GNU Linux-libre 5.4.257-gnu1
[releases.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21         struct rt_bandwidth *rt_b =
22                 container_of(timer, struct rt_bandwidth, rt_period_timer);
23         int idle = 0;
24         int overrun;
25
26         raw_spin_lock(&rt_b->rt_runtime_lock);
27         for (;;) {
28                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29                 if (!overrun)
30                         break;
31
32                 raw_spin_unlock(&rt_b->rt_runtime_lock);
33                 idle = do_sched_rt_period_timer(rt_b, overrun);
34                 raw_spin_lock(&rt_b->rt_runtime_lock);
35         }
36         if (idle)
37                 rt_b->rt_period_active = 0;
38         raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45         rt_b->rt_period = ns_to_ktime(period);
46         rt_b->rt_runtime = runtime;
47
48         raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51                      HRTIMER_MODE_REL_HARD);
52         rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
55 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57         raw_spin_lock(&rt_b->rt_runtime_lock);
58         if (!rt_b->rt_period_active) {
59                 rt_b->rt_period_active = 1;
60                 /*
61                  * SCHED_DEADLINE updates the bandwidth, as a run away
62                  * RT task with a DL task could hog a CPU. But DL does
63                  * not reset the period. If a deadline task was running
64                  * without an RT task running, it can cause RT tasks to
65                  * throttle when they start up. Kick the timer right away
66                  * to update the period.
67                  */
68                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
69                 hrtimer_start_expires(&rt_b->rt_period_timer,
70                                       HRTIMER_MODE_ABS_PINNED_HARD);
71         }
72         raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74
75 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
76 {
77         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
78                 return;
79
80         do_start_rt_bandwidth(rt_b);
81 }
82
83 void init_rt_rq(struct rt_rq *rt_rq)
84 {
85         struct rt_prio_array *array;
86         int i;
87
88         array = &rt_rq->active;
89         for (i = 0; i < MAX_RT_PRIO; i++) {
90                 INIT_LIST_HEAD(array->queue + i);
91                 __clear_bit(i, array->bitmap);
92         }
93         /* delimiter for bitsearch: */
94         __set_bit(MAX_RT_PRIO, array->bitmap);
95
96 #if defined CONFIG_SMP
97         rt_rq->highest_prio.curr = MAX_RT_PRIO;
98         rt_rq->highest_prio.next = MAX_RT_PRIO;
99         rt_rq->rt_nr_migratory = 0;
100         rt_rq->overloaded = 0;
101         plist_head_init(&rt_rq->pushable_tasks);
102 #endif /* CONFIG_SMP */
103         /* We start is dequeued state, because no RT tasks are queued */
104         rt_rq->rt_queued = 0;
105
106         rt_rq->rt_time = 0;
107         rt_rq->rt_throttled = 0;
108         rt_rq->rt_runtime = 0;
109         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
110 }
111
112 #ifdef CONFIG_RT_GROUP_SCHED
113 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
114 {
115         hrtimer_cancel(&rt_b->rt_period_timer);
116 }
117
118 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
119
120 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
121 {
122 #ifdef CONFIG_SCHED_DEBUG
123         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
124 #endif
125         return container_of(rt_se, struct task_struct, rt);
126 }
127
128 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
129 {
130         return rt_rq->rq;
131 }
132
133 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
134 {
135         return rt_se->rt_rq;
136 }
137
138 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
139 {
140         struct rt_rq *rt_rq = rt_se->rt_rq;
141
142         return rt_rq->rq;
143 }
144
145 void free_rt_sched_group(struct task_group *tg)
146 {
147         int i;
148
149         if (tg->rt_se)
150                 destroy_rt_bandwidth(&tg->rt_bandwidth);
151
152         for_each_possible_cpu(i) {
153                 if (tg->rt_rq)
154                         kfree(tg->rt_rq[i]);
155                 if (tg->rt_se)
156                         kfree(tg->rt_se[i]);
157         }
158
159         kfree(tg->rt_rq);
160         kfree(tg->rt_se);
161 }
162
163 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
164                 struct sched_rt_entity *rt_se, int cpu,
165                 struct sched_rt_entity *parent)
166 {
167         struct rq *rq = cpu_rq(cpu);
168
169         rt_rq->highest_prio.curr = MAX_RT_PRIO;
170         rt_rq->rt_nr_boosted = 0;
171         rt_rq->rq = rq;
172         rt_rq->tg = tg;
173
174         tg->rt_rq[cpu] = rt_rq;
175         tg->rt_se[cpu] = rt_se;
176
177         if (!rt_se)
178                 return;
179
180         if (!parent)
181                 rt_se->rt_rq = &rq->rt;
182         else
183                 rt_se->rt_rq = parent->my_q;
184
185         rt_se->my_q = rt_rq;
186         rt_se->parent = parent;
187         INIT_LIST_HEAD(&rt_se->run_list);
188 }
189
190 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
191 {
192         struct rt_rq *rt_rq;
193         struct sched_rt_entity *rt_se;
194         int i;
195
196         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
197         if (!tg->rt_rq)
198                 goto err;
199         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
200         if (!tg->rt_se)
201                 goto err;
202
203         init_rt_bandwidth(&tg->rt_bandwidth,
204                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
205
206         for_each_possible_cpu(i) {
207                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
208                                      GFP_KERNEL, cpu_to_node(i));
209                 if (!rt_rq)
210                         goto err;
211
212                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
213                                      GFP_KERNEL, cpu_to_node(i));
214                 if (!rt_se)
215                         goto err_free_rq;
216
217                 init_rt_rq(rt_rq);
218                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
219                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
220         }
221
222         return 1;
223
224 err_free_rq:
225         kfree(rt_rq);
226 err:
227         return 0;
228 }
229
230 #else /* CONFIG_RT_GROUP_SCHED */
231
232 #define rt_entity_is_task(rt_se) (1)
233
234 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
235 {
236         return container_of(rt_se, struct task_struct, rt);
237 }
238
239 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
240 {
241         return container_of(rt_rq, struct rq, rt);
242 }
243
244 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
245 {
246         struct task_struct *p = rt_task_of(rt_se);
247
248         return task_rq(p);
249 }
250
251 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
252 {
253         struct rq *rq = rq_of_rt_se(rt_se);
254
255         return &rq->rt;
256 }
257
258 void free_rt_sched_group(struct task_group *tg) { }
259
260 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
261 {
262         return 1;
263 }
264 #endif /* CONFIG_RT_GROUP_SCHED */
265
266 #ifdef CONFIG_SMP
267
268 static void pull_rt_task(struct rq *this_rq);
269
270 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
271 {
272         /* Try to pull RT tasks here if we lower this rq's prio */
273         return rq->rt.highest_prio.curr > prev->prio;
274 }
275
276 static inline int rt_overloaded(struct rq *rq)
277 {
278         return atomic_read(&rq->rd->rto_count);
279 }
280
281 static inline void rt_set_overload(struct rq *rq)
282 {
283         if (!rq->online)
284                 return;
285
286         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
287         /*
288          * Make sure the mask is visible before we set
289          * the overload count. That is checked to determine
290          * if we should look at the mask. It would be a shame
291          * if we looked at the mask, but the mask was not
292          * updated yet.
293          *
294          * Matched by the barrier in pull_rt_task().
