arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13 struct rt_bandwidth def_rt_bandwidth;
14
15 /*
16  * period over which we measure -rt task CPU usage in us.
17  * default: 1s
18  */
19 int sysctl_sched_rt_period = 1000000;
20
21 /*
22  * part of the period that we allow rt tasks to run in us.
23  * default: 0.95s
24  */
25 int sysctl_sched_rt_runtime = 950000;
26
27 #ifdef CONFIG_SYSCTL
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30                 size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32                 size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
34         {
35                 .procname       = "sched_rt_period_us",
36                 .data           = &sysctl_sched_rt_period,
37                 .maxlen         = sizeof(int),
38                 .mode           = 0644,
39                 .proc_handler   = sched_rt_handler,
40                 .extra1         = SYSCTL_ONE,
41                 .extra2         = SYSCTL_INT_MAX,
42         },
43         {
44                 .procname       = "sched_rt_runtime_us",
45                 .data           = &sysctl_sched_rt_runtime,
46                 .maxlen         = sizeof(int),
47                 .mode           = 0644,
48                 .proc_handler   = sched_rt_handler,
49                 .extra1         = SYSCTL_NEG_ONE,
50                 .extra2         = (void *)&sysctl_sched_rt_period,
51         },
52         {
53                 .procname       = "sched_rr_timeslice_ms",
54                 .data           = &sysctl_sched_rr_timeslice,
55                 .maxlen         = sizeof(int),
56                 .mode           = 0644,
57                 .proc_handler   = sched_rr_handler,
58         },
59         {}
60 };
61
62 static int __init sched_rt_sysctl_init(void)
63 {
64         register_sysctl_init("kernel", sched_rt_sysctls);
65         return 0;
66 }
67 late_initcall(sched_rt_sysctl_init);
68 #endif
69
70 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
71 {
72         struct rt_bandwidth *rt_b =
73                 container_of(timer, struct rt_bandwidth, rt_period_timer);
74         int idle = 0;
75         int overrun;
76
77         raw_spin_lock(&rt_b->rt_runtime_lock);
78         for (;;) {
79                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
80                 if (!overrun)
81                         break;
82
83                 raw_spin_unlock(&rt_b->rt_runtime_lock);
84                 idle = do_sched_rt_period_timer(rt_b, overrun);
85                 raw_spin_lock(&rt_b->rt_runtime_lock);
86         }
87         if (idle)
88                 rt_b->rt_period_active = 0;
89         raw_spin_unlock(&rt_b->rt_runtime_lock);
90
91         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
92 }
93
94 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
95 {
96         rt_b->rt_period = ns_to_ktime(period);
97         rt_b->rt_runtime = runtime;
98
99         raw_spin_lock_init(&rt_b->rt_runtime_lock);
100
101         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
102                      HRTIMER_MODE_REL_HARD);
103         rt_b->rt_period_timer.function = sched_rt_period_timer;
104 }
105
106 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108         raw_spin_lock(&rt_b->rt_runtime_lock);
109         if (!rt_b->rt_period_active) {
110                 rt_b->rt_period_active = 1;
111                 /*
112                  * SCHED_DEADLINE updates the bandwidth, as a run away
113                  * RT task with a DL task could hog a CPU. But DL does
114                  * not reset the period. If a deadline task was running
115                  * without an RT task running, it can cause RT tasks to
116                  * throttle when they start up. Kick the timer right away
117                  * to update the period.
118                  */
119                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
120                 hrtimer_start_expires(&rt_b->rt_period_timer,
121                                       HRTIMER_MODE_ABS_PINNED_HARD);
122         }
123         raw_spin_unlock(&rt_b->rt_runtime_lock);
124 }
125
126 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
127 {
128         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
129                 return;
130
131         do_start_rt_bandwidth(rt_b);
132 }
133
134 void init_rt_rq(struct rt_rq *rt_rq)
135 {
136         struct rt_prio_array *array;
137         int i;
138
139         array = &rt_rq->active;
140         for (i = 0; i < MAX_RT_PRIO; i++) {
141                 INIT_LIST_HEAD(array->queue + i);
142                 __clear_bit(i, array->bitmap);
143         }
144         /* delimiter for bitsearch: */
145         __set_bit(MAX_RT_PRIO, array->bitmap);
146
147 #if defined CONFIG_SMP
148         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
149         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
150         rt_rq->overloaded = 0;
151         plist_head_init(&rt_rq->pushable_tasks);
152 #endif /* CONFIG_SMP */
153         /* We start is dequeued state, because no RT tasks are queued */
154         rt_rq->rt_queued = 0;
155
156         rt_rq->rt_time = 0;
157         rt_rq->rt_throttled = 0;
158         rt_rq->rt_runtime = 0;
159         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
160 }
161
162 #ifdef CONFIG_RT_GROUP_SCHED
163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
164 {
165         hrtimer_cancel(&rt_b->rt_period_timer);
166 }
167
168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
169
170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
171 {
172 #ifdef CONFIG_SCHED_DEBUG
173         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
174 #endif
175         return container_of(rt_se, struct task_struct, rt);
176 }
177
178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
179 {
180         return rt_rq->rq;
181 }
182
183 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
184 {
185         return rt_se->rt_rq;
186 }
187
188 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
189 {
190         struct rt_rq *rt_rq = rt_se->rt_rq;
191
192         return rt_rq->rq;
193 }
194
195 void unregister_rt_sched_group(struct task_group *tg)
196 {
197         if (tg->rt_se)
198                 destroy_rt_bandwidth(&tg->rt_bandwidth);
199
200 }
201
202 void free_rt_sched_group(struct task_group *tg)
203 {
204         int i;
205
206         for_each_possible_cpu(i) {
207                 if (tg->rt_rq)
208                         kfree(tg->rt_rq[i]);
209                 if (tg->rt_se)
210                         kfree(tg->rt_se[i]);
211         }
212
213         kfree(tg->rt_rq);
214         kfree(tg->rt_se);
215 }
216
217 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
218                 struct sched_rt_entity *rt_se, int cpu,
219                 struct sched_rt_entity *parent)
220 {
221         struct rq *rq = cpu_rq(cpu);
222
223         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
224         rt_rq->rt_nr_boosted = 0;
225         rt_rq->rq = rq;
226         rt_rq->tg = tg;
227
228         tg->rt_rq[cpu] = rt_rq;
229         tg->rt_se[cpu] = rt_se;
230
231         if (!rt_se)
232                 return;
233
234         if (!parent)
235                 rt_se->rt_rq = &rq->rt;
236         else
237                 rt_se->rt_rq = parent->my_q;
238
239         rt_se->my_q = rt_rq;
240         rt_se->parent = parent;
241         INIT_LIST_HEAD(&rt_se->run_list);
242 }
243
244 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
245 {
246         struct rt_rq *rt_rq;
247         struct sched_rt_entity *rt_se;
248         int i;
249
250         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
251         if (!tg->rt_rq)
252                 goto err;
253         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
254         if (!tg->rt_se)
255                 goto err;
256
257         init_rt_bandwidth(&tg->rt_bandwidth,
258                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
259
260         for_each_possible_cpu(i) {
261                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
262                                      GFP_KERNEL, cpu_to_node(i));
263                 if (!rt_rq)
264                         goto err;
265
266                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
267                                      GFP_KERNEL, cpu_to_node(i));
268                 if (!rt_se)
269                         goto err_free_rq;
270
271                 init_rt_rq(rt_rq);
272                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
273                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
274         }
275
276         return 1;
277
278 err_free_rq:
279         kfree(rt_rq);
280 err:
281         return 0;
282 }
283
284 #else /* CONFIG_RT_GROUP_SCHED */
285
286 #define rt_entity_is_task(rt_se) (1)
287
288 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
289 {
290         return container_of(rt_se, struct task_struct, rt);
291 }
292
293 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
294 {
295         return container_of(rt_rq, struct rq, rt);
296 }
297
298 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
299 {
300         struct task_struct *p = rt_task_of(rt_se);
301
302         return task_rq(p);
303 }
304
305 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
306 {
307         struct rq *rq = rq_of_rt_se(rt_se);
308
309         return &rq->rt;
310 }
311
312 void unregister_rt_sched_group(struct task_group *tg) { }
313
314 void free_rt_sched_group(struct task_group *tg) { }
315
316 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
317 {
318         return 1;
319 }
320 #endif /* CONFIG_RT_GROUP_SCHED */
321
322 #ifdef CONFIG_SMP
323
324 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
325 {
326         /* Try to pull RT tasks here if we lower this rq's prio */
327         return rq->online && rq->rt.highest_prio.curr > prev->prio;
328 }
329
330 static inline int rt_overloaded(struct rq *rq)
331 {
332         return atomic_read(&rq->rd->rto_count);
333 }
334
335 static inline void rt_set_overload(struct rq *rq)
336 {
337         if (!rq->online)
338                 return;
339
340         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
341         /*
342          * Make sure the mask is visible before we set
343          * the overload count. That is checked to determine
344          * if we should look at the mask. It would be a shame
345          * if we looked at the mask, but the mask was not
346          * updated yet.
347          *
348          * Matched by the barrier in pull_rt_task().
349          */
350         smp_wmb();
351         atomic_inc(&rq->rd->rto_count);
352 }
353
354 static inline void rt_clear_overload(struct rq *rq)
355 {
356         if (!rq->online)
357                 return;
358
359         /* the order here really doesn't matter */
360         atomic_dec(&rq->rd->rto_count);
361         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
362 }
363
364 static inline int has_pushable_tasks(struct rq *rq)
365 {
366         return !plist_head_empty(&rq->rt.pushable_tasks);
367 }
368
369 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
370 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
371
372 static void push_rt_tasks(struct rq *);
373 static void pull_rt_task(struct rq *);
374
375 static inline void rt_queue_push_tasks(struct rq *rq)
376 {
377         if (!has_pushable_tasks(rq))
378                 return;
379
380         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
381 }
382
383 static inline void rt_queue_pull_task(struct rq *rq)
384 {
385         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
386 }
387
388 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
389 {
390         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
391         plist_node_init(&p->pushable_tasks, p->prio);
392         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
393
394         /* Update the highest prio pushable task */
395         if (p->prio < rq->rt.highest_prio.next)
396                 rq->rt.highest_prio.next = p->prio;
397
398         if (!rq->rt.overloaded) {
399                 rt_set_overload(rq);
400                 rq->rt.overloaded = 1;
401         }
402 }
403
404 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
407
408         /* Update the new highest prio pushable task */
409         if (has_pushable_tasks(rq)) {
410                 p = plist_first_entry(&rq->rt.pushable_tasks,
411                                       struct task_struct, pushable_tasks);
412                 rq->rt.highest_prio.next = p->prio;
413         } else {
414                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
415
416                 if (rq->rt.overloaded) {
417                         rt_clear_overload(rq);
418                         rq->rt.overloaded = 0;
419                 }
420         }
421 }
422
423 #else
424
425 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
426 {
427 }
428
429 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
430 {
431 }
432
433 static inline void rt_queue_push_tasks(struct rq *rq)
434 {
435 }
436 #endif /* CONFIG_SMP */
437
438 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
439 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
440
441 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
442 {
443         return rt_se->on_rq;
444 }
445
446 #ifdef CONFIG_UCLAMP_TASK
447 /*
448  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
449  * settings.
