GNU Linux-libre 4.14.290-gnu1
[releases.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6
7 #include "sched.h"
8
9 #include <linux/slab.h>
10 #include <linux/irq_work.h>
11
12 int sched_rr_timeslice = RR_TIMESLICE;
13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21         struct rt_bandwidth *rt_b =
22                 container_of(timer, struct rt_bandwidth, rt_period_timer);
23         int idle = 0;
24         int overrun;
25
26         raw_spin_lock(&rt_b->rt_runtime_lock);
27         for (;;) {
28                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29                 if (!overrun)
30                         break;
31
32                 raw_spin_unlock(&rt_b->rt_runtime_lock);
33                 idle = do_sched_rt_period_timer(rt_b, overrun);
34                 raw_spin_lock(&rt_b->rt_runtime_lock);
35         }
36         if (idle)
37                 rt_b->rt_period_active = 0;
38         raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45         rt_b->rt_period = ns_to_ktime(period);
46         rt_b->rt_runtime = runtime;
47
48         raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50         hrtimer_init(&rt_b->rt_period_timer,
51                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
52         rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
55 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57         raw_spin_lock(&rt_b->rt_runtime_lock);
58         if (!rt_b->rt_period_active) {
59                 rt_b->rt_period_active = 1;
60                 /*
61                  * SCHED_DEADLINE updates the bandwidth, as a run away
62                  * RT task with a DL task could hog a CPU. But DL does
63                  * not reset the period. If a deadline task was running
64                  * without an RT task running, it can cause RT tasks to
65                  * throttle when they start up. Kick the timer right away
66                  * to update the period.
67                  */
68                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
69                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
70         }
71         raw_spin_unlock(&rt_b->rt_runtime_lock);
72 }
73
74 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
75 {
76         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
77                 return;
78
79         do_start_rt_bandwidth(rt_b);
80 }
81
82 void init_rt_rq(struct rt_rq *rt_rq)
83 {
84         struct rt_prio_array *array;
85         int i;
86
87         array = &rt_rq->active;
88         for (i = 0; i < MAX_RT_PRIO; i++) {
89                 INIT_LIST_HEAD(array->queue + i);
90                 __clear_bit(i, array->bitmap);
91         }
92         /* delimiter for bitsearch: */
93         __set_bit(MAX_RT_PRIO, array->bitmap);
94
95 #if defined CONFIG_SMP
96         rt_rq->highest_prio.curr = MAX_RT_PRIO;
97         rt_rq->highest_prio.next = MAX_RT_PRIO;
98         rt_rq->rt_nr_migratory = 0;
99         rt_rq->overloaded = 0;
100         plist_head_init(&rt_rq->pushable_tasks);
101 #endif /* CONFIG_SMP */
102         /* We start is dequeued state, because no RT tasks are queued */
103         rt_rq->rt_queued = 0;
104
105         rt_rq->rt_time = 0;
106         rt_rq->rt_throttled = 0;
107         rt_rq->rt_runtime = 0;
108         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
109 }
110
111 #ifdef CONFIG_RT_GROUP_SCHED
112 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
113 {
114         hrtimer_cancel(&rt_b->rt_period_timer);
115 }
116
117 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
118
119 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
120 {
121 #ifdef CONFIG_SCHED_DEBUG
122         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
123 #endif
124         return container_of(rt_se, struct task_struct, rt);
125 }
126
127 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
128 {
129         return rt_rq->rq;
130 }
131
132 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
133 {
134         return rt_se->rt_rq;
135 }
136
137 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
138 {
139         struct rt_rq *rt_rq = rt_se->rt_rq;
140
141         return rt_rq->rq;
142 }
143
144 void free_rt_sched_group(struct task_group *tg)
145 {
146         int i;
147
148         if (tg->rt_se)
149                 destroy_rt_bandwidth(&tg->rt_bandwidth);
150
151         for_each_possible_cpu(i) {
152                 if (tg->rt_rq)
153                         kfree(tg->rt_rq[i]);
154                 if (tg->rt_se)
155                         kfree(tg->rt_se[i]);
156         }
157
158         kfree(tg->rt_rq);
159         kfree(tg->rt_se);
160 }
161
162 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
163                 struct sched_rt_entity *rt_se, int cpu,
164                 struct sched_rt_entity *parent)
165 {
166         struct rq *rq = cpu_rq(cpu);
167
168         rt_rq->highest_prio.curr = MAX_RT_PRIO;
169         rt_rq->rt_nr_boosted = 0;
170         rt_rq->rq = rq;
171         rt_rq->tg = tg;
172
173         tg->rt_rq[cpu] = rt_rq;
174         tg->rt_se[cpu] = rt_se;
175
176         if (!rt_se)
177                 return;
178
179         if (!parent)
180                 rt_se->rt_rq = &rq->rt;
181         else
182                 rt_se->rt_rq = parent->my_q;
183
184         rt_se->my_q = rt_rq;
185         rt_se->parent = parent;
186         INIT_LIST_HEAD(&rt_se->run_list);
187 }
188
189 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
190 {
191         struct rt_rq *rt_rq;
192         struct sched_rt_entity *rt_se;
193         int i;
194
195         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
196         if (!tg->rt_rq)
197                 goto err;
198         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
199         if (!tg->rt_se)
200                 goto err;
201
202         init_rt_bandwidth(&tg->rt_bandwidth,
203                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
204
205         for_each_possible_cpu(i) {
206                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
207                                      GFP_KERNEL, cpu_to_node(i));
208                 if (!rt_rq)
209                         goto err;
210
211                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
212                                      GFP_KERNEL, cpu_to_node(i));
213                 if (!rt_se)
214                         goto err_free_rq;
215
216                 init_rt_rq(rt_rq);
217                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
218                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
219         }
220
221         return 1;
222
223 err_free_rq:
224         kfree(rt_rq);
225 err:
226         return 0;
227 }
228
229 #else /* CONFIG_RT_GROUP_SCHED */
230
231 #define rt_entity_is_task(rt_se) (1)
232
233 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
234 {
235         return container_of(rt_se, struct task_struct, rt);
236 }
237
238 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
239 {
240         return container_of(rt_rq, struct rq, rt);
241 }
242
243 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
244 {
245         struct task_struct *p = rt_task_of(rt_se);
246
247         return task_rq(p);
248 }
249
250 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
251 {
252         struct rq *rq = rq_of_rt_se(rt_se);
253
254         return &rq->rt;
255 }
256
257 void free_rt_sched_group(struct task_group *tg) { }
258
259 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
260 {
261         return 1;
262 }
263 #endif /* CONFIG_RT_GROUP_SCHED */
264
265 #ifdef CONFIG_SMP
266
267 static void pull_rt_task(struct rq *this_rq);
268
269 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
270 {
271         /* Try to pull RT tasks here if we lower this rq's prio */
272         return rq->rt.highest_prio.curr > prev->prio;
273 }
274
275 static inline int rt_overloaded(struct rq *rq)
276 {
277         return atomic_read(&rq->rd->rto_count);
278 }
279
280 static inline void rt_set_overload(struct rq *rq)
281 {
282         if (!rq->online)
283                 return;
284
285         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
286         /*
287          * Make sure the mask is visible before we set
288          * the overload count. That is checked to determine
289          * if we should look at the mask. It would be a shame
290          * if we looked at the mask, but the mask was not
291          * updated yet.
292          *
293          * Matched by the barrier in pull_rt_task().