295          */
296         smp_wmb();
297         atomic_inc(&rq->rd->rto_count);
298 }
299
300 static inline void rt_clear_overload(struct rq *rq)
301 {
302         if (!rq->online)
303                 return;
304
305         /* the order here really doesn't matter */
306         atomic_dec(&rq->rd->rto_count);
307         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
308 }
309
310 static void update_rt_migration(struct rt_rq *rt_rq)
311 {
312         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
313                 if (!rt_rq->overloaded) {
314                         rt_set_overload(rq_of_rt_rq(rt_rq));
315                         rt_rq->overloaded = 1;
316                 }
317         } else if (rt_rq->overloaded) {
318                 rt_clear_overload(rq_of_rt_rq(rt_rq));
319                 rt_rq->overloaded = 0;
320         }
321 }
322
323 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
324 {
325         struct task_struct *p;
326
327         if (!rt_entity_is_task(rt_se))
328                 return;
329
330         p = rt_task_of(rt_se);
331         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
332
333         rt_rq->rt_nr_total++;
334         if (p->nr_cpus_allowed > 1)
335                 rt_rq->rt_nr_migratory++;
336
337         update_rt_migration(rt_rq);
338 }
339
340 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
341 {
342         struct task_struct *p;
343
344         if (!rt_entity_is_task(rt_se))
345                 return;
346
347         p = rt_task_of(rt_se);
348         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
349
350         rt_rq->rt_nr_total--;
351         if (p->nr_cpus_allowed > 1)
352                 rt_rq->rt_nr_migratory--;
353
354         update_rt_migration(rt_rq);
355 }
356
357 static inline int has_pushable_tasks(struct rq *rq)
358 {
359         return !plist_head_empty(&rq->rt.pushable_tasks);
360 }
361
362 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
363 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
364
365 static void push_rt_tasks(struct rq *);
366 static void pull_rt_task(struct rq *);
367
368 static inline void rt_queue_push_tasks(struct rq *rq)
369 {
370         if (!has_pushable_tasks(rq))
371                 return;
372
373         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
374 }
375
376 static inline void rt_queue_pull_task(struct rq *rq)
377 {
378         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
379 }
380
381 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
382 {
383         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
384         plist_node_init(&p->pushable_tasks, p->prio);
385         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
386
387         /* Update the highest prio pushable task */
388         if (p->prio < rq->rt.highest_prio.next)
389                 rq->rt.highest_prio.next = p->prio;
390 }
391
392 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
393 {
394         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
395
396         /* Update the new highest prio pushable task */
397         if (has_pushable_tasks(rq)) {
398                 p = plist_first_entry(&rq->rt.pushable_tasks,
399                                       struct task_struct, pushable_tasks);
400                 rq->rt.highest_prio.next = p->prio;
401         } else
402                 rq->rt.highest_prio.next = MAX_RT_PRIO;
403 }
404
405 #else
406
407 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
408 {
409 }
410
411 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
412 {
413 }
414
415 static inline
416 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
417 {
418 }
419
420 static inline
421 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
422 {
423 }
424
425 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
426 {
427         return false;
428 }
429
430 static inline void pull_rt_task(struct rq *this_rq)
431 {
432 }
433
434 static inline void rt_queue_push_tasks(struct rq *rq)
435 {
436 }
437 #endif /* CONFIG_SMP */
438
439 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
440 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
441
442 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
443 {
444         return rt_se->on_rq;
445 }
446
447 #ifdef CONFIG_RT_GROUP_SCHED
448
449 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
450 {
451         if (!rt_rq->tg)
452                 return RUNTIME_INF;
453
454         return rt_rq->rt_runtime;
455 }
456
457 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
458 {
459         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
460 }
461
462 typedef struct task_group *rt_rq_iter_t;
463
464 static inline struct task_group *next_task_group(struct task_group *tg)
465 {
466         do {
467                 tg = list_entry_rcu(tg->list.next,
468                         typeof(struct task_group), list);
469         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
470
471         if (&tg->list == &task_groups)
472                 tg = NULL;
473
474         return tg;
475 }
476
477 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
478         for (iter = container_of(&task_groups, typeof(*iter), list);    \
479                 (iter = next_task_group(iter)) &&                       \
480                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
481
482 #define for_each_sched_rt_entity(rt_se) \
483         for (; rt_se; rt_se = rt_se->parent)
484
485 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
486 {
487         return rt_se->my_q;
488 }
489
490 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
491 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
492
493 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
494 {
495         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
496         struct rq *rq = rq_of_rt_rq(rt_rq);
497         struct sched_rt_entity *rt_se;
498
499         int cpu = cpu_of(rq);
500
501         rt_se = rt_rq->tg->rt_se[cpu];
502
503         if (rt_rq->rt_nr_running) {
504                 if (!rt_se)
505                         enqueue_top_rt_rq(rt_rq);
506                 else if (!on_rt_rq(rt_se))
507                         enqueue_rt_entity(rt_se, 0);
508
509                 if (rt_rq->highest_prio.curr < curr->prio)
510                         resched_curr(rq);
511         }
512 }
513
514 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
515 {
516         struct sched_rt_entity *rt_se;
517         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
518
519         rt_se = rt_rq->tg->rt_se[cpu];
520
521         if (!rt_se) {
522                 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
523                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
524                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
525         }
526         else if (on_rt_rq(rt_se))
527                 dequeue_rt_entity(rt_se, 0);
528 }
529
530 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
531 {
532         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
533 }
534
535 static int rt_se_boosted(struct sched_rt_entity *rt_se)
536 {
537         struct rt_rq *rt_rq = group_rt_rq(rt_se);
538         struct task_struct *p;
539
540         if (rt_rq)
541                 return !!rt_rq->rt_nr_boosted;
542
543         p = rt_task_of(rt_se);
544         return p->prio != p->normal_prio;
545 }
546
547 #ifdef CONFIG_SMP
548 static inline const struct cpumask *sched_rt_period_mask(void)
549 {
550         return this_rq()->rd->span;
551 }
552 #else
553 static inline const struct cpumask *sched_rt_period_mask(void)
554 {
555         return cpu_online_mask;
556 }
557 #endif
558
559 static inline
560 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
561 {
562         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
563 }
564
565 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
566 {
567         return &rt_rq->tg->rt_bandwidth;
568 }
569
570 #else /* !CONFIG_RT_GROUP_SCHED */
571
572 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
573 {
574         return rt_rq->rt_runtime;
575 }
576
577 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
578 {
579         return ktime_to_ns(def_rt_bandwidth.rt_period);
580 }
581
582 typedef struct rt_rq *rt_rq_iter_t;
583
584 #define for_each_rt_rq(rt_rq, iter, rq) \
585         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
586
587 #define for_each_sched_rt_entity(rt_se) \
588         for (; rt_se; rt_se = NULL)
589
590 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
591 {
592         return NULL;
593 }
594
595 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
596 {
597         struct rq *rq = rq_of_rt_rq(rt_rq);
598
599         if (!rt_rq->rt_nr_running)
600                 return;
601
602         enqueue_top_rt_rq(rt_rq);
603         resched_curr(rq);
604 }
605
606 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
607 {
608         dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
609 }
610
611 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
612 {
613         return rt_rq->rt_throttled;
614 }
615
616 static inline const struct cpumask *sched_rt_period_mask(void)
617 {
618         return cpu_online_mask;
619 }
620
621 static inline
622 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
623 {
624         return &cpu_rq(cpu)->rt;
625 }
626
627 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
628 {
629         return &def_rt_bandwidth;
630 }
631
632 #endif /* CONFIG_RT_GROUP_SCHED */
633
634 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
635 {
636         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
637
638         return (hrtimer_active(&rt_b->rt_period_timer) ||
639                 rt_rq->rt_time < rt_b->rt_runtime);
640 }
641
642 #ifdef CONFIG_SMP
643 /*
644  * We ran out of runtime, see if we can borrow some from our neighbours.
645  */
646 static void do_balance_runtime(struct rt_rq *rt_rq)
647 {
648         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
649         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
650         int i, weight;
651         u64 rt_period;
652
653         weight = cpumask_weight(rd->span);
654
655         raw_spin_lock(&rt_b->rt_runtime_lock);
656         rt_period = ktime_to_ns(rt_b->rt_period);
657         for_each_cpu(i, rd->span) {
658                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659                 s64 diff;
660
661                 if (iter == rt_rq)
662                         continue;
663
664                 raw_spin_lock(&iter->rt_runtime_lock);
665                 /*
666                  * Either all rqs have inf runtime and there's nothing to steal
667                  * or __disable_runtime() below sets a specific rq to inf to
668                  * indicate its been disabled and disalow stealing.
669                  */
670                 if (iter->rt_runtime == RUNTIME_INF)
671                         goto next;
672
673                 /*
674                  * From runqueues with spare time, take 1/n part of their
675                  * spare time, but no more than our period.
676                  */
677                 diff = iter->rt_runtime - iter->rt_time;
678                 if (diff > 0) {
679                         diff = div_u64((u64)diff, weight);
680                         if (rt_rq->rt_runtime + diff > rt_period)
681                                 diff = rt_period - rt_rq->rt_runtime;
682                         iter->rt_runtime -= diff;
683                         rt_rq->rt_runtime += diff;
684                         if (rt_rq->rt_runtime == rt_period) {
685                                 raw_spin_unlock(&iter->rt_runtime_lock);
686                                 break;
687                         }
688                 }
689 next:
690                 raw_spin_unlock(&iter->rt_runtime_lock);
691         }
692         raw_spin_unlock(&rt_b->rt_runtime_lock);
693 }
694
695 /*
696  * Ensure this RQ takes back all the runtime it lend to its neighbours.
697  */
698 static void __disable_runtime(struct rq *rq)
699 {
700         struct root_domain *rd = rq->rd;
701         rt_rq_iter_t iter;
702         struct rt_rq *rt_rq;
703
704         if (unlikely(!scheduler_running))
705                 return;
706
707         for_each_rt_rq(rt_rq, iter, rq) {
708                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
709                 s64 want;
710                 int i;
711
712                 raw_spin_lock(&rt_b->rt_runtime_lock);
713                 raw_spin_lock(&rt_rq->rt_runtime_lock);
714                 /*
715                  * Either we're all inf and nobody needs to borrow, or we're
716                  * already disabled and thus have nothing to do, or we have
717                  * exactly the right amount of runtime to take out.
718                  */
719                 if (rt_rq->rt_runtime == RUNTIME_INF ||
720                                 rt_rq->rt_runtime == rt_b->rt_runtime)
721                         goto balanced;
722                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
723
724                 /*
725                  * Calculate the difference between what we started out with
726                  * and what we current have, that's the amount of runtime
727                  * we lend and now have to reclaim.
728                  */
729                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
730
731                 /*
732                  * Greedy reclaim, take back as much as we can.
733                  */
734                 for_each_cpu(i, rd->span) {
735                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
736                         s64 diff;
737
738                         /*
739                          * Can't reclaim from ourselves or disabled runqueues.
740                          */
741                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
742                                 continue;
743
744                         raw_spin_lock(&iter->rt_runtime_lock);
745                         if (want > 0) {
746                                 diff = min_t(s64, iter->rt_runtime, want);
747                                 iter->rt_runtime -= diff;
748                                 want -= diff;
749                         } else {
750                                 iter->rt_runtime -= want;
751                                 want -= want;
752                         }
753                         raw_spin_unlock(&iter->rt_runtime_lock);
754
755                         if (!want)
756                                 break;
757                 }
758
759                 raw_spin_lock(&rt_rq->rt_runtime_lock);
760                 /*
761                  * We cannot be left wanting - that would mean some runtime
762                  * leaked out of the system.
763                  */
764                 BUG_ON(want);
765 balanced:
766                 /*
767                  * Disable all the borrow logic by pretending we have inf
768                  * runtime - in which case borrowing doesn't make sense.
