GNU Linux-libre 5.17.9-gnu
[releases.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21         struct rt_bandwidth *rt_b =
22                 container_of(timer, struct rt_bandwidth, rt_period_timer);
23         int idle = 0;
24         int overrun;
25
26         raw_spin_lock(&rt_b->rt_runtime_lock);
27         for (;;) {
28                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29                 if (!overrun)
30                         break;
31
32                 raw_spin_unlock(&rt_b->rt_runtime_lock);
33                 idle = do_sched_rt_period_timer(rt_b, overrun);
34                 raw_spin_lock(&rt_b->rt_runtime_lock);
35         }
36         if (idle)
37                 rt_b->rt_period_active = 0;
38         raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45         rt_b->rt_period = ns_to_ktime(period);
46         rt_b->rt_runtime = runtime;
47
48         raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51                      HRTIMER_MODE_REL_HARD);
52         rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
55 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57         raw_spin_lock(&rt_b->rt_runtime_lock);
58         if (!rt_b->rt_period_active) {
59                 rt_b->rt_period_active = 1;
60                 /*
61                  * SCHED_DEADLINE updates the bandwidth, as a run away
62                  * RT task with a DL task could hog a CPU. But DL does
63                  * not reset the period. If a deadline task was running
64                  * without an RT task running, it can cause RT tasks to
65                  * throttle when they start up. Kick the timer right away
66                  * to update the period.
67                  */
68                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
69                 hrtimer_start_expires(&rt_b->rt_period_timer,
70                                       HRTIMER_MODE_ABS_PINNED_HARD);
71         }
72         raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74
75 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
76 {
77         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
78                 return;
79
80         do_start_rt_bandwidth(rt_b);
81 }
82
83 void init_rt_rq(struct rt_rq *rt_rq)
84 {
85         struct rt_prio_array *array;
86         int i;
87
88         array = &rt_rq->active;
89         for (i = 0; i < MAX_RT_PRIO; i++) {
90                 INIT_LIST_HEAD(array->queue + i);
91                 __clear_bit(i, array->bitmap);
92         }
93         /* delimiter for bitsearch: */
94         __set_bit(MAX_RT_PRIO, array->bitmap);
95
96 #if defined CONFIG_SMP
97         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
98         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
99         rt_rq->rt_nr_migratory = 0;
100         rt_rq->overloaded = 0;
101         plist_head_init(&rt_rq->pushable_tasks);
102 #endif /* CONFIG_SMP */
103         /* We start is dequeued state, because no RT tasks are queued */
104         rt_rq->rt_queued = 0;
105
106         rt_rq->rt_time = 0;
107         rt_rq->rt_throttled = 0;
108         rt_rq->rt_runtime = 0;
109         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
110 }
111
112 #ifdef CONFIG_RT_GROUP_SCHED
113 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
114 {
115         hrtimer_cancel(&rt_b->rt_period_timer);
116 }
117
118 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
119
120 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
121 {
122 #ifdef CONFIG_SCHED_DEBUG
123         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
124 #endif
125         return container_of(rt_se, struct task_struct, rt);
126 }
127
128 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
129 {
130         return rt_rq->rq;
131 }
132
133 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
134 {
135         return rt_se->rt_rq;
136 }
137
138 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
139 {
140         struct rt_rq *rt_rq = rt_se->rt_rq;
141
142         return rt_rq->rq;
143 }
144
145 void unregister_rt_sched_group(struct task_group *tg)
146 {
147         if (tg->rt_se)
148                 destroy_rt_bandwidth(&tg->rt_bandwidth);
149
150 }
151
152 void free_rt_sched_group(struct task_group *tg)
153 {
154         int i;
155
156         for_each_possible_cpu(i) {
157                 if (tg->rt_rq)
158                         kfree(tg->rt_rq[i]);
159                 if (tg->rt_se)
160                         kfree(tg->rt_se[i]);
161         }
162
163         kfree(tg->rt_rq);
164         kfree(tg->rt_se);
165 }
166
167 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
168                 struct sched_rt_entity *rt_se, int cpu,
169                 struct sched_rt_entity *parent)
170 {
171         struct rq *rq = cpu_rq(cpu);
172
173         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
174         rt_rq->rt_nr_boosted = 0;
175         rt_rq->rq = rq;
176         rt_rq->tg = tg;
177
178         tg->rt_rq[cpu] = rt_rq;
179         tg->rt_se[cpu] = rt_se;
180
181         if (!rt_se)
182                 return;
183
184         if (!parent)
185                 rt_se->rt_rq = &rq->rt;
186         else
187                 rt_se->rt_rq = parent->my_q;
188
189         rt_se->my_q = rt_rq;
190         rt_se->parent = parent;
191         INIT_LIST_HEAD(&rt_se->run_list);
192 }
193
194 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
195 {
196         struct rt_rq *rt_rq;
197         struct sched_rt_entity *rt_se;
198         int i;
199
200         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
201         if (!tg->rt_rq)
202                 goto err;
203         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
204         if (!tg->rt_se)
205                 goto err;
206
207         init_rt_bandwidth(&tg->rt_bandwidth,
208                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
209
210         for_each_possible_cpu(i) {
211                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
212                                      GFP_KERNEL, cpu_to_node(i));
213                 if (!rt_rq)
214                         goto err;
215
216                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
217                                      GFP_KERNEL, cpu_to_node(i));
218                 if (!rt_se)
219                         goto err_free_rq;
220
221                 init_rt_rq(rt_rq);
222                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
223                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
224         }
225
226         return 1;
227
228 err_free_rq:
229         kfree(rt_rq);
230 err:
231         return 0;
232 }
233
234 #else /* CONFIG_RT_GROUP_SCHED */
235
236 #define rt_entity_is_task(rt_se) (1)
237
238 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
239 {
240         return container_of(rt_se, struct task_struct, rt);
241 }
242
243 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
244 {
245         return container_of(rt_rq, struct rq, rt);
246 }
247
248 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
249 {
250         struct task_struct *p = rt_task_of(rt_se);
251
252         return task_rq(p);
253 }
254
255 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
256 {
257         struct rq *rq = rq_of_rt_se(rt_se);
258
259         return &rq->rt;
260 }
261
262 void unregister_rt_sched_group(struct task_group *tg) { }
263
264 void free_rt_sched_group(struct task_group *tg) { }
265
266 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
267 {
268         return 1;
269 }
270 #endif /* CONFIG_RT_GROUP_SCHED */
271
272 #ifdef CONFIG_SMP
273
274 static void pull_rt_task(struct rq *this_rq);
275
276 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
277 {
278         /* Try to pull RT tasks here if we lower this rq's prio */
279         return rq->online && rq->rt.highest_prio.curr > prev->prio;
280 }
281
282 static inline int rt_overloaded(struct rq *rq)
283 {
284         return atomic_read(&rq->rd->rto_count);
285 }
286
287 static inline void rt_set_overload(struct rq *rq)
288 {
289         if (!rq->online)
290                 return;
291
292         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
293         /*
294          * Make sure the mask is visible before we set
295          * the overload count. That is checked to determine
296          * if we should look at the mask. It would be a shame
297          * if we looked at the mask, but the mask was not
298          * updated yet.