294          */
295         smp_wmb();
296         atomic_inc(&rq->rd->rto_count);
297 }
298
299 static inline void rt_clear_overload(struct rq *rq)
300 {
301         if (!rq->online)
302                 return;
303
304         /* the order here really doesn't matter */
305         atomic_dec(&rq->rd->rto_count);
306         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
307 }
308
309 static void update_rt_migration(struct rt_rq *rt_rq)
310 {
311         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
312                 if (!rt_rq->overloaded) {
313                         rt_set_overload(rq_of_rt_rq(rt_rq));
314                         rt_rq->overloaded = 1;
315                 }
316         } else if (rt_rq->overloaded) {
317                 rt_clear_overload(rq_of_rt_rq(rt_rq));
318                 rt_rq->overloaded = 0;
319         }
320 }
321
322 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
323 {
324         struct task_struct *p;
325
326         if (!rt_entity_is_task(rt_se))
327                 return;
328
329         p = rt_task_of(rt_se);
330         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
331
332         rt_rq->rt_nr_total++;
333         if (p->nr_cpus_allowed > 1)
334                 rt_rq->rt_nr_migratory++;
335
336         update_rt_migration(rt_rq);
337 }
338
339 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
340 {
341         struct task_struct *p;
342
343         if (!rt_entity_is_task(rt_se))
344                 return;
345
346         p = rt_task_of(rt_se);
347         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
348
349         rt_rq->rt_nr_total--;
350         if (p->nr_cpus_allowed > 1)
351                 rt_rq->rt_nr_migratory--;
352
353         update_rt_migration(rt_rq);
354 }
355
356 static inline int has_pushable_tasks(struct rq *rq)
357 {
358         return !plist_head_empty(&rq->rt.pushable_tasks);
359 }
360
361 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
362 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
363
364 static void push_rt_tasks(struct rq *);
365 static void pull_rt_task(struct rq *);
366
367 static inline void queue_push_tasks(struct rq *rq)
368 {
369         if (!has_pushable_tasks(rq))
370                 return;
371
372         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
373 }
374
375 static inline void queue_pull_task(struct rq *rq)
376 {
377         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
378 }
379
380 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
381 {
382         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
383         plist_node_init(&p->pushable_tasks, p->prio);
384         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
385
386         /* Update the highest prio pushable task */
387         if (p->prio < rq->rt.highest_prio.next)
388                 rq->rt.highest_prio.next = p->prio;
389 }
390
391 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
392 {
393         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
394
395         /* Update the new highest prio pushable task */
396         if (has_pushable_tasks(rq)) {
397                 p = plist_first_entry(&rq->rt.pushable_tasks,
398                                       struct task_struct, pushable_tasks);
399                 rq->rt.highest_prio.next = p->prio;
400         } else
401                 rq->rt.highest_prio.next = MAX_RT_PRIO;
402 }
403
404 #else
405
406 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
407 {
408 }
409
410 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
411 {
412 }
413
414 static inline
415 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
416 {
417 }
418
419 static inline
420 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
421 {
422 }
423
424 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
425 {
426         return false;
427 }
428
429 static inline void pull_rt_task(struct rq *this_rq)
430 {
431 }
432
433 static inline void queue_push_tasks(struct rq *rq)
434 {
435 }
436 #endif /* CONFIG_SMP */
437
438 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
439 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
440
441 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
442 {
443         return rt_se->on_rq;
444 }
445
446 #ifdef CONFIG_RT_GROUP_SCHED
447
448 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
449 {
450         if (!rt_rq->tg)
451                 return RUNTIME_INF;
452
453         return rt_rq->rt_runtime;
454 }
455
456 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
457 {
458         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
459 }
460
461 typedef struct task_group *rt_rq_iter_t;
462
463 static inline struct task_group *next_task_group(struct task_group *tg)
464 {
465         do {
466                 tg = list_entry_rcu(tg->list.next,
467                         typeof(struct task_group), list);
468         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
469
470         if (&tg->list == &task_groups)
471                 tg = NULL;
472
473         return tg;
474 }
475
476 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
477         for (iter = container_of(&task_groups, typeof(*iter), list);    \
478                 (iter = next_task_group(iter)) &&                       \
479                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
480
481 #define for_each_sched_rt_entity(rt_se) \
482         for (; rt_se; rt_se = rt_se->parent)
483
484 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
485 {
486         return rt_se->my_q;
487 }
488
489 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
490 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
491
492 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
493 {
494         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
495         struct rq *rq = rq_of_rt_rq(rt_rq);
496         struct sched_rt_entity *rt_se;
497
498         int cpu = cpu_of(rq);
499
500         rt_se = rt_rq->tg->rt_se[cpu];
501
502         if (rt_rq->rt_nr_running) {
503                 if (!rt_se)
504                         enqueue_top_rt_rq(rt_rq);
505                 else if (!on_rt_rq(rt_se))
506                         enqueue_rt_entity(rt_se, 0);
507
508                 if (rt_rq->highest_prio.curr < curr->prio)
509                         resched_curr(rq);
510         }
511 }
512
513 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
514 {
515         struct sched_rt_entity *rt_se;
516         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
517
518         rt_se = rt_rq->tg->rt_se[cpu];
519
520         if (!rt_se)
521                 dequeue_top_rt_rq(rt_rq);
522         else if (on_rt_rq(rt_se))
523                 dequeue_rt_entity(rt_se, 0);
524 }
525
526 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
527 {
528         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
529 }
530
531 static int rt_se_boosted(struct sched_rt_entity *rt_se)
532 {
533         struct rt_rq *rt_rq = group_rt_rq(rt_se);
534         struct task_struct *p;
535
536         if (rt_rq)
537                 return !!rt_rq->rt_nr_boosted;
538
539         p = rt_task_of(rt_se);
540         return p->prio != p->normal_prio;
541 }
542
543 #ifdef CONFIG_SMP
544 static inline const struct cpumask *sched_rt_period_mask(void)
545 {
546         return this_rq()->rd->span;
547 }
548 #else
549 static inline const struct cpumask *sched_rt_period_mask(void)
550 {
551         return cpu_online_mask;
552 }
553 #endif
554
555 static inline
556 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
557 {
558         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
559 }
560
561 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
562 {
563         return &rt_rq->tg->rt_bandwidth;
564 }
565
566 #else /* !CONFIG_RT_GROUP_SCHED */
567
568 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
569 {
570         return rt_rq->rt_runtime;
571 }
572
573 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
574 {
575         return ktime_to_ns(def_rt_bandwidth.rt_period);
576 }
577
578 typedef struct rt_rq *rt_rq_iter_t;
579
580 #define for_each_rt_rq(rt_rq, iter, rq) \
581         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
582
583 #define for_each_sched_rt_entity(rt_se) \
584         for (; rt_se; rt_se = NULL)
585
586 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
587 {
588         return NULL;
589 }
590
591 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
592 {
593         struct rq *rq = rq_of_rt_rq(rt_rq);
594
595         if (!rt_rq->rt_nr_running)
596                 return;
597
598         enqueue_top_rt_rq(rt_rq);
599         resched_curr(rq);
600 }
601
602 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
603 {
604         dequeue_top_rt_rq(rt_rq);
605 }
606
607 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
608 {
609         return rt_rq->rt_throttled;
610 }
611
612 static inline const struct cpumask *sched_rt_period_mask(void)
613 {
614         return cpu_online_mask;
615 }
616
617 static inline
618 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
619 {
620         return &cpu_rq(cpu)->rt;
621 }
622
623 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
624 {
625         return &def_rt_bandwidth;
626 }
627
628 #endif /* CONFIG_RT_GROUP_SCHED */
629
630 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
631 {
632         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
633
634         return (hrtimer_active(&rt_b->rt_period_timer) ||
635                 rt_rq->rt_time < rt_b->rt_runtime);
636 }
637
638 #ifdef CONFIG_SMP
639 /*
640  * We ran out of runtime, see if we can borrow some from our neighbours.
641  */
642 static void do_balance_runtime(struct rt_rq *rt_rq)
643 {
644         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
645         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
646         int i, weight;
647         u64 rt_period;
648
649         weight = cpumask_weight(rd->span);
650
651         raw_spin_lock(&rt_b->rt_runtime_lock);
652         rt_period = ktime_to_ns(rt_b->rt_period);
653         for_each_cpu(i, rd->span) {
654                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
655                 s64 diff;
656
657                 if (iter == rt_rq)
658                         continue;
659
660                 raw_spin_lock(&iter->rt_runtime_lock);
661                 /*
662                  * Either all rqs have inf runtime and there's nothing to steal
663                  * or __disable_runtime() below sets a specific rq to inf to
664                  * indicate its been disabled and disalow stealing.
665                  */
666                 if (iter->rt_runtime == RUNTIME_INF)
667                         goto next;
668
669                 /*
670                  * From runqueues with spare time, take 1/n part of their
671                  * spare time, but no more than our period.
672                  */
673                 diff = iter->rt_runtime - iter->rt_time;
674                 if (diff > 0) {
675                         diff = div_u64((u64)diff, weight);
676                         if (rt_rq->rt_runtime + diff > rt_period)
677                                 diff = rt_period - rt_rq->rt_runtime;
678                         iter->rt_runtime -= diff;
679                         rt_rq->rt_runtime += diff;
680                         if (rt_rq->rt_runtime == rt_period) {
681                                 raw_spin_unlock(&iter->rt_runtime_lock);
682                                 break;
683                         }
684                 }
685 next:
686                 raw_spin_unlock(&iter->rt_runtime_lock);
687         }
688         raw_spin_unlock(&rt_b->rt_runtime_lock);
689 }
690
691 /*
692  * Ensure this RQ takes back all the runtime it lend to its neighbours.
693  */
694 static void __disable_runtime(struct rq *rq)
695 {
696         struct root_domain *rd = rq->rd;
697         rt_rq_iter_t iter;
698         struct rt_rq *rt_rq;
699
700         if (unlikely(!scheduler_running))
701                 return;
702
703         for_each_rt_rq(rt_rq, iter, rq) {
704                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
705                 s64 want;
706                 int i;
707
708                 raw_spin_lock(&rt_b->rt_runtime_lock);
709                 raw_spin_lock(&rt_rq->rt_runtime_lock);
710                 /*
711                  * Either we're all inf and nobody needs to borrow, or we're
712                  * already disabled and thus have nothing to do, or we have
713                  * exactly the right amount of runtime to take out.
714                  */
715                 if (rt_rq->rt_runtime == RUNTIME_INF ||
716                                 rt_rq->rt_runtime == rt_b->rt_runtime)
717                         goto balanced;
718                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
719
720                 /*
721                  * Calculate the difference between what we started out with
722                  * and what we current have, that's the amount of runtime
723                  * we lend and now have to reclaim.
724                  */
725                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
726
727                 /*
728                  * Greedy reclaim, take back as much as we can.
729                  */
730                 for_each_cpu(i, rd->span) {
731                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
732                         s64 diff;
733
734                         /*
735                          * Can't reclaim from ourselves or disabled runqueues.
736                          */
737                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
738                                 continue;
739
740                         raw_spin_lock(&iter->rt_runtime_lock);
741                         if (want > 0) {
742                                 diff = min_t(s64, iter->rt_runtime, want);
743                                 iter->rt_runtime -= diff;
744                                 want -= diff;
745                         } else {
746                                 iter->rt_runtime -= want;
747                                 want -= want;
748                         }
749                         raw_spin_unlock(&iter->rt_runtime_lock);
750
751                         if (!want)
752                                 break;
753                 }
754
755                 raw_spin_lock(&rt_rq->rt_runtime_lock);
756                 /*
757                  * We cannot be left wanting - that would mean some runtime
758                  * leaked out of the system.
