1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Scheduler internal types and methods:
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
75 #include "../workqueue_internal.h"
77 #ifdef CONFIG_PARAVIRT
78 # include <asm/paravirt.h>
79 # include <asm/paravirt_api_clock.h>
83 #include "cpudeadline.h"
85 #ifdef CONFIG_SCHED_DEBUG
86 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
88 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
94 /* task_struct::on_rq states: */
95 #define TASK_ON_RQ_QUEUED 1
96 #define TASK_ON_RQ_MIGRATING 2
98 extern __read_mostly int scheduler_running;
100 extern unsigned long calc_load_update;
101 extern atomic_long_t calc_load_tasks;
103 extern void calc_global_load_tick(struct rq *this_rq);
104 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
106 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
108 extern int sysctl_sched_rt_period;
109 extern int sysctl_sched_rt_runtime;
110 extern int sched_rr_timeslice;
113 * Helpers for converting nanosecond timing to jiffy resolution
115 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
118 * Increase resolution of nice-level calculations for 64-bit architectures.
119 * The extra resolution improves shares distribution and load balancing of
120 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
121 * hierarchies, especially on larger systems. This is not a user-visible change
122 * and does not change the user-interface for setting shares/weights.
124 * We increase resolution only if we have enough bits to allow this increased
125 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
126 * are pretty high and the returns do not justify the increased costs.
128 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
129 * increase coverage and consistency always enable it on 64-bit platforms.
132 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
133 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
134 # define scale_load_down(w) \
136 unsigned long __w = (w); \
138 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
142 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
143 # define scale_load(w) (w)
144 # define scale_load_down(w) (w)
148 * Task weight (visible to users) and its load (invisible to users) have
149 * independent resolution, but they should be well calibrated. We use
150 * scale_load() and scale_load_down(w) to convert between them. The
151 * following must be true:
153 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
156 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
159 * Single value that decides SCHED_DEADLINE internal math precision.
160 * 10 -> just above 1us
161 * 9 -> just above 0.5us
166 * Single value that denotes runtime == period, ie unlimited time.
168 #define RUNTIME_INF ((u64)~0ULL)
170 static inline int idle_policy(int policy)
172 return policy == SCHED_IDLE;
174 static inline int fair_policy(int policy)
176 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
179 static inline int rt_policy(int policy)
181 return policy == SCHED_FIFO || policy == SCHED_RR;
184 static inline int dl_policy(int policy)
186 return policy == SCHED_DEADLINE;
188 static inline bool valid_policy(int policy)
190 return idle_policy(policy) || fair_policy(policy) ||
191 rt_policy(policy) || dl_policy(policy);
194 static inline int task_has_idle_policy(struct task_struct *p)
196 return idle_policy(p->policy);
199 static inline int task_has_rt_policy(struct task_struct *p)
201 return rt_policy(p->policy);
204 static inline int task_has_dl_policy(struct task_struct *p)
206 return dl_policy(p->policy);
209 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
211 static inline void update_avg(u64 *avg, u64 sample)
213 s64 diff = sample - *avg;
218 * Shifting a value by an exponent greater *or equal* to the size of said value
219 * is UB; cap at size-1.
221 #define shr_bound(val, shift) \
222 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
225 * !! For sched_setattr_nocheck() (kernel) only !!
227 * This is actually gross. :(
229 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
230 * tasks, but still be able to sleep. We need this on platforms that cannot
231 * atomically change clock frequency. Remove once fast switching will be
232 * available on such platforms.
234 * SUGOV stands for SchedUtil GOVernor.
236 #define SCHED_FLAG_SUGOV 0x10000000
238 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
240 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
242 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
243 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
250 * Tells if entity @a should preempt entity @b.
252 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
253 const struct sched_dl_entity *b)
255 return dl_entity_is_special(a) ||
256 dl_time_before(a->deadline, b->deadline);
260 * This is the priority-queue data structure of the RT scheduling class:
262 struct rt_prio_array {
263 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
264 struct list_head queue[MAX_RT_PRIO];
267 struct rt_bandwidth {
268 /* nests inside the rq lock: */
269 raw_spinlock_t rt_runtime_lock;
272 struct hrtimer rt_period_timer;
273 unsigned int rt_period_active;
276 void __dl_clear_params(struct task_struct *p);
278 static inline int dl_bandwidth_enabled(void)
280 return sysctl_sched_rt_runtime >= 0;
284 * To keep the bandwidth of -deadline tasks under control
285 * we need some place where:
286 * - store the maximum -deadline bandwidth of each cpu;
287 * - cache the fraction of bandwidth that is currently allocated in
290 * This is all done in the data structure below. It is similar to the
291 * one used for RT-throttling (rt_bandwidth), with the main difference
292 * that, since here we are only interested in admission control, we
293 * do not decrease any runtime while the group "executes", neither we
294 * need a timer to replenish it.
296 * With respect to SMP, bandwidth is given on a per root domain basis,
298 * - bw (< 100%) is the deadline bandwidth of each CPU;
299 * - total_bw is the currently allocated bandwidth in each root domain;
307 extern void init_dl_bw(struct dl_bw *dl_b);
308 extern int sched_dl_global_validate(void);
309 extern void sched_dl_do_global(void);
310 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
311 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
312 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
313 extern bool __checkparam_dl(const struct sched_attr *attr);
314 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
315 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
316 extern int dl_bw_check_overflow(int cpu);
318 #ifdef CONFIG_CGROUP_SCHED
323 extern struct list_head task_groups;
325 struct cfs_bandwidth {
326 #ifdef CONFIG_CFS_BANDWIDTH
333 s64 hierarchical_quota;
338 struct hrtimer period_timer;
339 struct hrtimer slack_timer;
340 struct list_head throttled_cfs_rq;
351 /* Task group related information */
353 struct cgroup_subsys_state css;
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 /* schedulable entities of this group on each CPU */
357 struct sched_entity **se;
358 /* runqueue "owned" by this group on each CPU */
359 struct cfs_rq **cfs_rq;
360 unsigned long shares;
362 /* A positive value indicates that this is a SCHED_IDLE group. */
367 * load_avg can be heavily contended at clock tick time, so put
368 * it in its own cacheline separated from the fields above which
369 * will also be accessed at each tick.
371 atomic_long_t load_avg ____cacheline_aligned;
375 #ifdef CONFIG_RT_GROUP_SCHED
376 struct sched_rt_entity **rt_se;
377 struct rt_rq **rt_rq;
379 struct rt_bandwidth rt_bandwidth;
383 struct list_head list;
385 struct task_group *parent;
386 struct list_head siblings;
387 struct list_head children;
389 #ifdef CONFIG_SCHED_AUTOGROUP
390 struct autogroup *autogroup;
393 struct cfs_bandwidth cfs_bandwidth;
395 #ifdef CONFIG_UCLAMP_TASK_GROUP
396 /* The two decimal precision [%] value requested from user-space */
397 unsigned int uclamp_pct[UCLAMP_CNT];
398 /* Clamp values requested for a task group */
399 struct uclamp_se uclamp_req[UCLAMP_CNT];
400 /* Effective clamp values used for a task group */
401 struct uclamp_se uclamp[UCLAMP_CNT];
406 #ifdef CONFIG_FAIR_GROUP_SCHED
407 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
410 * A weight of 0 or 1 can cause arithmetics problems.
411 * A weight of a cfs_rq is the sum of weights of which entities
412 * are queued on this cfs_rq, so a weight of a entity should not be
413 * too large, so as the shares value of a task group.
414 * (The default weight is 1024 - so there's no practical
415 * limitation from this.)
417 #define MIN_SHARES (1UL << 1)
418 #define MAX_SHARES (1UL << 18)
421 typedef int (*tg_visitor)(struct task_group *, void *);
423 extern int walk_tg_tree_from(struct task_group *from,
424 tg_visitor down, tg_visitor up, void *data);
427 * Iterate the full tree, calling @down when first entering a node and @up when
428 * leaving it for the final time.
430 * Caller must hold rcu_lock or sufficient equivalent.
432 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
434 return walk_tg_tree_from(&root_task_group, down, up, data);
437 extern int tg_nop(struct task_group *tg, void *data);
439 extern void free_fair_sched_group(struct task_group *tg);
440 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
441 extern void online_fair_sched_group(struct task_group *tg);
442 extern void unregister_fair_sched_group(struct task_group *tg);
443 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
444 struct sched_entity *se, int cpu,
445 struct sched_entity *parent);
446 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
448 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
449 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
450 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
451 extern bool cfs_task_bw_constrained(struct task_struct *p);
453 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
454 struct sched_rt_entity *rt_se, int cpu,
455 struct sched_rt_entity *parent);
456 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
457 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
458 extern long sched_group_rt_runtime(struct task_group *tg);
459 extern long sched_group_rt_period(struct task_group *tg);
460 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
462 extern struct task_group *sched_create_group(struct task_group *parent);
463 extern void sched_online_group(struct task_group *tg,
464 struct task_group *parent);
465 extern void sched_destroy_group(struct task_group *tg);
466 extern void sched_release_group(struct task_group *tg);
468 extern void sched_move_task(struct task_struct *tsk);
470 #ifdef CONFIG_FAIR_GROUP_SCHED
471 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
473 extern int sched_group_set_idle(struct task_group *tg, long idle);
476 extern void set_task_rq_fair(struct sched_entity *se,
477 struct cfs_rq *prev, struct cfs_rq *next);
478 #else /* !CONFIG_SMP */
479 static inline void set_task_rq_fair(struct sched_entity *se,
480 struct cfs_rq *prev, struct cfs_rq *next) { }
481 #endif /* CONFIG_SMP */
482 #endif /* CONFIG_FAIR_GROUP_SCHED */
484 #else /* CONFIG_CGROUP_SCHED */
486 struct cfs_bandwidth { };
487 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
489 #endif /* CONFIG_CGROUP_SCHED */
491 extern void unregister_rt_sched_group(struct task_group *tg);
492 extern void free_rt_sched_group(struct task_group *tg);
493 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
496 * u64_u32_load/u64_u32_store
498 * Use a copy of a u64 value to protect against data race. This is only
499 * applicable for 32-bits architectures.