299          *
300          * Matched by the barrier in pull_rt_task().
301          */
302         smp_wmb();
303         atomic_inc(&rq->rd->rto_count);
304 }
305
306 static inline void rt_clear_overload(struct rq *rq)
307 {
308         if (!rq->online)
309                 return;
310
311         /* the order here really doesn't matter */
312         atomic_dec(&rq->rd->rto_count);
313         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
314 }
315
316 static void update_rt_migration(struct rt_rq *rt_rq)
317 {
318         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
319                 if (!rt_rq->overloaded) {
320                         rt_set_overload(rq_of_rt_rq(rt_rq));
321                         rt_rq->overloaded = 1;
322                 }
323         } else if (rt_rq->overloaded) {
324                 rt_clear_overload(rq_of_rt_rq(rt_rq));
325                 rt_rq->overloaded = 0;
326         }
327 }
328
329 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
330 {
331         struct task_struct *p;
332
333         if (!rt_entity_is_task(rt_se))
334                 return;
335
336         p = rt_task_of(rt_se);
337         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
338
339         rt_rq->rt_nr_total++;
340         if (p->nr_cpus_allowed > 1)
341                 rt_rq->rt_nr_migratory++;
342
343         update_rt_migration(rt_rq);
344 }
345
346 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
347 {
348         struct task_struct *p;
349
350         if (!rt_entity_is_task(rt_se))
351                 return;
352
353         p = rt_task_of(rt_se);
354         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
355
356         rt_rq->rt_nr_total--;
357         if (p->nr_cpus_allowed > 1)
358                 rt_rq->rt_nr_migratory--;
359
360         update_rt_migration(rt_rq);
361 }
362
363 static inline int has_pushable_tasks(struct rq *rq)
364 {
365         return !plist_head_empty(&rq->rt.pushable_tasks);
366 }
367
368 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
369 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
370
371 static void push_rt_tasks(struct rq *);
372 static void pull_rt_task(struct rq *);
373
374 static inline void rt_queue_push_tasks(struct rq *rq)
375 {
376         if (!has_pushable_tasks(rq))
377                 return;
378
379         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
380 }
381
382 static inline void rt_queue_pull_task(struct rq *rq)
383 {
384         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
385 }
386
387 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
388 {
389         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390         plist_node_init(&p->pushable_tasks, p->prio);
391         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
392
393         /* Update the highest prio pushable task */
394         if (p->prio < rq->rt.highest_prio.next)
395                 rq->rt.highest_prio.next = p->prio;
396 }
397
398 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
399 {
400         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
401
402         /* Update the new highest prio pushable task */
403         if (has_pushable_tasks(rq)) {
404                 p = plist_first_entry(&rq->rt.pushable_tasks,
405                                       struct task_struct, pushable_tasks);
406                 rq->rt.highest_prio.next = p->prio;
407         } else {
408                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
409         }
410 }
411
412 #else
413
414 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
415 {
416 }
417
418 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
419 {
420 }
421
422 static inline
423 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
424 {
425 }
426
427 static inline
428 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
429 {
430 }
431
432 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
433 {
434         return false;
435 }
436
437 static inline void pull_rt_task(struct rq *this_rq)
438 {
439 }
440
441 static inline void rt_queue_push_tasks(struct rq *rq)
442 {
443 }
444 #endif /* CONFIG_SMP */
445
446 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
447 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
448
449 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
450 {
451         return rt_se->on_rq;
452 }
453
454 #ifdef CONFIG_UCLAMP_TASK
455 /*
456  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
457  * settings.
458  *
459  * This check is only important for heterogeneous systems where uclamp_min value
460  * is higher than the capacity of a @cpu. For non-heterogeneous system this
461  * function will always return true.
462  *
463  * The function will return true if the capacity of the @cpu is >= the
464  * uclamp_min and false otherwise.
465  *
466  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
467  * > uclamp_max.
