1 // SPDX-License-Identifier: GPL-2.0
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13 struct rt_bandwidth def_rt_bandwidth;
16 * period over which we measure -rt task CPU usage in us.
19 int sysctl_sched_rt_period = 1000000;
22 * part of the period that we allow rt tasks to run in us.
25 int sysctl_sched_rt_runtime = 950000;
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30 size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32 size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
35 .procname = "sched_rt_period_us",
36 .data = &sysctl_sched_rt_period,
37 .maxlen = sizeof(int),
39 .proc_handler = sched_rt_handler,
41 .extra2 = SYSCTL_INT_MAX,
44 .procname = "sched_rt_runtime_us",
45 .data = &sysctl_sched_rt_runtime,
46 .maxlen = sizeof(int),
48 .proc_handler = sched_rt_handler,
49 .extra1 = SYSCTL_NEG_ONE,
50 .extra2 = (void *)&sysctl_sched_rt_period,
53 .procname = "sched_rr_timeslice_ms",
54 .data = &sysctl_sched_rr_timeslice,
55 .maxlen = sizeof(int),
57 .proc_handler = sched_rr_handler,
62 static int __init sched_rt_sysctl_init(void)
64 register_sysctl_init("kernel", sched_rt_sysctls);
67 late_initcall(sched_rt_sysctl_init);
70 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
72 struct rt_bandwidth *rt_b =
73 container_of(timer, struct rt_bandwidth, rt_period_timer);
77 raw_spin_lock(&rt_b->rt_runtime_lock);
79 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
83 raw_spin_unlock(&rt_b->rt_runtime_lock);
84 idle = do_sched_rt_period_timer(rt_b, overrun);
85 raw_spin_lock(&rt_b->rt_runtime_lock);
88 rt_b->rt_period_active = 0;
89 raw_spin_unlock(&rt_b->rt_runtime_lock);
91 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
94 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
96 rt_b->rt_period = ns_to_ktime(period);
97 rt_b->rt_runtime = runtime;
99 raw_spin_lock_init(&rt_b->rt_runtime_lock);
101 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
102 HRTIMER_MODE_REL_HARD);
103 rt_b->rt_period_timer.function = sched_rt_period_timer;
106 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
108 raw_spin_lock(&rt_b->rt_runtime_lock);
109 if (!rt_b->rt_period_active) {
110 rt_b->rt_period_active = 1;
112 * SCHED_DEADLINE updates the bandwidth, as a run away
113 * RT task with a DL task could hog a CPU. But DL does
114 * not reset the period. If a deadline task was running
115 * without an RT task running, it can cause RT tasks to
116 * throttle when they start up. Kick the timer right away
117 * to update the period.
119 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
120 hrtimer_start_expires(&rt_b->rt_period_timer,
121 HRTIMER_MODE_ABS_PINNED_HARD);
123 raw_spin_unlock(&rt_b->rt_runtime_lock);
126 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
128 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
131 do_start_rt_bandwidth(rt_b);
134 void init_rt_rq(struct rt_rq *rt_rq)
136 struct rt_prio_array *array;
139 array = &rt_rq->active;
140 for (i = 0; i < MAX_RT_PRIO; i++) {
141 INIT_LIST_HEAD(array->queue + i);
142 __clear_bit(i, array->bitmap);
144 /* delimiter for bitsearch: */
145 __set_bit(MAX_RT_PRIO, array->bitmap);
147 #if defined CONFIG_SMP
148 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
149 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
150 rt_rq->overloaded = 0;
151 plist_head_init(&rt_rq->pushable_tasks);
152 #endif /* CONFIG_SMP */
153 /* We start is dequeued state, because no RT tasks are queued */
154 rt_rq->rt_queued = 0;
157 rt_rq->rt_throttled = 0;
158 rt_rq->rt_runtime = 0;
159 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
162 #ifdef CONFIG_RT_GROUP_SCHED
163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
165 hrtimer_cancel(&rt_b->rt_period_timer);
168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
172 #ifdef CONFIG_SCHED_DEBUG
173 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
175 return container_of(rt_se, struct task_struct, rt);
178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
183 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
188 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
190 struct rt_rq *rt_rq = rt_se->rt_rq;
195 void unregister_rt_sched_group(struct task_group *tg)
198 destroy_rt_bandwidth(&tg->rt_bandwidth);
202 void free_rt_sched_group(struct task_group *tg)
206 for_each_possible_cpu(i) {
217 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
218 struct sched_rt_entity *rt_se, int cpu,
219 struct sched_rt_entity *parent)
221 struct rq *rq = cpu_rq(cpu);
223 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
224 rt_rq->rt_nr_boosted = 0;
228 tg->rt_rq[cpu] = rt_rq;
229 tg->rt_se[cpu] = rt_se;
235 rt_se->rt_rq = &rq->rt;
237 rt_se->rt_rq = parent->my_q;
240 rt_se->parent = parent;
241 INIT_LIST_HEAD(&rt_se->run_list);
244 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
247 struct sched_rt_entity *rt_se;
250 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
253 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
257 init_rt_bandwidth(&tg->rt_bandwidth,
258 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
260 for_each_possible_cpu(i) {
261 rt_rq = kzalloc_node(sizeof(struct rt_rq),
262 GFP_KERNEL, cpu_to_node(i));
266 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
267 GFP_KERNEL, cpu_to_node(i));
272 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
273 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
284 #else /* CONFIG_RT_GROUP_SCHED */
286 #define rt_entity_is_task(rt_se) (1)
288 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
290 return container_of(rt_se, struct task_struct, rt);
293 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
295 return container_of(rt_rq, struct rq, rt);
298 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
300 struct task_struct *p = rt_task_of(rt_se);
305 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
307 struct rq *rq = rq_of_rt_se(rt_se);
312 void unregister_rt_sched_group(struct task_group *tg) { }
314 void free_rt_sched_group(struct task_group *tg) { }
316 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
320 #endif /* CONFIG_RT_GROUP_SCHED */
324 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
326 /* Try to pull RT tasks here if we lower this rq's prio */
327 return rq->online && rq->rt.highest_prio.curr > prev->prio;
330 static inline int rt_overloaded(struct rq *rq)
332 return atomic_read(&rq->rd->rto_count);
335 static inline void rt_set_overload(struct rq *rq)
340 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
342 * Make sure the mask is visible before we set
343 * the overload count. That is checked to determine
344 * if we should look at the mask. It would be a shame
345 * if we looked at the mask, but the mask was not
348 * Matched by the barrier in pull_rt_task().
351 atomic_inc(&rq->rd->rto_count);
354 static inline void rt_clear_overload(struct rq *rq)
359 /* the order here really doesn't matter */
360 atomic_dec(&rq->rd->rto_count);
361 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
364 static inline int has_pushable_tasks(struct rq *rq)
366 return !plist_head_empty(&rq->rt.pushable_tasks);
369 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
370 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
372 static void push_rt_tasks(struct rq *);
373 static void pull_rt_task(struct rq *);
375 static inline void rt_queue_push_tasks(struct rq *rq)
377 if (!has_pushable_tasks(rq))
380 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
383 static inline void rt_queue_pull_task(struct rq *rq)
385 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
388 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
390 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
391 plist_node_init(&p->pushable_tasks, p->prio);
392 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
394 /* Update the highest prio pushable task */
395 if (p->prio < rq->rt.highest_prio.next)
396 rq->rt.highest_prio.next = p->prio;
398 if (!rq->rt.overloaded) {
400 rq->rt.overloaded = 1;
404 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
406 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
408 /* Update the new highest prio pushable task */
409 if (has_pushable_tasks(rq)) {
410 p = plist_first_entry(&rq->rt.pushable_tasks,
411 struct task_struct, pushable_tasks);
412 rq->rt.highest_prio.next = p->prio;
414 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
416 if (rq->rt.overloaded) {
417 rt_clear_overload(rq);
418 rq->rt.overloaded = 0;
425 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
429 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
433 static inline void rt_queue_push_tasks(struct rq *rq)
436 #endif /* CONFIG_SMP */
438 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
439 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
441 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
446 #ifdef CONFIG_UCLAMP_TASK
448 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
451 * This check is only important for heterogeneous systems where uclamp_min value
452 * is higher than the capacity of a @cpu. For non-heterogeneous system this
453 * function will always return true.
