GNU Linux-libre 6.8.9-gnu
[releases.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13 struct rt_bandwidth def_rt_bandwidth;
14
15 /*
16  * period over which we measure -rt task CPU usage in us.
17  * default: 1s
18  */
19 int sysctl_sched_rt_period = 1000000;
20
21 /*
22  * part of the period that we allow rt tasks to run in us.
23  * default: 0.95s
24  */
25 int sysctl_sched_rt_runtime = 950000;
26
27 #ifdef CONFIG_SYSCTL
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30                 size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32                 size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
34         {
35                 .procname       = "sched_rt_period_us",
36                 .data           = &sysctl_sched_rt_period,
37                 .maxlen         = sizeof(int),
38                 .mode           = 0644,
39                 .proc_handler   = sched_rt_handler,
40                 .extra1         = SYSCTL_ONE,
41                 .extra2         = SYSCTL_INT_MAX,
42         },
43         {
44                 .procname       = "sched_rt_runtime_us",
45                 .data           = &sysctl_sched_rt_runtime,
46                 .maxlen         = sizeof(int),
47                 .mode           = 0644,
48                 .proc_handler   = sched_rt_handler,
49                 .extra1         = SYSCTL_NEG_ONE,
50                 .extra2         = (void *)&sysctl_sched_rt_period,
51         },
52         {
53                 .procname       = "sched_rr_timeslice_ms",
54                 .data           = &sysctl_sched_rr_timeslice,
55                 .maxlen         = sizeof(int),
56                 .mode           = 0644,
57                 .proc_handler   = sched_rr_handler,
58         },
59         {}
60 };
61
62 static int __init sched_rt_sysctl_init(void)
63 {
64         register_sysctl_init("kernel", sched_rt_sysctls);
65         return 0;
66 }
67 late_initcall(sched_rt_sysctl_init);
68 #endif
69
70 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
71 {
72         struct rt_bandwidth *rt_b =
73                 container_of(timer, struct rt_bandwidth, rt_period_timer);
74         int idle = 0;
75         int overrun;
76
77         raw_spin_lock(&rt_b->rt_runtime_lock);
78         for (;;) {
79                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
80                 if (!overrun)
81                         break;
82
83                 raw_spin_unlock(&rt_b->rt_runtime_lock);
84                 idle = do_sched_rt_period_timer(rt_b, overrun);
85                 raw_spin_lock(&rt_b->rt_runtime_lock);
86         }
87         if (idle)
88                 rt_b->rt_period_active = 0;
89         raw_spin_unlock(&rt_b->rt_runtime_lock);
90
91         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
92 }
93
94 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
95 {
96         rt_b->rt_period = ns_to_ktime(period);
97         rt_b->rt_runtime = runtime;
98
99         raw_spin_lock_init(&rt_b->rt_runtime_lock);
100
101         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
102                      HRTIMER_MODE_REL_HARD);
103         rt_b->rt_period_timer.function = sched_rt_period_timer;
104 }
105
106 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108         raw_spin_lock(&rt_b->rt_runtime_lock);
109         if (!rt_b->rt_period_active) {
110                 rt_b->rt_period_active = 1;
111                 /*
112                  * SCHED_DEADLINE updates the bandwidth, as a run away
113                  * RT task with a DL task could hog a CPU. But DL does
114                  * not reset the period. If a deadline task was running
115                  * without an RT task running, it can cause RT tasks to
116                  * throttle when they start up. Kick the timer right away
117                  * to update the period.
118                  */
119                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
120                 hrtimer_start_expires(&rt_b->rt_period_timer,
121                                       HRTIMER_MODE_ABS_PINNED_HARD);
122         }
123         raw_spin_unlock(&rt_b->rt_runtime_lock);
124 }
125
126 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
127 {
128         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
129                 return;
130
131         do_start_rt_bandwidth(rt_b);
132 }
133
134 void init_rt_rq(struct rt_rq *rt_rq)
135 {
136         struct rt_prio_array *array;
137         int i;
138
139         array = &rt_rq->active;
140         for (i = 0; i < MAX_RT_PRIO; i++) {
141                 INIT_LIST_HEAD(array->queue + i);
142                 __clear_bit(i, array->bitmap);
143         }
144         /* delimiter for bitsearch: */
145         __set_bit(MAX_RT_PRIO, array->bitmap);
146
147 #if defined CONFIG_SMP
148         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
149         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
150         rt_rq->overloaded = 0;
151         plist_head_init(&rt_rq->pushable_tasks);
152 #endif /* CONFIG_SMP */
153         /* We start is dequeued state, because no RT tasks are queued */
154         rt_rq->rt_queued = 0;
155
156         rt_rq->rt_time = 0;
157         rt_rq->rt_throttled = 0;
158         rt_rq->rt_runtime = 0;
159         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
160 }
161
162 #ifdef CONFIG_RT_GROUP_SCHED
163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
164 {
165         hrtimer_cancel(&rt_b->rt_period_timer);
166 }
167
168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
169
170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
171 {
172 #ifdef CONFIG_SCHED_DEBUG
173         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
174 #endif
175         return container_of(rt_se, struct task_struct, rt);
176 }
177
178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
179 {
180         return rt_rq->rq;
181 }
182
183 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
184 {
185         return rt_se->rt_rq;
186 }
187
188 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
189 {
190         struct rt_rq *rt_rq = rt_se->rt_rq;
191
192         return rt_rq->rq;
193 }
194
195 void unregister_rt_sched_group(struct task_group *tg)
196 {
197         if (tg->rt_se)
198                 destroy_rt_bandwidth(&tg->rt_bandwidth);
199
200 }
201
202 void free_rt_sched_group(struct task_group *tg)
203 {
204         int i;
205
206         for_each_possible_cpu(i) {
207                 if (tg->rt_rq)
208                         kfree(tg->rt_rq[i]);
209                 if (tg->rt_se)
210                         kfree(tg->rt_se[i]);
211         }
212
213         kfree(tg->rt_rq);
214         kfree(tg->rt_se);
215 }
216
217 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
218                 struct sched_rt_entity *rt_se, int cpu,
219                 struct sched_rt_entity *parent)
220 {
221         struct rq *rq = cpu_rq(cpu);
222
223         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
224         rt_rq->rt_nr_boosted = 0;
225         rt_rq->rq = rq;
226         rt_rq->tg = tg;
227
228         tg->rt_rq[cpu] = rt_rq;
229         tg->rt_se[cpu] = rt_se;
230
231         if (!rt_se)
232                 return;
233
234         if (!parent)
235                 rt_se->rt_rq = &rq->rt;
236         else
237                 rt_se->rt_rq = parent->my_q;
238
239         rt_se->my_q = rt_rq;
240         rt_se->parent = parent;
241         INIT_LIST_HEAD(&rt_se->run_list);
242 }
243
244 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
245 {
246         struct rt_rq *rt_rq;
247         struct sched_rt_entity *rt_se;
248         int i;
249
250         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
251         if (!tg->rt_rq)
252                 goto err;
253         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
254         if (!tg->rt_se)
255                 goto err;
256
257         init_rt_bandwidth(&tg->rt_bandwidth,
258                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
259
260         for_each_possible_cpu(i) {
261                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
262                                      GFP_KERNEL, cpu_to_node(i));
263                 if (!rt_rq)
264                         goto err;
265
266                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
267                                      GFP_KERNEL, cpu_to_node(i));
268                 if (!rt_se)
269                         goto err_free_rq;
270
271                 init_rt_rq(rt_rq);
272                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
273                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
274         }
275
276         return 1;
277
278 err_free_rq:
279         kfree(rt_rq);
280 err:
281         return 0;
282 }
283
284 #else /* CONFIG_RT_GROUP_SCHED */
285
286 #define rt_entity_is_task(rt_se) (1)
287
288 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
289 {
290         return container_of(rt_se, struct task_struct, rt);
291 }
292
293 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
294 {
295         return container_of(rt_rq, struct rq, rt);
296 }
297
298 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
299 {
300         struct task_struct *p = rt_task_of(rt_se);
301
302         return task_rq(p);
303 }
304
305 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
306 {
307         struct rq *rq = rq_of_rt_se(rt_se);
308
309         return &rq->rt;
310 }
311
312 void unregister_rt_sched_group(struct task_group *tg) { }
313
314 void free_rt_sched_group(struct task_group *tg) { }
315
316 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
317 {
318         return 1;
319 }
320 #endif /* CONFIG_RT_GROUP_SCHED */
321
322 #ifdef CONFIG_SMP
323
324 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
325 {
326         /* Try to pull RT tasks here if we lower this rq's prio */
327         return rq->online && rq->rt.highest_prio.curr > prev->prio;
328 }
329
330 static inline int rt_overloaded(struct rq *rq)
331 {
332         return atomic_read(&rq->rd->rto_count);
333 }
334
335 static inline void rt_set_overload(struct rq *rq)
336 {
337         if (!rq->online)
338                 return;
339
340         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
341         /*
342          * Make sure the mask is visible before we set
343          * the overload count. That is checked to determine
344          * if we should look at the mask. It would be a shame
345          * if we looked at the mask, but the mask was not
346          * updated yet.
347          *
348          * Matched by the barrier in pull_rt_task().
349          */
350         smp_wmb();
351         atomic_inc(&rq->rd->rto_count);
352 }
353
354 static inline void rt_clear_overload(struct rq *rq)
355 {
356         if (!rq->online)
357                 return;
358
359         /* the order here really doesn't matter */
360         atomic_dec(&rq->rd->rto_count);
361         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
362 }
363
364 static inline int has_pushable_tasks(struct rq *rq)
365 {
366         return !plist_head_empty(&rq->rt.pushable_tasks);
367 }
368
369 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
370 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
371
372 static void push_rt_tasks(struct rq *);
373 static void pull_rt_task(struct rq *);
374
375 static inline void rt_queue_push_tasks(struct rq *rq)
376 {
377         if (!has_pushable_tasks(rq))
378                 return;
379
380         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
381 }
382
383 static inline void rt_queue_pull_task(struct rq *rq)
384 {
385         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
386 }
387
388 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
389 {
390         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
391         plist_node_init(&p->pushable_tasks, p->prio);
392         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
393
394         /* Update the highest prio pushable task */
395         if (p->prio < rq->rt.highest_prio.next)
396                 rq->rt.highest_prio.next = p->prio;
397
398         if (!rq->rt.overloaded) {
399                 rt_set_overload(rq);
400                 rq->rt.overloaded = 1;
401         }
402 }
403
404 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
407
408         /* Update the new highest prio pushable task */
409         if (has_pushable_tasks(rq)) {
410                 p = plist_first_entry(&rq->rt.pushable_tasks,
411                                       struct task_struct, pushable_tasks);
412                 rq->rt.highest_prio.next = p->prio;
413         } else {
414                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
415
416                 if (rq->rt.overloaded) {
417                         rt_clear_overload(rq);
418                         rq->rt.overloaded = 0;
419                 }
420         }
421 }
422
423 #else
424
425 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
426 {
427 }
428
429 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
430 {
431 }
432
433 static inline void rt_queue_push_tasks(struct rq *rq)
434 {
435 }
436 #endif /* CONFIG_SMP */
437
438 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
439 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
440
441 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
442 {
443         return rt_se->on_rq;
444 }
445
446 #ifdef CONFIG_UCLAMP_TASK
447 /*
448  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
449  * settings.