468  */
469 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
470 {
471         unsigned int min_cap;
472         unsigned int max_cap;
473         unsigned int cpu_cap;
474
475         /* Only heterogeneous systems can benefit from this check */
476         if (!static_branch_unlikely(&sched_asym_cpucapacity))
477                 return true;
478
479         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
480         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
481
482         cpu_cap = capacity_orig_of(cpu);
483
484         return cpu_cap >= min(min_cap, max_cap);
485 }
486 #else
487 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
488 {
489         return true;
490 }
491 #endif
492
493 #ifdef CONFIG_RT_GROUP_SCHED
494
495 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
496 {
497         if (!rt_rq->tg)
498                 return RUNTIME_INF;
499
500         return rt_rq->rt_runtime;
501 }
502
503 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
504 {
505         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
506 }
507
508 typedef struct task_group *rt_rq_iter_t;
509
510 static inline struct task_group *next_task_group(struct task_group *tg)
511 {
512         do {
513                 tg = list_entry_rcu(tg->list.next,
514                         typeof(struct task_group), list);
515         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
516
517         if (&tg->list == &task_groups)
518                 tg = NULL;
519
520         return tg;
521 }
522
523 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
524         for (iter = container_of(&task_groups, typeof(*iter), list);    \
525                 (iter = next_task_group(iter)) &&                       \
526                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
527
528 #define for_each_sched_rt_entity(rt_se) \
529         for (; rt_se; rt_se = rt_se->parent)
530
531 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
532 {
533         return rt_se->my_q;
534 }
535
536 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
537 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
538
539 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
540 {
541         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
542         struct rq *rq = rq_of_rt_rq(rt_rq);
543         struct sched_rt_entity *rt_se;
544
545         int cpu = cpu_of(rq);
546
547         rt_se = rt_rq->tg->rt_se[cpu];
548
549         if (rt_rq->rt_nr_running) {
550                 if (!rt_se)
551                         enqueue_top_rt_rq(rt_rq);
552                 else if (!on_rt_rq(rt_se))
553                         enqueue_rt_entity(rt_se, 0);
554
555                 if (rt_rq->highest_prio.curr < curr->prio)
556                         resched_curr(rq);
557         }
558 }
559
560 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
561 {
562         struct sched_rt_entity *rt_se;
563         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
564
565         rt_se = rt_rq->tg->rt_se[cpu];
566
567         if (!rt_se) {
568                 dequeue_top_rt_rq(rt_rq);
569                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
570                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
571         }
572         else if (on_rt_rq(rt_se))
573                 dequeue_rt_entity(rt_se, 0);
574 }
575
576 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
577 {
578         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
579 }
580
581 static int rt_se_boosted(struct sched_rt_entity *rt_se)
582 {
583         struct rt_rq *rt_rq = group_rt_rq(rt_se);
584         struct task_struct *p;
585
586         if (rt_rq)
587                 return !!rt_rq->rt_nr_boosted;
588
589         p = rt_task_of(rt_se);
590         return p->prio != p->normal_prio;
591 }
592
593 #ifdef CONFIG_SMP
594 static inline const struct cpumask *sched_rt_period_mask(void)
595 {
596         return this_rq()->rd->span;
597 }
598 #else
599 static inline const struct cpumask *sched_rt_period_mask(void)
600 {
601         return cpu_online_mask;
602 }
603 #endif
604
605 static inline
606 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
607 {
608         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
609 }
610
611 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
612 {
613         return &rt_rq->tg->rt_bandwidth;
614 }
615
616 #else /* !CONFIG_RT_GROUP_SCHED */
617
618 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
619 {
620         return rt_rq->rt_runtime;
621 }
622
623 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
624 {
625         return ktime_to_ns(def_rt_bandwidth.rt_period);
626 }
627
628 typedef struct rt_rq *rt_rq_iter_t;
629
630 #define for_each_rt_rq(rt_rq, iter, rq) \
631         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
632
633 #define for_each_sched_rt_entity(rt_se) \
634         for (; rt_se; rt_se = NULL)
635
636 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
637 {
638         return NULL;
639 }
640
641 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
642 {
643         struct rq *rq = rq_of_rt_rq(rt_rq);
644
645         if (!rt_rq->rt_nr_running)
646                 return;
647
648         enqueue_top_rt_rq(rt_rq);
649         resched_curr(rq);
650 }
651
652 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
653 {
654         dequeue_top_rt_rq(rt_rq);
655 }
656
657 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
658 {
659         return rt_rq->rt_throttled;
660 }
661
662 static inline const struct cpumask *sched_rt_period_mask(void)
663 {
664         return cpu_online_mask;
665 }
666
667 static inline
668 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
669 {
670         return &cpu_rq(cpu)->rt;
671 }
672
673 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
674 {
675         return &def_rt_bandwidth;
676 }
677
678 #endif /* CONFIG_RT_GROUP_SCHED */
679
680 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
681 {
682         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
683
684         return (hrtimer_active(&rt_b->rt_period_timer) ||
685                 rt_rq->rt_time < rt_b->rt_runtime);
686 }
687
688 #ifdef CONFIG_SMP
689 /*
690  * We ran out of runtime, see if we can borrow some from our neighbours.
691  */
692 static void do_balance_runtime(struct rt_rq *rt_rq)
693 {
694         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
695         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
696         int i, weight;
697         u64 rt_period;
698
699         weight = cpumask_weight(rd->span);
700
701         raw_spin_lock(&rt_b->rt_runtime_lock);
702         rt_period = ktime_to_ns(rt_b->rt_period);
703         for_each_cpu(i, rd->span) {
704                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
705                 s64 diff;
706
707                 if (iter == rt_rq)
708                         continue;
709
710                 raw_spin_lock(&iter->rt_runtime_lock);
711                 /*
712                  * Either all rqs have inf runtime and there's nothing to steal
713                  * or __disable_runtime() below sets a specific rq to inf to
714                  * indicate its been disabled and disallow stealing.
715                  */
716                 if (iter->rt_runtime == RUNTIME_INF)
717                         goto next;
718
719                 /*
720                  * From runqueues with spare time, take 1/n part of their
721                  * spare time, but no more than our period.
