GNU Linux-libre 4.19.242-gnu1
[releases.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19         struct rt_bandwidth *rt_b =
20                 container_of(timer, struct rt_bandwidth, rt_period_timer);
21         int idle = 0;
22         int overrun;
23
24         raw_spin_lock(&rt_b->rt_runtime_lock);
25         for (;;) {
26                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27                 if (!overrun)
28                         break;
29
30                 raw_spin_unlock(&rt_b->rt_runtime_lock);
31                 idle = do_sched_rt_period_timer(rt_b, overrun);
32                 raw_spin_lock(&rt_b->rt_runtime_lock);
33         }
34         if (idle)
35                 rt_b->rt_period_active = 0;
36         raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43         rt_b->rt_period = ns_to_ktime(period);
44         rt_b->rt_runtime = runtime;
45
46         raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48         hrtimer_init(&rt_b->rt_period_timer,
49                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50         rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
53 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55         raw_spin_lock(&rt_b->rt_runtime_lock);
56         if (!rt_b->rt_period_active) {
57                 rt_b->rt_period_active = 1;
58                 /*
59                  * SCHED_DEADLINE updates the bandwidth, as a run away
60                  * RT task with a DL task could hog a CPU. But DL does
61                  * not reset the period. If a deadline task was running
62                  * without an RT task running, it can cause RT tasks to
63                  * throttle when they start up. Kick the timer right away
64                  * to update the period.
65                  */
66                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
67                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
68         }
69         raw_spin_unlock(&rt_b->rt_runtime_lock);
70 }
71
72 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
73 {
74         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
75                 return;
76
77         do_start_rt_bandwidth(rt_b);
78 }
79
80 void init_rt_rq(struct rt_rq *rt_rq)
81 {
82         struct rt_prio_array *array;
83         int i;
84
85         array = &rt_rq->active;
86         for (i = 0; i < MAX_RT_PRIO; i++) {
87                 INIT_LIST_HEAD(array->queue + i);
88                 __clear_bit(i, array->bitmap);
89         }
90         /* delimiter for bitsearch: */
91         __set_bit(MAX_RT_PRIO, array->bitmap);
92
93 #if defined CONFIG_SMP
94         rt_rq->highest_prio.curr = MAX_RT_PRIO;
95         rt_rq->highest_prio.next = MAX_RT_PRIO;
96         rt_rq->rt_nr_migratory = 0;
97         rt_rq->overloaded = 0;
98         plist_head_init(&rt_rq->pushable_tasks);
99 #endif /* CONFIG_SMP */
100         /* We start is dequeued state, because no RT tasks are queued */
101         rt_rq->rt_queued = 0;
102
103         rt_rq->rt_time = 0;
104         rt_rq->rt_throttled = 0;
105         rt_rq->rt_runtime = 0;
106         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
107 }
108
109 #ifdef CONFIG_RT_GROUP_SCHED
110 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
111 {
112         hrtimer_cancel(&rt_b->rt_period_timer);
113 }
114
115 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
116
117 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
118 {
119 #ifdef CONFIG_SCHED_DEBUG
120         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
121 #endif
122         return container_of(rt_se, struct task_struct, rt);
123 }
124
125 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
126 {
127         return rt_rq->rq;
128 }
129
130 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
131 {
132         return rt_se->rt_rq;
133 }
134
135 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
136 {
137         struct rt_rq *rt_rq = rt_se->rt_rq;
138
139         return rt_rq->rq;
140 }
141
142 void free_rt_sched_group(struct task_group *tg)
143 {
144         int i;
145
146         if (tg->rt_se)
147                 destroy_rt_bandwidth(&tg->rt_bandwidth);
148
149         for_each_possible_cpu(i) {
150                 if (tg->rt_rq)
151                         kfree(tg->rt_rq[i]);
152                 if (tg->rt_se)
153                         kfree(tg->rt_se[i]);
154         }
155
156         kfree(tg->rt_rq);
157         kfree(tg->rt_se);
158 }
159
160 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
161                 struct sched_rt_entity *rt_se, int cpu,
162                 struct sched_rt_entity *parent)
163 {
164         struct rq *rq = cpu_rq(cpu);
165
166         rt_rq->highest_prio.curr = MAX_RT_PRIO;
167         rt_rq->rt_nr_boosted = 0;
168         rt_rq->rq = rq;
169         rt_rq->tg = tg;
170
171         tg->rt_rq[cpu] = rt_rq;
172         tg->rt_se[cpu] = rt_se;
173
174         if (!rt_se)
175                 return;
176
177         if (!parent)
178                 rt_se->rt_rq = &rq->rt;
179         else
180                 rt_se->rt_rq = parent->my_q;
181
182         rt_se->my_q = rt_rq;
183         rt_se->parent = parent;
184         INIT_LIST_HEAD(&rt_se->run_list);
185 }
186
187 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
188 {
189         struct rt_rq *rt_rq;
190         struct sched_rt_entity *rt_se;
191         int i;
192
193         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
194         if (!tg->rt_rq)
195                 goto err;
196         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
197         if (!tg->rt_se)
198                 goto err;
199
200         init_rt_bandwidth(&tg->rt_bandwidth,
201                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
202
203         for_each_possible_cpu(i) {
204                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
205                                      GFP_KERNEL, cpu_to_node(i));
206                 if (!rt_rq)
207                         goto err;
208
209                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
210                                      GFP_KERNEL, cpu_to_node(i));
211                 if (!rt_se)
212                         goto err_free_rq;
213
214                 init_rt_rq(rt_rq);
215                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
216                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
217         }
218
219         return 1;
220
221 err_free_rq:
222         kfree(rt_rq);
223 err:
224         return 0;
225 }
226
227 #else /* CONFIG_RT_GROUP_SCHED */
228
229 #define rt_entity_is_task(rt_se) (1)
230
231 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
232 {
233         return container_of(rt_se, struct task_struct, rt);
234 }
235
236 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
237 {
238         return container_of(rt_rq, struct rq, rt);
239 }
240
241 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
242 {
243         struct task_struct *p = rt_task_of(rt_se);
244
245         return task_rq(p);
246 }
247
248 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
249 {
250         struct rq *rq = rq_of_rt_se(rt_se);
251
252         return &rq->rt;
253 }
254
255 void free_rt_sched_group(struct task_group *tg) { }
256
257 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
258 {
259         return 1;
260 }
261 #endif /* CONFIG_RT_GROUP_SCHED */
262
263 #ifdef CONFIG_SMP
264
265 static void pull_rt_task(struct rq *this_rq);
266
267 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
268 {
269         /* Try to pull RT tasks here if we lower this rq's prio */
270         return rq->rt.highest_prio.curr > prev->prio;
271 }
272
273 static inline int rt_overloaded(struct rq *rq)
274 {
275         return atomic_read(&rq->rd->rto_count);
276 }
277
278 static inline void rt_set_overload(struct rq *rq)
279 {
280         if (!rq->online)
281                 return;
282
283         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
284         /*
285          * Make sure the mask is visible before we set
286          * the overload count. That is checked to determine
287          * if we should look at the mask. It would be a shame
288          * if we looked at the mask, but the mask was not
289          * updated yet.
290          *
291          * Matched by the barrier in pull_rt_task().