450  *
451  * This check is only important for heterogeneous systems where uclamp_min value
452  * is higher than the capacity of a @cpu. For non-heterogeneous system this
453  * function will always return true.
454  *
455  * The function will return true if the capacity of the @cpu is >= the
456  * uclamp_min and false otherwise.
457  *
458  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
459  * > uclamp_max.
460  */
461 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
462 {
463         unsigned int min_cap;
464         unsigned int max_cap;
465         unsigned int cpu_cap;
466
467         /* Only heterogeneous systems can benefit from this check */
468         if (!sched_asym_cpucap_active())
469                 return true;
470
471         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
472         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
473
474         cpu_cap = arch_scale_cpu_capacity(cpu);
475
476         return cpu_cap >= min(min_cap, max_cap);
477 }
478 #else
479 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
480 {
481         return true;
482 }
483 #endif
484
485 #ifdef CONFIG_RT_GROUP_SCHED
486
487 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
488 {
489         if (!rt_rq->tg)
490                 return RUNTIME_INF;
491
492         return rt_rq->rt_runtime;
493 }
494
495 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
496 {
497         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
498 }
499
500 typedef struct task_group *rt_rq_iter_t;
501
502 static inline struct task_group *next_task_group(struct task_group *tg)
503 {
504         do {
505                 tg = list_entry_rcu(tg->list.next,
506                         typeof(struct task_group), list);
507         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
508
509         if (&tg->list == &task_groups)
510                 tg = NULL;
511
512         return tg;
513 }
514
515 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
516         for (iter = container_of(&task_groups, typeof(*iter), list);    \
517                 (iter = next_task_group(iter)) &&                       \
518                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
519
520 #define for_each_sched_rt_entity(rt_se) \
521         for (; rt_se; rt_se = rt_se->parent)
522
523 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
524 {
525         return rt_se->my_q;
526 }
527
528 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
529 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
530
531 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
532 {
533         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
534         struct rq *rq = rq_of_rt_rq(rt_rq);
535         struct sched_rt_entity *rt_se;
536
537         int cpu = cpu_of(rq);
538
539         rt_se = rt_rq->tg->rt_se[cpu];
540
541         if (rt_rq->rt_nr_running) {
542                 if (!rt_se)
543                         enqueue_top_rt_rq(rt_rq);
544                 else if (!on_rt_rq(rt_se))
545                         enqueue_rt_entity(rt_se, 0);
546
547                 if (rt_rq->highest_prio.curr < curr->prio)
548                         resched_curr(rq);
549         }
550 }
551
552 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
553 {
554         struct sched_rt_entity *rt_se;
555         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
556
557         rt_se = rt_rq->tg->rt_se[cpu];
558
559         if (!rt_se) {
560                 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
561                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
562                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
563         }
564         else if (on_rt_rq(rt_se))
565                 dequeue_rt_entity(rt_se, 0);
566 }
567
568 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
569 {
570         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
571 }
572
573 static int rt_se_boosted(struct sched_rt_entity *rt_se)
574 {
575         struct rt_rq *rt_rq = group_rt_rq(rt_se);
576         struct task_struct *p;
577
578         if (rt_rq)
579                 return !!rt_rq->rt_nr_boosted;
580
581         p = rt_task_of(rt_se);
582         return p->prio != p->normal_prio;
583 }
584
585 #ifdef CONFIG_SMP
586 static inline const struct cpumask *sched_rt_period_mask(void)
587 {
588         return this_rq()->rd->span;
589 }
590 #else
591 static inline const struct cpumask *sched_rt_period_mask(void)
592 {
593         return cpu_online_mask;
594 }
595 #endif
596
597 static inline
598 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
599 {
600         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
601 }
602
603 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
604 {
605         return &rt_rq->tg->rt_bandwidth;
606 }
607
608 #else /* !CONFIG_RT_GROUP_SCHED */
609
610 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
611 {
612         return rt_rq->rt_runtime;
613 }
614
615 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
616 {
617         return ktime_to_ns(def_rt_bandwidth.rt_period);
618 }
619
620 typedef struct rt_rq *rt_rq_iter_t;
621
622 #define for_each_rt_rq(rt_rq, iter, rq) \
623         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
624
625 #define for_each_sched_rt_entity(rt_se) \
626         for (; rt_se; rt_se = NULL)
627
628 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
629 {
630         return NULL;
631 }
632
633 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
634 {
635         struct rq *rq = rq_of_rt_rq(rt_rq);
636
637         if (!rt_rq->rt_nr_running)
638                 return;
639
640         enqueue_top_rt_rq(rt_rq);
641         resched_curr(rq);
642 }
643
644 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
645 {
646         dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
647 }
648
649 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
650 {
651         return rt_rq->rt_throttled;
652 }
653
654 static inline const struct cpumask *sched_rt_period_mask(void)
655 {
656         return cpu_online_mask;
657 }
658
659 static inline
660 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
661 {
662         return &cpu_rq(cpu)->rt;
663 }
664
665 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
666 {
667         return &def_rt_bandwidth;
668 }
669
670 #endif /* CONFIG_RT_GROUP_SCHED */
671
672 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
673 {
674         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
675
676         return (hrtimer_active(&rt_b->rt_period_timer) ||
677                 rt_rq->rt_time < rt_b->rt_runtime);
678 }
679
680 #ifdef CONFIG_SMP
681 /*
682  * We ran out of runtime, see if we can borrow some from our neighbours.
683  */
684 static void do_balance_runtime(struct rt_rq *rt_rq)
685 {
686         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
687         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
688         int i, weight;
689         u64 rt_period;
690
691         weight = cpumask_weight(rd->span);
692
693         raw_spin_lock(&rt_b->rt_runtime_lock);
694         rt_period = ktime_to_ns(rt_b->rt_period);
695         for_each_cpu(i, rd->span) {
696                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
697                 s64 diff;
698
699                 if (iter == rt_rq)
700                         continue;
701
702                 raw_spin_lock(&iter->rt_runtime_lock);
703                 /*
704                  * Either all rqs have inf runtime and there's nothing to steal
705                  * or __disable_runtime() below sets a specific rq to inf to
706                  * indicate its been disabled and disallow stealing.
707                  */
708                 if (iter->rt_runtime == RUNTIME_INF)
709                         goto next;
710
711                 /*
712                  * From runqueues with spare time, take 1/n part of their
713                  * spare time, but no more than our period.
714                  */
715                 diff = iter->rt_runtime - iter->rt_time;
716                 if (diff > 0) {
717                         diff = div_u64((u64)diff, weight);
718                         if (rt_rq->rt_runtime + diff > rt_period)
719                                 diff = rt_period - rt_rq->rt_runtime;
720                         iter->rt_runtime -= diff;
721                         rt_rq->rt_runtime += diff;
722                         if (rt_rq->rt_runtime == rt_period) {
723                                 raw_spin_unlock(&iter->rt_runtime_lock);
724                                 break;
725                         }
726                 }
727 next:
728                 raw_spin_unlock(&iter->rt_runtime_lock);
729         }
730         raw_spin_unlock(&rt_b->rt_runtime_lock);
731 }
732
733 /*
734  * Ensure this RQ takes back all the runtime it lend to its neighbours.
735  */
736 static void __disable_runtime(struct rq *rq)
737 {
738         struct root_domain *rd = rq->rd;
739         rt_rq_iter_t iter;
740         struct rt_rq *rt_rq;
741
742         if (unlikely(!scheduler_running))
743                 return;
744
745         for_each_rt_rq(rt_rq, iter, rq) {
746                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
747                 s64 want;
748                 int i;
749
750                 raw_spin_lock(&rt_b->rt_runtime_lock);
751                 raw_spin_lock(&rt_rq->rt_runtime_lock);
752                 /*
753                  * Either we're all inf and nobody needs to borrow, or we're
754                  * already disabled and thus have nothing to do, or we have
755                  * exactly the right amount of runtime to take out.
756                  */
757                 if (rt_rq->rt_runtime == RUNTIME_INF ||
758                                 rt_rq->rt_runtime == rt_b->rt_runtime)
759                         goto balanced;
760                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
761
762                 /*
763                  * Calculate the difference between what we started out with
764                  * and what we current have, that's the amount of runtime
765                  * we lend and now have to reclaim.
766                  */
767                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
768
769                 /*
770                  * Greedy reclaim, take back as much as we can.
771                  */
772                 for_each_cpu(i, rd->span) {
773                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
774                         s64 diff;
775
776                         /*
777                          * Can't reclaim from ourselves or disabled runqueues.
778                          */
779                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
780                                 continue;
781
782                         raw_spin_lock(&iter->rt_runtime_lock);
783                         if (want > 0) {
784                                 diff = min_t(s64, iter->rt_runtime, want);
785                                 iter->rt_runtime -= diff;
786                                 want -= diff;
787                         } else {
788                                 iter->rt_runtime -= want;
789                                 want -= want;
790                         }
791                         raw_spin_unlock(&iter->rt_runtime_lock);
792
793                         if (!want)
794                                 break;
795                 }
796
797                 raw_spin_lock(&rt_rq->rt_runtime_lock);
798                 /*
799                  * We cannot be left wanting - that would mean some runtime
800                  * leaked out of the system.
801                  */
802                 WARN_ON_ONCE(want);
803 balanced:
804                 /*
805                  * Disable all the borrow logic by pretending we have inf
806                  * runtime - in which case borrowing doesn't make sense.