769                  */
770                 rt_rq->rt_runtime = RUNTIME_INF;
771                 rt_rq->rt_throttled = 0;
772                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
773                 raw_spin_unlock(&rt_b->rt_runtime_lock);
774
775                 /* Make rt_rq available for pick_next_task() */
776                 sched_rt_rq_enqueue(rt_rq);
777         }
778 }
779
780 static void __enable_runtime(struct rq *rq)
781 {
782         rt_rq_iter_t iter;
783         struct rt_rq *rt_rq;
784
785         if (unlikely(!scheduler_running))
786                 return;
787
788         /*
789          * Reset each runqueue's bandwidth settings
790          */
791         for_each_rt_rq(rt_rq, iter, rq) {
792                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
793
794                 raw_spin_lock(&rt_b->rt_runtime_lock);
795                 raw_spin_lock(&rt_rq->rt_runtime_lock);
796                 rt_rq->rt_runtime = rt_b->rt_runtime;
797                 rt_rq->rt_time = 0;
798                 rt_rq->rt_throttled = 0;
799                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
800                 raw_spin_unlock(&rt_b->rt_runtime_lock);
801         }
802 }
803
804 static void balance_runtime(struct rt_rq *rt_rq)
805 {
806         if (!sched_feat(RT_RUNTIME_SHARE))
807                 return;
808
809         if (rt_rq->rt_time > rt_rq->rt_runtime) {
810                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
811                 do_balance_runtime(rt_rq);
812                 raw_spin_lock(&rt_rq->rt_runtime_lock);
813         }
814 }
815 #else /* !CONFIG_SMP */
816 static inline void balance_runtime(struct rt_rq *rt_rq) {}
817 #endif /* CONFIG_SMP */
818
819 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
820 {
821         int i, idle = 1, throttled = 0;
822         const struct cpumask *span;
823
824         span = sched_rt_period_mask();
825 #ifdef CONFIG_RT_GROUP_SCHED
826         /*
827          * FIXME: isolated CPUs should really leave the root task group,
828          * whether they are isolcpus or were isolated via cpusets, lest
829          * the timer run on a CPU which does not service all runqueues,
830          * potentially leaving other CPUs indefinitely throttled.  If
831          * isolation is really required, the user will turn the throttle
832          * off to kill the perturbations it causes anyway.  Meanwhile,
833          * this maintains functionality for boot and/or troubleshooting.
834          */
835         if (rt_b == &root_task_group.rt_bandwidth)
836                 span = cpu_online_mask;
837 #endif
838         for_each_cpu(i, span) {
839                 int enqueue = 0;
840                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
841                 struct rq *rq = rq_of_rt_rq(rt_rq);
842                 int skip;
843
844                 /*
845                  * When span == cpu_online_mask, taking each rq->lock
846                  * can be time-consuming. Try to avoid it when possible.
847                  */
848                 raw_spin_lock(&rt_rq->rt_runtime_lock);
849                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
850                         rt_rq->rt_runtime = rt_b->rt_runtime;
851                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
852                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
853                 if (skip)
854                         continue;
855
856                 raw_spin_lock(&rq->lock);
857                 update_rq_clock(rq);
858
859                 if (rt_rq->rt_time) {
860                         u64 runtime;
861
862                         raw_spin_lock(&rt_rq->rt_runtime_lock);
863                         if (rt_rq->rt_throttled)
864                                 balance_runtime(rt_rq);
865                         runtime = rt_rq->rt_runtime;
866                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
867                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
868                                 rt_rq->rt_throttled = 0;
869                                 enqueue = 1;
870
871                                 /*
872                                  * When we're idle and a woken (rt) task is
873                                  * throttled check_preempt_curr() will set
874                                  * skip_update and the time between the wakeup
875                                  * and this unthrottle will get accounted as
876                                  * 'runtime'.
877                                  */
878                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
879                                         rq_clock_cancel_skipupdate(rq);
880                         }
881                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
882                                 idle = 0;
883                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
884                 } else if (rt_rq->rt_nr_running) {
885                         idle = 0;
886                         if (!rt_rq_throttled(rt_rq))
887                                 enqueue = 1;
888                 }
889                 if (rt_rq->rt_throttled)
890                         throttled = 1;
891
892                 if (enqueue)
893                         sched_rt_rq_enqueue(rt_rq);
894                 raw_spin_unlock(&rq->lock);
895         }
896
897         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
898                 return 1;
899
900         return idle;
901 }
902
903 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
904 {
905 #ifdef CONFIG_RT_GROUP_SCHED
906         struct rt_rq *rt_rq = group_rt_rq(rt_se);
907
908         if (rt_rq)
909                 return rt_rq->highest_prio.curr;
910 #endif
911
912         return rt_task_of(rt_se)->prio;
913 }
914
915 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
916 {
917         u64 runtime = sched_rt_runtime(rt_rq);
918
919         if (rt_rq->rt_throttled)
920                 return rt_rq_throttled(rt_rq);
921
922         if (runtime >= sched_rt_period(rt_rq))
923                 return 0;
924
925         balance_runtime(rt_rq);
926         runtime = sched_rt_runtime(rt_rq);
927         if (runtime == RUNTIME_INF)
928                 return 0;
929
930         if (rt_rq->rt_time > runtime) {
931                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
932
933                 /*
934                  * Don't actually throttle groups that have no runtime assigned
935                  * but accrue some time due to boosting.
936                  */
937                 if (likely(rt_b->rt_runtime)) {
938                         rt_rq->rt_throttled = 1;
939                         printk_deferred_once("sched: RT throttling activated\n");
940                 } else {
941                         /*
942                          * In case we did anyway, make it go away,
943                          * replenishment is a joke, since it will replenish us
944                          * with exactly 0 ns.
945                          */
946                         rt_rq->rt_time = 0;
947                 }
948
949                 if (rt_rq_throttled(rt_rq)) {
950                         sched_rt_rq_dequeue(rt_rq);
951                         return 1;
952                 }
953         }
954
955         return 0;
956 }
957
958 /*
959  * Update the current task's runtime statistics. Skip current tasks that
960  * are not in our scheduling class.
961  */
962 static void update_curr_rt(struct rq *rq)
963 {
964         struct task_struct *curr = rq->curr;
965         struct sched_rt_entity *rt_se = &curr->rt;
966         u64 delta_exec;
967         u64 now;
968
969         if (curr->sched_class != &rt_sched_class)
970                 return;
971
972         now = rq_clock_task(rq);
973         delta_exec = now - curr->se.exec_start;
974         if (unlikely((s64)delta_exec <= 0))
975                 return;
976
977         schedstat_set(curr->se.statistics.exec_max,
978                       max(curr->se.statistics.exec_max, delta_exec));
979
980         curr->se.sum_exec_runtime += delta_exec;
981         account_group_exec_runtime(curr, delta_exec);
982
983         curr->se.exec_start = now;
984         cgroup_account_cputime(curr, delta_exec);
985
986         if (!rt_bandwidth_enabled())
987                 return;
988
989         for_each_sched_rt_entity(rt_se) {
990                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
991                 int exceeded;
992
993                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
994                         raw_spin_lock(&rt_rq->rt_runtime_lock);
995                         rt_rq->rt_time += delta_exec;
996                         exceeded = sched_rt_runtime_exceeded(rt_rq);
997                         if (exceeded)
998                                 resched_curr(rq);
999                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1000                         if (exceeded)
1001                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1002                 }
1003         }
1004 }
1005
1006 static void
1007 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1008 {
1009         struct rq *rq = rq_of_rt_rq(rt_rq);
1010
1011         BUG_ON(&rq->rt != rt_rq);
1012
1013         if (!rt_rq->rt_queued)
1014                 return;
1015
1016         BUG_ON(!rq->nr_running);
1017
1018         sub_nr_running(rq, count);
1019         rt_rq->rt_queued = 0;
1020
1021 }
1022
1023 static void
1024 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1025 {
1026         struct rq *rq = rq_of_rt_rq(rt_rq);
1027
1028         BUG_ON(&rq->rt != rt_rq);
1029
1030         if (rt_rq->rt_queued)
1031                 return;
1032
1033         if (rt_rq_throttled(rt_rq))
1034                 return;
1035
1036         if (rt_rq->rt_nr_running) {
1037                 add_nr_running(rq, rt_rq->rt_nr_running);
1038                 rt_rq->rt_queued = 1;
1039         }
1040
1041         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1042         cpufreq_update_util(rq, 0);
1043 }
1044
1045 #if defined CONFIG_SMP
1046
1047 static void
1048 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1049 {
1050         struct rq *rq = rq_of_rt_rq(rt_rq);
1051
1052 #ifdef CONFIG_RT_GROUP_SCHED
1053         /*
1054          * Change rq's cpupri only if rt_rq is the top queue.
1055          */
1056         if (&rq->rt != rt_rq)
1057                 return;
1058 #endif
1059         if (rq->online && prio < prev_prio)
1060                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1061 }
1062
1063 static void
1064 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1065 {
1066         struct rq *rq = rq_of_rt_rq(rt_rq);
1067
1068 #ifdef CONFIG_RT_GROUP_SCHED
1069         /*
1070          * Change rq's cpupri only if rt_rq is the top queue.