722                  */
723                 diff = iter->rt_runtime - iter->rt_time;
724                 if (diff > 0) {
725                         diff = div_u64((u64)diff, weight);
726                         if (rt_rq->rt_runtime + diff > rt_period)
727                                 diff = rt_period - rt_rq->rt_runtime;
728                         iter->rt_runtime -= diff;
729                         rt_rq->rt_runtime += diff;
730                         if (rt_rq->rt_runtime == rt_period) {
731                                 raw_spin_unlock(&iter->rt_runtime_lock);
732                                 break;
733                         }
734                 }
735 next:
736                 raw_spin_unlock(&iter->rt_runtime_lock);
737         }
738         raw_spin_unlock(&rt_b->rt_runtime_lock);
739 }
740
741 /*
742  * Ensure this RQ takes back all the runtime it lend to its neighbours.
743  */
744 static void __disable_runtime(struct rq *rq)
745 {
746         struct root_domain *rd = rq->rd;
747         rt_rq_iter_t iter;
748         struct rt_rq *rt_rq;
749
750         if (unlikely(!scheduler_running))
751                 return;
752
753         for_each_rt_rq(rt_rq, iter, rq) {
754                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
755                 s64 want;
756                 int i;
757
758                 raw_spin_lock(&rt_b->rt_runtime_lock);
759                 raw_spin_lock(&rt_rq->rt_runtime_lock);
760                 /*
761                  * Either we're all inf and nobody needs to borrow, or we're
762                  * already disabled and thus have nothing to do, or we have
763                  * exactly the right amount of runtime to take out.
764                  */
765                 if (rt_rq->rt_runtime == RUNTIME_INF ||
766                                 rt_rq->rt_runtime == rt_b->rt_runtime)
767                         goto balanced;
768                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
769
770                 /*
771                  * Calculate the difference between what we started out with
772                  * and what we current have, that's the amount of runtime
773                  * we lend and now have to reclaim.
774                  */
775                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
776
777                 /*
778                  * Greedy reclaim, take back as much as we can.
779                  */
780                 for_each_cpu(i, rd->span) {
781                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
782                         s64 diff;
783
784                         /*
785                          * Can't reclaim from ourselves or disabled runqueues.
786                          */
787                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
788                                 continue;
789
790                         raw_spin_lock(&iter->rt_runtime_lock);
791                         if (want > 0) {
792                                 diff = min_t(s64, iter->rt_runtime, want);
793                                 iter->rt_runtime -= diff;
794                                 want -= diff;
795                         } else {
796                                 iter->rt_runtime -= want;
797                                 want -= want;
798                         }
799                         raw_spin_unlock(&iter->rt_runtime_lock);
800
801                         if (!want)
802                                 break;
803                 }
804
805                 raw_spin_lock(&rt_rq->rt_runtime_lock);
806                 /*
807                  * We cannot be left wanting - that would mean some runtime
808                  * leaked out of the system.
809                  */
810                 BUG_ON(want);
811 balanced:
812                 /*
813                  * Disable all the borrow logic by pretending we have inf
814                  * runtime - in which case borrowing doesn't make sense.
815                  */
816                 rt_rq->rt_runtime = RUNTIME_INF;
817                 rt_rq->rt_throttled = 0;
818                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
819                 raw_spin_unlock(&rt_b->rt_runtime_lock);
820
821                 /* Make rt_rq available for pick_next_task() */
822                 sched_rt_rq_enqueue(rt_rq);
823         }
824 }
825
826 static void __enable_runtime(struct rq *rq)
827 {
828         rt_rq_iter_t iter;
829         struct rt_rq *rt_rq;
830
831         if (unlikely(!scheduler_running))
832                 return;
833
834         /*
835          * Reset each runqueue's bandwidth settings
836          */
837         for_each_rt_rq(rt_rq, iter, rq) {
838                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
839
840                 raw_spin_lock(&rt_b->rt_runtime_lock);
841                 raw_spin_lock(&rt_rq->rt_runtime_lock);
842                 rt_rq->rt_runtime = rt_b->rt_runtime;
843                 rt_rq->rt_time = 0;
844                 rt_rq->rt_throttled = 0;
845                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
846                 raw_spin_unlock(&rt_b->rt_runtime_lock);
847         }
848 }
849
850 static void balance_runtime(struct rt_rq *rt_rq)
851 {
852         if (!sched_feat(RT_RUNTIME_SHARE))
853                 return;
854
855         if (rt_rq->rt_time > rt_rq->rt_runtime) {
856                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
857                 do_balance_runtime(rt_rq);
858                 raw_spin_lock(&rt_rq->rt_runtime_lock);
859         }
860 }
861 #else /* !CONFIG_SMP */
862 static inline void balance_runtime(struct rt_rq *rt_rq) {}
863 #endif /* CONFIG_SMP */
864
865 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
866 {
867         int i, idle = 1, throttled = 0;
868         const struct cpumask *span;
869
870         span = sched_rt_period_mask();
871 #ifdef CONFIG_RT_GROUP_SCHED
872         /*
873          * FIXME: isolated CPUs should really leave the root task group,
874          * whether they are isolcpus or were isolated via cpusets, lest
875          * the timer run on a CPU which does not service all runqueues,
876          * potentially leaving other CPUs indefinitely throttled.  If
877          * isolation is really required, the user will turn the throttle
878          * off to kill the perturbations it causes anyway.  Meanwhile,
879          * this maintains functionality for boot and/or troubleshooting.
880          */
881         if (rt_b == &root_task_group.rt_bandwidth)
882                 span = cpu_online_mask;
883 #endif
884         for_each_cpu(i, span) {
885                 int enqueue = 0;
886                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
887                 struct rq *rq = rq_of_rt_rq(rt_rq);
888                 int skip;
889
890                 /*
891                  * When span == cpu_online_mask, taking each rq->lock
892                  * can be time-consuming. Try to avoid it when possible.