502 # define u64_u32_load_copy(var, copy) var
503 # define u64_u32_store_copy(var, copy, val) (var = val)
505 # define u64_u32_load_copy(var, copy) \
507 u64 __val, __val_copy; \
511 * paired with u64_u32_store_copy(), ordering access \
516 } while (__val != __val_copy); \
519 # define u64_u32_store_copy(var, copy, val) \
521 typeof(val) __val = (val); \
524 * paired with u64_u32_load_copy(), ordering access to var and \
531 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
532 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
534 /* CFS-related fields in a runqueue */
536 struct load_weight load;
537 unsigned int nr_running;
538 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
539 unsigned int idle_nr_running; /* SCHED_IDLE */
540 unsigned int idle_h_nr_running; /* SCHED_IDLE */
547 #ifdef CONFIG_SCHED_CORE
548 unsigned int forceidle_seq;
553 u64 min_vruntime_copy;
556 struct rb_root_cached tasks_timeline;
559 * 'curr' points to currently running entity on this cfs_rq.
560 * It is set to NULL otherwise (i.e when none are currently running).
562 struct sched_entity *curr;
563 struct sched_entity *next;
565 #ifdef CONFIG_SCHED_DEBUG
566 unsigned int nr_spread_over;
573 struct sched_avg avg;
575 u64 last_update_time_copy;
578 raw_spinlock_t lock ____cacheline_aligned;
580 unsigned long load_avg;
581 unsigned long util_avg;
582 unsigned long runnable_avg;
585 #ifdef CONFIG_FAIR_GROUP_SCHED
586 u64 last_update_tg_load_avg;
587 unsigned long tg_load_avg_contrib;
589 long prop_runnable_sum;
592 * h_load = weight * f(tg)
594 * Where f(tg) is the recursive weight fraction assigned to
597 unsigned long h_load;
598 u64 last_h_load_update;
599 struct sched_entity *h_load_next;
600 #endif /* CONFIG_FAIR_GROUP_SCHED */
601 #endif /* CONFIG_SMP */
603 #ifdef CONFIG_FAIR_GROUP_SCHED
604 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
607 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
608 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
609 * (like users, containers etc.)
611 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
612 * This list is used during load balance.
615 struct list_head leaf_cfs_rq_list;
616 struct task_group *tg; /* group that "owns" this runqueue */
618 /* Locally cached copy of our task_group's idle value */
621 #ifdef CONFIG_CFS_BANDWIDTH
623 s64 runtime_remaining;
625 u64 throttled_pelt_idle;
627 u64 throttled_pelt_idle_copy;
630 u64 throttled_clock_pelt;
631 u64 throttled_clock_pelt_time;
632 u64 throttled_clock_self;
633 u64 throttled_clock_self_time;
636 struct list_head throttled_list;
637 struct list_head throttled_csd_list;
638 #endif /* CONFIG_CFS_BANDWIDTH */
639 #endif /* CONFIG_FAIR_GROUP_SCHED */
642 static inline int rt_bandwidth_enabled(void)
644 return sysctl_sched_rt_runtime >= 0;
647 /* RT IPI pull logic requires IRQ_WORK */
648 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
649 # define HAVE_RT_PUSH_IPI
652 /* Real-Time classes' related field in a runqueue: */
654 struct rt_prio_array active;
655 unsigned int rt_nr_running;
656 unsigned int rr_nr_running;
657 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
659 int curr; /* highest queued rt task prio */
661 int next; /* next highest */
667 struct plist_head pushable_tasks;
669 #endif /* CONFIG_SMP */
675 /* Nests inside the rq lock: */
676 raw_spinlock_t rt_runtime_lock;
678 #ifdef CONFIG_RT_GROUP_SCHED
679 unsigned int rt_nr_boosted;
682 struct task_group *tg;
686 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
688 return rt_rq->rt_queued && rt_rq->rt_nr_running;
691 /* Deadline class' related fields in a runqueue */
693 /* runqueue is an rbtree, ordered by deadline */
694 struct rb_root_cached root;
696 unsigned int dl_nr_running;
700 * Deadline values of the currently executing and the
701 * earliest ready task on this rq. Caching these facilitates
702 * the decision whether or not a ready but not running task
703 * should migrate somewhere else.
713 * Tasks on this rq that can be pushed away. They are kept in
714 * an rb-tree, ordered by tasks' deadlines, with caching
715 * of the leftmost (earliest deadline) element.
717 struct rb_root_cached pushable_dl_tasks_root;
722 * "Active utilization" for this runqueue: increased when a
723 * task wakes up (becomes TASK_RUNNING) and decreased when a
729 * Utilization of the tasks "assigned" to this runqueue (including
730 * the tasks that are in runqueue and the tasks that executed on this
731 * CPU and blocked). Increased when a task moves to this runqueue, and
732 * decreased when the task moves away (migrates, changes scheduling
733 * policy, or terminates).
734 * This is needed to compute the "inactive utilization" for the
735 * runqueue (inactive utilization = this_bw - running_bw).
741 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
742 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
747 * Inverse of the fraction of CPU utilization that can be reclaimed
748 * by the GRUB algorithm.
753 #ifdef CONFIG_FAIR_GROUP_SCHED
754 /* An entity is a task if it doesn't "own" a runqueue */
755 #define entity_is_task(se) (!se->my_q)
757 static inline void se_update_runnable(struct sched_entity *se)
759 if (!entity_is_task(se))
760 se->runnable_weight = se->my_q->h_nr_running;
763 static inline long se_runnable(struct sched_entity *se)
765 if (entity_is_task(se))
768 return se->runnable_weight;
772 #define entity_is_task(se) 1
774 static inline void se_update_runnable(struct sched_entity *se) {}
776 static inline long se_runnable(struct sched_entity *se)
784 * XXX we want to get rid of these helpers and use the full load resolution.
786 static inline long se_weight(struct sched_entity *se)
788 return scale_load_down(se->load.weight);
792 static inline bool sched_asym_prefer(int a, int b)
794 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
798 struct em_perf_domain *em_pd;
799 struct perf_domain *next;
803 /* Scheduling group status flags */
804 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
805 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
808 * We add the notion of a root-domain which will be used to define per-domain
809 * variables. Each exclusive cpuset essentially defines an island domain by
810 * fully partitioning the member CPUs from any other cpuset. Whenever a new
811 * exclusive cpuset is created, we also create and attach a new root-domain
820 cpumask_var_t online;
823 * Indicate pullable load on at least one CPU, e.g:
824 * - More than one runnable task
825 * - Running task is misfit
829 /* Indicate one or more cpus over-utilized (tipping point) */
833 * The bit corresponding to a CPU gets set here if such CPU has more
834 * than one runnable -deadline task (as it is below for RT tasks).
836 cpumask_var_t dlo_mask;
842 * Indicate whether a root_domain's dl_bw has been checked or
843 * updated. It's monotonously increasing value.
845 * Also, some corner cases, like 'wrap around' is dangerous, but given
846 * that u64 is 'big enough'. So that shouldn't be a concern.
850 #ifdef HAVE_RT_PUSH_IPI
852 * For IPI pull requests, loop across the rto_mask.
854 struct irq_work rto_push_work;
855 raw_spinlock_t rto_lock;
856 /* These are only updated and read within rto_lock */
859 /* These atomics are updated outside of a lock */
860 atomic_t rto_loop_next;
861 atomic_t rto_loop_start;
864 * The "RT overload" flag: it gets set if a CPU has more than
865 * one runnable RT task.
867 cpumask_var_t rto_mask;
868 struct cpupri cpupri;
870 unsigned long max_cpu_capacity;
873 * NULL-terminated list of performance domains intersecting with the
874 * CPUs of the rd. Protected by RCU.
876 struct perf_domain __rcu *pd;
879 extern void init_defrootdomain(void);
880 extern int sched_init_domains(const struct cpumask *cpu_map);
881 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
882 extern void sched_get_rd(struct root_domain *rd);
883 extern void sched_put_rd(struct root_domain *rd);
885 #ifdef HAVE_RT_PUSH_IPI
886 extern void rto_push_irq_work_func(struct irq_work *work);
888 #endif /* CONFIG_SMP */
890 #ifdef CONFIG_UCLAMP_TASK
892 * struct uclamp_bucket - Utilization clamp bucket
893 * @value: utilization clamp value for tasks on this clamp bucket
894 * @tasks: number of RUNNABLE tasks on this clamp bucket
896 * Keep track of how many tasks are RUNNABLE for a given utilization
899 struct uclamp_bucket {
900 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
901 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
905 * struct uclamp_rq - rq's utilization clamp
906 * @value: currently active clamp values for a rq
907 * @bucket: utilization clamp buckets affecting a rq
909 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
910 * A clamp value is affecting a rq when there is at least one task RUNNABLE
911 * (or actually running) with that value.