1071          */
1072         if (&rq->rt != rt_rq)
1073                 return;
1074 #endif
1075         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1076                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1077 }
1078
1079 #else /* CONFIG_SMP */
1080
1081 static inline
1082 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1083 static inline
1084 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1085
1086 #endif /* CONFIG_SMP */
1087
1088 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1089 static void
1090 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1091 {
1092         int prev_prio = rt_rq->highest_prio.curr;
1093
1094         if (prio < prev_prio)
1095                 rt_rq->highest_prio.curr = prio;
1096
1097         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1098 }
1099
1100 static void
1101 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1102 {
1103         int prev_prio = rt_rq->highest_prio.curr;
1104
1105         if (rt_rq->rt_nr_running) {
1106
1107                 WARN_ON(prio < prev_prio);
1108
1109                 /*
1110                  * This may have been our highest task, and therefore
1111                  * we may have some recomputation to do
1112                  */
1113                 if (prio == prev_prio) {
1114                         struct rt_prio_array *array = &rt_rq->active;
1115
1116                         rt_rq->highest_prio.curr =
1117                                 sched_find_first_bit(array->bitmap);
1118                 }
1119
1120         } else
1121                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1122
1123         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1124 }
1125
1126 #else
1127
1128 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1129 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1130
1131 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1132
1133 #ifdef CONFIG_RT_GROUP_SCHED
1134
1135 static void
1136 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1137 {
1138         if (rt_se_boosted(rt_se))
1139                 rt_rq->rt_nr_boosted++;
1140
1141         if (rt_rq->tg)
1142                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1143 }
1144
1145 static void
1146 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1147 {
1148         if (rt_se_boosted(rt_se))
1149                 rt_rq->rt_nr_boosted--;
1150
1151         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1152 }
1153
1154 #else /* CONFIG_RT_GROUP_SCHED */
1155
1156 static void
1157 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1158 {
1159         start_rt_bandwidth(&def_rt_bandwidth);
1160 }
1161
1162 static inline
1163 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1164
1165 #endif /* CONFIG_RT_GROUP_SCHED */
1166
1167 static inline
1168 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1169 {
1170         struct rt_rq *group_rq = group_rt_rq(rt_se);
1171
1172         if (group_rq)
1173                 return group_rq->rt_nr_running;
1174         else
1175                 return 1;
1176 }
1177
1178 static inline
1179 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1180 {
1181         struct rt_rq *group_rq = group_rt_rq(rt_se);
1182         struct task_struct *tsk;
1183
1184         if (group_rq)
1185                 return group_rq->rr_nr_running;
1186
1187         tsk = rt_task_of(rt_se);
1188
1189         return (tsk->policy == SCHED_RR) ? 1 : 0;
1190 }
1191
1192 static inline
1193 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1194 {
1195         int prio = rt_se_prio(rt_se);
1196
1197         WARN_ON(!rt_prio(prio));
1198         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1199         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1200
1201         inc_rt_prio(rt_rq, prio);
1202         inc_rt_migration(rt_se, rt_rq);
1203         inc_rt_group(rt_se, rt_rq);
1204 }
1205
1206 static inline
1207 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1208 {
1209         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1210         WARN_ON(!rt_rq->rt_nr_running);
1211         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1212         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1213
1214         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1215         dec_rt_migration(rt_se, rt_rq);
1216         dec_rt_group(rt_se, rt_rq);
1217 }
1218
1219 /*
1220  * Change rt_se->run_list location unless SAVE && !MOVE
1221  *
1222  * assumes ENQUEUE/DEQUEUE flags match
1223  */
1224 static inline bool move_entity(unsigned int flags)
1225 {
1226         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1227                 return false;
1228
1229         return true;
1230 }
1231
1232 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1233 {
1234         list_del_init(&rt_se->run_list);
1235
1236         if (list_empty(array->queue + rt_se_prio(rt_se)))
1237                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1238
1239         rt_se->on_list = 0;
1240 }
1241
1242 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1243 {
1244         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1245         struct rt_prio_array *array = &rt_rq->active;
1246         struct rt_rq *group_rq = group_rt_rq(rt_se);
1247         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1248
1249         /*
1250          * Don't enqueue the group if its throttled, or when empty.
1251          * The latter is a consequence of the former when a child group
1252          * get throttled and the current group doesn't have any other
1253          * active members.
1254          */
1255         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1256                 if (rt_se->on_list)
1257                         __delist_rt_entity(rt_se, array);
1258                 return;
1259         }
1260
1261         if (move_entity(flags)) {
1262                 WARN_ON_ONCE(rt_se->on_list);
1263                 if (flags & ENQUEUE_HEAD)
1264                         list_add(&rt_se->run_list, queue);
1265                 else
1266                         list_add_tail(&rt_se->run_list, queue);
1267
1268                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1269                 rt_se->on_list = 1;
1270         }
1271         rt_se->on_rq = 1;
1272
1273         inc_rt_tasks(rt_se, rt_rq);
1274 }
1275
1276 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1277 {
1278         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1279         struct rt_prio_array *array = &rt_rq->active;
1280
1281         if (move_entity(flags)) {
1282                 WARN_ON_ONCE(!rt_se->on_list);
1283                 __delist_rt_entity(rt_se, array);
1284         }
1285         rt_se->on_rq = 0;
1286
1287         dec_rt_tasks(rt_se, rt_rq);
1288 }
1289
1290 /*
1291  * Because the prio of an upper entry depends on the lower
1292  * entries, we must remove entries top - down.
1293  */
1294 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1295 {
1296         struct sched_rt_entity *back = NULL;
1297         unsigned int rt_nr_running;
1298
1299         for_each_sched_rt_entity(rt_se) {
1300                 rt_se->back = back;
1301                 back = rt_se;
1302         }
1303
1304         rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1305
1306         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1307                 if (on_rt_rq(rt_se))
1308                         __dequeue_rt_entity(rt_se, flags);
1309         }
1310
1311         dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1312 }
1313
1314 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1315 {
1316         struct rq *rq = rq_of_rt_se(rt_se);
1317
1318         dequeue_rt_stack(rt_se, flags);
1319         for_each_sched_rt_entity(rt_se)
1320                 __enqueue_rt_entity(rt_se, flags);
1321         enqueue_top_rt_rq(&rq->rt);
1322 }
1323
1324 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1325 {
1326         struct rq *rq = rq_of_rt_se(rt_se);
1327
1328         dequeue_rt_stack(rt_se, flags);
1329
1330         for_each_sched_rt_entity(rt_se) {
1331                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1332
1333                 if (rt_rq && rt_rq->rt_nr_running)
1334                         __enqueue_rt_entity(rt_se, flags);
1335         }
1336         enqueue_top_rt_rq(&rq->rt);
1337 }
1338
1339 /*
1340  * Adding/removing a task to/from a priority array:
1341  */
1342 static void
1343 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1344 {
1345         struct sched_rt_entity *rt_se = &p->rt;
1346
1347         if (flags & ENQUEUE_WAKEUP)
1348                 rt_se->timeout = 0;
1349
1350         enqueue_rt_entity(rt_se, flags);
1351
1352         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1353                 enqueue_pushable_task(rq, p);
1354 }
1355
1356 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1357 {
1358         struct sched_rt_entity *rt_se = &p->rt;
1359
1360         update_curr_rt(rq);
1361         dequeue_rt_entity(rt_se, flags);
1362
1363         dequeue_pushable_task(rq, p);
1364 }
1365
1366 /*
1367  * Put task to the head or the end of the run list without the overhead of
1368  * dequeue followed by enqueue.
1369  */
1370 static void
1371 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1372 {
1373         if (on_rt_rq(rt_se)) {
1374                 struct rt_prio_array *array = &rt_rq->active;
1375                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1376
1377                 if (head)
1378                         list_move(&rt_se->run_list, queue);
1379                 else
1380                         list_move_tail(&rt_se->run_list, queue);
1381         }
1382 }
1383
1384 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1385 {
1386         struct sched_rt_entity *rt_se = &p->rt;
1387         struct rt_rq *rt_rq;
1388
1389         for_each_sched_rt_entity(rt_se) {
1390                 rt_rq = rt_rq_of_se(rt_se);
1391                 requeue_rt_entity(rt_rq, rt_se, head);
1392         }
1393 }
1394
1395 static void yield_task_rt(struct rq *rq)
1396 {
1397         requeue_task_rt(rq, rq->curr, 0);
1398 }
1399
1400 #ifdef CONFIG_SMP
1401 static int find_lowest_rq(struct task_struct *task);
1402
1403 static int
1404 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1405 {
1406         struct task_struct *curr;
1407         struct rq *rq;
1408
1409         /* For anything but wake ups, just return the task_cpu */
1410         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1411                 goto out;
1412
1413         rq = cpu_rq(cpu);
1414
1415         rcu_read_lock();
1416         curr = READ_ONCE(rq->curr); /* unlocked access */
1417
1418         /*
1419          * If the current task on @p's runqueue is an RT task, then
1420          * try to see if we can wake this RT task up on another
1421          * runqueue. Otherwise simply start this RT task
1422          * on its current runqueue.
1423          *
1424          * We want to avoid overloading runqueues. If the woken
1425          * task is a higher priority, then it will stay on this CPU
1426          * and the lower prio task should be moved to another CPU.
1427          * Even though this will probably make the lower prio task
1428          * lose its cache, we do not want to bounce a higher task
1429          * around just because it gave up its CPU, perhaps for a
1430          * lock?
1431          *
1432          * For equal prio tasks, we just let the scheduler sort it out.
1433          *
1434          * Otherwise, just let it ride on the affined RQ and the
1435          * post-schedule router will push the preempted task away
1436          *
1437          * This test is optimistic, if we get it wrong the load-balancer
1438          * will have to sort it out.
1439          */
1440         if (curr && unlikely(rt_task(curr)) &&
1441             (curr->nr_cpus_allowed < 2 ||
1442              curr->prio <= p->prio)) {
1443                 int target = find_lowest_rq(p);
1444
1445                 /*
1446                  * Don't bother moving it if the destination CPU is
1447                  * not running a lower priority task.