759                  */
760                 BUG_ON(want);
761 balanced:
762                 /*
763                  * Disable all the borrow logic by pretending we have inf
764                  * runtime - in which case borrowing doesn't make sense.
765                  */
766                 rt_rq->rt_runtime = RUNTIME_INF;
767                 rt_rq->rt_throttled = 0;
768                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
769                 raw_spin_unlock(&rt_b->rt_runtime_lock);
770
771                 /* Make rt_rq available for pick_next_task() */
772                 sched_rt_rq_enqueue(rt_rq);
773         }
774 }
775
776 static void __enable_runtime(struct rq *rq)
777 {
778         rt_rq_iter_t iter;
779         struct rt_rq *rt_rq;
780
781         if (unlikely(!scheduler_running))
782                 return;
783
784         /*
785          * Reset each runqueue's bandwidth settings
786          */
787         for_each_rt_rq(rt_rq, iter, rq) {
788                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
789
790                 raw_spin_lock(&rt_b->rt_runtime_lock);
791                 raw_spin_lock(&rt_rq->rt_runtime_lock);
792                 rt_rq->rt_runtime = rt_b->rt_runtime;
793                 rt_rq->rt_time = 0;
794                 rt_rq->rt_throttled = 0;
795                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
796                 raw_spin_unlock(&rt_b->rt_runtime_lock);
797         }
798 }
799
800 static void balance_runtime(struct rt_rq *rt_rq)
801 {
802         if (!sched_feat(RT_RUNTIME_SHARE))
803                 return;
804
805         if (rt_rq->rt_time > rt_rq->rt_runtime) {
806                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
807                 do_balance_runtime(rt_rq);
808                 raw_spin_lock(&rt_rq->rt_runtime_lock);
809         }
810 }
811 #else /* !CONFIG_SMP */
812 static inline void balance_runtime(struct rt_rq *rt_rq) {}
813 #endif /* CONFIG_SMP */
814
815 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
816 {
817         int i, idle = 1, throttled = 0;
818         const struct cpumask *span;
819
820         span = sched_rt_period_mask();
821 #ifdef CONFIG_RT_GROUP_SCHED
822         /*
823          * FIXME: isolated CPUs should really leave the root task group,
824          * whether they are isolcpus or were isolated via cpusets, lest
825          * the timer run on a CPU which does not service all runqueues,
826          * potentially leaving other CPUs indefinitely throttled.  If
827          * isolation is really required, the user will turn the throttle
828          * off to kill the perturbations it causes anyway.  Meanwhile,
829          * this maintains functionality for boot and/or troubleshooting.
830          */
831         if (rt_b == &root_task_group.rt_bandwidth)
832                 span = cpu_online_mask;
833 #endif
834         for_each_cpu(i, span) {
835                 int enqueue = 0;
836                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
837                 struct rq *rq = rq_of_rt_rq(rt_rq);
838                 int skip;
839
840                 /*
841                  * When span == cpu_online_mask, taking each rq->lock
842                  * can be time-consuming. Try to avoid it when possible.
843                  */
844                 raw_spin_lock(&rt_rq->rt_runtime_lock);
845                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
846                         rt_rq->rt_runtime = rt_b->rt_runtime;
847                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
848                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
849                 if (skip)
850                         continue;
851
852                 raw_spin_lock(&rq->lock);
853                 update_rq_clock(rq);
854
855                 if (rt_rq->rt_time) {
856                         u64 runtime;
857
858                         raw_spin_lock(&rt_rq->rt_runtime_lock);
859                         if (rt_rq->rt_throttled)
860                                 balance_runtime(rt_rq);
861                         runtime = rt_rq->rt_runtime;
862                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
863                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
864                                 rt_rq->rt_throttled = 0;
865                                 enqueue = 1;
866
867                                 /*
868                                  * When we're idle and a woken (rt) task is
869                                  * throttled check_preempt_curr() will set
870                                  * skip_update and the time between the wakeup
871                                  * and this unthrottle will get accounted as
872                                  * 'runtime'.
873                                  */
874                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
875                                         rq_clock_skip_update(rq, false);
876                         }
877                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
878                                 idle = 0;
879                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
880                 } else if (rt_rq->rt_nr_running) {
881                         idle = 0;
882                         if (!rt_rq_throttled(rt_rq))
883                                 enqueue = 1;
884                 }
885                 if (rt_rq->rt_throttled)
886                         throttled = 1;
887
888                 if (enqueue)
889                         sched_rt_rq_enqueue(rt_rq);
890                 raw_spin_unlock(&rq->lock);
891         }
892
893         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
894                 return 1;
895
896         return idle;
897 }
898
899 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
900 {
901 #ifdef CONFIG_RT_GROUP_SCHED
902         struct rt_rq *rt_rq = group_rt_rq(rt_se);
903
904         if (rt_rq)
905                 return rt_rq->highest_prio.curr;
906 #endif
907
908         return rt_task_of(rt_se)->prio;
909 }
910
911 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
912 {
913         u64 runtime = sched_rt_runtime(rt_rq);
914
915         if (rt_rq->rt_throttled)
916                 return rt_rq_throttled(rt_rq);
917
918         if (runtime >= sched_rt_period(rt_rq))
919                 return 0;
920
921         balance_runtime(rt_rq);
922         runtime = sched_rt_runtime(rt_rq);
923         if (runtime == RUNTIME_INF)
924                 return 0;
925
926         if (rt_rq->rt_time > runtime) {
927                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
928
929                 /*
930                  * Don't actually throttle groups that have no runtime assigned
931                  * but accrue some time due to boosting.
932                  */
933                 if (likely(rt_b->rt_runtime)) {
934                         rt_rq->rt_throttled = 1;
935                         printk_deferred_once("sched: RT throttling activated\n");
936                 } else {
937                         /*
938                          * In case we did anyway, make it go away,
939                          * replenishment is a joke, since it will replenish us
940                          * with exactly 0 ns.
941                          */
942                         rt_rq->rt_time = 0;
943                 }
944
945                 if (rt_rq_throttled(rt_rq)) {
946                         sched_rt_rq_dequeue(rt_rq);
947                         return 1;
948                 }
949         }
950
951         return 0;
952 }
953
954 /*
955  * Update the current task's runtime statistics. Skip current tasks that
956  * are not in our scheduling class.
957  */
958 static void update_curr_rt(struct rq *rq)
959 {
960         struct task_struct *curr = rq->curr;
961         struct sched_rt_entity *rt_se = &curr->rt;
962         u64 delta_exec;
963
964         if (curr->sched_class != &rt_sched_class)
965                 return;
966
967         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
968         if (unlikely((s64)delta_exec <= 0))
969                 return;
970
971         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
972         cpufreq_update_util(rq, SCHED_CPUFREQ_RT);
973
974         schedstat_set(curr->se.statistics.exec_max,
975                       max(curr->se.statistics.exec_max, delta_exec));
976
977         curr->se.sum_exec_runtime += delta_exec;
978         account_group_exec_runtime(curr, delta_exec);
979
980         curr->se.exec_start = rq_clock_task(rq);
981         cpuacct_charge(curr, delta_exec);
982
983         sched_rt_avg_update(rq, delta_exec);
984
985         if (!rt_bandwidth_enabled())
986                 return;
987
988         for_each_sched_rt_entity(rt_se) {
989                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
990                 int exceeded;
991
992                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
993                         raw_spin_lock(&rt_rq->rt_runtime_lock);
994                         rt_rq->rt_time += delta_exec;
995                         exceeded = sched_rt_runtime_exceeded(rt_rq);
996                         if (exceeded)
997                                 resched_curr(rq);
998                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
999                         if (exceeded)
1000                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1001                 }
1002         }
1003 }
1004
1005 static void
1006 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1007 {
1008         struct rq *rq = rq_of_rt_rq(rt_rq);
1009
1010         BUG_ON(&rq->rt != rt_rq);
1011
1012         if (!rt_rq->rt_queued)
1013                 return;
1014
1015         BUG_ON(!rq->nr_running);
1016
1017         sub_nr_running(rq, rt_rq->rt_nr_running);
1018         rt_rq->rt_queued = 0;
1019 }
1020
1021 static void
1022 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1023 {
1024         struct rq *rq = rq_of_rt_rq(rt_rq);
1025
1026         BUG_ON(&rq->rt != rt_rq);
1027
1028         if (rt_rq->rt_queued)
1029                 return;
1030         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1031                 return;
1032
1033         add_nr_running(rq, rt_rq->rt_nr_running);
1034         rt_rq->rt_queued = 1;
1035 }
1036
1037 #if defined CONFIG_SMP
1038
1039 static void
1040 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1041 {
1042         struct rq *rq = rq_of_rt_rq(rt_rq);
1043
1044 #ifdef CONFIG_RT_GROUP_SCHED
1045         /*
1046          * Change rq's cpupri only if rt_rq is the top queue.
1047          */
1048         if (&rq->rt != rt_rq)
1049                 return;
1050 #endif
1051         if (rq->online && prio < prev_prio)
1052                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1053 }
1054
1055 static void
1056 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1057 {
1058         struct rq *rq = rq_of_rt_rq(rt_rq);
1059
1060 #ifdef CONFIG_RT_GROUP_SCHED
1061         /*
1062          * Change rq's cpupri only if rt_rq is the top queue.
