1645         if (sd->flags & SD_SHARE_CPUCAPACITY) {
1646                 sd->imbalance_pct = 110;
1647
1648         } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1649                 sd->imbalance_pct = 117;
1650                 sd->cache_nice_tries = 1;
1651
1652 #ifdef CONFIG_NUMA
1653         } else if (sd->flags & SD_NUMA) {
1654                 sd->cache_nice_tries = 2;
1655
1656                 sd->flags &= ~SD_PREFER_SIBLING;
1657                 sd->flags |= SD_SERIALIZE;
1658                 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1659                         sd->flags &= ~(SD_BALANCE_EXEC |
1660                                        SD_BALANCE_FORK |
1661                                        SD_WAKE_AFFINE);
1662                 }
1663
1664 #endif
1665         } else {
1666                 sd->cache_nice_tries = 1;
1667         }
1668
1669         /*
1670          * For all levels sharing cache; connect a sched_domain_shared
1671          * instance.
1672          */
1673         if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1674                 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1675                 atomic_inc(&sd->shared->ref);
1676                 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1677         }
1678
1679         sd->private = sdd;
1680
1681         return sd;
1682 }
1683
1684 /*
1685  * Topology list, bottom-up.
1686  */
1687 static struct sched_domain_topology_level default_topology[] = {
1688 #ifdef CONFIG_SCHED_SMT
1689         { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1690 #endif
1691
1692 #ifdef CONFIG_SCHED_CLUSTER
1693         { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1694 #endif
1695
1696 #ifdef CONFIG_SCHED_MC
1697         { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1698 #endif
1699         { cpu_cpu_mask, SD_INIT_NAME(PKG) },
1700         { NULL, },
1701 };
1702
1703 static struct sched_domain_topology_level *sched_domain_topology =
1704         default_topology;
1705 static struct sched_domain_topology_level *sched_domain_topology_saved;
1706
1707 #define for_each_sd_topology(tl)                        \
1708         for (tl = sched_domain_topology; tl->mask; tl++)
1709
1710 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1711 {
1712         if (WARN_ON_ONCE(sched_smp_initialized))
1713                 return;
1714
1715         sched_domain_topology = tl;
1716         sched_domain_topology_saved = NULL;
1717 }
1718
1719 #ifdef CONFIG_NUMA
1720
1721 static const struct cpumask *sd_numa_mask(int cpu)
1722 {
1723         return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1724 }
1725
1726 static void sched_numa_warn(const char *str)
1727 {
1728         static int done = false;
1729         int i,j;
1730
1731         if (done)
1732                 return;
1733
1734         done = true;
1735
1736         printk(KERN_WARNING "ERROR: %s\n\n", str);
1737
1738         for (i = 0; i < nr_node_ids; i++) {
1739                 printk(KERN_WARNING "  ");
1740                 for (j = 0; j < nr_node_ids; j++) {
1741                         if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1742                                 printk(KERN_CONT "(%02d) ", node_distance(i,j));
1743                         else
1744                                 printk(KERN_CONT " %02d  ", node_distance(i,j));
1745                 }
1746                 printk(KERN_CONT "\n");
1747         }
1748         printk(KERN_WARNING "\n");
1749 }
1750
1751 bool find_numa_distance(int distance)
1752 {
1753         bool found = false;
1754         int i, *distances;
1755
1756         if (distance == node_distance(0, 0))
1757                 return true;
1758
1759         rcu_read_lock();
1760         distances = rcu_dereference(sched_domains_numa_distance);
1761         if (!distances)
1762                 goto unlock;
1763         for (i = 0; i < sched_domains_numa_levels; i++) {
1764                 if (distances[i] == distance) {
1765                         found = true;
1766                         break;
1767                 }
1768         }
1769 unlock:
1770         rcu_read_unlock();
1771
1772         return found;
1773 }
1774
1775 #define for_each_cpu_node_but(n, nbut)          \
1776         for_each_node_state(n, N_CPU)           \
1777                 if (n == nbut)                  \
1778                         continue;               \
1779                 else
1780
1781 /*
1782  * A system can have three types of NUMA topology:
1783  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1784  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1785  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1786  *
1787  * The difference between a glueless mesh topology and a backplane
1788  * topology lies in whether communication between not directly
1789  * connected nodes goes through intermediary nodes (where programs
1790  * could run), or through backplane controllers. This affects
1791  * placement of programs.
1792  *
1793  * The type of topology can be discerned with the following tests:
1794  * - If the maximum distance between any nodes is 1 hop, the system
1795  *   is directly connected.