1448                  */
1449                 if (target != -1 &&
1450                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1451                         cpu = target;
1452         }
1453         rcu_read_unlock();
1454
1455 out:
1456         return cpu;
1457 }
1458
1459 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1460 {
1461         /*
1462          * Current can't be migrated, useless to reschedule,
1463          * let's hope p can move out.
1464          */
1465         if (rq->curr->nr_cpus_allowed == 1 ||
1466             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1467                 return;
1468
1469         /*
1470          * p is migratable, so let's not schedule it and
1471          * see if it is pushed or pulled somewhere else.
1472          */
1473         if (p->nr_cpus_allowed != 1
1474             && cpupri_find(&rq->rd->cpupri, p, NULL))
1475                 return;
1476
1477         /*
1478          * There appear to be other CPUs that can accept
1479          * the current task but none can run 'p', so lets reschedule
1480          * to try and push the current task away:
1481          */
1482         requeue_task_rt(rq, p, 1);
1483         resched_curr(rq);
1484 }
1485
1486 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1487 {
1488         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1489                 /*
1490                  * This is OK, because current is on_cpu, which avoids it being
1491                  * picked for load-balance and preemption/IRQs are still
1492                  * disabled avoiding further scheduler activity on it and we've
1493                  * not yet started the picking loop.
1494                  */
1495                 rq_unpin_lock(rq, rf);
1496                 pull_rt_task(rq);
1497                 rq_repin_lock(rq, rf);
1498         }
1499
1500         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1501 }
1502 #endif /* CONFIG_SMP */
1503
1504 /*
1505  * Preempt the current task with a newly woken task if needed:
1506  */
1507 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1508 {
1509         if (p->prio < rq->curr->prio) {
1510                 resched_curr(rq);
1511                 return;
1512         }
1513
1514 #ifdef CONFIG_SMP
1515         /*
1516          * If:
1517          *
1518          * - the newly woken task is of equal priority to the current task
1519          * - the newly woken task is non-migratable while current is migratable
1520          * - current will be preempted on the next reschedule
1521          *
1522          * we should check to see if current can readily move to a different
1523          * cpu.  If so, we will reschedule to allow the push logic to try
1524          * to move current somewhere else, making room for our non-migratable
1525          * task.
1526          */
1527         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1528                 check_preempt_equal_prio(rq, p);
1529 #endif
1530 }
1531
1532 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1533 {
1534         p->se.exec_start = rq_clock_task(rq);
1535
1536         /* The running task is never eligible for pushing */
1537         dequeue_pushable_task(rq, p);
1538
1539         if (!first)
1540                 return;
1541
1542         /*
1543          * If prev task was rt, put_prev_task() has already updated the
1544          * utilization. We only care of the case where we start to schedule a
1545          * rt task
1546          */
1547         if (rq->curr->sched_class != &rt_sched_class)
1548                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1549
1550         rt_queue_push_tasks(rq);
1551 }
1552
1553 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1554 {
1555         struct rt_prio_array *array = &rt_rq->active;
1556         struct sched_rt_entity *next = NULL;
1557         struct list_head *queue;
1558         int idx;
1559
1560         idx = sched_find_first_bit(array->bitmap);
1561         BUG_ON(idx >= MAX_RT_PRIO);
1562
1563         queue = array->queue + idx;
1564         if (SCHED_WARN_ON(list_empty(queue)))
1565                 return NULL;
1566         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1567
1568         return next;
1569 }
1570
1571 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1572 {
1573         struct sched_rt_entity *rt_se;
1574         struct rt_rq *rt_rq  = &rq->rt;
1575
1576         do {
1577                 rt_se = pick_next_rt_entity(rt_rq);
1578                 if (unlikely(!rt_se))
1579                         return NULL;
1580                 rt_rq = group_rt_rq(rt_se);
1581         } while (rt_rq);
1582
1583         return rt_task_of(rt_se);
1584 }
1585
1586 static struct task_struct *
1587 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1588 {
1589         struct task_struct *p;
1590
1591         WARN_ON_ONCE(prev || rf);
1592
1593         if (!sched_rt_runnable(rq))
1594                 return NULL;
1595
1596         p = _pick_next_task_rt(rq);
1597         set_next_task_rt(rq, p, true);
1598         return p;
1599 }
1600
1601 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1602 {
1603         update_curr_rt(rq);
1604
1605         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1606
1607         /*
1608          * The previous task needs to be made eligible for pushing
1609          * if it is still active
1610          */
1611         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1612                 enqueue_pushable_task(rq, p);
1613 }
1614
1615 #ifdef CONFIG_SMP
1616
1617 /* Only try algorithms three times */
1618 #define RT_MAX_TRIES 3
1619
1620 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1621 {
1622         if (!task_running(rq, p) &&
1623             cpumask_test_cpu(cpu, p->cpus_ptr))
1624                 return 1;
1625
1626         return 0;
1627 }
1628
1629 /*
1630  * Return the highest pushable rq's task, which is suitable to be executed
1631  * on the CPU, NULL otherwise
1632  */
1633 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1634 {
1635         struct plist_head *head = &rq->rt.pushable_tasks;
1636         struct task_struct *p;
1637
1638         if (!has_pushable_tasks(rq))
1639                 return NULL;
1640
1641         plist_for_each_entry(p, head, pushable_tasks) {
1642                 if (pick_rt_task(rq, p, cpu))
1643                         return p;
1644         }
1645
1646         return NULL;
1647 }
1648
1649 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1650
1651 static int find_lowest_rq(struct task_struct *task)
1652 {
1653         struct sched_domain *sd;
1654         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1655         int this_cpu = smp_processor_id();
1656         int cpu      = task_cpu(task);
1657
1658         /* Make sure the mask is initialized first */
1659         if (unlikely(!lowest_mask))
1660                 return -1;
1661
1662         if (task->nr_cpus_allowed == 1)
1663                 return -1; /* No other targets possible */
1664
1665         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1666                 return -1; /* No targets found */
1667
1668         /*
1669          * At this point we have built a mask of CPUs representing the
1670          * lowest priority tasks in the system.  Now we want to elect
1671          * the best one based on our affinity and topology.
1672          *
1673          * We prioritize the last CPU that the task executed on since
1674          * it is most likely cache-hot in that location.
1675          */
1676         if (cpumask_test_cpu(cpu, lowest_mask))
1677                 return cpu;
1678
1679         /*
1680          * Otherwise, we consult the sched_domains span maps to figure
1681          * out which CPU is logically closest to our hot cache data.
1682          */
1683         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1684                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1685
1686         rcu_read_lock();
1687         for_each_domain(cpu, sd) {
1688                 if (sd->flags & SD_WAKE_AFFINE) {
1689                         int best_cpu;
1690
1691                         /*
1692                          * "this_cpu" is cheaper to preempt than a
1693                          * remote processor.
1694                          */
1695                         if (this_cpu != -1 &&
1696                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1697                                 rcu_read_unlock();
1698                                 return this_cpu;
1699                         }
1700
1701                         best_cpu = cpumask_first_and(lowest_mask,
1702                                                      sched_domain_span(sd));
1703                         if (best_cpu < nr_cpu_ids) {
1704                                 rcu_read_unlock();
1705                                 return best_cpu;
1706                         }
1707                 }
1708         }
1709         rcu_read_unlock();
1710
1711         /*
1712          * And finally, if there were no matches within the domains
1713          * just give the caller *something* to work with from the compatible
1714          * locations.
1715          */
1716         if (this_cpu != -1)
1717                 return this_cpu;
1718
1719         cpu = cpumask_any(lowest_mask);
1720         if (cpu < nr_cpu_ids)
1721                 return cpu;
1722
1723         return -1;
1724 }
1725
1726 /* Will lock the rq it finds */
1727 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1728 {
1729         struct rq *lowest_rq = NULL;
1730         int tries;
1731         int cpu;
1732
1733         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1734                 cpu = find_lowest_rq(task);
1735
1736                 if ((cpu == -1) || (cpu == rq->cpu))
1737                         break;
1738
1739                 lowest_rq = cpu_rq(cpu);
1740
1741                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1742                         /*
1743                          * Target rq has tasks of equal or higher priority,
1744                          * retrying does not release any lock and is unlikely
1745                          * to yield a different result.
1746                          */
1747                         lowest_rq = NULL;
1748                         break;
1749                 }
1750
1751                 /* if the prio of this runqueue changed, try again */
1752                 if (double_lock_balance(rq, lowest_rq)) {
1753                         /*
1754                          * We had to unlock the run queue. In
1755                          * the mean time, task could have
1756                          * migrated already or had its affinity changed.
1757                          * Also make sure that it wasn't scheduled on its rq.
1758                          */
1759                         if (unlikely(task_rq(task) != rq ||
1760                                      !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1761                                      task_running(rq, task) ||
1762                                      !rt_task(task) ||
1763                                      !task_on_rq_queued(task))) {
1764
1765                                 double_unlock_balance(rq, lowest_rq);
1766                                 lowest_rq = NULL;
1767                                 break;
1768                         }
1769                 }
1770
1771                 /* If this rq is still suitable use it. */
1772                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1773                         break;
1774
1775                 /* try again */
1776                 double_unlock_balance(rq, lowest_rq);
1777                 lowest_rq = NULL;
1778         }
1779
1780         return lowest_rq;
1781 }
1782
1783 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1784 {
1785         struct task_struct *p;
1786
1787         if (!has_pushable_tasks(rq))
1788                 return NULL;
1789
1790         p = plist_first_entry(&rq->rt.pushable_tasks,
1791                               struct task_struct, pushable_tasks);
1792
1793         BUG_ON(rq->cpu != task_cpu(p));
1794         BUG_ON(task_current(rq, p));
1795         BUG_ON(p->nr_cpus_allowed <= 1);
1796
1797         BUG_ON(!task_on_rq_queued(p));
1798         BUG_ON(!rt_task(p));
1799
1800         return p;
1801 }
1802
1803 /*
1804  * If the current CPU has more than one RT task, see if the non
1805  * running task can migrate over to a CPU that is running a task
1806  * of lesser priority.