455 * The function will return true if the capacity of the @cpu is >= the
456 * uclamp_min and false otherwise.
458 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
461 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
463 unsigned int min_cap;
464 unsigned int max_cap;
465 unsigned int cpu_cap;
467 /* Only heterogeneous systems can benefit from this check */
468 if (!sched_asym_cpucap_active())
471 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
472 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
474 cpu_cap = arch_scale_cpu_capacity(cpu);
476 return cpu_cap >= min(min_cap, max_cap);
479 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
485 #ifdef CONFIG_RT_GROUP_SCHED
487 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
492 return rt_rq->rt_runtime;
495 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
497 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
500 typedef struct task_group *rt_rq_iter_t;
502 static inline struct task_group *next_task_group(struct task_group *tg)
505 tg = list_entry_rcu(tg->list.next,
506 typeof(struct task_group), list);
507 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
509 if (&tg->list == &task_groups)
515 #define for_each_rt_rq(rt_rq, iter, rq) \
516 for (iter = container_of(&task_groups, typeof(*iter), list); \
517 (iter = next_task_group(iter)) && \
518 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
520 #define for_each_sched_rt_entity(rt_se) \
521 for (; rt_se; rt_se = rt_se->parent)
523 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
528 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
529 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
531 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
533 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
534 struct rq *rq = rq_of_rt_rq(rt_rq);
535 struct sched_rt_entity *rt_se;
537 int cpu = cpu_of(rq);
539 rt_se = rt_rq->tg->rt_se[cpu];
541 if (rt_rq->rt_nr_running) {
543 enqueue_top_rt_rq(rt_rq);
544 else if (!on_rt_rq(rt_se))
545 enqueue_rt_entity(rt_se, 0);
547 if (rt_rq->highest_prio.curr < curr->prio)
552 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
554 struct sched_rt_entity *rt_se;
555 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
557 rt_se = rt_rq->tg->rt_se[cpu];
560 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
561 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
562 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
564 else if (on_rt_rq(rt_se))
565 dequeue_rt_entity(rt_se, 0);
568 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
570 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
573 static int rt_se_boosted(struct sched_rt_entity *rt_se)
575 struct rt_rq *rt_rq = group_rt_rq(rt_se);
576 struct task_struct *p;
579 return !!rt_rq->rt_nr_boosted;
581 p = rt_task_of(rt_se);
582 return p->prio != p->normal_prio;
586 static inline const struct cpumask *sched_rt_period_mask(void)
588 return this_rq()->rd->span;
591 static inline const struct cpumask *sched_rt_period_mask(void)
593 return cpu_online_mask;
598 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
600 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
603 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
605 return &rt_rq->tg->rt_bandwidth;
608 #else /* !CONFIG_RT_GROUP_SCHED */
610 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
612 return rt_rq->rt_runtime;
615 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
617 return ktime_to_ns(def_rt_bandwidth.rt_period);
620 typedef struct rt_rq *rt_rq_iter_t;
622 #define for_each_rt_rq(rt_rq, iter, rq) \
623 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
625 #define for_each_sched_rt_entity(rt_se) \
626 for (; rt_se; rt_se = NULL)
628 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
633 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
635 struct rq *rq = rq_of_rt_rq(rt_rq);
637 if (!rt_rq->rt_nr_running)
640 enqueue_top_rt_rq(rt_rq);
644 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
646 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
649 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
651 return rt_rq->rt_throttled;
654 static inline const struct cpumask *sched_rt_period_mask(void)
656 return cpu_online_mask;
660 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
662 return &cpu_rq(cpu)->rt;
665 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
667 return &def_rt_bandwidth;
670 #endif /* CONFIG_RT_GROUP_SCHED */
672 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
674 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
676 return (hrtimer_active(&rt_b->rt_period_timer) ||
677 rt_rq->rt_time < rt_b->rt_runtime);
682 * We ran out of runtime, see if we can borrow some from our neighbours.
684 static void do_balance_runtime(struct rt_rq *rt_rq)
686 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
687 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
691 weight = cpumask_weight(rd->span);
693 raw_spin_lock(&rt_b->rt_runtime_lock);
694 rt_period = ktime_to_ns(rt_b->rt_period);
695 for_each_cpu(i, rd->span) {
696 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
702 raw_spin_lock(&iter->rt_runtime_lock);
704 * Either all rqs have inf runtime and there's nothing to steal
705 * or __disable_runtime() below sets a specific rq to inf to
706 * indicate its been disabled and disallow stealing.
708 if (iter->rt_runtime == RUNTIME_INF)
712 * From runqueues with spare time, take 1/n part of their
713 * spare time, but no more than our period.
715 diff = iter->rt_runtime - iter->rt_time;
717 diff = div_u64((u64)diff, weight);
718 if (rt_rq->rt_runtime + diff > rt_period)
719 diff = rt_period - rt_rq->rt_runtime;
720 iter->rt_runtime -= diff;
721 rt_rq->rt_runtime += diff;
722 if (rt_rq->rt_runtime == rt_period) {
723 raw_spin_unlock(&iter->rt_runtime_lock);
728 raw_spin_unlock(&iter->rt_runtime_lock);
730 raw_spin_unlock(&rt_b->rt_runtime_lock);
734 * Ensure this RQ takes back all the runtime it lend to its neighbours.
736 static void __disable_runtime(struct rq *rq)
738 struct root_domain *rd = rq->rd;
742 if (unlikely(!scheduler_running))
745 for_each_rt_rq(rt_rq, iter, rq) {
746 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
750 raw_spin_lock(&rt_b->rt_runtime_lock);
751 raw_spin_lock(&rt_rq->rt_runtime_lock);
753 * Either we're all inf and nobody needs to borrow, or we're
754 * already disabled and thus have nothing to do, or we have
755 * exactly the right amount of runtime to take out.
757 if (rt_rq->rt_runtime == RUNTIME_INF ||
758 rt_rq->rt_runtime == rt_b->rt_runtime)
760 raw_spin_unlock(&rt_rq->rt_runtime_lock);
763 * Calculate the difference between what we started out with
764 * and what we current have, that's the amount of runtime
765 * we lend and now have to reclaim.
767 want = rt_b->rt_runtime - rt_rq->rt_runtime;
770 * Greedy reclaim, take back as much as we can.
772 for_each_cpu(i, rd->span) {
773 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
777 * Can't reclaim from ourselves or disabled runqueues.
779 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
782 raw_spin_lock(&iter->rt_runtime_lock);
784 diff = min_t(s64, iter->rt_runtime, want);
785 iter->rt_runtime -= diff;
788 iter->rt_runtime -= want;
791 raw_spin_unlock(&iter->rt_runtime_lock);
797 raw_spin_lock(&rt_rq->rt_runtime_lock);
799 * We cannot be left wanting - that would mean some runtime
800 * leaked out of the system.
805 * Disable all the borrow logic by pretending we have inf
806 * runtime - in which case borrowing doesn't make sense.