1796  * - If for two nodes A and B, located N > 1 hops away from each other,
1797  *   there is an intermediary node C, which is < N hops away from both
1798  *   nodes A and B, the system is a glueless mesh.
1799  */
1800 static void init_numa_topology_type(int offline_node)
1801 {
1802         int a, b, c, n;
1803
1804         n = sched_max_numa_distance;
1805
1806         if (sched_domains_numa_levels <= 2) {
1807                 sched_numa_topology_type = NUMA_DIRECT;
1808                 return;
1809         }
1810
1811         for_each_cpu_node_but(a, offline_node) {
1812                 for_each_cpu_node_but(b, offline_node) {
1813                         /* Find two nodes furthest removed from each other. */
1814                         if (node_distance(a, b) < n)
1815                                 continue;
1816
1817                         /* Is there an intermediary node between a and b? */
1818                         for_each_cpu_node_but(c, offline_node) {
1819                                 if (node_distance(a, c) < n &&
1820                                     node_distance(b, c) < n) {
1821                                         sched_numa_topology_type =
1822                                                         NUMA_GLUELESS_MESH;
1823                                         return;
1824                                 }
1825                         }
1826
1827                         sched_numa_topology_type = NUMA_BACKPLANE;
1828                         return;
1829                 }
1830         }
1831
1832         pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1833         sched_numa_topology_type = NUMA_DIRECT;
1834 }
1835
1836
1837 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1838
1839 void sched_init_numa(int offline_node)
1840 {
1841         struct sched_domain_topology_level *tl;
1842         unsigned long *distance_map;
1843         int nr_levels = 0;
1844         int i, j;
1845         int *distances;
1846         struct cpumask ***masks;
1847
1848         /*
1849          * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1850          * unique distances in the node_distance() table.
1851          */
1852         distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1853         if (!distance_map)
1854                 return;
1855
1856         bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1857         for_each_cpu_node_but(i, offline_node) {
1858                 for_each_cpu_node_but(j, offline_node) {
1859                         int distance = node_distance(i, j);
1860
1861                         if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1862                                 sched_numa_warn("Invalid distance value range");
1863                                 bitmap_free(distance_map);
1864                                 return;
1865                         }
1866
1867                         bitmap_set(distance_map, distance, 1);
1868                 }
1869         }
1870         /*
1871          * We can now figure out how many unique distance values there are and
1872          * allocate memory accordingly.
1873          */
1874         nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1875
1876         distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1877         if (!distances) {
1878                 bitmap_free(distance_map);
1879                 return;
1880         }
1881
1882         for (i = 0, j = 0; i < nr_levels; i++, j++) {
1883                 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1884                 distances[i] = j;
1885         }
1886         rcu_assign_pointer(sched_domains_numa_distance, distances);
1887
1888         bitmap_free(distance_map);
1889
1890         /*
1891          * 'nr_levels' contains the number of unique distances
1892          *
1893          * The sched_domains_numa_distance[] array includes the actual distance
1894          * numbers.
1895          */
1896
1897         /*
1898          * Here, we should temporarily reset sched_domains_numa_levels to 0.
1899          * If it fails to allocate memory for array sched_domains_numa_masks[][],
1900          * the array will contain less then 'nr_levels' members. This could be
1901          * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1902          * in other functions.
1903          *
1904          * We reset it to 'nr_levels' at the end of this function.
1905          */
1906         sched_domains_numa_levels = 0;
1907
1908         masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1909         if (!masks)
1910                 return;
1911
1912         /*
1913          * Now for each level, construct a mask per node which contains all
1914          * CPUs of nodes that are that many hops away from us.
1915          */
1916         for (i = 0; i < nr_levels; i++) {
1917                 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1918                 if (!masks[i])
1919                         return;
1920
1921                 for_each_cpu_node_but(j, offline_node) {
1922                         struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1923                         int k;
1924
1925                         if (!mask)
1926                                 return;
1927
1928                         masks[i][j] = mask;
1929
1930                         for_each_cpu_node_but(k, offline_node) {
1931                                 if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1932                                         sched_numa_warn("Node-distance not symmetric");
1933
1934                                 if (node_distance(j, k) > sched_domains_numa_distance[i])
1935                                         continue;
1936
1937                                 cpumask_or(mask, mask, cpumask_of_node(k));
1938                         }
1939                 }
1940         }
1941         rcu_assign_pointer(sched_domains_numa_masks, masks);
1942
1943         /* Compute default topology size */
1944         for (i = 0; sched_domain_topology[i].mask; i++);
1945
1946         tl = kzalloc((i + nr_levels + 1) *
1947                         sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1948         if (!tl)
1949                 return;
1950
1951         /*
1952          * Copy the default topology bits..