450  *
451  * This check is only important for heterogeneous systems where uclamp_min value
452  * is higher than the capacity of a @cpu. For non-heterogeneous system this
453  * function will always return true.
454  *
455  * The function will return true if the capacity of the @cpu is >= the
456  * uclamp_min and false otherwise.
457  *
458  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
459  * > uclamp_max.
460  */
461 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
462 {
463         unsigned int min_cap;
464         unsigned int max_cap;
465         unsigned int cpu_cap;
466
467         /* Only heterogeneous systems can benefit from this check */
468         if (!sched_asym_cpucap_active())
469                 return true;
470
471         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
472         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
473
474         cpu_cap = arch_scale_cpu_capacity(cpu);
475
476         return cpu_cap >= min(min_cap, max_cap);
477 }
478 #else
479 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
480 {
481         return true;
482 }
483 #endif
484
485 #ifdef CONFIG_RT_GROUP_SCHED
486
487 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
488 {
489         if (!rt_rq->tg)
490                 return RUNTIME_INF;
491
492         return rt_rq->rt_runtime;
493 }
494
495 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
496 {
497         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
498 }
499
500 typedef struct task_group *rt_rq_iter_t;
501
502 static inline struct task_group *next_task_group(struct task_group *tg)
503 {
504         do {
505                 tg = list_entry_rcu(tg->list.next,
506                         typeof(struct task_group), list);
507         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
508
509         if (&tg->list == &task_groups)
510                 tg = NULL;
511
512         return tg;
513 }
514
515 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
516         for (iter = container_of(&task_groups, typeof(*iter), list);    \
517                 (iter = next_task_group(iter)) &&                       \
518                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
519
520 #define for_each_sched_rt_entity(rt_se) \
521         for (; rt_se; rt_se = rt_se->parent)
522
523 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
524 {
525         return rt_se->my_q;
526 }
527
528 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
529 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
530
531 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
532 {
533         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
534         struct rq *rq = rq_of_rt_rq(rt_rq);
535         struct sched_rt_entity *rt_se;
536
537         int cpu = cpu_of(rq);
538
539         rt_se = rt_rq->tg->rt_se[cpu];
540
541         if (rt_rq->rt_nr_running) {
542                 if (!rt_se)
543                         enqueue_top_rt_rq(rt_rq);
544                 else if (!on_rt_rq(rt_se))
545                         enqueue_rt_entity(rt_se, 0);
546
547                 if (rt_rq->highest_prio.curr < curr->prio)
548                         resched_curr(rq);
549         }
550 }
551
552 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
553 {
554         struct sched_rt_entity *rt_se;
555         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
556
557         rt_se = rt_rq->tg->rt_se[cpu];
558
559         if (!rt_se) {
560                 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
561                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
562                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
563         }
564         else if (on_rt_rq(rt_se))
565                 dequeue_rt_entity(rt_se, 0);
566 }
567
568 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
569 {
570         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
571 }
572
573 static int rt_se_boosted(struct sched_rt_entity *rt_se)
574 {
575         struct rt_rq *rt_rq = group_rt_rq(rt_se);
576         struct task_struct *p;
577
578         if (rt_rq)
579                 return !!rt_rq->rt_nr_boosted;
580
581         p = rt_task_of(rt_se);
582         return p->prio != p->normal_prio;
583 }
584
585 #ifdef CONFIG_SMP
586 static inline const struct cpumask *sched_rt_period_mask(void)
587 {
588         return this_rq()->rd->span;
589 }
590 #else
591 static inline const struct cpumask *sched_rt_period_mask(void)
592 {
593         return cpu_online_mask;
594 }
595 #endif
596
597 static inline
598 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
599 {
600         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
601 }
602
603 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
604 {
605         return &rt_rq->tg->rt_bandwidth;
606 }
607
608 #else /* !CONFIG_RT_GROUP_SCHED */
609
610 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
611 {
612         return rt_rq->rt_runtime;
613 }
614
615 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
616 {
617         return ktime_to_ns(def_rt_bandwidth.rt_period);
618 }
619
620 typedef struct rt_rq *rt_rq_iter_t;
621
622 #define for_each_rt_rq(rt_rq, iter, rq) \
623         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
624
625 #define for_each_sched_rt_entity(rt_se) \
626         for (; rt_se; rt_se = NULL)
627
628 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
629 {
630         return NULL;
631 }
632
633 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
634 {
635         struct rq *rq = rq_of_rt_rq(rt_rq);
636
637         if (!rt_rq->rt_nr_running)
638                 return;
639
640         enqueue_top_rt_rq(rt_rq);
641         resched_curr(rq);
642 }
643
644 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
645 {
646         dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
647 }
648
649 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
650 {
651         return rt_rq->rt_throttled;
652 }
653
654 static inline const struct cpumask *sched_rt_period_mask(void)
655 {
656         return cpu_online_mask;
657 }
658
659 static inline
660 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
661 {
662         return &cpu_rq(cpu)->rt;
663 }
664
665 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
666 {
667         return &def_rt_bandwidth;
668 }
669
670 #endif /* CONFIG_RT_GROUP_SCHED */
671
672 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
673 {
674         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
675
676         return (hrtimer_active(&rt_b->rt_period_timer) ||
677                 rt_rq->rt_time < rt_b->rt_runtime);
678 }
679
680 #ifdef CONFIG_SMP
681 /*
682  * We ran out of runtime, see if we can borrow some from our neighbours.
683  */
684 static void do_balance_runtime(struct rt_rq *rt_rq)
685 {
686         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
687         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
688         int i, weight;
689         u64 rt_period;
690
691         weight = cpumask_weight(rd->span);
692
693         raw_spin_lock(&rt_b->rt_runtime_lock);
694         rt_period = ktime_to_ns(rt_b->rt_period);
695         for_each_cpu(i, rd->span) {
696                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
697                 s64 diff;
698
699                 if (iter == rt_rq)
700                         continue;
701
702                 raw_spin_lock(&iter->rt_runtime_lock);
703                 /*
704                  * Either all rqs have inf runtime and there's nothing to steal
705                  * or __disable_runtime() below sets a specific rq to inf to
706                  * indicate its been disabled and disallow stealing.
707                  */
708                 if (iter->rt_runtime == RUNTIME_INF)
709                         goto next;
710
711                 /*
712                  * From runqueues with spare time, take 1/n part of their
713                  * spare time, but no more than our period.
714                  */
715                 diff = iter->rt_runtime - iter->rt_time;
716                 if (diff > 0) {
717                         diff = div_u64((u64)diff, weight);
718                         if (rt_rq->rt_runtime + diff > rt_period)
719                                 diff = rt_period - rt_rq->rt_runtime;
720                         iter->rt_runtime -= diff;
721                         rt_rq->rt_runtime += diff;
722                         if (rt_rq->rt_runtime == rt_period) {
723                                 raw_spin_unlock(&iter->rt_runtime_lock);
724                                 break;
725                         }
726                 }
727 next:
728                 raw_spin_unlock(&iter->rt_runtime_lock);
729         }
730         raw_spin_unlock(&rt_b->rt_runtime_lock);
731 }
732
733 /*
734  * Ensure this RQ takes back all the runtime it lend to its neighbours.
735  */
736 static void __disable_runtime(struct rq *rq)
737 {
738         struct root_domain *rd = rq->rd;
739         rt_rq_iter_t iter;
740         struct rt_rq *rt_rq;
741
742         if (unlikely(!scheduler_running))
743                 return;
744
745         for_each_rt_rq(rt_rq, iter, rq) {
746                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
747                 s64 want;
748                 int i;
749
750                 raw_spin_lock(&rt_b->rt_runtime_lock);
751                 raw_spin_lock(&rt_rq->rt_runtime_lock);
752                 /*
753                  * Either we're all inf and nobody needs to borrow, or we're
754                  * already disabled and thus have nothing to do, or we have
755                  * exactly the right amount of runtime to take out.
756                  */
757                 if (rt_rq->rt_runtime == RUNTIME_INF ||
758                                 rt_rq->rt_runtime == rt_b->rt_runtime)
759                         goto balanced;
760                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
761
762                 /*
763                  * Calculate the difference between what we started out with
764                  * and what we current have, that's the amount of runtime
765                  * we lend and now have to reclaim.
766                  */
767                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
768
769                 /*
770                  * Greedy reclaim, take back as much as we can.
771                  */
772                 for_each_cpu(i, rd->span) {
773                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
774                         s64 diff;
775
776                         /*
777                          * Can't reclaim from ourselves or disabled runqueues.
778                          */
779                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
780                                 continue;
781
782                         raw_spin_lock(&iter->rt_runtime_lock);
783                         if (want > 0) {
784                                 diff = min_t(s64, iter->rt_runtime, want);
785                                 iter->rt_runtime -= diff;
786                                 want -= diff;
787                         } else {
788                                 iter->rt_runtime -= want;
789                                 want -= want;
790                         }
791                         raw_spin_unlock(&iter->rt_runtime_lock);
792
793                         if (!want)
794                                 break;
795                 }
796
797                 raw_spin_lock(&rt_rq->rt_runtime_lock);
798                 /*
799                  * We cannot be left wanting - that would mean some runtime
800                  * leaked out of the system.
801                  */
802                 WARN_ON_ONCE(want);
803 balanced:
804                 /*
805                  * Disable all the borrow logic by pretending we have inf
806                  * runtime - in which case borrowing doesn't make sense.