913 * There are up to UCLAMP_CNT possible different clamp values, currently there
914 * are only two: minimum utilization and maximum utilization.
916 * All utilization clamping values are MAX aggregated, since:
917 * - for util_min: we want to run the CPU at least at the max of the minimum
918 * utilization required by its currently RUNNABLE tasks.
919 * - for util_max: we want to allow the CPU to run up to the max of the
920 * maximum utilization allowed by its currently RUNNABLE tasks.
922 * Since on each system we expect only a limited number of different
923 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
924 * the metrics required to compute all the per-rq utilization clamp values.
928 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
931 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
932 #endif /* CONFIG_UCLAMP_TASK */
935 struct balance_callback {
936 struct balance_callback *next;
937 void (*func)(struct rq *rq);
941 * This is the main, per-CPU runqueue data structure.
943 * Locking rule: those places that want to lock multiple runqueues
944 * (such as the load balancing or the thread migration code), lock
945 * acquire operations must be ordered by ascending &runqueue.
949 raw_spinlock_t __lock;
951 unsigned int nr_running;
952 #ifdef CONFIG_NUMA_BALANCING
953 unsigned int nr_numa_running;
954 unsigned int nr_preferred_running;
955 unsigned int numa_migrate_on;
957 #ifdef CONFIG_NO_HZ_COMMON
959 unsigned long last_blocked_load_update_tick;
960 unsigned int has_blocked_load;
961 call_single_data_t nohz_csd;
962 #endif /* CONFIG_SMP */
963 unsigned int nohz_tick_stopped;
965 #endif /* CONFIG_NO_HZ_COMMON */
968 unsigned int ttwu_pending;
972 #ifdef CONFIG_UCLAMP_TASK
973 /* Utilization clamp values based on CPU's RUNNABLE tasks */
974 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
975 unsigned int uclamp_flags;
976 #define UCLAMP_FLAG_IDLE 0x01
983 #ifdef CONFIG_FAIR_GROUP_SCHED
984 /* list of leaf cfs_rq on this CPU: */
985 struct list_head leaf_cfs_rq_list;
986 struct list_head *tmp_alone_branch;
987 #endif /* CONFIG_FAIR_GROUP_SCHED */
990 * This is part of a global counter where only the total sum
991 * over all CPUs matters. A task can increase this counter on
992 * one CPU and if it got migrated afterwards it may decrease
993 * it on another CPU. Always updated under the runqueue lock:
995 unsigned int nr_uninterruptible;
997 struct task_struct __rcu *curr;
998 struct task_struct *idle;
999 struct task_struct *stop;
1000 unsigned long next_balance;
1001 struct mm_struct *prev_mm;
1003 unsigned int clock_update_flags;
1005 /* Ensure that all clocks are in the same cache line */
1006 u64 clock_task ____cacheline_aligned;
1008 unsigned long lost_idle_time;
1009 u64 clock_pelt_idle;
1011 #ifndef CONFIG_64BIT
1012 u64 clock_pelt_idle_copy;
1013 u64 clock_idle_copy;
1018 #ifdef CONFIG_SCHED_DEBUG
1019 u64 last_seen_need_resched_ns;
1020 int ticks_without_resched;
1023 #ifdef CONFIG_MEMBARRIER
1024 int membarrier_state;
1028 struct root_domain *rd;
1029 struct sched_domain __rcu *sd;
1031 unsigned long cpu_capacity;
1033 struct balance_callback *balance_callback;
1035 unsigned char nohz_idle_balance;
1036 unsigned char idle_balance;
1038 unsigned long misfit_task_load;
1040 /* For active balancing */
1043 struct cpu_stop_work active_balance_work;
1045 /* CPU of this runqueue: */
1049 struct list_head cfs_tasks;
1051 struct sched_avg avg_rt;
1052 struct sched_avg avg_dl;
1053 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1054 struct sched_avg avg_irq;
1056 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1057 struct sched_avg avg_thermal;
1062 /* This is used to determine avg_idle's max value */
1063 u64 max_idle_balance_cost;
1065 #ifdef CONFIG_HOTPLUG_CPU
1066 struct rcuwait hotplug_wait;
1068 #endif /* CONFIG_SMP */
1070 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1073 #ifdef CONFIG_PARAVIRT
1074 u64 prev_steal_time;
1076 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1077 u64 prev_steal_time_rq;
1080 /* calc_load related fields */
1081 unsigned long calc_load_update;
1082 long calc_load_active;
1084 #ifdef CONFIG_SCHED_HRTICK
1086 call_single_data_t hrtick_csd;
1088 struct hrtimer hrtick_timer;
1089 ktime_t hrtick_time;
1092 #ifdef CONFIG_SCHEDSTATS
1094 struct sched_info rq_sched_info;
1095 unsigned long long rq_cpu_time;
1096 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1098 /* sys_sched_yield() stats */
1099 unsigned int yld_count;
1101 /* schedule() stats */
1102 unsigned int sched_count;
1103 unsigned int sched_goidle;
1105 /* try_to_wake_up() stats */
1106 unsigned int ttwu_count;
1107 unsigned int ttwu_local;
1110 #ifdef CONFIG_CPU_IDLE
1111 /* Must be inspected within a rcu lock section */
1112 struct cpuidle_state *idle_state;
1116 unsigned int nr_pinned;
1118 unsigned int push_busy;
1119 struct cpu_stop_work push_work;
1121 #ifdef CONFIG_SCHED_CORE
1124 struct task_struct *core_pick;
1125 unsigned int core_enabled;
1126 unsigned int core_sched_seq;
1127 struct rb_root core_tree;
1129 /* shared state -- careful with sched_core_cpu_deactivate() */
1130 unsigned int core_task_seq;
1131 unsigned int core_pick_seq;
1132 unsigned long core_cookie;
1133 unsigned int core_forceidle_count;
1134 unsigned int core_forceidle_seq;
1135 unsigned int core_forceidle_occupation;
1136 u64 core_forceidle_start;
1139 /* Scratch cpumask to be temporarily used under rq_lock */
1140 cpumask_var_t scratch_mask;
1142 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1143 call_single_data_t cfsb_csd;
1144 struct list_head cfsb_csd_list;
1148 #ifdef CONFIG_FAIR_GROUP_SCHED
1150 /* CPU runqueue to which this cfs_rq is attached */
1151 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1158 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1160 return container_of(cfs_rq, struct rq, cfs);
1164 static inline int cpu_of(struct rq *rq)
1173 #define MDF_PUSH 0x01
1175 static inline bool is_migration_disabled(struct task_struct *p)
1178 return p->migration_disabled;
1184 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1186 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1187 #define this_rq() this_cpu_ptr(&runqueues)
1188 #define task_rq(p) cpu_rq(task_cpu(p))
1189 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1190 #define raw_rq() raw_cpu_ptr(&runqueues)
1193 #ifdef CONFIG_SCHED_CORE
1194 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1196 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1198 static inline bool sched_core_enabled(struct rq *rq)
1200 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1203 static inline bool sched_core_disabled(void)
1205 return !static_branch_unlikely(&__sched_core_enabled);
1209 * Be careful with this function; not for general use. The return value isn't
1210 * stable unless you actually hold a relevant rq->__lock.
1212 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1214 if (sched_core_enabled(rq))
1215 return &rq->core->__lock;
1220 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1222 if (rq->core_enabled)
1223 return &rq->core->__lock;
1228 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1230 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1233 * Helpers to check if the CPU's core cookie matches with the task's cookie
1234 * when core scheduling is enabled.
1235 * A special case is that the task's cookie always matches with CPU's core
1236 * cookie if the CPU is in an idle core.
1238 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1240 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1241 if (!sched_core_enabled(rq))
1244 return rq->core->core_cookie == p->core_cookie;
1247 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1249 bool idle_core = true;
1252 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1253 if (!sched_core_enabled(rq))
1256 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1257 if (!available_idle_cpu(cpu)) {
1264 * A CPU in an idle core is always the best choice for tasks with
1267 return idle_core || rq->core->core_cookie == p->core_cookie;
1270 static inline bool sched_group_cookie_match(struct rq *rq,
1271 struct task_struct *p,
1272 struct sched_group *group)
1276 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1277 if (!sched_core_enabled(rq))
1280 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1281 if (sched_core_cookie_match(cpu_rq(cpu), p))
1287 static inline bool sched_core_enqueued(struct task_struct *p)
1289 return !RB_EMPTY_NODE(&p->core_node);
1292 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1293 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1295 extern void sched_core_get(void);
1296 extern void sched_core_put(void);
1298 #else /* !CONFIG_SCHED_CORE */
1300 static inline bool sched_core_enabled(struct rq *rq)
1305 static inline bool sched_core_disabled(void)
1310 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1315 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1320 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1325 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1330 static inline bool sched_group_cookie_match(struct rq *rq,
1331 struct task_struct *p,
1332 struct sched_group *group)
1336 #endif /* CONFIG_SCHED_CORE */
1338 static inline void lockdep_assert_rq_held(struct rq *rq)
1340 lockdep_assert_held(__rq_lockp(rq));
1343 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1344 extern bool raw_spin_rq_trylock(struct rq *rq);
1345 extern void raw_spin_rq_unlock(struct rq *rq);
1347 static inline void raw_spin_rq_lock(struct rq *rq)
1349 raw_spin_rq_lock_nested(rq, 0);
1352 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1354 local_irq_disable();
1355 raw_spin_rq_lock(rq);
1358 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1360 raw_spin_rq_unlock(rq);
1364 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1366 unsigned long flags;
1367 local_irq_save(flags);
1368 raw_spin_rq_lock(rq);
1372 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1374 raw_spin_rq_unlock(rq);
1375 local_irq_restore(flags);
1378 #define raw_spin_rq_lock_irqsave(rq, flags) \
1380 flags = _raw_spin_rq_lock_irqsave(rq); \
1383 #ifdef CONFIG_SCHED_SMT
1384 extern void __update_idle_core(struct rq *rq);
1386 static inline void update_idle_core(struct rq *rq)
1388 if (static_branch_unlikely(&sched_smt_present))
1389 __update_idle_core(rq);
1393 static inline void update_idle_core(struct rq *rq) { }
1396 #ifdef CONFIG_FAIR_GROUP_SCHED
1397 static inline struct task_struct *task_of(struct sched_entity *se)
1399 SCHED_WARN_ON(!entity_is_task(se));
1400 return container_of(se, struct task_struct, se);
1403 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1405 return p->se.cfs_rq;
1408 /* runqueue on which this entity is (to be) queued */
1409 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1414 /* runqueue "owned" by this group */
1415 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1422 #define task_of(_se) container_of(_se, struct task_struct, se)
1424 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1426 return &task_rq(p)->cfs;
1429 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1431 const struct task_struct *p = task_of(se);
1432 struct rq *rq = task_rq(p);
1437 /* runqueue "owned" by this group */
1438 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1444 extern void update_rq_clock(struct rq *rq);
1447 * rq::clock_update_flags bits
1449 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1450 * call to __schedule(). This is an optimisation to avoid
1451 * neighbouring rq clock updates.