292          */
293         smp_wmb();
294         atomic_inc(&rq->rd->rto_count);
295 }
296
297 static inline void rt_clear_overload(struct rq *rq)
298 {
299         if (!rq->online)
300                 return;
301
302         /* the order here really doesn't matter */
303         atomic_dec(&rq->rd->rto_count);
304         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
305 }
306
307 static void update_rt_migration(struct rt_rq *rt_rq)
308 {
309         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
310                 if (!rt_rq->overloaded) {
311                         rt_set_overload(rq_of_rt_rq(rt_rq));
312                         rt_rq->overloaded = 1;
313                 }
314         } else if (rt_rq->overloaded) {
315                 rt_clear_overload(rq_of_rt_rq(rt_rq));
316                 rt_rq->overloaded = 0;
317         }
318 }
319
320 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
321 {
322         struct task_struct *p;
323
324         if (!rt_entity_is_task(rt_se))
325                 return;
326
327         p = rt_task_of(rt_se);
328         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
329
330         rt_rq->rt_nr_total++;
331         if (p->nr_cpus_allowed > 1)
332                 rt_rq->rt_nr_migratory++;
333
334         update_rt_migration(rt_rq);
335 }
336
337 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
338 {
339         struct task_struct *p;
340
341         if (!rt_entity_is_task(rt_se))
342                 return;
343
344         p = rt_task_of(rt_se);
345         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
346
347         rt_rq->rt_nr_total--;
348         if (p->nr_cpus_allowed > 1)
349                 rt_rq->rt_nr_migratory--;
350
351         update_rt_migration(rt_rq);
352 }
353
354 static inline int has_pushable_tasks(struct rq *rq)
355 {
356         return !plist_head_empty(&rq->rt.pushable_tasks);
357 }
358
359 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
360 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
361
362 static void push_rt_tasks(struct rq *);
363 static void pull_rt_task(struct rq *);
364
365 static inline void rt_queue_push_tasks(struct rq *rq)
366 {
367         if (!has_pushable_tasks(rq))
368                 return;
369
370         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
371 }
372
373 static inline void rt_queue_pull_task(struct rq *rq)
374 {
375         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
376 }
377
378 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
379 {
380         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
381         plist_node_init(&p->pushable_tasks, p->prio);
382         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
383
384         /* Update the highest prio pushable task */
385         if (p->prio < rq->rt.highest_prio.next)
386                 rq->rt.highest_prio.next = p->prio;
387 }
388
389 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
390 {
391         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
392
393         /* Update the new highest prio pushable task */
394         if (has_pushable_tasks(rq)) {
395                 p = plist_first_entry(&rq->rt.pushable_tasks,
396                                       struct task_struct, pushable_tasks);
397                 rq->rt.highest_prio.next = p->prio;
398         } else
399                 rq->rt.highest_prio.next = MAX_RT_PRIO;
400 }
401
402 #else
403
404 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 }
407
408 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
409 {
410 }
411
412 static inline
413 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
414 {
415 }
416
417 static inline
418 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421
422 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
423 {
424         return false;
425 }
426
427 static inline void pull_rt_task(struct rq *this_rq)
428 {
429 }
430
431 static inline void rt_queue_push_tasks(struct rq *rq)
432 {
433 }
434 #endif /* CONFIG_SMP */
435
436 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
437 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
438
439 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
440 {
441         return rt_se->on_rq;
442 }
443
444 #ifdef CONFIG_RT_GROUP_SCHED
445
446 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
447 {
448         if (!rt_rq->tg)
449                 return RUNTIME_INF;
450
451         return rt_rq->rt_runtime;
452 }
453
454 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
455 {
456         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
457 }
458
459 typedef struct task_group *rt_rq_iter_t;
460
461 static inline struct task_group *next_task_group(struct task_group *tg)
462 {
463         do {
464                 tg = list_entry_rcu(tg->list.next,
465                         typeof(struct task_group), list);
466         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
467
468         if (&tg->list == &task_groups)
469                 tg = NULL;
470
471         return tg;
472 }
473
474 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
475         for (iter = container_of(&task_groups, typeof(*iter), list);    \
476                 (iter = next_task_group(iter)) &&                       \
477                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
478
479 #define for_each_sched_rt_entity(rt_se) \
480         for (; rt_se; rt_se = rt_se->parent)
481
482 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
483 {
484         return rt_se->my_q;
485 }
486
487 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
488 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
489
490 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
491 {
492         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
493         struct rq *rq = rq_of_rt_rq(rt_rq);
494         struct sched_rt_entity *rt_se;
495
496         int cpu = cpu_of(rq);
497
498         rt_se = rt_rq->tg->rt_se[cpu];
499
500         if (rt_rq->rt_nr_running) {
501                 if (!rt_se)
502                         enqueue_top_rt_rq(rt_rq);
503                 else if (!on_rt_rq(rt_se))
504                         enqueue_rt_entity(rt_se, 0);
505
506                 if (rt_rq->highest_prio.curr < curr->prio)
507                         resched_curr(rq);
508         }
509 }
510
511 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
512 {
513         struct sched_rt_entity *rt_se;
514         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
515
516         rt_se = rt_rq->tg->rt_se[cpu];
517
518         if (!rt_se) {
519                 dequeue_top_rt_rq(rt_rq);
520                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
521                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
522         }
523         else if (on_rt_rq(rt_se))
524                 dequeue_rt_entity(rt_se, 0);
525 }
526
527 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
528 {
529         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
530 }
531
532 static int rt_se_boosted(struct sched_rt_entity *rt_se)
533 {
534         struct rt_rq *rt_rq = group_rt_rq(rt_se);
535         struct task_struct *p;
536
537         if (rt_rq)
538                 return !!rt_rq->rt_nr_boosted;
539
540         p = rt_task_of(rt_se);
541         return p->prio != p->normal_prio;
542 }
543
544 #ifdef CONFIG_SMP
545 static inline const struct cpumask *sched_rt_period_mask(void)
546 {
547         return this_rq()->rd->span;
548 }
549 #else
550 static inline const struct cpumask *sched_rt_period_mask(void)
551 {
552         return cpu_online_mask;
553 }
554 #endif
555
556 static inline
557 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
558 {
559         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
560 }
561
562 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
563 {
564         return &rt_rq->tg->rt_bandwidth;
565 }
566
567 #else /* !CONFIG_RT_GROUP_SCHED */
568
569 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
570 {
571         return rt_rq->rt_runtime;
572 }
573
574 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
575 {
576         return ktime_to_ns(def_rt_bandwidth.rt_period);
577 }
578
579 typedef struct rt_rq *rt_rq_iter_t;
580
581 #define for_each_rt_rq(rt_rq, iter, rq) \
582         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
583
584 #define for_each_sched_rt_entity(rt_se) \
585         for (; rt_se; rt_se = NULL)
586
587 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
588 {
589         return NULL;
590 }
591
592 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
593 {
594         struct rq *rq = rq_of_rt_rq(rt_rq);
595
596         if (!rt_rq->rt_nr_running)
597                 return;
598
599         enqueue_top_rt_rq(rt_rq);
600         resched_curr(rq);
601 }
602
603 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
604 {
605         dequeue_top_rt_rq(rt_rq);
606 }
607
608 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
609 {
610         return rt_rq->rt_throttled;
611 }
612
613 static inline const struct cpumask *sched_rt_period_mask(void)
614 {
615         return cpu_online_mask;
616 }
617
618 static inline
619 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
620 {
621         return &cpu_rq(cpu)->rt;
622 }
623
624 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
625 {
626         return &def_rt_bandwidth;
627 }
628
629 #endif /* CONFIG_RT_GROUP_SCHED */
630
631 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
632 {
633         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
634
635         return (hrtimer_active(&rt_b->rt_period_timer) ||
636                 rt_rq->rt_time < rt_b->rt_runtime);
637 }
638
639 #ifdef CONFIG_SMP
640 /*
641  * We ran out of runtime, see if we can borrow some from our neighbours.
642  */
643 static void do_balance_runtime(struct rt_rq *rt_rq)
644 {
645         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
646         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
647         int i, weight;
648         u64 rt_period;
649
650         weight = cpumask_weight(rd->span);
651
652         raw_spin_lock(&rt_b->rt_runtime_lock);
653         rt_period = ktime_to_ns(rt_b->rt_period);
654         for_each_cpu(i, rd->span) {
655                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
656                 s64 diff;
657
658                 if (iter == rt_rq)
659                         continue;
660
661                 raw_spin_lock(&iter->rt_runtime_lock);
662                 /*
663                  * Either all rqs have inf runtime and there's nothing to steal
664                  * or __disable_runtime() below sets a specific rq to inf to
665                  * indicate its been disabled and disalow stealing.
666                  */
667                 if (iter->rt_runtime == RUNTIME_INF)
668                         goto next;
669
670                 /*
671                  * From runqueues with spare time, take 1/n part of their
672                  * spare time, but no more than our period.
673                  */
674                 diff = iter->rt_runtime - iter->rt_time;
675                 if (diff > 0) {
676                         diff = div_u64((u64)diff, weight);
677                         if (rt_rq->rt_runtime + diff > rt_period)
678                                 diff = rt_period - rt_rq->rt_runtime;
679                         iter->rt_runtime -= diff;
680                         rt_rq->rt_runtime += diff;
681                         if (rt_rq->rt_runtime == rt_period) {
682                                 raw_spin_unlock(&iter->rt_runtime_lock);
683                                 break;
684                         }
685                 }
686 next:
687                 raw_spin_unlock(&iter->rt_runtime_lock);
688         }
689         raw_spin_unlock(&rt_b->rt_runtime_lock);
690 }
691
692 /*
693  * Ensure this RQ takes back all the runtime it lend to its neighbours.
694  */
695 static void __disable_runtime(struct rq *rq)
696 {
697         struct root_domain *rd = rq->rd;
698         rt_rq_iter_t iter;
699         struct rt_rq *rt_rq;
700
701         if (unlikely(!scheduler_running))
702                 return;
703
704         for_each_rt_rq(rt_rq, iter, rq) {
705                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
706                 s64 want;
707                 int i;
708
709                 raw_spin_lock(&rt_b->rt_runtime_lock);
710                 raw_spin_lock(&rt_rq->rt_runtime_lock);
711                 /*
712                  * Either we're all inf and nobody needs to borrow, or we're
713                  * already disabled and thus have nothing to do, or we have
714                  * exactly the right amount of runtime to take out.
715                  */
716                 if (rt_rq->rt_runtime == RUNTIME_INF ||
717                                 rt_rq->rt_runtime == rt_b->rt_runtime)
718                         goto balanced;
719                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
720
721                 /*
722                  * Calculate the difference between what we started out with
723                  * and what we current have, that's the amount of runtime
724                  * we lend and now have to reclaim.
725                  */
726                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
727
728                 /*
729                  * Greedy reclaim, take back as much as we can.
730                  */
731                 for_each_cpu(i, rd->span) {
732                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
733                         s64 diff;
734
735                         /*
736                          * Can't reclaim from ourselves or disabled runqueues.
737                          */
738                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
739                                 continue;
740
741                         raw_spin_lock(&iter->rt_runtime_lock);
742                         if (want > 0) {
743                                 diff = min_t(s64, iter->rt_runtime, want);
744                                 iter->rt_runtime -= diff;
745                                 want -= diff;
746                         } else {
747                                 iter->rt_runtime -= want;
748                                 want -= want;
749                         }
750                         raw_spin_unlock(&iter->rt_runtime_lock);
751
752                         if (!want)
753                                 break;
754                 }
755
756                 raw_spin_lock(&rt_rq->rt_runtime_lock);
757                 /*
758                  * We cannot be left wanting - that would mean some runtime
759                  * leaked out of the system.
760                  */
761                 BUG_ON(want);
762 balanced:
763                 /*
764                  * Disable all the borrow logic by pretending we have inf
765                  * runtime - in which case borrowing doesn't make sense.