807                  */
808                 rt_rq->rt_runtime = RUNTIME_INF;
809                 rt_rq->rt_throttled = 0;
810                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
811                 raw_spin_unlock(&rt_b->rt_runtime_lock);
812
813                 /* Make rt_rq available for pick_next_task() */
814                 sched_rt_rq_enqueue(rt_rq);
815         }
816 }
817
818 static void __enable_runtime(struct rq *rq)
819 {
820         rt_rq_iter_t iter;
821         struct rt_rq *rt_rq;
822
823         if (unlikely(!scheduler_running))
824                 return;
825
826         /*
827          * Reset each runqueue's bandwidth settings
828          */
829         for_each_rt_rq(rt_rq, iter, rq) {
830                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
831
832                 raw_spin_lock(&rt_b->rt_runtime_lock);
833                 raw_spin_lock(&rt_rq->rt_runtime_lock);
834                 rt_rq->rt_runtime = rt_b->rt_runtime;
835                 rt_rq->rt_time = 0;
836                 rt_rq->rt_throttled = 0;
837                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
838                 raw_spin_unlock(&rt_b->rt_runtime_lock);
839         }
840 }
841
842 static void balance_runtime(struct rt_rq *rt_rq)
843 {
844         if (!sched_feat(RT_RUNTIME_SHARE))
845                 return;
846
847         if (rt_rq->rt_time > rt_rq->rt_runtime) {
848                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
849                 do_balance_runtime(rt_rq);
850                 raw_spin_lock(&rt_rq->rt_runtime_lock);
851         }
852 }
853 #else /* !CONFIG_SMP */
854 static inline void balance_runtime(struct rt_rq *rt_rq) {}
855 #endif /* CONFIG_SMP */
856
857 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
858 {
859         int i, idle = 1, throttled = 0;
860         const struct cpumask *span;
861
862         span = sched_rt_period_mask();
863 #ifdef CONFIG_RT_GROUP_SCHED
864         /*
865          * FIXME: isolated CPUs should really leave the root task group,
866          * whether they are isolcpus or were isolated via cpusets, lest
867          * the timer run on a CPU which does not service all runqueues,
868          * potentially leaving other CPUs indefinitely throttled.  If
869          * isolation is really required, the user will turn the throttle
870          * off to kill the perturbations it causes anyway.  Meanwhile,
871          * this maintains functionality for boot and/or troubleshooting.
872          */
873         if (rt_b == &root_task_group.rt_bandwidth)
874                 span = cpu_online_mask;
875 #endif
876         for_each_cpu(i, span) {
877                 int enqueue = 0;
878                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
879                 struct rq *rq = rq_of_rt_rq(rt_rq);
880                 struct rq_flags rf;
881                 int skip;
882
883                 /*
884                  * When span == cpu_online_mask, taking each rq->lock
885                  * can be time-consuming. Try to avoid it when possible.
886                  */
887                 raw_spin_lock(&rt_rq->rt_runtime_lock);
888                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
889                         rt_rq->rt_runtime = rt_b->rt_runtime;
890                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
891                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
892                 if (skip)
893                         continue;
894
895                 rq_lock(rq, &rf);
896                 update_rq_clock(rq);
897
898                 if (rt_rq->rt_time) {
899                         u64 runtime;
900
901                         raw_spin_lock(&rt_rq->rt_runtime_lock);
902                         if (rt_rq->rt_throttled)
903                                 balance_runtime(rt_rq);
904                         runtime = rt_rq->rt_runtime;
905                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
906                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
907                                 rt_rq->rt_throttled = 0;
908                                 enqueue = 1;
909
910                                 /*
911                                  * When we're idle and a woken (rt) task is
912                                  * throttled wakeup_preempt() will set
913                                  * skip_update and the time between the wakeup
914                                  * and this unthrottle will get accounted as
915                                  * 'runtime'.
916                                  */
917                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
918                                         rq_clock_cancel_skipupdate(rq);
919                         }
920                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
921                                 idle = 0;
922                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
923                 } else if (rt_rq->rt_nr_running) {
924                         idle = 0;
925                         if (!rt_rq_throttled(rt_rq))
926                                 enqueue = 1;
927                 }
928                 if (rt_rq->rt_throttled)
929                         throttled = 1;
930
931                 if (enqueue)
932                         sched_rt_rq_enqueue(rt_rq);
933                 rq_unlock(rq, &rf);
934         }
935
936         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
937                 return 1;
938
939         return idle;
940 }
941
942 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
943 {
944 #ifdef CONFIG_RT_GROUP_SCHED
945         struct rt_rq *rt_rq = group_rt_rq(rt_se);
946
947         if (rt_rq)
948                 return rt_rq->highest_prio.curr;
949 #endif
950
951         return rt_task_of(rt_se)->prio;
952 }
953
954 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
955 {
956         u64 runtime = sched_rt_runtime(rt_rq);
957
958         if (rt_rq->rt_throttled)
959                 return rt_rq_throttled(rt_rq);
960
961         if (runtime >= sched_rt_period(rt_rq))
962                 return 0;
963
964         balance_runtime(rt_rq);
965         runtime = sched_rt_runtime(rt_rq);
966         if (runtime == RUNTIME_INF)
967                 return 0;
968
969         if (rt_rq->rt_time > runtime) {
970                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
971
972                 /*
973                  * Don't actually throttle groups that have no runtime assigned
974                  * but accrue some time due to boosting.
975                  */
976                 if (likely(rt_b->rt_runtime)) {
977                         rt_rq->rt_throttled = 1;
978                         printk_deferred_once("sched: RT throttling activated\n");
979                 } else {
980                         /*
981                          * In case we did anyway, make it go away,
982                          * replenishment is a joke, since it will replenish us
983                          * with exactly 0 ns.
984                          */
985                         rt_rq->rt_time = 0;
986                 }
987
988                 if (rt_rq_throttled(rt_rq)) {
989                         sched_rt_rq_dequeue(rt_rq);
990                         return 1;
991                 }
992         }
993
994         return 0;
995 }
996
997 /*
998  * Update the current task's runtime statistics. Skip current tasks that
999  * are not in our scheduling class.
1000  */
1001 static void update_curr_rt(struct rq *rq)
1002 {
1003         struct task_struct *curr = rq->curr;
1004         struct sched_rt_entity *rt_se = &curr->rt;
1005         u64 delta_exec;
1006         u64 now;
1007
1008         if (curr->sched_class != &rt_sched_class)
1009                 return;
1010
1011         now = rq_clock_task(rq);
1012         delta_exec = now - curr->se.exec_start;
1013         if (unlikely((s64)delta_exec <= 0))
1014                 return;
1015
1016         schedstat_set(curr->stats.exec_max,
1017                       max(curr->stats.exec_max, delta_exec));
1018
1019         trace_sched_stat_runtime(curr, delta_exec, 0);
1020
1021         update_current_exec_runtime(curr, now, delta_exec);
1022
1023         if (!rt_bandwidth_enabled())
1024                 return;
1025
1026         for_each_sched_rt_entity(rt_se) {
1027                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1028                 int exceeded;
1029
1030                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1031                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1032                         rt_rq->rt_time += delta_exec;
1033                         exceeded = sched_rt_runtime_exceeded(rt_rq);
1034                         if (exceeded)
1035                                 resched_curr(rq);
1036                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1037                         if (exceeded)
1038                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1039                 }
1040         }
1041 }
1042
1043 static void
1044 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1045 {
1046         struct rq *rq = rq_of_rt_rq(rt_rq);
1047
1048         BUG_ON(&rq->rt != rt_rq);
1049
1050         if (!rt_rq->rt_queued)
1051                 return;
1052
1053         BUG_ON(!rq->nr_running);
1054
1055         sub_nr_running(rq, count);
1056         rt_rq->rt_queued = 0;
1057
1058 }
1059
1060 static void
1061 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1062 {
1063         struct rq *rq = rq_of_rt_rq(rt_rq);
1064
1065         BUG_ON(&rq->rt != rt_rq);
1066
1067         if (rt_rq->rt_queued)
1068                 return;
1069
1070         if (rt_rq_throttled(rt_rq))
1071                 return;
1072
1073         if (rt_rq->rt_nr_running) {
1074                 add_nr_running(rq, rt_rq->rt_nr_running);
1075                 rt_rq->rt_queued = 1;
1076         }
1077
1078         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1079         cpufreq_update_util(rq, 0);
1080 }
1081
1082 #if defined CONFIG_SMP
1083
1084 static void
1085 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1086 {
1087         struct rq *rq = rq_of_rt_rq(rt_rq);
1088
1089 #ifdef CONFIG_RT_GROUP_SCHED
1090         /*
1091          * Change rq's cpupri only if rt_rq is the top queue.
1092          */
1093         if (&rq->rt != rt_rq)
1094                 return;
1095 #endif
1096         if (rq->online && prio < prev_prio)
1097                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1098 }
1099
1100 static void
1101 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1102 {
1103         struct rq *rq = rq_of_rt_rq(rt_rq);
1104
1105 #ifdef CONFIG_RT_GROUP_SCHED
1106         /*
1107          * Change rq's cpupri only if rt_rq is the top queue.