807                  */
808                 rt_rq->rt_runtime = RUNTIME_INF;
809                 rt_rq->rt_throttled = 0;
810                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
811                 raw_spin_unlock(&rt_b->rt_runtime_lock);
812
813                 /* Make rt_rq available for pick_next_task() */
814                 sched_rt_rq_enqueue(rt_rq);
815         }
816 }
817
818 static void __enable_runtime(struct rq *rq)
819 {
820         rt_rq_iter_t iter;
821         struct rt_rq *rt_rq;
822
823         if (unlikely(!scheduler_running))
824                 return;
825
826         /*
827          * Reset each runqueue's bandwidth settings
828          */
829         for_each_rt_rq(rt_rq, iter, rq) {
830                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
831
832                 raw_spin_lock(&rt_b->rt_runtime_lock);
833                 raw_spin_lock(&rt_rq->rt_runtime_lock);
834                 rt_rq->rt_runtime = rt_b->rt_runtime;
835                 rt_rq->rt_time = 0;
836                 rt_rq->rt_throttled = 0;
837                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
838                 raw_spin_unlock(&rt_b->rt_runtime_lock);
839         }
840 }
841
842 static void balance_runtime(struct rt_rq *rt_rq)
843 {
844         if (!sched_feat(RT_RUNTIME_SHARE))
845                 return;
846
847         if (rt_rq->rt_time > rt_rq->rt_runtime) {
848                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
849                 do_balance_runtime(rt_rq);
850                 raw_spin_lock(&rt_rq->rt_runtime_lock);
851         }
852 }
853 #else /* !CONFIG_SMP */
854 static inline void balance_runtime(struct rt_rq *rt_rq) {}
855 #endif /* CONFIG_SMP */
856
857 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
858 {
859         int i, idle = 1, throttled = 0;
860         const struct cpumask *span;
861
862         span = sched_rt_period_mask();
863 #ifdef CONFIG_RT_GROUP_SCHED
864         /*
865          * FIXME: isolated CPUs should really leave the root task group,
866          * whether they are isolcpus or were isolated via cpusets, lest
867          * the timer run on a CPU which does not service all runqueues,
868          * potentially leaving other CPUs indefinitely throttled.  If
869          * isolation is really required, the user will turn the throttle
870          * off to kill the perturbations it causes anyway.  Meanwhile,
871          * this maintains functionality for boot and/or troubleshooting.
872          */
873         if (rt_b == &root_task_group.rt_bandwidth)
874                 span = cpu_online_mask;
875 #endif
876         for_each_cpu(i, span) {
877                 int enqueue = 0;
878                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
879                 struct rq *rq = rq_of_rt_rq(rt_rq);
880                 struct rq_flags rf;
881                 int skip;
882
883                 /*
884                  * When span == cpu_online_mask, taking each rq->lock
885                  * can be time-consuming. Try to avoid it when possible.
886                  */
887                 raw_spin_lock(&rt_rq->rt_runtime_lock);
888                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
889                         rt_rq->rt_runtime = rt_b->rt_runtime;
890                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
891                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
892                 if (skip)
893                         continue;
894
895                 rq_lock(rq, &rf);
896                 update_rq_clock(rq);
897
898                 if (rt_rq->rt_time) {
899                         u64 runtime;
900
901                         raw_spin_lock(&rt_rq->rt_runtime_lock);
902                         if (rt_rq->rt_throttled)
903                                 balance_runtime(rt_rq);
904                         runtime = rt_rq->rt_runtime;
905                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
906                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
907                                 rt_rq->rt_throttled = 0;
908                                 enqueue = 1;
909
910                                 /*
911                                  * When we're idle and a woken (rt) task is
912                                  * throttled wakeup_preempt() will set
913                                  * skip_update and the time between the wakeup
914                                  * and this unthrottle will get accounted as
915                                  * 'runtime'.
916                                  */
917                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
918                                         rq_clock_cancel_skipupdate(rq);
919                         }
920                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
921                                 idle = 0;
922                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
923                 } else if (rt_rq->rt_nr_running) {
924                         idle = 0;
925                         if (!rt_rq_throttled(rt_rq))
926                                 enqueue = 1;
927                 }
928                 if (rt_rq->rt_throttled)
929                         throttled = 1;
930
931                 if (enqueue)
932                         sched_rt_rq_enqueue(rt_rq);
933                 rq_unlock(rq, &rf);
934         }
935
936         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
937                 return 1;
938
939         return idle;
940 }
941
942 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
943 {
944 #ifdef CONFIG_RT_GROUP_SCHED
945         struct rt_rq *rt_rq = group_rt_rq(rt_se);
946
947         if (rt_rq)
948                 return rt_rq->highest_prio.curr;
949 #endif
950
951         return rt_task_of(rt_se)->prio;
952 }
953
954 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
955 {
956         u64 runtime = sched_rt_runtime(rt_rq);
957
958         if (rt_rq->rt_throttled)
959                 return rt_rq_throttled(rt_rq);
960
961         if (runtime >= sched_rt_period(rt_rq))
962                 return 0;
963
964         balance_runtime(rt_rq);
965         runtime = sched_rt_runtime(rt_rq);
966         if (runtime == RUNTIME_INF)
967                 return 0;
968
969         if (rt_rq->rt_time > runtime) {
970                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
971
972                 /*
973                  * Don't actually throttle groups that have no runtime assigned
974                  * but accrue some time due to boosting.
975                  */
976                 if (likely(rt_b->rt_runtime)) {
977                         rt_rq->rt_throttled = 1;
978                         printk_deferred_once("sched: RT throttling activated\n");
979                 } else {
980                         /*
981                          * In case we did anyway, make it go away,
982                          * replenishment is a joke, since it will replenish us
983                          * with exactly 0 ns.
984                          */
985                         rt_rq->rt_time = 0;
986                 }
987
988                 if (rt_rq_throttled(rt_rq)) {
989                         sched_rt_rq_dequeue(rt_rq);
990                         return 1;
991                 }
992         }
993
994         return 0;
995 }
996
997 /*
998  * Update the current task's runtime statistics. Skip current tasks that
999  * are not in our scheduling class.
1000  */
1001 static void update_curr_rt(struct rq *rq)
1002 {
1003         struct task_struct *curr = rq->curr;
1004         struct sched_rt_entity *rt_se = &curr->rt;
1005         s64 delta_exec;
1006
1007         if (curr->sched_class != &rt_sched_class)
1008                 return;
1009
1010         delta_exec = update_curr_common(rq);
1011         if (unlikely(delta_exec <= 0))
1012                 return;
1013
1014         if (!rt_bandwidth_enabled())
1015                 return;
1016
1017         for_each_sched_rt_entity(rt_se) {
1018                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1019                 int exceeded;
1020
1021                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1022                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1023                         rt_rq->rt_time += delta_exec;
1024                         exceeded = sched_rt_runtime_exceeded(rt_rq);
1025                         if (exceeded)
1026                                 resched_curr(rq);
1027                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1028                         if (exceeded)
1029                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1030                 }
1031         }
1032 }
1033
1034 static void
1035 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1036 {
1037         struct rq *rq = rq_of_rt_rq(rt_rq);
1038
1039         BUG_ON(&rq->rt != rt_rq);
1040
1041         if (!rt_rq->rt_queued)
1042                 return;
1043
1044         BUG_ON(!rq->nr_running);
1045
1046         sub_nr_running(rq, count);
1047         rt_rq->rt_queued = 0;
1048
1049 }
1050
1051 static void
1052 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1053 {
1054         struct rq *rq = rq_of_rt_rq(rt_rq);
1055
1056         BUG_ON(&rq->rt != rt_rq);
1057
1058         if (rt_rq->rt_queued)
1059                 return;
1060
1061         if (rt_rq_throttled(rt_rq))
1062                 return;
1063
1064         if (rt_rq->rt_nr_running) {
1065                 add_nr_running(rq, rt_rq->rt_nr_running);
1066                 rt_rq->rt_queued = 1;
1067         }
1068
1069         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070         cpufreq_update_util(rq, 0);
1071 }
1072
1073 #if defined CONFIG_SMP
1074
1075 static void
1076 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1077 {
1078         struct rq *rq = rq_of_rt_rq(rt_rq);
1079
1080 #ifdef CONFIG_RT_GROUP_SCHED
1081         /*
1082          * Change rq's cpupri only if rt_rq is the top queue.
1083          */
1084         if (&rq->rt != rt_rq)
1085                 return;
1086 #endif
1087         if (rq->online && prio < prev_prio)
1088                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1089 }
1090
1091 static void
1092 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1093 {
1094         struct rq *rq = rq_of_rt_rq(rt_rq);
1095
1096 #ifdef CONFIG_RT_GROUP_SCHED
1097         /*
1098          * Change rq's cpupri only if rt_rq is the top queue.