1063          */
1064         if (&rq->rt != rt_rq)
1065                 return;
1066 #endif
1067         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1068                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1069 }
1070
1071 #else /* CONFIG_SMP */
1072
1073 static inline
1074 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1075 static inline
1076 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1077
1078 #endif /* CONFIG_SMP */
1079
1080 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1081 static void
1082 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1083 {
1084         int prev_prio = rt_rq->highest_prio.curr;
1085
1086         if (prio < prev_prio)
1087                 rt_rq->highest_prio.curr = prio;
1088
1089         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1090 }
1091
1092 static void
1093 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1094 {
1095         int prev_prio = rt_rq->highest_prio.curr;
1096
1097         if (rt_rq->rt_nr_running) {
1098
1099                 WARN_ON(prio < prev_prio);
1100
1101                 /*
1102                  * This may have been our highest task, and therefore
1103                  * we may have some recomputation to do
1104                  */
1105                 if (prio == prev_prio) {
1106                         struct rt_prio_array *array = &rt_rq->active;
1107
1108                         rt_rq->highest_prio.curr =
1109                                 sched_find_first_bit(array->bitmap);
1110                 }
1111
1112         } else
1113                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1114
1115         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1116 }
1117
1118 #else
1119
1120 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1121 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1122
1123 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1124
1125 #ifdef CONFIG_RT_GROUP_SCHED
1126
1127 static void
1128 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1129 {
1130         if (rt_se_boosted(rt_se))
1131                 rt_rq->rt_nr_boosted++;
1132
1133         if (rt_rq->tg)
1134                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1135 }
1136
1137 static void
1138 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1139 {
1140         if (rt_se_boosted(rt_se))
1141                 rt_rq->rt_nr_boosted--;
1142
1143         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1144 }
1145
1146 #else /* CONFIG_RT_GROUP_SCHED */
1147
1148 static void
1149 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1150 {
1151         start_rt_bandwidth(&def_rt_bandwidth);
1152 }
1153
1154 static inline
1155 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1156
1157 #endif /* CONFIG_RT_GROUP_SCHED */
1158
1159 static inline
1160 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1161 {
1162         struct rt_rq *group_rq = group_rt_rq(rt_se);
1163
1164         if (group_rq)
1165                 return group_rq->rt_nr_running;
1166         else
1167                 return 1;
1168 }
1169
1170 static inline
1171 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1172 {
1173         struct rt_rq *group_rq = group_rt_rq(rt_se);
1174         struct task_struct *tsk;
1175
1176         if (group_rq)
1177                 return group_rq->rr_nr_running;
1178
1179         tsk = rt_task_of(rt_se);
1180
1181         return (tsk->policy == SCHED_RR) ? 1 : 0;
1182 }
1183
1184 static inline
1185 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 {
1187         int prio = rt_se_prio(rt_se);
1188
1189         WARN_ON(!rt_prio(prio));
1190         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1191         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1192
1193         inc_rt_prio(rt_rq, prio);
1194         inc_rt_migration(rt_se, rt_rq);
1195         inc_rt_group(rt_se, rt_rq);
1196 }
1197
1198 static inline
1199 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1200 {
1201         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1202         WARN_ON(!rt_rq->rt_nr_running);
1203         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1204         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1205
1206         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1207         dec_rt_migration(rt_se, rt_rq);
1208         dec_rt_group(rt_se, rt_rq);
1209 }
1210
1211 /*
1212  * Change rt_se->run_list location unless SAVE && !MOVE
1213  *
1214  * assumes ENQUEUE/DEQUEUE flags match
1215  */
1216 static inline bool move_entity(unsigned int flags)
1217 {
1218         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1219                 return false;
1220
1221         return true;
1222 }
1223
1224 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1225 {
1226         list_del_init(&rt_se->run_list);
1227
1228         if (list_empty(array->queue + rt_se_prio(rt_se)))
1229                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1230
1231         rt_se->on_list = 0;
1232 }
1233
1234 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1235 {
1236         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1237         struct rt_prio_array *array = &rt_rq->active;
1238         struct rt_rq *group_rq = group_rt_rq(rt_se);
1239         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1240
1241         /*
1242          * Don't enqueue the group if its throttled, or when empty.
1243          * The latter is a consequence of the former when a child group
1244          * get throttled and the current group doesn't have any other
1245          * active members.
1246          */
1247         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1248                 if (rt_se->on_list)
1249                         __delist_rt_entity(rt_se, array);
1250                 return;
1251         }
1252
1253         if (move_entity(flags)) {
1254                 WARN_ON_ONCE(rt_se->on_list);
1255                 if (flags & ENQUEUE_HEAD)
1256                         list_add(&rt_se->run_list, queue);
1257                 else
1258                         list_add_tail(&rt_se->run_list, queue);
1259
1260                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1261                 rt_se->on_list = 1;
1262         }
1263         rt_se->on_rq = 1;
1264
1265         inc_rt_tasks(rt_se, rt_rq);
1266 }
1267
1268 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1269 {
1270         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1271         struct rt_prio_array *array = &rt_rq->active;
1272
1273         if (move_entity(flags)) {
1274                 WARN_ON_ONCE(!rt_se->on_list);
1275                 __delist_rt_entity(rt_se, array);
1276         }
1277         rt_se->on_rq = 0;
1278
1279         dec_rt_tasks(rt_se, rt_rq);
1280 }
1281
1282 /*
1283  * Because the prio of an upper entry depends on the lower
1284  * entries, we must remove entries top - down.
1285  */
1286 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1287 {
1288         struct sched_rt_entity *back = NULL;
1289
1290         for_each_sched_rt_entity(rt_se) {
1291                 rt_se->back = back;
1292                 back = rt_se;
1293         }
1294
1295         dequeue_top_rt_rq(rt_rq_of_se(back));
1296
1297         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1298                 if (on_rt_rq(rt_se))
1299                         __dequeue_rt_entity(rt_se, flags);
1300         }
1301 }
1302
1303 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1304 {
1305         struct rq *rq = rq_of_rt_se(rt_se);
1306
1307         dequeue_rt_stack(rt_se, flags);
1308         for_each_sched_rt_entity(rt_se)
1309                 __enqueue_rt_entity(rt_se, flags);
1310         enqueue_top_rt_rq(&rq->rt);
1311 }
1312
1313 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1314 {
1315         struct rq *rq = rq_of_rt_se(rt_se);
1316
1317         dequeue_rt_stack(rt_se, flags);
1318
1319         for_each_sched_rt_entity(rt_se) {
1320                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1321
1322                 if (rt_rq && rt_rq->rt_nr_running)
1323                         __enqueue_rt_entity(rt_se, flags);
1324         }
1325         enqueue_top_rt_rq(&rq->rt);
1326 }
1327
1328 /*
1329  * Adding/removing a task to/from a priority array:
1330  */
1331 static void
1332 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1333 {
1334         struct sched_rt_entity *rt_se = &p->rt;
1335
1336         if (flags & ENQUEUE_WAKEUP)
1337                 rt_se->timeout = 0;
1338
1339         enqueue_rt_entity(rt_se, flags);
1340
1341         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1342                 enqueue_pushable_task(rq, p);
1343 }
1344
1345 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1346 {
1347         struct sched_rt_entity *rt_se = &p->rt;
1348
1349         update_curr_rt(rq);
1350         dequeue_rt_entity(rt_se, flags);
1351
1352         dequeue_pushable_task(rq, p);
1353 }
1354
1355 /*
1356  * Put task to the head or the end of the run list without the overhead of
1357  * dequeue followed by enqueue.
1358  */
1359 static void
1360 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1361 {
1362         if (on_rt_rq(rt_se)) {
1363                 struct rt_prio_array *array = &rt_rq->active;
1364                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1365
1366                 if (head)
1367                         list_move(&rt_se->run_list, queue);
1368                 else
1369                         list_move_tail(&rt_se->run_list, queue);
1370         }
1371 }
1372
1373 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1374 {
1375         struct sched_rt_entity *rt_se = &p->rt;
1376         struct rt_rq *rt_rq;
1377
1378         for_each_sched_rt_entity(rt_se) {
1379                 rt_rq = rt_rq_of_se(rt_se);
1380                 requeue_rt_entity(rt_rq, rt_se, head);
1381         }
1382 }
1383
1384 static void yield_task_rt(struct rq *rq)
1385 {
1386         requeue_task_rt(rq, rq->curr, 0);
1387 }
1388
1389 #ifdef CONFIG_SMP
1390 static int find_lowest_rq(struct task_struct *task);
1391
1392 static int
1393 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1394 {
1395         struct task_struct *curr;
1396         struct rq *rq;
1397
1398         /* For anything but wake ups, just return the task_cpu */
1399         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1400                 goto out;
1401
1402         rq = cpu_rq(cpu);
1403
1404         rcu_read_lock();
1405         curr = READ_ONCE(rq->curr); /* unlocked access */
1406
1407         /*
1408          * If the current task on @p's runqueue is an RT task, then
1409          * try to see if we can wake this RT task up on another
1410          * runqueue. Otherwise simply start this RT task
1411          * on its current runqueue.
1412          *
1413          * We want to avoid overloading runqueues. If the woken
1414          * task is a higher priority, then it will stay on this CPU
1415          * and the lower prio task should be moved to another CPU.
1416          * Even though this will probably make the lower prio task
1417          * lose its cache, we do not want to bounce a higher task
1418          * around just because it gave up its CPU, perhaps for a
1419          * lock?
1420          *
1421          * For equal prio tasks, we just let the scheduler sort it out.
1422          *
1423          * Otherwise, just let it ride on the affined RQ and the
1424          * post-schedule router will push the preempted task away
1425          *
1426          * This test is optimistic, if we get it wrong the load-balancer
1427          * will have to sort it out.