1108          */
1109         if (&rq->rt != rt_rq)
1110                 return;
1111 #endif
1112         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1113                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1114 }
1115
1116 #else /* CONFIG_SMP */
1117
1118 static inline
1119 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1120 static inline
1121 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1122
1123 #endif /* CONFIG_SMP */
1124
1125 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1126 static void
1127 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1128 {
1129         int prev_prio = rt_rq->highest_prio.curr;
1130
1131         if (prio < prev_prio)
1132                 rt_rq->highest_prio.curr = prio;
1133
1134         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1135 }
1136
1137 static void
1138 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1139 {
1140         int prev_prio = rt_rq->highest_prio.curr;
1141
1142         if (rt_rq->rt_nr_running) {
1143
1144                 WARN_ON(prio < prev_prio);
1145
1146                 /*
1147                  * This may have been our highest task, and therefore
1148                  * we may have some recomputation to do
1149                  */
1150                 if (prio == prev_prio) {
1151                         struct rt_prio_array *array = &rt_rq->active;
1152
1153                         rt_rq->highest_prio.curr =
1154                                 sched_find_first_bit(array->bitmap);
1155                 }
1156
1157         } else {
1158                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1159         }
1160
1161         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1162 }
1163
1164 #else
1165
1166 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1167 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1168
1169 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1170
1171 #ifdef CONFIG_RT_GROUP_SCHED
1172
1173 static void
1174 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1175 {
1176         if (rt_se_boosted(rt_se))
1177                 rt_rq->rt_nr_boosted++;
1178
1179         if (rt_rq->tg)
1180                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1181 }
1182
1183 static void
1184 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1185 {
1186         if (rt_se_boosted(rt_se))
1187                 rt_rq->rt_nr_boosted--;
1188
1189         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1190 }
1191
1192 #else /* CONFIG_RT_GROUP_SCHED */
1193
1194 static void
1195 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1196 {
1197         start_rt_bandwidth(&def_rt_bandwidth);
1198 }
1199
1200 static inline
1201 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1202
1203 #endif /* CONFIG_RT_GROUP_SCHED */
1204
1205 static inline
1206 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1207 {
1208         struct rt_rq *group_rq = group_rt_rq(rt_se);
1209
1210         if (group_rq)
1211                 return group_rq->rt_nr_running;
1212         else
1213                 return 1;
1214 }
1215
1216 static inline
1217 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1218 {
1219         struct rt_rq *group_rq = group_rt_rq(rt_se);
1220         struct task_struct *tsk;
1221
1222         if (group_rq)
1223                 return group_rq->rr_nr_running;
1224
1225         tsk = rt_task_of(rt_se);
1226
1227         return (tsk->policy == SCHED_RR) ? 1 : 0;
1228 }
1229
1230 static inline
1231 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1232 {
1233         int prio = rt_se_prio(rt_se);
1234
1235         WARN_ON(!rt_prio(prio));
1236         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1237         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1238
1239         inc_rt_prio(rt_rq, prio);
1240         inc_rt_group(rt_se, rt_rq);
1241 }
1242
1243 static inline
1244 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1245 {
1246         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1247         WARN_ON(!rt_rq->rt_nr_running);
1248         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1249         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1250
1251         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1252         dec_rt_group(rt_se, rt_rq);
1253 }
1254
1255 /*
1256  * Change rt_se->run_list location unless SAVE && !MOVE
1257  *
1258  * assumes ENQUEUE/DEQUEUE flags match
1259  */
1260 static inline bool move_entity(unsigned int flags)
1261 {
1262         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1263                 return false;
1264
1265         return true;
1266 }
1267
1268 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1269 {
1270         list_del_init(&rt_se->run_list);
1271
1272         if (list_empty(array->queue + rt_se_prio(rt_se)))
1273                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1274
1275         rt_se->on_list = 0;
1276 }
1277
1278 static inline struct sched_statistics *
1279 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1280 {
1281 #ifdef CONFIG_RT_GROUP_SCHED
1282         /* schedstats is not supported for rt group. */
1283         if (!rt_entity_is_task(rt_se))
1284                 return NULL;
1285 #endif
1286
1287         return &rt_task_of(rt_se)->stats;
1288 }
1289
1290 static inline void
1291 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1292 {
1293         struct sched_statistics *stats;
1294         struct task_struct *p = NULL;
1295
1296         if (!schedstat_enabled())
1297                 return;
1298
1299         if (rt_entity_is_task(rt_se))
1300                 p = rt_task_of(rt_se);
1301
1302         stats = __schedstats_from_rt_se(rt_se);
1303         if (!stats)
1304                 return;
1305
1306         __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1307 }
1308
1309 static inline void
1310 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1311 {
1312         struct sched_statistics *stats;
1313         struct task_struct *p = NULL;
1314
1315         if (!schedstat_enabled())
1316                 return;
1317
1318         if (rt_entity_is_task(rt_se))
1319                 p = rt_task_of(rt_se);
1320
1321         stats = __schedstats_from_rt_se(rt_se);
1322         if (!stats)
1323                 return;
1324
1325         __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1326 }
1327
1328 static inline void
1329 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1330                         int flags)
1331 {
1332         if (!schedstat_enabled())
1333                 return;
1334
1335         if (flags & ENQUEUE_WAKEUP)
1336                 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1337 }
1338
1339 static inline void
1340 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1341 {
1342         struct sched_statistics *stats;
1343         struct task_struct *p = NULL;
1344
1345         if (!schedstat_enabled())
1346                 return;
1347
1348         if (rt_entity_is_task(rt_se))
1349                 p = rt_task_of(rt_se);
1350
1351         stats = __schedstats_from_rt_se(rt_se);
1352         if (!stats)
1353                 return;
1354
1355         __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1356 }
1357
1358 static inline void
1359 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1360                         int flags)
1361 {
1362         struct task_struct *p = NULL;
1363
1364         if (!schedstat_enabled())
1365                 return;
1366
1367         if (rt_entity_is_task(rt_se))
1368                 p = rt_task_of(rt_se);
1369
1370         if ((flags & DEQUEUE_SLEEP) && p) {
1371                 unsigned int state;
1372
1373                 state = READ_ONCE(p->__state);
1374                 if (state & TASK_INTERRUPTIBLE)
1375                         __schedstat_set(p->stats.sleep_start,
1376                                         rq_clock(rq_of_rt_rq(rt_rq)));
1377
1378                 if (state & TASK_UNINTERRUPTIBLE)
1379                         __schedstat_set(p->stats.block_start,
1380                                         rq_clock(rq_of_rt_rq(rt_rq)));
1381         }
1382 }
1383
1384 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1385 {
1386         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1387         struct rt_prio_array *array = &rt_rq->active;
1388         struct rt_rq *group_rq = group_rt_rq(rt_se);
1389         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1390
1391         /*
1392          * Don't enqueue the group if its throttled, or when empty.
1393          * The latter is a consequence of the former when a child group
1394          * get throttled and the current group doesn't have any other
1395          * active members.
1396          */
1397         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1398                 if (rt_se->on_list)
1399                         __delist_rt_entity(rt_se, array);
1400                 return;
1401         }
1402
1403         if (move_entity(flags)) {
1404                 WARN_ON_ONCE(rt_se->on_list);
1405                 if (flags & ENQUEUE_HEAD)
1406                         list_add(&rt_se->run_list, queue);
1407                 else
1408                         list_add_tail(&rt_se->run_list, queue);
1409
1410                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1411                 rt_se->on_list = 1;
1412         }
1413         rt_se->on_rq = 1;
1414
1415         inc_rt_tasks(rt_se, rt_rq);
1416 }
1417
1418 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1419 {
1420         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1421         struct rt_prio_array *array = &rt_rq->active;
1422
1423         if (move_entity(flags)) {
1424                 WARN_ON_ONCE(!rt_se->on_list);
1425                 __delist_rt_entity(rt_se, array);
1426         }
1427         rt_se->on_rq = 0;
1428
1429         dec_rt_tasks(rt_se, rt_rq);
1430 }
1431
1432 /*
1433  * Because the prio of an upper entry depends on the lower
1434  * entries, we must remove entries top - down.
1435  */
1436 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1437 {
1438         struct sched_rt_entity *back = NULL;
1439         unsigned int rt_nr_running;
1440
1441         for_each_sched_rt_entity(rt_se) {
1442                 rt_se->back = back;
1443                 back = rt_se;
1444         }
1445
1446         rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1447
1448         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1449                 if (on_rt_rq(rt_se))
1450                         __dequeue_rt_entity(rt_se, flags);
1451         }
1452
1453         dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1454 }
1455
1456 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1457 {
1458         struct rq *rq = rq_of_rt_se(rt_se);
1459
1460         update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1461
1462         dequeue_rt_stack(rt_se, flags);
1463         for_each_sched_rt_entity(rt_se)
1464                 __enqueue_rt_entity(rt_se, flags);
1465         enqueue_top_rt_rq(&rq->rt);
1466 }
1467
1468 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1469 {
1470         struct rq *rq = rq_of_rt_se(rt_se);
1471
1472         update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1473
1474         dequeue_rt_stack(rt_se, flags);
1475
1476         for_each_sched_rt_entity(rt_se) {
1477                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1478
1479                 if (rt_rq && rt_rq->rt_nr_running)
1480                         __enqueue_rt_entity(rt_se, flags);
1481         }
1482         enqueue_top_rt_rq(&rq->rt);
1483 }
1484
1485 /*
1486  * Adding/removing a task to/from a priority array:
1487  */
1488 static void
1489 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1490 {
1491         struct sched_rt_entity *rt_se = &p->rt;
1492
1493         if (flags & ENQUEUE_WAKEUP)
1494                 rt_se->timeout = 0;
1495
1496         check_schedstat_required();
1497         update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1498
1499         enqueue_rt_entity(rt_se, flags);
1500
1501         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1502                 enqueue_pushable_task(rq, p);
1503 }
1504
1505 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1506 {
1507         struct sched_rt_entity *rt_se = &p->rt;
1508
1509         update_curr_rt(rq);
1510         dequeue_rt_entity(rt_se, flags);
1511
1512         dequeue_pushable_task(rq, p);
1513 }
1514
1515 /*
1516  * Put task to the head or the end of the run list without the overhead of
1517  * dequeue followed by enqueue.
1518  */
1519 static void
1520 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1521 {
1522         if (on_rt_rq(rt_se)) {
1523                 struct rt_prio_array *array = &rt_rq->active;
1524                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1525
1526                 if (head)
1527                         list_move(&rt_se->run_list, queue);
1528                 else
1529                         list_move_tail(&rt_se->run_list, queue);
1530         }
1531 }
1532
1533 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1534 {
1535         struct sched_rt_entity *rt_se = &p->rt;
1536         struct rt_rq *rt_rq;
1537
1538         for_each_sched_rt_entity(rt_se) {
1539                 rt_rq = rt_rq_of_se(rt_se);
1540                 requeue_rt_entity(rt_rq, rt_se, head);
1541         }
1542 }
1543
1544 static void yield_task_rt(struct rq *rq)
1545 {
1546         requeue_task_rt(rq, rq->curr, 0);
1547 }
1548
1549 #ifdef CONFIG_SMP
1550 static int find_lowest_rq(struct task_struct *task);
1551
1552 static int
1553 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1554 {
1555         struct task_struct *curr;
1556         struct rq *rq;
1557         bool test;
1558
1559         /* For anything but wake ups, just return the task_cpu */
1560         if (!(flags & (WF_TTWU | WF_FORK)))
1561                 goto out;
1562
1563         rq = cpu_rq(cpu);
1564
1565         rcu_read_lock();
1566         curr = READ_ONCE(rq->curr); /* unlocked access */
1567
1568         /*
1569          * If the current task on @p's runqueue is an RT task, then
1570          * try to see if we can wake this RT task up on another
1571          * runqueue. Otherwise simply start this RT task
1572          * on its current runqueue.
1573          *
1574          * We want to avoid overloading runqueues. If the woken
1575          * task is a higher priority, then it will stay on this CPU
1576          * and the lower prio task should be moved to another CPU.
1577          * Even though this will probably make the lower prio task
1578          * lose its cache, we do not want to bounce a higher task
1579          * around just because it gave up its CPU, perhaps for a
1580          * lock?
1581          *
1582          * For equal prio tasks, we just let the scheduler sort it out.
1583          *
1584          * Otherwise, just let it ride on the affined RQ and the
1585          * post-schedule router will push the preempted task away
1586          *
1587          * This test is optimistic, if we get it wrong the load-balancer
1588          * will have to sort it out.
1589          *
1590          * We take into account the capacity of the CPU to ensure it fits the
1591          * requirement of the task - which is only important on heterogeneous
1592          * systems like big.LITTLE.
1593          */
1594         test = curr &&
1595                unlikely(rt_task(curr)) &&
1596                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1597
1598         if (test || !rt_task_fits_capacity(p, cpu)) {
1599                 int target = find_lowest_rq(p);
1600
1601                 /*
1602                  * Bail out if we were forcing a migration to find a better
1603                  * fitting CPU but our search failed.