1453 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1454 * in effect and calls to update_rq_clock() are being ignored.
1456 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1457 * made to update_rq_clock() since the last time rq::lock was pinned.
1459 * If inside of __schedule(), clock_update_flags will have been
1460 * shifted left (a left shift is a cheap operation for the fast path
1461 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1463 * if (rq-clock_update_flags >= RQCF_UPDATED)
1465 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1466 * one position though, because the next rq_unpin_lock() will shift it
1469 #define RQCF_REQ_SKIP 0x01
1470 #define RQCF_ACT_SKIP 0x02
1471 #define RQCF_UPDATED 0x04
1473 static inline void assert_clock_updated(struct rq *rq)
1476 * The only reason for not seeing a clock update since the
1477 * last rq_pin_lock() is if we're currently skipping updates.
1479 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1482 static inline u64 rq_clock(struct rq *rq)
1484 lockdep_assert_rq_held(rq);
1485 assert_clock_updated(rq);
1490 static inline u64 rq_clock_task(struct rq *rq)
1492 lockdep_assert_rq_held(rq);
1493 assert_clock_updated(rq);
1495 return rq->clock_task;
1499 * By default the decay is the default pelt decay period.
1500 * The decay shift can change the decay period in
1502 * Decay shift Decay period(ms)
1509 extern int sched_thermal_decay_shift;
1511 static inline u64 rq_clock_thermal(struct rq *rq)
1513 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1516 static inline void rq_clock_skip_update(struct rq *rq)
1518 lockdep_assert_rq_held(rq);
1519 rq->clock_update_flags |= RQCF_REQ_SKIP;
1523 * See rt task throttling, which is the only time a skip
1524 * request is canceled.
1526 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1528 lockdep_assert_rq_held(rq);
1529 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1533 * During cpu offlining and rq wide unthrottling, we can trigger
1534 * an update_rq_clock() for several cfs and rt runqueues (Typically
1535 * when using list_for_each_entry_*)
1536 * rq_clock_start_loop_update() can be called after updating the clock
1537 * once and before iterating over the list to prevent multiple update.
1538 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1539 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1541 static inline void rq_clock_start_loop_update(struct rq *rq)
1543 lockdep_assert_rq_held(rq);
1544 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1545 rq->clock_update_flags |= RQCF_ACT_SKIP;
1548 static inline void rq_clock_stop_loop_update(struct rq *rq)
1550 lockdep_assert_rq_held(rq);
1551 rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1555 unsigned long flags;
1556 struct pin_cookie cookie;
1557 #ifdef CONFIG_SCHED_DEBUG
1559 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1560 * current pin context is stashed here in case it needs to be
1561 * restored in rq_repin_lock().
1563 unsigned int clock_update_flags;
1567 extern struct balance_callback balance_push_callback;
1570 * Lockdep annotation that avoids accidental unlocks; it's like a
1571 * sticky/continuous lockdep_assert_held().
1573 * This avoids code that has access to 'struct rq *rq' (basically everything in
1574 * the scheduler) from accidentally unlocking the rq if they do not also have a
1575 * copy of the (on-stack) 'struct rq_flags rf'.
1577 * Also see Documentation/locking/lockdep-design.rst.
1579 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1581 rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1583 #ifdef CONFIG_SCHED_DEBUG
1584 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1585 rf->clock_update_flags = 0;
1587 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1592 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1594 #ifdef CONFIG_SCHED_DEBUG
1595 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1596 rf->clock_update_flags = RQCF_UPDATED;
1599 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1602 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1604 lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1606 #ifdef CONFIG_SCHED_DEBUG
1608 * Restore the value we stashed in @rf for this pin context.
1610 rq->clock_update_flags |= rf->clock_update_flags;
1614 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1615 __acquires(rq->lock);
1617 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1618 __acquires(p->pi_lock)
1619 __acquires(rq->lock);
1621 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1622 __releases(rq->lock)
1624 rq_unpin_lock(rq, rf);
1625 raw_spin_rq_unlock(rq);
1629 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1630 __releases(rq->lock)
1631 __releases(p->pi_lock)
1633 rq_unpin_lock(rq, rf);
1634 raw_spin_rq_unlock(rq);
1635 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1638 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1639 _T->rq = task_rq_lock(_T->lock, &_T->rf),
1640 task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1641 struct rq *rq; struct rq_flags rf)
1644 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1645 __acquires(rq->lock)
1647 raw_spin_rq_lock_irqsave(rq, rf->flags);
1648 rq_pin_lock(rq, rf);
1652 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1653 __acquires(rq->lock)
1655 raw_spin_rq_lock_irq(rq);
1656 rq_pin_lock(rq, rf);
1660 rq_lock(struct rq *rq, struct rq_flags *rf)
1661 __acquires(rq->lock)
1663 raw_spin_rq_lock(rq);
1664 rq_pin_lock(rq, rf);
1668 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1669 __releases(rq->lock)
1671 rq_unpin_lock(rq, rf);
1672 raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1676 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1677 __releases(rq->lock)
1679 rq_unpin_lock(rq, rf);
1680 raw_spin_rq_unlock_irq(rq);
1684 rq_unlock(struct rq *rq, struct rq_flags *rf)
1685 __releases(rq->lock)
1687 rq_unpin_lock(rq, rf);
1688 raw_spin_rq_unlock(rq);
1691 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1692 rq_lock(_T->lock, &_T->rf),
1693 rq_unlock(_T->lock, &_T->rf),
1696 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1697 rq_lock_irq(_T->lock, &_T->rf),
1698 rq_unlock_irq(_T->lock, &_T->rf),
1701 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1702 rq_lock_irqsave(_T->lock, &_T->rf),
1703 rq_unlock_irqrestore(_T->lock, &_T->rf),
1706 static inline struct rq *
1707 this_rq_lock_irq(struct rq_flags *rf)
1708 __acquires(rq->lock)
1712 local_irq_disable();
1719 enum numa_topology_type {
1724 extern enum numa_topology_type sched_numa_topology_type;
1725 extern int sched_max_numa_distance;
1726 extern bool find_numa_distance(int distance);
1727 extern void sched_init_numa(int offline_node);
1728 extern void sched_update_numa(int cpu, bool online);
1729 extern void sched_domains_numa_masks_set(unsigned int cpu);
1730 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1731 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1733 static inline void sched_init_numa(int offline_node) { }
1734 static inline void sched_update_numa(int cpu, bool online) { }
1735 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1736 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1737 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1743 #ifdef CONFIG_NUMA_BALANCING
1744 /* The regions in numa_faults array from task_struct */
1745 enum numa_faults_stats {
1751 extern void sched_setnuma(struct task_struct *p, int node);
1752 extern int migrate_task_to(struct task_struct *p, int cpu);
1753 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1755 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1758 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1761 #endif /* CONFIG_NUMA_BALANCING */
1766 queue_balance_callback(struct rq *rq,
1767 struct balance_callback *head,
1768 void (*func)(struct rq *rq))
1770 lockdep_assert_rq_held(rq);
1773 * Don't (re)queue an already queued item; nor queue anything when
1774 * balance_push() is active, see the comment with
1775 * balance_push_callback.
1777 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1781 head->next = rq->balance_callback;
1782 rq->balance_callback = head;
1785 #define rcu_dereference_check_sched_domain(p) \
1786 rcu_dereference_check((p), \
1787 lockdep_is_held(&sched_domains_mutex))
1790 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1791 * See destroy_sched_domains: call_rcu for details.
1793 * The domain tree of any CPU may only be accessed from within
1794 * preempt-disabled sections.
1796 #define for_each_domain(cpu, __sd) \
1797 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1798 __sd; __sd = __sd->parent)
1800 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1801 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1802 static const unsigned int SD_SHARED_CHILD_MASK =
1803 #include <linux/sched/sd_flags.h>
1808 * highest_flag_domain - Return highest sched_domain containing flag.