766                  */
767                 rt_rq->rt_runtime = RUNTIME_INF;
768                 rt_rq->rt_throttled = 0;
769                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
770                 raw_spin_unlock(&rt_b->rt_runtime_lock);
771
772                 /* Make rt_rq available for pick_next_task() */
773                 sched_rt_rq_enqueue(rt_rq);
774         }
775 }
776
777 static void __enable_runtime(struct rq *rq)
778 {
779         rt_rq_iter_t iter;
780         struct rt_rq *rt_rq;
781
782         if (unlikely(!scheduler_running))
783                 return;
784
785         /*
786          * Reset each runqueue's bandwidth settings
787          */
788         for_each_rt_rq(rt_rq, iter, rq) {
789                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
790
791                 raw_spin_lock(&rt_b->rt_runtime_lock);
792                 raw_spin_lock(&rt_rq->rt_runtime_lock);
793                 rt_rq->rt_runtime = rt_b->rt_runtime;
794                 rt_rq->rt_time = 0;
795                 rt_rq->rt_throttled = 0;
796                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
797                 raw_spin_unlock(&rt_b->rt_runtime_lock);
798         }
799 }
800
801 static void balance_runtime(struct rt_rq *rt_rq)
802 {
803         if (!sched_feat(RT_RUNTIME_SHARE))
804                 return;
805
806         if (rt_rq->rt_time > rt_rq->rt_runtime) {
807                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
808                 do_balance_runtime(rt_rq);
809                 raw_spin_lock(&rt_rq->rt_runtime_lock);
810         }
811 }
812 #else /* !CONFIG_SMP */
813 static inline void balance_runtime(struct rt_rq *rt_rq) {}
814 #endif /* CONFIG_SMP */
815
816 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
817 {
818         int i, idle = 1, throttled = 0;
819         const struct cpumask *span;
820
821         span = sched_rt_period_mask();
822 #ifdef CONFIG_RT_GROUP_SCHED
823         /*
824          * FIXME: isolated CPUs should really leave the root task group,
825          * whether they are isolcpus or were isolated via cpusets, lest
826          * the timer run on a CPU which does not service all runqueues,
827          * potentially leaving other CPUs indefinitely throttled.  If
828          * isolation is really required, the user will turn the throttle
829          * off to kill the perturbations it causes anyway.  Meanwhile,
830          * this maintains functionality for boot and/or troubleshooting.
831          */
832         if (rt_b == &root_task_group.rt_bandwidth)
833                 span = cpu_online_mask;
834 #endif
835         for_each_cpu(i, span) {
836                 int enqueue = 0;
837                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
838                 struct rq *rq = rq_of_rt_rq(rt_rq);
839                 int skip;
840
841                 /*
842                  * When span == cpu_online_mask, taking each rq->lock
843                  * can be time-consuming. Try to avoid it when possible.
844                  */
845                 raw_spin_lock(&rt_rq->rt_runtime_lock);
846                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
847                         rt_rq->rt_runtime = rt_b->rt_runtime;
848                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
849                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
850                 if (skip)
851                         continue;
852
853                 raw_spin_lock(&rq->lock);
854                 update_rq_clock(rq);
855
856                 if (rt_rq->rt_time) {
857                         u64 runtime;
858
859                         raw_spin_lock(&rt_rq->rt_runtime_lock);
860                         if (rt_rq->rt_throttled)
861                                 balance_runtime(rt_rq);
862                         runtime = rt_rq->rt_runtime;
863                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
864                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
865                                 rt_rq->rt_throttled = 0;
866                                 enqueue = 1;
867
868                                 /*
869                                  * When we're idle and a woken (rt) task is
870                                  * throttled check_preempt_curr() will set
871                                  * skip_update and the time between the wakeup
872                                  * and this unthrottle will get accounted as
873                                  * 'runtime'.
874                                  */
875                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
876                                         rq_clock_cancel_skipupdate(rq);
877                         }
878                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
879                                 idle = 0;
880                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
881                 } else if (rt_rq->rt_nr_running) {
882                         idle = 0;
883                         if (!rt_rq_throttled(rt_rq))
884                                 enqueue = 1;
885                 }
886                 if (rt_rq->rt_throttled)
887                         throttled = 1;
888
889                 if (enqueue)
890                         sched_rt_rq_enqueue(rt_rq);
891                 raw_spin_unlock(&rq->lock);
892         }
893
894         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
895                 return 1;
896
897         return idle;
898 }
899
900 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
901 {
902 #ifdef CONFIG_RT_GROUP_SCHED
903         struct rt_rq *rt_rq = group_rt_rq(rt_se);
904
905         if (rt_rq)
906                 return rt_rq->highest_prio.curr;
907 #endif
908
909         return rt_task_of(rt_se)->prio;
910 }
911
912 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
913 {
914         u64 runtime = sched_rt_runtime(rt_rq);
915
916         if (rt_rq->rt_throttled)
917                 return rt_rq_throttled(rt_rq);
918
919         if (runtime >= sched_rt_period(rt_rq))
920                 return 0;
921
922         balance_runtime(rt_rq);
923         runtime = sched_rt_runtime(rt_rq);
924         if (runtime == RUNTIME_INF)
925                 return 0;
926
927         if (rt_rq->rt_time > runtime) {
928                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
929
930                 /*
931                  * Don't actually throttle groups that have no runtime assigned
932                  * but accrue some time due to boosting.
933                  */
934                 if (likely(rt_b->rt_runtime)) {
935                         rt_rq->rt_throttled = 1;
936                         printk_deferred_once("sched: RT throttling activated\n");
937                 } else {
938                         /*
939                          * In case we did anyway, make it go away,
940                          * replenishment is a joke, since it will replenish us
941                          * with exactly 0 ns.
942                          */
943                         rt_rq->rt_time = 0;
944                 }
945
946                 if (rt_rq_throttled(rt_rq)) {
947                         sched_rt_rq_dequeue(rt_rq);
948                         return 1;
949                 }
950         }
951
952         return 0;
953 }
954
955 /*
956  * Update the current task's runtime statistics. Skip current tasks that
957  * are not in our scheduling class.
958  */
959 static void update_curr_rt(struct rq *rq)
960 {
961         struct task_struct *curr = rq->curr;
962         struct sched_rt_entity *rt_se = &curr->rt;
963         u64 delta_exec;
964         u64 now;
965
966         if (curr->sched_class != &rt_sched_class)
967                 return;
968
969         now = rq_clock_task(rq);
970         delta_exec = now - curr->se.exec_start;
971         if (unlikely((s64)delta_exec <= 0))
972                 return;
973
974         schedstat_set(curr->se.statistics.exec_max,
975                       max(curr->se.statistics.exec_max, delta_exec));
976
977         curr->se.sum_exec_runtime += delta_exec;
978         account_group_exec_runtime(curr, delta_exec);
979
980         curr->se.exec_start = now;
981         cgroup_account_cputime(curr, delta_exec);
982
983         if (!rt_bandwidth_enabled())
984                 return;
985
986         for_each_sched_rt_entity(rt_se) {
987                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
988                 int exceeded;
989
990                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
991                         raw_spin_lock(&rt_rq->rt_runtime_lock);
992                         rt_rq->rt_time += delta_exec;
993                         exceeded = sched_rt_runtime_exceeded(rt_rq);
994                         if (exceeded)
995                                 resched_curr(rq);
996                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
997                         if (exceeded)
998                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
999                 }
1000         }
1001 }
1002
1003 static void
1004 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1005 {
1006         struct rq *rq = rq_of_rt_rq(rt_rq);
1007
1008         BUG_ON(&rq->rt != rt_rq);
1009
1010         if (!rt_rq->rt_queued)
1011                 return;
1012
1013         BUG_ON(!rq->nr_running);
1014
1015         sub_nr_running(rq, rt_rq->rt_nr_running);
1016         rt_rq->rt_queued = 0;
1017
1018 }
1019
1020 static void
1021 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1022 {
1023         struct rq *rq = rq_of_rt_rq(rt_rq);
1024
1025         BUG_ON(&rq->rt != rt_rq);
1026
1027         if (rt_rq->rt_queued)
1028                 return;
1029
1030         if (rt_rq_throttled(rt_rq))
1031                 return;
1032
1033         if (rt_rq->rt_nr_running) {
1034                 add_nr_running(rq, rt_rq->rt_nr_running);
1035                 rt_rq->rt_queued = 1;
1036         }
1037
1038         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1039         cpufreq_update_util(rq, 0);
1040 }
1041
1042 #if defined CONFIG_SMP
1043
1044 static void
1045 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1046 {
1047         struct rq *rq = rq_of_rt_rq(rt_rq);
1048
1049 #ifdef CONFIG_RT_GROUP_SCHED
1050         /*
1051          * Change rq's cpupri only if rt_rq is the top queue.
1052          */
1053         if (&rq->rt != rt_rq)
1054                 return;
1055 #endif
1056         if (rq->online && prio < prev_prio)
1057                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1058 }
1059
1060 static void
1061 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1062 {
1063         struct rq *rq = rq_of_rt_rq(rt_rq);
1064
1065 #ifdef CONFIG_RT_GROUP_SCHED
1066         /*
1067          * Change rq's cpupri only if rt_rq is the top queue.