808 rt_rq->rt_runtime = RUNTIME_INF;
809 rt_rq->rt_throttled = 0;
810 raw_spin_unlock(&rt_rq->rt_runtime_lock);
811 raw_spin_unlock(&rt_b->rt_runtime_lock);
813 /* Make rt_rq available for pick_next_task() */
814 sched_rt_rq_enqueue(rt_rq);
818 static void __enable_runtime(struct rq *rq)
823 if (unlikely(!scheduler_running))
827 * Reset each runqueue's bandwidth settings
829 for_each_rt_rq(rt_rq, iter, rq) {
830 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
832 raw_spin_lock(&rt_b->rt_runtime_lock);
833 raw_spin_lock(&rt_rq->rt_runtime_lock);
834 rt_rq->rt_runtime = rt_b->rt_runtime;
836 rt_rq->rt_throttled = 0;
837 raw_spin_unlock(&rt_rq->rt_runtime_lock);
838 raw_spin_unlock(&rt_b->rt_runtime_lock);
842 static void balance_runtime(struct rt_rq *rt_rq)
844 if (!sched_feat(RT_RUNTIME_SHARE))
847 if (rt_rq->rt_time > rt_rq->rt_runtime) {
848 raw_spin_unlock(&rt_rq->rt_runtime_lock);
849 do_balance_runtime(rt_rq);
850 raw_spin_lock(&rt_rq->rt_runtime_lock);
853 #else /* !CONFIG_SMP */
854 static inline void balance_runtime(struct rt_rq *rt_rq) {}
855 #endif /* CONFIG_SMP */
857 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
859 int i, idle = 1, throttled = 0;
860 const struct cpumask *span;
862 span = sched_rt_period_mask();
863 #ifdef CONFIG_RT_GROUP_SCHED
865 * FIXME: isolated CPUs should really leave the root task group,
866 * whether they are isolcpus or were isolated via cpusets, lest
867 * the timer run on a CPU which does not service all runqueues,
868 * potentially leaving other CPUs indefinitely throttled. If
869 * isolation is really required, the user will turn the throttle
870 * off to kill the perturbations it causes anyway. Meanwhile,
871 * this maintains functionality for boot and/or troubleshooting.
873 if (rt_b == &root_task_group.rt_bandwidth)
874 span = cpu_online_mask;
876 for_each_cpu(i, span) {
878 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
879 struct rq *rq = rq_of_rt_rq(rt_rq);
884 * When span == cpu_online_mask, taking each rq->lock
885 * can be time-consuming. Try to avoid it when possible.
887 raw_spin_lock(&rt_rq->rt_runtime_lock);
888 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
889 rt_rq->rt_runtime = rt_b->rt_runtime;
890 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
891 raw_spin_unlock(&rt_rq->rt_runtime_lock);
898 if (rt_rq->rt_time) {
901 raw_spin_lock(&rt_rq->rt_runtime_lock);
902 if (rt_rq->rt_throttled)
903 balance_runtime(rt_rq);
904 runtime = rt_rq->rt_runtime;
905 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
906 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
907 rt_rq->rt_throttled = 0;
911 * When we're idle and a woken (rt) task is
912 * throttled wakeup_preempt() will set
913 * skip_update and the time between the wakeup
914 * and this unthrottle will get accounted as
917 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
918 rq_clock_cancel_skipupdate(rq);
920 if (rt_rq->rt_time || rt_rq->rt_nr_running)
922 raw_spin_unlock(&rt_rq->rt_runtime_lock);
923 } else if (rt_rq->rt_nr_running) {
925 if (!rt_rq_throttled(rt_rq))
928 if (rt_rq->rt_throttled)
932 sched_rt_rq_enqueue(rt_rq);
936 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
942 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
944 #ifdef CONFIG_RT_GROUP_SCHED
945 struct rt_rq *rt_rq = group_rt_rq(rt_se);
948 return rt_rq->highest_prio.curr;
951 return rt_task_of(rt_se)->prio;
954 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
956 u64 runtime = sched_rt_runtime(rt_rq);
958 if (rt_rq->rt_throttled)
959 return rt_rq_throttled(rt_rq);
961 if (runtime >= sched_rt_period(rt_rq))
964 balance_runtime(rt_rq);
965 runtime = sched_rt_runtime(rt_rq);
966 if (runtime == RUNTIME_INF)
969 if (rt_rq->rt_time > runtime) {
970 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
973 * Don't actually throttle groups that have no runtime assigned
974 * but accrue some time due to boosting.
976 if (likely(rt_b->rt_runtime)) {
977 rt_rq->rt_throttled = 1;
978 printk_deferred_once("sched: RT throttling activated\n");
981 * In case we did anyway, make it go away,
982 * replenishment is a joke, since it will replenish us
988 if (rt_rq_throttled(rt_rq)) {
989 sched_rt_rq_dequeue(rt_rq);
998 * Update the current task's runtime statistics. Skip current tasks that
999 * are not in our scheduling class.
1001 static void update_curr_rt(struct rq *rq)
1003 struct task_struct *curr = rq->curr;
1004 struct sched_rt_entity *rt_se = &curr->rt;
1008 if (curr->sched_class != &rt_sched_class)
1011 now = rq_clock_task(rq);
1012 delta_exec = now - curr->se.exec_start;
1013 if (unlikely((s64)delta_exec <= 0))
1016 schedstat_set(curr->stats.exec_max,
1017 max(curr->stats.exec_max, delta_exec));
1019 trace_sched_stat_runtime(curr, delta_exec, 0);
1021 update_current_exec_runtime(curr, now, delta_exec);
1023 if (!rt_bandwidth_enabled())
1026 for_each_sched_rt_entity(rt_se) {
1027 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1030 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1031 raw_spin_lock(&rt_rq->rt_runtime_lock);
1032 rt_rq->rt_time += delta_exec;
1033 exceeded = sched_rt_runtime_exceeded(rt_rq);
1036 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1038 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1044 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1046 struct rq *rq = rq_of_rt_rq(rt_rq);
1048 BUG_ON(&rq->rt != rt_rq);
1050 if (!rt_rq->rt_queued)
1053 BUG_ON(!rq->nr_running);
1055 sub_nr_running(rq, count);
1056 rt_rq->rt_queued = 0;
1061 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1063 struct rq *rq = rq_of_rt_rq(rt_rq);
1065 BUG_ON(&rq->rt != rt_rq);
1067 if (rt_rq->rt_queued)
1070 if (rt_rq_throttled(rt_rq))
1073 if (rt_rq->rt_nr_running) {
1074 add_nr_running(rq, rt_rq->rt_nr_running);
1075 rt_rq->rt_queued = 1;
1078 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1079 cpufreq_update_util(rq, 0);
1082 #if defined CONFIG_SMP
1085 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1087 struct rq *rq = rq_of_rt_rq(rt_rq);
1089 #ifdef CONFIG_RT_GROUP_SCHED
1091 * Change rq's cpupri only if rt_rq is the top queue.
1093 if (&rq->rt != rt_rq)
1096 if (rq->online && prio < prev_prio)
1097 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1101 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1103 struct rq *rq = rq_of_rt_rq(rt_rq);
1105 #ifdef CONFIG_RT_GROUP_SCHED
1107 * Change rq's cpupri only if rt_rq is the top queue.