893                  */
894                 raw_spin_lock(&rt_rq->rt_runtime_lock);
895                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
896                         rt_rq->rt_runtime = rt_b->rt_runtime;
897                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
898                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
899                 if (skip)
900                         continue;
901
902                 raw_spin_rq_lock(rq);
903                 update_rq_clock(rq);
904
905                 if (rt_rq->rt_time) {
906                         u64 runtime;
907
908                         raw_spin_lock(&rt_rq->rt_runtime_lock);
909                         if (rt_rq->rt_throttled)
910                                 balance_runtime(rt_rq);
911                         runtime = rt_rq->rt_runtime;
912                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
913                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
914                                 rt_rq->rt_throttled = 0;
915                                 enqueue = 1;
916
917                                 /*
918                                  * When we're idle and a woken (rt) task is
919                                  * throttled check_preempt_curr() will set
920                                  * skip_update and the time between the wakeup
921                                  * and this unthrottle will get accounted as
922                                  * 'runtime'.
923                                  */
924                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
925                                         rq_clock_cancel_skipupdate(rq);
926                         }
927                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
928                                 idle = 0;
929                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
930                 } else if (rt_rq->rt_nr_running) {
931                         idle = 0;
932                         if (!rt_rq_throttled(rt_rq))
933                                 enqueue = 1;
934                 }
935                 if (rt_rq->rt_throttled)
936                         throttled = 1;
937
938                 if (enqueue)
939                         sched_rt_rq_enqueue(rt_rq);
940                 raw_spin_rq_unlock(rq);
941         }
942
943         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
944                 return 1;
945
946         return idle;
947 }
948
949 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
950 {
951 #ifdef CONFIG_RT_GROUP_SCHED
952         struct rt_rq *rt_rq = group_rt_rq(rt_se);
953
954         if (rt_rq)
955                 return rt_rq->highest_prio.curr;
956 #endif
957
958         return rt_task_of(rt_se)->prio;
959 }
960
961 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
962 {
963         u64 runtime = sched_rt_runtime(rt_rq);
964
965         if (rt_rq->rt_throttled)
966                 return rt_rq_throttled(rt_rq);
967
968         if (runtime >= sched_rt_period(rt_rq))
969                 return 0;
970
971         balance_runtime(rt_rq);
972         runtime = sched_rt_runtime(rt_rq);
973         if (runtime == RUNTIME_INF)
974                 return 0;
975
976         if (rt_rq->rt_time > runtime) {
977                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
978
979                 /*
980                  * Don't actually throttle groups that have no runtime assigned
981                  * but accrue some time due to boosting.
982                  */
983                 if (likely(rt_b->rt_runtime)) {
984                         rt_rq->rt_throttled = 1;
985                         printk_deferred_once("sched: RT throttling activated\n");
986                 } else {
987                         /*
988                          * In case we did anyway, make it go away,
989                          * replenishment is a joke, since it will replenish us
990                          * with exactly 0 ns.
991                          */
992                         rt_rq->rt_time = 0;
993                 }
994
995                 if (rt_rq_throttled(rt_rq)) {
996                         sched_rt_rq_dequeue(rt_rq);
997                         return 1;
998                 }
999         }
1000
1001         return 0;
1002 }
1003
1004 /*
1005  * Update the current task's runtime statistics. Skip current tasks that
1006  * are not in our scheduling class.
1007  */
1008 static void update_curr_rt(struct rq *rq)
1009 {
1010         struct task_struct *curr = rq->curr;
1011         struct sched_rt_entity *rt_se = &curr->rt;
1012         u64 delta_exec;
1013         u64 now;
1014
1015         if (curr->sched_class != &rt_sched_class)
1016                 return;
1017
1018         now = rq_clock_task(rq);
1019         delta_exec = now - curr->se.exec_start;
1020         if (unlikely((s64)delta_exec <= 0))
1021                 return;
1022
1023         schedstat_set(curr->stats.exec_max,
1024                       max(curr->stats.exec_max, delta_exec));
1025
1026         trace_sched_stat_runtime(curr, delta_exec, 0);
1027
1028         curr->se.sum_exec_runtime += delta_exec;
1029         account_group_exec_runtime(curr, delta_exec);
1030
1031         curr->se.exec_start = now;
1032         cgroup_account_cputime(curr, delta_exec);
1033
1034         if (!rt_bandwidth_enabled())
1035                 return;
1036
1037         for_each_sched_rt_entity(rt_se) {
1038                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1039                 int exceeded;
1040
1041                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1042                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1043                         rt_rq->rt_time += delta_exec;
1044                         exceeded = sched_rt_runtime_exceeded(rt_rq);
1045                         if (exceeded)
1046                                 resched_curr(rq);
1047                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1048                         if (exceeded)
1049                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1050                 }
1051         }
1052 }
1053
1054 static void
1055 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1056 {
1057         struct rq *rq = rq_of_rt_rq(rt_rq);
1058
1059         BUG_ON(&rq->rt != rt_rq);
1060
1061         if (!rt_rq->rt_queued)
1062                 return;
1063
1064         BUG_ON(!rq->nr_running);
1065
1066         sub_nr_running(rq, rt_rq->rt_nr_running);
1067         rt_rq->rt_queued = 0;
1068
1069 }
1070
1071 static void
1072 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1073 {
1074         struct rq *rq = rq_of_rt_rq(rt_rq);
1075
1076         BUG_ON(&rq->rt != rt_rq);
1077
1078         if (rt_rq->rt_queued)
1079                 return;
1080
1081         if (rt_rq_throttled(rt_rq))
1082                 return;
1083
1084         if (rt_rq->rt_nr_running) {
1085                 add_nr_running(rq, rt_rq->rt_nr_running);
1086                 rt_rq->rt_queued = 1;
1087         }
1088
1089         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1090         cpufreq_update_util(rq, 0);
1091 }
1092
1093 #if defined CONFIG_SMP
1094
1095 static void
1096 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1097 {
1098         struct rq *rq = rq_of_rt_rq(rt_rq);
1099
1100 #ifdef CONFIG_RT_GROUP_SCHED
1101         /*
1102          * Change rq's cpupri only if rt_rq is the top queue.