1809 * @cpu: The CPU whose highest level of sched domain is to
1811 * @flag: The flag to check for the highest sched_domain
1812 * for the given CPU.
1814 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1815 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1817 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1819 struct sched_domain *sd, *hsd = NULL;
1821 for_each_domain(cpu, sd) {
1822 if (sd->flags & flag) {
1828 * Stop the search if @flag is known to be shared at lower
1829 * levels. It will not be found further up.
1831 if (flag & SD_SHARED_CHILD_MASK)
1838 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1840 struct sched_domain *sd;
1842 for_each_domain(cpu, sd) {
1843 if (sd->flags & flag)
1850 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1851 DECLARE_PER_CPU(int, sd_llc_size);
1852 DECLARE_PER_CPU(int, sd_llc_id);
1853 DECLARE_PER_CPU(int, sd_share_id);
1854 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1855 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1856 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1857 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1858 extern struct static_key_false sched_asym_cpucapacity;
1859 extern struct static_key_false sched_cluster_active;
1861 static __always_inline bool sched_asym_cpucap_active(void)
1863 return static_branch_unlikely(&sched_asym_cpucapacity);
1866 struct sched_group_capacity {
1869 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1872 unsigned long capacity;
1873 unsigned long min_capacity; /* Min per-CPU capacity in group */
1874 unsigned long max_capacity; /* Max per-CPU capacity in group */
1875 unsigned long next_update;
1876 int imbalance; /* XXX unrelated to capacity but shared group state */
1878 #ifdef CONFIG_SCHED_DEBUG
1882 unsigned long cpumask[]; /* Balance mask */
1885 struct sched_group {
1886 struct sched_group *next; /* Must be a circular list */
1889 unsigned int group_weight;
1891 struct sched_group_capacity *sgc;
1892 int asym_prefer_cpu; /* CPU of highest priority in group */
1896 * The CPUs this group covers.
1898 * NOTE: this field is variable length. (Allocated dynamically
1899 * by attaching extra space to the end of the structure,
1900 * depending on how many CPUs the kernel has booted up with)
1902 unsigned long cpumask[];
1905 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1907 return to_cpumask(sg->cpumask);
1911 * See build_balance_mask().
1913 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1915 return to_cpumask(sg->sgc->cpumask);
1918 extern int group_balance_cpu(struct sched_group *sg);
1920 #ifdef CONFIG_SCHED_DEBUG
1921 void update_sched_domain_debugfs(void);
1922 void dirty_sched_domain_sysctl(int cpu);
1924 static inline void update_sched_domain_debugfs(void)
1927 static inline void dirty_sched_domain_sysctl(int cpu)
1932 extern int sched_update_scaling(void);
1934 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1936 if (!p->user_cpus_ptr)
1937 return cpu_possible_mask; /* &init_task.cpus_mask */
1938 return p->user_cpus_ptr;
1940 #endif /* CONFIG_SMP */
1944 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1946 extern void __sched_core_account_forceidle(struct rq *rq);
1948 static inline void sched_core_account_forceidle(struct rq *rq)
1950 if (schedstat_enabled())
1951 __sched_core_account_forceidle(rq);
1954 extern void __sched_core_tick(struct rq *rq);
1956 static inline void sched_core_tick(struct rq *rq)
1958 if (sched_core_enabled(rq) && schedstat_enabled())
1959 __sched_core_tick(rq);
1964 static inline void sched_core_account_forceidle(struct rq *rq) {}
1966 static inline void sched_core_tick(struct rq *rq) {}
1968 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1970 #ifdef CONFIG_CGROUP_SCHED
1973 * Return the group to which this tasks belongs.
1975 * We cannot use task_css() and friends because the cgroup subsystem
1976 * changes that value before the cgroup_subsys::attach() method is called,
1977 * therefore we cannot pin it and might observe the wrong value.
1979 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1980 * core changes this before calling sched_move_task().
1982 * Instead we use a 'copy' which is updated from sched_move_task() while
1983 * holding both task_struct::pi_lock and rq::lock.
1985 static inline struct task_group *task_group(struct task_struct *p)
1987 return p->sched_task_group;
1990 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1991 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1993 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1994 struct task_group *tg = task_group(p);
1997 #ifdef CONFIG_FAIR_GROUP_SCHED
1998 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1999 p->se.cfs_rq = tg->cfs_rq[cpu];
2000 p->se.parent = tg->se[cpu];
2001 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2004 #ifdef CONFIG_RT_GROUP_SCHED
2005 p->rt.rt_rq = tg->rt_rq[cpu];
2006 p->rt.parent = tg->rt_se[cpu];
2010 #else /* CONFIG_CGROUP_SCHED */
2012 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2013 static inline struct task_group *task_group(struct task_struct *p)
2018 #endif /* CONFIG_CGROUP_SCHED */
2020 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2022 set_task_rq(p, cpu);
2025 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2026 * successfully executed on another CPU. We must ensure that updates of
2027 * per-task data have been completed by this moment.
2030 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2036 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2038 #ifdef CONFIG_SCHED_DEBUG
2039 # define const_debug __read_mostly
2041 # define const_debug const
2044 #define SCHED_FEAT(name, enabled) \
2045 __SCHED_FEAT_##name ,
2048 #include "features.h"
2054 #ifdef CONFIG_SCHED_DEBUG
2057 * To support run-time toggling of sched features, all the translation units
2058 * (but core.c) reference the sysctl_sched_features defined in core.c.
2060 extern const_debug unsigned int sysctl_sched_features;
2062 #ifdef CONFIG_JUMP_LABEL
2063 #define SCHED_FEAT(name, enabled) \
2064 static __always_inline bool static_branch_##name(struct static_key *key) \
2066 return static_key_##enabled(key); \
2069 #include "features.h"
2072 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2073 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2075 #else /* !CONFIG_JUMP_LABEL */
2077 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2079 #endif /* CONFIG_JUMP_LABEL */
2081 #else /* !SCHED_DEBUG */
2084 * Each translation unit has its own copy of sysctl_sched_features to allow
2085 * constants propagation at compile time and compiler optimization based on
2088 #define SCHED_FEAT(name, enabled) \
2089 (1UL << __SCHED_FEAT_##name) * enabled |
2090 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2091 #include "features.h"
2095 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2097 #endif /* SCHED_DEBUG */
2099 extern struct static_key_false sched_numa_balancing;
2100 extern struct static_key_false sched_schedstats;
2102 static inline u64 global_rt_period(void)
2104 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2107 static inline u64 global_rt_runtime(void)
2109 if (sysctl_sched_rt_runtime < 0)
2112 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2115 static inline int task_current(struct rq *rq, struct task_struct *p)
2117 return rq->curr == p;
2120 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2125 return task_current(rq, p);
2129 static inline int task_on_rq_queued(struct task_struct *p)
2131 return p->on_rq == TASK_ON_RQ_QUEUED;
2134 static inline int task_on_rq_migrating(struct task_struct *p)
2136 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2139 /* Wake flags. The first three directly map to some SD flag value */
2140 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2141 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2142 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
2144 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
2145 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2146 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */
2149 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2150 static_assert(WF_FORK == SD_BALANCE_FORK);
2151 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2155 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2156 * of tasks with abnormal "nice" values across CPUs the contribution that
2157 * each task makes to its run queue's load is weighted according to its
2158 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2159 * scaled version of the new time slice allocation that they receive on time
2163 #define WEIGHT_IDLEPRIO 3
2164 #define WMULT_IDLEPRIO 1431655765
2166 extern const int sched_prio_to_weight[40];
2167 extern const u32 sched_prio_to_wmult[40];
2170 * {de,en}queue flags:
2172 * DEQUEUE_SLEEP - task is no longer runnable
2173 * ENQUEUE_WAKEUP - task just became runnable
2175 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2176 * are in a known state which allows modification. Such pairs
2177 * should preserve as much state as possible.
2179 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2182 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
2183 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2184 * ENQUEUE_MIGRATED - the task was migrated during wakeup
2188 #define DEQUEUE_SLEEP 0x01
2189 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
2190 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
2191 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
2193 #define ENQUEUE_WAKEUP 0x01
2194 #define ENQUEUE_RESTORE 0x02
2195 #define ENQUEUE_MOVE 0x04
2196 #define ENQUEUE_NOCLOCK 0x08
2198 #define ENQUEUE_HEAD 0x10
2199 #define ENQUEUE_REPLENISH 0x20
2201 #define ENQUEUE_MIGRATED 0x40
2203 #define ENQUEUE_MIGRATED 0x00
2205 #define ENQUEUE_INITIAL 0x80
2207 #define RETRY_TASK ((void *)-1UL)
2209 struct affinity_context {
2210 const struct cpumask *new_mask;
2211 struct cpumask *user_mask;
2215 struct sched_class {
2217 #ifdef CONFIG_UCLAMP_TASK
2221 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2222 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2223 void (*yield_task) (struct rq *rq);
2224 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2226 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2228 struct task_struct *(*pick_next_task)(struct rq *rq);
2230 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2231 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2234 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2235 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2237 struct task_struct * (*pick_task)(struct rq *rq);
2239 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2241 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2243 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2245 void (*rq_online)(struct rq *rq);
2246 void (*rq_offline)(struct rq *rq);
2248 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2251 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2252 void (*task_fork)(struct task_struct *p);
2253 void (*task_dead)(struct task_struct *p);
2256 * The switched_from() call is allowed to drop rq->lock, therefore we
2257 * cannot assume the switched_from/switched_to pair is serialized by
2258 * rq->lock. They are however serialized by p->pi_lock.