1428          */
1429         if (curr && unlikely(rt_task(curr)) &&
1430             (curr->nr_cpus_allowed < 2 ||
1431              curr->prio <= p->prio)) {
1432                 int target = find_lowest_rq(p);
1433
1434                 /*
1435                  * Don't bother moving it if the destination CPU is
1436                  * not running a lower priority task.
1437                  */
1438                 if (target != -1 &&
1439                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1440                         cpu = target;
1441         }
1442         rcu_read_unlock();
1443
1444 out:
1445         return cpu;
1446 }
1447
1448 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1449 {
1450         /*
1451          * Current can't be migrated, useless to reschedule,
1452          * let's hope p can move out.
1453          */
1454         if (rq->curr->nr_cpus_allowed == 1 ||
1455             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1456                 return;
1457
1458         /*
1459          * p is migratable, so let's not schedule it and
1460          * see if it is pushed or pulled somewhere else.
1461          */
1462         if (p->nr_cpus_allowed != 1
1463             && cpupri_find(&rq->rd->cpupri, p, NULL))
1464                 return;
1465
1466         /*
1467          * There appears to be other cpus that can accept
1468          * current and none to run 'p', so lets reschedule
1469          * to try and push current away:
1470          */
1471         requeue_task_rt(rq, p, 1);
1472         resched_curr(rq);
1473 }
1474
1475 #endif /* CONFIG_SMP */
1476
1477 /*
1478  * Preempt the current task with a newly woken task if needed:
1479  */
1480 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1481 {
1482         if (p->prio < rq->curr->prio) {
1483                 resched_curr(rq);
1484                 return;
1485         }
1486
1487 #ifdef CONFIG_SMP
1488         /*
1489          * If:
1490          *
1491          * - the newly woken task is of equal priority to the current task
1492          * - the newly woken task is non-migratable while current is migratable
1493          * - current will be preempted on the next reschedule
1494          *
1495          * we should check to see if current can readily move to a different
1496          * cpu.  If so, we will reschedule to allow the push logic to try
1497          * to move current somewhere else, making room for our non-migratable
1498          * task.
1499          */
1500         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1501                 check_preempt_equal_prio(rq, p);
1502 #endif
1503 }
1504
1505 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1506                                                    struct rt_rq *rt_rq)
1507 {
1508         struct rt_prio_array *array = &rt_rq->active;
1509         struct sched_rt_entity *next = NULL;
1510         struct list_head *queue;
1511         int idx;
1512
1513         idx = sched_find_first_bit(array->bitmap);
1514         BUG_ON(idx >= MAX_RT_PRIO);
1515
1516         queue = array->queue + idx;
1517         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1518
1519         return next;
1520 }
1521
1522 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1523 {
1524         struct sched_rt_entity *rt_se;
1525         struct task_struct *p;
1526         struct rt_rq *rt_rq  = &rq->rt;
1527
1528         do {
1529                 rt_se = pick_next_rt_entity(rq, rt_rq);
1530                 BUG_ON(!rt_se);
1531                 rt_rq = group_rt_rq(rt_se);
1532         } while (rt_rq);
1533
1534         p = rt_task_of(rt_se);
1535         p->se.exec_start = rq_clock_task(rq);
1536
1537         return p;
1538 }
1539
1540 static struct task_struct *
1541 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1542 {
1543         struct task_struct *p;
1544         struct rt_rq *rt_rq = &rq->rt;
1545
1546         if (need_pull_rt_task(rq, prev)) {
1547                 /*
1548                  * This is OK, because current is on_cpu, which avoids it being
1549                  * picked for load-balance and preemption/IRQs are still
1550                  * disabled avoiding further scheduler activity on it and we're
1551                  * being very careful to re-start the picking loop.
1552                  */
1553                 rq_unpin_lock(rq, rf);
1554                 pull_rt_task(rq);
1555                 rq_repin_lock(rq, rf);
1556                 /*
1557                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1558                  * means a dl or stop task can slip in, in which case we need
1559                  * to re-start task selection.
1560                  */
1561                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1562                              rq->dl.dl_nr_running))
1563                         return RETRY_TASK;
1564         }
1565
1566         /*
1567          * We may dequeue prev's rt_rq in put_prev_task().
1568          * So, we update time before rt_nr_running check.
1569          */
1570         if (prev->sched_class == &rt_sched_class)
1571                 update_curr_rt(rq);
1572
1573         if (!rt_rq->rt_queued)
1574                 return NULL;
1575
1576         put_prev_task(rq, prev);
1577
1578         p = _pick_next_task_rt(rq);
1579
1580         /* The running task is never eligible for pushing */
1581         dequeue_pushable_task(rq, p);
1582
1583         queue_push_tasks(rq);
1584
1585         return p;
1586 }
1587
1588 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1589 {
1590         update_curr_rt(rq);
1591
1592         /*
1593          * The previous task needs to be made eligible for pushing
1594          * if it is still active
1595          */
1596         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1597                 enqueue_pushable_task(rq, p);
1598 }
1599
1600 #ifdef CONFIG_SMP
1601
1602 /* Only try algorithms three times */
1603 #define RT_MAX_TRIES 3
1604
1605 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1606 {
1607         if (!task_running(rq, p) &&
1608             cpumask_test_cpu(cpu, &p->cpus_allowed))
1609                 return 1;
1610         return 0;
1611 }
1612
1613 /*
1614  * Return the highest pushable rq's task, which is suitable to be executed
1615  * on the cpu, NULL otherwise
1616  */
1617 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1618 {
1619         struct plist_head *head = &rq->rt.pushable_tasks;
1620         struct task_struct *p;
1621
1622         if (!has_pushable_tasks(rq))
1623                 return NULL;
1624
1625         plist_for_each_entry(p, head, pushable_tasks) {
1626                 if (pick_rt_task(rq, p, cpu))
1627                         return p;
1628         }
1629
1630         return NULL;
1631 }
1632
1633 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1634
1635 static int find_lowest_rq(struct task_struct *task)
1636 {
1637         struct sched_domain *sd;
1638         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1639         int this_cpu = smp_processor_id();
1640         int cpu      = task_cpu(task);
1641
1642         /* Make sure the mask is initialized first */
1643         if (unlikely(!lowest_mask))
1644                 return -1;
1645
1646         if (task->nr_cpus_allowed == 1)
1647                 return -1; /* No other targets possible */
1648
1649         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1650                 return -1; /* No targets found */
1651
1652         /*
1653          * At this point we have built a mask of cpus representing the
1654          * lowest priority tasks in the system.  Now we want to elect
1655          * the best one based on our affinity and topology.
1656          *
1657          * We prioritize the last cpu that the task executed on since
1658          * it is most likely cache-hot in that location.
1659          */
1660         if (cpumask_test_cpu(cpu, lowest_mask))
1661                 return cpu;
1662
1663         /*
1664          * Otherwise, we consult the sched_domains span maps to figure
1665          * out which cpu is logically closest to our hot cache data.
1666          */
1667         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1668                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1669
1670         rcu_read_lock();
1671         for_each_domain(cpu, sd) {
1672                 if (sd->flags & SD_WAKE_AFFINE) {
1673                         int best_cpu;
1674
1675                         /*
1676                          * "this_cpu" is cheaper to preempt than a
1677                          * remote processor.
1678                          */
1679                         if (this_cpu != -1 &&
1680                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1681                                 rcu_read_unlock();
1682                                 return this_cpu;
1683                         }
1684
1685                         best_cpu = cpumask_first_and(lowest_mask,
1686                                                      sched_domain_span(sd));
1687                         if (best_cpu < nr_cpu_ids) {
1688                                 rcu_read_unlock();
1689                                 return best_cpu;
1690                         }
1691                 }
1692         }
1693         rcu_read_unlock();
1694
1695         /*
1696          * And finally, if there were no matches within the domains
1697          * just give the caller *something* to work with from the compatible
1698          * locations.
1699          */
1700         if (this_cpu != -1)
1701                 return this_cpu;
1702
1703         cpu = cpumask_any(lowest_mask);
1704         if (cpu < nr_cpu_ids)
1705                 return cpu;
1706         return -1;
1707 }
1708
1709 /* Will lock the rq it finds */
1710 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1711 {
1712         struct rq *lowest_rq = NULL;
1713         int tries;
1714         int cpu;
1715
1716         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1717                 cpu = find_lowest_rq(task);
1718
1719                 if ((cpu == -1) || (cpu == rq->cpu))
1720                         break;
1721
1722                 lowest_rq = cpu_rq(cpu);
1723
1724                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1725                         /*
1726                          * Target rq has tasks of equal or higher priority,
1727                          * retrying does not release any lock and is unlikely
1728                          * to yield a different result.
1729                          */
1730                         lowest_rq = NULL;
1731                         break;
1732                 }
1733
1734                 /* if the prio of this runqueue changed, try again */
1735                 if (double_lock_balance(rq, lowest_rq)) {
1736                         /*
1737                          * We had to unlock the run queue. In
1738                          * the mean time, task could have
1739                          * migrated already or had its affinity changed.
1740                          * Also make sure that it wasn't scheduled on its rq.