1807  */
1808 static int push_rt_task(struct rq *rq)
1809 {
1810         struct task_struct *next_task;
1811         struct rq *lowest_rq;
1812         int ret = 0;
1813
1814         if (!rq->rt.overloaded)
1815                 return 0;
1816
1817         next_task = pick_next_pushable_task(rq);
1818         if (!next_task)
1819                 return 0;
1820
1821 retry:
1822         if (WARN_ON(next_task == rq->curr))
1823                 return 0;
1824
1825         /*
1826          * It's possible that the next_task slipped in of
1827          * higher priority than current. If that's the case
1828          * just reschedule current.
1829          */
1830         if (unlikely(next_task->prio < rq->curr->prio)) {
1831                 resched_curr(rq);
1832                 return 0;
1833         }
1834
1835         /* We might release rq lock */
1836         get_task_struct(next_task);
1837
1838         /* find_lock_lowest_rq locks the rq if found */
1839         lowest_rq = find_lock_lowest_rq(next_task, rq);
1840         if (!lowest_rq) {
1841                 struct task_struct *task;
1842                 /*
1843                  * find_lock_lowest_rq releases rq->lock
1844                  * so it is possible that next_task has migrated.
1845                  *
1846                  * We need to make sure that the task is still on the same
1847                  * run-queue and is also still the next task eligible for
1848                  * pushing.
1849                  */
1850                 task = pick_next_pushable_task(rq);
1851                 if (task == next_task) {
1852                         /*
1853                          * The task hasn't migrated, and is still the next
1854                          * eligible task, but we failed to find a run-queue
1855                          * to push it to.  Do not retry in this case, since
1856                          * other CPUs will pull from us when ready.
1857                          */
1858                         goto out;
1859                 }
1860
1861                 if (!task)
1862                         /* No more tasks, just exit */
1863                         goto out;
1864
1865                 /*
1866                  * Something has shifted, try again.
1867                  */
1868                 put_task_struct(next_task);
1869                 next_task = task;
1870                 goto retry;
1871         }
1872
1873         deactivate_task(rq, next_task, 0);
1874         set_task_cpu(next_task, lowest_rq->cpu);
1875         activate_task(lowest_rq, next_task, 0);
1876         ret = 1;
1877
1878         resched_curr(lowest_rq);
1879
1880         double_unlock_balance(rq, lowest_rq);
1881
1882 out:
1883         put_task_struct(next_task);
1884
1885         return ret;
1886 }
1887
1888 static void push_rt_tasks(struct rq *rq)
1889 {
1890         /* push_rt_task will return true if it moved an RT */
1891         while (push_rt_task(rq))
1892                 ;
1893 }
1894
1895 #ifdef HAVE_RT_PUSH_IPI
1896
1897 /*
1898  * When a high priority task schedules out from a CPU and a lower priority
1899  * task is scheduled in, a check is made to see if there's any RT tasks
1900  * on other CPUs that are waiting to run because a higher priority RT task
1901  * is currently running on its CPU. In this case, the CPU with multiple RT
1902  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1903  * up that may be able to run one of its non-running queued RT tasks.
1904  *
1905  * All CPUs with overloaded RT tasks need to be notified as there is currently
1906  * no way to know which of these CPUs have the highest priority task waiting
1907  * to run. Instead of trying to take a spinlock on each of these CPUs,
1908  * which has shown to cause large latency when done on machines with many
1909  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1910  * RT tasks waiting to run.
1911  *
1912  * Just sending an IPI to each of the CPUs is also an issue, as on large
1913  * count CPU machines, this can cause an IPI storm on a CPU, especially
1914  * if its the only CPU with multiple RT tasks queued, and a large number
1915  * of CPUs scheduling a lower priority task at the same time.
1916  *
1917  * Each root domain has its own irq work function that can iterate over
1918  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1919  * tassk must be checked if there's one or many CPUs that are lowering
1920  * their priority, there's a single irq work iterator that will try to
1921  * push off RT tasks that are waiting to run.
1922  *
1923  * When a CPU schedules a lower priority task, it will kick off the
1924  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1925  * As it only takes the first CPU that schedules a lower priority task
1926  * to start the process, the rto_start variable is incremented and if
1927  * the atomic result is one, then that CPU will try to take the rto_lock.
1928  * This prevents high contention on the lock as the process handles all
1929  * CPUs scheduling lower priority tasks.
1930  *
1931  * All CPUs that are scheduling a lower priority task will increment the
1932  * rt_loop_next variable. This will make sure that the irq work iterator
1933  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1934  * priority task, even if the iterator is in the middle of a scan. Incrementing
1935  * the rt_loop_next will cause the iterator to perform another scan.
1936  *
1937  */
1938 static int rto_next_cpu(struct root_domain *rd)
1939 {
1940         int next;
1941         int cpu;
1942
1943         /*
1944          * When starting the IPI RT pushing, the rto_cpu is set to -1,
1945          * rt_next_cpu() will simply return the first CPU found in
1946          * the rto_mask.
1947          *
1948          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1949          * will return the next CPU found in the rto_mask.
1950          *
1951          * If there are no more CPUs left in the rto_mask, then a check is made
1952          * against rto_loop and rto_loop_next. rto_loop is only updated with
1953          * the rto_lock held, but any CPU may increment the rto_loop_next
1954          * without any locking.
1955          */
1956         for (;;) {
1957
1958                 /* When rto_cpu is -1 this acts like cpumask_first() */
1959                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1960
1961                 rd->rto_cpu = cpu;
1962
1963                 if (cpu < nr_cpu_ids)
1964                         return cpu;
1965
1966                 rd->rto_cpu = -1;
1967
1968                 /*
1969                  * ACQUIRE ensures we see the @rto_mask changes
1970                  * made prior to the @next value observed.
1971                  *
1972                  * Matches WMB in rt_set_overload().
1973                  */
1974                 next = atomic_read_acquire(&rd->rto_loop_next);
1975
1976                 if (rd->rto_loop == next)
1977                         break;
1978
1979                 rd->rto_loop = next;
1980         }
1981
1982         return -1;
1983 }
1984
1985 static inline bool rto_start_trylock(atomic_t *v)
1986 {
1987         return !atomic_cmpxchg_acquire(v, 0, 1);
1988 }
1989
1990 static inline void rto_start_unlock(atomic_t *v)
1991 {
1992         atomic_set_release(v, 0);
1993 }
1994
1995 static void tell_cpu_to_push(struct rq *rq)
1996 {
1997         int cpu = -1;
1998
1999         /* Keep the loop going if the IPI is currently active */
2000         atomic_inc(&rq->rd->rto_loop_next);
2001
2002         /* Only one CPU can initiate a loop at a time */
2003         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2004                 return;
2005
2006         raw_spin_lock(&rq->rd->rto_lock);
2007
2008         /*
2009          * The rto_cpu is updated under the lock, if it has a valid CPU
2010          * then the IPI is still running and will continue due to the
2011          * update to loop_next, and nothing needs to be done here.
2012          * Otherwise it is finishing up and an ipi needs to be sent.
2013          */
2014         if (rq->rd->rto_cpu < 0)
2015                 cpu = rto_next_cpu(rq->rd);
2016
2017         raw_spin_unlock(&rq->rd->rto_lock);
2018
2019         rto_start_unlock(&rq->rd->rto_loop_start);
2020
2021         if (cpu >= 0) {
2022                 /* Make sure the rd does not get freed while pushing */
2023                 sched_get_rd(rq->rd);
2024                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2025         }
2026 }
2027
2028 /* Called from hardirq context */
2029 void rto_push_irq_work_func(struct irq_work *work)
2030 {
2031         struct root_domain *rd =
2032                 container_of(work, struct root_domain, rto_push_work);
2033         struct rq *rq;
2034         int cpu;
2035
2036         rq = this_rq();
2037
2038         /*
2039          * We do not need to grab the lock to check for has_pushable_tasks.
2040          * When it gets updated, a check is made if a push is possible.
2041          */
2042         if (has_pushable_tasks(rq)) {
2043                 raw_spin_lock(&rq->lock);
2044                 push_rt_tasks(rq);
2045                 raw_spin_unlock(&rq->lock);
2046         }
2047
2048         raw_spin_lock(&rd->rto_lock);
2049
2050         /* Pass the IPI to the next rt overloaded queue */
2051         cpu = rto_next_cpu(rd);
2052
2053         raw_spin_unlock(&rd->rto_lock);
2054
2055         if (cpu < 0) {
2056                 sched_put_rd(rd);
2057                 return;
2058         }
2059
2060         /* Try the next RT overloaded CPU */
2061         irq_work_queue_on(&rd->rto_push_work, cpu);
2062 }
2063 #endif /* HAVE_RT_PUSH_IPI */
2064
2065 static void pull_rt_task(struct rq *this_rq)
2066 {
2067         int this_cpu = this_rq->cpu, cpu;
2068         bool resched = false;
2069         struct task_struct *p;
2070         struct rq *src_rq;
2071         int rt_overload_count = rt_overloaded(this_rq);
2072
2073         if (likely(!rt_overload_count))
2074                 return;
2075
2076         /*
2077          * Match the barrier from rt_set_overloaded; this guarantees that if we
2078          * see overloaded we must also see the rto_mask bit.