1953          */
1954         for (i = 0; sched_domain_topology[i].mask; i++)
1955                 tl[i] = sched_domain_topology[i];
1956
1957         /*
1958          * Add the NUMA identity distance, aka single NODE.
1959          */
1960         tl[i++] = (struct sched_domain_topology_level){
1961                 .mask = sd_numa_mask,
1962                 .numa_level = 0,
1963                 SD_INIT_NAME(NODE)
1964         };
1965
1966         /*
1967          * .. and append 'j' levels of NUMA goodness.
1968          */
1969         for (j = 1; j < nr_levels; i++, j++) {
1970                 tl[i] = (struct sched_domain_topology_level){
1971                         .mask = sd_numa_mask,
1972                         .sd_flags = cpu_numa_flags,
1973                         .flags = SDTL_OVERLAP,
1974                         .numa_level = j,
1975                         SD_INIT_NAME(NUMA)
1976                 };
1977         }
1978
1979         sched_domain_topology_saved = sched_domain_topology;
1980         sched_domain_topology = tl;
1981
1982         sched_domains_numa_levels = nr_levels;
1983         WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1984
1985         init_numa_topology_type(offline_node);
1986 }
1987
1988
1989 static void sched_reset_numa(void)
1990 {
1991         int nr_levels, *distances;
1992         struct cpumask ***masks;
1993
1994         nr_levels = sched_domains_numa_levels;
1995         sched_domains_numa_levels = 0;
1996         sched_max_numa_distance = 0;
1997         sched_numa_topology_type = NUMA_DIRECT;
1998         distances = sched_domains_numa_distance;
1999         rcu_assign_pointer(sched_domains_numa_distance, NULL);
2000         masks = sched_domains_numa_masks;
2001         rcu_assign_pointer(sched_domains_numa_masks, NULL);
2002         if (distances || masks) {
2003                 int i, j;
2004
2005                 synchronize_rcu();
2006                 kfree(distances);
2007                 for (i = 0; i < nr_levels && masks; i++) {
2008                         if (!masks[i])
2009                                 continue;
2010                         for_each_node(j)
2011                                 kfree(masks[i][j]);
2012                         kfree(masks[i]);
2013                 }
2014                 kfree(masks);
2015         }
2016         if (sched_domain_topology_saved) {
2017                 kfree(sched_domain_topology);
2018                 sched_domain_topology = sched_domain_topology_saved;
2019                 sched_domain_topology_saved = NULL;
2020         }
2021 }
2022
2023 /*
2024  * Call with hotplug lock held
2025  */
2026 void sched_update_numa(int cpu, bool online)
2027 {
2028         int node;
2029
2030         node = cpu_to_node(cpu);
2031         /*
2032          * Scheduler NUMA topology is updated when the first CPU of a
2033          * node is onlined or the last CPU of a node is offlined.
2034          */
2035         if (cpumask_weight(cpumask_of_node(node)) != 1)
2036                 return;
2037
2038         sched_reset_numa();
2039         sched_init_numa(online ? NUMA_NO_NODE : node);
2040 }
2041
2042 void sched_domains_numa_masks_set(unsigned int cpu)
2043 {
2044         int node = cpu_to_node(cpu);
2045         int i, j;
2046
2047         for (i = 0; i < sched_domains_numa_levels; i++) {
2048                 for (j = 0; j < nr_node_ids; j++) {
2049                         if (!node_state(j, N_CPU))
2050                                 continue;
2051
2052                         /* Set ourselves in the remote node's masks */
2053                         if (node_distance(j, node) <= sched_domains_numa_distance[i])
2054                                 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2055                 }
2056         }
2057 }
2058
2059 void sched_domains_numa_masks_clear(unsigned int cpu)
2060 {
2061         int i, j;
2062
2063         for (i = 0; i < sched_domains_numa_levels; i++) {
2064                 for (j = 0; j < nr_node_ids; j++) {
2065                         if (sched_domains_numa_masks[i][j])
2066                                 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2067                 }
2068         }
2069 }
2070
2071 /*
2072  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2073  *                             closest to @cpu from @cpumask.
2074  * cpumask: cpumask to find a cpu from
2075  * cpu: cpu to be close to
2076  *
2077  * returns: cpu, or nr_cpu_ids when nothing found.