1741                          */
1742                         if (unlikely(task_rq(task) != rq ||
1743                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1744                                      task_running(rq, task) ||
1745                                      !rt_task(task) ||
1746                                      !task_on_rq_queued(task))) {
1747
1748                                 double_unlock_balance(rq, lowest_rq);
1749                                 lowest_rq = NULL;
1750                                 break;
1751                         }
1752                 }
1753
1754                 /* If this rq is still suitable use it. */
1755                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1756                         break;
1757
1758                 /* try again */
1759                 double_unlock_balance(rq, lowest_rq);
1760                 lowest_rq = NULL;
1761         }
1762
1763         return lowest_rq;
1764 }
1765
1766 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1767 {
1768         struct task_struct *p;
1769
1770         if (!has_pushable_tasks(rq))
1771                 return NULL;
1772
1773         p = plist_first_entry(&rq->rt.pushable_tasks,
1774                               struct task_struct, pushable_tasks);
1775
1776         BUG_ON(rq->cpu != task_cpu(p));
1777         BUG_ON(task_current(rq, p));
1778         BUG_ON(p->nr_cpus_allowed <= 1);
1779
1780         BUG_ON(!task_on_rq_queued(p));
1781         BUG_ON(!rt_task(p));
1782
1783         return p;
1784 }
1785
1786 /*
1787  * If the current CPU has more than one RT task, see if the non
1788  * running task can migrate over to a CPU that is running a task
1789  * of lesser priority.
1790  */
1791 static int push_rt_task(struct rq *rq)
1792 {
1793         struct task_struct *next_task;
1794         struct rq *lowest_rq;
1795         int ret = 0;
1796
1797         if (!rq->rt.overloaded)
1798                 return 0;
1799
1800         next_task = pick_next_pushable_task(rq);
1801         if (!next_task)
1802                 return 0;
1803
1804 retry:
1805         if (unlikely(next_task == rq->curr)) {
1806                 WARN_ON(1);
1807                 return 0;
1808         }
1809
1810         /*
1811          * It's possible that the next_task slipped in of
1812          * higher priority than current. If that's the case
1813          * just reschedule current.
1814          */
1815         if (unlikely(next_task->prio < rq->curr->prio)) {
1816                 resched_curr(rq);
1817                 return 0;
1818         }
1819
1820         /* We might release rq lock */
1821         get_task_struct(next_task);
1822
1823         /* find_lock_lowest_rq locks the rq if found */
1824         lowest_rq = find_lock_lowest_rq(next_task, rq);
1825         if (!lowest_rq) {
1826                 struct task_struct *task;
1827                 /*
1828                  * find_lock_lowest_rq releases rq->lock
1829                  * so it is possible that next_task has migrated.
1830                  *
1831                  * We need to make sure that the task is still on the same
1832                  * run-queue and is also still the next task eligible for
1833                  * pushing.
1834                  */
1835                 task = pick_next_pushable_task(rq);
1836                 if (task == next_task) {
1837                         /*
1838                          * The task hasn't migrated, and is still the next
1839                          * eligible task, but we failed to find a run-queue
1840                          * to push it to.  Do not retry in this case, since
1841                          * other cpus will pull from us when ready.
1842                          */
1843                         goto out;
1844                 }
1845
1846                 if (!task)
1847                         /* No more tasks, just exit */
1848                         goto out;
1849
1850                 /*
1851                  * Something has shifted, try again.
1852                  */
1853                 put_task_struct(next_task);
1854                 next_task = task;
1855                 goto retry;
1856         }
1857
1858         deactivate_task(rq, next_task, 0);
1859         set_task_cpu(next_task, lowest_rq->cpu);
1860         activate_task(lowest_rq, next_task, 0);
1861         ret = 1;
1862
1863         resched_curr(lowest_rq);
1864
1865         double_unlock_balance(rq, lowest_rq);
1866
1867 out:
1868         put_task_struct(next_task);
1869
1870         return ret;
1871 }
1872
1873 static void push_rt_tasks(struct rq *rq)
1874 {
1875         /* push_rt_task will return true if it moved an RT */
1876         while (push_rt_task(rq))
1877                 ;
1878 }
1879
1880 #ifdef HAVE_RT_PUSH_IPI
1881
1882 /*
1883  * When a high priority task schedules out from a CPU and a lower priority
1884  * task is scheduled in, a check is made to see if there's any RT tasks
1885  * on other CPUs that are waiting to run because a higher priority RT task
1886  * is currently running on its CPU. In this case, the CPU with multiple RT
1887  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1888  * up that may be able to run one of its non-running queued RT tasks.
1889  *
1890  * All CPUs with overloaded RT tasks need to be notified as there is currently
1891  * no way to know which of these CPUs have the highest priority task waiting
1892  * to run. Instead of trying to take a spinlock on each of these CPUs,
1893  * which has shown to cause large latency when done on machines with many
1894  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1895  * RT tasks waiting to run.
1896  *
1897  * Just sending an IPI to each of the CPUs is also an issue, as on large
1898  * count CPU machines, this can cause an IPI storm on a CPU, especially
1899  * if its the only CPU with multiple RT tasks queued, and a large number
1900  * of CPUs scheduling a lower priority task at the same time.
1901  *
1902  * Each root domain has its own irq work function that can iterate over
1903  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1904  * tassk must be checked if there's one or many CPUs that are lowering
1905  * their priority, there's a single irq work iterator that will try to
1906  * push off RT tasks that are waiting to run.
1907  *
1908  * When a CPU schedules a lower priority task, it will kick off the
1909  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1910  * As it only takes the first CPU that schedules a lower priority task
1911  * to start the process, the rto_start variable is incremented and if
1912  * the atomic result is one, then that CPU will try to take the rto_lock.
1913  * This prevents high contention on the lock as the process handles all
1914  * CPUs scheduling lower priority tasks.
1915  *
1916  * All CPUs that are scheduling a lower priority task will increment the
1917  * rt_loop_next variable. This will make sure that the irq work iterator
1918  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1919  * priority task, even if the iterator is in the middle of a scan. Incrementing
1920  * the rt_loop_next will cause the iterator to perform another scan.
1921  *
1922  */
1923 static int rto_next_cpu(struct root_domain *rd)
1924 {
1925         int next;
1926         int cpu;
1927
1928         /*
1929          * When starting the IPI RT pushing, the rto_cpu is set to -1,
1930          * rt_next_cpu() will simply return the first CPU found in
1931          * the rto_mask.
1932          *
1933          * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
1934          * will return the next CPU found in the rto_mask.
1935          *
1936          * If there are no more CPUs left in the rto_mask, then a check is made
1937          * against rto_loop and rto_loop_next. rto_loop is only updated with
1938          * the rto_lock held, but any CPU may increment the rto_loop_next
1939          * without any locking.
1940          */
1941         for (;;) {
1942
1943                 /* When rto_cpu is -1 this acts like cpumask_first() */
1944                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1945
1946                 rd->rto_cpu = cpu;
1947
1948                 if (cpu < nr_cpu_ids)
1949                         return cpu;
1950
1951                 rd->rto_cpu = -1;
1952
1953                 /*
1954                  * ACQUIRE ensures we see the @rto_mask changes
1955                  * made prior to the @next value observed.
1956                  *
1957                  * Matches WMB in rt_set_overload().
1958                  */
1959                 next = atomic_read_acquire(&rd->rto_loop_next);
1960
1961                 if (rd->rto_loop == next)
1962                         break;
1963
1964                 rd->rto_loop = next;
1965         }
1966
1967         return -1;
1968 }
1969
1970 static inline bool rto_start_trylock(atomic_t *v)
1971 {
1972         return !atomic_cmpxchg_acquire(v, 0, 1);
1973 }
1974
1975 static inline void rto_start_unlock(atomic_t *v)
1976 {
1977         atomic_set_release(v, 0);
1978 }
1979
1980 static void tell_cpu_to_push(struct rq *rq)
1981 {
1982         int cpu = -1;
1983
1984         /* Keep the loop going if the IPI is currently active */
1985         atomic_inc(&rq->rd->rto_loop_next);
1986
1987         /* Only one CPU can initiate a loop at a time */
1988         if (!rto_start_trylock(&rq->rd->rto_loop_start))
1989                 return;
1990
1991         raw_spin_lock(&rq->rd->rto_lock);
1992
1993         /*
1994          * The rto_cpu is updated under the lock, if it has a valid cpu
1995          * then the IPI is still running and will continue due to the
1996          * update to loop_next, and nothing needs to be done here.
1997          * Otherwise it is finishing up and an ipi needs to be sent.
1998          */
1999         if (rq->rd->rto_cpu < 0)
2000                 cpu = rto_next_cpu(rq->rd);
2001
2002         raw_spin_unlock(&rq->rd->rto_lock);
2003
2004         rto_start_unlock(&rq->rd->rto_loop_start);
2005
2006         if (cpu >= 0) {
2007                 /* Make sure the rd does not get freed while pushing */
2008                 sched_get_rd(rq->rd);
2009                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2010         }
2011 }
2012
2013 /* Called from hardirq context */
2014 void rto_push_irq_work_func(struct irq_work *work)
2015 {
2016         struct root_domain *rd =
2017                 container_of(work, struct root_domain, rto_push_work);
2018         struct rq *rq;
2019         int cpu;
2020
2021         rq = this_rq();
2022
2023         /*
2024          * We do not need to grab the lock to check for has_pushable_tasks.
2025          * When it gets updated, a check is made if a push is possible.
2026          */
2027         if (has_pushable_tasks(rq)) {
2028                 raw_spin_lock(&rq->lock);
2029                 push_rt_tasks(rq);
2030                 raw_spin_unlock(&rq->lock);
2031         }
2032
2033         raw_spin_lock(&rd->rto_lock);
2034
2035         /* Pass the IPI to the next rt overloaded queue */
2036         cpu = rto_next_cpu(rd);
2037
2038         raw_spin_unlock(&rd->rto_lock);
2039
2040         if (cpu < 0) {
2041                 sched_put_rd(rd);
2042                 return;
2043         }
2044
2045         /* Try the next RT overloaded CPU */
2046         irq_work_queue_on(&rd->rto_push_work, cpu);
2047 }
2048 #endif /* HAVE_RT_PUSH_IPI */
2049
2050 static void pull_rt_task(struct rq *this_rq)
2051 {
2052         int this_cpu = this_rq->cpu, cpu;
2053         bool resched = false;
2054         struct task_struct *p;
2055         struct rq *src_rq;
2056         int rt_overload_count = rt_overloaded(this_rq);
2057
2058         if (likely(!rt_overload_count))
2059                 return;
2060
2061         /*
2062          * Match the barrier from rt_set_overloaded; this guarantees that if we
2063          * see overloaded we must also see the rto_mask bit.