1099          */
1100         if (&rq->rt != rt_rq)
1101                 return;
1102 #endif
1103         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1105 }
1106
1107 #else /* CONFIG_SMP */
1108
1109 static inline
1110 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111 static inline
1112 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113
1114 #endif /* CONFIG_SMP */
1115
1116 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1117 static void
1118 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1119 {
1120         int prev_prio = rt_rq->highest_prio.curr;
1121
1122         if (prio < prev_prio)
1123                 rt_rq->highest_prio.curr = prio;
1124
1125         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1126 }
1127
1128 static void
1129 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1130 {
1131         int prev_prio = rt_rq->highest_prio.curr;
1132
1133         if (rt_rq->rt_nr_running) {
1134
1135                 WARN_ON(prio < prev_prio);
1136
1137                 /*
1138                  * This may have been our highest task, and therefore
1139                  * we may have some recomputation to do
1140                  */
1141                 if (prio == prev_prio) {
1142                         struct rt_prio_array *array = &rt_rq->active;
1143
1144                         rt_rq->highest_prio.curr =
1145                                 sched_find_first_bit(array->bitmap);
1146                 }
1147
1148         } else {
1149                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1150         }
1151
1152         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1153 }
1154
1155 #else
1156
1157 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1159
1160 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1161
1162 #ifdef CONFIG_RT_GROUP_SCHED
1163
1164 static void
1165 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1166 {
1167         if (rt_se_boosted(rt_se))
1168                 rt_rq->rt_nr_boosted++;
1169
1170         if (rt_rq->tg)
1171                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1172 }
1173
1174 static void
1175 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176 {
1177         if (rt_se_boosted(rt_se))
1178                 rt_rq->rt_nr_boosted--;
1179
1180         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1181 }
1182
1183 #else /* CONFIG_RT_GROUP_SCHED */
1184
1185 static void
1186 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1187 {
1188         start_rt_bandwidth(&def_rt_bandwidth);
1189 }
1190
1191 static inline
1192 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1193
1194 #endif /* CONFIG_RT_GROUP_SCHED */
1195
1196 static inline
1197 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1198 {
1199         struct rt_rq *group_rq = group_rt_rq(rt_se);
1200
1201         if (group_rq)
1202                 return group_rq->rt_nr_running;
1203         else
1204                 return 1;
1205 }
1206
1207 static inline
1208 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1209 {
1210         struct rt_rq *group_rq = group_rt_rq(rt_se);
1211         struct task_struct *tsk;
1212
1213         if (group_rq)
1214                 return group_rq->rr_nr_running;
1215
1216         tsk = rt_task_of(rt_se);
1217
1218         return (tsk->policy == SCHED_RR) ? 1 : 0;
1219 }
1220
1221 static inline
1222 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1223 {
1224         int prio = rt_se_prio(rt_se);
1225
1226         WARN_ON(!rt_prio(prio));
1227         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1228         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1229
1230         inc_rt_prio(rt_rq, prio);
1231         inc_rt_group(rt_se, rt_rq);
1232 }
1233
1234 static inline
1235 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1236 {
1237         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238         WARN_ON(!rt_rq->rt_nr_running);
1239         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1240         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1241
1242         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1243         dec_rt_group(rt_se, rt_rq);
1244 }
1245
1246 /*
1247  * Change rt_se->run_list location unless SAVE && !MOVE
1248  *
1249  * assumes ENQUEUE/DEQUEUE flags match
1250  */
1251 static inline bool move_entity(unsigned int flags)
1252 {
1253         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1254                 return false;
1255
1256         return true;
1257 }
1258
1259 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1260 {
1261         list_del_init(&rt_se->run_list);
1262
1263         if (list_empty(array->queue + rt_se_prio(rt_se)))
1264                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1265
1266         rt_se->on_list = 0;
1267 }
1268
1269 static inline struct sched_statistics *
1270 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1271 {
1272 #ifdef CONFIG_RT_GROUP_SCHED
1273         /* schedstats is not supported for rt group. */
1274         if (!rt_entity_is_task(rt_se))
1275                 return NULL;
1276 #endif
1277
1278         return &rt_task_of(rt_se)->stats;
1279 }
1280
1281 static inline void
1282 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1283 {
1284         struct sched_statistics *stats;
1285         struct task_struct *p = NULL;
1286
1287         if (!schedstat_enabled())
1288                 return;
1289
1290         if (rt_entity_is_task(rt_se))
1291                 p = rt_task_of(rt_se);
1292
1293         stats = __schedstats_from_rt_se(rt_se);
1294         if (!stats)
1295                 return;
1296
1297         __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1298 }
1299
1300 static inline void
1301 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1302 {
1303         struct sched_statistics *stats;
1304         struct task_struct *p = NULL;
1305
1306         if (!schedstat_enabled())
1307                 return;
1308
1309         if (rt_entity_is_task(rt_se))
1310                 p = rt_task_of(rt_se);
1311
1312         stats = __schedstats_from_rt_se(rt_se);
1313         if (!stats)
1314                 return;
1315
1316         __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1317 }
1318
1319 static inline void
1320 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1321                         int flags)
1322 {
1323         if (!schedstat_enabled())
1324                 return;
1325
1326         if (flags & ENQUEUE_WAKEUP)
1327                 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1328 }
1329
1330 static inline void
1331 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1332 {
1333         struct sched_statistics *stats;
1334         struct task_struct *p = NULL;
1335
1336         if (!schedstat_enabled())
1337                 return;
1338
1339         if (rt_entity_is_task(rt_se))
1340                 p = rt_task_of(rt_se);
1341
1342         stats = __schedstats_from_rt_se(rt_se);
1343         if (!stats)
1344                 return;
1345
1346         __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1347 }
1348
1349 static inline void
1350 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1351                         int flags)
1352 {
1353         struct task_struct *p = NULL;
1354
1355         if (!schedstat_enabled())
1356                 return;
1357
1358         if (rt_entity_is_task(rt_se))
1359                 p = rt_task_of(rt_se);
1360
1361         if ((flags & DEQUEUE_SLEEP) && p) {
1362                 unsigned int state;
1363
1364                 state = READ_ONCE(p->__state);
1365                 if (state & TASK_INTERRUPTIBLE)
1366                         __schedstat_set(p->stats.sleep_start,
1367                                         rq_clock(rq_of_rt_rq(rt_rq)));
1368
1369                 if (state & TASK_UNINTERRUPTIBLE)
1370                         __schedstat_set(p->stats.block_start,
1371                                         rq_clock(rq_of_rt_rq(rt_rq)));
1372         }
1373 }
1374
1375 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1376 {
1377         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1378         struct rt_prio_array *array = &rt_rq->active;
1379         struct rt_rq *group_rq = group_rt_rq(rt_se);
1380         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1381
1382         /*
1383          * Don't enqueue the group if its throttled, or when empty.
1384          * The latter is a consequence of the former when a child group
1385          * get throttled and the current group doesn't have any other
1386          * active members.
1387          */
1388         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1389                 if (rt_se->on_list)
1390                         __delist_rt_entity(rt_se, array);
1391                 return;
1392         }
1393
1394         if (move_entity(flags)) {
1395                 WARN_ON_ONCE(rt_se->on_list);
1396                 if (flags & ENQUEUE_HEAD)
1397                         list_add(&rt_se->run_list, queue);
1398                 else
1399                         list_add_tail(&rt_se->run_list, queue);
1400
1401                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1402                 rt_se->on_list = 1;
1403         }
1404         rt_se->on_rq = 1;
1405
1406         inc_rt_tasks(rt_se, rt_rq);
1407 }
1408
1409 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1410 {
1411         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1412         struct rt_prio_array *array = &rt_rq->active;
1413
1414         if (move_entity(flags)) {
1415                 WARN_ON_ONCE(!rt_se->on_list);
1416                 __delist_rt_entity(rt_se, array);
1417         }
1418         rt_se->on_rq = 0;
1419
1420         dec_rt_tasks(rt_se, rt_rq);
1421 }
1422
1423 /*
1424  * Because the prio of an upper entry depends on the lower
1425  * entries, we must remove entries top - down.
1426  */
1427 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1428 {
1429         struct sched_rt_entity *back = NULL;
1430         unsigned int rt_nr_running;
1431
1432         for_each_sched_rt_entity(rt_se) {
1433                 rt_se->back = back;
1434                 back = rt_se;
1435         }
1436
1437         rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1438
1439         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1440                 if (on_rt_rq(rt_se))
1441                         __dequeue_rt_entity(rt_se, flags);
1442         }
1443
1444         dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1445 }
1446
1447 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1448 {
1449         struct rq *rq = rq_of_rt_se(rt_se);
1450
1451         update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1452
1453         dequeue_rt_stack(rt_se, flags);
1454         for_each_sched_rt_entity(rt_se)
1455                 __enqueue_rt_entity(rt_se, flags);
1456         enqueue_top_rt_rq(&rq->rt);
1457 }
1458
1459 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1460 {
1461         struct rq *rq = rq_of_rt_se(rt_se);
1462
1463         update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1464
1465         dequeue_rt_stack(rt_se, flags);
1466
1467         for_each_sched_rt_entity(rt_se) {
1468                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1469
1470                 if (rt_rq && rt_rq->rt_nr_running)
1471                         __enqueue_rt_entity(rt_se, flags);
1472         }
1473         enqueue_top_rt_rq(&rq->rt);
1474 }
1475
1476 /*
1477  * Adding/removing a task to/from a priority array:
1478  */
1479 static void
1480 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1481 {
1482         struct sched_rt_entity *rt_se = &p->rt;
1483
1484         if (flags & ENQUEUE_WAKEUP)
1485                 rt_se->timeout = 0;
1486
1487         check_schedstat_required();
1488         update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1489
1490         enqueue_rt_entity(rt_se, flags);
1491
1492         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1493                 enqueue_pushable_task(rq, p);
1494 }
1495
1496 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1497 {
1498         struct sched_rt_entity *rt_se = &p->rt;
1499
1500         update_curr_rt(rq);
1501         dequeue_rt_entity(rt_se, flags);
1502
1503         dequeue_pushable_task(rq, p);
1504 }
1505
1506 /*
1507  * Put task to the head or the end of the run list without the overhead of
1508  * dequeue followed by enqueue.
1509  */
1510 static void
1511 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1512 {
1513         if (on_rt_rq(rt_se)) {
1514                 struct rt_prio_array *array = &rt_rq->active;
1515                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1516
1517                 if (head)
1518                         list_move(&rt_se->run_list, queue);
1519                 else
1520                         list_move_tail(&rt_se->run_list, queue);
1521         }
1522 }
1523
1524 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1525 {
1526         struct sched_rt_entity *rt_se = &p->rt;
1527         struct rt_rq *rt_rq;
1528
1529         for_each_sched_rt_entity(rt_se) {
1530                 rt_rq = rt_rq_of_se(rt_se);
1531                 requeue_rt_entity(rt_rq, rt_se, head);
1532         }
1533 }
1534
1535 static void yield_task_rt(struct rq *rq)
1536 {
1537         requeue_task_rt(rq, rq->curr, 0);
1538 }
1539
1540 #ifdef CONFIG_SMP
1541 static int find_lowest_rq(struct task_struct *task);
1542
1543 static int
1544 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1545 {
1546         struct task_struct *curr;
1547         struct rq *rq;
1548         bool test;
1549
1550         /* For anything but wake ups, just return the task_cpu */
1551         if (!(flags & (WF_TTWU | WF_FORK)))
1552                 goto out;
1553
1554         rq = cpu_rq(cpu);
1555
1556         rcu_read_lock();
1557         curr = READ_ONCE(rq->curr); /* unlocked access */
1558
1559         /*
1560          * If the current task on @p's runqueue is an RT task, then
1561          * try to see if we can wake this RT task up on another
1562          * runqueue. Otherwise simply start this RT task
1563          * on its current runqueue.
1564          *
1565          * We want to avoid overloading runqueues. If the woken
1566          * task is a higher priority, then it will stay on this CPU
1567          * and the lower prio task should be moved to another CPU.
1568          * Even though this will probably make the lower prio task
1569          * lose its cache, we do not want to bounce a higher task
1570          * around just because it gave up its CPU, perhaps for a
1571          * lock?
1572          *
1573          * For equal prio tasks, we just let the scheduler sort it out.
1574          *
1575          * Otherwise, just let it ride on the affined RQ and the
1576          * post-schedule router will push the preempted task away
1577          *
1578          * This test is optimistic, if we get it wrong the load-balancer
1579          * will have to sort it out.
1580          *
1581          * We take into account the capacity of the CPU to ensure it fits the
1582          * requirement of the task - which is only important on heterogeneous
1583          * systems like big.LITTLE.
1584          */
1585         test = curr &&
1586                unlikely(rt_task(curr)) &&
1587                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1588
1589         if (test || !rt_task_fits_capacity(p, cpu)) {
1590                 int target = find_lowest_rq(p);
1591
1592                 /*
1593                  * Bail out if we were forcing a migration to find a better
1594                  * fitting CPU but our search failed.
1595                  */
1596                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1597                         goto out_unlock;
1598
1599                 /*
1600                  * Don't bother moving it if the destination CPU is
1601                  * not running a lower priority task.