1068          */
1069         if (&rq->rt != rt_rq)
1070                 return;
1071 #endif
1072         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1073                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1074 }
1075
1076 #else /* CONFIG_SMP */
1077
1078 static inline
1079 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1080 static inline
1081 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1082
1083 #endif /* CONFIG_SMP */
1084
1085 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1086 static void
1087 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1088 {
1089         int prev_prio = rt_rq->highest_prio.curr;
1090
1091         if (prio < prev_prio)
1092                 rt_rq->highest_prio.curr = prio;
1093
1094         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1095 }
1096
1097 static void
1098 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1099 {
1100         int prev_prio = rt_rq->highest_prio.curr;
1101
1102         if (rt_rq->rt_nr_running) {
1103
1104                 WARN_ON(prio < prev_prio);
1105
1106                 /*
1107                  * This may have been our highest task, and therefore
1108                  * we may have some recomputation to do
1109                  */
1110                 if (prio == prev_prio) {
1111                         struct rt_prio_array *array = &rt_rq->active;
1112
1113                         rt_rq->highest_prio.curr =
1114                                 sched_find_first_bit(array->bitmap);
1115                 }
1116
1117         } else
1118                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1119
1120         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1121 }
1122
1123 #else
1124
1125 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1126 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1127
1128 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1129
1130 #ifdef CONFIG_RT_GROUP_SCHED
1131
1132 static void
1133 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1134 {
1135         if (rt_se_boosted(rt_se))
1136                 rt_rq->rt_nr_boosted++;
1137
1138         if (rt_rq->tg)
1139                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1140 }
1141
1142 static void
1143 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1144 {
1145         if (rt_se_boosted(rt_se))
1146                 rt_rq->rt_nr_boosted--;
1147
1148         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1149 }
1150
1151 #else /* CONFIG_RT_GROUP_SCHED */
1152
1153 static void
1154 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1155 {
1156         start_rt_bandwidth(&def_rt_bandwidth);
1157 }
1158
1159 static inline
1160 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1161
1162 #endif /* CONFIG_RT_GROUP_SCHED */
1163
1164 static inline
1165 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1166 {
1167         struct rt_rq *group_rq = group_rt_rq(rt_se);
1168
1169         if (group_rq)
1170                 return group_rq->rt_nr_running;
1171         else
1172                 return 1;
1173 }
1174
1175 static inline
1176 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1177 {
1178         struct rt_rq *group_rq = group_rt_rq(rt_se);
1179         struct task_struct *tsk;
1180
1181         if (group_rq)
1182                 return group_rq->rr_nr_running;
1183
1184         tsk = rt_task_of(rt_se);
1185
1186         return (tsk->policy == SCHED_RR) ? 1 : 0;
1187 }
1188
1189 static inline
1190 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1191 {
1192         int prio = rt_se_prio(rt_se);
1193
1194         WARN_ON(!rt_prio(prio));
1195         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1196         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1197
1198         inc_rt_prio(rt_rq, prio);
1199         inc_rt_migration(rt_se, rt_rq);
1200         inc_rt_group(rt_se, rt_rq);
1201 }
1202
1203 static inline
1204 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1205 {
1206         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1207         WARN_ON(!rt_rq->rt_nr_running);
1208         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1209         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1210
1211         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1212         dec_rt_migration(rt_se, rt_rq);
1213         dec_rt_group(rt_se, rt_rq);
1214 }
1215
1216 /*
1217  * Change rt_se->run_list location unless SAVE && !MOVE
1218  *
1219  * assumes ENQUEUE/DEQUEUE flags match
1220  */
1221 static inline bool move_entity(unsigned int flags)
1222 {
1223         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1224                 return false;
1225
1226         return true;
1227 }
1228
1229 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1230 {
1231         list_del_init(&rt_se->run_list);
1232
1233         if (list_empty(array->queue + rt_se_prio(rt_se)))
1234                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1235
1236         rt_se->on_list = 0;
1237 }
1238
1239 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1240 {
1241         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1242         struct rt_prio_array *array = &rt_rq->active;
1243         struct rt_rq *group_rq = group_rt_rq(rt_se);
1244         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1245
1246         /*
1247          * Don't enqueue the group if its throttled, or when empty.
1248          * The latter is a consequence of the former when a child group
1249          * get throttled and the current group doesn't have any other
1250          * active members.
1251          */
1252         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1253                 if (rt_se->on_list)
1254                         __delist_rt_entity(rt_se, array);
1255                 return;
1256         }
1257
1258         if (move_entity(flags)) {
1259                 WARN_ON_ONCE(rt_se->on_list);
1260                 if (flags & ENQUEUE_HEAD)
1261                         list_add(&rt_se->run_list, queue);
1262                 else
1263                         list_add_tail(&rt_se->run_list, queue);
1264
1265                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1266                 rt_se->on_list = 1;
1267         }
1268         rt_se->on_rq = 1;
1269
1270         inc_rt_tasks(rt_se, rt_rq);
1271 }
1272
1273 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1274 {
1275         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1276         struct rt_prio_array *array = &rt_rq->active;
1277
1278         if (move_entity(flags)) {
1279                 WARN_ON_ONCE(!rt_se->on_list);
1280                 __delist_rt_entity(rt_se, array);
1281         }
1282         rt_se->on_rq = 0;
1283
1284         dec_rt_tasks(rt_se, rt_rq);
1285 }
1286
1287 /*
1288  * Because the prio of an upper entry depends on the lower
1289  * entries, we must remove entries top - down.
1290  */
1291 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1292 {
1293         struct sched_rt_entity *back = NULL;
1294
1295         for_each_sched_rt_entity(rt_se) {
1296                 rt_se->back = back;
1297                 back = rt_se;
1298         }
1299
1300         dequeue_top_rt_rq(rt_rq_of_se(back));
1301
1302         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1303                 if (on_rt_rq(rt_se))
1304                         __dequeue_rt_entity(rt_se, flags);
1305         }
1306 }
1307
1308 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1309 {
1310         struct rq *rq = rq_of_rt_se(rt_se);
1311
1312         dequeue_rt_stack(rt_se, flags);
1313         for_each_sched_rt_entity(rt_se)
1314                 __enqueue_rt_entity(rt_se, flags);
1315         enqueue_top_rt_rq(&rq->rt);
1316 }
1317
1318 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1319 {
1320         struct rq *rq = rq_of_rt_se(rt_se);
1321
1322         dequeue_rt_stack(rt_se, flags);
1323
1324         for_each_sched_rt_entity(rt_se) {
1325                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1326
1327                 if (rt_rq && rt_rq->rt_nr_running)
1328                         __enqueue_rt_entity(rt_se, flags);
1329         }
1330         enqueue_top_rt_rq(&rq->rt);
1331 }
1332
1333 /*
1334  * Adding/removing a task to/from a priority array:
1335  */
1336 static void
1337 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1338 {
1339         struct sched_rt_entity *rt_se = &p->rt;
1340
1341         if (flags & ENQUEUE_WAKEUP)
1342                 rt_se->timeout = 0;
1343
1344         enqueue_rt_entity(rt_se, flags);
1345
1346         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1347                 enqueue_pushable_task(rq, p);
1348 }
1349
1350 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1351 {
1352         struct sched_rt_entity *rt_se = &p->rt;
1353
1354         update_curr_rt(rq);
1355         dequeue_rt_entity(rt_se, flags);
1356
1357         dequeue_pushable_task(rq, p);
1358 }
1359
1360 /*
1361  * Put task to the head or the end of the run list without the overhead of
1362  * dequeue followed by enqueue.
1363  */
1364 static void
1365 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1366 {
1367         if (on_rt_rq(rt_se)) {
1368                 struct rt_prio_array *array = &rt_rq->active;
1369                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1370
1371                 if (head)
1372                         list_move(&rt_se->run_list, queue);
1373                 else
1374                         list_move_tail(&rt_se->run_list, queue);
1375         }
1376 }
1377
1378 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1379 {
1380         struct sched_rt_entity *rt_se = &p->rt;
1381         struct rt_rq *rt_rq;
1382
1383         for_each_sched_rt_entity(rt_se) {
1384                 rt_rq = rt_rq_of_se(rt_se);
1385                 requeue_rt_entity(rt_rq, rt_se, head);
1386         }
1387 }
1388
1389 static void yield_task_rt(struct rq *rq)
1390 {
1391         requeue_task_rt(rq, rq->curr, 0);
1392 }
1393
1394 #ifdef CONFIG_SMP
1395 static int find_lowest_rq(struct task_struct *task);
1396
1397 static int
1398 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1399 {
1400         struct task_struct *curr;
1401         struct rq *rq;
1402
1403         /* For anything but wake ups, just return the task_cpu */
1404         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1405                 goto out;
1406
1407         rq = cpu_rq(cpu);
1408
1409         rcu_read_lock();
1410         curr = READ_ONCE(rq->curr); /* unlocked access */
1411
1412         /*
1413          * If the current task on @p's runqueue is an RT task, then
1414          * try to see if we can wake this RT task up on another
1415          * runqueue. Otherwise simply start this RT task
1416          * on its current runqueue.
1417          *
1418          * We want to avoid overloading runqueues. If the woken
1419          * task is a higher priority, then it will stay on this CPU
1420          * and the lower prio task should be moved to another CPU.
1421          * Even though this will probably make the lower prio task
1422          * lose its cache, we do not want to bounce a higher task
1423          * around just because it gave up its CPU, perhaps for a
1424          * lock?
1425          *
1426          * For equal prio tasks, we just let the scheduler sort it out.
1427          *
1428          * Otherwise, just let it ride on the affined RQ and the
1429          * post-schedule router will push the preempted task away
1430          *
1431          * This test is optimistic, if we get it wrong the load-balancer
1432          * will have to sort it out.
1433          */
1434         if (curr && unlikely(rt_task(curr)) &&
1435             (curr->nr_cpus_allowed < 2 ||
1436              curr->prio <= p->prio)) {
1437                 int target = find_lowest_rq(p);
1438
1439                 /*
1440                  * Don't bother moving it if the destination CPU is
1441                  * not running a lower priority task.