1109 if (&rq->rt != rt_rq)
1112 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1113 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1116 #else /* CONFIG_SMP */
1119 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1121 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1123 #endif /* CONFIG_SMP */
1125 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1127 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1129 int prev_prio = rt_rq->highest_prio.curr;
1131 if (prio < prev_prio)
1132 rt_rq->highest_prio.curr = prio;
1134 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1138 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1140 int prev_prio = rt_rq->highest_prio.curr;
1142 if (rt_rq->rt_nr_running) {
1144 WARN_ON(prio < prev_prio);
1147 * This may have been our highest task, and therefore
1148 * we may have some recomputation to do
1150 if (prio == prev_prio) {
1151 struct rt_prio_array *array = &rt_rq->active;
1153 rt_rq->highest_prio.curr =
1154 sched_find_first_bit(array->bitmap);
1158 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1161 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1166 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1167 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1169 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1171 #ifdef CONFIG_RT_GROUP_SCHED
1174 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176 if (rt_se_boosted(rt_se))
1177 rt_rq->rt_nr_boosted++;
1180 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1184 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 if (rt_se_boosted(rt_se))
1187 rt_rq->rt_nr_boosted--;
1189 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1192 #else /* CONFIG_RT_GROUP_SCHED */
1195 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1197 start_rt_bandwidth(&def_rt_bandwidth);
1201 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1203 #endif /* CONFIG_RT_GROUP_SCHED */
1206 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1208 struct rt_rq *group_rq = group_rt_rq(rt_se);
1211 return group_rq->rt_nr_running;
1217 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1219 struct rt_rq *group_rq = group_rt_rq(rt_se);
1220 struct task_struct *tsk;
1223 return group_rq->rr_nr_running;
1225 tsk = rt_task_of(rt_se);
1227 return (tsk->policy == SCHED_RR) ? 1 : 0;
1231 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1233 int prio = rt_se_prio(rt_se);
1235 WARN_ON(!rt_prio(prio));
1236 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1237 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1239 inc_rt_prio(rt_rq, prio);
1240 inc_rt_group(rt_se, rt_rq);
1244 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1246 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1247 WARN_ON(!rt_rq->rt_nr_running);
1248 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1249 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1251 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1252 dec_rt_group(rt_se, rt_rq);
1256 * Change rt_se->run_list location unless SAVE && !MOVE
1258 * assumes ENQUEUE/DEQUEUE flags match
1260 static inline bool move_entity(unsigned int flags)
1262 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1268 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1270 list_del_init(&rt_se->run_list);
1272 if (list_empty(array->queue + rt_se_prio(rt_se)))
1273 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1278 static inline struct sched_statistics *
1279 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1281 #ifdef CONFIG_RT_GROUP_SCHED
1282 /* schedstats is not supported for rt group. */
1283 if (!rt_entity_is_task(rt_se))
1287 return &rt_task_of(rt_se)->stats;
1291 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1293 struct sched_statistics *stats;
1294 struct task_struct *p = NULL;
1296 if (!schedstat_enabled())
1299 if (rt_entity_is_task(rt_se))
1300 p = rt_task_of(rt_se);
1302 stats = __schedstats_from_rt_se(rt_se);
1306 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1310 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1312 struct sched_statistics *stats;
1313 struct task_struct *p = NULL;
1315 if (!schedstat_enabled())
1318 if (rt_entity_is_task(rt_se))
1319 p = rt_task_of(rt_se);
1321 stats = __schedstats_from_rt_se(rt_se);
1325 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1329 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1332 if (!schedstat_enabled())
1335 if (flags & ENQUEUE_WAKEUP)
1336 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1340 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1342 struct sched_statistics *stats;
1343 struct task_struct *p = NULL;
1345 if (!schedstat_enabled())
1348 if (rt_entity_is_task(rt_se))
1349 p = rt_task_of(rt_se);
1351 stats = __schedstats_from_rt_se(rt_se);
1355 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1359 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1362 struct task_struct *p = NULL;
1364 if (!schedstat_enabled())
1367 if (rt_entity_is_task(rt_se))
1368 p = rt_task_of(rt_se);
1370 if ((flags & DEQUEUE_SLEEP) && p) {
1373 state = READ_ONCE(p->__state);
1374 if (state & TASK_INTERRUPTIBLE)
1375 __schedstat_set(p->stats.sleep_start,
1376 rq_clock(rq_of_rt_rq(rt_rq)));
1378 if (state & TASK_UNINTERRUPTIBLE)
1379 __schedstat_set(p->stats.block_start,
1380 rq_clock(rq_of_rt_rq(rt_rq)));
1384 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1386 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1387 struct rt_prio_array *array = &rt_rq->active;
1388 struct rt_rq *group_rq = group_rt_rq(rt_se);
1389 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1392 * Don't enqueue the group if its throttled, or when empty.
1393 * The latter is a consequence of the former when a child group
1394 * get throttled and the current group doesn't have any other
1397 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1399 __delist_rt_entity(rt_se, array);
1403 if (move_entity(flags)) {
1404 WARN_ON_ONCE(rt_se->on_list);
1405 if (flags & ENQUEUE_HEAD)
1406 list_add(&rt_se->run_list, queue);
1408 list_add_tail(&rt_se->run_list, queue);
1410 __set_bit(rt_se_prio(rt_se), array->bitmap);
1415 inc_rt_tasks(rt_se, rt_rq);
1418 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1420 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1421 struct rt_prio_array *array = &rt_rq->active;
1423 if (move_entity(flags)) {
1424 WARN_ON_ONCE(!rt_se->on_list);
1425 __delist_rt_entity(rt_se, array);
1429 dec_rt_tasks(rt_se, rt_rq);
1433 * Because the prio of an upper entry depends on the lower
1434 * entries, we must remove entries top - down.
1436 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1438 struct sched_rt_entity *back = NULL;
1439 unsigned int rt_nr_running;
1441 for_each_sched_rt_entity(rt_se) {
1446 rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1448 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1449 if (on_rt_rq(rt_se))
1450 __dequeue_rt_entity(rt_se, flags);
1453 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1456 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1458 struct rq *rq = rq_of_rt_se(rt_se);
1460 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1462 dequeue_rt_stack(rt_se, flags);
1463 for_each_sched_rt_entity(rt_se)
1464 __enqueue_rt_entity(rt_se, flags);
1465 enqueue_top_rt_rq(&rq->rt);
1468 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1470 struct rq *rq = rq_of_rt_se(rt_se);
1472 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1474 dequeue_rt_stack(rt_se, flags);
1476 for_each_sched_rt_entity(rt_se) {
1477 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1479 if (rt_rq && rt_rq->rt_nr_running)
1480 __enqueue_rt_entity(rt_se, flags);
1482 enqueue_top_rt_rq(&rq->rt);
1486 * Adding/removing a task to/from a priority array:
1489 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1491 struct sched_rt_entity *rt_se = &p->rt;
1493 if (flags & ENQUEUE_WAKEUP)
1496 check_schedstat_required();
1497 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1499 enqueue_rt_entity(rt_se, flags);
1501 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1502 enqueue_pushable_task(rq, p);
1505 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1507 struct sched_rt_entity *rt_se = &p->rt;
1510 dequeue_rt_entity(rt_se, flags);
1512 dequeue_pushable_task(rq, p);
1516 * Put task to the head or the end of the run list without the overhead of
1517 * dequeue followed by enqueue.
1520 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1522 if (on_rt_rq(rt_se)) {
1523 struct rt_prio_array *array = &rt_rq->active;
1524 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1527 list_move(&rt_se->run_list, queue);
1529 list_move_tail(&rt_se->run_list, queue);
1533 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1535 struct sched_rt_entity *rt_se = &p->rt;
1536 struct rt_rq *rt_rq;
1538 for_each_sched_rt_entity(rt_se) {
1539 rt_rq = rt_rq_of_se(rt_se);
1540 requeue_rt_entity(rt_rq, rt_se, head);
1544 static void yield_task_rt(struct rq *rq)
1546 requeue_task_rt(rq, rq->curr, 0);
1550 static int find_lowest_rq(struct task_struct *task);
1553 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1555 struct task_struct *curr;
1559 /* For anything but wake ups, just return the task_cpu */
1560 if (!(flags & (WF_TTWU | WF_FORK)))
1566 curr = READ_ONCE(rq->curr); /* unlocked access */
1569 * If the current task on @p's runqueue is an RT task, then
1570 * try to see if we can wake this RT task up on another
1571 * runqueue. Otherwise simply start this RT task
1572 * on its current runqueue.
1574 * We want to avoid overloading runqueues. If the woken
1575 * task is a higher priority, then it will stay on this CPU
1576 * and the lower prio task should be moved to another CPU.
1577 * Even though this will probably make the lower prio task
1578 * lose its cache, we do not want to bounce a higher task
1579 * around just because it gave up its CPU, perhaps for a
1582 * For equal prio tasks, we just let the scheduler sort it out.
1584 * Otherwise, just let it ride on the affined RQ and the
1585 * post-schedule router will push the preempted task away
1587 * This test is optimistic, if we get it wrong the load-balancer
1588 * will have to sort it out.