1602                  */
1603                 if (target != -1 &&
1604                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1605                         cpu = target;
1606         }
1607
1608 out_unlock:
1609         rcu_read_unlock();
1610
1611 out:
1612         return cpu;
1613 }
1614
1615 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1616 {
1617         /*
1618          * Current can't be migrated, useless to reschedule,
1619          * let's hope p can move out.
1620          */
1621         if (rq->curr->nr_cpus_allowed == 1 ||
1622             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1623                 return;
1624
1625         /*
1626          * p is migratable, so let's not schedule it and
1627          * see if it is pushed or pulled somewhere else.
1628          */
1629         if (p->nr_cpus_allowed != 1 &&
1630             cpupri_find(&rq->rd->cpupri, p, NULL))
1631                 return;
1632
1633         /*
1634          * There appear to be other CPUs that can accept
1635          * the current task but none can run 'p', so lets reschedule
1636          * to try and push the current task away:
1637          */
1638         requeue_task_rt(rq, p, 1);
1639         resched_curr(rq);
1640 }
1641
1642 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1643 {
1644         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1645                 /*
1646                  * This is OK, because current is on_cpu, which avoids it being
1647                  * picked for load-balance and preemption/IRQs are still
1648                  * disabled avoiding further scheduler activity on it and we've
1649                  * not yet started the picking loop.
1650                  */
1651                 rq_unpin_lock(rq, rf);
1652                 pull_rt_task(rq);
1653                 rq_repin_lock(rq, rf);
1654         }
1655
1656         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1657 }
1658 #endif /* CONFIG_SMP */
1659
1660 /*
1661  * Preempt the current task with a newly woken task if needed:
1662  */
1663 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1664 {
1665         if (p->prio < rq->curr->prio) {
1666                 resched_curr(rq);
1667                 return;
1668         }
1669
1670 #ifdef CONFIG_SMP
1671         /*
1672          * If:
1673          *
1674          * - the newly woken task is of equal priority to the current task
1675          * - the newly woken task is non-migratable while current is migratable
1676          * - current will be preempted on the next reschedule
1677          *
1678          * we should check to see if current can readily move to a different
1679          * cpu.  If so, we will reschedule to allow the push logic to try
1680          * to move current somewhere else, making room for our non-migratable
1681          * task.
1682          */
1683         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1684                 check_preempt_equal_prio(rq, p);
1685 #endif
1686 }
1687
1688 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1689 {
1690         struct sched_rt_entity *rt_se = &p->rt;
1691         struct rt_rq *rt_rq = &rq->rt;
1692
1693         p->se.exec_start = rq_clock_task(rq);
1694         if (on_rt_rq(&p->rt))
1695                 update_stats_wait_end_rt(rt_rq, rt_se);
1696
1697         /* The running task is never eligible for pushing */
1698         dequeue_pushable_task(rq, p);
1699
1700         if (!first)
1701                 return;
1702
1703         /*
1704          * If prev task was rt, put_prev_task() has already updated the
1705          * utilization. We only care of the case where we start to schedule a
1706          * rt task
1707          */
1708         if (rq->curr->sched_class != &rt_sched_class)
1709                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1710
1711         rt_queue_push_tasks(rq);
1712 }
1713
1714 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1715 {
1716         struct rt_prio_array *array = &rt_rq->active;
1717         struct sched_rt_entity *next = NULL;
1718         struct list_head *queue;
1719         int idx;
1720
1721         idx = sched_find_first_bit(array->bitmap);
1722         BUG_ON(idx >= MAX_RT_PRIO);
1723
1724         queue = array->queue + idx;
1725         if (SCHED_WARN_ON(list_empty(queue)))
1726                 return NULL;
1727         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1728
1729         return next;
1730 }
1731
1732 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1733 {
1734         struct sched_rt_entity *rt_se;
1735         struct rt_rq *rt_rq  = &rq->rt;
1736
1737         do {
1738                 rt_se = pick_next_rt_entity(rt_rq);
1739                 if (unlikely(!rt_se))
1740                         return NULL;
1741                 rt_rq = group_rt_rq(rt_se);
1742         } while (rt_rq);
1743
1744         return rt_task_of(rt_se);
1745 }
1746
1747 static struct task_struct *pick_task_rt(struct rq *rq)
1748 {
1749         struct task_struct *p;
1750
1751         if (!sched_rt_runnable(rq))
1752                 return NULL;
1753
1754         p = _pick_next_task_rt(rq);
1755
1756         return p;
1757 }
1758
1759 static struct task_struct *pick_next_task_rt(struct rq *rq)
1760 {
1761         struct task_struct *p = pick_task_rt(rq);
1762
1763         if (p)
1764                 set_next_task_rt(rq, p, true);
1765
1766         return p;
1767 }
1768
1769 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1770 {
1771         struct sched_rt_entity *rt_se = &p->rt;
1772         struct rt_rq *rt_rq = &rq->rt;
1773
1774         if (on_rt_rq(&p->rt))
1775                 update_stats_wait_start_rt(rt_rq, rt_se);
1776
1777         update_curr_rt(rq);
1778
1779         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1780
1781         /*
1782          * The previous task needs to be made eligible for pushing
1783          * if it is still active
1784          */
1785         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1786                 enqueue_pushable_task(rq, p);
1787 }
1788
1789 #ifdef CONFIG_SMP
1790
1791 /* Only try algorithms three times */
1792 #define RT_MAX_TRIES 3
1793
1794 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1795 {
1796         if (!task_on_cpu(rq, p) &&
1797             cpumask_test_cpu(cpu, &p->cpus_mask))
1798                 return 1;
1799
1800         return 0;
1801 }
1802
1803 /*
1804  * Return the highest pushable rq's task, which is suitable to be executed
1805  * on the CPU, NULL otherwise
1806  */
1807 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1808 {
1809         struct plist_head *head = &rq->rt.pushable_tasks;
1810         struct task_struct *p;
1811
1812         if (!has_pushable_tasks(rq))
1813                 return NULL;
1814
1815         plist_for_each_entry(p, head, pushable_tasks) {
1816                 if (pick_rt_task(rq, p, cpu))
1817                         return p;
1818         }
1819
1820         return NULL;
1821 }
1822
1823 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1824
1825 static int find_lowest_rq(struct task_struct *task)
1826 {
1827         struct sched_domain *sd;
1828         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1829         int this_cpu = smp_processor_id();
1830         int cpu      = task_cpu(task);
1831         int ret;
1832
1833         /* Make sure the mask is initialized first */
1834         if (unlikely(!lowest_mask))
1835                 return -1;
1836
1837         if (task->nr_cpus_allowed == 1)
1838                 return -1; /* No other targets possible */
1839
1840         /*
1841          * If we're on asym system ensure we consider the different capacities
1842          * of the CPUs when searching for the lowest_mask.
1843          */
1844         if (sched_asym_cpucap_active()) {
1845
1846                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1847                                           task, lowest_mask,
1848                                           rt_task_fits_capacity);
1849         } else {
1850
1851                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1852                                   task, lowest_mask);
1853         }
1854
1855         if (!ret)
1856                 return -1; /* No targets found */
1857
1858         /*
1859          * At this point we have built a mask of CPUs representing the
1860          * lowest priority tasks in the system.  Now we want to elect
1861          * the best one based on our affinity and topology.
1862          *
1863          * We prioritize the last CPU that the task executed on since
1864          * it is most likely cache-hot in that location.
1865          */
1866         if (cpumask_test_cpu(cpu, lowest_mask))
1867                 return cpu;
1868
1869         /*
1870          * Otherwise, we consult the sched_domains span maps to figure
1871          * out which CPU is logically closest to our hot cache data.
1872          */
1873         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1874                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1875
1876         rcu_read_lock();
1877         for_each_domain(cpu, sd) {
1878                 if (sd->flags & SD_WAKE_AFFINE) {
1879                         int best_cpu;
1880
1881                         /*
1882                          * "this_cpu" is cheaper to preempt than a
1883                          * remote processor.
1884                          */
1885                         if (this_cpu != -1 &&
1886                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1887                                 rcu_read_unlock();
1888                                 return this_cpu;
1889                         }
1890
1891                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1892                                                               sched_domain_span(sd));
1893                         if (best_cpu < nr_cpu_ids) {
1894                                 rcu_read_unlock();
1895                                 return best_cpu;
1896                         }
1897                 }
1898         }
1899         rcu_read_unlock();
1900
1901         /*
1902          * And finally, if there were no matches within the domains
1903          * just give the caller *something* to work with from the compatible
1904          * locations.
1905          */
1906         if (this_cpu != -1)
1907                 return this_cpu;
1908
1909         cpu = cpumask_any_distribute(lowest_mask);
1910         if (cpu < nr_cpu_ids)
1911                 return cpu;
1912
1913         return -1;
1914 }
1915
1916 /* Will lock the rq it finds */
1917 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1918 {
1919         struct rq *lowest_rq = NULL;
1920         int tries;
1921         int cpu;
1922
1923         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1924                 cpu = find_lowest_rq(task);
1925
1926                 if ((cpu == -1) || (cpu == rq->cpu))
1927                         break;
1928
1929                 lowest_rq = cpu_rq(cpu);
1930
1931                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1932                         /*
1933                          * Target rq has tasks of equal or higher priority,
1934                          * retrying does not release any lock and is unlikely
1935                          * to yield a different result.
1936                          */
1937                         lowest_rq = NULL;
1938                         break;
1939                 }
1940
1941                 /* if the prio of this runqueue changed, try again */
1942                 if (double_lock_balance(rq, lowest_rq)) {
1943                         /*
1944                          * We had to unlock the run queue. In
1945                          * the mean time, task could have
1946                          * migrated already or had its affinity changed.
1947                          * Also make sure that it wasn't scheduled on its rq.
1948                          * It is possible the task was scheduled, set
1949                          * "migrate_disabled" and then got preempted, so we must
1950                          * check the task migration disable flag here too.