2079          */
2080         smp_rmb();
2081
2082         /* If we are the only overloaded CPU do nothing */
2083         if (rt_overload_count == 1 &&
2084             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2085                 return;
2086
2087 #ifdef HAVE_RT_PUSH_IPI
2088         if (sched_feat(RT_PUSH_IPI)) {
2089                 tell_cpu_to_push(this_rq);
2090                 return;
2091         }
2092 #endif
2093
2094         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2095                 if (this_cpu == cpu)
2096                         continue;
2097
2098                 src_rq = cpu_rq(cpu);
2099
2100                 /*
2101                  * Don't bother taking the src_rq->lock if the next highest
2102                  * task is known to be lower-priority than our current task.
2103                  * This may look racy, but if this value is about to go
2104                  * logically higher, the src_rq will push this task away.
2105                  * And if its going logically lower, we do not care
2106                  */
2107                 if (src_rq->rt.highest_prio.next >=
2108                     this_rq->rt.highest_prio.curr)
2109                         continue;
2110
2111                 /*
2112                  * We can potentially drop this_rq's lock in
2113                  * double_lock_balance, and another CPU could
2114                  * alter this_rq
2115                  */
2116                 double_lock_balance(this_rq, src_rq);
2117
2118                 /*
2119                  * We can pull only a task, which is pushable
2120                  * on its rq, and no others.
2121                  */
2122                 p = pick_highest_pushable_task(src_rq, this_cpu);
2123
2124                 /*
2125                  * Do we have an RT task that preempts
2126                  * the to-be-scheduled task?
2127                  */
2128                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2129                         WARN_ON(p == src_rq->curr);
2130                         WARN_ON(!task_on_rq_queued(p));
2131
2132                         /*
2133                          * There's a chance that p is higher in priority
2134                          * than what's currently running on its CPU.
2135                          * This is just that p is wakeing up and hasn't
2136                          * had a chance to schedule. We only pull
2137                          * p if it is lower in priority than the
2138                          * current task on the run queue
2139                          */
2140                         if (p->prio < src_rq->curr->prio)
2141                                 goto skip;
2142
2143                         resched = true;
2144
2145                         deactivate_task(src_rq, p, 0);
2146                         set_task_cpu(p, this_cpu);
2147                         activate_task(this_rq, p, 0);
2148                         /*
2149                          * We continue with the search, just in
2150                          * case there's an even higher prio task
2151                          * in another runqueue. (low likelihood
2152                          * but possible)
2153                          */
2154                 }
2155 skip:
2156                 double_unlock_balance(this_rq, src_rq);
2157         }
2158
2159         if (resched)
2160                 resched_curr(this_rq);
2161 }
2162
2163 /*
2164  * If we are not running and we are not going to reschedule soon, we should
2165  * try to push tasks away now
2166  */
2167 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2168 {
2169         if (!task_running(rq, p) &&
2170             !test_tsk_need_resched(rq->curr) &&
2171             p->nr_cpus_allowed > 1 &&
2172             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2173             (rq->curr->nr_cpus_allowed < 2 ||
2174              rq->curr->prio <= p->prio))
2175                 push_rt_tasks(rq);
2176 }
2177
2178 /* Assumes rq->lock is held */
2179 static void rq_online_rt(struct rq *rq)
2180 {
2181         if (rq->rt.overloaded)
2182                 rt_set_overload(rq);
2183
2184         __enable_runtime(rq);
2185
2186         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2187 }
2188
2189 /* Assumes rq->lock is held */
2190 static void rq_offline_rt(struct rq *rq)
2191 {
2192         if (rq->rt.overloaded)
2193                 rt_clear_overload(rq);
2194
2195         __disable_runtime(rq);
2196
2197         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2198 }
2199
2200 /*
2201  * When switch from the rt queue, we bring ourselves to a position
2202  * that we might want to pull RT tasks from other runqueues.
2203  */
2204 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2205 {
2206         /*
2207          * If there are other RT tasks then we will reschedule
2208          * and the scheduling of the other RT tasks will handle
2209          * the balancing. But if we are the last RT task
2210          * we may need to handle the pulling of RT tasks
2211          * now.
2212          */
2213         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2214                 return;
2215
2216         rt_queue_pull_task(rq);
2217 }
2218
2219 void __init init_sched_rt_class(void)
2220 {
2221         unsigned int i;
2222
2223         for_each_possible_cpu(i) {
2224                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2225                                         GFP_KERNEL, cpu_to_node(i));
2226         }
2227 }
2228 #endif /* CONFIG_SMP */
2229
2230 /*
2231  * When switching a task to RT, we may overload the runqueue
2232  * with RT tasks. In this case we try to push them off to
2233  * other runqueues.
2234  */
2235 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2236 {
2237         /*
2238          * If we are running, update the avg_rt tracking, as the running time
2239          * will now on be accounted into the latter.
2240          */
2241         if (task_current(rq, p)) {
2242                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2243                 return;
2244         }
2245
2246         /*
2247          * If we are not running we may need to preempt the current
2248          * running task. If that current running task is also an RT task
2249          * then see if we can move to another run queue.
2250          */
2251         if (task_on_rq_queued(p)) {
2252 #ifdef CONFIG_SMP
2253                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2254                         rt_queue_push_tasks(rq);
2255 #endif /* CONFIG_SMP */
2256                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2257                         resched_curr(rq);
2258         }
2259 }
2260
2261 /*
2262  * Priority of the task has changed. This may cause
2263  * us to initiate a push or pull.
2264  */
2265 static void
2266 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2267 {
2268         if (!task_on_rq_queued(p))
2269                 return;
2270
2271         if (rq->curr == p) {
2272 #ifdef CONFIG_SMP
2273                 /*
2274                  * If our priority decreases while running, we
2275                  * may need to pull tasks to this runqueue.
2276                  */
2277                 if (oldprio < p->prio)
2278                         rt_queue_pull_task(rq);
2279
2280                 /*
2281                  * If there's a higher priority task waiting to run
2282                  * then reschedule.
2283                  */
2284                 if (p->prio > rq->rt.highest_prio.curr)
2285                         resched_curr(rq);
2286 #else
2287                 /* For UP simply resched on drop of prio */
2288                 if (oldprio < p->prio)
2289                         resched_curr(rq);
2290 #endif /* CONFIG_SMP */
2291         } else {
2292                 /*
2293                  * This task is not running, but if it is
2294                  * greater than the current running task
2295                  * then reschedule.
2296                  */
2297                 if (p->prio < rq->curr->prio)
2298                         resched_curr(rq);
2299         }
2300 }
2301
2302 #ifdef CONFIG_POSIX_TIMERS
2303 static void watchdog(struct rq *rq, struct task_struct *p)
2304 {
2305         unsigned long soft, hard;
2306
2307         /* max may change after cur was read, this will be fixed next tick */
2308         soft = task_rlimit(p, RLIMIT_RTTIME);
2309         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2310
2311         if (soft != RLIM_INFINITY) {
2312                 unsigned long next;
2313
2314                 if (p->rt.watchdog_stamp != jiffies) {
2315                         p->rt.timeout++;
2316                         p->rt.watchdog_stamp = jiffies;
2317                 }
2318
2319                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2320                 if (p->rt.timeout > next) {
2321                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2322                                                     p->se.sum_exec_runtime);
2323                 }
2324         }
2325 }
2326 #else
2327 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2328 #endif
2329
2330 /*
2331  * scheduler tick hitting a task of our scheduling class.
2332  *
2333  * NOTE: This function can be called remotely by the tick offload that
2334  * goes along full dynticks. Therefore no local assumption can be made
2335  * and everything must be accessed through the @rq and @curr passed in
2336  * parameters.
2337  */
2338 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2339 {
2340         struct sched_rt_entity *rt_se = &p->rt;
2341
2342         update_curr_rt(rq);
2343         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2344
2345         watchdog(rq, p);
2346
2347         /*
2348          * RR tasks need a special form of timeslice management.
2349          * FIFO tasks have no timeslices.
2350          */
2351         if (p->policy != SCHED_RR)
2352                 return;
2353
2354         if (--p->rt.time_slice)
2355                 return;
2356
2357         p->rt.time_slice = sched_rr_timeslice;
2358
2359         /*
2360          * Requeue to the end of queue if we (and all of our ancestors) are not
2361          * the only element on the queue
2362          */
2363         for_each_sched_rt_entity(rt_se) {
2364                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2365                         requeue_task_rt(rq, p, 0);
2366                         resched_curr(rq);
2367                         return;
2368                 }
2369         }
2370 }
2371
2372 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2373 {
2374         /*
2375          * Time slice is 0 for SCHED_FIFO tasks
2376          */
2377         if (task->policy == SCHED_RR)
2378                 return sched_rr_timeslice;
2379         else
2380                 return 0;
2381 }
2382
2383 const struct sched_class rt_sched_class = {
2384         .next                   = &fair_sched_class,
2385         .enqueue_task           = enqueue_task_rt,
2386         .dequeue_task           = dequeue_task_rt,
2387         .yield_task             = yield_task_rt,
2388
2389         .check_preempt_curr     = check_preempt_curr_rt,
2390
2391         .pick_next_task         = pick_next_task_rt,
2392         .put_prev_task          = put_prev_task_rt,
2393         .set_next_task          = set_next_task_rt,
2394
2395 #ifdef CONFIG_SMP
2396         .balance                = balance_rt,
2397         .select_task_rq         = select_task_rq_rt,
2398         .set_cpus_allowed       = set_cpus_allowed_common,
2399         .rq_online              = rq_online_rt,
2400         .rq_offline             = rq_offline_rt,
2401         .task_woken             = task_woken_rt,
2402         .switched_from          = switched_from_rt,
2403 #endif
2404
2405         .task_tick              = task_tick_rt,
2406
2407         .get_rr_interval        = get_rr_interval_rt,
2408
2409         .prio_changed           = prio_changed_rt,
2410         .switched_to            = switched_to_rt,
2411
2412         .update_curr            = update_curr_rt,
2413
2414 #ifdef CONFIG_UCLAMP_TASK
2415         .uclamp_enabled         = 1,
2416 #endif
2417 };
2418
2419 #ifdef CONFIG_RT_GROUP_SCHED
2420 /*
2421  * Ensure that the real time constraints are schedulable.