1604                  */
1605                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1606                         goto out_unlock;
1607
1608                 /*
1609                  * Don't bother moving it if the destination CPU is
1610                  * not running a lower priority task.
1611                  */
1612                 if (target != -1 &&
1613                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1614                         cpu = target;
1615         }
1616
1617 out_unlock:
1618         rcu_read_unlock();
1619
1620 out:
1621         return cpu;
1622 }
1623
1624 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1625 {
1626         /*
1627          * Current can't be migrated, useless to reschedule,
1628          * let's hope p can move out.
1629          */
1630         if (rq->curr->nr_cpus_allowed == 1 ||
1631             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1632                 return;
1633
1634         /*
1635          * p is migratable, so let's not schedule it and
1636          * see if it is pushed or pulled somewhere else.
1637          */
1638         if (p->nr_cpus_allowed != 1 &&
1639             cpupri_find(&rq->rd->cpupri, p, NULL))
1640                 return;
1641
1642         /*
1643          * There appear to be other CPUs that can accept
1644          * the current task but none can run 'p', so lets reschedule
1645          * to try and push the current task away:
1646          */
1647         requeue_task_rt(rq, p, 1);
1648         resched_curr(rq);
1649 }
1650
1651 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1652 {
1653         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1654                 /*
1655                  * This is OK, because current is on_cpu, which avoids it being
1656                  * picked for load-balance and preemption/IRQs are still
1657                  * disabled avoiding further scheduler activity on it and we've
1658                  * not yet started the picking loop.
1659                  */
1660                 rq_unpin_lock(rq, rf);
1661                 pull_rt_task(rq);
1662                 rq_repin_lock(rq, rf);
1663         }
1664
1665         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1666 }
1667 #endif /* CONFIG_SMP */
1668
1669 /*
1670  * Preempt the current task with a newly woken task if needed:
1671  */
1672 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1673 {
1674         if (p->prio < rq->curr->prio) {
1675                 resched_curr(rq);
1676                 return;
1677         }
1678
1679 #ifdef CONFIG_SMP
1680         /*
1681          * If:
1682          *
1683          * - the newly woken task is of equal priority to the current task
1684          * - the newly woken task is non-migratable while current is migratable
1685          * - current will be preempted on the next reschedule
1686          *
1687          * we should check to see if current can readily move to a different
1688          * cpu.  If so, we will reschedule to allow the push logic to try
1689          * to move current somewhere else, making room for our non-migratable
1690          * task.
1691          */
1692         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1693                 check_preempt_equal_prio(rq, p);
1694 #endif
1695 }
1696
1697 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1698 {
1699         struct sched_rt_entity *rt_se = &p->rt;
1700         struct rt_rq *rt_rq = &rq->rt;
1701
1702         p->se.exec_start = rq_clock_task(rq);
1703         if (on_rt_rq(&p->rt))
1704                 update_stats_wait_end_rt(rt_rq, rt_se);
1705
1706         /* The running task is never eligible for pushing */
1707         dequeue_pushable_task(rq, p);
1708
1709         if (!first)
1710                 return;
1711
1712         /*
1713          * If prev task was rt, put_prev_task() has already updated the
1714          * utilization. We only care of the case where we start to schedule a
1715          * rt task
1716          */
1717         if (rq->curr->sched_class != &rt_sched_class)
1718                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1719
1720         rt_queue_push_tasks(rq);
1721 }
1722
1723 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1724 {
1725         struct rt_prio_array *array = &rt_rq->active;
1726         struct sched_rt_entity *next = NULL;
1727         struct list_head *queue;
1728         int idx;
1729
1730         idx = sched_find_first_bit(array->bitmap);
1731         BUG_ON(idx >= MAX_RT_PRIO);
1732
1733         queue = array->queue + idx;
1734         if (SCHED_WARN_ON(list_empty(queue)))
1735                 return NULL;
1736         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1737
1738         return next;
1739 }
1740
1741 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1742 {
1743         struct sched_rt_entity *rt_se;
1744         struct rt_rq *rt_rq  = &rq->rt;
1745
1746         do {
1747                 rt_se = pick_next_rt_entity(rt_rq);
1748                 if (unlikely(!rt_se))
1749                         return NULL;
1750                 rt_rq = group_rt_rq(rt_se);
1751         } while (rt_rq);
1752
1753         return rt_task_of(rt_se);
1754 }
1755
1756 static struct task_struct *pick_task_rt(struct rq *rq)
1757 {
1758         struct task_struct *p;
1759
1760         if (!sched_rt_runnable(rq))
1761                 return NULL;
1762
1763         p = _pick_next_task_rt(rq);
1764
1765         return p;
1766 }
1767
1768 static struct task_struct *pick_next_task_rt(struct rq *rq)
1769 {
1770         struct task_struct *p = pick_task_rt(rq);
1771
1772         if (p)
1773                 set_next_task_rt(rq, p, true);
1774
1775         return p;
1776 }
1777
1778 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1779 {
1780         struct sched_rt_entity *rt_se = &p->rt;
1781         struct rt_rq *rt_rq = &rq->rt;
1782
1783         if (on_rt_rq(&p->rt))
1784                 update_stats_wait_start_rt(rt_rq, rt_se);
1785
1786         update_curr_rt(rq);
1787
1788         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1789
1790         /*
1791          * The previous task needs to be made eligible for pushing
1792          * if it is still active
1793          */
1794         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1795                 enqueue_pushable_task(rq, p);
1796 }
1797
1798 #ifdef CONFIG_SMP
1799
1800 /* Only try algorithms three times */
1801 #define RT_MAX_TRIES 3
1802
1803 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1804 {
1805         if (!task_on_cpu(rq, p) &&
1806             cpumask_test_cpu(cpu, &p->cpus_mask))
1807                 return 1;
1808
1809         return 0;
1810 }
1811
1812 /*
1813  * Return the highest pushable rq's task, which is suitable to be executed
1814  * on the CPU, NULL otherwise
1815  */
1816 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1817 {
1818         struct plist_head *head = &rq->rt.pushable_tasks;
1819         struct task_struct *p;
1820
1821         if (!has_pushable_tasks(rq))
1822                 return NULL;
1823
1824         plist_for_each_entry(p, head, pushable_tasks) {
1825                 if (pick_rt_task(rq, p, cpu))
1826                         return p;
1827         }
1828
1829         return NULL;
1830 }
1831
1832 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1833
1834 static int find_lowest_rq(struct task_struct *task)
1835 {
1836         struct sched_domain *sd;
1837         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1838         int this_cpu = smp_processor_id();
1839         int cpu      = task_cpu(task);
1840         int ret;
1841
1842         /* Make sure the mask is initialized first */
1843         if (unlikely(!lowest_mask))
1844                 return -1;
1845
1846         if (task->nr_cpus_allowed == 1)
1847                 return -1; /* No other targets possible */
1848
1849         /*
1850          * If we're on asym system ensure we consider the different capacities
1851          * of the CPUs when searching for the lowest_mask.
1852          */
1853         if (sched_asym_cpucap_active()) {
1854
1855                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1856                                           task, lowest_mask,
1857                                           rt_task_fits_capacity);
1858         } else {
1859
1860                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1861                                   task, lowest_mask);
1862         }
1863
1864         if (!ret)
1865                 return -1; /* No targets found */
1866
1867         /*
1868          * At this point we have built a mask of CPUs representing the
1869          * lowest priority tasks in the system.  Now we want to elect
1870          * the best one based on our affinity and topology.
1871          *
1872          * We prioritize the last CPU that the task executed on since
1873          * it is most likely cache-hot in that location.
1874          */
1875         if (cpumask_test_cpu(cpu, lowest_mask))
1876                 return cpu;
1877
1878         /*
1879          * Otherwise, we consult the sched_domains span maps to figure
1880          * out which CPU is logically closest to our hot cache data.
1881          */
1882         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1883                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1884
1885         rcu_read_lock();
1886         for_each_domain(cpu, sd) {
1887                 if (sd->flags & SD_WAKE_AFFINE) {
1888                         int best_cpu;
1889
1890                         /*
1891                          * "this_cpu" is cheaper to preempt than a
1892                          * remote processor.
1893                          */
1894                         if (this_cpu != -1 &&
1895                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1896                                 rcu_read_unlock();
1897                                 return this_cpu;
1898                         }
1899
1900                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1901                                                               sched_domain_span(sd));
1902                         if (best_cpu < nr_cpu_ids) {
1903                                 rcu_read_unlock();
1904                                 return best_cpu;
1905                         }
1906                 }
1907         }
1908         rcu_read_unlock();
1909
1910         /*
1911          * And finally, if there were no matches within the domains
1912          * just give the caller *something* to work with from the compatible
1913          * locations.
1914          */
1915         if (this_cpu != -1)
1916                 return this_cpu;
1917
1918         cpu = cpumask_any_distribute(lowest_mask);
1919         if (cpu < nr_cpu_ids)
1920                 return cpu;
1921
1922         return -1;
1923 }
1924
1925 /* Will lock the rq it finds */
1926 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1927 {
1928         struct rq *lowest_rq = NULL;
1929         int tries;
1930         int cpu;
1931
1932         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1933                 cpu = find_lowest_rq(task);
1934
1935                 if ((cpu == -1) || (cpu == rq->cpu))
1936                         break;
1937
1938                 lowest_rq = cpu_rq(cpu);
1939
1940                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1941                         /*
1942                          * Target rq has tasks of equal or higher priority,
1943                          * retrying does not release any lock and is unlikely
1944                          * to yield a different result.
1945                          */
1946                         lowest_rq = NULL;
1947                         break;
1948                 }
1949
1950                 /* if the prio of this runqueue changed, try again */
1951                 if (double_lock_balance(rq, lowest_rq)) {
1952                         /*
1953                          * We had to unlock the run queue. In
1954                          * the mean time, task could have
1955                          * migrated already or had its affinity changed.
1956                          * Also make sure that it wasn't scheduled on its rq.
1957                          * It is possible the task was scheduled, set
1958                          * "migrate_disabled" and then got preempted, so we must
1959                          * check the task migration disable flag here too.