1951                          */
1952                         if (unlikely(task_rq(task) != rq ||
1953                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1954                                      task_on_cpu(rq, task) ||
1955                                      !rt_task(task) ||
1956                                      is_migration_disabled(task) ||
1957                                      !task_on_rq_queued(task))) {
1958
1959                                 double_unlock_balance(rq, lowest_rq);
1960                                 lowest_rq = NULL;
1961                                 break;
1962                         }
1963                 }
1964
1965                 /* If this rq is still suitable use it. */
1966                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1967                         break;
1968
1969                 /* try again */
1970                 double_unlock_balance(rq, lowest_rq);
1971                 lowest_rq = NULL;
1972         }
1973
1974         return lowest_rq;
1975 }
1976
1977 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1978 {
1979         struct task_struct *p;
1980
1981         if (!has_pushable_tasks(rq))
1982                 return NULL;
1983
1984         p = plist_first_entry(&rq->rt.pushable_tasks,
1985                               struct task_struct, pushable_tasks);
1986
1987         BUG_ON(rq->cpu != task_cpu(p));
1988         BUG_ON(task_current(rq, p));
1989         BUG_ON(p->nr_cpus_allowed <= 1);
1990
1991         BUG_ON(!task_on_rq_queued(p));
1992         BUG_ON(!rt_task(p));
1993
1994         return p;
1995 }
1996
1997 /*
1998  * If the current CPU has more than one RT task, see if the non
1999  * running task can migrate over to a CPU that is running a task
2000  * of lesser priority.
2001  */
2002 static int push_rt_task(struct rq *rq, bool pull)
2003 {
2004         struct task_struct *next_task;
2005         struct rq *lowest_rq;
2006         int ret = 0;
2007
2008         if (!rq->rt.overloaded)
2009                 return 0;
2010
2011         next_task = pick_next_pushable_task(rq);
2012         if (!next_task)
2013                 return 0;
2014
2015 retry:
2016         /*
2017          * It's possible that the next_task slipped in of
2018          * higher priority than current. If that's the case
2019          * just reschedule current.
2020          */
2021         if (unlikely(next_task->prio < rq->curr->prio)) {
2022                 resched_curr(rq);
2023                 return 0;
2024         }
2025
2026         if (is_migration_disabled(next_task)) {
2027                 struct task_struct *push_task = NULL;
2028                 int cpu;
2029
2030                 if (!pull || rq->push_busy)
2031                         return 0;
2032
2033                 /*
2034                  * Invoking find_lowest_rq() on anything but an RT task doesn't
2035                  * make sense. Per the above priority check, curr has to
2036                  * be of higher priority than next_task, so no need to
2037                  * reschedule when bailing out.
2038                  *
2039                  * Note that the stoppers are masqueraded as SCHED_FIFO
2040                  * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2041                  */
2042                 if (rq->curr->sched_class != &rt_sched_class)
2043                         return 0;
2044
2045                 cpu = find_lowest_rq(rq->curr);
2046                 if (cpu == -1 || cpu == rq->cpu)
2047                         return 0;
2048
2049                 /*
2050                  * Given we found a CPU with lower priority than @next_task,
2051                  * therefore it should be running. However we cannot migrate it
2052                  * to this other CPU, instead attempt to push the current
2053                  * running task on this CPU away.
2054                  */
2055                 push_task = get_push_task(rq);
2056                 if (push_task) {
2057                         preempt_disable();
2058                         raw_spin_rq_unlock(rq);
2059                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2060                                             push_task, &rq->push_work);
2061                         preempt_enable();
2062                         raw_spin_rq_lock(rq);
2063                 }
2064
2065                 return 0;
2066         }
2067
2068         if (WARN_ON(next_task == rq->curr))
2069                 return 0;
2070
2071         /* We might release rq lock */
2072         get_task_struct(next_task);
2073
2074         /* find_lock_lowest_rq locks the rq if found */
2075         lowest_rq = find_lock_lowest_rq(next_task, rq);
2076         if (!lowest_rq) {
2077                 struct task_struct *task;
2078                 /*
2079                  * find_lock_lowest_rq releases rq->lock
2080                  * so it is possible that next_task has migrated.
2081                  *
2082                  * We need to make sure that the task is still on the same
2083                  * run-queue and is also still the next task eligible for
2084                  * pushing.
2085                  */
2086                 task = pick_next_pushable_task(rq);
2087                 if (task == next_task) {
2088                         /*
2089                          * The task hasn't migrated, and is still the next
2090                          * eligible task, but we failed to find a run-queue
2091                          * to push it to.  Do not retry in this case, since
2092                          * other CPUs will pull from us when ready.
2093                          */
2094                         goto out;
2095                 }
2096
2097                 if (!task)
2098                         /* No more tasks, just exit */
2099                         goto out;
2100
2101                 /*
2102                  * Something has shifted, try again.
2103                  */
2104                 put_task_struct(next_task);
2105                 next_task = task;
2106                 goto retry;
2107         }
2108
2109         deactivate_task(rq, next_task, 0);
2110         set_task_cpu(next_task, lowest_rq->cpu);
2111         activate_task(lowest_rq, next_task, 0);
2112         resched_curr(lowest_rq);
2113         ret = 1;
2114
2115         double_unlock_balance(rq, lowest_rq);
2116 out:
2117         put_task_struct(next_task);
2118
2119         return ret;
2120 }
2121
2122 static void push_rt_tasks(struct rq *rq)
2123 {
2124         /* push_rt_task will return true if it moved an RT */
2125         while (push_rt_task(rq, false))
2126                 ;
2127 }
2128
2129 #ifdef HAVE_RT_PUSH_IPI
2130
2131 /*
2132  * When a high priority task schedules out from a CPU and a lower priority
2133  * task is scheduled in, a check is made to see if there's any RT tasks
2134  * on other CPUs that are waiting to run because a higher priority RT task
2135  * is currently running on its CPU. In this case, the CPU with multiple RT
2136  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2137  * up that may be able to run one of its non-running queued RT tasks.
2138  *
2139  * All CPUs with overloaded RT tasks need to be notified as there is currently
2140  * no way to know which of these CPUs have the highest priority task waiting
2141  * to run. Instead of trying to take a spinlock on each of these CPUs,
2142  * which has shown to cause large latency when done on machines with many
2143  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2144  * RT tasks waiting to run.
2145  *
2146  * Just sending an IPI to each of the CPUs is also an issue, as on large
2147  * count CPU machines, this can cause an IPI storm on a CPU, especially
2148  * if its the only CPU with multiple RT tasks queued, and a large number
2149  * of CPUs scheduling a lower priority task at the same time.
2150  *
2151  * Each root domain has its own irq work function that can iterate over
2152  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2153  * task must be checked if there's one or many CPUs that are lowering
2154  * their priority, there's a single irq work iterator that will try to
2155  * push off RT tasks that are waiting to run.
2156  *
2157  * When a CPU schedules a lower priority task, it will kick off the
2158  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2159  * As it only takes the first CPU that schedules a lower priority task
2160  * to start the process, the rto_start variable is incremented and if
2161  * the atomic result is one, then that CPU will try to take the rto_lock.
2162  * This prevents high contention on the lock as the process handles all
2163  * CPUs scheduling lower priority tasks.
2164  *
2165  * All CPUs that are scheduling a lower priority task will increment the
2166  * rt_loop_next variable. This will make sure that the irq work iterator
2167  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2168  * priority task, even if the iterator is in the middle of a scan. Incrementing
2169  * the rt_loop_next will cause the iterator to perform another scan.
2170  *
2171  */
2172 static int rto_next_cpu(struct root_domain *rd)
2173 {
2174         int next;
2175         int cpu;
2176
2177         /*
2178          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2179          * rt_next_cpu() will simply return the first CPU found in
2180          * the rto_mask.
2181          *
2182          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2183          * will return the next CPU found in the rto_mask.
2184          *
2185          * If there are no more CPUs left in the rto_mask, then a check is made
2186          * against rto_loop and rto_loop_next. rto_loop is only updated with
2187          * the rto_lock held, but any CPU may increment the rto_loop_next
2188          * without any locking.
2189          */
2190         for (;;) {
2191
2192                 /* When rto_cpu is -1 this acts like cpumask_first() */
2193                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2194
2195                 rd->rto_cpu = cpu;
2196
2197                 if (cpu < nr_cpu_ids)
2198                         return cpu;
2199
2200                 rd->rto_cpu = -1;
2201
2202                 /*
2203                  * ACQUIRE ensures we see the @rto_mask changes
2204                  * made prior to the @next value observed.
2205                  *
2206                  * Matches WMB in rt_set_overload().
2207                  */
2208                 next = atomic_read_acquire(&rd->rto_loop_next);
2209
2210                 if (rd->rto_loop == next)
2211                         break;
2212
2213                 rd->rto_loop = next;
2214         }
2215
2216         return -1;
2217 }
2218
2219 static inline bool rto_start_trylock(atomic_t *v)
2220 {
2221         return !atomic_cmpxchg_acquire(v, 0, 1);
2222 }
2223
2224 static inline void rto_start_unlock(atomic_t *v)
2225 {
2226         atomic_set_release(v, 0);
2227 }
2228
2229 static void tell_cpu_to_push(struct rq *rq)
2230 {
2231         int cpu = -1;
2232
2233         /* Keep the loop going if the IPI is currently active */
2234         atomic_inc(&rq->rd->rto_loop_next);
2235
2236         /* Only one CPU can initiate a loop at a time */
2237         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2238                 return;
2239
2240         raw_spin_lock(&rq->rd->rto_lock);
2241
2242         /*
2243          * The rto_cpu is updated under the lock, if it has a valid CPU
2244          * then the IPI is still running and will continue due to the
2245          * update to loop_next, and nothing needs to be done here.
2246          * Otherwise it is finishing up and an ipi needs to be sent.
2247          */
2248         if (rq->rd->rto_cpu < 0)
2249                 cpu = rto_next_cpu(rq->rd);
2250
2251         raw_spin_unlock(&rq->rd->rto_lock);
2252
2253         rto_start_unlock(&rq->rd->rto_loop_start);
2254
2255         if (cpu >= 0) {
2256                 /* Make sure the rd does not get freed while pushing */
2257                 sched_get_rd(rq->rd);
2258                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2259         }
2260 }
2261
2262 /* Called from hardirq context */
2263 void rto_push_irq_work_func(struct irq_work *work)
2264 {
2265         struct root_domain *rd =
2266                 container_of(work, struct root_domain, rto_push_work);
2267         struct rq *rq;
2268         int cpu;
2269
2270         rq = this_rq();
2271
2272         /*
2273          * We do not need to grab the lock to check for has_pushable_tasks.
2274          * When it gets updated, a check is made if a push is possible.