2078  */
2079 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2080 {
2081         int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2082         struct cpumask ***masks;
2083
2084         rcu_read_lock();
2085         masks = rcu_dereference(sched_domains_numa_masks);
2086         if (!masks)
2087                 goto unlock;
2088         for (i = 0; i < sched_domains_numa_levels; i++) {
2089                 if (!masks[i][j])
2090                         break;
2091                 cpu = cpumask_any_and(cpus, masks[i][j]);
2092                 if (cpu < nr_cpu_ids) {
2093                         found = cpu;
2094                         break;
2095                 }
2096         }
2097 unlock:
2098         rcu_read_unlock();
2099
2100         return found;
2101 }
2102
2103 struct __cmp_key {
2104         const struct cpumask *cpus;
2105         struct cpumask ***masks;
2106         int node;
2107         int cpu;
2108         int w;
2109 };
2110
2111 static int hop_cmp(const void *a, const void *b)
2112 {
2113         struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2114         struct __cmp_key *k = (struct __cmp_key *)a;
2115
2116         if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2117                 return 1;
2118
2119         if (b == k->masks) {
2120                 k->w = 0;
2121                 return 0;
2122         }
2123
2124         prev_hop = *((struct cpumask ***)b - 1);
2125         k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2126         if (k->w <= k->cpu)
2127                 return 0;
2128
2129         return -1;
2130 }
2131
2132 /**
2133  * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2134  *                             from @cpus to @cpu, taking into account distance
2135  *                             from a given @node.
2136  * @cpus: cpumask to find a cpu from
2137  * @cpu: CPU to start searching
2138  * @node: NUMA node to order CPUs by distance
2139  *
2140  * Return: cpu, or nr_cpu_ids when nothing found.
2141  */
2142 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2143 {
2144         struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2145         struct cpumask ***hop_masks;
2146         int hop, ret = nr_cpu_ids;
2147
2148         if (node == NUMA_NO_NODE)
2149                 return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2150
2151         rcu_read_lock();
2152
2153         /* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2154         node = numa_nearest_node(node, N_CPU);
2155         k.node = node;
2156
2157         k.masks = rcu_dereference(sched_domains_numa_masks);
2158         if (!k.masks)
2159                 goto unlock;
2160
2161         hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2162         hop = hop_masks - k.masks;
2163
2164         ret = hop ?
2165                 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2166                 cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2167 unlock:
2168         rcu_read_unlock();
2169         return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2172
2173 /**
2174  * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2175  *                         @node
2176  * @node: The node to count hops from.
2177  * @hops: Include CPUs up to that many hops away. 0 means local node.
2178  *
2179  * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2180  * @node, an error value otherwise.
2181  *
2182  * Requires rcu_lock to be held. Returned cpumask is only valid within that
2183  * read-side section, copy it if required beyond that.
2184  *
2185  * Note that not all hops are equal in distance; see sched_init_numa() for how
2186  * distances and masks are handled.
2187  * Also note that this is a reflection of sched_domains_numa_masks, which may change
2188  * during the lifetime of the system (offline nodes are taken out of the masks).
2189  */
2190 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2191 {
2192         struct cpumask ***masks;
2193
2194         if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2195                 return ERR_PTR(-EINVAL);
2196
2197         masks = rcu_dereference(sched_domains_numa_masks);
2198         if (!masks)
2199                 return ERR_PTR(-EBUSY);
2200
2201         return masks[hops][node];
2202 }
2203 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2204
2205 #endif /* CONFIG_NUMA */
2206
2207 static int __sdt_alloc(const struct cpumask *cpu_map)
2208 {
2209         struct sched_domain_topology_level *tl;
2210         int j;
2211
2212         for_each_sd_topology(tl) {
2213                 struct sd_data *sdd = &tl->data;
2214
2215                 sdd->sd = alloc_percpu(struct sched_domain *);
2216                 if (!sdd->sd)
2217                         return -ENOMEM;
2218
2219                 sdd->sds = alloc_percpu(struct sched_domain_shared *);
2220                 if (!sdd->sds)
2221                         return -ENOMEM;
2222
2223                 sdd->sg = alloc_percpu(struct sched_group *);
2224                 if (!sdd->sg)
2225                         return -ENOMEM;
2226
2227                 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2228                 if (!sdd->sgc)
2229                         return -ENOMEM;