1442                  */
1443                 if (target != -1 &&
1444                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1445                         cpu = target;
1446         }
1447         rcu_read_unlock();
1448
1449 out:
1450         return cpu;
1451 }
1452
1453 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1454 {
1455         /*
1456          * Current can't be migrated, useless to reschedule,
1457          * let's hope p can move out.
1458          */
1459         if (rq->curr->nr_cpus_allowed == 1 ||
1460             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1461                 return;
1462
1463         /*
1464          * p is migratable, so let's not schedule it and
1465          * see if it is pushed or pulled somewhere else.
1466          */
1467         if (p->nr_cpus_allowed != 1
1468             && cpupri_find(&rq->rd->cpupri, p, NULL))
1469                 return;
1470
1471         /*
1472          * There appear to be other CPUs that can accept
1473          * the current task but none can run 'p', so lets reschedule
1474          * to try and push the current task away:
1475          */
1476         requeue_task_rt(rq, p, 1);
1477         resched_curr(rq);
1478 }
1479
1480 #endif /* CONFIG_SMP */
1481
1482 /*
1483  * Preempt the current task with a newly woken task if needed:
1484  */
1485 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1486 {
1487         if (p->prio < rq->curr->prio) {
1488                 resched_curr(rq);
1489                 return;
1490         }
1491
1492 #ifdef CONFIG_SMP
1493         /*
1494          * If:
1495          *
1496          * - the newly woken task is of equal priority to the current task
1497          * - the newly woken task is non-migratable while current is migratable
1498          * - current will be preempted on the next reschedule
1499          *
1500          * we should check to see if current can readily move to a different
1501          * cpu.  If so, we will reschedule to allow the push logic to try
1502          * to move current somewhere else, making room for our non-migratable
1503          * task.
1504          */
1505         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1506                 check_preempt_equal_prio(rq, p);
1507 #endif
1508 }
1509
1510 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1511                                                    struct rt_rq *rt_rq)
1512 {
1513         struct rt_prio_array *array = &rt_rq->active;
1514         struct sched_rt_entity *next = NULL;
1515         struct list_head *queue;
1516         int idx;
1517
1518         idx = sched_find_first_bit(array->bitmap);
1519         BUG_ON(idx >= MAX_RT_PRIO);
1520
1521         queue = array->queue + idx;
1522         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1523
1524         return next;
1525 }
1526
1527 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1528 {
1529         struct sched_rt_entity *rt_se;
1530         struct task_struct *p;
1531         struct rt_rq *rt_rq  = &rq->rt;
1532
1533         do {
1534                 rt_se = pick_next_rt_entity(rq, rt_rq);
1535                 BUG_ON(!rt_se);
1536                 rt_rq = group_rt_rq(rt_se);
1537         } while (rt_rq);
1538
1539         p = rt_task_of(rt_se);
1540         p->se.exec_start = rq_clock_task(rq);
1541
1542         return p;
1543 }
1544
1545 static struct task_struct *
1546 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1547 {
1548         struct task_struct *p;
1549         struct rt_rq *rt_rq = &rq->rt;
1550
1551         if (need_pull_rt_task(rq, prev)) {
1552                 /*
1553                  * This is OK, because current is on_cpu, which avoids it being
1554                  * picked for load-balance and preemption/IRQs are still
1555                  * disabled avoiding further scheduler activity on it and we're
1556                  * being very careful to re-start the picking loop.
1557                  */
1558                 rq_unpin_lock(rq, rf);
1559                 pull_rt_task(rq);
1560                 rq_repin_lock(rq, rf);
1561                 /*
1562                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1563                  * means a dl or stop task can slip in, in which case we need
1564                  * to re-start task selection.
1565                  */
1566                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1567                              rq->dl.dl_nr_running))
1568                         return RETRY_TASK;
1569         }
1570
1571         /*
1572          * We may dequeue prev's rt_rq in put_prev_task().
1573          * So, we update time before rt_nr_running check.
1574          */
1575         if (prev->sched_class == &rt_sched_class)
1576                 update_curr_rt(rq);
1577
1578         if (!rt_rq->rt_queued)
1579                 return NULL;
1580
1581         put_prev_task(rq, prev);
1582
1583         p = _pick_next_task_rt(rq);
1584
1585         /* The running task is never eligible for pushing */
1586         dequeue_pushable_task(rq, p);
1587
1588         rt_queue_push_tasks(rq);
1589
1590         /*
1591          * If prev task was rt, put_prev_task() has already updated the
1592          * utilization. We only care of the case where we start to schedule a
1593          * rt task
1594          */
1595         if (rq->curr->sched_class != &rt_sched_class)
1596                 update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
1597
1598         return p;
1599 }
1600
1601 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1602 {
1603         update_curr_rt(rq);
1604
1605         update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
1606
1607         /*
1608          * The previous task needs to be made eligible for pushing
1609          * if it is still active
1610          */
1611         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1612                 enqueue_pushable_task(rq, p);
1613 }
1614
1615 #ifdef CONFIG_SMP
1616
1617 /* Only try algorithms three times */
1618 #define RT_MAX_TRIES 3
1619
1620 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1621 {
1622         if (!task_running(rq, p) &&
1623             cpumask_test_cpu(cpu, &p->cpus_allowed))
1624                 return 1;
1625
1626         return 0;
1627 }
1628
1629 /*
1630  * Return the highest pushable rq's task, which is suitable to be executed
1631  * on the CPU, NULL otherwise
1632  */
1633 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1634 {
1635         struct plist_head *head = &rq->rt.pushable_tasks;
1636         struct task_struct *p;
1637
1638         if (!has_pushable_tasks(rq))
1639                 return NULL;
1640
1641         plist_for_each_entry(p, head, pushable_tasks) {
1642                 if (pick_rt_task(rq, p, cpu))
1643                         return p;
1644         }
1645
1646         return NULL;
1647 }
1648
1649 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1650
1651 static int find_lowest_rq(struct task_struct *task)
1652 {
1653         struct sched_domain *sd;
1654         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1655         int this_cpu = smp_processor_id();
1656         int cpu      = task_cpu(task);
1657
1658         /* Make sure the mask is initialized first */
1659         if (unlikely(!lowest_mask))
1660                 return -1;
1661
1662         if (task->nr_cpus_allowed == 1)
1663                 return -1; /* No other targets possible */
1664
1665         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1666                 return -1; /* No targets found */
1667
1668         /*
1669          * At this point we have built a mask of CPUs representing the
1670          * lowest priority tasks in the system.  Now we want to elect
1671          * the best one based on our affinity and topology.
1672          *
1673          * We prioritize the last CPU that the task executed on since
1674          * it is most likely cache-hot in that location.
1675          */
1676         if (cpumask_test_cpu(cpu, lowest_mask))
1677                 return cpu;
1678
1679         /*
1680          * Otherwise, we consult the sched_domains span maps to figure
1681          * out which CPU is logically closest to our hot cache data.
1682          */
1683         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1684                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1685
1686         rcu_read_lock();
1687         for_each_domain(cpu, sd) {
1688                 if (sd->flags & SD_WAKE_AFFINE) {
1689                         int best_cpu;
1690
1691                         /*
1692                          * "this_cpu" is cheaper to preempt than a
1693                          * remote processor.
1694                          */
1695                         if (this_cpu != -1 &&
1696                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1697                                 rcu_read_unlock();
1698                                 return this_cpu;
1699                         }
1700
1701                         best_cpu = cpumask_first_and(lowest_mask,
1702                                                      sched_domain_span(sd));
1703                         if (best_cpu < nr_cpu_ids) {
1704                                 rcu_read_unlock();
1705                                 return best_cpu;
1706                         }
1707                 }
1708         }
1709         rcu_read_unlock();
1710
1711         /*
1712          * And finally, if there were no matches within the domains
1713          * just give the caller *something* to work with from the compatible
1714          * locations.
1715          */
1716         if (this_cpu != -1)
1717                 return this_cpu;
1718
1719         cpu = cpumask_any(lowest_mask);
1720         if (cpu < nr_cpu_ids)
1721                 return cpu;
1722
1723         return -1;
1724 }
1725
1726 /* Will lock the rq it finds */
1727 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1728 {
1729         struct rq *lowest_rq = NULL;
1730         int tries;
1731         int cpu;
1732
1733         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1734                 cpu = find_lowest_rq(task);
1735
1736                 if ((cpu == -1) || (cpu == rq->cpu))
1737                         break;
1738
1739                 lowest_rq = cpu_rq(cpu);
1740
1741                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1742                         /*
1743                          * Target rq has tasks of equal or higher priority,
1744                          * retrying does not release any lock and is unlikely
1745                          * to yield a different result.
1746                          */
1747                         lowest_rq = NULL;
1748                         break;
1749                 }
1750
1751                 /* if the prio of this runqueue changed, try again */
1752                 if (double_lock_balance(rq, lowest_rq)) {
1753                         /*
1754                          * We had to unlock the run queue. In
1755                          * the mean time, task could have
1756                          * migrated already or had its affinity changed.
1757                          * Also make sure that it wasn't scheduled on its rq.
1758                          */
1759                         if (unlikely(task_rq(task) != rq ||
1760                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1761                                      task_running(rq, task) ||
1762                                      !rt_task(task) ||
1763                                      !task_on_rq_queued(task))) {
1764
1765                                 double_unlock_balance(rq, lowest_rq);
1766                                 lowest_rq = NULL;
1767                                 break;
1768                         }
1769                 }
1770
1771                 /* If this rq is still suitable use it. */
1772                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1773                         break;
1774
1775                 /* try again */
1776                 double_unlock_balance(rq, lowest_rq);
1777                 lowest_rq = NULL;
1778         }
1779
1780         return lowest_rq;
1781 }
1782
1783 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1784 {
1785         struct task_struct *p;
1786
1787         if (!has_pushable_tasks(rq))
1788                 return NULL;
1789
1790         p = plist_first_entry(&rq->rt.pushable_tasks,
1791                               struct task_struct, pushable_tasks);
1792
1793         BUG_ON(rq->cpu != task_cpu(p));
1794         BUG_ON(task_current(rq, p));
1795         BUG_ON(p->nr_cpus_allowed <= 1);
1796
1797         BUG_ON(!task_on_rq_queued(p));
1798         BUG_ON(!rt_task(p));
1799
1800         return p;
1801 }
1802
1803 /*
1804  * If the current CPU has more than one RT task, see if the non
1805  * running task can migrate over to a CPU that is running a task
1806  * of lesser priority.
