GNU Linux-libre 6.6.31-gnu
[releases.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13 struct rt_bandwidth def_rt_bandwidth;
14
15 /*
16  * period over which we measure -rt task CPU usage in us.
17  * default: 1s
18  */
19 unsigned int sysctl_sched_rt_period = 1000000;
20
21 /*
22  * part of the period that we allow rt tasks to run in us.
23  * default: 0.95s
24  */
25 int sysctl_sched_rt_runtime = 950000;
26
27 #ifdef CONFIG_SYSCTL
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30                 size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32                 size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
34         {
35                 .procname       = "sched_rt_period_us",
36                 .data           = &sysctl_sched_rt_period,
37                 .maxlen         = sizeof(unsigned int),
38                 .mode           = 0644,
39                 .proc_handler   = sched_rt_handler,
40                 .extra1         = SYSCTL_ONE,
41                 .extra2         = SYSCTL_INT_MAX,
42         },
43         {
44                 .procname       = "sched_rt_runtime_us",
45                 .data           = &sysctl_sched_rt_runtime,
46                 .maxlen         = sizeof(int),
47                 .mode           = 0644,
48                 .proc_handler   = sched_rt_handler,
49                 .extra1         = SYSCTL_NEG_ONE,
50                 .extra2         = SYSCTL_INT_MAX,
51         },
52         {
53                 .procname       = "sched_rr_timeslice_ms",
54                 .data           = &sysctl_sched_rr_timeslice,
55                 .maxlen         = sizeof(int),
56                 .mode           = 0644,
57                 .proc_handler   = sched_rr_handler,
58         },
59         {}
60 };
61
62 static int __init sched_rt_sysctl_init(void)
63 {
64         register_sysctl_init("kernel", sched_rt_sysctls);
65         return 0;
66 }
67 late_initcall(sched_rt_sysctl_init);
68 #endif
69
70 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
71 {
72         struct rt_bandwidth *rt_b =
73                 container_of(timer, struct rt_bandwidth, rt_period_timer);
74         int idle = 0;
75         int overrun;
76
77         raw_spin_lock(&rt_b->rt_runtime_lock);
78         for (;;) {
79                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
80                 if (!overrun)
81                         break;
82
83                 raw_spin_unlock(&rt_b->rt_runtime_lock);
84                 idle = do_sched_rt_period_timer(rt_b, overrun);
85                 raw_spin_lock(&rt_b->rt_runtime_lock);
86         }
87         if (idle)
88                 rt_b->rt_period_active = 0;
89         raw_spin_unlock(&rt_b->rt_runtime_lock);
90
91         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
92 }
93
94 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
95 {
96         rt_b->rt_period = ns_to_ktime(period);
97         rt_b->rt_runtime = runtime;
98
99         raw_spin_lock_init(&rt_b->rt_runtime_lock);
100
101         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
102                      HRTIMER_MODE_REL_HARD);
103         rt_b->rt_period_timer.function = sched_rt_period_timer;
104 }
105
106 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108         raw_spin_lock(&rt_b->rt_runtime_lock);
109         if (!rt_b->rt_period_active) {
110                 rt_b->rt_period_active = 1;
111                 /*
112                  * SCHED_DEADLINE updates the bandwidth, as a run away
113                  * RT task with a DL task could hog a CPU. But DL does
114                  * not reset the period. If a deadline task was running
115                  * without an RT task running, it can cause RT tasks to
116                  * throttle when they start up. Kick the timer right away
117                  * to update the period.
118                  */
119                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
120                 hrtimer_start_expires(&rt_b->rt_period_timer,
121                                       HRTIMER_MODE_ABS_PINNED_HARD);
122         }
123         raw_spin_unlock(&rt_b->rt_runtime_lock);
124 }
125
126 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
127 {
128         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
129                 return;
130
131         do_start_rt_bandwidth(rt_b);
132 }
133
134 void init_rt_rq(struct rt_rq *rt_rq)
135 {
136         struct rt_prio_array *array;
137         int i;
138
139         array = &rt_rq->active;
140         for (i = 0; i < MAX_RT_PRIO; i++) {
141                 INIT_LIST_HEAD(array->queue + i);
142                 __clear_bit(i, array->bitmap);
143         }
144         /* delimiter for bitsearch: */
145         __set_bit(MAX_RT_PRIO, array->bitmap);
146
147 #if defined CONFIG_SMP
148         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
149         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
150         rt_rq->rt_nr_migratory = 0;
151         rt_rq->overloaded = 0;
152         plist_head_init(&rt_rq->pushable_tasks);
153 #endif /* CONFIG_SMP */
154         /* We start is dequeued state, because no RT tasks are queued */
155         rt_rq->rt_queued = 0;
156
157         rt_rq->rt_time = 0;
158         rt_rq->rt_throttled = 0;
159         rt_rq->rt_runtime = 0;
160         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
161 }
162
163 #ifdef CONFIG_RT_GROUP_SCHED
164 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
165 {
166         hrtimer_cancel(&rt_b->rt_period_timer);
167 }
168
169 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
170
171 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
172 {
173 #ifdef CONFIG_SCHED_DEBUG
174         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
175 #endif
176         return container_of(rt_se, struct task_struct, rt);
177 }
178
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180 {
181         return rt_rq->rq;
182 }
183
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185 {
186         return rt_se->rt_rq;
187 }
188
189 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
190 {
191         struct rt_rq *rt_rq = rt_se->rt_rq;
192
193         return rt_rq->rq;
194 }
195
196 void unregister_rt_sched_group(struct task_group *tg)
197 {
198         if (tg->rt_se)
199                 destroy_rt_bandwidth(&tg->rt_bandwidth);
200
201 }
202
203 void free_rt_sched_group(struct task_group *tg)
204 {
205         int i;
206
207         for_each_possible_cpu(i) {
208                 if (tg->rt_rq)
209                         kfree(tg->rt_rq[i]);
210                 if (tg->rt_se)
211                         kfree(tg->rt_se[i]);
212         }
213
214         kfree(tg->rt_rq);
215         kfree(tg->rt_se);
216 }
217
218 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
219                 struct sched_rt_entity *rt_se, int cpu,
220                 struct sched_rt_entity *parent)
221 {
222         struct rq *rq = cpu_rq(cpu);
223
224         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
225         rt_rq->rt_nr_boosted = 0;
226         rt_rq->rq = rq;
227         rt_rq->tg = tg;
228
229         tg->rt_rq[cpu] = rt_rq;
230         tg->rt_se[cpu] = rt_se;
231
232         if (!rt_se)
233                 return;
234
235         if (!parent)
236                 rt_se->rt_rq = &rq->rt;
237         else
238                 rt_se->rt_rq = parent->my_q;
239
240         rt_se->my_q = rt_rq;
241         rt_se->parent = parent;
242         INIT_LIST_HEAD(&rt_se->run_list);
243 }
244
245 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
246 {
247         struct rt_rq *rt_rq;
248         struct sched_rt_entity *rt_se;
249         int i;
250
251         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
252         if (!tg->rt_rq)
253                 goto err;
254         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
255         if (!tg->rt_se)
256                 goto err;
257
258         init_rt_bandwidth(&tg->rt_bandwidth,
259                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
260
261         for_each_possible_cpu(i) {
262                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
263                                      GFP_KERNEL, cpu_to_node(i));
264                 if (!rt_rq)
265                         goto err;
266
267                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
268                                      GFP_KERNEL, cpu_to_node(i));
269                 if (!rt_se)
270                         goto err_free_rq;
271
272                 init_rt_rq(rt_rq);
273                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
274                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
275         }
276
277         return 1;
278
279 err_free_rq:
280         kfree(rt_rq);
281 err:
282         return 0;
283 }
284
285 #else /* CONFIG_RT_GROUP_SCHED */
286
287 #define rt_entity_is_task(rt_se) (1)
288
289 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
290 {
291         return container_of(rt_se, struct task_struct, rt);
292 }
293
294 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
295 {
296         return container_of(rt_rq, struct rq, rt);
297 }
298
299 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
300 {
301         struct task_struct *p = rt_task_of(rt_se);
302
303         return task_rq(p);
304 }
305
306 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
307 {
308         struct rq *rq = rq_of_rt_se(rt_se);
309
310         return &rq->rt;
311 }
312
313 void unregister_rt_sched_group(struct task_group *tg) { }
314
315 void free_rt_sched_group(struct task_group *tg) { }
316
317 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
318 {
319         return 1;
320 }
321 #endif /* CONFIG_RT_GROUP_SCHED */
322
323 #ifdef CONFIG_SMP
324
325 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
326 {
327         /* Try to pull RT tasks here if we lower this rq's prio */
328         return rq->online && rq->rt.highest_prio.curr > prev->prio;
329 }
330
331 static inline int rt_overloaded(struct rq *rq)
332 {
333         return atomic_read(&rq->rd->rto_count);
334 }
335
336 static inline void rt_set_overload(struct rq *rq)
337 {
338         if (!rq->online)
339                 return;
340
341         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
342         /*
343          * Make sure the mask is visible before we set
344          * the overload count. That is checked to determine
345          * if we should look at the mask. It would be a shame
346          * if we looked at the mask, but the mask was not
347          * updated yet.
348          *
349          * Matched by the barrier in pull_rt_task().
350          */
351         smp_wmb();
352         atomic_inc(&rq->rd->rto_count);
353 }
354
355 static inline void rt_clear_overload(struct rq *rq)
356 {
357         if (!rq->online)
358                 return;
359
360         /* the order here really doesn't matter */
361         atomic_dec(&rq->rd->rto_count);
362         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
363 }
364
365 static void update_rt_migration(struct rt_rq *rt_rq)
366 {
367         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
368                 if (!rt_rq->overloaded) {
369                         rt_set_overload(rq_of_rt_rq(rt_rq));
370                         rt_rq->overloaded = 1;
371                 }
372         } else if (rt_rq->overloaded) {
373                 rt_clear_overload(rq_of_rt_rq(rt_rq));
374                 rt_rq->overloaded = 0;
375         }
376 }
377
378 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
379 {
380         struct task_struct *p;
381
382         if (!rt_entity_is_task(rt_se))
383                 return;
384
385         p = rt_task_of(rt_se);
386         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
387
388         rt_rq->rt_nr_total++;
389         if (p->nr_cpus_allowed > 1)
390                 rt_rq->rt_nr_migratory++;
391
392         update_rt_migration(rt_rq);
393 }
394
395 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
396 {
397         struct task_struct *p;
398
399         if (!rt_entity_is_task(rt_se))
400                 return;
401
402         p = rt_task_of(rt_se);
403         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
404
405         rt_rq->rt_nr_total--;
406         if (p->nr_cpus_allowed > 1)
407                 rt_rq->rt_nr_migratory--;
408
409         update_rt_migration(rt_rq);
410 }
411
412 static inline int has_pushable_tasks(struct rq *rq)
413 {
414         return !plist_head_empty(&rq->rt.pushable_tasks);
415 }
416
417 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
418 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
419
420 static void push_rt_tasks(struct rq *);
421 static void pull_rt_task(struct rq *);
422
423 static inline void rt_queue_push_tasks(struct rq *rq)
424 {
425         if (!has_pushable_tasks(rq))
426                 return;
427
428         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
429 }
430
431 static inline void rt_queue_pull_task(struct rq *rq)
432 {
433         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
434 }
435
436 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
437 {
438         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
439         plist_node_init(&p->pushable_tasks, p->prio);
440         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
441
442         /* Update the highest prio pushable task */
443         if (p->prio < rq->rt.highest_prio.next)
444                 rq->rt.highest_prio.next = p->prio;
445 }
446
447 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
448 {
449         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
450
451         /* Update the new highest prio pushable task */
452         if (has_pushable_tasks(rq)) {
453                 p = plist_first_entry(&rq->rt.pushable_tasks,
454                                       struct task_struct, pushable_tasks);
455                 rq->rt.highest_prio.next = p->prio;
456         } else {
457                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
458         }
459 }
460
461 #else
462
463 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
464 {
465 }
466
467 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
468 {
469 }
470
471 static inline
472 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
473 {
474 }
475
476 static inline
477 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
478 {
479 }
480
481 static inline void rt_queue_push_tasks(struct rq *rq)
482 {
483 }
484 #endif /* CONFIG_SMP */
485
486 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
487 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
488
489 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
490 {
491         return rt_se->on_rq;
492 }
493
494 #ifdef CONFIG_UCLAMP_TASK
495 /*
496  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
497  * settings.