2260 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2261 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
2262 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2265 unsigned int (*get_rr_interval)(struct rq *rq,
2266 struct task_struct *task);
2268 void (*update_curr)(struct rq *rq);
2270 #ifdef CONFIG_FAIR_GROUP_SCHED
2271 void (*task_change_group)(struct task_struct *p);
2274 #ifdef CONFIG_SCHED_CORE
2275 int (*task_is_throttled)(struct task_struct *p, int cpu);
2279 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2281 WARN_ON_ONCE(rq->curr != prev);
2282 prev->sched_class->put_prev_task(rq, prev);
2285 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2287 next->sched_class->set_next_task(rq, next, false);
2292 * Helper to define a sched_class instance; each one is placed in a separate
2293 * section which is ordered by the linker script:
2295 * include/asm-generic/vmlinux.lds.h
2297 * *CAREFUL* they are laid out in *REVERSE* order!!!
2299 * Also enforce alignment on the instance, not the type, to guarantee layout.
2301 #define DEFINE_SCHED_CLASS(name) \
2302 const struct sched_class name##_sched_class \
2303 __aligned(__alignof__(struct sched_class)) \
2304 __section("__" #name "_sched_class")
2306 /* Defined in include/asm-generic/vmlinux.lds.h */
2307 extern struct sched_class __sched_class_highest[];
2308 extern struct sched_class __sched_class_lowest[];
2310 #define for_class_range(class, _from, _to) \
2311 for (class = (_from); class < (_to); class++)
2313 #define for_each_class(class) \
2314 for_class_range(class, __sched_class_highest, __sched_class_lowest)
2316 #define sched_class_above(_a, _b) ((_a) < (_b))
2318 extern const struct sched_class stop_sched_class;
2319 extern const struct sched_class dl_sched_class;
2320 extern const struct sched_class rt_sched_class;
2321 extern const struct sched_class fair_sched_class;
2322 extern const struct sched_class idle_sched_class;
2324 static inline bool sched_stop_runnable(struct rq *rq)
2326 return rq->stop && task_on_rq_queued(rq->stop);
2329 static inline bool sched_dl_runnable(struct rq *rq)
2331 return rq->dl.dl_nr_running > 0;
2334 static inline bool sched_rt_runnable(struct rq *rq)
2336 return rq->rt.rt_queued > 0;
2339 static inline bool sched_fair_runnable(struct rq *rq)
2341 return rq->cfs.nr_running > 0;
2344 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2345 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2347 #define SCA_CHECK 0x01
2348 #define SCA_MIGRATE_DISABLE 0x02
2349 #define SCA_MIGRATE_ENABLE 0x04
2350 #define SCA_USER 0x08
2354 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2356 extern void trigger_load_balance(struct rq *rq);
2358 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2360 static inline struct task_struct *get_push_task(struct rq *rq)
2362 struct task_struct *p = rq->curr;
2364 lockdep_assert_rq_held(rq);
2369 if (p->nr_cpus_allowed == 1)
2372 if (p->migration_disabled)
2375 rq->push_busy = true;
2376 return get_task_struct(p);
2379 extern int push_cpu_stop(void *arg);
2383 #ifdef CONFIG_CPU_IDLE
2384 static inline void idle_set_state(struct rq *rq,
2385 struct cpuidle_state *idle_state)
2387 rq->idle_state = idle_state;
2390 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2392 SCHED_WARN_ON(!rcu_read_lock_held());
2394 return rq->idle_state;
2397 static inline void idle_set_state(struct rq *rq,
2398 struct cpuidle_state *idle_state)
2402 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2408 extern void schedule_idle(void);
2409 asmlinkage void schedule_user(void);
2411 extern void sysrq_sched_debug_show(void);
2412 extern void sched_init_granularity(void);
2413 extern void update_max_interval(void);
2415 extern void init_sched_dl_class(void);
2416 extern void init_sched_rt_class(void);
2417 extern void init_sched_fair_class(void);
2419 extern void reweight_task(struct task_struct *p, int prio);
2421 extern void resched_curr(struct rq *rq);
2422 extern void resched_cpu(int cpu);
2424 extern struct rt_bandwidth def_rt_bandwidth;
2425 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2426 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2428 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2429 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2432 #define BW_UNIT (1 << BW_SHIFT)
2433 #define RATIO_SHIFT 8
2434 #define MAX_BW_BITS (64 - BW_SHIFT)
2435 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2436 unsigned long to_ratio(u64 period, u64 runtime);
2438 extern void init_entity_runnable_average(struct sched_entity *se);
2439 extern void post_init_entity_util_avg(struct task_struct *p);
2441 #ifdef CONFIG_NO_HZ_FULL
2442 extern bool sched_can_stop_tick(struct rq *rq);
2443 extern int __init sched_tick_offload_init(void);
2446 * Tick may be needed by tasks in the runqueue depending on their policy and
2447 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2448 * nohz mode if necessary.
2450 static inline void sched_update_tick_dependency(struct rq *rq)
2452 int cpu = cpu_of(rq);
2454 if (!tick_nohz_full_cpu(cpu))
2457 if (sched_can_stop_tick(rq))
2458 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2460 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2463 static inline int sched_tick_offload_init(void) { return 0; }
2464 static inline void sched_update_tick_dependency(struct rq *rq) { }
2467 static inline void add_nr_running(struct rq *rq, unsigned count)
2469 unsigned prev_nr = rq->nr_running;
2471 rq->nr_running = prev_nr + count;
2472 if (trace_sched_update_nr_running_tp_enabled()) {
2473 call_trace_sched_update_nr_running(rq, count);
2477 if (prev_nr < 2 && rq->nr_running >= 2) {
2478 if (!READ_ONCE(rq->rd->overload))
2479 WRITE_ONCE(rq->rd->overload, 1);
2483 sched_update_tick_dependency(rq);
2486 static inline void sub_nr_running(struct rq *rq, unsigned count)
2488 rq->nr_running -= count;
2489 if (trace_sched_update_nr_running_tp_enabled()) {
2490 call_trace_sched_update_nr_running(rq, -count);
2493 /* Check if we still need preemption */
2494 sched_update_tick_dependency(rq);
2497 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2498 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2500 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2502 #ifdef CONFIG_PREEMPT_RT
2503 #define SCHED_NR_MIGRATE_BREAK 8
2505 #define SCHED_NR_MIGRATE_BREAK 32
2508 extern const_debug unsigned int sysctl_sched_nr_migrate;
2509 extern const_debug unsigned int sysctl_sched_migration_cost;
2511 extern unsigned int sysctl_sched_base_slice;
2513 #ifdef CONFIG_SCHED_DEBUG
2514 extern int sysctl_resched_latency_warn_ms;
2515 extern int sysctl_resched_latency_warn_once;
2517 extern unsigned int sysctl_sched_tunable_scaling;
2519 extern unsigned int sysctl_numa_balancing_scan_delay;
2520 extern unsigned int sysctl_numa_balancing_scan_period_min;
2521 extern unsigned int sysctl_numa_balancing_scan_period_max;
2522 extern unsigned int sysctl_numa_balancing_scan_size;
2523 extern unsigned int sysctl_numa_balancing_hot_threshold;
2526 #ifdef CONFIG_SCHED_HRTICK
2530 * - enabled by features
2531 * - hrtimer is actually high res
2533 static inline int hrtick_enabled(struct rq *rq)
2535 if (!cpu_active(cpu_of(rq)))
2537 return hrtimer_is_hres_active(&rq->hrtick_timer);
2540 static inline int hrtick_enabled_fair(struct rq *rq)
2542 if (!sched_feat(HRTICK))
2544 return hrtick_enabled(rq);
2547 static inline int hrtick_enabled_dl(struct rq *rq)
2549 if (!sched_feat(HRTICK_DL))
2551 return hrtick_enabled(rq);
2554 void hrtick_start(struct rq *rq, u64 delay);
2558 static inline int hrtick_enabled_fair(struct rq *rq)
2563 static inline int hrtick_enabled_dl(struct rq *rq)
2568 static inline int hrtick_enabled(struct rq *rq)
2573 #endif /* CONFIG_SCHED_HRTICK */
2575 #ifndef arch_scale_freq_tick
2576 static __always_inline
2577 void arch_scale_freq_tick(void)
2582 #ifndef arch_scale_freq_capacity
2584 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2585 * @cpu: the CPU in question.
2587 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2590 * ------ * SCHED_CAPACITY_SCALE
2593 static __always_inline
2594 unsigned long arch_scale_freq_capacity(int cpu)
2596 return SCHED_CAPACITY_SCALE;
2600 #ifdef CONFIG_SCHED_DEBUG
2602 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2603 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2604 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2605 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2607 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2609 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2610 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2612 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2616 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2619 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \
2620 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2621 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2622 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \
2627 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2629 #ifdef CONFIG_SCHED_CORE
2631 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2632 * order by core-id first and cpu-id second.
2636 * double_rq_lock(0,3); will take core-0, core-1 lock
2637 * double_rq_lock(1,2); will take core-1, core-0 lock
2639 * when only cpu-id is considered.
2641 if (rq1->core->cpu < rq2->core->cpu)
2643 if (rq1->core->cpu > rq2->core->cpu)
2647 * __sched_core_flip() relies on SMT having cpu-id lock order.