2230
2231                 for_each_cpu(j, cpu_map) {
2232                         struct sched_domain *sd;
2233                         struct sched_domain_shared *sds;
2234                         struct sched_group *sg;
2235                         struct sched_group_capacity *sgc;
2236
2237                         sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2238                                         GFP_KERNEL, cpu_to_node(j));
2239                         if (!sd)
2240                                 return -ENOMEM;
2241
2242                         *per_cpu_ptr(sdd->sd, j) = sd;
2243
2244                         sds = kzalloc_node(sizeof(struct sched_domain_shared),
2245                                         GFP_KERNEL, cpu_to_node(j));
2246                         if (!sds)
2247                                 return -ENOMEM;
2248
2249                         *per_cpu_ptr(sdd->sds, j) = sds;
2250
2251                         sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2252                                         GFP_KERNEL, cpu_to_node(j));
2253                         if (!sg)
2254                                 return -ENOMEM;
2255
2256                         sg->next = sg;
2257
2258                         *per_cpu_ptr(sdd->sg, j) = sg;
2259
2260                         sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2261                                         GFP_KERNEL, cpu_to_node(j));
2262                         if (!sgc)
2263                                 return -ENOMEM;
2264
2265 #ifdef CONFIG_SCHED_DEBUG
2266                         sgc->id = j;
2267 #endif
2268
2269                         *per_cpu_ptr(sdd->sgc, j) = sgc;
2270                 }
2271         }
2272
2273         return 0;
2274 }
2275
2276 static void __sdt_free(const struct cpumask *cpu_map)
2277 {
2278         struct sched_domain_topology_level *tl;
2279         int j;
2280
2281         for_each_sd_topology(tl) {
2282                 struct sd_data *sdd = &tl->data;
2283
2284                 for_each_cpu(j, cpu_map) {
2285                         struct sched_domain *sd;
2286
2287                         if (sdd->sd) {
2288                                 sd = *per_cpu_ptr(sdd->sd, j);
2289                                 if (sd && (sd->flags & SD_OVERLAP))
2290                                         free_sched_groups(sd->groups, 0);
2291                                 kfree(*per_cpu_ptr(sdd->sd, j));
2292                         }
2293
2294                         if (sdd->sds)
2295                                 kfree(*per_cpu_ptr(sdd->sds, j));
2296                         if (sdd->sg)
2297                                 kfree(*per_cpu_ptr(sdd->sg, j));
2298                         if (sdd->sgc)
2299                                 kfree(*per_cpu_ptr(sdd->sgc, j));
2300                 }
2301                 free_percpu(sdd->sd);
2302                 sdd->sd = NULL;
2303                 free_percpu(sdd->sds);
2304                 sdd->sds = NULL;
2305                 free_percpu(sdd->sg);
2306                 sdd->sg = NULL;
2307                 free_percpu(sdd->sgc);
2308                 sdd->sgc = NULL;
2309         }
2310 }
2311
2312 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2313                 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2314                 struct sched_domain *child, int cpu)
2315 {
2316         struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2317
2318         if (child) {
2319                 sd->level = child->level + 1;
2320                 sched_domain_level_max = max(sched_domain_level_max, sd->level);
2321                 child->parent = sd;
2322
2323                 if (!cpumask_subset(sched_domain_span(child),
2324                                     sched_domain_span(sd))) {
2325                         pr_err("BUG: arch topology borken\n");
2326 #ifdef CONFIG_SCHED_DEBUG
2327                         pr_err("     the %s domain not a subset of the %s domain\n",
2328                                         child->name, sd->name);
2329 #endif
2330                         /* Fixup, ensure @sd has at least @child CPUs. */
2331                         cpumask_or(sched_domain_span(sd),
2332                                    sched_domain_span(sd),
2333                                    sched_domain_span(child));
2334                 }
2335
2336         }
2337         set_domain_attribute(sd, attr);
2338
2339         return sd;
2340 }
2341
2342 /*
2343  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2344  * any two given CPUs at this (non-NUMA) topology level.
2345  */
2346 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2347                               const struct cpumask *cpu_map, int cpu)
2348 {
2349         int i;
2350
2351         /* NUMA levels are allowed to overlap */
2352         if (tl->flags & SDTL_OVERLAP)
2353                 return true;
2354
2355         /*
2356          * Non-NUMA levels cannot partially overlap - they must be either
2357          * completely equal or completely disjoint. Otherwise we can end up
2358          * breaking the sched_group lists - i.e. a later get_group() pass
2359          * breaks the linking done for an earlier span.