498  *
499  * This check is only important for heterogeneous systems where uclamp_min value
500  * is higher than the capacity of a @cpu. For non-heterogeneous system this
501  * function will always return true.
502  *
503  * The function will return true if the capacity of the @cpu is >= the
504  * uclamp_min and false otherwise.
505  *
506  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
507  * > uclamp_max.
508  */
509 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
510 {
511         unsigned int min_cap;
512         unsigned int max_cap;
513         unsigned int cpu_cap;
514
515         /* Only heterogeneous systems can benefit from this check */
516         if (!sched_asym_cpucap_active())
517                 return true;
518
519         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
520         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
521
522         cpu_cap = capacity_orig_of(cpu);
523
524         return cpu_cap >= min(min_cap, max_cap);
525 }
526 #else
527 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
528 {
529         return true;
530 }
531 #endif
532
533 #ifdef CONFIG_RT_GROUP_SCHED
534
535 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
536 {
537         if (!rt_rq->tg)
538                 return RUNTIME_INF;
539
540         return rt_rq->rt_runtime;
541 }
542
543 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
544 {
545         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
546 }
547
548 typedef struct task_group *rt_rq_iter_t;
549
550 static inline struct task_group *next_task_group(struct task_group *tg)
551 {
552         do {
553                 tg = list_entry_rcu(tg->list.next,
554                         typeof(struct task_group), list);
555         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
556
557         if (&tg->list == &task_groups)
558                 tg = NULL;
559
560         return tg;
561 }
562
563 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
564         for (iter = container_of(&task_groups, typeof(*iter), list);    \
565                 (iter = next_task_group(iter)) &&                       \
566                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
567
568 #define for_each_sched_rt_entity(rt_se) \
569         for (; rt_se; rt_se = rt_se->parent)
570
571 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
572 {
573         return rt_se->my_q;
574 }
575
576 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
577 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
578
579 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
580 {
581         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
582         struct rq *rq = rq_of_rt_rq(rt_rq);
583         struct sched_rt_entity *rt_se;
584
585         int cpu = cpu_of(rq);
586
587         rt_se = rt_rq->tg->rt_se[cpu];
588
589         if (rt_rq->rt_nr_running) {
590                 if (!rt_se)
591                         enqueue_top_rt_rq(rt_rq);
592                 else if (!on_rt_rq(rt_se))
593                         enqueue_rt_entity(rt_se, 0);
594
595                 if (rt_rq->highest_prio.curr < curr->prio)
596                         resched_curr(rq);
597         }
598 }
599
600 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
601 {
602         struct sched_rt_entity *rt_se;
603         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
604
605         rt_se = rt_rq->tg->rt_se[cpu];
606
607         if (!rt_se) {
608                 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
609                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
610                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
611         }
612         else if (on_rt_rq(rt_se))
613                 dequeue_rt_entity(rt_se, 0);
614 }
615
616 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
617 {
618         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
619 }
620
621 static int rt_se_boosted(struct sched_rt_entity *rt_se)
622 {
623         struct rt_rq *rt_rq = group_rt_rq(rt_se);
624         struct task_struct *p;
625
626         if (rt_rq)
627                 return !!rt_rq->rt_nr_boosted;
628
629         p = rt_task_of(rt_se);
630         return p->prio != p->normal_prio;
631 }
632
633 #ifdef CONFIG_SMP
634 static inline const struct cpumask *sched_rt_period_mask(void)
635 {
636         return this_rq()->rd->span;
637 }
638 #else
639 static inline const struct cpumask *sched_rt_period_mask(void)
640 {
641         return cpu_online_mask;
642 }
643 #endif
644
645 static inline
646 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
647 {
648         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
649 }
650
651 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
652 {
653         return &rt_rq->tg->rt_bandwidth;
654 }
655
656 #else /* !CONFIG_RT_GROUP_SCHED */
657
658 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
659 {
660         return rt_rq->rt_runtime;
661 }
662
663 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
664 {
665         return ktime_to_ns(def_rt_bandwidth.rt_period);
666 }
667
668 typedef struct rt_rq *rt_rq_iter_t;
669
670 #define for_each_rt_rq(rt_rq, iter, rq) \
671         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
672
673 #define for_each_sched_rt_entity(rt_se) \
674         for (; rt_se; rt_se = NULL)
675
676 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
677 {
678         return NULL;
679 }
680
681 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
682 {
683         struct rq *rq = rq_of_rt_rq(rt_rq);
684
685         if (!rt_rq->rt_nr_running)
686                 return;
687
688         enqueue_top_rt_rq(rt_rq);
689         resched_curr(rq);
690 }
691
692 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
693 {
694         dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
695 }
696
697 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
698 {
699         return rt_rq->rt_throttled;
700 }
701
702 static inline const struct cpumask *sched_rt_period_mask(void)
703 {
704         return cpu_online_mask;
705 }
706
707 static inline
708 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
709 {
710         return &cpu_rq(cpu)->rt;
711 }
712
713 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
714 {
715         return &def_rt_bandwidth;
716 }
717
718 #endif /* CONFIG_RT_GROUP_SCHED */
719
720 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
721 {
722         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
723
724         return (hrtimer_active(&rt_b->rt_period_timer) ||
725                 rt_rq->rt_time < rt_b->rt_runtime);
726 }
727
728 #ifdef CONFIG_SMP
729 /*
730  * We ran out of runtime, see if we can borrow some from our neighbours.
731  */
732 static void do_balance_runtime(struct rt_rq *rt_rq)
733 {
734         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
735         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
736         int i, weight;
737         u64 rt_period;
738
739         weight = cpumask_weight(rd->span);
740
741         raw_spin_lock(&rt_b->rt_runtime_lock);
742         rt_period = ktime_to_ns(rt_b->rt_period);
743         for_each_cpu(i, rd->span) {
744                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
745                 s64 diff;
746
747                 if (iter == rt_rq)
748                         continue;
749
750                 raw_spin_lock(&iter->rt_runtime_lock);
751                 /*
752                  * Either all rqs have inf runtime and there's nothing to steal
753                  * or __disable_runtime() below sets a specific rq to inf to
754                  * indicate its been disabled and disallow stealing.
755                  */
756                 if (iter->rt_runtime == RUNTIME_INF)
757                         goto next;
758
759                 /*
760                  * From runqueues with spare time, take 1/n part of their
761                  * spare time, but no more than our period.
762                  */
763                 diff = iter->rt_runtime - iter->rt_time;
764                 if (diff > 0) {
765                         diff = div_u64((u64)diff, weight);
766                         if (rt_rq->rt_runtime + diff > rt_period)
767                                 diff = rt_period - rt_rq->rt_runtime;
768                         iter->rt_runtime -= diff;
769                         rt_rq->rt_runtime += diff;
770                         if (rt_rq->rt_runtime == rt_period) {
771                                 raw_spin_unlock(&iter->rt_runtime_lock);
772                                 break;
773                         }
774                 }
775 next:
776                 raw_spin_unlock(&iter->rt_runtime_lock);
777         }
778         raw_spin_unlock(&rt_b->rt_runtime_lock);
779 }
780
781 /*
782  * Ensure this RQ takes back all the runtime it lend to its neighbours.
783  */
784 static void __disable_runtime(struct rq *rq)
785 {
786         struct root_domain *rd = rq->rd;
787         rt_rq_iter_t iter;
788         struct rt_rq *rt_rq;
789
790         if (unlikely(!scheduler_running))
791                 return;
792
793         for_each_rt_rq(rt_rq, iter, rq) {
794                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
795                 s64 want;
796                 int i;
797
798                 raw_spin_lock(&rt_b->rt_runtime_lock);
799                 raw_spin_lock(&rt_rq->rt_runtime_lock);
800                 /*
801                  * Either we're all inf and nobody needs to borrow, or we're
802                  * already disabled and thus have nothing to do, or we have
803                  * exactly the right amount of runtime to take out.
804                  */
805                 if (rt_rq->rt_runtime == RUNTIME_INF ||
806                                 rt_rq->rt_runtime == rt_b->rt_runtime)
807                         goto balanced;
808                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
809
810                 /*
811                  * Calculate the difference between what we started out with
812                  * and what we current have, that's the amount of runtime
813                  * we lend and now have to reclaim.
814                  */
815                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
816
817                 /*
818                  * Greedy reclaim, take back as much as we can.
819                  */
820                 for_each_cpu(i, rd->span) {
821                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
822                         s64 diff;
823
824                         /*
825                          * Can't reclaim from ourselves or disabled runqueues.
826                          */
827                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
828                                 continue;
829
830                         raw_spin_lock(&iter->rt_runtime_lock);
831                         if (want > 0) {
832                                 diff = min_t(s64, iter->rt_runtime, want);
833                                 iter->rt_runtime -= diff;
834                                 want -= diff;
835                         } else {
836                                 iter->rt_runtime -= want;
837                                 want -= want;
838                         }
839                         raw_spin_unlock(&iter->rt_runtime_lock);
840
841                         if (!want)
842                                 break;
843                 }
844
845                 raw_spin_lock(&rt_rq->rt_runtime_lock);
846                 /*
847                  * We cannot be left wanting - that would mean some runtime
848                  * leaked out of the system.
849                  */
850                 WARN_ON_ONCE(want);
851 balanced:
852                 /*
853                  * Disable all the borrow logic by pretending we have inf
854                  * runtime - in which case borrowing doesn't make sense.