1590 * We take into account the capacity of the CPU to ensure it fits the
1591 * requirement of the task - which is only important on heterogeneous
1592 * systems like big.LITTLE.
1595 unlikely(rt_task(curr)) &&
1596 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1598 if (test || !rt_task_fits_capacity(p, cpu)) {
1599 int target = find_lowest_rq(p);
1602 * Bail out if we were forcing a migration to find a better
1603 * fitting CPU but our search failed.
1605 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1609 * Don't bother moving it if the destination CPU is
1610 * not running a lower priority task.
1613 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1624 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1627 * Current can't be migrated, useless to reschedule,
1628 * let's hope p can move out.
1630 if (rq->curr->nr_cpus_allowed == 1 ||
1631 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1635 * p is migratable, so let's not schedule it and
1636 * see if it is pushed or pulled somewhere else.
1638 if (p->nr_cpus_allowed != 1 &&
1639 cpupri_find(&rq->rd->cpupri, p, NULL))
1643 * There appear to be other CPUs that can accept
1644 * the current task but none can run 'p', so lets reschedule
1645 * to try and push the current task away:
1647 requeue_task_rt(rq, p, 1);
1651 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1653 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1655 * This is OK, because current is on_cpu, which avoids it being
1656 * picked for load-balance and preemption/IRQs are still
1657 * disabled avoiding further scheduler activity on it and we've
1658 * not yet started the picking loop.
1660 rq_unpin_lock(rq, rf);
1662 rq_repin_lock(rq, rf);
1665 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1667 #endif /* CONFIG_SMP */
1670 * Preempt the current task with a newly woken task if needed:
1672 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1674 if (p->prio < rq->curr->prio) {
1683 * - the newly woken task is of equal priority to the current task
1684 * - the newly woken task is non-migratable while current is migratable
1685 * - current will be preempted on the next reschedule
1687 * we should check to see if current can readily move to a different
1688 * cpu. If so, we will reschedule to allow the push logic to try
1689 * to move current somewhere else, making room for our non-migratable
1692 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1693 check_preempt_equal_prio(rq, p);
1697 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1699 struct sched_rt_entity *rt_se = &p->rt;
1700 struct rt_rq *rt_rq = &rq->rt;
1702 p->se.exec_start = rq_clock_task(rq);
1703 if (on_rt_rq(&p->rt))
1704 update_stats_wait_end_rt(rt_rq, rt_se);
1706 /* The running task is never eligible for pushing */
1707 dequeue_pushable_task(rq, p);
1713 * If prev task was rt, put_prev_task() has already updated the
1714 * utilization. We only care of the case where we start to schedule a
1717 if (rq->curr->sched_class != &rt_sched_class)
1718 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1720 rt_queue_push_tasks(rq);
1723 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1725 struct rt_prio_array *array = &rt_rq->active;
1726 struct sched_rt_entity *next = NULL;
1727 struct list_head *queue;
1730 idx = sched_find_first_bit(array->bitmap);
1731 BUG_ON(idx >= MAX_RT_PRIO);
1733 queue = array->queue + idx;
1734 if (SCHED_WARN_ON(list_empty(queue)))
1736 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1741 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1743 struct sched_rt_entity *rt_se;
1744 struct rt_rq *rt_rq = &rq->rt;
1747 rt_se = pick_next_rt_entity(rt_rq);
1748 if (unlikely(!rt_se))
1750 rt_rq = group_rt_rq(rt_se);
1753 return rt_task_of(rt_se);
1756 static struct task_struct *pick_task_rt(struct rq *rq)
1758 struct task_struct *p;
1760 if (!sched_rt_runnable(rq))
1763 p = _pick_next_task_rt(rq);
1768 static struct task_struct *pick_next_task_rt(struct rq *rq)
1770 struct task_struct *p = pick_task_rt(rq);
1773 set_next_task_rt(rq, p, true);
1778 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1780 struct sched_rt_entity *rt_se = &p->rt;
1781 struct rt_rq *rt_rq = &rq->rt;
1783 if (on_rt_rq(&p->rt))
1784 update_stats_wait_start_rt(rt_rq, rt_se);
1788 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1791 * The previous task needs to be made eligible for pushing
1792 * if it is still active
1794 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1795 enqueue_pushable_task(rq, p);
1800 /* Only try algorithms three times */
1801 #define RT_MAX_TRIES 3
1803 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1805 if (!task_on_cpu(rq, p) &&
1806 cpumask_test_cpu(cpu, &p->cpus_mask))
1813 * Return the highest pushable rq's task, which is suitable to be executed
1814 * on the CPU, NULL otherwise
1816 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1818 struct plist_head *head = &rq->rt.pushable_tasks;
1819 struct task_struct *p;
1821 if (!has_pushable_tasks(rq))
1824 plist_for_each_entry(p, head, pushable_tasks) {
1825 if (pick_rt_task(rq, p, cpu))
1832 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1834 static int find_lowest_rq(struct task_struct *task)
1836 struct sched_domain *sd;
1837 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1838 int this_cpu = smp_processor_id();
1839 int cpu = task_cpu(task);
1842 /* Make sure the mask is initialized first */
1843 if (unlikely(!lowest_mask))
1846 if (task->nr_cpus_allowed == 1)
1847 return -1; /* No other targets possible */
1850 * If we're on asym system ensure we consider the different capacities
1851 * of the CPUs when searching for the lowest_mask.
1853 if (sched_asym_cpucap_active()) {
1855 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1857 rt_task_fits_capacity);
1860 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1865 return -1; /* No targets found */
1868 * At this point we have built a mask of CPUs representing the
1869 * lowest priority tasks in the system. Now we want to elect
1870 * the best one based on our affinity and topology.
1872 * We prioritize the last CPU that the task executed on since
1873 * it is most likely cache-hot in that location.
1875 if (cpumask_test_cpu(cpu, lowest_mask))
1879 * Otherwise, we consult the sched_domains span maps to figure
1880 * out which CPU is logically closest to our hot cache data.
1882 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1883 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1886 for_each_domain(cpu, sd) {
1887 if (sd->flags & SD_WAKE_AFFINE) {
1891 * "this_cpu" is cheaper to preempt than a
1894 if (this_cpu != -1 &&
1895 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1900 best_cpu = cpumask_any_and_distribute(lowest_mask,
1901 sched_domain_span(sd));
1902 if (best_cpu < nr_cpu_ids) {
1911 * And finally, if there were no matches within the domains
1912 * just give the caller *something* to work with from the compatible
1918 cpu = cpumask_any_distribute(lowest_mask);
1919 if (cpu < nr_cpu_ids)
1925 /* Will lock the rq it finds */
1926 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1928 struct rq *lowest_rq = NULL;
1932 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1933 cpu = find_lowest_rq(task);
1935 if ((cpu == -1) || (cpu == rq->cpu))
1938 lowest_rq = cpu_rq(cpu);
1940 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1942 * Target rq has tasks of equal or higher priority,
1943 * retrying does not release any lock and is unlikely
1944 * to yield a different result.
1950 /* if the prio of this runqueue changed, try again */
1951 if (double_lock_balance(rq, lowest_rq)) {
1953 * We had to unlock the run queue. In
1954 * the mean time, task could have
1955 * migrated already or had its affinity changed.
1956 * Also make sure that it wasn't scheduled on its rq.
1957 * It is possible the task was scheduled, set
1958 * "migrate_disabled" and then got preempted, so we must
1959 * check the task migration disable flag here too.