2650 return rq1->cpu < rq2->cpu;
2653 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2655 #ifdef CONFIG_PREEMPTION
2658 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2659 * way at the expense of forcing extra atomic operations in all
2660 * invocations. This assures that the double_lock is acquired using the
2661 * same underlying policy as the spinlock_t on this architecture, which
2662 * reduces latency compared to the unfair variant below. However, it
2663 * also adds more overhead and therefore may reduce throughput.
2665 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2666 __releases(this_rq->lock)
2667 __acquires(busiest->lock)
2668 __acquires(this_rq->lock)
2670 raw_spin_rq_unlock(this_rq);
2671 double_rq_lock(this_rq, busiest);
2678 * Unfair double_lock_balance: Optimizes throughput at the expense of
2679 * latency by eliminating extra atomic operations when the locks are
2680 * already in proper order on entry. This favors lower CPU-ids and will
2681 * grant the double lock to lower CPUs over higher ids under contention,
2682 * regardless of entry order into the function.
2684 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2685 __releases(this_rq->lock)
2686 __acquires(busiest->lock)
2687 __acquires(this_rq->lock)
2689 if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2690 likely(raw_spin_rq_trylock(busiest))) {
2691 double_rq_clock_clear_update(this_rq, busiest);
2695 if (rq_order_less(this_rq, busiest)) {
2696 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2697 double_rq_clock_clear_update(this_rq, busiest);
2701 raw_spin_rq_unlock(this_rq);
2702 double_rq_lock(this_rq, busiest);
2707 #endif /* CONFIG_PREEMPTION */
2710 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2712 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2714 lockdep_assert_irqs_disabled();
2716 return _double_lock_balance(this_rq, busiest);
2719 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2720 __releases(busiest->lock)
2722 if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2723 raw_spin_rq_unlock(busiest);
2724 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2727 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2733 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2736 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2742 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2745 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2751 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2754 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2756 raw_spin_unlock(l1);
2757 raw_spin_unlock(l2);
2760 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2761 double_raw_lock(_T->lock, _T->lock2),
2762 double_raw_unlock(_T->lock, _T->lock2))
2765 * double_rq_unlock - safely unlock two runqueues
2767 * Note this does not restore interrupts like task_rq_unlock,
2768 * you need to do so manually after calling.
2770 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2771 __releases(rq1->lock)
2772 __releases(rq2->lock)
2774 if (__rq_lockp(rq1) != __rq_lockp(rq2))
2775 raw_spin_rq_unlock(rq2);
2777 __release(rq2->lock);
2778 raw_spin_rq_unlock(rq1);
2781 extern void set_rq_online (struct rq *rq);
2782 extern void set_rq_offline(struct rq *rq);
2783 extern bool sched_smp_initialized;
2785 #else /* CONFIG_SMP */
2788 * double_rq_lock - safely lock two runqueues
2790 * Note this does not disable interrupts like task_rq_lock,
2791 * you need to do so manually before calling.
2793 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2794 __acquires(rq1->lock)
2795 __acquires(rq2->lock)
2797 WARN_ON_ONCE(!irqs_disabled());
2798 WARN_ON_ONCE(rq1 != rq2);
2799 raw_spin_rq_lock(rq1);
2800 __acquire(rq2->lock); /* Fake it out ;) */
2801 double_rq_clock_clear_update(rq1, rq2);
2805 * double_rq_unlock - safely unlock two runqueues
2807 * Note this does not restore interrupts like task_rq_unlock,
2808 * you need to do so manually after calling.
2810 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2811 __releases(rq1->lock)
2812 __releases(rq2->lock)
2814 WARN_ON_ONCE(rq1 != rq2);
2815 raw_spin_rq_unlock(rq1);
2816 __release(rq2->lock);
2821 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2822 double_rq_lock(_T->lock, _T->lock2),
2823 double_rq_unlock(_T->lock, _T->lock2))
2825 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2826 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2828 #ifdef CONFIG_SCHED_DEBUG
2829 extern bool sched_debug_verbose;
2831 extern void print_cfs_stats(struct seq_file *m, int cpu);
2832 extern void print_rt_stats(struct seq_file *m, int cpu);
2833 extern void print_dl_stats(struct seq_file *m, int cpu);
2834 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2835 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2836 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2838 extern void resched_latency_warn(int cpu, u64 latency);
2839 #ifdef CONFIG_NUMA_BALANCING
2841 show_numa_stats(struct task_struct *p, struct seq_file *m);
2843 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2844 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2845 #endif /* CONFIG_NUMA_BALANCING */
2847 static inline void resched_latency_warn(int cpu, u64 latency) {}
2848 #endif /* CONFIG_SCHED_DEBUG */
2850 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2851 extern void init_rt_rq(struct rt_rq *rt_rq);
2852 extern void init_dl_rq(struct dl_rq *dl_rq);
2854 extern void cfs_bandwidth_usage_inc(void);
2855 extern void cfs_bandwidth_usage_dec(void);
2857 #ifdef CONFIG_NO_HZ_COMMON
2858 #define NOHZ_BALANCE_KICK_BIT 0
2859 #define NOHZ_STATS_KICK_BIT 1
2860 #define NOHZ_NEWILB_KICK_BIT 2
2861 #define NOHZ_NEXT_KICK_BIT 3
2863 /* Run rebalance_domains() */
2864 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2865 /* Update blocked load */
2866 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2867 /* Update blocked load when entering idle */
2868 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
2869 /* Update nohz.next_balance */
2870 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
2872 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2874 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2876 extern void nohz_balance_exit_idle(struct rq *rq);
2878 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2881 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2882 extern void nohz_run_idle_balance(int cpu);
2884 static inline void nohz_run_idle_balance(int cpu) { }
2887 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2892 struct u64_stats_sync sync;
2895 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2898 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2899 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2900 * and never move forward.
2902 static inline u64 irq_time_read(int cpu)
2904 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2909 seq = __u64_stats_fetch_begin(&irqtime->sync);
2910 total = irqtime->total;
2911 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2915 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2917 #ifdef CONFIG_CPU_FREQ
2918 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2921 * cpufreq_update_util - Take a note about CPU utilization changes.
2922 * @rq: Runqueue to carry out the update for.
2923 * @flags: Update reason flags.
2925 * This function is called by the scheduler on the CPU whose utilization is
2928 * It can only be called from RCU-sched read-side critical sections.
2930 * The way cpufreq is currently arranged requires it to evaluate the CPU
2931 * performance state (frequency/voltage) on a regular basis to prevent it from
2932 * being stuck in a completely inadequate performance level for too long.
2933 * That is not guaranteed to happen if the updates are only triggered from CFS
2934 * and DL, though, because they may not be coming in if only RT tasks are
2935 * active all the time (or there are RT tasks only).
2937 * As a workaround for that issue, this function is called periodically by the
2938 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2939 * but that really is a band-aid. Going forward it should be replaced with
2940 * solutions targeted more specifically at RT tasks.
2942 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2944 struct update_util_data *data;
2946 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2949 data->func(data, rq_clock(rq), flags);
2952 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2953 #endif /* CONFIG_CPU_FREQ */
2955 #ifdef arch_scale_freq_capacity
2956 # ifndef arch_scale_freq_invariant
2957 # define arch_scale_freq_invariant() true
2960 # define arch_scale_freq_invariant() false
2965 * enum cpu_util_type - CPU utilization type
2966 * @FREQUENCY_UTIL: Utilization used to select frequency
2967 * @ENERGY_UTIL: Utilization used during energy calculation
2969 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2970 * need to be aggregated differently depending on the usage made of them. This
2971 * enum is used within effective_cpu_util() to differentiate the types of
2972 * utilization expected by the callers, and adjust the aggregation accordingly.
2974 enum cpu_util_type {
2979 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2980 enum cpu_util_type type,
2981 struct task_struct *p);
2984 * Verify the fitness of task @p to run on @cpu taking into account the
2985 * CPU original capacity and the runtime/deadline ratio of the task.
2987 * The function will return true if the original capacity of @cpu is
2988 * greater than or equal to task's deadline density right shifted by
2989 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
2991 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
2993 unsigned long cap = arch_scale_cpu_capacity(cpu);
2995 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
2998 static inline unsigned long cpu_bw_dl(struct rq *rq)
3000 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3003 static inline unsigned long cpu_util_dl(struct rq *rq)
3005 return READ_ONCE(rq->avg_dl.util_avg);
3009 extern unsigned long cpu_util_cfs(int cpu);
3010 extern unsigned long cpu_util_cfs_boost(int cpu);
3012 static inline unsigned long cpu_util_rt(struct rq *rq)
3014 return READ_ONCE(rq->avg_rt.util_avg);
3018 #ifdef CONFIG_UCLAMP_TASK
3019 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3021 static inline unsigned long uclamp_rq_get(struct rq *rq,
3022 enum uclamp_id clamp_id)
3024 return READ_ONCE(rq->uclamp[clamp_id].value);
3027 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3030 WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3033 static inline bool uclamp_rq_is_idle(struct rq *rq)
3035 return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3039 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3040 * @rq: The rq to clamp against. Must not be NULL.
3041 * @util: The util value to clamp.
3042 * @p: The task to clamp against. Can be NULL if you want to clamp
3045 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3047 * If sched_uclamp_used static key is disabled, then just return the util
3048 * without any clamping since uclamp aggregation at the rq level in the fast
3049 * path is disabled, rendering this operation a NOP.