855                  */
856                 rt_rq->rt_runtime = RUNTIME_INF;
857                 rt_rq->rt_throttled = 0;
858                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
859                 raw_spin_unlock(&rt_b->rt_runtime_lock);
860
861                 /* Make rt_rq available for pick_next_task() */
862                 sched_rt_rq_enqueue(rt_rq);
863         }
864 }
865
866 static void __enable_runtime(struct rq *rq)
867 {
868         rt_rq_iter_t iter;
869         struct rt_rq *rt_rq;
870
871         if (unlikely(!scheduler_running))
872                 return;
873
874         /*
875          * Reset each runqueue's bandwidth settings
876          */
877         for_each_rt_rq(rt_rq, iter, rq) {
878                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
879
880                 raw_spin_lock(&rt_b->rt_runtime_lock);
881                 raw_spin_lock(&rt_rq->rt_runtime_lock);
882                 rt_rq->rt_runtime = rt_b->rt_runtime;
883                 rt_rq->rt_time = 0;
884                 rt_rq->rt_throttled = 0;
885                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
886                 raw_spin_unlock(&rt_b->rt_runtime_lock);
887         }
888 }
889
890 static void balance_runtime(struct rt_rq *rt_rq)
891 {
892         if (!sched_feat(RT_RUNTIME_SHARE))
893                 return;
894
895         if (rt_rq->rt_time > rt_rq->rt_runtime) {
896                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
897                 do_balance_runtime(rt_rq);
898                 raw_spin_lock(&rt_rq->rt_runtime_lock);
899         }
900 }
901 #else /* !CONFIG_SMP */
902 static inline void balance_runtime(struct rt_rq *rt_rq) {}
903 #endif /* CONFIG_SMP */
904
905 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
906 {
907         int i, idle = 1, throttled = 0;
908         const struct cpumask *span;
909
910         span = sched_rt_period_mask();
911 #ifdef CONFIG_RT_GROUP_SCHED
912         /*
913          * FIXME: isolated CPUs should really leave the root task group,
914          * whether they are isolcpus or were isolated via cpusets, lest
915          * the timer run on a CPU which does not service all runqueues,
916          * potentially leaving other CPUs indefinitely throttled.  If
917          * isolation is really required, the user will turn the throttle
918          * off to kill the perturbations it causes anyway.  Meanwhile,
919          * this maintains functionality for boot and/or troubleshooting.
920          */
921         if (rt_b == &root_task_group.rt_bandwidth)
922                 span = cpu_online_mask;
923 #endif
924         for_each_cpu(i, span) {
925                 int enqueue = 0;
926                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
927                 struct rq *rq = rq_of_rt_rq(rt_rq);
928                 struct rq_flags rf;
929                 int skip;
930
931                 /*
932                  * When span == cpu_online_mask, taking each rq->lock
933                  * can be time-consuming. Try to avoid it when possible.
934                  */
935                 raw_spin_lock(&rt_rq->rt_runtime_lock);
936                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
937                         rt_rq->rt_runtime = rt_b->rt_runtime;
938                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
939                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
940                 if (skip)
941                         continue;
942
943                 rq_lock(rq, &rf);
944                 update_rq_clock(rq);
945
946                 if (rt_rq->rt_time) {
947                         u64 runtime;
948
949                         raw_spin_lock(&rt_rq->rt_runtime_lock);
950                         if (rt_rq->rt_throttled)
951                                 balance_runtime(rt_rq);
952                         runtime = rt_rq->rt_runtime;
953                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
954                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
955                                 rt_rq->rt_throttled = 0;
956                                 enqueue = 1;
957
958                                 /*
959                                  * When we're idle and a woken (rt) task is
960                                  * throttled check_preempt_curr() will set
961                                  * skip_update and the time between the wakeup
962                                  * and this unthrottle will get accounted as
963                                  * 'runtime'.
964                                  */
965                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
966                                         rq_clock_cancel_skipupdate(rq);
967                         }
968                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
969                                 idle = 0;
970                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
971                 } else if (rt_rq->rt_nr_running) {
972                         idle = 0;
973                         if (!rt_rq_throttled(rt_rq))
974                                 enqueue = 1;
975                 }
976                 if (rt_rq->rt_throttled)
977                         throttled = 1;
978
979                 if (enqueue)
980                         sched_rt_rq_enqueue(rt_rq);
981                 rq_unlock(rq, &rf);
982         }
983
984         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
985                 return 1;
986
987         return idle;
988 }
989
990 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
991 {
992 #ifdef CONFIG_RT_GROUP_SCHED
993         struct rt_rq *rt_rq = group_rt_rq(rt_se);
994
995         if (rt_rq)
996                 return rt_rq->highest_prio.curr;
997 #endif
998
999         return rt_task_of(rt_se)->prio;
1000 }
1001
1002 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
1003 {
1004         u64 runtime = sched_rt_runtime(rt_rq);
1005
1006         if (rt_rq->rt_throttled)
1007                 return rt_rq_throttled(rt_rq);
1008
1009         if (runtime >= sched_rt_period(rt_rq))
1010                 return 0;
1011
1012         balance_runtime(rt_rq);
1013         runtime = sched_rt_runtime(rt_rq);
1014         if (runtime == RUNTIME_INF)
1015                 return 0;
1016
1017         if (rt_rq->rt_time > runtime) {
1018                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1019
1020                 /*
1021                  * Don't actually throttle groups that have no runtime assigned
1022                  * but accrue some time due to boosting.
1023                  */
1024                 if (likely(rt_b->rt_runtime)) {
1025                         rt_rq->rt_throttled = 1;
1026                         printk_deferred_once("sched: RT throttling activated\n");
1027                 } else {
1028                         /*
1029                          * In case we did anyway, make it go away,
1030                          * replenishment is a joke, since it will replenish us
1031                          * with exactly 0 ns.
1032                          */
1033                         rt_rq->rt_time = 0;
1034                 }
1035
1036                 if (rt_rq_throttled(rt_rq)) {
1037                         sched_rt_rq_dequeue(rt_rq);
1038                         return 1;
1039                 }
1040         }
1041
1042         return 0;
1043 }
1044
1045 /*
1046  * Update the current task's runtime statistics. Skip current tasks that
1047  * are not in our scheduling class.
1048  */
1049 static void update_curr_rt(struct rq *rq)
1050 {
1051         struct task_struct *curr = rq->curr;
1052         struct sched_rt_entity *rt_se = &curr->rt;
1053         u64 delta_exec;
1054         u64 now;
1055
1056         if (curr->sched_class != &rt_sched_class)
1057                 return;
1058
1059         now = rq_clock_task(rq);
1060         delta_exec = now - curr->se.exec_start;
1061         if (unlikely((s64)delta_exec <= 0))
1062                 return;
1063
1064         schedstat_set(curr->stats.exec_max,
1065                       max(curr->stats.exec_max, delta_exec));
1066
1067         trace_sched_stat_runtime(curr, delta_exec, 0);
1068
1069         update_current_exec_runtime(curr, now, delta_exec);
1070
1071         if (!rt_bandwidth_enabled())
1072                 return;
1073
1074         for_each_sched_rt_entity(rt_se) {
1075                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1076                 int exceeded;
1077
1078                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1079                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1080                         rt_rq->rt_time += delta_exec;
1081                         exceeded = sched_rt_runtime_exceeded(rt_rq);
1082                         if (exceeded)
1083                                 resched_curr(rq);
1084                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1085                         if (exceeded)
1086                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1087                 }
1088         }
1089 }
1090
1091 static void
1092 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1093 {
1094         struct rq *rq = rq_of_rt_rq(rt_rq);
1095
1096         BUG_ON(&rq->rt != rt_rq);
1097
1098         if (!rt_rq->rt_queued)
1099                 return;
1100
1101         BUG_ON(!rq->nr_running);
1102
1103         sub_nr_running(rq, count);
1104         rt_rq->rt_queued = 0;
1105
1106 }
1107
1108 static void
1109 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1110 {
1111         struct rq *rq = rq_of_rt_rq(rt_rq);
1112
1113         BUG_ON(&rq->rt != rt_rq);
1114
1115         if (rt_rq->rt_queued)
1116                 return;
1117
1118         if (rt_rq_throttled(rt_rq))
1119                 return;
1120
1121         if (rt_rq->rt_nr_running) {
1122                 add_nr_running(rq, rt_rq->rt_nr_running);
1123                 rt_rq->rt_queued = 1;
1124         }
1125
1126         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1127         cpufreq_update_util(rq, 0);
1128 }
1129
1130 #if defined CONFIG_SMP
1131
1132 static void
1133 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1134 {
1135         struct rq *rq = rq_of_rt_rq(rt_rq);
1136
1137 #ifdef CONFIG_RT_GROUP_SCHED
1138         /*
1139          * Change rq's cpupri only if rt_rq is the top queue.
1140          */
1141         if (&rq->rt != rt_rq)
1142                 return;
1143 #endif
1144         if (rq->online && prio < prev_prio)
1145                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1146 }
1147
1148 static void
1149 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1150 {
1151         struct rq *rq = rq_of_rt_rq(rt_rq);
1152
1153 #ifdef CONFIG_RT_GROUP_SCHED
1154         /*
1155          * Change rq's cpupri only if rt_rq is the top queue.