1807  */
1808 static int push_rt_task(struct rq *rq)
1809 {
1810         struct task_struct *next_task;
1811         struct rq *lowest_rq;
1812         int ret = 0;
1813
1814         if (!rq->rt.overloaded)
1815                 return 0;
1816
1817         next_task = pick_next_pushable_task(rq);
1818         if (!next_task)
1819                 return 0;
1820
1821 retry:
1822         if (unlikely(next_task == rq->curr)) {
1823                 WARN_ON(1);
1824                 return 0;
1825         }
1826
1827         /*
1828          * It's possible that the next_task slipped in of
1829          * higher priority than current. If that's the case
1830          * just reschedule current.
1831          */
1832         if (unlikely(next_task->prio < rq->curr->prio)) {
1833                 resched_curr(rq);
1834                 return 0;
1835         }
1836
1837         /* We might release rq lock */
1838         get_task_struct(next_task);
1839
1840         /* find_lock_lowest_rq locks the rq if found */
1841         lowest_rq = find_lock_lowest_rq(next_task, rq);
1842         if (!lowest_rq) {
1843                 struct task_struct *task;
1844                 /*
1845                  * find_lock_lowest_rq releases rq->lock
1846                  * so it is possible that next_task has migrated.
1847                  *
1848                  * We need to make sure that the task is still on the same
1849                  * run-queue and is also still the next task eligible for
1850                  * pushing.
1851                  */
1852                 task = pick_next_pushable_task(rq);
1853                 if (task == next_task) {
1854                         /*
1855                          * The task hasn't migrated, and is still the next
1856                          * eligible task, but we failed to find a run-queue
1857                          * to push it to.  Do not retry in this case, since
1858                          * other CPUs will pull from us when ready.
1859                          */
1860                         goto out;
1861                 }
1862
1863                 if (!task)
1864                         /* No more tasks, just exit */
1865                         goto out;
1866
1867                 /*
1868                  * Something has shifted, try again.
1869                  */
1870                 put_task_struct(next_task);
1871                 next_task = task;
1872                 goto retry;
1873         }
1874
1875         deactivate_task(rq, next_task, 0);
1876         set_task_cpu(next_task, lowest_rq->cpu);
1877         activate_task(lowest_rq, next_task, 0);
1878         ret = 1;
1879
1880         resched_curr(lowest_rq);
1881
1882         double_unlock_balance(rq, lowest_rq);
1883
1884 out:
1885         put_task_struct(next_task);
1886
1887         return ret;
1888 }
1889
1890 static void push_rt_tasks(struct rq *rq)
1891 {
1892         /* push_rt_task will return true if it moved an RT */
1893         while (push_rt_task(rq))
1894                 ;
1895 }
1896
1897 #ifdef HAVE_RT_PUSH_IPI
1898
1899 /*
1900  * When a high priority task schedules out from a CPU and a lower priority
1901  * task is scheduled in, a check is made to see if there's any RT tasks
1902  * on other CPUs that are waiting to run because a higher priority RT task
1903  * is currently running on its CPU. In this case, the CPU with multiple RT
1904  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1905  * up that may be able to run one of its non-running queued RT tasks.
1906  *
1907  * All CPUs with overloaded RT tasks need to be notified as there is currently
1908  * no way to know which of these CPUs have the highest priority task waiting
1909  * to run. Instead of trying to take a spinlock on each of these CPUs,
1910  * which has shown to cause large latency when done on machines with many
1911  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1912  * RT tasks waiting to run.
1913  *
1914  * Just sending an IPI to each of the CPUs is also an issue, as on large
1915  * count CPU machines, this can cause an IPI storm on a CPU, especially
1916  * if its the only CPU with multiple RT tasks queued, and a large number
1917  * of CPUs scheduling a lower priority task at the same time.
1918  *
1919  * Each root domain has its own irq work function that can iterate over
1920  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1921  * tassk must be checked if there's one or many CPUs that are lowering
1922  * their priority, there's a single irq work iterator that will try to
1923  * push off RT tasks that are waiting to run.
1924  *
1925  * When a CPU schedules a lower priority task, it will kick off the
1926  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1927  * As it only takes the first CPU that schedules a lower priority task
1928  * to start the process, the rto_start variable is incremented and if
1929  * the atomic result is one, then that CPU will try to take the rto_lock.
1930  * This prevents high contention on the lock as the process handles all
1931  * CPUs scheduling lower priority tasks.
1932  *
1933  * All CPUs that are scheduling a lower priority task will increment the
1934  * rt_loop_next variable. This will make sure that the irq work iterator
1935  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1936  * priority task, even if the iterator is in the middle of a scan. Incrementing
1937  * the rt_loop_next will cause the iterator to perform another scan.
1938  *
1939  */
1940 static int rto_next_cpu(struct root_domain *rd)
1941 {
1942         int next;
1943         int cpu;
1944
1945         /*
1946          * When starting the IPI RT pushing, the rto_cpu is set to -1,
1947          * rt_next_cpu() will simply return the first CPU found in
1948          * the rto_mask.
1949          *
1950          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1951          * will return the next CPU found in the rto_mask.
1952          *
1953          * If there are no more CPUs left in the rto_mask, then a check is made
1954          * against rto_loop and rto_loop_next. rto_loop is only updated with
1955          * the rto_lock held, but any CPU may increment the rto_loop_next
1956          * without any locking.
1957          */
1958         for (;;) {
1959
1960                 /* When rto_cpu is -1 this acts like cpumask_first() */
1961                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1962
1963                 rd->rto_cpu = cpu;
1964
1965                 if (cpu < nr_cpu_ids)
1966                         return cpu;
1967
1968                 rd->rto_cpu = -1;
1969
1970                 /*
1971                  * ACQUIRE ensures we see the @rto_mask changes
1972                  * made prior to the @next value observed.
1973                  *
1974                  * Matches WMB in rt_set_overload().
1975                  */
1976                 next = atomic_read_acquire(&rd->rto_loop_next);
1977
1978                 if (rd->rto_loop == next)
1979                         break;
1980
1981                 rd->rto_loop = next;
1982         }
1983
1984         return -1;
1985 }
1986
1987 static inline bool rto_start_trylock(atomic_t *v)
1988 {
1989         return !atomic_cmpxchg_acquire(v, 0, 1);
1990 }
1991
1992 static inline void rto_start_unlock(atomic_t *v)
1993 {
1994         atomic_set_release(v, 0);
1995 }
1996
1997 static void tell_cpu_to_push(struct rq *rq)
1998 {
1999         int cpu = -1;
2000
2001         /* Keep the loop going if the IPI is currently active */
2002         atomic_inc(&rq->rd->rto_loop_next);
2003
2004         /* Only one CPU can initiate a loop at a time */
2005         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2006                 return;
2007
2008         raw_spin_lock(&rq->rd->rto_lock);
2009
2010         /*
2011          * The rto_cpu is updated under the lock, if it has a valid CPU
2012          * then the IPI is still running and will continue due to the
2013          * update to loop_next, and nothing needs to be done here.
2014          * Otherwise it is finishing up and an ipi needs to be sent.
2015          */
2016         if (rq->rd->rto_cpu < 0)
2017                 cpu = rto_next_cpu(rq->rd);
2018
2019         raw_spin_unlock(&rq->rd->rto_lock);
2020
2021         rto_start_unlock(&rq->rd->rto_loop_start);
2022
2023         if (cpu >= 0) {
2024                 /* Make sure the rd does not get freed while pushing */
2025                 sched_get_rd(rq->rd);
2026                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2027         }
2028 }
2029
2030 /* Called from hardirq context */
2031 void rto_push_irq_work_func(struct irq_work *work)
2032 {
2033         struct root_domain *rd =
2034                 container_of(work, struct root_domain, rto_push_work);
2035         struct rq *rq;
2036         int cpu;
2037
2038         rq = this_rq();
2039
2040         /*
2041          * We do not need to grab the lock to check for has_pushable_tasks.
2042          * When it gets updated, a check is made if a push is possible.
2043          */
2044         if (has_pushable_tasks(rq)) {
2045                 raw_spin_lock(&rq->lock);
2046                 push_rt_tasks(rq);
2047                 raw_spin_unlock(&rq->lock);
2048         }
2049
2050         raw_spin_lock(&rd->rto_lock);
2051
2052         /* Pass the IPI to the next rt overloaded queue */
2053         cpu = rto_next_cpu(rd);
2054
2055         raw_spin_unlock(&rd->rto_lock);
2056
2057         if (cpu < 0) {
2058                 sched_put_rd(rd);
2059                 return;
2060         }
2061
2062         /* Try the next RT overloaded CPU */
2063         irq_work_queue_on(&rd->rto_push_work, cpu);
2064 }
2065 #endif /* HAVE_RT_PUSH_IPI */
2066
2067 static void pull_rt_task(struct rq *this_rq)
2068 {
2069         int this_cpu = this_rq->cpu, cpu;
2070         bool resched = false;
2071         struct task_struct *p;
2072         struct rq *src_rq;
2073         int rt_overload_count = rt_overloaded(this_rq);
2074
2075         if (likely(!rt_overload_count))
2076                 return;
2077
2078         /*
2079          * Match the barrier from rt_set_overloaded; this guarantees that if we
2080          * see overloaded we must also see the rto_mask bit.