2360          */
2361         for_each_cpu(i, cpu_map) {
2362                 if (i == cpu)
2363                         continue;
2364                 /*
2365                  * We should 'and' all those masks with 'cpu_map' to exactly
2366                  * match the topology we're about to build, but that can only
2367                  * remove CPUs, which only lessens our ability to detect
2368                  * overlaps
2369                  */
2370                 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2371                     cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2372                         return false;
2373         }
2374
2375         return true;
2376 }
2377
2378 /*
2379  * Build sched domains for a given set of CPUs and attach the sched domains
2380  * to the individual CPUs
2381  */
2382 static int
2383 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2384 {
2385         enum s_alloc alloc_state = sa_none;
2386         struct sched_domain *sd;
2387         struct s_data d;
2388         struct rq *rq = NULL;
2389         int i, ret = -ENOMEM;
2390         bool has_asym = false;
2391         bool has_cluster = false;
2392
2393         if (WARN_ON(cpumask_empty(cpu_map)))
2394                 goto error;
2395
2396         alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2397         if (alloc_state != sa_rootdomain)
2398                 goto error;
2399
2400         /* Set up domains for CPUs specified by the cpu_map: */
2401         for_each_cpu(i, cpu_map) {
2402                 struct sched_domain_topology_level *tl;
2403
2404                 sd = NULL;
2405                 for_each_sd_topology(tl) {
2406
2407                         if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2408                                 goto error;
2409
2410                         sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2411
2412                         has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2413
2414                         if (tl == sched_domain_topology)
2415                                 *per_cpu_ptr(d.sd, i) = sd;
2416                         if (tl->flags & SDTL_OVERLAP)
2417                                 sd->flags |= SD_OVERLAP;
2418                         if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2419                                 break;
2420                 }
2421         }
2422
2423         /* Build the groups for the domains */
2424         for_each_cpu(i, cpu_map) {
2425                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2426                         sd->span_weight = cpumask_weight(sched_domain_span(sd));
2427                         if (sd->flags & SD_OVERLAP) {
2428                                 if (build_overlap_sched_groups(sd, i))
2429                                         goto error;
2430                         } else {
2431                                 if (build_sched_groups(sd, i))
2432                                         goto error;
2433                         }
2434                 }
2435         }
2436
2437         /*
2438          * Calculate an allowed NUMA imbalance such that LLCs do not get
2439          * imbalanced.
2440          */
2441         for_each_cpu(i, cpu_map) {
2442                 unsigned int imb = 0;
2443                 unsigned int imb_span = 1;
2444
2445                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2446                         struct sched_domain *child = sd->child;
2447
2448                         if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2449                             (child->flags & SD_SHARE_PKG_RESOURCES)) {
2450                                 struct sched_domain __rcu *top_p;
2451                                 unsigned int nr_llcs;
2452
2453                                 /*
2454                                  * For a single LLC per node, allow an
2455                                  * imbalance up to 12.5% of the node. This is
2456                                  * arbitrary cutoff based two factors -- SMT and
2457                                  * memory channels. For SMT-2, the intent is to
2458                                  * avoid premature sharing of HT resources but
2459                                  * SMT-4 or SMT-8 *may* benefit from a different
2460                                  * cutoff. For memory channels, this is a very
2461                                  * rough estimate of how many channels may be
2462                                  * active and is based on recent CPUs with
2463                                  * many cores.
2464                                  *
2465                                  * For multiple LLCs, allow an imbalance
2466                                  * until multiple tasks would share an LLC
2467                                  * on one node while LLCs on another node
2468                                  * remain idle. This assumes that there are
2469                                  * enough logical CPUs per LLC to avoid SMT
2470                                  * factors and that there is a correlation
2471                                  * between LLCs and memory channels.
2472                                  */
2473                                 nr_llcs = sd->span_weight / child->span_weight;
2474                                 if (nr_llcs == 1)
2475                                         imb = sd->span_weight >> 3;
2476                                 else
2477                                         imb = nr_llcs;
2478                                 imb = max(1U, imb);
2479                                 sd->imb_numa_nr = imb;
2480
2481                                 /* Set span based on the first NUMA domain. */
2482                                 top_p = sd->parent;
2483                                 while (top_p && !(top_p->flags & SD_NUMA)) {
2484                                         top_p = top_p->parent;
2485                                 }
2486                                 imb_span = top_p ? top_p->span_weight : sd->span_weight;
2487                         } else {
2488                                 int factor = max(1U, (sd->span_weight / imb_span));
2489
2490                                 sd->imb_numa_nr = imb * factor;
2491                         }
2492                 }
2493         }
2494
2495         /* Calculate CPU capacity for physical packages and nodes */
2496         for (i = nr_cpumask_bits-1; i >= 0; i--) {
2497                 if (!cpumask_test_cpu(i, cpu_map))
2498                         continue;
2499
2500                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2501                         claim_allocations(i, sd);
2502                         init_sched_groups_capacity(i, sd);
2503                 }
2504         }
2505
2506         /* Attach the domains */
2507         rcu_read_lock();
2508         for_each_cpu(i, cpu_map) {
2509                 unsigned long capacity;
2510
2511                 rq = cpu_rq(i);
2512                 sd = *per_cpu_ptr(d.sd, i);
2513
2514                 capacity = arch_scale_cpu_capacity(i);
2515                 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2516                 if (capacity > READ_ONCE(d.rd->max_cpu_capacity))
2517                         WRITE_ONCE(d.rd->max_cpu_capacity, capacity);
2518
2519                 cpu_attach_domain(sd, d.rd, i);
2520
2521                 if (lowest_flag_domain(i, SD_CLUSTER))
2522                         has_cluster = true;
2523         }
2524         rcu_read_unlock();
2525
2526         if (has_asym)
2527                 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2528
2529         if (has_cluster)
2530                 static_branch_inc_cpuslocked(&sched_cluster_active);
2531
2532         if (rq && sched_debug_verbose) {
2533                 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2534                         cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2535         }
2536
2537         ret = 0;
2538 error:
2539         __free_domain_allocs(&d, alloc_state, cpu_map);
2540
2541         return ret;
2542 }
2543
2544 /* Current sched domains: */
2545 static cpumask_var_t                    *doms_cur;
2546
2547 /* Number of sched domains in 'doms_cur': */
2548 static int                              ndoms_cur;
2549
2550 /* Attributes of custom domains in 'doms_cur' */
2551 static struct sched_domain_attr         *dattr_cur;
2552
2553 /*
2554  * Special case: If a kmalloc() of a doms_cur partition (array of
2555  * cpumask) fails, then fallback to a single sched domain,
2556  * as determined by the single cpumask fallback_doms.