1156          */
1157         if (&rq->rt != rt_rq)
1158                 return;
1159 #endif
1160         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1161                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1162 }
1163
1164 #else /* CONFIG_SMP */
1165
1166 static inline
1167 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1168 static inline
1169 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1170
1171 #endif /* CONFIG_SMP */
1172
1173 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1174 static void
1175 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1176 {
1177         int prev_prio = rt_rq->highest_prio.curr;
1178
1179         if (prio < prev_prio)
1180                 rt_rq->highest_prio.curr = prio;
1181
1182         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1183 }
1184
1185 static void
1186 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1187 {
1188         int prev_prio = rt_rq->highest_prio.curr;
1189
1190         if (rt_rq->rt_nr_running) {
1191
1192                 WARN_ON(prio < prev_prio);
1193
1194                 /*
1195                  * This may have been our highest task, and therefore
1196                  * we may have some recomputation to do
1197                  */
1198                 if (prio == prev_prio) {
1199                         struct rt_prio_array *array = &rt_rq->active;
1200
1201                         rt_rq->highest_prio.curr =
1202                                 sched_find_first_bit(array->bitmap);
1203                 }
1204
1205         } else {
1206                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1207         }
1208
1209         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1210 }
1211
1212 #else
1213
1214 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1215 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1216
1217 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1218
1219 #ifdef CONFIG_RT_GROUP_SCHED
1220
1221 static void
1222 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1223 {
1224         if (rt_se_boosted(rt_se))
1225                 rt_rq->rt_nr_boosted++;
1226
1227         if (rt_rq->tg)
1228                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1229 }
1230
1231 static void
1232 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1233 {
1234         if (rt_se_boosted(rt_se))
1235                 rt_rq->rt_nr_boosted--;
1236
1237         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1238 }
1239
1240 #else /* CONFIG_RT_GROUP_SCHED */
1241
1242 static void
1243 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1244 {
1245         start_rt_bandwidth(&def_rt_bandwidth);
1246 }
1247
1248 static inline
1249 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1250
1251 #endif /* CONFIG_RT_GROUP_SCHED */
1252
1253 static inline
1254 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1255 {
1256         struct rt_rq *group_rq = group_rt_rq(rt_se);
1257
1258         if (group_rq)
1259                 return group_rq->rt_nr_running;
1260         else
1261                 return 1;
1262 }
1263
1264 static inline
1265 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1266 {
1267         struct rt_rq *group_rq = group_rt_rq(rt_se);
1268         struct task_struct *tsk;
1269
1270         if (group_rq)
1271                 return group_rq->rr_nr_running;
1272
1273         tsk = rt_task_of(rt_se);
1274
1275         return (tsk->policy == SCHED_RR) ? 1 : 0;
1276 }
1277
1278 static inline
1279 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1280 {
1281         int prio = rt_se_prio(rt_se);
1282
1283         WARN_ON(!rt_prio(prio));
1284         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1285         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1286
1287         inc_rt_prio(rt_rq, prio);
1288         inc_rt_migration(rt_se, rt_rq);
1289         inc_rt_group(rt_se, rt_rq);
1290 }
1291
1292 static inline
1293 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1294 {
1295         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1296         WARN_ON(!rt_rq->rt_nr_running);
1297         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1298         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1299
1300         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1301         dec_rt_migration(rt_se, rt_rq);
1302         dec_rt_group(rt_se, rt_rq);
1303 }
1304
1305 /*
1306  * Change rt_se->run_list location unless SAVE && !MOVE
1307  *
1308  * assumes ENQUEUE/DEQUEUE flags match
1309  */
1310 static inline bool move_entity(unsigned int flags)
1311 {
1312         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1313                 return false;
1314
1315         return true;
1316 }
1317
1318 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1319 {
1320         list_del_init(&rt_se->run_list);
1321
1322         if (list_empty(array->queue + rt_se_prio(rt_se)))
1323                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1324
1325         rt_se->on_list = 0;
1326 }
1327
1328 static inline struct sched_statistics *
1329 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1330 {
1331 #ifdef CONFIG_RT_GROUP_SCHED
1332         /* schedstats is not supported for rt group. */
1333         if (!rt_entity_is_task(rt_se))
1334                 return NULL;
1335 #endif
1336
1337         return &rt_task_of(rt_se)->stats;
1338 }
1339
1340 static inline void
1341 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1342 {
1343         struct sched_statistics *stats;
1344         struct task_struct *p = NULL;
1345
1346         if (!schedstat_enabled())
1347                 return;
1348
1349         if (rt_entity_is_task(rt_se))
1350                 p = rt_task_of(rt_se);
1351
1352         stats = __schedstats_from_rt_se(rt_se);
1353         if (!stats)
1354                 return;
1355
1356         __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1357 }
1358
1359 static inline void
1360 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1361 {
1362         struct sched_statistics *stats;
1363         struct task_struct *p = NULL;
1364
1365         if (!schedstat_enabled())
1366                 return;
1367
1368         if (rt_entity_is_task(rt_se))
1369                 p = rt_task_of(rt_se);
1370
1371         stats = __schedstats_from_rt_se(rt_se);
1372         if (!stats)
1373                 return;
1374
1375         __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1376 }
1377
1378 static inline void
1379 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1380                         int flags)
1381 {
1382         if (!schedstat_enabled())
1383                 return;
1384
1385         if (flags & ENQUEUE_WAKEUP)
1386                 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1387 }
1388
1389 static inline void
1390 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1391 {
1392         struct sched_statistics *stats;
1393         struct task_struct *p = NULL;
1394
1395         if (!schedstat_enabled())
1396                 return;
1397
1398         if (rt_entity_is_task(rt_se))
1399                 p = rt_task_of(rt_se);
1400
1401         stats = __schedstats_from_rt_se(rt_se);
1402         if (!stats)
1403                 return;
1404
1405         __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1406 }
1407
1408 static inline void
1409 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1410                         int flags)
1411 {
1412         struct task_struct *p = NULL;
1413
1414         if (!schedstat_enabled())
1415                 return;
1416
1417         if (rt_entity_is_task(rt_se))
1418                 p = rt_task_of(rt_se);
1419
1420         if ((flags & DEQUEUE_SLEEP) && p) {
1421                 unsigned int state;
1422
1423                 state = READ_ONCE(p->__state);
1424                 if (state & TASK_INTERRUPTIBLE)
1425                         __schedstat_set(p->stats.sleep_start,
1426                                         rq_clock(rq_of_rt_rq(rt_rq)));
1427
1428                 if (state & TASK_UNINTERRUPTIBLE)
1429                         __schedstat_set(p->stats.block_start,
1430                                         rq_clock(rq_of_rt_rq(rt_rq)));
1431         }
1432 }
1433
1434 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1435 {
1436         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1437         struct rt_prio_array *array = &rt_rq->active;
1438         struct rt_rq *group_rq = group_rt_rq(rt_se);
1439         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1440
1441         /*
1442          * Don't enqueue the group if its throttled, or when empty.
1443          * The latter is a consequence of the former when a child group
1444          * get throttled and the current group doesn't have any other
1445          * active members.
1446          */
1447         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1448                 if (rt_se->on_list)
1449                         __delist_rt_entity(rt_se, array);
1450                 return;
1451         }
1452
1453         if (move_entity(flags)) {
1454                 WARN_ON_ONCE(rt_se->on_list);
1455                 if (flags & ENQUEUE_HEAD)
1456                         list_add(&rt_se->run_list, queue);
1457                 else
1458                         list_add_tail(&rt_se->run_list, queue);
1459
1460                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1461                 rt_se->on_list = 1;
1462         }
1463         rt_se->on_rq = 1;
1464
1465         inc_rt_tasks(rt_se, rt_rq);
1466 }
1467
1468 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1469 {
1470         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1471         struct rt_prio_array *array = &rt_rq->active;
1472
1473         if (move_entity(flags)) {
1474                 WARN_ON_ONCE(!rt_se->on_list);
1475                 __delist_rt_entity(rt_se, array);
1476         }
1477         rt_se->on_rq = 0;
1478
1479         dec_rt_tasks(rt_se, rt_rq);
1480 }
1481
1482 /*
1483  * Because the prio of an upper entry depends on the lower
1484  * entries, we must remove entries top - down.
1485  */
1486 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1487 {
1488         struct sched_rt_entity *back = NULL;
1489         unsigned int rt_nr_running;
1490
1491         for_each_sched_rt_entity(rt_se) {
1492                 rt_se->back = back;
1493                 back = rt_se;
1494         }
1495
1496         rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1497
1498         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1499                 if (on_rt_rq(rt_se))
1500                         __dequeue_rt_entity(rt_se, flags);
1501         }
1502
1503         dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1504 }
1505
1506 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1507 {
1508         struct rq *rq = rq_of_rt_se(rt_se);
1509
1510         update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1511
1512         dequeue_rt_stack(rt_se, flags);
1513         for_each_sched_rt_entity(rt_se)
1514                 __enqueue_rt_entity(rt_se, flags);
1515         enqueue_top_rt_rq(&rq->rt);
1516 }
1517
1518 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1519 {
1520         struct rq *rq = rq_of_rt_se(rt_se);
1521
1522         update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1523
1524         dequeue_rt_stack(rt_se, flags);
1525
1526         for_each_sched_rt_entity(rt_se) {
1527                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1528
1529                 if (rt_rq && rt_rq->rt_nr_running)
1530                         __enqueue_rt_entity(rt_se, flags);
1531         }
1532         enqueue_top_rt_rq(&rq->rt);
1533 }
1534
1535 /*
1536  * Adding/removing a task to/from a priority array:
1537  */
1538 static void
1539 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1540 {
1541         struct sched_rt_entity *rt_se = &p->rt;
1542
1543         if (flags & ENQUEUE_WAKEUP)
1544                 rt_se->timeout = 0;
1545
1546         check_schedstat_required();
1547         update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1548
1549         enqueue_rt_entity(rt_se, flags);
1550
1551         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1552                 enqueue_pushable_task(rq, p);
1553 }
1554
1555 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1556 {
1557         struct sched_rt_entity *rt_se = &p->rt;
1558
1559         update_curr_rt(rq);
1560         dequeue_rt_entity(rt_se, flags);
1561
1562         dequeue_pushable_task(rq, p);
1563 }
1564
1565 /*
1566  * Put task to the head or the end of the run list without the overhead of
1567  * dequeue followed by enqueue.
1568  */
1569 static void
1570 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1571 {
1572         if (on_rt_rq(rt_se)) {
1573                 struct rt_prio_array *array = &rt_rq->active;
1574                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1575
1576                 if (head)
1577                         list_move(&rt_se->run_list, queue);
1578                 else
1579                         list_move_tail(&rt_se->run_list, queue);
1580         }
1581 }
1582
1583 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1584 {
1585         struct sched_rt_entity *rt_se = &p->rt;
1586         struct rt_rq *rt_rq;
1587
1588         for_each_sched_rt_entity(rt_se) {
1589                 rt_rq = rt_rq_of_se(rt_se);
1590                 requeue_rt_entity(rt_rq, rt_se, head);
1591         }
1592 }
1593
1594 static void yield_task_rt(struct rq *rq)
1595 {
1596         requeue_task_rt(rq, rq->curr, 0);
1597 }
1598
1599 #ifdef CONFIG_SMP
1600 static int find_lowest_rq(struct task_struct *task);
1601
1602 static int
1603 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1604 {
1605         struct task_struct *curr;
1606         struct rq *rq;
1607         bool test;
1608
1609         /* For anything but wake ups, just return the task_cpu */
1610         if (!(flags & (WF_TTWU | WF_FORK)))
1611                 goto out;
1612
1613         rq = cpu_rq(cpu);
1614
1615         rcu_read_lock();
1616         curr = READ_ONCE(rq->curr); /* unlocked access */
1617
1618         /*
1619          * If the current task on @p's runqueue is an RT task, then
1620          * try to see if we can wake this RT task up on another
1621          * runqueue. Otherwise simply start this RT task
1622          * on its current runqueue.
1623          *
1624          * We want to avoid overloading runqueues. If the woken
1625          * task is a higher priority, then it will stay on this CPU
1626          * and the lower prio task should be moved to another CPU.
1627          * Even though this will probably make the lower prio task
1628          * lose its cache, we do not want to bounce a higher task
1629          * around just because it gave up its CPU, perhaps for a
1630          * lock?
1631          *
1632          * For equal prio tasks, we just let the scheduler sort it out.