3051 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3052 * will return the correct effective uclamp value of the task even if the
3053 * static key is disabled.
3055 static __always_inline
3056 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3057 struct task_struct *p)
3059 unsigned long min_util = 0;
3060 unsigned long max_util = 0;
3062 if (!static_branch_likely(&sched_uclamp_used))
3066 min_util = uclamp_eff_value(p, UCLAMP_MIN);
3067 max_util = uclamp_eff_value(p, UCLAMP_MAX);
3070 * Ignore last runnable task's max clamp, as this task will
3071 * reset it. Similarly, no need to read the rq's min clamp.
3073 if (uclamp_rq_is_idle(rq))
3077 min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3078 max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3081 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3082 * RUNNABLE tasks with _different_ clamps, we can end up with an
3083 * inversion. Fix it now when the clamps are applied.
3085 if (unlikely(min_util >= max_util))
3088 return clamp(util, min_util, max_util);
3091 /* Is the rq being capped/throttled by uclamp_max? */
3092 static inline bool uclamp_rq_is_capped(struct rq *rq)
3094 unsigned long rq_util;
3095 unsigned long max_util;
3097 if (!static_branch_likely(&sched_uclamp_used))
3100 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3101 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3103 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3107 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3108 * by default in the fast path and only gets turned on once userspace performs
3109 * an operation that requires it.
3111 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3114 static inline bool uclamp_is_used(void)
3116 return static_branch_likely(&sched_uclamp_used);
3118 #else /* CONFIG_UCLAMP_TASK */
3119 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3120 enum uclamp_id clamp_id)
3122 if (clamp_id == UCLAMP_MIN)
3125 return SCHED_CAPACITY_SCALE;
3129 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3130 struct task_struct *p)
3135 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3137 static inline bool uclamp_is_used(void)
3142 static inline unsigned long uclamp_rq_get(struct rq *rq,
3143 enum uclamp_id clamp_id)
3145 if (clamp_id == UCLAMP_MIN)
3148 return SCHED_CAPACITY_SCALE;
3151 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3156 static inline bool uclamp_rq_is_idle(struct rq *rq)
3160 #endif /* CONFIG_UCLAMP_TASK */
3162 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3163 static inline unsigned long cpu_util_irq(struct rq *rq)
3165 return rq->avg_irq.util_avg;
3169 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3171 util *= (max - irq);
3178 static inline unsigned long cpu_util_irq(struct rq *rq)
3184 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3190 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3192 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3194 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3196 static inline bool sched_energy_enabled(void)
3198 return static_branch_unlikely(&sched_energy_present);
3201 extern struct cpufreq_governor schedutil_gov;
3203 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3205 #define perf_domain_span(pd) NULL
3206 static inline bool sched_energy_enabled(void) { return false; }
3208 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3210 #ifdef CONFIG_MEMBARRIER
3212 * The scheduler provides memory barriers required by membarrier between:
3213 * - prior user-space memory accesses and store to rq->membarrier_state,
3214 * - store to rq->membarrier_state and following user-space memory accesses.
3215 * In the same way it provides those guarantees around store to rq->curr.
3217 static inline void membarrier_switch_mm(struct rq *rq,
3218 struct mm_struct *prev_mm,
3219 struct mm_struct *next_mm)
3221 int membarrier_state;
3223 if (prev_mm == next_mm)
3226 membarrier_state = atomic_read(&next_mm->membarrier_state);
3227 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3230 WRITE_ONCE(rq->membarrier_state, membarrier_state);
3233 static inline void membarrier_switch_mm(struct rq *rq,
3234 struct mm_struct *prev_mm,
3235 struct mm_struct *next_mm)
3241 static inline bool is_per_cpu_kthread(struct task_struct *p)
3243 if (!(p->flags & PF_KTHREAD))
3246 if (p->nr_cpus_allowed != 1)
3253 extern void swake_up_all_locked(struct swait_queue_head *q);
3254 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3256 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3258 #ifdef CONFIG_PREEMPT_DYNAMIC
3259 extern int preempt_dynamic_mode;
3260 extern int sched_dynamic_mode(const char *str);
3261 extern void sched_dynamic_update(int mode);
3264 static inline void update_current_exec_runtime(struct task_struct *curr,
3265 u64 now, u64 delta_exec)
3267 curr->se.sum_exec_runtime += delta_exec;
3268 account_group_exec_runtime(curr, delta_exec);
3270 curr->se.exec_start = now;
3271 cgroup_account_cputime(curr, delta_exec);
3274 #ifdef CONFIG_SCHED_MM_CID
3276 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */
3277 #define MM_CID_SCAN_DELAY 100 /* 100ms */
3279 extern raw_spinlock_t cid_lock;
3280 extern int use_cid_lock;
3282 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3283 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3284 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3285 extern void init_sched_mm_cid(struct task_struct *t);
3287 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3291 cpumask_clear_cpu(cid, mm_cidmask(mm));
3295 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3296 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3297 * be held to transition to other states.
3299 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3300 * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3302 static inline void mm_cid_put_lazy(struct task_struct *t)
3304 struct mm_struct *mm = t->mm;
3305 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3308 lockdep_assert_irqs_disabled();
3309 cid = __this_cpu_read(pcpu_cid->cid);
3310 if (!mm_cid_is_lazy_put(cid) ||
3311 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3313 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3316 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3318 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3321 lockdep_assert_irqs_disabled();
3322 cid = __this_cpu_read(pcpu_cid->cid);
3324 if (mm_cid_is_unset(cid))
3325 return MM_CID_UNSET;
3327 * Attempt transition from valid or lazy-put to unset.
3329 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3337 static inline void mm_cid_put(struct mm_struct *mm)
3341 lockdep_assert_irqs_disabled();
3342 cid = mm_cid_pcpu_unset(mm);
3343 if (cid == MM_CID_UNSET)
3345 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3348 static inline int __mm_cid_try_get(struct mm_struct *mm)
3350 struct cpumask *cpumask;
3353 cpumask = mm_cidmask(mm);
3355 * Retry finding first zero bit if the mask is temporarily
3356 * filled. This only happens during concurrent remote-clear
3357 * which owns a cid without holding a rq lock.
3360 cid = cpumask_first_zero(cpumask);
3361 if (cid < nr_cpu_ids)
3365 if (cpumask_test_and_set_cpu(cid, cpumask))
3371 * Save a snapshot of the current runqueue time of this cpu
3372 * with the per-cpu cid value, allowing to estimate how recently it was used.
3374 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3376 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3378 lockdep_assert_rq_held(rq);
3379 WRITE_ONCE(pcpu_cid->time, rq->clock);
3382 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3387 * All allocations (even those using the cid_lock) are lock-free. If
3388 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3389 * guarantee forward progress.
3391 if (!READ_ONCE(use_cid_lock)) {
3392 cid = __mm_cid_try_get(mm);
3395 raw_spin_lock(&cid_lock);
3397 raw_spin_lock(&cid_lock);
3398 cid = __mm_cid_try_get(mm);
3404 * cid concurrently allocated. Retry while forcing following
3405 * allocations to use the cid_lock to ensure forward progress.
3407 WRITE_ONCE(use_cid_lock, 1);
3409 * Set use_cid_lock before allocation. Only care about program order
3410 * because this is only required for forward progress.
3414 * Retry until it succeeds. It is guaranteed to eventually succeed once
3415 * all newcoming allocations observe the use_cid_lock flag set.
3418 cid = __mm_cid_try_get(mm);
3422 * Allocate before clearing use_cid_lock. Only care about
3423 * program order because this is for forward progress.
3426 WRITE_ONCE(use_cid_lock, 0);
3428 raw_spin_unlock(&cid_lock);
3430 mm_cid_snapshot_time(rq, mm);
3434 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3436 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3437 struct cpumask *cpumask;
3440 lockdep_assert_rq_held(rq);
3441 cpumask = mm_cidmask(mm);
3442 cid = __this_cpu_read(pcpu_cid->cid);
3443 if (mm_cid_is_valid(cid)) {
3444 mm_cid_snapshot_time(rq, mm);
3447 if (mm_cid_is_lazy_put(cid)) {
3448 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3449 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3451 cid = __mm_cid_get(rq, mm);
3452 __this_cpu_write(pcpu_cid->cid, cid);
3456 static inline void switch_mm_cid(struct rq *rq,
3457 struct task_struct *prev,
3458 struct task_struct *next)
3461 * Provide a memory barrier between rq->curr store and load of
3462 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3464 * Should be adapted if context_switch() is modified.
3466 if (!next->mm) { // to kernel
3468 * user -> kernel transition does not guarantee a barrier, but
3469 * we can use the fact that it performs an atomic operation in
3472 if (prev->mm) // from user
3473 smp_mb__after_mmgrab();
3475 * kernel -> kernel transition does not change rq->curr->mm
3476 * state. It stays NULL.
3480 * kernel -> user transition does not provide a barrier
3481 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3484 if (!prev->mm) // from kernel
3487 * user -> user transition guarantees a memory barrier through
3488 * switch_mm() when current->mm changes. If current->mm is
3489 * unchanged, no barrier is needed.
3492 if (prev->mm_cid_active) {
3493 mm_cid_snapshot_time(rq, prev->mm);
3494 mm_cid_put_lazy(prev);
3497 if (next->mm_cid_active)
3498 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3502 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3503 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3504 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3505 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3506 static inline void init_sched_mm_cid(struct task_struct *t) { }
3509 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3510 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3512 #endif /* _KERNEL_SCHED_SCHED_H */