1103          */
1104         if (&rq->rt != rt_rq)
1105                 return;
1106 #endif
1107         if (rq->online && prio < prev_prio)
1108                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1109 }
1110
1111 static void
1112 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1113 {
1114         struct rq *rq = rq_of_rt_rq(rt_rq);
1115
1116 #ifdef CONFIG_RT_GROUP_SCHED
1117         /*
1118          * Change rq's cpupri only if rt_rq is the top queue.
1119          */
1120         if (&rq->rt != rt_rq)
1121                 return;
1122 #endif
1123         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1124                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1125 }
1126
1127 #else /* CONFIG_SMP */
1128
1129 static inline
1130 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1131 static inline
1132 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1133
1134 #endif /* CONFIG_SMP */
1135
1136 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1137 static void
1138 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1139 {
1140         int prev_prio = rt_rq->highest_prio.curr;
1141
1142         if (prio < prev_prio)
1143                 rt_rq->highest_prio.curr = prio;
1144
1145         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1146 }
1147
1148 static void
1149 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1150 {
1151         int prev_prio = rt_rq->highest_prio.curr;
1152
1153         if (rt_rq->rt_nr_running) {
1154
1155                 WARN_ON(prio < prev_prio);
1156
1157                 /*
1158                  * This may have been our highest task, and therefore
1159                  * we may have some recomputation to do
1160                  */
1161                 if (prio == prev_prio) {
1162                         struct rt_prio_array *array = &rt_rq->active;
1163
1164                         rt_rq->highest_prio.curr =
1165                                 sched_find_first_bit(array->bitmap);
1166                 }
1167
1168         } else {
1169                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1170         }
1171
1172         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1173 }
1174
1175 #else
1176
1177 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1178 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1179
1180 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1181
1182 #ifdef CONFIG_RT_GROUP_SCHED
1183
1184 static void
1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 {
1187         if (rt_se_boosted(rt_se))
1188                 rt_rq->rt_nr_boosted++;
1189
1190         if (rt_rq->tg)
1191                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1192 }
1193
1194 static void
1195 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1196 {
1197         if (rt_se_boosted(rt_se))
1198                 rt_rq->rt_nr_boosted--;
1199
1200         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1201 }
1202
1203 #else /* CONFIG_RT_GROUP_SCHED */
1204
1205 static void
1206 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1207 {
1208         start_rt_bandwidth(&def_rt_bandwidth);
1209 }
1210
1211 static inline
1212 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1213
1214 #endif /* CONFIG_RT_GROUP_SCHED */
1215
1216 static inline
1217 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1218 {
1219         struct rt_rq *group_rq = group_rt_rq(rt_se);
1220
1221         if (group_rq)
1222                 return group_rq->rt_nr_running;
1223         else
1224                 return 1;
1225 }
1226
1227 static inline
1228 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1229 {
1230         struct rt_rq *group_rq = group_rt_rq(rt_se);
1231         struct task_struct *tsk;
1232
1233         if (group_rq)
1234                 return group_rq->rr_nr_running;
1235
1236         tsk = rt_task_of(rt_se);
1237
1238         return (tsk->policy == SCHED_RR) ? 1 : 0;
1239 }
1240
1241 static inline
1242 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1243 {
1244         int prio = rt_se_prio(rt_se);
1245
1246         WARN_ON(!rt_prio(prio));
1247         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1248         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1249
1250         inc_rt_prio(rt_rq, prio);
1251         inc_rt_migration(rt_se, rt_rq);
1252         inc_rt_group(rt_se, rt_rq);
1253 }
1254
1255 static inline
1256 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1257 {
1258         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1259         WARN_ON(!rt_rq->rt_nr_running);
1260         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1261         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1262
1263         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1264         dec_rt_migration(rt_se, rt_rq);
1265         dec_rt_group(rt_se, rt_rq);
1266 }
1267
1268 /*
1269  * Change rt_se->run_list location unless SAVE && !MOVE
1270  *
1271  * assumes ENQUEUE/DEQUEUE flags match
1272  */
1273 static inline bool move_entity(unsigned int flags)
1274 {
1275         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1276                 return false;
1277
1278         return true;
1279 }
1280
1281 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1282 {
1283         list_del_init(&rt_se->run_list);
1284
1285         if (list_empty(array->queue + rt_se_prio(rt_se)))
1286                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1287
1288         rt_se->on_list = 0;
1289 }
1290
1291 static inline struct sched_statistics *
1292 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1293 {
1294 #ifdef CONFIG_RT_GROUP_SCHED
1295         /* schedstats is not supported for rt group. */
1296         if (!rt_entity_is_task(rt_se))
1297                 return NULL;
1298 #endif
1299
1300         return &rt_task_of(rt_se)->stats;
1301 }
1302
1303 static inline void
1304 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1305 {
1306         struct sched_statistics *stats;
1307         struct task_struct *p = NULL;
1308
1309         if (!schedstat_enabled())
1310                 return;
1311
1312         if (rt_entity_is_task(rt_se))
1313                 p = rt_task_of(rt_se);
1314
1315         stats = __schedstats_from_rt_se(rt_se);
1316         if (!stats)
1317                 return;
1318
1319         __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1320 }
1321
1322 static inline void
1323 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1324 {
1325         struct sched_statistics *stats;
1326         struct task_struct *p = NULL;
1327
1328         if (!schedstat_enabled())
1329                 return;
1330
1331         if (rt_entity_is_task(rt_se))
1332                 p = rt_task_of(rt_se);
1333
1334         stats = __schedstats_from_rt_se(rt_se);
1335         if (!stats)
1336                 return;
1337
1338         __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1339 }
1340
1341 static inline void
1342 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1343                         int flags)
1344 {
1345         if (!schedstat_enabled())
1346                 return;
1347
1348         if (flags & ENQUEUE_WAKEUP)
1349                 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1350 }
1351
1352 static inline void
1353 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1354 {
1355         struct sched_statistics *stats;
1356         struct task_struct *p = NULL;
1357
1358         if (!schedstat_enabled())
1359                 return;
1360
1361         if (rt_entity_is_task(rt_se))
1362                 p = rt_task_of(rt_se);
1363
1364         stats = __schedstats_from_rt_se(rt_se);
1365         if (!stats)
1366                 return;
1367
1368         __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1369 }
1370
1371 static inline void
1372 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1373                         int flags)
1374 {
1375         struct task_struct *p = NULL;
1376
1377         if (!schedstat_enabled())
1378                 return;
1379
1380         if (rt_entity_is_task(rt_se))
1381                 p = rt_task_of(rt_se);
1382
1383         if ((flags & DEQUEUE_SLEEP) && p) {
1384                 unsigned int state;
1385
1386                 state = READ_ONCE(p->__state);
1387                 if (state & TASK_INTERRUPTIBLE)
1388                         __schedstat_set(p->stats.sleep_start,
1389                                         rq_clock(rq_of_rt_rq(rt_rq)));
1390
1391                 if (state & TASK_UNINTERRUPTIBLE)
1392                         __schedstat_set(p->stats.block_start,
1393                                         rq_clock(rq_of_rt_rq(rt_rq)));
1394         }
1395 }
1396
1397 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1398 {
1399         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1400         struct rt_prio_array *array = &rt_rq->active;
1401         struct rt_rq *group_rq = group_rt_rq(rt_se);
1402         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1403
1404         /*
1405          * Don't enqueue the group if its throttled, or when empty.