1633          *
1634          * Otherwise, just let it ride on the affined RQ and the
1635          * post-schedule router will push the preempted task away
1636          *
1637          * This test is optimistic, if we get it wrong the load-balancer
1638          * will have to sort it out.
1639          *
1640          * We take into account the capacity of the CPU to ensure it fits the
1641          * requirement of the task - which is only important on heterogeneous
1642          * systems like big.LITTLE.
1643          */
1644         test = curr &&
1645                unlikely(rt_task(curr)) &&
1646                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1647
1648         if (test || !rt_task_fits_capacity(p, cpu)) {
1649                 int target = find_lowest_rq(p);
1650
1651                 /*
1652                  * Bail out if we were forcing a migration to find a better
1653                  * fitting CPU but our search failed.
1654                  */
1655                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1656                         goto out_unlock;
1657
1658                 /*
1659                  * Don't bother moving it if the destination CPU is
1660                  * not running a lower priority task.
1661                  */
1662                 if (target != -1 &&
1663                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1664                         cpu = target;
1665         }
1666
1667 out_unlock:
1668         rcu_read_unlock();
1669
1670 out:
1671         return cpu;
1672 }
1673
1674 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1675 {
1676         /*
1677          * Current can't be migrated, useless to reschedule,
1678          * let's hope p can move out.
1679          */
1680         if (rq->curr->nr_cpus_allowed == 1 ||
1681             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1682                 return;
1683
1684         /*
1685          * p is migratable, so let's not schedule it and
1686          * see if it is pushed or pulled somewhere else.
1687          */
1688         if (p->nr_cpus_allowed != 1 &&
1689             cpupri_find(&rq->rd->cpupri, p, NULL))
1690                 return;
1691
1692         /*
1693          * There appear to be other CPUs that can accept
1694          * the current task but none can run 'p', so lets reschedule
1695          * to try and push the current task away:
1696          */
1697         requeue_task_rt(rq, p, 1);
1698         resched_curr(rq);
1699 }
1700
1701 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1702 {
1703         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1704                 /*
1705                  * This is OK, because current is on_cpu, which avoids it being
1706                  * picked for load-balance and preemption/IRQs are still
1707                  * disabled avoiding further scheduler activity on it and we've
1708                  * not yet started the picking loop.
1709                  */
1710                 rq_unpin_lock(rq, rf);
1711                 pull_rt_task(rq);
1712                 rq_repin_lock(rq, rf);
1713         }
1714
1715         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1716 }
1717 #endif /* CONFIG_SMP */
1718
1719 /*
1720  * Preempt the current task with a newly woken task if needed:
1721  */
1722 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1723 {
1724         if (p->prio < rq->curr->prio) {
1725                 resched_curr(rq);
1726                 return;
1727         }
1728
1729 #ifdef CONFIG_SMP
1730         /*
1731          * If:
1732          *
1733          * - the newly woken task is of equal priority to the current task
1734          * - the newly woken task is non-migratable while current is migratable
1735          * - current will be preempted on the next reschedule
1736          *
1737          * we should check to see if current can readily move to a different
1738          * cpu.  If so, we will reschedule to allow the push logic to try
1739          * to move current somewhere else, making room for our non-migratable
1740          * task.
1741          */
1742         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1743                 check_preempt_equal_prio(rq, p);
1744 #endif
1745 }
1746
1747 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1748 {
1749         struct sched_rt_entity *rt_se = &p->rt;
1750         struct rt_rq *rt_rq = &rq->rt;
1751
1752         p->se.exec_start = rq_clock_task(rq);
1753         if (on_rt_rq(&p->rt))
1754                 update_stats_wait_end_rt(rt_rq, rt_se);
1755
1756         /* The running task is never eligible for pushing */
1757         dequeue_pushable_task(rq, p);
1758
1759         if (!first)
1760                 return;
1761
1762         /*
1763          * If prev task was rt, put_prev_task() has already updated the
1764          * utilization. We only care of the case where we start to schedule a
1765          * rt task
1766          */
1767         if (rq->curr->sched_class != &rt_sched_class)
1768                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1769
1770         rt_queue_push_tasks(rq);
1771 }
1772
1773 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1774 {
1775         struct rt_prio_array *array = &rt_rq->active;
1776         struct sched_rt_entity *next = NULL;
1777         struct list_head *queue;
1778         int idx;
1779
1780         idx = sched_find_first_bit(array->bitmap);
1781         BUG_ON(idx >= MAX_RT_PRIO);
1782
1783         queue = array->queue + idx;
1784         if (SCHED_WARN_ON(list_empty(queue)))
1785                 return NULL;
1786         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1787
1788         return next;
1789 }
1790
1791 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1792 {
1793         struct sched_rt_entity *rt_se;
1794         struct rt_rq *rt_rq  = &rq->rt;
1795
1796         do {
1797                 rt_se = pick_next_rt_entity(rt_rq);
1798                 if (unlikely(!rt_se))
1799                         return NULL;
1800                 rt_rq = group_rt_rq(rt_se);
1801         } while (rt_rq);
1802
1803         return rt_task_of(rt_se);
1804 }
1805
1806 static struct task_struct *pick_task_rt(struct rq *rq)
1807 {
1808         struct task_struct *p;
1809
1810         if (!sched_rt_runnable(rq))
1811                 return NULL;
1812
1813         p = _pick_next_task_rt(rq);
1814
1815         return p;
1816 }
1817
1818 static struct task_struct *pick_next_task_rt(struct rq *rq)
1819 {
1820         struct task_struct *p = pick_task_rt(rq);
1821
1822         if (p)
1823                 set_next_task_rt(rq, p, true);
1824
1825         return p;
1826 }
1827
1828 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1829 {
1830         struct sched_rt_entity *rt_se = &p->rt;
1831         struct rt_rq *rt_rq = &rq->rt;
1832
1833         if (on_rt_rq(&p->rt))
1834                 update_stats_wait_start_rt(rt_rq, rt_se);
1835
1836         update_curr_rt(rq);
1837
1838         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1839
1840         /*
1841          * The previous task needs to be made eligible for pushing
1842          * if it is still active
1843          */
1844         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1845                 enqueue_pushable_task(rq, p);
1846 }
1847
1848 #ifdef CONFIG_SMP
1849
1850 /* Only try algorithms three times */
1851 #define RT_MAX_TRIES 3
1852
1853 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1854 {
1855         if (!task_on_cpu(rq, p) &&
1856             cpumask_test_cpu(cpu, &p->cpus_mask))
1857                 return 1;
1858
1859         return 0;
1860 }
1861
1862 /*
1863  * Return the highest pushable rq's task, which is suitable to be executed
1864  * on the CPU, NULL otherwise
1865  */
1866 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1867 {
1868         struct plist_head *head = &rq->rt.pushable_tasks;
1869         struct task_struct *p;
1870
1871         if (!has_pushable_tasks(rq))
1872                 return NULL;
1873
1874         plist_for_each_entry(p, head, pushable_tasks) {
1875                 if (pick_rt_task(rq, p, cpu))
1876                         return p;
1877         }
1878
1879         return NULL;
1880 }
1881
1882 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1883
1884 static int find_lowest_rq(struct task_struct *task)
1885 {
1886         struct sched_domain *sd;
1887         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1888         int this_cpu = smp_processor_id();
1889         int cpu      = task_cpu(task);
1890         int ret;
1891
1892         /* Make sure the mask is initialized first */
1893         if (unlikely(!lowest_mask))
1894                 return -1;
1895
1896         if (task->nr_cpus_allowed == 1)
1897                 return -1; /* No other targets possible */
1898
1899         /*
1900          * If we're on asym system ensure we consider the different capacities
1901          * of the CPUs when searching for the lowest_mask.
1902          */
1903         if (sched_asym_cpucap_active()) {
1904
1905                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1906                                           task, lowest_mask,
1907                                           rt_task_fits_capacity);
1908         } else {
1909
1910                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1911                                   task, lowest_mask);
1912         }
1913
1914         if (!ret)
1915                 return -1; /* No targets found */
1916
1917         /*
1918          * At this point we have built a mask of CPUs representing the
1919          * lowest priority tasks in the system.  Now we want to elect
1920          * the best one based on our affinity and topology.
1921          *
1922          * We prioritize the last CPU that the task executed on since
1923          * it is most likely cache-hot in that location.
1924          */
1925         if (cpumask_test_cpu(cpu, lowest_mask))
1926                 return cpu;
1927
1928         /*
1929          * Otherwise, we consult the sched_domains span maps to figure
1930          * out which CPU is logically closest to our hot cache data.
1931          */
1932         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1933                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1934
1935         rcu_read_lock();
1936         for_each_domain(cpu, sd) {
1937                 if (sd->flags & SD_WAKE_AFFINE) {
1938                         int best_cpu;
1939
1940                         /*
1941                          * "this_cpu" is cheaper to preempt than a
1942                          * remote processor.
1943                          */
1944                         if (this_cpu != -1 &&
1945                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1946                                 rcu_read_unlock();
1947                                 return this_cpu;
1948                         }
1949
1950                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1951                                                               sched_domain_span(sd));
1952                         if (best_cpu < nr_cpu_ids) {
1953                                 rcu_read_unlock();
1954                                 return best_cpu;
1955                         }
1956                 }
1957         }
1958         rcu_read_unlock();
1959
1960         /*
1961          * And finally, if there were no matches within the domains
1962          * just give the caller *something* to work with from the compatible
1963          * locations.
1964          */
1965         if (this_cpu != -1)
1966                 return this_cpu;
1967
1968         cpu = cpumask_any_distribute(lowest_mask);
1969         if (cpu < nr_cpu_ids)
1970                 return cpu;
1971
1972         return -1;
1973 }
1974
1975 /* Will lock the rq it finds */
1976 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1977 {
1978         struct rq *lowest_rq = NULL;
1979         int tries;
1980         int cpu;
1981
1982         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1983                 cpu = find_lowest_rq(task);
1984
1985                 if ((cpu == -1) || (cpu == rq->cpu))
1986                         break;
1987
1988                 lowest_rq = cpu_rq(cpu);
1989
1990                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1991                         /*
1992                          * Target rq has tasks of equal or higher priority,
1993                          * retrying does not release any lock and is unlikely
1994                          * to yield a different result.
1995                          */
1996                         lowest_rq = NULL;
1997                         break;
1998                 }
1999
2000                 /* if the prio of this runqueue changed, try again */
2001                 if (double_lock_balance(rq, lowest_rq)) {
2002                         /*
2003                          * We had to unlock the run queue. In
2004                          * the mean time, task could have
2005                          * migrated already or had its affinity changed.
2006                          * Also make sure that it wasn't scheduled on its rq.
2007                          * It is possible the task was scheduled, set
2008                          * "migrate_disabled" and then got preempted, so we must
2009                          * check the task migration disable flag here too.