2081          */
2082         smp_rmb();
2083
2084         /* If we are the only overloaded CPU do nothing */
2085         if (rt_overload_count == 1 &&
2086             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2087                 return;
2088
2089 #ifdef HAVE_RT_PUSH_IPI
2090         if (sched_feat(RT_PUSH_IPI)) {
2091                 tell_cpu_to_push(this_rq);
2092                 return;
2093         }
2094 #endif
2095
2096         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2097                 if (this_cpu == cpu)
2098                         continue;
2099
2100                 src_rq = cpu_rq(cpu);
2101
2102                 /*
2103                  * Don't bother taking the src_rq->lock if the next highest
2104                  * task is known to be lower-priority than our current task.
2105                  * This may look racy, but if this value is about to go
2106                  * logically higher, the src_rq will push this task away.
2107                  * And if its going logically lower, we do not care
2108                  */
2109                 if (src_rq->rt.highest_prio.next >=
2110                     this_rq->rt.highest_prio.curr)
2111                         continue;
2112
2113                 /*
2114                  * We can potentially drop this_rq's lock in
2115                  * double_lock_balance, and another CPU could
2116                  * alter this_rq
2117                  */
2118                 double_lock_balance(this_rq, src_rq);
2119
2120                 /*
2121                  * We can pull only a task, which is pushable
2122                  * on its rq, and no others.
2123                  */
2124                 p = pick_highest_pushable_task(src_rq, this_cpu);
2125
2126                 /*
2127                  * Do we have an RT task that preempts
2128                  * the to-be-scheduled task?
2129                  */
2130                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2131                         WARN_ON(p == src_rq->curr);
2132                         WARN_ON(!task_on_rq_queued(p));
2133
2134                         /*
2135                          * There's a chance that p is higher in priority
2136                          * than what's currently running on its CPU.
2137                          * This is just that p is wakeing up and hasn't
2138                          * had a chance to schedule. We only pull
2139                          * p if it is lower in priority than the
2140                          * current task on the run queue
2141                          */
2142                         if (p->prio < src_rq->curr->prio)
2143                                 goto skip;
2144
2145                         resched = true;
2146
2147                         deactivate_task(src_rq, p, 0);
2148                         set_task_cpu(p, this_cpu);
2149                         activate_task(this_rq, p, 0);
2150                         /*
2151                          * We continue with the search, just in
2152                          * case there's an even higher prio task
2153                          * in another runqueue. (low likelihood
2154                          * but possible)
2155                          */
2156                 }
2157 skip:
2158                 double_unlock_balance(this_rq, src_rq);
2159         }
2160
2161         if (resched)
2162                 resched_curr(this_rq);
2163 }
2164
2165 /*
2166  * If we are not running and we are not going to reschedule soon, we should
2167  * try to push tasks away now
2168  */
2169 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2170 {
2171         if (!task_running(rq, p) &&
2172             !test_tsk_need_resched(rq->curr) &&
2173             p->nr_cpus_allowed > 1 &&
2174             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2175             (rq->curr->nr_cpus_allowed < 2 ||
2176              rq->curr->prio <= p->prio))
2177                 push_rt_tasks(rq);
2178 }
2179
2180 /* Assumes rq->lock is held */
2181 static void rq_online_rt(struct rq *rq)
2182 {
2183         if (rq->rt.overloaded)
2184                 rt_set_overload(rq);
2185
2186         __enable_runtime(rq);
2187
2188         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2189 }
2190
2191 /* Assumes rq->lock is held */
2192 static void rq_offline_rt(struct rq *rq)
2193 {
2194         if (rq->rt.overloaded)
2195                 rt_clear_overload(rq);
2196
2197         __disable_runtime(rq);
2198
2199         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2200 }
2201
2202 /*
2203  * When switch from the rt queue, we bring ourselves to a position
2204  * that we might want to pull RT tasks from other runqueues.
2205  */
2206 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2207 {
2208         /*
2209          * If there are other RT tasks then we will reschedule
2210          * and the scheduling of the other RT tasks will handle
2211          * the balancing. But if we are the last RT task
2212          * we may need to handle the pulling of RT tasks
2213          * now.
2214          */
2215         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2216                 return;
2217
2218         rt_queue_pull_task(rq);
2219 }
2220
2221 void __init init_sched_rt_class(void)
2222 {
2223         unsigned int i;
2224
2225         for_each_possible_cpu(i) {
2226                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2227                                         GFP_KERNEL, cpu_to_node(i));
2228         }
2229 }
2230 #endif /* CONFIG_SMP */
2231
2232 /*
2233  * When switching a task to RT, we may overload the runqueue
2234  * with RT tasks. In this case we try to push them off to
2235  * other runqueues.
2236  */
2237 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2238 {
2239         /*
2240          * If we are already running, then there's nothing
2241          * that needs to be done. But if we are not running
2242          * we may need to preempt the current running task.
2243          * If that current running task is also an RT task
2244          * then see if we can move to another run queue.
2245          */
2246         if (task_on_rq_queued(p) && rq->curr != p) {
2247 #ifdef CONFIG_SMP
2248                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2249                         rt_queue_push_tasks(rq);
2250 #endif /* CONFIG_SMP */
2251                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2252                         resched_curr(rq);
2253         }
2254 }
2255
2256 /*
2257  * Priority of the task has changed. This may cause
2258  * us to initiate a push or pull.
2259  */
2260 static void
2261 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2262 {
2263         if (!task_on_rq_queued(p))
2264                 return;
2265
2266         if (rq->curr == p) {
2267 #ifdef CONFIG_SMP
2268                 /*
2269                  * If our priority decreases while running, we
2270                  * may need to pull tasks to this runqueue.
2271                  */
2272                 if (oldprio < p->prio)
2273                         rt_queue_pull_task(rq);
2274
2275                 /*
2276                  * If there's a higher priority task waiting to run
2277                  * then reschedule.
2278                  */
2279                 if (p->prio > rq->rt.highest_prio.curr)
2280                         resched_curr(rq);
2281 #else
2282                 /* For UP simply resched on drop of prio */
2283                 if (oldprio < p->prio)
2284                         resched_curr(rq);
2285 #endif /* CONFIG_SMP */
2286         } else {
2287                 /*
2288                  * This task is not running, but if it is
2289                  * greater than the current running task
2290                  * then reschedule.
2291                  */
2292                 if (p->prio < rq->curr->prio)
2293                         resched_curr(rq);
2294         }
2295 }
2296
2297 #ifdef CONFIG_POSIX_TIMERS
2298 static void watchdog(struct rq *rq, struct task_struct *p)
2299 {
2300         unsigned long soft, hard;
2301
2302         /* max may change after cur was read, this will be fixed next tick */
2303         soft = task_rlimit(p, RLIMIT_RTTIME);
2304         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2305
2306         if (soft != RLIM_INFINITY) {
2307                 unsigned long next;
2308
2309                 if (p->rt.watchdog_stamp != jiffies) {
2310                         p->rt.timeout++;
2311                         p->rt.watchdog_stamp = jiffies;
2312                 }
2313
2314                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2315                 if (p->rt.timeout > next)
2316                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2317         }
2318 }
2319 #else
2320 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2321 #endif
2322
2323 /*
2324  * scheduler tick hitting a task of our scheduling class.
2325  *
2326  * NOTE: This function can be called remotely by the tick offload that
2327  * goes along full dynticks. Therefore no local assumption can be made
2328  * and everything must be accessed through the @rq and @curr passed in
2329  * parameters.
2330  */
2331 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2332 {
2333         struct sched_rt_entity *rt_se = &p->rt;
2334
2335         update_curr_rt(rq);
2336         update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
2337
2338         watchdog(rq, p);
2339
2340         /*
2341          * RR tasks need a special form of timeslice management.
2342          * FIFO tasks have no timeslices.
2343          */
2344         if (p->policy != SCHED_RR)
2345                 return;
2346
2347         if (--p->rt.time_slice)
2348                 return;
2349
2350         p->rt.time_slice = sched_rr_timeslice;
2351
2352         /*
2353          * Requeue to the end of queue if we (and all of our ancestors) are not
2354          * the only element on the queue
2355          */
2356         for_each_sched_rt_entity(rt_se) {
2357                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2358                         requeue_task_rt(rq, p, 0);
2359                         resched_curr(rq);
2360                         return;
2361                 }
2362         }
2363 }
2364
2365 static void set_curr_task_rt(struct rq *rq)
2366 {
2367         struct task_struct *p = rq->curr;
2368
2369         p->se.exec_start = rq_clock_task(rq);
2370
2371         /* The running task is never eligible for pushing */
2372         dequeue_pushable_task(rq, p);
2373 }
2374
2375 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2376 {
2377         /*
2378          * Time slice is 0 for SCHED_FIFO tasks
2379          */
2380         if (task->policy == SCHED_RR)
2381                 return sched_rr_timeslice;
2382         else
2383                 return 0;
2384 }
2385
2386 const struct sched_class rt_sched_class = {
2387         .next                   = &fair_sched_class,
2388         .enqueue_task           = enqueue_task_rt,
2389         .dequeue_task           = dequeue_task_rt,
2390         .yield_task             = yield_task_rt,
2391
2392         .check_preempt_curr     = check_preempt_curr_rt,
2393
2394         .pick_next_task         = pick_next_task_rt,
2395         .put_prev_task          = put_prev_task_rt,
2396
2397 #ifdef CONFIG_SMP
2398         .select_task_rq         = select_task_rq_rt,
2399
2400         .set_cpus_allowed       = set_cpus_allowed_common,
2401         .rq_online              = rq_online_rt,
2402         .rq_offline             = rq_offline_rt,
2403         .task_woken             = task_woken_rt,
2404         .switched_from          = switched_from_rt,
2405 #endif
2406
2407         .set_curr_task          = set_curr_task_rt,
2408         .task_tick              = task_tick_rt,
2409
2410         .get_rr_interval        = get_rr_interval_rt,
2411
2412         .prio_changed           = prio_changed_rt,
2413         .switched_to            = switched_to_rt,
2414
2415         .update_curr            = update_curr_rt,
2416 };
2417
2418 #ifdef CONFIG_RT_GROUP_SCHED
2419 /*
2420  * Ensure that the real time constraints are schedulable.