1406          * The latter is a consequence of the former when a child group
1407          * get throttled and the current group doesn't have any other
1408          * active members.
1409          */
1410         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1411                 if (rt_se->on_list)
1412                         __delist_rt_entity(rt_se, array);
1413                 return;
1414         }
1415
1416         if (move_entity(flags)) {
1417                 WARN_ON_ONCE(rt_se->on_list);
1418                 if (flags & ENQUEUE_HEAD)
1419                         list_add(&rt_se->run_list, queue);
1420                 else
1421                         list_add_tail(&rt_se->run_list, queue);
1422
1423                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1424                 rt_se->on_list = 1;
1425         }
1426         rt_se->on_rq = 1;
1427
1428         inc_rt_tasks(rt_se, rt_rq);
1429 }
1430
1431 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1432 {
1433         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1434         struct rt_prio_array *array = &rt_rq->active;
1435
1436         if (move_entity(flags)) {
1437                 WARN_ON_ONCE(!rt_se->on_list);
1438                 __delist_rt_entity(rt_se, array);
1439         }
1440         rt_se->on_rq = 0;
1441
1442         dec_rt_tasks(rt_se, rt_rq);
1443 }
1444
1445 /*
1446  * Because the prio of an upper entry depends on the lower
1447  * entries, we must remove entries top - down.
1448  */
1449 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1450 {
1451         struct sched_rt_entity *back = NULL;
1452
1453         for_each_sched_rt_entity(rt_se) {
1454                 rt_se->back = back;
1455                 back = rt_se;
1456         }
1457
1458         dequeue_top_rt_rq(rt_rq_of_se(back));
1459
1460         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1461                 if (on_rt_rq(rt_se))
1462                         __dequeue_rt_entity(rt_se, flags);
1463         }
1464 }
1465
1466 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1467 {
1468         struct rq *rq = rq_of_rt_se(rt_se);
1469
1470         update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1471
1472         dequeue_rt_stack(rt_se, flags);
1473         for_each_sched_rt_entity(rt_se)
1474                 __enqueue_rt_entity(rt_se, flags);
1475         enqueue_top_rt_rq(&rq->rt);
1476 }
1477
1478 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1479 {
1480         struct rq *rq = rq_of_rt_se(rt_se);
1481
1482         update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1483
1484         dequeue_rt_stack(rt_se, flags);
1485
1486         for_each_sched_rt_entity(rt_se) {
1487                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1488
1489                 if (rt_rq && rt_rq->rt_nr_running)
1490                         __enqueue_rt_entity(rt_se, flags);
1491         }
1492         enqueue_top_rt_rq(&rq->rt);
1493 }
1494
1495 /*
1496  * Adding/removing a task to/from a priority array:
1497  */
1498 static void
1499 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1500 {
1501         struct sched_rt_entity *rt_se = &p->rt;
1502
1503         if (flags & ENQUEUE_WAKEUP)
1504                 rt_se->timeout = 0;
1505
1506         check_schedstat_required();
1507         update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1508
1509         enqueue_rt_entity(rt_se, flags);
1510
1511         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1512                 enqueue_pushable_task(rq, p);
1513 }
1514
1515 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1516 {
1517         struct sched_rt_entity *rt_se = &p->rt;
1518
1519         update_curr_rt(rq);
1520         dequeue_rt_entity(rt_se, flags);
1521
1522         dequeue_pushable_task(rq, p);
1523 }
1524
1525 /*
1526  * Put task to the head or the end of the run list without the overhead of
1527  * dequeue followed by enqueue.