2010                          */
2011                         if (unlikely(task_rq(task) != rq ||
2012                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2013                                      task_on_cpu(rq, task) ||
2014                                      !rt_task(task) ||
2015                                      is_migration_disabled(task) ||
2016                                      !task_on_rq_queued(task))) {
2017
2018                                 double_unlock_balance(rq, lowest_rq);
2019                                 lowest_rq = NULL;
2020                                 break;
2021                         }
2022                 }
2023
2024                 /* If this rq is still suitable use it. */
2025                 if (lowest_rq->rt.highest_prio.curr > task->prio)
2026                         break;
2027
2028                 /* try again */
2029                 double_unlock_balance(rq, lowest_rq);
2030                 lowest_rq = NULL;
2031         }
2032
2033         return lowest_rq;
2034 }
2035
2036 static struct task_struct *pick_next_pushable_task(struct rq *rq)
2037 {
2038         struct task_struct *p;
2039
2040         if (!has_pushable_tasks(rq))
2041                 return NULL;
2042
2043         p = plist_first_entry(&rq->rt.pushable_tasks,
2044                               struct task_struct, pushable_tasks);
2045
2046         BUG_ON(rq->cpu != task_cpu(p));
2047         BUG_ON(task_current(rq, p));
2048         BUG_ON(p->nr_cpus_allowed <= 1);
2049
2050         BUG_ON(!task_on_rq_queued(p));
2051         BUG_ON(!rt_task(p));
2052
2053         return p;
2054 }
2055
2056 /*
2057  * If the current CPU has more than one RT task, see if the non
2058  * running task can migrate over to a CPU that is running a task
2059  * of lesser priority.
2060  */
2061 static int push_rt_task(struct rq *rq, bool pull)
2062 {
2063         struct task_struct *next_task;
2064         struct rq *lowest_rq;
2065         int ret = 0;
2066
2067         if (!rq->rt.overloaded)
2068                 return 0;
2069
2070         next_task = pick_next_pushable_task(rq);
2071         if (!next_task)
2072                 return 0;
2073
2074 retry:
2075         /*
2076          * It's possible that the next_task slipped in of
2077          * higher priority than current. If that's the case
2078          * just reschedule current.
2079          */
2080         if (unlikely(next_task->prio < rq->curr->prio)) {
2081                 resched_curr(rq);
2082                 return 0;
2083         }
2084
2085         if (is_migration_disabled(next_task)) {
2086                 struct task_struct *push_task = NULL;
2087                 int cpu;
2088
2089                 if (!pull || rq->push_busy)
2090                         return 0;
2091
2092                 /*
2093                  * Invoking find_lowest_rq() on anything but an RT task doesn't
2094                  * make sense. Per the above priority check, curr has to
2095                  * be of higher priority than next_task, so no need to
2096                  * reschedule when bailing out.
2097                  *
2098                  * Note that the stoppers are masqueraded as SCHED_FIFO
2099                  * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2100                  */
2101                 if (rq->curr->sched_class != &rt_sched_class)
2102                         return 0;
2103
2104                 cpu = find_lowest_rq(rq->curr);
2105                 if (cpu == -1 || cpu == rq->cpu)
2106                         return 0;
2107
2108                 /*
2109                  * Given we found a CPU with lower priority than @next_task,
2110                  * therefore it should be running. However we cannot migrate it
2111                  * to this other CPU, instead attempt to push the current
2112                  * running task on this CPU away.
2113                  */
2114                 push_task = get_push_task(rq);
2115                 if (push_task) {
2116                         preempt_disable();
2117                         raw_spin_rq_unlock(rq);
2118                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2119                                             push_task, &rq->push_work);
2120                         preempt_enable();
2121                         raw_spin_rq_lock(rq);
2122                 }
2123
2124                 return 0;
2125         }
2126
2127         if (WARN_ON(next_task == rq->curr))
2128                 return 0;
2129
2130         /* We might release rq lock */
2131         get_task_struct(next_task);
2132
2133         /* find_lock_lowest_rq locks the rq if found */
2134         lowest_rq = find_lock_lowest_rq(next_task, rq);
2135         if (!lowest_rq) {
2136                 struct task_struct *task;
2137                 /*
2138                  * find_lock_lowest_rq releases rq->lock
2139                  * so it is possible that next_task has migrated.
2140                  *
2141                  * We need to make sure that the task is still on the same
2142                  * run-queue and is also still the next task eligible for
2143                  * pushing.
2144                  */
2145                 task = pick_next_pushable_task(rq);
2146                 if (task == next_task) {
2147                         /*
2148                          * The task hasn't migrated, and is still the next
2149                          * eligible task, but we failed to find a run-queue
2150                          * to push it to.  Do not retry in this case, since
2151                          * other CPUs will pull from us when ready.
2152                          */
2153                         goto out;
2154                 }
2155
2156                 if (!task)
2157                         /* No more tasks, just exit */
2158                         goto out;
2159
2160                 /*
2161                  * Something has shifted, try again.
2162                  */
2163                 put_task_struct(next_task);
2164                 next_task = task;
2165                 goto retry;
2166         }
2167
2168         deactivate_task(rq, next_task, 0);
2169         set_task_cpu(next_task, lowest_rq->cpu);
2170         activate_task(lowest_rq, next_task, 0);
2171         resched_curr(lowest_rq);
2172         ret = 1;
2173
2174         double_unlock_balance(rq, lowest_rq);
2175 out:
2176         put_task_struct(next_task);
2177
2178         return ret;
2179 }
2180
2181 static void push_rt_tasks(struct rq *rq)
2182 {
2183         /* push_rt_task will return true if it moved an RT */
2184         while (push_rt_task(rq, false))
2185                 ;
2186 }
2187
2188 #ifdef HAVE_RT_PUSH_IPI
2189
2190 /*
2191  * When a high priority task schedules out from a CPU and a lower priority
2192  * task is scheduled in, a check is made to see if there's any RT tasks
2193  * on other CPUs that are waiting to run because a higher priority RT task
2194  * is currently running on its CPU. In this case, the CPU with multiple RT
2195  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2196  * up that may be able to run one of its non-running queued RT tasks.
2197  *
2198  * All CPUs with overloaded RT tasks need to be notified as there is currently
2199  * no way to know which of these CPUs have the highest priority task waiting
2200  * to run. Instead of trying to take a spinlock on each of these CPUs,
2201  * which has shown to cause large latency when done on machines with many
2202  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2203  * RT tasks waiting to run.
2204  *
2205  * Just sending an IPI to each of the CPUs is also an issue, as on large
2206  * count CPU machines, this can cause an IPI storm on a CPU, especially
2207  * if its the only CPU with multiple RT tasks queued, and a large number
2208  * of CPUs scheduling a lower priority task at the same time.
2209  *
2210  * Each root domain has its own irq work function that can iterate over
2211  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2212  * task must be checked if there's one or many CPUs that are lowering
2213  * their priority, there's a single irq work iterator that will try to
2214  * push off RT tasks that are waiting to run.
2215  *
2216  * When a CPU schedules a lower priority task, it will kick off the
2217  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2218  * As it only takes the first CPU that schedules a lower priority task
2219  * to start the process, the rto_start variable is incremented and if
2220  * the atomic result is one, then that CPU will try to take the rto_lock.
2221  * This prevents high contention on the lock as the process handles all
2222  * CPUs scheduling lower priority tasks.
2223  *
2224  * All CPUs that are scheduling a lower priority task will increment the
2225  * rt_loop_next variable. This will make sure that the irq work iterator
2226  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2227  * priority task, even if the iterator is in the middle of a scan. Incrementing
2228  * the rt_loop_next will cause the iterator to perform another scan.
2229  *
2230  */
2231 static int rto_next_cpu(struct root_domain *rd)
2232 {
2233         int next;
2234         int cpu;
2235
2236         /*
2237          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2238          * rt_next_cpu() will simply return the first CPU found in
2239          * the rto_mask.
2240          *
2241          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2242          * will return the next CPU found in the rto_mask.
2243          *
2244          * If there are no more CPUs left in the rto_mask, then a check is made
2245          * against rto_loop and rto_loop_next. rto_loop is only updated with
2246          * the rto_lock held, but any CPU may increment the rto_loop_next
2247          * without any locking.
2248          */
2249         for (;;) {
2250
2251                 /* When rto_cpu is -1 this acts like cpumask_first() */
2252                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2253
2254                 rd->rto_cpu = cpu;
2255
2256                 if (cpu < nr_cpu_ids)
2257                         return cpu;
2258
2259                 rd->rto_cpu = -1;
2260
2261                 /*
2262                  * ACQUIRE ensures we see the @rto_mask changes
2263                  * made prior to the @next value observed.
2264                  *
2265                  * Matches WMB in rt_set_overload().
2266                  */
2267                 next = atomic_read_acquire(&rd->rto_loop_next);
2268
2269                 if (rd->rto_loop == next)
2270                         break;
2271
2272                 rd->rto_loop = next;
2273         }
2274
2275         return -1;
2276 }
2277
2278 static inline bool rto_start_trylock(atomic_t *v)
2279 {
2280         return !atomic_cmpxchg_acquire(v, 0, 1);
2281 }
2282
2283 static inline void rto_start_unlock(atomic_t *v)
2284 {
2285         atomic_set_release(v, 0);
2286 }
2287
2288 static void tell_cpu_to_push(struct rq *rq)
2289 {
2290         int cpu = -1;
2291
2292         /* Keep the loop going if the IPI is currently active */
2293         atomic_inc(&rq->rd->rto_loop_next);
2294
2295         /* Only one CPU can initiate a loop at a time */
2296         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2297                 return;
2298
2299         raw_spin_lock(&rq->rd->rto_lock);
2300
2301         /*
2302          * The rto_cpu is updated under the lock, if it has a valid CPU
2303          * then the IPI is still running and will continue due to the
2304          * update to loop_next, and nothing needs to be done here.
2305          * Otherwise it is finishing up and an ipi needs to be sent.
2306          */
2307         if (rq->rd->rto_cpu < 0)
2308                 cpu = rto_next_cpu(rq->rd);
2309
2310         raw_spin_unlock(&rq->rd->rto_lock);
2311
2312         rto_start_unlock(&rq->rd->rto_loop_start);
2313
2314         if (cpu >= 0) {
2315                 /* Make sure the rd does not get freed while pushing */
2316                 sched_get_rd(rq->rd);
2317                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2318         }
2319 }
2320
2321 /* Called from hardirq context */
2322 void rto_push_irq_work_func(struct irq_work *work)
2323 {
2324         struct root_domain *rd =
2325                 container_of(work, struct root_domain, rto_push_work);
2326         struct rq *rq;
2327         int cpu;
2328
2329         rq = this_rq();
2330
2331         /*
2332          * We do not need to grab the lock to check for has_pushable_tasks.
2333          * When it gets updated, a check is made if a push is possible.