1960                          */
1961                         if (unlikely(task_rq(task) != rq ||
1962                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1963                                      task_on_cpu(rq, task) ||
1964                                      !rt_task(task) ||
1965                                      is_migration_disabled(task) ||
1966                                      !task_on_rq_queued(task))) {
1967
1968                                 double_unlock_balance(rq, lowest_rq);
1969                                 lowest_rq = NULL;
1970                                 break;
1971                         }
1972                 }
1973
1974                 /* If this rq is still suitable use it. */
1975                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1976                         break;
1977
1978                 /* try again */
1979                 double_unlock_balance(rq, lowest_rq);
1980                 lowest_rq = NULL;
1981         }
1982
1983         return lowest_rq;
1984 }
1985
1986 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1987 {
1988         struct task_struct *p;
1989
1990         if (!has_pushable_tasks(rq))
1991                 return NULL;
1992
1993         p = plist_first_entry(&rq->rt.pushable_tasks,
1994                               struct task_struct, pushable_tasks);
1995
1996         BUG_ON(rq->cpu != task_cpu(p));
1997         BUG_ON(task_current(rq, p));
1998         BUG_ON(p->nr_cpus_allowed <= 1);
1999
2000         BUG_ON(!task_on_rq_queued(p));
2001         BUG_ON(!rt_task(p));
2002
2003         return p;
2004 }
2005
2006 /*
2007  * If the current CPU has more than one RT task, see if the non
2008  * running task can migrate over to a CPU that is running a task
2009  * of lesser priority.
2010  */
2011 static int push_rt_task(struct rq *rq, bool pull)
2012 {
2013         struct task_struct *next_task;
2014         struct rq *lowest_rq;
2015         int ret = 0;
2016
2017         if (!rq->rt.overloaded)
2018                 return 0;
2019
2020         next_task = pick_next_pushable_task(rq);
2021         if (!next_task)
2022                 return 0;
2023
2024 retry:
2025         /*
2026          * It's possible that the next_task slipped in of
2027          * higher priority than current. If that's the case
2028          * just reschedule current.
2029          */
2030         if (unlikely(next_task->prio < rq->curr->prio)) {
2031                 resched_curr(rq);
2032                 return 0;
2033         }
2034
2035         if (is_migration_disabled(next_task)) {
2036                 struct task_struct *push_task = NULL;
2037                 int cpu;
2038
2039                 if (!pull || rq->push_busy)
2040                         return 0;
2041
2042                 /*
2043                  * Invoking find_lowest_rq() on anything but an RT task doesn't
2044                  * make sense. Per the above priority check, curr has to
2045                  * be of higher priority than next_task, so no need to
2046                  * reschedule when bailing out.
2047                  *
2048                  * Note that the stoppers are masqueraded as SCHED_FIFO
2049                  * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2050                  */
2051                 if (rq->curr->sched_class != &rt_sched_class)
2052                         return 0;
2053
2054                 cpu = find_lowest_rq(rq->curr);
2055                 if (cpu == -1 || cpu == rq->cpu)
2056                         return 0;
2057
2058                 /*
2059                  * Given we found a CPU with lower priority than @next_task,
2060                  * therefore it should be running. However we cannot migrate it
2061                  * to this other CPU, instead attempt to push the current
2062                  * running task on this CPU away.
2063                  */
2064                 push_task = get_push_task(rq);
2065                 if (push_task) {
2066                         preempt_disable();
2067                         raw_spin_rq_unlock(rq);
2068                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2069                                             push_task, &rq->push_work);
2070                         preempt_enable();
2071                         raw_spin_rq_lock(rq);
2072                 }
2073
2074                 return 0;
2075         }
2076
2077         if (WARN_ON(next_task == rq->curr))
2078                 return 0;
2079
2080         /* We might release rq lock */
2081         get_task_struct(next_task);
2082
2083         /* find_lock_lowest_rq locks the rq if found */
2084         lowest_rq = find_lock_lowest_rq(next_task, rq);
2085         if (!lowest_rq) {
2086                 struct task_struct *task;
2087                 /*
2088                  * find_lock_lowest_rq releases rq->lock
2089                  * so it is possible that next_task has migrated.
2090                  *
2091                  * We need to make sure that the task is still on the same
2092                  * run-queue and is also still the next task eligible for
2093                  * pushing.
2094                  */
2095                 task = pick_next_pushable_task(rq);
2096                 if (task == next_task) {
2097                         /*
2098                          * The task hasn't migrated, and is still the next
2099                          * eligible task, but we failed to find a run-queue
2100                          * to push it to.  Do not retry in this case, since
2101                          * other CPUs will pull from us when ready.
2102                          */
2103                         goto out;
2104                 }
2105
2106                 if (!task)
2107                         /* No more tasks, just exit */
2108                         goto out;
2109
2110                 /*
2111                  * Something has shifted, try again.
2112                  */
2113                 put_task_struct(next_task);
2114                 next_task = task;
2115                 goto retry;
2116         }
2117
2118         deactivate_task(rq, next_task, 0);
2119         set_task_cpu(next_task, lowest_rq->cpu);
2120         activate_task(lowest_rq, next_task, 0);
2121         resched_curr(lowest_rq);
2122         ret = 1;
2123
2124         double_unlock_balance(rq, lowest_rq);
2125 out:
2126         put_task_struct(next_task);
2127
2128         return ret;
2129 }
2130
2131 static void push_rt_tasks(struct rq *rq)
2132 {
2133         /* push_rt_task will return true if it moved an RT */
2134         while (push_rt_task(rq, false))
2135                 ;
2136 }
2137
2138 #ifdef HAVE_RT_PUSH_IPI
2139
2140 /*
2141  * When a high priority task schedules out from a CPU and a lower priority
2142  * task is scheduled in, a check is made to see if there's any RT tasks
2143  * on other CPUs that are waiting to run because a higher priority RT task
2144  * is currently running on its CPU. In this case, the CPU with multiple RT
2145  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2146  * up that may be able to run one of its non-running queued RT tasks.
2147  *
2148  * All CPUs with overloaded RT tasks need to be notified as there is currently
2149  * no way to know which of these CPUs have the highest priority task waiting
2150  * to run. Instead of trying to take a spinlock on each of these CPUs,
2151  * which has shown to cause large latency when done on machines with many
2152  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2153  * RT tasks waiting to run.
2154  *
2155  * Just sending an IPI to each of the CPUs is also an issue, as on large
2156  * count CPU machines, this can cause an IPI storm on a CPU, especially
2157  * if its the only CPU with multiple RT tasks queued, and a large number
2158  * of CPUs scheduling a lower priority task at the same time.
2159  *
2160  * Each root domain has its own irq work function that can iterate over
2161  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2162  * task must be checked if there's one or many CPUs that are lowering
2163  * their priority, there's a single irq work iterator that will try to
2164  * push off RT tasks that are waiting to run.
2165  *
2166  * When a CPU schedules a lower priority task, it will kick off the
2167  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2168  * As it only takes the first CPU that schedules a lower priority task
2169  * to start the process, the rto_start variable is incremented and if
2170  * the atomic result is one, then that CPU will try to take the rto_lock.
2171  * This prevents high contention on the lock as the process handles all
2172  * CPUs scheduling lower priority tasks.
2173  *
2174  * All CPUs that are scheduling a lower priority task will increment the
2175  * rt_loop_next variable. This will make sure that the irq work iterator
2176  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2177  * priority task, even if the iterator is in the middle of a scan. Incrementing
2178  * the rt_loop_next will cause the iterator to perform another scan.
2179  *
2180  */
2181 static int rto_next_cpu(struct root_domain *rd)
2182 {
2183         int next;
2184         int cpu;
2185
2186         /*
2187          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2188          * rt_next_cpu() will simply return the first CPU found in
2189          * the rto_mask.
2190          *
2191          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2192          * will return the next CPU found in the rto_mask.
2193          *
2194          * If there are no more CPUs left in the rto_mask, then a check is made
2195          * against rto_loop and rto_loop_next. rto_loop is only updated with
2196          * the rto_lock held, but any CPU may increment the rto_loop_next
2197          * without any locking.
2198          */
2199         for (;;) {
2200
2201                 /* When rto_cpu is -1 this acts like cpumask_first() */
2202                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2203
2204                 rd->rto_cpu = cpu;
2205
2206                 if (cpu < nr_cpu_ids)
2207                         return cpu;
2208
2209                 rd->rto_cpu = -1;
2210
2211                 /*
2212                  * ACQUIRE ensures we see the @rto_mask changes
2213                  * made prior to the @next value observed.
2214                  *
2215                  * Matches WMB in rt_set_overload().
2216                  */
2217                 next = atomic_read_acquire(&rd->rto_loop_next);
2218
2219                 if (rd->rto_loop == next)
2220                         break;
2221
2222                 rd->rto_loop = next;
2223         }
2224
2225         return -1;
2226 }
2227
2228 static inline bool rto_start_trylock(atomic_t *v)
2229 {
2230         return !atomic_cmpxchg_acquire(v, 0, 1);
2231 }
2232
2233 static inline void rto_start_unlock(atomic_t *v)
2234 {
2235         atomic_set_release(v, 0);
2236 }
2237
2238 static void tell_cpu_to_push(struct rq *rq)
2239 {
2240         int cpu = -1;
2241
2242         /* Keep the loop going if the IPI is currently active */
2243         atomic_inc(&rq->rd->rto_loop_next);
2244
2245         /* Only one CPU can initiate a loop at a time */
2246         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2247                 return;
2248
2249         raw_spin_lock(&rq->rd->rto_lock);
2250
2251         /*
2252          * The rto_cpu is updated under the lock, if it has a valid CPU
2253          * then the IPI is still running and will continue due to the
2254          * update to loop_next, and nothing needs to be done here.
2255          * Otherwise it is finishing up and an ipi needs to be sent.
2256          */
2257         if (rq->rd->rto_cpu < 0)
2258                 cpu = rto_next_cpu(rq->rd);
2259
2260         raw_spin_unlock(&rq->rd->rto_lock);
2261
2262         rto_start_unlock(&rq->rd->rto_loop_start);
2263
2264         if (cpu >= 0) {
2265                 /* Make sure the rd does not get freed while pushing */
2266                 sched_get_rd(rq->rd);
2267                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2268         }
2269 }
2270
2271 /* Called from hardirq context */
2272 void rto_push_irq_work_func(struct irq_work *work)
2273 {
2274         struct root_domain *rd =
2275                 container_of(work, struct root_domain, rto_push_work);
2276         struct rq *rq;
2277         int cpu;
2278
2279         rq = this_rq();
2280
2281         /*
2282          * We do not need to grab the lock to check for has_pushable_tasks.
2283          * When it gets updated, a check is made if a push is possible.