1961 if (unlikely(task_rq(task) != rq ||
1962 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1963 task_on_cpu(rq, task) ||
1965 is_migration_disabled(task) ||
1966 !task_on_rq_queued(task))) {
1968 double_unlock_balance(rq, lowest_rq);
1974 /* If this rq is still suitable use it. */
1975 if (lowest_rq->rt.highest_prio.curr > task->prio)
1979 double_unlock_balance(rq, lowest_rq);
1986 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1988 struct task_struct *p;
1990 if (!has_pushable_tasks(rq))
1993 p = plist_first_entry(&rq->rt.pushable_tasks,
1994 struct task_struct, pushable_tasks);
1996 BUG_ON(rq->cpu != task_cpu(p));
1997 BUG_ON(task_current(rq, p));
1998 BUG_ON(p->nr_cpus_allowed <= 1);
2000 BUG_ON(!task_on_rq_queued(p));
2001 BUG_ON(!rt_task(p));
2007 * If the current CPU has more than one RT task, see if the non
2008 * running task can migrate over to a CPU that is running a task
2009 * of lesser priority.
2011 static int push_rt_task(struct rq *rq, bool pull)
2013 struct task_struct *next_task;
2014 struct rq *lowest_rq;
2017 if (!rq->rt.overloaded)
2020 next_task = pick_next_pushable_task(rq);
2026 * It's possible that the next_task slipped in of
2027 * higher priority than current. If that's the case
2028 * just reschedule current.
2030 if (unlikely(next_task->prio < rq->curr->prio)) {
2035 if (is_migration_disabled(next_task)) {
2036 struct task_struct *push_task = NULL;
2039 if (!pull || rq->push_busy)
2043 * Invoking find_lowest_rq() on anything but an RT task doesn't
2044 * make sense. Per the above priority check, curr has to
2045 * be of higher priority than next_task, so no need to
2046 * reschedule when bailing out.
2048 * Note that the stoppers are masqueraded as SCHED_FIFO
2049 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2051 if (rq->curr->sched_class != &rt_sched_class)
2054 cpu = find_lowest_rq(rq->curr);
2055 if (cpu == -1 || cpu == rq->cpu)
2059 * Given we found a CPU with lower priority than @next_task,
2060 * therefore it should be running. However we cannot migrate it
2061 * to this other CPU, instead attempt to push the current
2062 * running task on this CPU away.
2064 push_task = get_push_task(rq);
2067 raw_spin_rq_unlock(rq);
2068 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2069 push_task, &rq->push_work);
2071 raw_spin_rq_lock(rq);
2077 if (WARN_ON(next_task == rq->curr))
2080 /* We might release rq lock */
2081 get_task_struct(next_task);
2083 /* find_lock_lowest_rq locks the rq if found */
2084 lowest_rq = find_lock_lowest_rq(next_task, rq);
2086 struct task_struct *task;
2088 * find_lock_lowest_rq releases rq->lock
2089 * so it is possible that next_task has migrated.
2091 * We need to make sure that the task is still on the same
2092 * run-queue and is also still the next task eligible for
2095 task = pick_next_pushable_task(rq);
2096 if (task == next_task) {
2098 * The task hasn't migrated, and is still the next
2099 * eligible task, but we failed to find a run-queue
2100 * to push it to. Do not retry in this case, since
2101 * other CPUs will pull from us when ready.
2107 /* No more tasks, just exit */
2111 * Something has shifted, try again.
2113 put_task_struct(next_task);
2118 deactivate_task(rq, next_task, 0);
2119 set_task_cpu(next_task, lowest_rq->cpu);
2120 activate_task(lowest_rq, next_task, 0);
2121 resched_curr(lowest_rq);
2124 double_unlock_balance(rq, lowest_rq);
2126 put_task_struct(next_task);
2131 static void push_rt_tasks(struct rq *rq)
2133 /* push_rt_task will return true if it moved an RT */
2134 while (push_rt_task(rq, false))
2138 #ifdef HAVE_RT_PUSH_IPI
2141 * When a high priority task schedules out from a CPU and a lower priority
2142 * task is scheduled in, a check is made to see if there's any RT tasks
2143 * on other CPUs that are waiting to run because a higher priority RT task
2144 * is currently running on its CPU. In this case, the CPU with multiple RT
2145 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2146 * up that may be able to run one of its non-running queued RT tasks.
2148 * All CPUs with overloaded RT tasks need to be notified as there is currently
2149 * no way to know which of these CPUs have the highest priority task waiting
2150 * to run. Instead of trying to take a spinlock on each of these CPUs,
2151 * which has shown to cause large latency when done on machines with many
2152 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2153 * RT tasks waiting to run.
2155 * Just sending an IPI to each of the CPUs is also an issue, as on large
2156 * count CPU machines, this can cause an IPI storm on a CPU, especially
2157 * if its the only CPU with multiple RT tasks queued, and a large number
2158 * of CPUs scheduling a lower priority task at the same time.
2160 * Each root domain has its own irq work function that can iterate over
2161 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2162 * task must be checked if there's one or many CPUs that are lowering
2163 * their priority, there's a single irq work iterator that will try to
2164 * push off RT tasks that are waiting to run.
2166 * When a CPU schedules a lower priority task, it will kick off the
2167 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2168 * As it only takes the first CPU that schedules a lower priority task
2169 * to start the process, the rto_start variable is incremented and if
2170 * the atomic result is one, then that CPU will try to take the rto_lock.
2171 * This prevents high contention on the lock as the process handles all
2172 * CPUs scheduling lower priority tasks.
2174 * All CPUs that are scheduling a lower priority task will increment the
2175 * rt_loop_next variable. This will make sure that the irq work iterator
2176 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2177 * priority task, even if the iterator is in the middle of a scan. Incrementing
2178 * the rt_loop_next will cause the iterator to perform another scan.
2181 static int rto_next_cpu(struct root_domain *rd)
2187 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2188 * rt_next_cpu() will simply return the first CPU found in
2191 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2192 * will return the next CPU found in the rto_mask.
2194 * If there are no more CPUs left in the rto_mask, then a check is made
2195 * against rto_loop and rto_loop_next. rto_loop is only updated with
2196 * the rto_lock held, but any CPU may increment the rto_loop_next
2197 * without any locking.
2201 /* When rto_cpu is -1 this acts like cpumask_first() */
2202 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2206 if (cpu < nr_cpu_ids)
2212 * ACQUIRE ensures we see the @rto_mask changes
2213 * made prior to the @next value observed.
2215 * Matches WMB in rt_set_overload().
2217 next = atomic_read_acquire(&rd->rto_loop_next);
2219 if (rd->rto_loop == next)
2222 rd->rto_loop = next;
2228 static inline bool rto_start_trylock(atomic_t *v)
2230 return !atomic_cmpxchg_acquire(v, 0, 1);
2233 static inline void rto_start_unlock(atomic_t *v)
2235 atomic_set_release(v, 0);
2238 static void tell_cpu_to_push(struct rq *rq)
2242 /* Keep the loop going if the IPI is currently active */
2243 atomic_inc(&rq->rd->rto_loop_next);
2245 /* Only one CPU can initiate a loop at a time */
2246 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2249 raw_spin_lock(&rq->rd->rto_lock);
2252 * The rto_cpu is updated under the lock, if it has a valid CPU
2253 * then the IPI is still running and will continue due to the
2254 * update to loop_next, and nothing needs to be done here.
2255 * Otherwise it is finishing up and an ipi needs to be sent.
2257 if (rq->rd->rto_cpu < 0)
2258 cpu = rto_next_cpu(rq->rd);
2260 raw_spin_unlock(&rq->rd->rto_lock);
2262 rto_start_unlock(&rq->rd->rto_loop_start);
2265 /* Make sure the rd does not get freed while pushing */
2266 sched_get_rd(rq->rd);
2267 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2271 /* Called from hardirq context */
2272 void rto_push_irq_work_func(struct irq_work *work)
2274 struct root_domain *rd =
2275 container_of(work, struct root_domain, rto_push_work);
2282 * We do not need to grab the lock to check for has_pushable_tasks.
2283 * When it gets updated, a check is made if a push is possible.