2334          */
2335         if (has_pushable_tasks(rq)) {
2336                 raw_spin_rq_lock(rq);
2337                 while (push_rt_task(rq, true))
2338                         ;
2339                 raw_spin_rq_unlock(rq);
2340         }
2341
2342         raw_spin_lock(&rd->rto_lock);
2343
2344         /* Pass the IPI to the next rt overloaded queue */
2345         cpu = rto_next_cpu(rd);
2346
2347         raw_spin_unlock(&rd->rto_lock);
2348
2349         if (cpu < 0) {
2350                 sched_put_rd(rd);
2351                 return;
2352         }
2353
2354         /* Try the next RT overloaded CPU */
2355         irq_work_queue_on(&rd->rto_push_work, cpu);
2356 }
2357 #endif /* HAVE_RT_PUSH_IPI */
2358
2359 static void pull_rt_task(struct rq *this_rq)
2360 {
2361         int this_cpu = this_rq->cpu, cpu;
2362         bool resched = false;
2363         struct task_struct *p, *push_task;
2364         struct rq *src_rq;
2365         int rt_overload_count = rt_overloaded(this_rq);
2366
2367         if (likely(!rt_overload_count))
2368                 return;
2369
2370         /*
2371          * Match the barrier from rt_set_overloaded; this guarantees that if we
2372          * see overloaded we must also see the rto_mask bit.
2373          */
2374         smp_rmb();
2375
2376         /* If we are the only overloaded CPU do nothing */
2377         if (rt_overload_count == 1 &&
2378             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2379                 return;
2380
2381 #ifdef HAVE_RT_PUSH_IPI
2382         if (sched_feat(RT_PUSH_IPI)) {
2383                 tell_cpu_to_push(this_rq);
2384                 return;
2385         }
2386 #endif
2387
2388         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2389                 if (this_cpu == cpu)
2390                         continue;
2391
2392                 src_rq = cpu_rq(cpu);
2393
2394                 /*
2395                  * Don't bother taking the src_rq->lock if the next highest
2396                  * task is known to be lower-priority than our current task.
2397                  * This may look racy, but if this value is about to go
2398                  * logically higher, the src_rq will push this task away.
2399                  * And if its going logically lower, we do not care
2400                  */
2401                 if (src_rq->rt.highest_prio.next >=
2402                     this_rq->rt.highest_prio.curr)
2403                         continue;
2404
2405                 /*
2406                  * We can potentially drop this_rq's lock in
2407                  * double_lock_balance, and another CPU could
2408                  * alter this_rq
2409                  */
2410                 push_task = NULL;
2411                 double_lock_balance(this_rq, src_rq);
2412
2413                 /*
2414                  * We can pull only a task, which is pushable
2415                  * on its rq, and no others.
2416                  */
2417                 p = pick_highest_pushable_task(src_rq, this_cpu);
2418
2419                 /*
2420                  * Do we have an RT task that preempts
2421                  * the to-be-scheduled task?
2422                  */
2423                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2424                         WARN_ON(p == src_rq->curr);
2425                         WARN_ON(!task_on_rq_queued(p));
2426
2427                         /*
2428                          * There's a chance that p is higher in priority
2429                          * than what's currently running on its CPU.
2430                          * This is just that p is waking up and hasn't
2431                          * had a chance to schedule. We only pull
2432                          * p if it is lower in priority than the
2433                          * current task on the run queue
2434                          */
2435                         if (p->prio < src_rq->curr->prio)
2436                                 goto skip;
2437
2438                         if (is_migration_disabled(p)) {
2439                                 push_task = get_push_task(src_rq);
2440                         } else {
2441                                 deactivate_task(src_rq, p, 0);
2442                                 set_task_cpu(p, this_cpu);
2443                                 activate_task(this_rq, p, 0);
2444                                 resched = true;
2445                         }
2446                         /*
2447                          * We continue with the search, just in
2448                          * case there's an even higher prio task
2449                          * in another runqueue. (low likelihood
2450                          * but possible)
2451                          */
2452                 }
2453 skip:
2454                 double_unlock_balance(this_rq, src_rq);
2455
2456                 if (push_task) {
2457                         preempt_disable();
2458                         raw_spin_rq_unlock(this_rq);
2459                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2460                                             push_task, &src_rq->push_work);
2461                         preempt_enable();
2462                         raw_spin_rq_lock(this_rq);
2463                 }
2464         }
2465
2466         if (resched)
2467                 resched_curr(this_rq);
2468 }
2469
2470 /*
2471  * If we are not running and we are not going to reschedule soon, we should
2472  * try to push tasks away now
2473  */
2474 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2475 {
2476         bool need_to_push = !task_on_cpu(rq, p) &&
2477                             !test_tsk_need_resched(rq->curr) &&
2478                             p->nr_cpus_allowed > 1 &&
2479                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2480                             (rq->curr->nr_cpus_allowed < 2 ||
2481                              rq->curr->prio <= p->prio);
2482
2483         if (need_to_push)
2484                 push_rt_tasks(rq);
2485 }
2486
2487 /* Assumes rq->lock is held */
2488 static void rq_online_rt(struct rq *rq)
2489 {
2490         if (rq->rt.overloaded)
2491                 rt_set_overload(rq);
2492
2493         __enable_runtime(rq);
2494
2495         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2496 }
2497
2498 /* Assumes rq->lock is held */
2499 static void rq_offline_rt(struct rq *rq)
2500 {
2501         if (rq->rt.overloaded)
2502                 rt_clear_overload(rq);
2503
2504         __disable_runtime(rq);
2505
2506         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2507 }
2508
2509 /*
2510  * When switch from the rt queue, we bring ourselves to a position
2511  * that we might want to pull RT tasks from other runqueues.
2512  */
2513 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2514 {
2515         /*
2516          * If there are other RT tasks then we will reschedule
2517          * and the scheduling of the other RT tasks will handle
2518          * the balancing. But if we are the last RT task
2519          * we may need to handle the pulling of RT tasks
2520          * now.
2521          */
2522         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2523                 return;
2524
2525         rt_queue_pull_task(rq);
2526 }
2527
2528 void __init init_sched_rt_class(void)
2529 {
2530         unsigned int i;
2531
2532         for_each_possible_cpu(i) {
2533                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2534                                         GFP_KERNEL, cpu_to_node(i));
2535         }
2536 }
2537 #endif /* CONFIG_SMP */
2538
2539 /*
2540  * When switching a task to RT, we may overload the runqueue
2541  * with RT tasks. In this case we try to push them off to
2542  * other runqueues.
2543  */
2544 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2545 {
2546         /*
2547          * If we are running, update the avg_rt tracking, as the running time
2548          * will now on be accounted into the latter.
2549          */
2550         if (task_current(rq, p)) {
2551                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2552                 return;
2553         }
2554
2555         /*
2556          * If we are not running we may need to preempt the current
2557          * running task. If that current running task is also an RT task
2558          * then see if we can move to another run queue.
2559          */
2560         if (task_on_rq_queued(p)) {
2561 #ifdef CONFIG_SMP
2562                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2563                         rt_queue_push_tasks(rq);
2564 #endif /* CONFIG_SMP */
2565                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2566                         resched_curr(rq);
2567         }
2568 }
2569
2570 /*
2571  * Priority of the task has changed. This may cause
2572  * us to initiate a push or pull.
2573  */
2574 static void
2575 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2576 {
2577         if (!task_on_rq_queued(p))
2578                 return;
2579
2580         if (task_current(rq, p)) {
2581 #ifdef CONFIG_SMP
2582                 /*
2583                  * If our priority decreases while running, we
2584                  * may need to pull tasks to this runqueue.
2585                  */
2586                 if (oldprio < p->prio)
2587                         rt_queue_pull_task(rq);
2588
2589                 /*
2590                  * If there's a higher priority task waiting to run
2591                  * then reschedule.
2592                  */
2593                 if (p->prio > rq->rt.highest_prio.curr)
2594                         resched_curr(rq);
2595 #else
2596                 /* For UP simply resched on drop of prio */
2597                 if (oldprio < p->prio)
2598                         resched_curr(rq);
2599 #endif /* CONFIG_SMP */
2600         } else {
2601                 /*
2602                  * This task is not running, but if it is
2603                  * greater than the current running task
2604                  * then reschedule.
2605                  */
2606                 if (p->prio < rq->curr->prio)
2607                         resched_curr(rq);
2608         }
2609 }
2610
2611 #ifdef CONFIG_POSIX_TIMERS
2612 static void watchdog(struct rq *rq, struct task_struct *p)
2613 {
2614         unsigned long soft, hard;
2615
2616         /* max may change after cur was read, this will be fixed next tick */
2617         soft = task_rlimit(p, RLIMIT_RTTIME);
2618         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2619
2620         if (soft != RLIM_INFINITY) {
2621                 unsigned long next;
2622
2623                 if (p->rt.watchdog_stamp != jiffies) {
2624                         p->rt.timeout++;
2625                         p->rt.watchdog_stamp = jiffies;
2626                 }
2627
2628                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2629                 if (p->rt.timeout > next) {
2630                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2631                                                     p->se.sum_exec_runtime);
2632                 }
2633         }
2634 }
2635 #else
2636 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2637 #endif
2638
2639 /*
2640  * scheduler tick hitting a task of our scheduling class.
2641  *
2642  * NOTE: This function can be called remotely by the tick offload that
2643  * goes along full dynticks. Therefore no local assumption can be made
2644  * and everything must be accessed through the @rq and @curr passed in
2645  * parameters.
2646  */
2647 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2648 {
2649         struct sched_rt_entity *rt_se = &p->rt;
2650
2651         update_curr_rt(rq);
2652         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2653
2654         watchdog(rq, p);
2655
2656         /*
2657          * RR tasks need a special form of timeslice management.
2658          * FIFO tasks have no timeslices.