2422  */
2423 static DEFINE_MUTEX(rt_constraints_mutex);
2424
2425 /* Must be called with tasklist_lock held */
2426 static inline int tg_has_rt_tasks(struct task_group *tg)
2427 {
2428         struct task_struct *g, *p;
2429
2430         /*
2431          * Autogroups do not have RT tasks; see autogroup_create().
2432          */
2433         if (task_group_is_autogroup(tg))
2434                 return 0;
2435
2436         for_each_process_thread(g, p) {
2437                 if (rt_task(p) && task_group(p) == tg)
2438                         return 1;
2439         }
2440
2441         return 0;
2442 }
2443
2444 struct rt_schedulable_data {
2445         struct task_group *tg;
2446         u64 rt_period;
2447         u64 rt_runtime;
2448 };
2449
2450 static int tg_rt_schedulable(struct task_group *tg, void *data)
2451 {
2452         struct rt_schedulable_data *d = data;
2453         struct task_group *child;
2454         unsigned long total, sum = 0;
2455         u64 period, runtime;
2456
2457         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2458         runtime = tg->rt_bandwidth.rt_runtime;
2459
2460         if (tg == d->tg) {
2461                 period = d->rt_period;
2462                 runtime = d->rt_runtime;
2463         }
2464
2465         /*
2466          * Cannot have more runtime than the period.
2467          */
2468         if (runtime > period && runtime != RUNTIME_INF)
2469                 return -EINVAL;
2470
2471         /*
2472          * Ensure we don't starve existing RT tasks.
2473          */
2474         if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2475                 return -EBUSY;
2476
2477         total = to_ratio(period, runtime);
2478
2479         /*
2480          * Nobody can have more than the global setting allows.
2481          */
2482         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2483                 return -EINVAL;
2484
2485         /*
2486          * The sum of our children's runtime should not exceed our own.
2487          */
2488         list_for_each_entry_rcu(child, &tg->children, siblings) {
2489                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2490                 runtime = child->rt_bandwidth.rt_runtime;
2491
2492                 if (child == d->tg) {
2493                         period = d->rt_period;
2494                         runtime = d->rt_runtime;
2495                 }
2496
2497                 sum += to_ratio(period, runtime);
2498         }
2499
2500         if (sum > total)
2501                 return -EINVAL;
2502
2503         return 0;
2504 }
2505
2506 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2507 {
2508         int ret;
2509
2510         struct rt_schedulable_data data = {
2511                 .tg = tg,
2512                 .rt_period = period,
2513                 .rt_runtime = runtime,
2514         };
2515
2516         rcu_read_lock();
2517         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2518         rcu_read_unlock();
2519
2520         return ret;
2521 }
2522
2523 static int tg_set_rt_bandwidth(struct task_group *tg,
2524                 u64 rt_period, u64 rt_runtime)
2525 {
2526         int i, err = 0;
2527
2528         /*
2529          * Disallowing the root group RT runtime is BAD, it would disallow the
2530          * kernel creating (and or operating) RT threads.
2531          */
2532         if (tg == &root_task_group && rt_runtime == 0)
2533                 return -EINVAL;
2534
2535         /* No period doesn't make any sense. */
2536         if (rt_period == 0)
2537                 return -EINVAL;
2538
2539         /*
2540          * Bound quota to defend quota against overflow during bandwidth shift.
2541          */
2542         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2543                 return -EINVAL;
2544
2545         mutex_lock(&rt_constraints_mutex);
2546         read_lock(&tasklist_lock);
2547         err = __rt_schedulable(tg, rt_period, rt_runtime);
2548         if (err)
2549                 goto unlock;
2550
2551         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2552         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2553         tg->rt_bandwidth.rt_runtime = rt_runtime;
2554
2555         for_each_possible_cpu(i) {
2556                 struct rt_rq *rt_rq = tg->rt_rq[i];
2557
2558                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2559                 rt_rq->rt_runtime = rt_runtime;
2560                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2561         }
2562         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2563 unlock:
2564         read_unlock(&tasklist_lock);
2565         mutex_unlock(&rt_constraints_mutex);
2566
2567         return err;
2568 }
2569
2570 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2571 {
2572         u64 rt_runtime, rt_period;
2573
2574         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2575         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2576         if (rt_runtime_us < 0)
2577                 rt_runtime = RUNTIME_INF;
2578         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2579                 return -EINVAL;
2580
2581         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2582 }
2583
2584 long sched_group_rt_runtime(struct task_group *tg)
2585 {
2586         u64 rt_runtime_us;
2587
2588         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2589                 return -1;
2590
2591         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2592         do_div(rt_runtime_us, NSEC_PER_USEC);
2593         return rt_runtime_us;
2594 }
2595
2596 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2597 {
2598         u64 rt_runtime, rt_period;
2599
2600         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2601                 return -EINVAL;
2602
2603         rt_period = rt_period_us * NSEC_PER_USEC;
2604         rt_runtime = tg->rt_bandwidth.rt_runtime;
2605
2606         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2607 }
2608
2609 long sched_group_rt_period(struct task_group *tg)
2610 {
2611         u64 rt_period_us;
2612
2613         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2614         do_div(rt_period_us, NSEC_PER_USEC);
2615         return rt_period_us;
2616 }
2617
2618 static int sched_rt_global_constraints(void)
2619 {
2620         int ret = 0;
2621
2622         mutex_lock(&rt_constraints_mutex);
2623         read_lock(&tasklist_lock);
2624         ret = __rt_schedulable(NULL, 0, 0);
2625         read_unlock(&tasklist_lock);
2626         mutex_unlock(&rt_constraints_mutex);
2627
2628         return ret;
2629 }
2630
2631 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2632 {
2633         /* Don't accept realtime tasks when there is no way for them to run */
2634         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2635                 return 0;
2636
2637         return 1;
2638 }
2639
2640 #else /* !CONFIG_RT_GROUP_SCHED */
2641 static int sched_rt_global_constraints(void)
2642 {
2643         unsigned long flags;
2644         int i;
2645
2646         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2647         for_each_possible_cpu(i) {
2648                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2649
2650                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2651                 rt_rq->rt_runtime = global_rt_runtime();
2652                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2653         }
2654         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2655
2656         return 0;
2657 }
2658 #endif /* CONFIG_RT_GROUP_SCHED */
2659
2660 static int sched_rt_global_validate(void)
2661 {
2662         if (sysctl_sched_rt_period <= 0)
2663                 return -EINVAL;
2664
2665         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2666                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2667                  ((u64)sysctl_sched_rt_runtime *
2668                         NSEC_PER_USEC > max_rt_runtime)))
2669                 return -EINVAL;
2670
2671         return 0;
2672 }
2673
2674 static void sched_rt_do_global(void)
2675 {
2676         unsigned long flags;
2677
2678         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2679         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2680         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2681         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2682 }
2683
2684 int sched_rt_handler(struct ctl_table *table, int write,
2685                 void __user *buffer, size_t *lenp,
2686                 loff_t *ppos)
2687 {
2688         int old_period, old_runtime;
2689         static DEFINE_MUTEX(mutex);
2690         int ret;
2691
2692         mutex_lock(&mutex);
2693         old_period = sysctl_sched_rt_period;
2694         old_runtime = sysctl_sched_rt_runtime;
2695
2696         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2697
2698         if (!ret && write) {
2699                 ret = sched_rt_global_validate();
2700                 if (ret)
2701                         goto undo;
2702
2703                 ret = sched_dl_global_validate();
2704                 if (ret)
2705                         goto undo;
2706
2707                 ret = sched_rt_global_constraints();
2708                 if (ret)
2709                         goto undo;
2710
2711                 sched_rt_do_global();
2712                 sched_dl_do_global();
2713         }
2714         if (0) {
2715 undo:
2716                 sysctl_sched_rt_period = old_period;
2717                 sysctl_sched_rt_runtime = old_runtime;
2718         }
2719         mutex_unlock(&mutex);
2720
2721         return ret;
2722 }
2723
2724 int sched_rr_handler(struct ctl_table *table, int write,
2725                 void __user *buffer, size_t *lenp,
2726                 loff_t *ppos)
2727 {
2728         int ret;
2729         static DEFINE_MUTEX(mutex);
2730
2731         mutex_lock(&mutex);
2732         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2733         /*
2734          * Make sure that internally we keep jiffies.
2735          * Also, writing zero resets the timeslice to default:
2736          */
2737         if (!ret && write) {
2738                 sched_rr_timeslice =
2739                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2740                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2741         }
2742         mutex_unlock(&mutex);
2743
2744         return ret;
2745 }
2746
2747 #ifdef CONFIG_SCHED_DEBUG
2748 void print_rt_stats(struct seq_file *m, int cpu)
2749 {
2750         rt_rq_iter_t iter;
2751         struct rt_rq *rt_rq;
2752
2753         rcu_read_lock();
2754         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2755                 print_rt_rq(m, cpu, rt_rq);
2756         rcu_read_unlock();
2757 }
2758 #endif /* CONFIG_SCHED_DEBUG */