2285 if (has_pushable_tasks(rq)) {
2286 raw_spin_rq_lock(rq);
2287 while (push_rt_task(rq, true))
2289 raw_spin_rq_unlock(rq);
2292 raw_spin_lock(&rd->rto_lock);
2294 /* Pass the IPI to the next rt overloaded queue */
2295 cpu = rto_next_cpu(rd);
2297 raw_spin_unlock(&rd->rto_lock);
2304 /* Try the next RT overloaded CPU */
2305 irq_work_queue_on(&rd->rto_push_work, cpu);
2307 #endif /* HAVE_RT_PUSH_IPI */
2309 static void pull_rt_task(struct rq *this_rq)
2311 int this_cpu = this_rq->cpu, cpu;
2312 bool resched = false;
2313 struct task_struct *p, *push_task;
2315 int rt_overload_count = rt_overloaded(this_rq);
2317 if (likely(!rt_overload_count))
2321 * Match the barrier from rt_set_overloaded; this guarantees that if we
2322 * see overloaded we must also see the rto_mask bit.
2326 /* If we are the only overloaded CPU do nothing */
2327 if (rt_overload_count == 1 &&
2328 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2331 #ifdef HAVE_RT_PUSH_IPI
2332 if (sched_feat(RT_PUSH_IPI)) {
2333 tell_cpu_to_push(this_rq);
2338 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2339 if (this_cpu == cpu)
2342 src_rq = cpu_rq(cpu);
2345 * Don't bother taking the src_rq->lock if the next highest
2346 * task is known to be lower-priority than our current task.
2347 * This may look racy, but if this value is about to go
2348 * logically higher, the src_rq will push this task away.
2349 * And if its going logically lower, we do not care
2351 if (src_rq->rt.highest_prio.next >=
2352 this_rq->rt.highest_prio.curr)
2356 * We can potentially drop this_rq's lock in
2357 * double_lock_balance, and another CPU could
2361 double_lock_balance(this_rq, src_rq);
2364 * We can pull only a task, which is pushable
2365 * on its rq, and no others.
2367 p = pick_highest_pushable_task(src_rq, this_cpu);
2370 * Do we have an RT task that preempts
2371 * the to-be-scheduled task?
2373 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2374 WARN_ON(p == src_rq->curr);
2375 WARN_ON(!task_on_rq_queued(p));
2378 * There's a chance that p is higher in priority
2379 * than what's currently running on its CPU.
2380 * This is just that p is waking up and hasn't
2381 * had a chance to schedule. We only pull
2382 * p if it is lower in priority than the
2383 * current task on the run queue
2385 if (p->prio < src_rq->curr->prio)
2388 if (is_migration_disabled(p)) {
2389 push_task = get_push_task(src_rq);
2391 deactivate_task(src_rq, p, 0);
2392 set_task_cpu(p, this_cpu);
2393 activate_task(this_rq, p, 0);
2397 * We continue with the search, just in
2398 * case there's an even higher prio task
2399 * in another runqueue. (low likelihood
2404 double_unlock_balance(this_rq, src_rq);
2408 raw_spin_rq_unlock(this_rq);
2409 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2410 push_task, &src_rq->push_work);
2412 raw_spin_rq_lock(this_rq);
2417 resched_curr(this_rq);
2421 * If we are not running and we are not going to reschedule soon, we should
2422 * try to push tasks away now
2424 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2426 bool need_to_push = !task_on_cpu(rq, p) &&
2427 !test_tsk_need_resched(rq->curr) &&
2428 p->nr_cpus_allowed > 1 &&
2429 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2430 (rq->curr->nr_cpus_allowed < 2 ||
2431 rq->curr->prio <= p->prio);
2437 /* Assumes rq->lock is held */
2438 static void rq_online_rt(struct rq *rq)
2440 if (rq->rt.overloaded)
2441 rt_set_overload(rq);
2443 __enable_runtime(rq);
2445 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2448 /* Assumes rq->lock is held */
2449 static void rq_offline_rt(struct rq *rq)
2451 if (rq->rt.overloaded)
2452 rt_clear_overload(rq);
2454 __disable_runtime(rq);
2456 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2460 * When switch from the rt queue, we bring ourselves to a position
2461 * that we might want to pull RT tasks from other runqueues.
2463 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2466 * If there are other RT tasks then we will reschedule
2467 * and the scheduling of the other RT tasks will handle
2468 * the balancing. But if we are the last RT task
2469 * we may need to handle the pulling of RT tasks
2472 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2475 rt_queue_pull_task(rq);
2478 void __init init_sched_rt_class(void)
2482 for_each_possible_cpu(i) {
2483 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2484 GFP_KERNEL, cpu_to_node(i));
2487 #endif /* CONFIG_SMP */
2490 * When switching a task to RT, we may overload the runqueue
2491 * with RT tasks. In this case we try to push them off to
2494 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2497 * If we are running, update the avg_rt tracking, as the running time
2498 * will now on be accounted into the latter.
2500 if (task_current(rq, p)) {
2501 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2506 * If we are not running we may need to preempt the current
2507 * running task. If that current running task is also an RT task
2508 * then see if we can move to another run queue.
2510 if (task_on_rq_queued(p)) {
2512 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2513 rt_queue_push_tasks(rq);
2514 #endif /* CONFIG_SMP */
2515 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2521 * Priority of the task has changed. This may cause
2522 * us to initiate a push or pull.
2525 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2527 if (!task_on_rq_queued(p))
2530 if (task_current(rq, p)) {
2533 * If our priority decreases while running, we
2534 * may need to pull tasks to this runqueue.
2536 if (oldprio < p->prio)
2537 rt_queue_pull_task(rq);
2540 * If there's a higher priority task waiting to run
2543 if (p->prio > rq->rt.highest_prio.curr)
2546 /* For UP simply resched on drop of prio */
2547 if (oldprio < p->prio)
2549 #endif /* CONFIG_SMP */
2552 * This task is not running, but if it is
2553 * greater than the current running task
2556 if (p->prio < rq->curr->prio)
2561 #ifdef CONFIG_POSIX_TIMERS
2562 static void watchdog(struct rq *rq, struct task_struct *p)
2564 unsigned long soft, hard;
2566 /* max may change after cur was read, this will be fixed next tick */
2567 soft = task_rlimit(p, RLIMIT_RTTIME);
2568 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2570 if (soft != RLIM_INFINITY) {
2573 if (p->rt.watchdog_stamp != jiffies) {
2575 p->rt.watchdog_stamp = jiffies;
2578 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2579 if (p->rt.timeout > next) {
2580 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2581 p->se.sum_exec_runtime);
2586 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2590 * scheduler tick hitting a task of our scheduling class.
2592 * NOTE: This function can be called remotely by the tick offload that
2593 * goes along full dynticks. Therefore no local assumption can be made
2594 * and everything must be accessed through the @rq and @curr passed in
2597 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2599 struct sched_rt_entity *rt_se = &p->rt;
2602 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2607 * RR tasks need a special form of timeslice management.
2608 * FIFO tasks have no timeslices.