2659          */
2660         if (p->policy != SCHED_RR)
2661                 return;
2662
2663         if (--p->rt.time_slice)
2664                 return;
2665
2666         p->rt.time_slice = sched_rr_timeslice;
2667
2668         /*
2669          * Requeue to the end of queue if we (and all of our ancestors) are not
2670          * the only element on the queue
2671          */
2672         for_each_sched_rt_entity(rt_se) {
2673                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2674                         requeue_task_rt(rq, p, 0);
2675                         resched_curr(rq);
2676                         return;
2677                 }
2678         }
2679 }
2680
2681 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2682 {
2683         /*
2684          * Time slice is 0 for SCHED_FIFO tasks
2685          */
2686         if (task->policy == SCHED_RR)
2687                 return sched_rr_timeslice;
2688         else
2689                 return 0;
2690 }
2691
2692 #ifdef CONFIG_SCHED_CORE
2693 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2694 {
2695         struct rt_rq *rt_rq;
2696
2697 #ifdef CONFIG_RT_GROUP_SCHED
2698         rt_rq = task_group(p)->rt_rq[cpu];
2699 #else
2700         rt_rq = &cpu_rq(cpu)->rt;
2701 #endif
2702
2703         return rt_rq_throttled(rt_rq);
2704 }
2705 #endif
2706
2707 DEFINE_SCHED_CLASS(rt) = {
2708
2709         .enqueue_task           = enqueue_task_rt,
2710         .dequeue_task           = dequeue_task_rt,
2711         .yield_task             = yield_task_rt,
2712
2713         .check_preempt_curr     = check_preempt_curr_rt,
2714
2715         .pick_next_task         = pick_next_task_rt,
2716         .put_prev_task          = put_prev_task_rt,
2717         .set_next_task          = set_next_task_rt,
2718
2719 #ifdef CONFIG_SMP
2720         .balance                = balance_rt,
2721         .pick_task              = pick_task_rt,
2722         .select_task_rq         = select_task_rq_rt,
2723         .set_cpus_allowed       = set_cpus_allowed_common,
2724         .rq_online              = rq_online_rt,
2725         .rq_offline             = rq_offline_rt,
2726         .task_woken             = task_woken_rt,
2727         .switched_from          = switched_from_rt,
2728         .find_lock_rq           = find_lock_lowest_rq,
2729 #endif
2730
2731         .task_tick              = task_tick_rt,
2732
2733         .get_rr_interval        = get_rr_interval_rt,
2734
2735         .prio_changed           = prio_changed_rt,
2736         .switched_to            = switched_to_rt,
2737
2738         .update_curr            = update_curr_rt,
2739
2740 #ifdef CONFIG_SCHED_CORE
2741         .task_is_throttled      = task_is_throttled_rt,
2742 #endif
2743
2744 #ifdef CONFIG_UCLAMP_TASK
2745         .uclamp_enabled         = 1,
2746 #endif
2747 };
2748
2749 #ifdef CONFIG_RT_GROUP_SCHED
2750 /*
2751  * Ensure that the real time constraints are schedulable.
2752  */
2753 static DEFINE_MUTEX(rt_constraints_mutex);
2754
2755 static inline int tg_has_rt_tasks(struct task_group *tg)
2756 {
2757         struct task_struct *task;
2758         struct css_task_iter it;
2759         int ret = 0;
2760
2761         /*
2762          * Autogroups do not have RT tasks; see autogroup_create().
2763          */
2764         if (task_group_is_autogroup(tg))
2765                 return 0;
2766
2767         css_task_iter_start(&tg->css, 0, &it);
2768         while (!ret && (task = css_task_iter_next(&it)))
2769                 ret |= rt_task(task);
2770         css_task_iter_end(&it);
2771
2772         return ret;
2773 }
2774
2775 struct rt_schedulable_data {
2776         struct task_group *tg;
2777         u64 rt_period;
2778         u64 rt_runtime;
2779 };
2780
2781 static int tg_rt_schedulable(struct task_group *tg, void *data)
2782 {
2783         struct rt_schedulable_data *d = data;
2784         struct task_group *child;
2785         unsigned long total, sum = 0;
2786         u64 period, runtime;
2787
2788         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2789         runtime = tg->rt_bandwidth.rt_runtime;
2790
2791         if (tg == d->tg) {
2792                 period = d->rt_period;
2793                 runtime = d->rt_runtime;
2794         }
2795
2796         /*
2797          * Cannot have more runtime than the period.
2798          */
2799         if (runtime > period && runtime != RUNTIME_INF)
2800                 return -EINVAL;
2801
2802         /*
2803          * Ensure we don't starve existing RT tasks if runtime turns zero.
2804          */
2805         if (rt_bandwidth_enabled() && !runtime &&
2806             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2807                 return -EBUSY;
2808
2809         total = to_ratio(period, runtime);
2810
2811         /*
2812          * Nobody can have more than the global setting allows.
2813          */
2814         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2815                 return -EINVAL;
2816
2817         /*
2818          * The sum of our children's runtime should not exceed our own.
2819          */
2820         list_for_each_entry_rcu(child, &tg->children, siblings) {
2821                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2822                 runtime = child->rt_bandwidth.rt_runtime;
2823
2824                 if (child == d->tg) {
2825                         period = d->rt_period;
2826                         runtime = d->rt_runtime;
2827                 }
2828
2829                 sum += to_ratio(period, runtime);
2830         }
2831
2832         if (sum > total)
2833                 return -EINVAL;
2834
2835         return 0;
2836 }
2837
2838 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2839 {
2840         int ret;
2841
2842         struct rt_schedulable_data data = {
2843                 .tg = tg,
2844                 .rt_period = period,
2845                 .rt_runtime = runtime,
2846         };
2847
2848         rcu_read_lock();
2849         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2850         rcu_read_unlock();
2851
2852         return ret;
2853 }
2854
2855 static int tg_set_rt_bandwidth(struct task_group *tg,
2856                 u64 rt_period, u64 rt_runtime)
2857 {
2858         int i, err = 0;
2859
2860         /*
2861          * Disallowing the root group RT runtime is BAD, it would disallow the
2862          * kernel creating (and or operating) RT threads.
2863          */
2864         if (tg == &root_task_group && rt_runtime == 0)
2865                 return -EINVAL;
2866
2867         /* No period doesn't make any sense. */
2868         if (rt_period == 0)
2869                 return -EINVAL;
2870
2871         /*
2872          * Bound quota to defend quota against overflow during bandwidth shift.
2873          */
2874         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2875                 return -EINVAL;
2876
2877         mutex_lock(&rt_constraints_mutex);
2878         err = __rt_schedulable(tg, rt_period, rt_runtime);
2879         if (err)
2880                 goto unlock;
2881
2882         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2883         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2884         tg->rt_bandwidth.rt_runtime = rt_runtime;
2885
2886         for_each_possible_cpu(i) {
2887                 struct rt_rq *rt_rq = tg->rt_rq[i];
2888
2889                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2890                 rt_rq->rt_runtime = rt_runtime;
2891                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2892         }
2893         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2894 unlock:
2895         mutex_unlock(&rt_constraints_mutex);
2896
2897         return err;
2898 }
2899
2900 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2901 {
2902         u64 rt_runtime, rt_period;
2903
2904         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2905         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2906         if (rt_runtime_us < 0)
2907                 rt_runtime = RUNTIME_INF;
2908         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2909                 return -EINVAL;
2910
2911         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2912 }
2913
2914 long sched_group_rt_runtime(struct task_group *tg)
2915 {
2916         u64 rt_runtime_us;
2917
2918         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2919                 return -1;
2920
2921         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2922         do_div(rt_runtime_us, NSEC_PER_USEC);
2923         return rt_runtime_us;
2924 }
2925
2926 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2927 {
2928         u64 rt_runtime, rt_period;
2929
2930         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2931                 return -EINVAL;
2932
2933         rt_period = rt_period_us * NSEC_PER_USEC;
2934         rt_runtime = tg->rt_bandwidth.rt_runtime;
2935
2936         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2937 }
2938
2939 long sched_group_rt_period(struct task_group *tg)
2940 {
2941         u64 rt_period_us;
2942
2943         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2944         do_div(rt_period_us, NSEC_PER_USEC);
2945         return rt_period_us;
2946 }
2947
2948 #ifdef CONFIG_SYSCTL
2949 static int sched_rt_global_constraints(void)
2950 {
2951         int ret = 0;
2952
2953         mutex_lock(&rt_constraints_mutex);
2954         ret = __rt_schedulable(NULL, 0, 0);
2955         mutex_unlock(&rt_constraints_mutex);
2956
2957         return ret;
2958 }
2959 #endif /* CONFIG_SYSCTL */
2960
2961 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2962 {
2963         /* Don't accept realtime tasks when there is no way for them to run */
2964         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2965                 return 0;
2966
2967         return 1;
2968 }
2969
2970 #else /* !CONFIG_RT_GROUP_SCHED */
2971
2972 #ifdef CONFIG_SYSCTL
2973 static int sched_rt_global_constraints(void)
2974 {
2975         unsigned long flags;
2976         int i;
2977
2978         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2979         for_each_possible_cpu(i) {
2980                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2981
2982                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2983                 rt_rq->rt_runtime = global_rt_runtime();
2984                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2985         }
2986         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2987
2988         return 0;
2989 }
2990 #endif /* CONFIG_SYSCTL */
2991 #endif /* CONFIG_RT_GROUP_SCHED */
2992
2993 #ifdef CONFIG_SYSCTL
2994 static int sched_rt_global_validate(void)
2995 {
2996         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2997                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2998                  ((u64)sysctl_sched_rt_runtime *
2999                         NSEC_PER_USEC > max_rt_runtime)))
3000                 return -EINVAL;
3001
3002         return 0;
3003 }
3004
3005 static void sched_rt_do_global(void)
3006 {
3007         unsigned long flags;
3008
3009         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
3010         def_rt_bandwidth.rt_runtime = global_rt_runtime();
3011         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
3012         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
3013 }
3014
3015 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
3016                 size_t *lenp, loff_t *ppos)
3017 {
3018         int old_period, old_runtime;
3019         static DEFINE_MUTEX(mutex);
3020         int ret;
3021
3022         mutex_lock(&mutex);
3023         old_period = sysctl_sched_rt_period;
3024         old_runtime = sysctl_sched_rt_runtime;
3025
3026         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3027
3028         if (!ret && write) {
3029                 ret = sched_rt_global_validate();
3030                 if (ret)
3031                         goto undo;
3032
3033                 ret = sched_dl_global_validate();
3034                 if (ret)
3035                         goto undo;
3036
3037                 ret = sched_rt_global_constraints();
3038                 if (ret)
3039                         goto undo;
3040
3041                 sched_rt_do_global();
3042                 sched_dl_do_global();
3043         }
3044         if (0) {
3045 undo:
3046                 sysctl_sched_rt_period = old_period;
3047                 sysctl_sched_rt_runtime = old_runtime;
3048         }
3049         mutex_unlock(&mutex);
3050
3051         return ret;
3052 }
3053
3054 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3055                 size_t *lenp, loff_t *ppos)
3056 {
3057         int ret;
3058         static DEFINE_MUTEX(mutex);
3059
3060         mutex_lock(&mutex);
3061         ret = proc_dointvec(table, write, buffer, lenp, ppos);
3062         /*
3063          * Make sure that internally we keep jiffies.
3064          * Also, writing zero resets the timeslice to default:
3065          */
3066         if (!ret && write) {
3067                 sched_rr_timeslice =
3068                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3069                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
3070
3071                 if (sysctl_sched_rr_timeslice <= 0)
3072                         sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3073         }
3074         mutex_unlock(&mutex);
3075
3076         return ret;
3077 }
3078 #endif /* CONFIG_SYSCTL */
3079
3080 #ifdef CONFIG_SCHED_DEBUG
3081 void print_rt_stats(struct seq_file *m, int cpu)
3082 {
3083         rt_rq_iter_t iter;
3084         struct rt_rq *rt_rq;
3085
3086         rcu_read_lock();
3087         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3088                 print_rt_rq(m, cpu, rt_rq);
3089         rcu_read_unlock();
3090 }
3091 #endif /* CONFIG_SCHED_DEBUG */