2557  */
2558 static cpumask_var_t                    fallback_doms;
2559
2560 /*
2561  * arch_update_cpu_topology lets virtualized architectures update the
2562  * CPU core maps. It is supposed to return 1 if the topology changed
2563  * or 0 if it stayed the same.
2564  */
2565 int __weak arch_update_cpu_topology(void)
2566 {
2567         return 0;
2568 }
2569
2570 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2571 {
2572         int i;
2573         cpumask_var_t *doms;
2574
2575         doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2576         if (!doms)
2577                 return NULL;
2578         for (i = 0; i < ndoms; i++) {
2579                 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2580                         free_sched_domains(doms, i);
2581                         return NULL;
2582                 }
2583         }
2584         return doms;
2585 }
2586
2587 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2588 {
2589         unsigned int i;
2590         for (i = 0; i < ndoms; i++)
2591                 free_cpumask_var(doms[i]);
2592         kfree(doms);
2593 }
2594
2595 /*
2596  * Set up scheduler domains and groups.  For now this just excludes isolated
2597  * CPUs, but could be used to exclude other special cases in the future.
2598  */
2599 int __init sched_init_domains(const struct cpumask *cpu_map)
2600 {
2601         int err;
2602
2603         zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2604         zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2605         zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2606
2607         arch_update_cpu_topology();
2608         asym_cpu_capacity_scan();
2609         ndoms_cur = 1;
2610         doms_cur = alloc_sched_domains(ndoms_cur);
2611         if (!doms_cur)
2612                 doms_cur = &fallback_doms;
2613         cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2614         err = build_sched_domains(doms_cur[0], NULL);
2615
2616         return err;
2617 }
2618
2619 /*
2620  * Detach sched domains from a group of CPUs specified in cpu_map
2621  * These CPUs will now be attached to the NULL domain
2622  */
2623 static void detach_destroy_domains(const struct cpumask *cpu_map)
2624 {
2625         unsigned int cpu = cpumask_any(cpu_map);
2626         int i;
2627
2628         if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2629                 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2630
2631         if (static_branch_unlikely(&sched_cluster_active))
2632                 static_branch_dec_cpuslocked(&sched_cluster_active);
2633
2634         rcu_read_lock();
2635         for_each_cpu(i, cpu_map)
2636                 cpu_attach_domain(NULL, &def_root_domain, i);
2637         rcu_read_unlock();
2638 }
2639
2640 /* handle null as "default" */
2641 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2642                         struct sched_domain_attr *new, int idx_new)
2643 {
2644         struct sched_domain_attr tmp;
2645
2646         /* Fast path: */
2647         if (!new && !cur)
2648                 return 1;
2649
2650         tmp = SD_ATTR_INIT;
2651
2652         return !memcmp(cur ? (cur + idx_cur) : &tmp,
2653                         new ? (new + idx_new) : &tmp,
2654                         sizeof(struct sched_domain_attr));
2655 }
2656
2657 /*
2658  * Partition sched domains as specified by the 'ndoms_new'
2659  * cpumasks in the array doms_new[] of cpumasks. This compares
2660  * doms_new[] to the current sched domain partitioning, doms_cur[].
2661  * It destroys each deleted domain and builds each new domain.