2284          */
2285         if (has_pushable_tasks(rq)) {
2286                 raw_spin_rq_lock(rq);
2287                 while (push_rt_task(rq, true))
2288                         ;
2289                 raw_spin_rq_unlock(rq);
2290         }
2291
2292         raw_spin_lock(&rd->rto_lock);
2293
2294         /* Pass the IPI to the next rt overloaded queue */
2295         cpu = rto_next_cpu(rd);
2296
2297         raw_spin_unlock(&rd->rto_lock);
2298
2299         if (cpu < 0) {
2300                 sched_put_rd(rd);
2301                 return;
2302         }
2303
2304         /* Try the next RT overloaded CPU */
2305         irq_work_queue_on(&rd->rto_push_work, cpu);
2306 }
2307 #endif /* HAVE_RT_PUSH_IPI */
2308
2309 static void pull_rt_task(struct rq *this_rq)
2310 {
2311         int this_cpu = this_rq->cpu, cpu;
2312         bool resched = false;
2313         struct task_struct *p, *push_task;
2314         struct rq *src_rq;
2315         int rt_overload_count = rt_overloaded(this_rq);
2316
2317         if (likely(!rt_overload_count))
2318                 return;
2319
2320         /*
2321          * Match the barrier from rt_set_overloaded; this guarantees that if we
2322          * see overloaded we must also see the rto_mask bit.
2323          */
2324         smp_rmb();
2325
2326         /* If we are the only overloaded CPU do nothing */
2327         if (rt_overload_count == 1 &&
2328             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2329                 return;
2330
2331 #ifdef HAVE_RT_PUSH_IPI
2332         if (sched_feat(RT_PUSH_IPI)) {
2333                 tell_cpu_to_push(this_rq);
2334                 return;
2335         }
2336 #endif
2337
2338         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2339                 if (this_cpu == cpu)
2340                         continue;
2341
2342                 src_rq = cpu_rq(cpu);
2343
2344                 /*
2345                  * Don't bother taking the src_rq->lock if the next highest
2346                  * task is known to be lower-priority than our current task.
2347                  * This may look racy, but if this value is about to go
2348                  * logically higher, the src_rq will push this task away.
2349                  * And if its going logically lower, we do not care
2350                  */
2351                 if (src_rq->rt.highest_prio.next >=
2352                     this_rq->rt.highest_prio.curr)
2353                         continue;
2354
2355                 /*
2356                  * We can potentially drop this_rq's lock in
2357                  * double_lock_balance, and another CPU could
2358                  * alter this_rq
2359                  */
2360                 push_task = NULL;
2361                 double_lock_balance(this_rq, src_rq);
2362
2363                 /*
2364                  * We can pull only a task, which is pushable
2365                  * on its rq, and no others.
2366                  */
2367                 p = pick_highest_pushable_task(src_rq, this_cpu);
2368
2369                 /*
2370                  * Do we have an RT task that preempts
2371                  * the to-be-scheduled task?
2372                  */
2373                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2374                         WARN_ON(p == src_rq->curr);
2375                         WARN_ON(!task_on_rq_queued(p));
2376
2377                         /*
2378                          * There's a chance that p is higher in priority
2379                          * than what's currently running on its CPU.
2380                          * This is just that p is waking up and hasn't
2381                          * had a chance to schedule. We only pull
2382                          * p if it is lower in priority than the
2383                          * current task on the run queue
2384                          */
2385                         if (p->prio < src_rq->curr->prio)
2386                                 goto skip;
2387
2388                         if (is_migration_disabled(p)) {
2389                                 push_task = get_push_task(src_rq);
2390                         } else {
2391                                 deactivate_task(src_rq, p, 0);
2392                                 set_task_cpu(p, this_cpu);
2393                                 activate_task(this_rq, p, 0);
2394                                 resched = true;
2395                         }
2396                         /*
2397                          * We continue with the search, just in
2398                          * case there's an even higher prio task
2399                          * in another runqueue. (low likelihood
2400                          * but possible)
2401                          */
2402                 }
2403 skip:
2404                 double_unlock_balance(this_rq, src_rq);
2405
2406                 if (push_task) {
2407                         preempt_disable();
2408                         raw_spin_rq_unlock(this_rq);
2409                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2410                                             push_task, &src_rq->push_work);
2411                         preempt_enable();
2412                         raw_spin_rq_lock(this_rq);
2413                 }
2414         }
2415
2416         if (resched)
2417                 resched_curr(this_rq);
2418 }
2419
2420 /*
2421  * If we are not running and we are not going to reschedule soon, we should
2422  * try to push tasks away now
2423  */
2424 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2425 {
2426         bool need_to_push = !task_on_cpu(rq, p) &&
2427                             !test_tsk_need_resched(rq->curr) &&
2428                             p->nr_cpus_allowed > 1 &&
2429                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2430                             (rq->curr->nr_cpus_allowed < 2 ||
2431                              rq->curr->prio <= p->prio);
2432
2433         if (need_to_push)
2434                 push_rt_tasks(rq);
2435 }
2436
2437 /* Assumes rq->lock is held */
2438 static void rq_online_rt(struct rq *rq)
2439 {
2440         if (rq->rt.overloaded)
2441                 rt_set_overload(rq);
2442
2443         __enable_runtime(rq);
2444
2445         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2446 }
2447
2448 /* Assumes rq->lock is held */
2449 static void rq_offline_rt(struct rq *rq)
2450 {
2451         if (rq->rt.overloaded)
2452                 rt_clear_overload(rq);
2453
2454         __disable_runtime(rq);
2455
2456         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2457 }
2458
2459 /*
2460  * When switch from the rt queue, we bring ourselves to a position
2461  * that we might want to pull RT tasks from other runqueues.
2462  */
2463 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2464 {
2465         /*
2466          * If there are other RT tasks then we will reschedule
2467          * and the scheduling of the other RT tasks will handle
2468          * the balancing. But if we are the last RT task
2469          * we may need to handle the pulling of RT tasks
2470          * now.
2471          */
2472         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2473                 return;
2474
2475         rt_queue_pull_task(rq);
2476 }
2477
2478 void __init init_sched_rt_class(void)
2479 {
2480         unsigned int i;
2481
2482         for_each_possible_cpu(i) {
2483                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2484                                         GFP_KERNEL, cpu_to_node(i));
2485         }
2486 }
2487 #endif /* CONFIG_SMP */
2488
2489 /*
2490  * When switching a task to RT, we may overload the runqueue
2491  * with RT tasks. In this case we try to push them off to
2492  * other runqueues.
2493  */
2494 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2495 {
2496         /*
2497          * If we are running, update the avg_rt tracking, as the running time
2498          * will now on be accounted into the latter.
2499          */
2500         if (task_current(rq, p)) {
2501                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2502                 return;
2503         }
2504
2505         /*
2506          * If we are not running we may need to preempt the current
2507          * running task. If that current running task is also an RT task
2508          * then see if we can move to another run queue.
2509          */
2510         if (task_on_rq_queued(p)) {
2511 #ifdef CONFIG_SMP
2512                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2513                         rt_queue_push_tasks(rq);
2514 #endif /* CONFIG_SMP */
2515                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2516                         resched_curr(rq);
2517         }
2518 }
2519
2520 /*
2521  * Priority of the task has changed. This may cause
2522  * us to initiate a push or pull.
2523  */
2524 static void
2525 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2526 {
2527         if (!task_on_rq_queued(p))
2528                 return;
2529
2530         if (task_current(rq, p)) {
2531 #ifdef CONFIG_SMP
2532                 /*
2533                  * If our priority decreases while running, we
2534                  * may need to pull tasks to this runqueue.
2535                  */
2536                 if (oldprio < p->prio)
2537                         rt_queue_pull_task(rq);
2538
2539                 /*
2540                  * If there's a higher priority task waiting to run
2541                  * then reschedule.
2542                  */
2543                 if (p->prio > rq->rt.highest_prio.curr)
2544                         resched_curr(rq);
2545 #else
2546                 /* For UP simply resched on drop of prio */
2547                 if (oldprio < p->prio)
2548                         resched_curr(rq);
2549 #endif /* CONFIG_SMP */
2550         } else {
2551                 /*
2552                  * This task is not running, but if it is
2553                  * greater than the current running task
2554                  * then reschedule.
2555                  */
2556                 if (p->prio < rq->curr->prio)
2557                         resched_curr(rq);
2558         }
2559 }
2560
2561 #ifdef CONFIG_POSIX_TIMERS
2562 static void watchdog(struct rq *rq, struct task_struct *p)
2563 {
2564         unsigned long soft, hard;
2565
2566         /* max may change after cur was read, this will be fixed next tick */
2567         soft = task_rlimit(p, RLIMIT_RTTIME);
2568         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2569
2570         if (soft != RLIM_INFINITY) {
2571                 unsigned long next;
2572
2573                 if (p->rt.watchdog_stamp != jiffies) {
2574                         p->rt.timeout++;
2575                         p->rt.watchdog_stamp = jiffies;
2576                 }
2577
2578                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2579                 if (p->rt.timeout > next) {
2580                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2581                                                     p->se.sum_exec_runtime);
2582                 }
2583         }
2584 }
2585 #else
2586 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2587 #endif
2588
2589 /*
2590  * scheduler tick hitting a task of our scheduling class.
2591  *
2592  * NOTE: This function can be called remotely by the tick offload that
2593  * goes along full dynticks. Therefore no local assumption can be made
2594  * and everything must be accessed through the @rq and @curr passed in
2595  * parameters.
2596  */
2597 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2598 {
2599         struct sched_rt_entity *rt_se = &p->rt;
2600
2601         update_curr_rt(rq);
2602         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2603
2604         watchdog(rq, p);
2605
2606         /*
2607          * RR tasks need a special form of timeslice management.
2608          * FIFO tasks have no timeslices.