2421  */
2422 static DEFINE_MUTEX(rt_constraints_mutex);
2423
2424 /* Must be called with tasklist_lock held */
2425 static inline int tg_has_rt_tasks(struct task_group *tg)
2426 {
2427         struct task_struct *g, *p;
2428
2429         /*
2430          * Autogroups do not have RT tasks; see autogroup_create().
2431          */
2432         if (task_group_is_autogroup(tg))
2433                 return 0;
2434
2435         for_each_process_thread(g, p) {
2436                 if (rt_task(p) && task_group(p) == tg)
2437                         return 1;
2438         }
2439
2440         return 0;
2441 }
2442
2443 struct rt_schedulable_data {
2444         struct task_group *tg;
2445         u64 rt_period;
2446         u64 rt_runtime;
2447 };
2448
2449 static int tg_rt_schedulable(struct task_group *tg, void *data)
2450 {
2451         struct rt_schedulable_data *d = data;
2452         struct task_group *child;
2453         unsigned long total, sum = 0;
2454         u64 period, runtime;
2455
2456         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2457         runtime = tg->rt_bandwidth.rt_runtime;
2458
2459         if (tg == d->tg) {
2460                 period = d->rt_period;
2461                 runtime = d->rt_runtime;
2462         }
2463
2464         /*
2465          * Cannot have more runtime than the period.
2466          */
2467         if (runtime > period && runtime != RUNTIME_INF)
2468                 return -EINVAL;
2469
2470         /*
2471          * Ensure we don't starve existing RT tasks.
2472          */
2473         if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2474                 return -EBUSY;
2475
2476         total = to_ratio(period, runtime);
2477
2478         /*
2479          * Nobody can have more than the global setting allows.
2480          */
2481         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2482                 return -EINVAL;
2483
2484         /*
2485          * The sum of our children's runtime should not exceed our own.
2486          */
2487         list_for_each_entry_rcu(child, &tg->children, siblings) {
2488                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2489                 runtime = child->rt_bandwidth.rt_runtime;
2490
2491                 if (child == d->tg) {
2492                         period = d->rt_period;
2493                         runtime = d->rt_runtime;
2494                 }
2495
2496                 sum += to_ratio(period, runtime);
2497         }
2498
2499         if (sum > total)
2500                 return -EINVAL;
2501
2502         return 0;
2503 }
2504
2505 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2506 {
2507         int ret;
2508
2509         struct rt_schedulable_data data = {
2510                 .tg = tg,
2511                 .rt_period = period,
2512                 .rt_runtime = runtime,
2513         };
2514
2515         rcu_read_lock();
2516         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2517         rcu_read_unlock();
2518
2519         return ret;
2520 }
2521
2522 static int tg_set_rt_bandwidth(struct task_group *tg,
2523                 u64 rt_period, u64 rt_runtime)
2524 {
2525         int i, err = 0;
2526
2527         /*
2528          * Disallowing the root group RT runtime is BAD, it would disallow the
2529          * kernel creating (and or operating) RT threads.
2530          */
2531         if (tg == &root_task_group && rt_runtime == 0)
2532                 return -EINVAL;
2533
2534         /* No period doesn't make any sense. */
2535         if (rt_period == 0)
2536                 return -EINVAL;
2537
2538         mutex_lock(&rt_constraints_mutex);
2539         read_lock(&tasklist_lock);
2540         err = __rt_schedulable(tg, rt_period, rt_runtime);
2541         if (err)
2542                 goto unlock;
2543
2544         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2545         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2546         tg->rt_bandwidth.rt_runtime = rt_runtime;
2547
2548         for_each_possible_cpu(i) {
2549                 struct rt_rq *rt_rq = tg->rt_rq[i];
2550
2551                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2552                 rt_rq->rt_runtime = rt_runtime;
2553                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2554         }
2555         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2556 unlock:
2557         read_unlock(&tasklist_lock);
2558         mutex_unlock(&rt_constraints_mutex);
2559
2560         return err;
2561 }
2562
2563 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2564 {
2565         u64 rt_runtime, rt_period;
2566
2567         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2568         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2569         if (rt_runtime_us < 0)
2570                 rt_runtime = RUNTIME_INF;
2571         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2572                 return -EINVAL;
2573
2574         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2575 }
2576
2577 long sched_group_rt_runtime(struct task_group *tg)
2578 {
2579         u64 rt_runtime_us;
2580
2581         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2582                 return -1;
2583
2584         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2585         do_div(rt_runtime_us, NSEC_PER_USEC);
2586         return rt_runtime_us;
2587 }
2588
2589 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2590 {
2591         u64 rt_runtime, rt_period;
2592
2593         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2594                 return -EINVAL;
2595
2596         rt_period = rt_period_us * NSEC_PER_USEC;
2597         rt_runtime = tg->rt_bandwidth.rt_runtime;
2598
2599         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2600 }
2601
2602 long sched_group_rt_period(struct task_group *tg)
2603 {
2604         u64 rt_period_us;
2605
2606         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2607         do_div(rt_period_us, NSEC_PER_USEC);
2608         return rt_period_us;
2609 }
2610
2611 static int sched_rt_global_constraints(void)
2612 {
2613         int ret = 0;
2614
2615         mutex_lock(&rt_constraints_mutex);
2616         read_lock(&tasklist_lock);
2617         ret = __rt_schedulable(NULL, 0, 0);
2618         read_unlock(&tasklist_lock);
2619         mutex_unlock(&rt_constraints_mutex);
2620
2621         return ret;
2622 }
2623
2624 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2625 {
2626         /* Don't accept realtime tasks when there is no way for them to run */
2627         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2628                 return 0;
2629
2630         return 1;
2631 }
2632
2633 #else /* !CONFIG_RT_GROUP_SCHED */
2634 static int sched_rt_global_constraints(void)
2635 {
2636         unsigned long flags;
2637         int i;
2638
2639         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2640         for_each_possible_cpu(i) {
2641                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2642
2643                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2644                 rt_rq->rt_runtime = global_rt_runtime();
2645                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2646         }
2647         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2648
2649         return 0;
2650 }
2651 #endif /* CONFIG_RT_GROUP_SCHED */
2652
2653 static int sched_rt_global_validate(void)
2654 {
2655         if (sysctl_sched_rt_period <= 0)
2656                 return -EINVAL;
2657
2658         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2659                 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2660                 return -EINVAL;
2661
2662         return 0;
2663 }
2664
2665 static void sched_rt_do_global(void)
2666 {
2667         unsigned long flags;
2668
2669         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2670         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2671         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2672         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2673 }
2674
2675 int sched_rt_handler(struct ctl_table *table, int write,
2676                 void __user *buffer, size_t *lenp,
2677                 loff_t *ppos)
2678 {
2679         int old_period, old_runtime;
2680         static DEFINE_MUTEX(mutex);
2681         int ret;
2682
2683         mutex_lock(&mutex);
2684         old_period = sysctl_sched_rt_period;
2685         old_runtime = sysctl_sched_rt_runtime;
2686
2687         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2688
2689         if (!ret && write) {
2690                 ret = sched_rt_global_validate();
2691                 if (ret)
2692                         goto undo;
2693
2694                 ret = sched_dl_global_validate();
2695                 if (ret)
2696                         goto undo;
2697
2698                 ret = sched_rt_global_constraints();
2699                 if (ret)
2700                         goto undo;
2701
2702                 sched_rt_do_global();
2703                 sched_dl_do_global();
2704         }
2705         if (0) {
2706 undo:
2707                 sysctl_sched_rt_period = old_period;
2708                 sysctl_sched_rt_runtime = old_runtime;
2709         }
2710         mutex_unlock(&mutex);
2711
2712         return ret;
2713 }
2714
2715 int sched_rr_handler(struct ctl_table *table, int write,
2716                 void __user *buffer, size_t *lenp,
2717                 loff_t *ppos)
2718 {
2719         int ret;
2720         static DEFINE_MUTEX(mutex);
2721
2722         mutex_lock(&mutex);
2723         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2724         /*
2725          * Make sure that internally we keep jiffies.
2726          * Also, writing zero resets the timeslice to default:
2727          */
2728         if (!ret && write) {
2729                 sched_rr_timeslice =
2730                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2731                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2732         }
2733         mutex_unlock(&mutex);
2734
2735         return ret;
2736 }
2737
2738 #ifdef CONFIG_SCHED_DEBUG
2739 void print_rt_stats(struct seq_file *m, int cpu)
2740 {
2741         rt_rq_iter_t iter;
2742         struct rt_rq *rt_rq;
2743
2744         rcu_read_lock();
2745         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2746                 print_rt_rq(m, cpu, rt_rq);
2747         rcu_read_unlock();
2748 }
2749 #endif /* CONFIG_SCHED_DEBUG */