2610 if (p->policy != SCHED_RR)
2613 if (--p->rt.time_slice)
2616 p->rt.time_slice = sched_rr_timeslice;
2619 * Requeue to the end of queue if we (and all of our ancestors) are not
2620 * the only element on the queue
2622 for_each_sched_rt_entity(rt_se) {
2623 if (rt_se->run_list.prev != rt_se->run_list.next) {
2624 requeue_task_rt(rq, p, 0);
2631 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2634 * Time slice is 0 for SCHED_FIFO tasks
2636 if (task->policy == SCHED_RR)
2637 return sched_rr_timeslice;
2642 #ifdef CONFIG_SCHED_CORE
2643 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2645 struct rt_rq *rt_rq;
2647 #ifdef CONFIG_RT_GROUP_SCHED
2648 rt_rq = task_group(p)->rt_rq[cpu];
2650 rt_rq = &cpu_rq(cpu)->rt;
2653 return rt_rq_throttled(rt_rq);
2657 DEFINE_SCHED_CLASS(rt) = {
2659 .enqueue_task = enqueue_task_rt,
2660 .dequeue_task = dequeue_task_rt,
2661 .yield_task = yield_task_rt,
2663 .wakeup_preempt = wakeup_preempt_rt,
2665 .pick_next_task = pick_next_task_rt,
2666 .put_prev_task = put_prev_task_rt,
2667 .set_next_task = set_next_task_rt,
2670 .balance = balance_rt,
2671 .pick_task = pick_task_rt,
2672 .select_task_rq = select_task_rq_rt,
2673 .set_cpus_allowed = set_cpus_allowed_common,
2674 .rq_online = rq_online_rt,
2675 .rq_offline = rq_offline_rt,
2676 .task_woken = task_woken_rt,
2677 .switched_from = switched_from_rt,
2678 .find_lock_rq = find_lock_lowest_rq,
2681 .task_tick = task_tick_rt,
2683 .get_rr_interval = get_rr_interval_rt,
2685 .prio_changed = prio_changed_rt,
2686 .switched_to = switched_to_rt,
2688 .update_curr = update_curr_rt,
2690 #ifdef CONFIG_SCHED_CORE
2691 .task_is_throttled = task_is_throttled_rt,
2694 #ifdef CONFIG_UCLAMP_TASK
2695 .uclamp_enabled = 1,
2699 #ifdef CONFIG_RT_GROUP_SCHED
2701 * Ensure that the real time constraints are schedulable.
2703 static DEFINE_MUTEX(rt_constraints_mutex);
2705 static inline int tg_has_rt_tasks(struct task_group *tg)
2707 struct task_struct *task;
2708 struct css_task_iter it;
2712 * Autogroups do not have RT tasks; see autogroup_create().
2714 if (task_group_is_autogroup(tg))
2717 css_task_iter_start(&tg->css, 0, &it);
2718 while (!ret && (task = css_task_iter_next(&it)))
2719 ret |= rt_task(task);
2720 css_task_iter_end(&it);
2725 struct rt_schedulable_data {
2726 struct task_group *tg;
2731 static int tg_rt_schedulable(struct task_group *tg, void *data)
2733 struct rt_schedulable_data *d = data;
2734 struct task_group *child;
2735 unsigned long total, sum = 0;
2736 u64 period, runtime;
2738 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2739 runtime = tg->rt_bandwidth.rt_runtime;
2742 period = d->rt_period;
2743 runtime = d->rt_runtime;
2747 * Cannot have more runtime than the period.
2749 if (runtime > period && runtime != RUNTIME_INF)
2753 * Ensure we don't starve existing RT tasks if runtime turns zero.
2755 if (rt_bandwidth_enabled() && !runtime &&
2756 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2759 total = to_ratio(period, runtime);
2762 * Nobody can have more than the global setting allows.
2764 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2768 * The sum of our children's runtime should not exceed our own.
2770 list_for_each_entry_rcu(child, &tg->children, siblings) {
2771 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2772 runtime = child->rt_bandwidth.rt_runtime;
2774 if (child == d->tg) {
2775 period = d->rt_period;
2776 runtime = d->rt_runtime;
2779 sum += to_ratio(period, runtime);
2788 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2792 struct rt_schedulable_data data = {
2794 .rt_period = period,
2795 .rt_runtime = runtime,
2799 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2805 static int tg_set_rt_bandwidth(struct task_group *tg,
2806 u64 rt_period, u64 rt_runtime)
2811 * Disallowing the root group RT runtime is BAD, it would disallow the
2812 * kernel creating (and or operating) RT threads.
2814 if (tg == &root_task_group && rt_runtime == 0)
2817 /* No period doesn't make any sense. */
2822 * Bound quota to defend quota against overflow during bandwidth shift.
2824 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2827 mutex_lock(&rt_constraints_mutex);
2828 err = __rt_schedulable(tg, rt_period, rt_runtime);
2832 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2833 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2834 tg->rt_bandwidth.rt_runtime = rt_runtime;
2836 for_each_possible_cpu(i) {
2837 struct rt_rq *rt_rq = tg->rt_rq[i];
2839 raw_spin_lock(&rt_rq->rt_runtime_lock);
2840 rt_rq->rt_runtime = rt_runtime;
2841 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2843 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2845 mutex_unlock(&rt_constraints_mutex);
2850 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2852 u64 rt_runtime, rt_period;
2854 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2855 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2856 if (rt_runtime_us < 0)
2857 rt_runtime = RUNTIME_INF;
2858 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2861 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2864 long sched_group_rt_runtime(struct task_group *tg)
2868 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2871 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2872 do_div(rt_runtime_us, NSEC_PER_USEC);
2873 return rt_runtime_us;
2876 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2878 u64 rt_runtime, rt_period;
2880 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2883 rt_period = rt_period_us * NSEC_PER_USEC;
2884 rt_runtime = tg->rt_bandwidth.rt_runtime;
2886 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2889 long sched_group_rt_period(struct task_group *tg)
2893 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2894 do_div(rt_period_us, NSEC_PER_USEC);
2895 return rt_period_us;
2898 #ifdef CONFIG_SYSCTL
2899 static int sched_rt_global_constraints(void)
2903 mutex_lock(&rt_constraints_mutex);
2904 ret = __rt_schedulable(NULL, 0, 0);
2905 mutex_unlock(&rt_constraints_mutex);
2909 #endif /* CONFIG_SYSCTL */
2911 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2913 /* Don't accept realtime tasks when there is no way for them to run */
2914 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2920 #else /* !CONFIG_RT_GROUP_SCHED */
2922 #ifdef CONFIG_SYSCTL
2923 static int sched_rt_global_constraints(void)
2925 unsigned long flags;
2928 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2929 for_each_possible_cpu(i) {
2930 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2932 raw_spin_lock(&rt_rq->rt_runtime_lock);
2933 rt_rq->rt_runtime = global_rt_runtime();
2934 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2936 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2940 #endif /* CONFIG_SYSCTL */
2941 #endif /* CONFIG_RT_GROUP_SCHED */
2943 #ifdef CONFIG_SYSCTL
2944 static int sched_rt_global_validate(void)
2946 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2947 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2948 ((u64)sysctl_sched_rt_runtime *
2949 NSEC_PER_USEC > max_rt_runtime)))
2955 static void sched_rt_do_global(void)
2957 unsigned long flags;
2959 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2960 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2961 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2962 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2965 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2966 size_t *lenp, loff_t *ppos)
2968 int old_period, old_runtime;
2969 static DEFINE_MUTEX(mutex);
2973 old_period = sysctl_sched_rt_period;
2974 old_runtime = sysctl_sched_rt_runtime;
2976 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2978 if (!ret && write) {
2979 ret = sched_rt_global_validate();
2983 ret = sched_dl_global_validate();
2987 ret = sched_rt_global_constraints();
2991 sched_rt_do_global();
2992 sched_dl_do_global();
2996 sysctl_sched_rt_period = old_period;
2997 sysctl_sched_rt_runtime = old_runtime;
2999 mutex_unlock(&mutex);
3004 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3005 size_t *lenp, loff_t *ppos)
3008 static DEFINE_MUTEX(mutex);
3011 ret = proc_dointvec(table, write, buffer, lenp, ppos);
3013 * Make sure that internally we keep jiffies.
3014 * Also, writing zero resets the timeslice to default:
3016 if (!ret && write) {
3017 sched_rr_timeslice =
3018 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3019 msecs_to_jiffies(sysctl_sched_rr_timeslice);
3021 if (sysctl_sched_rr_timeslice <= 0)
3022 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3024 mutex_unlock(&mutex);
3028 #endif /* CONFIG_SYSCTL */
3030 #ifdef CONFIG_SCHED_DEBUG
3031 void print_rt_stats(struct seq_file *m, int cpu)
3034 struct rt_rq *rt_rq;
3037 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3038 print_rt_rq(m, cpu, rt_rq);
3041 #endif /* CONFIG_SCHED_DEBUG */