2064          */
2065         smp_rmb();
2066
2067         /* If we are the only overloaded CPU do nothing */
2068         if (rt_overload_count == 1 &&
2069             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2070                 return;
2071
2072 #ifdef HAVE_RT_PUSH_IPI
2073         if (sched_feat(RT_PUSH_IPI)) {
2074                 tell_cpu_to_push(this_rq);
2075                 return;
2076         }
2077 #endif
2078
2079         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2080                 if (this_cpu == cpu)
2081                         continue;
2082
2083                 src_rq = cpu_rq(cpu);
2084
2085                 /*
2086                  * Don't bother taking the src_rq->lock if the next highest
2087                  * task is known to be lower-priority than our current task.
2088                  * This may look racy, but if this value is about to go
2089                  * logically higher, the src_rq will push this task away.
2090                  * And if its going logically lower, we do not care
2091                  */
2092                 if (src_rq->rt.highest_prio.next >=
2093                     this_rq->rt.highest_prio.curr)
2094                         continue;
2095
2096                 /*
2097                  * We can potentially drop this_rq's lock in
2098                  * double_lock_balance, and another CPU could
2099                  * alter this_rq
2100                  */
2101                 double_lock_balance(this_rq, src_rq);
2102
2103                 /*
2104                  * We can pull only a task, which is pushable
2105                  * on its rq, and no others.
2106                  */
2107                 p = pick_highest_pushable_task(src_rq, this_cpu);
2108
2109                 /*
2110                  * Do we have an RT task that preempts
2111                  * the to-be-scheduled task?
2112                  */
2113                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2114                         WARN_ON(p == src_rq->curr);
2115                         WARN_ON(!task_on_rq_queued(p));
2116
2117                         /*
2118                          * There's a chance that p is higher in priority
2119                          * than what's currently running on its cpu.
2120                          * This is just that p is wakeing up and hasn't
2121                          * had a chance to schedule. We only pull
2122                          * p if it is lower in priority than the
2123                          * current task on the run queue
2124                          */
2125                         if (p->prio < src_rq->curr->prio)
2126                                 goto skip;
2127
2128                         resched = true;
2129
2130                         deactivate_task(src_rq, p, 0);
2131                         set_task_cpu(p, this_cpu);
2132                         activate_task(this_rq, p, 0);
2133                         /*
2134                          * We continue with the search, just in
2135                          * case there's an even higher prio task
2136                          * in another runqueue. (low likelihood
2137                          * but possible)
2138                          */
2139                 }
2140 skip:
2141                 double_unlock_balance(this_rq, src_rq);
2142         }
2143
2144         if (resched)
2145                 resched_curr(this_rq);
2146 }
2147
2148 /*
2149  * If we are not running and we are not going to reschedule soon, we should
2150  * try to push tasks away now
2151  */
2152 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2153 {
2154         if (!task_running(rq, p) &&
2155             !test_tsk_need_resched(rq->curr) &&
2156             p->nr_cpus_allowed > 1 &&
2157             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2158             (rq->curr->nr_cpus_allowed < 2 ||
2159              rq->curr->prio <= p->prio))
2160                 push_rt_tasks(rq);
2161 }
2162
2163 /* Assumes rq->lock is held */
2164 static void rq_online_rt(struct rq *rq)
2165 {
2166         if (rq->rt.overloaded)
2167                 rt_set_overload(rq);
2168
2169         __enable_runtime(rq);
2170
2171         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2172 }
2173
2174 /* Assumes rq->lock is held */
2175 static void rq_offline_rt(struct rq *rq)
2176 {
2177         if (rq->rt.overloaded)
2178                 rt_clear_overload(rq);
2179
2180         __disable_runtime(rq);
2181
2182         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2183 }
2184
2185 /*
2186  * When switch from the rt queue, we bring ourselves to a position
2187  * that we might want to pull RT tasks from other runqueues.
2188  */
2189 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2190 {
2191         /*
2192          * If there are other RT tasks then we will reschedule
2193          * and the scheduling of the other RT tasks will handle
2194          * the balancing. But if we are the last RT task
2195          * we may need to handle the pulling of RT tasks
2196          * now.
2197          */
2198         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2199                 return;
2200
2201         queue_pull_task(rq);
2202 }
2203
2204 void __init init_sched_rt_class(void)
2205 {
2206         unsigned int i;
2207
2208         for_each_possible_cpu(i) {
2209                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2210                                         GFP_KERNEL, cpu_to_node(i));
2211         }
2212 }
2213 #endif /* CONFIG_SMP */
2214
2215 /*
2216  * When switching a task to RT, we may overload the runqueue
2217  * with RT tasks. In this case we try to push them off to
2218  * other runqueues.
2219  */
2220 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2221 {
2222         /*
2223          * If we are already running, then there's nothing
2224          * that needs to be done. But if we are not running
2225          * we may need to preempt the current running task.
2226          * If that current running task is also an RT task
2227          * then see if we can move to another run queue.
2228          */
2229         if (task_on_rq_queued(p) && rq->curr != p) {
2230 #ifdef CONFIG_SMP
2231                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2232                         queue_push_tasks(rq);
2233 #endif /* CONFIG_SMP */
2234                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2235                         resched_curr(rq);
2236         }
2237 }
2238
2239 /*
2240  * Priority of the task has changed. This may cause
2241  * us to initiate a push or pull.
2242  */
2243 static void
2244 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2245 {
2246         if (!task_on_rq_queued(p))
2247                 return;
2248
2249         if (rq->curr == p) {
2250 #ifdef CONFIG_SMP
2251                 /*
2252                  * If our priority decreases while running, we
2253                  * may need to pull tasks to this runqueue.
2254                  */
2255                 if (oldprio < p->prio)
2256                         queue_pull_task(rq);
2257
2258                 /*
2259                  * If there's a higher priority task waiting to run
2260                  * then reschedule.
2261                  */
2262                 if (p->prio > rq->rt.highest_prio.curr)
2263                         resched_curr(rq);
2264 #else
2265                 /* For UP simply resched on drop of prio */
2266                 if (oldprio < p->prio)
2267                         resched_curr(rq);
2268 #endif /* CONFIG_SMP */
2269         } else {
2270                 /*
2271                  * This task is not running, but if it is
2272                  * greater than the current running task
2273                  * then reschedule.
2274                  */
2275                 if (p->prio < rq->curr->prio)
2276                         resched_curr(rq);
2277         }
2278 }
2279
2280 #ifdef CONFIG_POSIX_TIMERS
2281 static void watchdog(struct rq *rq, struct task_struct *p)
2282 {
2283         unsigned long soft, hard;
2284
2285         /* max may change after cur was read, this will be fixed next tick */
2286         soft = task_rlimit(p, RLIMIT_RTTIME);
2287         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2288
2289         if (soft != RLIM_INFINITY) {
2290                 unsigned long next;
2291
2292                 if (p->rt.watchdog_stamp != jiffies) {
2293                         p->rt.timeout++;
2294                         p->rt.watchdog_stamp = jiffies;
2295                 }
2296
2297                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2298                 if (p->rt.timeout > next)
2299                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2300         }
2301 }
2302 #else
2303 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2304 #endif
2305
2306 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2307 {
2308         struct sched_rt_entity *rt_se = &p->rt;
2309
2310         update_curr_rt(rq);
2311
2312         watchdog(rq, p);
2313
2314         /*
2315          * RR tasks need a special form of timeslice management.
2316          * FIFO tasks have no timeslices.
2317          */
2318         if (p->policy != SCHED_RR)
2319                 return;
2320
2321         if (--p->rt.time_slice)
2322                 return;
2323
2324         p->rt.time_slice = sched_rr_timeslice;
2325
2326         /*
2327          * Requeue to the end of queue if we (and all of our ancestors) are not
2328          * the only element on the queue
2329          */
2330         for_each_sched_rt_entity(rt_se) {
2331                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2332                         requeue_task_rt(rq, p, 0);
2333                         resched_curr(rq);
2334                         return;
2335                 }
2336         }
2337 }
2338
2339 static void set_curr_task_rt(struct rq *rq)
2340 {
2341         struct task_struct *p = rq->curr;
2342
2343         p->se.exec_start = rq_clock_task(rq);
2344
2345         /* The running task is never eligible for pushing */
2346         dequeue_pushable_task(rq, p);
2347 }
2348
2349 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2350 {
2351         /*
2352          * Time slice is 0 for SCHED_FIFO tasks
2353          */
2354         if (task->policy == SCHED_RR)
2355                 return sched_rr_timeslice;
2356         else
2357                 return 0;
2358 }
2359
2360 const struct sched_class rt_sched_class = {
2361         .next                   = &fair_sched_class,
2362         .enqueue_task           = enqueue_task_rt,
2363         .dequeue_task           = dequeue_task_rt,
2364         .yield_task             = yield_task_rt,
2365
2366         .check_preempt_curr     = check_preempt_curr_rt,
2367
2368         .pick_next_task         = pick_next_task_rt,
2369         .put_prev_task          = put_prev_task_rt,
2370
2371 #ifdef CONFIG_SMP
2372         .select_task_rq         = select_task_rq_rt,
2373
2374         .set_cpus_allowed       = set_cpus_allowed_common,
2375         .rq_online              = rq_online_rt,
2376         .rq_offline             = rq_offline_rt,
2377         .task_woken             = task_woken_rt,
2378         .switched_from          = switched_from_rt,
2379 #endif
2380
2381         .set_curr_task          = set_curr_task_rt,
2382         .task_tick              = task_tick_rt,
2383
2384         .get_rr_interval        = get_rr_interval_rt,
2385
2386         .prio_changed           = prio_changed_rt,
2387         .switched_to            = switched_to_rt,
2388
2389         .update_curr            = update_curr_rt,
2390 };
2391
2392 #ifdef CONFIG_RT_GROUP_SCHED
2393 /*
2394  * Ensure that the real time constraints are schedulable.