2662  *
2663  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2664  * The masks don't intersect (don't overlap.) We should setup one
2665  * sched domain for each mask. CPUs not in any of the cpumasks will
2666  * not be load balanced. If the same cpumask appears both in the
2667  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2668  * it as it is.
2669  *
2670  * The passed in 'doms_new' should be allocated using
2671  * alloc_sched_domains.  This routine takes ownership of it and will
2672  * free_sched_domains it when done with it. If the caller failed the
2673  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2674  * and partition_sched_domains() will fallback to the single partition
2675  * 'fallback_doms', it also forces the domains to be rebuilt.
2676  *
2677  * If doms_new == NULL it will be replaced with cpu_online_mask.
2678  * ndoms_new == 0 is a special case for destroying existing domains,
2679  * and it will not create the default domain.
2680  *
2681  * Call with hotplug lock and sched_domains_mutex held
2682  */
2683 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2684                                     struct sched_domain_attr *dattr_new)
2685 {
2686         bool __maybe_unused has_eas = false;
2687         int i, j, n;
2688         int new_topology;
2689
2690         lockdep_assert_held(&sched_domains_mutex);
2691
2692         /* Let the architecture update CPU core mappings: */
2693         new_topology = arch_update_cpu_topology();
2694         /* Trigger rebuilding CPU capacity asymmetry data */
2695         if (new_topology)
2696                 asym_cpu_capacity_scan();
2697
2698         if (!doms_new) {
2699                 WARN_ON_ONCE(dattr_new);
2700                 n = 0;
2701                 doms_new = alloc_sched_domains(1);
2702                 if (doms_new) {
2703                         n = 1;
2704                         cpumask_and(doms_new[0], cpu_active_mask,
2705                                     housekeeping_cpumask(HK_TYPE_DOMAIN));
2706                 }
2707         } else {
2708                 n = ndoms_new;
2709         }
2710
2711         /* Destroy deleted domains: */
2712         for (i = 0; i < ndoms_cur; i++) {
2713                 for (j = 0; j < n && !new_topology; j++) {
2714                         if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2715                             dattrs_equal(dattr_cur, i, dattr_new, j)) {
2716                                 struct root_domain *rd;
2717
2718                                 /*
2719                                  * This domain won't be destroyed and as such
2720                                  * its dl_bw->total_bw needs to be cleared.  It
2721                                  * will be recomputed in function
2722                                  * update_tasks_root_domain().
2723                                  */
2724                                 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2725                                 dl_clear_root_domain(rd);
2726                                 goto match1;
2727                         }
2728                 }
2729                 /* No match - a current sched domain not in new doms_new[] */
2730                 detach_destroy_domains(doms_cur[i]);
2731 match1:
2732                 ;
2733         }
2734
2735         n = ndoms_cur;
2736         if (!doms_new) {
2737                 n = 0;
2738                 doms_new = &fallback_doms;
2739                 cpumask_and(doms_new[0], cpu_active_mask,
2740                             housekeeping_cpumask(HK_TYPE_DOMAIN));
2741         }
2742
2743         /* Build new domains: */
2744         for (i = 0; i < ndoms_new; i++) {
2745                 for (j = 0; j < n && !new_topology; j++) {
2746                         if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2747                             dattrs_equal(dattr_new, i, dattr_cur, j))
2748                                 goto match2;
2749                 }
2750                 /* No match - add a new doms_new */
2751                 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2752 match2:
2753                 ;
2754         }
2755
2756 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2757         /* Build perf. domains: */
2758         for (i = 0; i < ndoms_new; i++) {
2759                 for (j = 0; j < n && !sched_energy_update; j++) {
2760                         if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2761                             cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2762                                 has_eas = true;
2763                                 goto match3;
2764                         }
2765                 }
2766                 /* No match - add perf. domains for a new rd */
2767                 has_eas |= build_perf_domains(doms_new[i]);
2768 match3:
2769                 ;
2770         }
2771         sched_energy_set(has_eas);
2772 #endif
2773
2774         /* Remember the new sched domains: */
2775         if (doms_cur != &fallback_doms)
2776                 free_sched_domains(doms_cur, ndoms_cur);
2777
2778         kfree(dattr_cur);
2779         doms_cur = doms_new;
2780         dattr_cur = dattr_new;
2781         ndoms_cur = ndoms_new;
2782
2783         update_sched_domain_debugfs();
2784 }
2785
2786 /*
2787  * Call with hotplug lock held
2788  */
2789 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2790                              struct sched_domain_attr *dattr_new)
2791 {
2792         mutex_lock(&sched_domains_mutex);
2793         partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2794         mutex_unlock(&sched_domains_mutex);
2795 }