2275          */
2276         if (has_pushable_tasks(rq)) {
2277                 raw_spin_rq_lock(rq);
2278                 while (push_rt_task(rq, true))
2279                         ;
2280                 raw_spin_rq_unlock(rq);
2281         }
2282
2283         raw_spin_lock(&rd->rto_lock);
2284
2285         /* Pass the IPI to the next rt overloaded queue */
2286         cpu = rto_next_cpu(rd);
2287
2288         raw_spin_unlock(&rd->rto_lock);
2289
2290         if (cpu < 0) {
2291                 sched_put_rd(rd);
2292                 return;
2293         }
2294
2295         /* Try the next RT overloaded CPU */
2296         irq_work_queue_on(&rd->rto_push_work, cpu);
2297 }
2298 #endif /* HAVE_RT_PUSH_IPI */
2299
2300 static void pull_rt_task(struct rq *this_rq)
2301 {
2302         int this_cpu = this_rq->cpu, cpu;
2303         bool resched = false;
2304         struct task_struct *p, *push_task;
2305         struct rq *src_rq;
2306         int rt_overload_count = rt_overloaded(this_rq);
2307
2308         if (likely(!rt_overload_count))
2309                 return;
2310
2311         /*
2312          * Match the barrier from rt_set_overloaded; this guarantees that if we
2313          * see overloaded we must also see the rto_mask bit.
2314          */
2315         smp_rmb();
2316
2317         /* If we are the only overloaded CPU do nothing */
2318         if (rt_overload_count == 1 &&
2319             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2320                 return;
2321
2322 #ifdef HAVE_RT_PUSH_IPI
2323         if (sched_feat(RT_PUSH_IPI)) {
2324                 tell_cpu_to_push(this_rq);
2325                 return;
2326         }
2327 #endif
2328
2329         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2330                 if (this_cpu == cpu)
2331                         continue;
2332
2333                 src_rq = cpu_rq(cpu);
2334
2335                 /*
2336                  * Don't bother taking the src_rq->lock if the next highest
2337                  * task is known to be lower-priority than our current task.
2338                  * This may look racy, but if this value is about to go
2339                  * logically higher, the src_rq will push this task away.
2340                  * And if its going logically lower, we do not care
2341                  */
2342                 if (src_rq->rt.highest_prio.next >=
2343                     this_rq->rt.highest_prio.curr)
2344                         continue;
2345
2346                 /*
2347                  * We can potentially drop this_rq's lock in
2348                  * double_lock_balance, and another CPU could
2349                  * alter this_rq
2350                  */
2351                 push_task = NULL;
2352                 double_lock_balance(this_rq, src_rq);
2353
2354                 /*
2355                  * We can pull only a task, which is pushable
2356                  * on its rq, and no others.
2357                  */
2358                 p = pick_highest_pushable_task(src_rq, this_cpu);
2359
2360                 /*
2361                  * Do we have an RT task that preempts
2362                  * the to-be-scheduled task?
2363                  */
2364                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2365                         WARN_ON(p == src_rq->curr);
2366                         WARN_ON(!task_on_rq_queued(p));
2367
2368                         /*
2369                          * There's a chance that p is higher in priority
2370                          * than what's currently running on its CPU.
2371                          * This is just that p is waking up and hasn't
2372                          * had a chance to schedule. We only pull
2373                          * p if it is lower in priority than the
2374                          * current task on the run queue
2375                          */
2376                         if (p->prio < src_rq->curr->prio)
2377                                 goto skip;
2378
2379                         if (is_migration_disabled(p)) {
2380                                 push_task = get_push_task(src_rq);
2381                         } else {
2382                                 deactivate_task(src_rq, p, 0);
2383                                 set_task_cpu(p, this_cpu);
2384                                 activate_task(this_rq, p, 0);
2385                                 resched = true;
2386                         }
2387                         /*
2388                          * We continue with the search, just in
2389                          * case there's an even higher prio task
2390                          * in another runqueue. (low likelihood
2391                          * but possible)
2392                          */
2393                 }
2394 skip:
2395                 double_unlock_balance(this_rq, src_rq);
2396
2397                 if (push_task) {
2398                         preempt_disable();
2399                         raw_spin_rq_unlock(this_rq);
2400                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2401                                             push_task, &src_rq->push_work);
2402                         preempt_enable();
2403                         raw_spin_rq_lock(this_rq);
2404                 }
2405         }
2406
2407         if (resched)
2408                 resched_curr(this_rq);
2409 }
2410
2411 /*
2412  * If we are not running and we are not going to reschedule soon, we should
2413  * try to push tasks away now
2414  */
2415 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2416 {
2417         bool need_to_push = !task_on_cpu(rq, p) &&
2418                             !test_tsk_need_resched(rq->curr) &&
2419                             p->nr_cpus_allowed > 1 &&
2420                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2421                             (rq->curr->nr_cpus_allowed < 2 ||
2422                              rq->curr->prio <= p->prio);
2423
2424         if (need_to_push)
2425                 push_rt_tasks(rq);
2426 }
2427
2428 /* Assumes rq->lock is held */
2429 static void rq_online_rt(struct rq *rq)
2430 {
2431         if (rq->rt.overloaded)
2432                 rt_set_overload(rq);
2433
2434         __enable_runtime(rq);
2435
2436         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2437 }
2438
2439 /* Assumes rq->lock is held */
2440 static void rq_offline_rt(struct rq *rq)
2441 {
2442         if (rq->rt.overloaded)
2443                 rt_clear_overload(rq);
2444
2445         __disable_runtime(rq);
2446
2447         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2448 }
2449
2450 /*
2451  * When switch from the rt queue, we bring ourselves to a position
2452  * that we might want to pull RT tasks from other runqueues.
2453  */
2454 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2455 {
2456         /*
2457          * If there are other RT tasks then we will reschedule
2458          * and the scheduling of the other RT tasks will handle
2459          * the balancing. But if we are the last RT task
2460          * we may need to handle the pulling of RT tasks
2461          * now.
2462          */
2463         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2464                 return;
2465
2466         rt_queue_pull_task(rq);
2467 }
2468
2469 void __init init_sched_rt_class(void)
2470 {
2471         unsigned int i;
2472
2473         for_each_possible_cpu(i) {
2474                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2475                                         GFP_KERNEL, cpu_to_node(i));
2476         }
2477 }
2478 #endif /* CONFIG_SMP */
2479
2480 /*
2481  * When switching a task to RT, we may overload the runqueue
2482  * with RT tasks. In this case we try to push them off to
2483  * other runqueues.
2484  */
2485 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2486 {
2487         /*
2488          * If we are running, update the avg_rt tracking, as the running time
2489          * will now on be accounted into the latter.
2490          */
2491         if (task_current(rq, p)) {
2492                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2493                 return;
2494         }
2495
2496         /*
2497          * If we are not running we may need to preempt the current
2498          * running task. If that current running task is also an RT task
2499          * then see if we can move to another run queue.
2500          */
2501         if (task_on_rq_queued(p)) {
2502 #ifdef CONFIG_SMP
2503                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2504                         rt_queue_push_tasks(rq);
2505 #endif /* CONFIG_SMP */
2506                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2507                         resched_curr(rq);
2508         }
2509 }
2510
2511 /*
2512  * Priority of the task has changed. This may cause
2513  * us to initiate a push or pull.
2514  */
2515 static void
2516 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2517 {
2518         if (!task_on_rq_queued(p))
2519                 return;
2520
2521         if (task_current(rq, p)) {
2522 #ifdef CONFIG_SMP
2523                 /*
2524                  * If our priority decreases while running, we
2525                  * may need to pull tasks to this runqueue.
2526                  */
2527                 if (oldprio < p->prio)
2528                         rt_queue_pull_task(rq);
2529
2530                 /*
2531                  * If there's a higher priority task waiting to run
2532                  * then reschedule.
2533                  */
2534                 if (p->prio > rq->rt.highest_prio.curr)
2535                         resched_curr(rq);
2536 #else
2537                 /* For UP simply resched on drop of prio */
2538                 if (oldprio < p->prio)
2539                         resched_curr(rq);
2540 #endif /* CONFIG_SMP */
2541         } else {
2542                 /*
2543                  * This task is not running, but if it is
2544                  * greater than the current running task
2545                  * then reschedule.
2546                  */
2547                 if (p->prio < rq->curr->prio)
2548                         resched_curr(rq);
2549         }
2550 }
2551
2552 #ifdef CONFIG_POSIX_TIMERS
2553 static void watchdog(struct rq *rq, struct task_struct *p)
2554 {
2555         unsigned long soft, hard;
2556
2557         /* max may change after cur was read, this will be fixed next tick */
2558         soft = task_rlimit(p, RLIMIT_RTTIME);
2559         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2560
2561         if (soft != RLIM_INFINITY) {
2562                 unsigned long next;
2563
2564                 if (p->rt.watchdog_stamp != jiffies) {
2565                         p->rt.timeout++;
2566                         p->rt.watchdog_stamp = jiffies;
2567                 }
2568
2569                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2570                 if (p->rt.timeout > next) {
2571                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2572                                                     p->se.sum_exec_runtime);
2573                 }
2574         }
2575 }
2576 #else
2577 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2578 #endif
2579
2580 /*
2581  * scheduler tick hitting a task of our scheduling class.
2582  *
2583  * NOTE: This function can be called remotely by the tick offload that
2584  * goes along full dynticks. Therefore no local assumption can be made
2585  * and everything must be accessed through the @rq and @curr passed in
2586  * parameters.
2587  */
2588 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2589 {
2590         struct sched_rt_entity *rt_se = &p->rt;
2591
2592         update_curr_rt(rq);
2593         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2594
2595         watchdog(rq, p);
2596
2597         /*
2598          * RR tasks need a special form of timeslice management.
2599          * FIFO tasks have no timeslices.