2609          */
2610         if (p->policy != SCHED_RR)
2611                 return;
2612
2613         if (--p->rt.time_slice)
2614                 return;
2615
2616         p->rt.time_slice = sched_rr_timeslice;
2617
2618         /*
2619          * Requeue to the end of queue if we (and all of our ancestors) are not
2620          * the only element on the queue
2621          */
2622         for_each_sched_rt_entity(rt_se) {
2623                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2624                         requeue_task_rt(rq, p, 0);
2625                         resched_curr(rq);
2626                         return;
2627                 }
2628         }
2629 }
2630
2631 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2632 {
2633         /*
2634          * Time slice is 0 for SCHED_FIFO tasks
2635          */
2636         if (task->policy == SCHED_RR)
2637                 return sched_rr_timeslice;
2638         else
2639                 return 0;
2640 }
2641
2642 #ifdef CONFIG_SCHED_CORE
2643 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2644 {
2645         struct rt_rq *rt_rq;
2646
2647 #ifdef CONFIG_RT_GROUP_SCHED
2648         rt_rq = task_group(p)->rt_rq[cpu];
2649 #else
2650         rt_rq = &cpu_rq(cpu)->rt;
2651 #endif
2652
2653         return rt_rq_throttled(rt_rq);
2654 }
2655 #endif
2656
2657 DEFINE_SCHED_CLASS(rt) = {
2658
2659         .enqueue_task           = enqueue_task_rt,
2660         .dequeue_task           = dequeue_task_rt,
2661         .yield_task             = yield_task_rt,
2662
2663         .wakeup_preempt         = wakeup_preempt_rt,
2664
2665         .pick_next_task         = pick_next_task_rt,
2666         .put_prev_task          = put_prev_task_rt,
2667         .set_next_task          = set_next_task_rt,
2668
2669 #ifdef CONFIG_SMP
2670         .balance                = balance_rt,
2671         .pick_task              = pick_task_rt,
2672         .select_task_rq         = select_task_rq_rt,
2673         .set_cpus_allowed       = set_cpus_allowed_common,
2674         .rq_online              = rq_online_rt,
2675         .rq_offline             = rq_offline_rt,
2676         .task_woken             = task_woken_rt,
2677         .switched_from          = switched_from_rt,
2678         .find_lock_rq           = find_lock_lowest_rq,
2679 #endif
2680
2681         .task_tick              = task_tick_rt,
2682
2683         .get_rr_interval        = get_rr_interval_rt,
2684
2685         .prio_changed           = prio_changed_rt,
2686         .switched_to            = switched_to_rt,
2687
2688         .update_curr            = update_curr_rt,
2689
2690 #ifdef CONFIG_SCHED_CORE
2691         .task_is_throttled      = task_is_throttled_rt,
2692 #endif
2693
2694 #ifdef CONFIG_UCLAMP_TASK
2695         .uclamp_enabled         = 1,
2696 #endif
2697 };
2698
2699 #ifdef CONFIG_RT_GROUP_SCHED
2700 /*
2701  * Ensure that the real time constraints are schedulable.
2702  */
2703 static DEFINE_MUTEX(rt_constraints_mutex);
2704
2705 static inline int tg_has_rt_tasks(struct task_group *tg)
2706 {
2707         struct task_struct *task;
2708         struct css_task_iter it;
2709         int ret = 0;
2710
2711         /*
2712          * Autogroups do not have RT tasks; see autogroup_create().
2713          */
2714         if (task_group_is_autogroup(tg))
2715                 return 0;
2716
2717         css_task_iter_start(&tg->css, 0, &it);
2718         while (!ret && (task = css_task_iter_next(&it)))
2719                 ret |= rt_task(task);
2720         css_task_iter_end(&it);
2721
2722         return ret;
2723 }
2724
2725 struct rt_schedulable_data {
2726         struct task_group *tg;
2727         u64 rt_period;
2728         u64 rt_runtime;
2729 };
2730
2731 static int tg_rt_schedulable(struct task_group *tg, void *data)
2732 {
2733         struct rt_schedulable_data *d = data;
2734         struct task_group *child;
2735         unsigned long total, sum = 0;
2736         u64 period, runtime;
2737
2738         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2739         runtime = tg->rt_bandwidth.rt_runtime;
2740
2741         if (tg == d->tg) {
2742                 period = d->rt_period;
2743                 runtime = d->rt_runtime;
2744         }
2745
2746         /*
2747          * Cannot have more runtime than the period.
2748          */
2749         if (runtime > period && runtime != RUNTIME_INF)
2750                 return -EINVAL;
2751
2752         /*
2753          * Ensure we don't starve existing RT tasks if runtime turns zero.
2754          */
2755         if (rt_bandwidth_enabled() && !runtime &&
2756             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2757                 return -EBUSY;
2758
2759         total = to_ratio(period, runtime);
2760
2761         /*
2762          * Nobody can have more than the global setting allows.
2763          */
2764         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2765                 return -EINVAL;
2766
2767         /*
2768          * The sum of our children's runtime should not exceed our own.
2769          */
2770         list_for_each_entry_rcu(child, &tg->children, siblings) {
2771                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2772                 runtime = child->rt_bandwidth.rt_runtime;
2773
2774                 if (child == d->tg) {
2775                         period = d->rt_period;
2776                         runtime = d->rt_runtime;
2777                 }
2778
2779                 sum += to_ratio(period, runtime);
2780         }
2781
2782         if (sum > total)
2783                 return -EINVAL;
2784
2785         return 0;
2786 }
2787
2788 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2789 {
2790         int ret;
2791
2792         struct rt_schedulable_data data = {
2793                 .tg = tg,
2794                 .rt_period = period,
2795                 .rt_runtime = runtime,
2796         };
2797
2798         rcu_read_lock();
2799         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2800         rcu_read_unlock();
2801
2802         return ret;
2803 }
2804
2805 static int tg_set_rt_bandwidth(struct task_group *tg,
2806                 u64 rt_period, u64 rt_runtime)
2807 {
2808         int i, err = 0;
2809
2810         /*
2811          * Disallowing the root group RT runtime is BAD, it would disallow the
2812          * kernel creating (and or operating) RT threads.
2813          */
2814         if (tg == &root_task_group && rt_runtime == 0)
2815                 return -EINVAL;
2816
2817         /* No period doesn't make any sense. */
2818         if (rt_period == 0)
2819                 return -EINVAL;
2820
2821         /*
2822          * Bound quota to defend quota against overflow during bandwidth shift.
2823          */
2824         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2825                 return -EINVAL;
2826
2827         mutex_lock(&rt_constraints_mutex);
2828         err = __rt_schedulable(tg, rt_period, rt_runtime);
2829         if (err)
2830                 goto unlock;
2831
2832         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2833         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2834         tg->rt_bandwidth.rt_runtime = rt_runtime;
2835
2836         for_each_possible_cpu(i) {
2837                 struct rt_rq *rt_rq = tg->rt_rq[i];
2838
2839                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2840                 rt_rq->rt_runtime = rt_runtime;
2841                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2842         }
2843         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2844 unlock:
2845         mutex_unlock(&rt_constraints_mutex);
2846
2847         return err;
2848 }
2849
2850 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2851 {
2852         u64 rt_runtime, rt_period;
2853
2854         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2855         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2856         if (rt_runtime_us < 0)
2857                 rt_runtime = RUNTIME_INF;
2858         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2859                 return -EINVAL;
2860
2861         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2862 }
2863
2864 long sched_group_rt_runtime(struct task_group *tg)
2865 {
2866         u64 rt_runtime_us;
2867
2868         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2869                 return -1;
2870
2871         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2872         do_div(rt_runtime_us, NSEC_PER_USEC);
2873         return rt_runtime_us;
2874 }
2875
2876 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2877 {
2878         u64 rt_runtime, rt_period;
2879
2880         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2881                 return -EINVAL;
2882
2883         rt_period = rt_period_us * NSEC_PER_USEC;
2884         rt_runtime = tg->rt_bandwidth.rt_runtime;
2885
2886         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2887 }
2888
2889 long sched_group_rt_period(struct task_group *tg)
2890 {
2891         u64 rt_period_us;
2892
2893         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2894         do_div(rt_period_us, NSEC_PER_USEC);
2895         return rt_period_us;
2896 }
2897
2898 #ifdef CONFIG_SYSCTL
2899 static int sched_rt_global_constraints(void)
2900 {
2901         int ret = 0;
2902
2903         mutex_lock(&rt_constraints_mutex);
2904         ret = __rt_schedulable(NULL, 0, 0);
2905         mutex_unlock(&rt_constraints_mutex);
2906
2907         return ret;
2908 }
2909 #endif /* CONFIG_SYSCTL */
2910
2911 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2912 {
2913         /* Don't accept realtime tasks when there is no way for them to run */
2914         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2915                 return 0;
2916
2917         return 1;
2918 }
2919
2920 #else /* !CONFIG_RT_GROUP_SCHED */
2921
2922 #ifdef CONFIG_SYSCTL
2923 static int sched_rt_global_constraints(void)
2924 {
2925         unsigned long flags;
2926         int i;
2927
2928         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2929         for_each_possible_cpu(i) {
2930                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2931
2932                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2933                 rt_rq->rt_runtime = global_rt_runtime();
2934                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2935         }
2936         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2937
2938         return 0;
2939 }
2940 #endif /* CONFIG_SYSCTL */
2941 #endif /* CONFIG_RT_GROUP_SCHED */
2942
2943 #ifdef CONFIG_SYSCTL
2944 static int sched_rt_global_validate(void)
2945 {
2946         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2947                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2948                  ((u64)sysctl_sched_rt_runtime *
2949                         NSEC_PER_USEC > max_rt_runtime)))
2950                 return -EINVAL;
2951
2952         return 0;
2953 }
2954
2955 static void sched_rt_do_global(void)
2956 {
2957         unsigned long flags;
2958
2959         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2960         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2961         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2962         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2963 }
2964
2965 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2966                 size_t *lenp, loff_t *ppos)
2967 {
2968         int old_period, old_runtime;
2969         static DEFINE_MUTEX(mutex);
2970         int ret;
2971
2972         mutex_lock(&mutex);
2973         old_period = sysctl_sched_rt_period;
2974         old_runtime = sysctl_sched_rt_runtime;
2975
2976         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2977
2978         if (!ret && write) {
2979                 ret = sched_rt_global_validate();
2980                 if (ret)
2981                         goto undo;
2982
2983                 ret = sched_dl_global_validate();
2984                 if (ret)
2985                         goto undo;
2986
2987                 ret = sched_rt_global_constraints();
2988                 if (ret)
2989                         goto undo;
2990
2991                 sched_rt_do_global();
2992                 sched_dl_do_global();
2993         }
2994         if (0) {
2995 undo:
2996                 sysctl_sched_rt_period = old_period;
2997                 sysctl_sched_rt_runtime = old_runtime;
2998         }
2999         mutex_unlock(&mutex);
3000
3001         return ret;
3002 }
3003
3004 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3005                 size_t *lenp, loff_t *ppos)
3006 {
3007         int ret;
3008         static DEFINE_MUTEX(mutex);
3009
3010         mutex_lock(&mutex);
3011         ret = proc_dointvec(table, write, buffer, lenp, ppos);
3012         /*
3013          * Make sure that internally we keep jiffies.
3014          * Also, writing zero resets the timeslice to default:
3015          */
3016         if (!ret && write) {
3017                 sched_rr_timeslice =
3018                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3019                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
3020
3021                 if (sysctl_sched_rr_timeslice <= 0)
3022                         sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3023         }
3024         mutex_unlock(&mutex);
3025
3026         return ret;
3027 }
3028 #endif /* CONFIG_SYSCTL */
3029
3030 #ifdef CONFIG_SCHED_DEBUG
3031 void print_rt_stats(struct seq_file *m, int cpu)
3032 {
3033         rt_rq_iter_t iter;
3034         struct rt_rq *rt_rq;
3035
3036         rcu_read_lock();
3037         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3038                 print_rt_rq(m, cpu, rt_rq);
3039         rcu_read_unlock();
3040 }
3041 #endif /* CONFIG_SCHED_DEBUG */