2395  */
2396 static DEFINE_MUTEX(rt_constraints_mutex);
2397
2398 /* Must be called with tasklist_lock held */
2399 static inline int tg_has_rt_tasks(struct task_group *tg)
2400 {
2401         struct task_struct *g, *p;
2402
2403         /*
2404          * Autogroups do not have RT tasks; see autogroup_create().
2405          */
2406         if (task_group_is_autogroup(tg))
2407                 return 0;
2408
2409         for_each_process_thread(g, p) {
2410                 if (rt_task(p) && task_group(p) == tg)
2411                         return 1;
2412         }
2413
2414         return 0;
2415 }
2416
2417 struct rt_schedulable_data {
2418         struct task_group *tg;
2419         u64 rt_period;
2420         u64 rt_runtime;
2421 };
2422
2423 static int tg_rt_schedulable(struct task_group *tg, void *data)
2424 {
2425         struct rt_schedulable_data *d = data;
2426         struct task_group *child;
2427         unsigned long total, sum = 0;
2428         u64 period, runtime;
2429
2430         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2431         runtime = tg->rt_bandwidth.rt_runtime;
2432
2433         if (tg == d->tg) {
2434                 period = d->rt_period;
2435                 runtime = d->rt_runtime;
2436         }
2437
2438         /*
2439          * Cannot have more runtime than the period.
2440          */
2441         if (runtime > period && runtime != RUNTIME_INF)
2442                 return -EINVAL;
2443
2444         /*
2445          * Ensure we don't starve existing RT tasks.
2446          */
2447         if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2448                 return -EBUSY;
2449
2450         total = to_ratio(period, runtime);
2451
2452         /*
2453          * Nobody can have more than the global setting allows.
2454          */
2455         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2456                 return -EINVAL;
2457
2458         /*
2459          * The sum of our children's runtime should not exceed our own.
2460          */
2461         list_for_each_entry_rcu(child, &tg->children, siblings) {
2462                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2463                 runtime = child->rt_bandwidth.rt_runtime;
2464
2465                 if (child == d->tg) {
2466                         period = d->rt_period;
2467                         runtime = d->rt_runtime;
2468                 }
2469
2470                 sum += to_ratio(period, runtime);
2471         }
2472
2473         if (sum > total)
2474                 return -EINVAL;
2475
2476         return 0;
2477 }
2478
2479 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2480 {
2481         int ret;
2482
2483         struct rt_schedulable_data data = {
2484                 .tg = tg,
2485                 .rt_period = period,
2486                 .rt_runtime = runtime,
2487         };
2488
2489         rcu_read_lock();
2490         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2491         rcu_read_unlock();
2492
2493         return ret;
2494 }
2495
2496 static int tg_set_rt_bandwidth(struct task_group *tg,
2497                 u64 rt_period, u64 rt_runtime)
2498 {
2499         int i, err = 0;
2500
2501         /*
2502          * Disallowing the root group RT runtime is BAD, it would disallow the
2503          * kernel creating (and or operating) RT threads.
2504          */
2505         if (tg == &root_task_group && rt_runtime == 0)
2506                 return -EINVAL;
2507
2508         /* No period doesn't make any sense. */
2509         if (rt_period == 0)
2510                 return -EINVAL;
2511
2512         mutex_lock(&rt_constraints_mutex);
2513         read_lock(&tasklist_lock);
2514         err = __rt_schedulable(tg, rt_period, rt_runtime);
2515         if (err)
2516                 goto unlock;
2517
2518         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2519         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2520         tg->rt_bandwidth.rt_runtime = rt_runtime;
2521
2522         for_each_possible_cpu(i) {
2523                 struct rt_rq *rt_rq = tg->rt_rq[i];
2524
2525                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2526                 rt_rq->rt_runtime = rt_runtime;
2527                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2528         }
2529         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2530 unlock:
2531         read_unlock(&tasklist_lock);
2532         mutex_unlock(&rt_constraints_mutex);
2533
2534         return err;
2535 }
2536
2537 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2538 {
2539         u64 rt_runtime, rt_period;
2540
2541         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2542         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2543         if (rt_runtime_us < 0)
2544                 rt_runtime = RUNTIME_INF;
2545         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2546                 return -EINVAL;
2547
2548         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2549 }
2550
2551 long sched_group_rt_runtime(struct task_group *tg)
2552 {
2553         u64 rt_runtime_us;
2554
2555         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2556                 return -1;
2557
2558         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2559         do_div(rt_runtime_us, NSEC_PER_USEC);
2560         return rt_runtime_us;
2561 }
2562
2563 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2564 {
2565         u64 rt_runtime, rt_period;
2566
2567         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2568                 return -EINVAL;
2569
2570         rt_period = rt_period_us * NSEC_PER_USEC;
2571         rt_runtime = tg->rt_bandwidth.rt_runtime;
2572
2573         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2574 }
2575
2576 long sched_group_rt_period(struct task_group *tg)
2577 {
2578         u64 rt_period_us;
2579
2580         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2581         do_div(rt_period_us, NSEC_PER_USEC);
2582         return rt_period_us;
2583 }
2584
2585 static int sched_rt_global_constraints(void)
2586 {
2587         int ret = 0;
2588
2589         mutex_lock(&rt_constraints_mutex);
2590         read_lock(&tasklist_lock);
2591         ret = __rt_schedulable(NULL, 0, 0);
2592         read_unlock(&tasklist_lock);
2593         mutex_unlock(&rt_constraints_mutex);
2594
2595         return ret;
2596 }
2597
2598 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2599 {
2600         /* Don't accept realtime tasks when there is no way for them to run */
2601         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2602                 return 0;
2603
2604         return 1;
2605 }
2606
2607 #else /* !CONFIG_RT_GROUP_SCHED */
2608 static int sched_rt_global_constraints(void)
2609 {
2610         unsigned long flags;
2611         int i;
2612
2613         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2614         for_each_possible_cpu(i) {
2615                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2616
2617                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2618                 rt_rq->rt_runtime = global_rt_runtime();
2619                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2620         }
2621         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2622
2623         return 0;
2624 }
2625 #endif /* CONFIG_RT_GROUP_SCHED */
2626
2627 static int sched_rt_global_validate(void)
2628 {
2629         if (sysctl_sched_rt_period <= 0)
2630                 return -EINVAL;
2631
2632         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2633                 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2634                 return -EINVAL;
2635
2636         return 0;
2637 }
2638
2639 static void sched_rt_do_global(void)
2640 {
2641         unsigned long flags;
2642
2643         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2644         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2645         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2646         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2647 }
2648
2649 int sched_rt_handler(struct ctl_table *table, int write,
2650                 void __user *buffer, size_t *lenp,
2651                 loff_t *ppos)
2652 {
2653         int old_period, old_runtime;
2654         static DEFINE_MUTEX(mutex);
2655         int ret;
2656
2657         mutex_lock(&mutex);
2658         old_period = sysctl_sched_rt_period;
2659         old_runtime = sysctl_sched_rt_runtime;
2660
2661         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2662
2663         if (!ret && write) {
2664                 ret = sched_rt_global_validate();
2665                 if (ret)
2666                         goto undo;
2667
2668                 ret = sched_dl_global_validate();
2669                 if (ret)
2670                         goto undo;
2671
2672                 ret = sched_rt_global_constraints();
2673                 if (ret)
2674                         goto undo;
2675
2676                 sched_rt_do_global();
2677                 sched_dl_do_global();
2678         }
2679         if (0) {
2680 undo:
2681                 sysctl_sched_rt_period = old_period;
2682                 sysctl_sched_rt_runtime = old_runtime;
2683         }
2684         mutex_unlock(&mutex);
2685
2686         return ret;
2687 }
2688
2689 int sched_rr_handler(struct ctl_table *table, int write,
2690                 void __user *buffer, size_t *lenp,
2691                 loff_t *ppos)
2692 {
2693         int ret;
2694         static DEFINE_MUTEX(mutex);
2695
2696         mutex_lock(&mutex);
2697         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2698         /*
2699          * Make sure that internally we keep jiffies.
2700          * Also, writing zero resets the timeslice to default:
2701          */
2702         if (!ret && write) {
2703                 sched_rr_timeslice =
2704                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2705                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2706         }
2707         mutex_unlock(&mutex);
2708         return ret;
2709 }
2710
2711 #ifdef CONFIG_SCHED_DEBUG
2712 void print_rt_stats(struct seq_file *m, int cpu)
2713 {
2714         rt_rq_iter_t iter;
2715         struct rt_rq *rt_rq;
2716
2717         rcu_read_lock();
2718         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2719                 print_rt_rq(m, cpu, rt_rq);
2720         rcu_read_unlock();
2721 }
2722 #endif /* CONFIG_SCHED_DEBUG */