2600          */
2601         if (p->policy != SCHED_RR)
2602                 return;
2603
2604         if (--p->rt.time_slice)
2605                 return;
2606
2607         p->rt.time_slice = sched_rr_timeslice;
2608
2609         /*
2610          * Requeue to the end of queue if we (and all of our ancestors) are not
2611          * the only element on the queue
2612          */
2613         for_each_sched_rt_entity(rt_se) {
2614                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2615                         requeue_task_rt(rq, p, 0);
2616                         resched_curr(rq);
2617                         return;
2618                 }
2619         }
2620 }
2621
2622 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2623 {
2624         /*
2625          * Time slice is 0 for SCHED_FIFO tasks
2626          */
2627         if (task->policy == SCHED_RR)
2628                 return sched_rr_timeslice;
2629         else
2630                 return 0;
2631 }
2632
2633 #ifdef CONFIG_SCHED_CORE
2634 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2635 {
2636         struct rt_rq *rt_rq;
2637
2638 #ifdef CONFIG_RT_GROUP_SCHED
2639         rt_rq = task_group(p)->rt_rq[cpu];
2640 #else
2641         rt_rq = &cpu_rq(cpu)->rt;
2642 #endif
2643
2644         return rt_rq_throttled(rt_rq);
2645 }
2646 #endif
2647
2648 DEFINE_SCHED_CLASS(rt) = {
2649
2650         .enqueue_task           = enqueue_task_rt,
2651         .dequeue_task           = dequeue_task_rt,
2652         .yield_task             = yield_task_rt,
2653
2654         .wakeup_preempt         = wakeup_preempt_rt,
2655
2656         .pick_next_task         = pick_next_task_rt,
2657         .put_prev_task          = put_prev_task_rt,
2658         .set_next_task          = set_next_task_rt,
2659
2660 #ifdef CONFIG_SMP
2661         .balance                = balance_rt,
2662         .pick_task              = pick_task_rt,
2663         .select_task_rq         = select_task_rq_rt,
2664         .set_cpus_allowed       = set_cpus_allowed_common,
2665         .rq_online              = rq_online_rt,
2666         .rq_offline             = rq_offline_rt,
2667         .task_woken             = task_woken_rt,
2668         .switched_from          = switched_from_rt,
2669         .find_lock_rq           = find_lock_lowest_rq,
2670 #endif
2671
2672         .task_tick              = task_tick_rt,
2673
2674         .get_rr_interval        = get_rr_interval_rt,
2675
2676         .prio_changed           = prio_changed_rt,
2677         .switched_to            = switched_to_rt,
2678
2679         .update_curr            = update_curr_rt,
2680
2681 #ifdef CONFIG_SCHED_CORE
2682         .task_is_throttled      = task_is_throttled_rt,
2683 #endif
2684
2685 #ifdef CONFIG_UCLAMP_TASK
2686         .uclamp_enabled         = 1,
2687 #endif
2688 };
2689
2690 #ifdef CONFIG_RT_GROUP_SCHED
2691 /*
2692  * Ensure that the real time constraints are schedulable.
2693  */
2694 static DEFINE_MUTEX(rt_constraints_mutex);
2695
2696 static inline int tg_has_rt_tasks(struct task_group *tg)
2697 {
2698         struct task_struct *task;
2699         struct css_task_iter it;
2700         int ret = 0;
2701
2702         /*
2703          * Autogroups do not have RT tasks; see autogroup_create().
2704          */
2705         if (task_group_is_autogroup(tg))
2706                 return 0;
2707
2708         css_task_iter_start(&tg->css, 0, &it);
2709         while (!ret && (task = css_task_iter_next(&it)))
2710                 ret |= rt_task(task);
2711         css_task_iter_end(&it);
2712
2713         return ret;
2714 }
2715
2716 struct rt_schedulable_data {
2717         struct task_group *tg;
2718         u64 rt_period;
2719         u64 rt_runtime;
2720 };
2721
2722 static int tg_rt_schedulable(struct task_group *tg, void *data)
2723 {
2724         struct rt_schedulable_data *d = data;
2725         struct task_group *child;
2726         unsigned long total, sum = 0;
2727         u64 period, runtime;
2728
2729         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2730         runtime = tg->rt_bandwidth.rt_runtime;
2731
2732         if (tg == d->tg) {
2733                 period = d->rt_period;
2734                 runtime = d->rt_runtime;
2735         }
2736
2737         /*
2738          * Cannot have more runtime than the period.
2739          */
2740         if (runtime > period && runtime != RUNTIME_INF)
2741                 return -EINVAL;
2742
2743         /*
2744          * Ensure we don't starve existing RT tasks if runtime turns zero.
2745          */
2746         if (rt_bandwidth_enabled() && !runtime &&
2747             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2748                 return -EBUSY;
2749
2750         total = to_ratio(period, runtime);
2751
2752         /*
2753          * Nobody can have more than the global setting allows.
2754          */
2755         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2756                 return -EINVAL;
2757
2758         /*
2759          * The sum of our children's runtime should not exceed our own.
2760          */
2761         list_for_each_entry_rcu(child, &tg->children, siblings) {
2762                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2763                 runtime = child->rt_bandwidth.rt_runtime;
2764
2765                 if (child == d->tg) {
2766                         period = d->rt_period;
2767                         runtime = d->rt_runtime;
2768                 }
2769
2770                 sum += to_ratio(period, runtime);
2771         }
2772
2773         if (sum > total)
2774                 return -EINVAL;
2775
2776         return 0;
2777 }
2778
2779 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2780 {
2781         int ret;
2782
2783         struct rt_schedulable_data data = {
2784                 .tg = tg,
2785                 .rt_period = period,
2786                 .rt_runtime = runtime,
2787         };
2788
2789         rcu_read_lock();
2790         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2791         rcu_read_unlock();
2792
2793         return ret;
2794 }
2795
2796 static int tg_set_rt_bandwidth(struct task_group *tg,
2797                 u64 rt_period, u64 rt_runtime)
2798 {
2799         int i, err = 0;
2800
2801         /*
2802          * Disallowing the root group RT runtime is BAD, it would disallow the
2803          * kernel creating (and or operating) RT threads.
2804          */
2805         if (tg == &root_task_group && rt_runtime == 0)
2806                 return -EINVAL;
2807
2808         /* No period doesn't make any sense. */
2809         if (rt_period == 0)
2810                 return -EINVAL;
2811
2812         /*
2813          * Bound quota to defend quota against overflow during bandwidth shift.
2814          */
2815         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2816                 return -EINVAL;
2817
2818         mutex_lock(&rt_constraints_mutex);
2819         err = __rt_schedulable(tg, rt_period, rt_runtime);
2820         if (err)
2821                 goto unlock;
2822
2823         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2824         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2825         tg->rt_bandwidth.rt_runtime = rt_runtime;
2826
2827         for_each_possible_cpu(i) {
2828                 struct rt_rq *rt_rq = tg->rt_rq[i];
2829
2830                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2831                 rt_rq->rt_runtime = rt_runtime;
2832                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2833         }
2834         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2835 unlock:
2836         mutex_unlock(&rt_constraints_mutex);
2837
2838         return err;
2839 }
2840
2841 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2842 {
2843         u64 rt_runtime, rt_period;
2844
2845         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2846         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2847         if (rt_runtime_us < 0)
2848                 rt_runtime = RUNTIME_INF;
2849         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2850                 return -EINVAL;
2851
2852         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2853 }
2854
2855 long sched_group_rt_runtime(struct task_group *tg)
2856 {
2857         u64 rt_runtime_us;
2858
2859         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2860                 return -1;
2861
2862         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2863         do_div(rt_runtime_us, NSEC_PER_USEC);
2864         return rt_runtime_us;
2865 }
2866
2867 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2868 {
2869         u64 rt_runtime, rt_period;
2870
2871         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2872                 return -EINVAL;
2873
2874         rt_period = rt_period_us * NSEC_PER_USEC;
2875         rt_runtime = tg->rt_bandwidth.rt_runtime;
2876
2877         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2878 }
2879
2880 long sched_group_rt_period(struct task_group *tg)
2881 {
2882         u64 rt_period_us;
2883
2884         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2885         do_div(rt_period_us, NSEC_PER_USEC);
2886         return rt_period_us;
2887 }
2888
2889 #ifdef CONFIG_SYSCTL
2890 static int sched_rt_global_constraints(void)
2891 {
2892         int ret = 0;
2893
2894         mutex_lock(&rt_constraints_mutex);
2895         ret = __rt_schedulable(NULL, 0, 0);
2896         mutex_unlock(&rt_constraints_mutex);
2897
2898         return ret;
2899 }
2900 #endif /* CONFIG_SYSCTL */
2901
2902 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2903 {
2904         /* Don't accept realtime tasks when there is no way for them to run */
2905         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2906                 return 0;
2907
2908         return 1;
2909 }
2910
2911 #else /* !CONFIG_RT_GROUP_SCHED */
2912
2913 #ifdef CONFIG_SYSCTL
2914 static int sched_rt_global_constraints(void)
2915 {
2916         unsigned long flags;
2917         int i;
2918
2919         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2920         for_each_possible_cpu(i) {
2921                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2922
2923                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2924                 rt_rq->rt_runtime = global_rt_runtime();
2925                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2926         }
2927         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2928
2929         return 0;
2930 }
2931 #endif /* CONFIG_SYSCTL */
2932 #endif /* CONFIG_RT_GROUP_SCHED */
2933
2934 #ifdef CONFIG_SYSCTL
2935 static int sched_rt_global_validate(void)
2936 {
2937         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2938                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2939                  ((u64)sysctl_sched_rt_runtime *
2940                         NSEC_PER_USEC > max_rt_runtime)))
2941                 return -EINVAL;
2942
2943         return 0;
2944 }
2945
2946 static void sched_rt_do_global(void)
2947 {
2948         unsigned long flags;
2949
2950         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2951         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2952         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2953         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2954 }
2955
2956 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2957                 size_t *lenp, loff_t *ppos)
2958 {
2959         int old_period, old_runtime;
2960         static DEFINE_MUTEX(mutex);
2961         int ret;
2962
2963         mutex_lock(&mutex);
2964         old_period = sysctl_sched_rt_period;
2965         old_runtime = sysctl_sched_rt_runtime;
2966
2967         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2968
2969         if (!ret && write) {
2970                 ret = sched_rt_global_validate();
2971                 if (ret)
2972                         goto undo;
2973
2974                 ret = sched_dl_global_validate();
2975                 if (ret)
2976                         goto undo;
2977
2978                 ret = sched_rt_global_constraints();
2979                 if (ret)
2980                         goto undo;
2981
2982                 sched_rt_do_global();
2983                 sched_dl_do_global();
2984         }
2985         if (0) {
2986 undo:
2987                 sysctl_sched_rt_period = old_period;
2988                 sysctl_sched_rt_runtime = old_runtime;
2989         }
2990         mutex_unlock(&mutex);
2991
2992         return ret;
2993 }
2994
2995 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2996                 size_t *lenp, loff_t *ppos)
2997 {
2998         int ret;
2999         static DEFINE_MUTEX(mutex);
3000
3001         mutex_lock(&mutex);
3002         ret = proc_dointvec(table, write, buffer, lenp, ppos);
3003         /*
3004          * Make sure that internally we keep jiffies.
3005          * Also, writing zero resets the timeslice to default:
3006          */
3007         if (!ret && write) {
3008                 sched_rr_timeslice =
3009                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3010                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
3011
3012                 if (sysctl_sched_rr_timeslice <= 0)
3013                         sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3014         }
3015         mutex_unlock(&mutex);
3016
3017         return ret;
3018 }
3019 #endif /* CONFIG_SYSCTL */
3020
3021 #ifdef CONFIG_SCHED_DEBUG
3022 void print_rt_stats(struct seq_file *m, int cpu)
3023 {
3024         rt_rq_iter_t iter;
3025         struct rt_rq *rt_rq;
3026
3027         rcu_read_lock();
3028         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3029                 print_rt_rq(m, cpu, rt_rq);
3030         rcu_read_unlock();
3031 }
3032 #endif /* CONFIG_SCHED_DEBUG */