1528  */
1529 static void
1530 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1531 {
1532         if (on_rt_rq(rt_se)) {
1533                 struct rt_prio_array *array = &rt_rq->active;
1534                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1535
1536                 if (head)
1537                         list_move(&rt_se->run_list, queue);
1538                 else
1539                         list_move_tail(&rt_se->run_list, queue);
1540         }
1541 }
1542
1543 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1544 {
1545         struct sched_rt_entity *rt_se = &p->rt;
1546         struct rt_rq *rt_rq;
1547
1548         for_each_sched_rt_entity(rt_se) {
1549                 rt_rq = rt_rq_of_se(rt_se);
1550                 requeue_rt_entity(rt_rq, rt_se, head);
1551         }
1552 }
1553
1554 static void yield_task_rt(struct rq *rq)
1555 {
1556         requeue_task_rt(rq, rq->curr, 0);
1557 }
1558
1559 #ifdef CONFIG_SMP
1560 static int find_lowest_rq(struct task_struct *task);
1561
1562 static int
1563 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1564 {
1565         struct task_struct *curr;
1566         struct rq *rq;
1567         bool test;
1568
1569         /* For anything but wake ups, just return the task_cpu */
1570         if (!(flags & (WF_TTWU | WF_FORK)))
1571                 goto out;
1572
1573         rq = cpu_rq(cpu);
1574
1575         rcu_read_lock();
1576         curr = READ_ONCE(rq->curr); /* unlocked access */
1577
1578         /*
1579          * If the current task on @p's runqueue is an RT task, then
1580          * try to see if we can wake this RT task up on another
1581          * runqueue. Otherwise simply start this RT task
1582          * on its current runqueue.
1583          *
1584          * We want to avoid overloading runqueues. If the woken
1585          * task is a higher priority, then it will stay on this CPU
1586          * and the lower prio task should be moved to another CPU.
1587          * Even though this will probably make the lower prio task
1588          * lose its cache, we do not want to bounce a higher task
1589          * around just because it gave up its CPU, perhaps for a
1590          * lock?
1591          *
1592          * For equal prio tasks, we just let the scheduler sort it out.
1593          *
1594          * Otherwise, just let it ride on the affined RQ and the
1595          * post-schedule router will push the preempted task away
1596          *
1597          * This test is optimistic, if we get it wrong the load-balancer
1598          * will have to sort it out.
1599          *
1600          * We take into account the capacity of the CPU to ensure it fits the
1601          * requirement of the task - which is only important on heterogeneous
1602          * systems like big.LITTLE.
1603          */
1604         test = curr &&
1605                unlikely(rt_task(curr)) &&
1606                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1607
1608         if (test || !rt_task_fits_capacity(p, cpu)) {
1609                 int target = find_lowest_rq(p);
1610
1611                 /*
1612                  * Bail out if we were forcing a migration to find a better
1613                  * fitting CPU but our search failed.
1614                  */
1615                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1616                         goto out_unlock;
1617
1618                 /*
1619                  * Don't bother moving it if the destination CPU is
1620                  * not running a lower priority task.
1621                  */
1622                 if (target != -1 &&
1623                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1624                         cpu = target;
1625         }
1626
1627 out_unlock:
1628         rcu_read_unlock();
1629
1630 out:
1631         return cpu;
1632 }
1633
1634 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1635 {
1636         /*
1637          * Current can't be migrated, useless to reschedule,
1638          * let's hope p can move out.
1639          */
1640         if (rq->curr->nr_cpus_allowed == 1 ||
1641             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1642                 return;
1643
1644         /*
1645          * p is migratable, so let's not schedule it and
1646          * see if it is pushed or pulled somewhere else.
1647          */
1648         if (p->nr_cpus_allowed != 1 &&
1649             cpupri_find(&rq->rd->cpupri, p, NULL))
1650                 return;
1651
1652         /*
1653          * There appear to be other CPUs that can accept
1654          * the current task but none can run 'p', so lets reschedule
1655          * to try and push the current task away:
1656          */
1657         requeue_task_rt(rq, p, 1);
1658         resched_curr(rq);
1659 }
1660
1661 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1662 {
1663         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1664                 /*
1665                  * This is OK, because current is on_cpu, which avoids it being
1666                  * picked for load-balance and preemption/IRQs are still
1667                  * disabled avoiding further scheduler activity on it and we've
1668                  * not yet started the picking loop.
1669                  */
1670                 rq_unpin_lock(rq, rf);
1671                 pull_rt_task(rq);
1672                 rq_repin_lock(rq, rf);
1673         }
1674
1675         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1676 }
1677 #endif /* CONFIG_SMP */
1678
1679 /*
1680  * Preempt the current task with a newly woken task if needed:
1681  */
1682 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1683 {
1684         if (p->prio < rq->curr->prio) {
1685                 resched_curr(rq);
1686                 return;
1687         }
1688
1689 #ifdef CONFIG_SMP
1690         /*
1691          * If:
1692          *
1693          * - the newly woken task is of equal priority to the current task
1694          * - the newly woken task is non-migratable while current is migratable
1695          * - current will be preempted on the next reschedule
1696          *
1697          * we should check to see if current can readily move to a different
1698          * cpu.  If so, we will reschedule to allow the push logic to try
1699          * to move current somewhere else, making room for our non-migratable
1700          * task.
1701          */
1702         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1703                 check_preempt_equal_prio(rq, p);
1704 #endif
1705 }
1706
1707 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1708 {
1709         struct sched_rt_entity *rt_se = &p->rt;
1710         struct rt_rq *rt_rq = &rq->rt;
1711
1712         p->se.exec_start = rq_clock_task(rq);
1713         if (on_rt_rq(&p->rt))
1714                 update_stats_wait_end_rt(rt_rq, rt_se);
1715
1716         /* The running task is never eligible for pushing */
1717         dequeue_pushable_task(rq, p);
1718
1719         if (!first)
1720                 return;
1721
1722         /*
1723          * If prev task was rt, put_prev_task() has already updated the
1724          * utilization. We only care of the case where we start to schedule a
1725          * rt task
1726          */
1727         if (rq->curr->sched_class != &rt_sched_class)
1728                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1729
1730         rt_queue_push_tasks(rq);
1731 }
1732
1733 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1734                                                    struct rt_rq *rt_rq)
1735 {
1736         struct rt_prio_array *array = &rt_rq->active;
1737         struct sched_rt_entity *next = NULL;
1738         struct list_head *queue;
1739         int idx;
1740
1741         idx = sched_find_first_bit(array->bitmap);
1742         BUG_ON(idx >= MAX_RT_PRIO);
1743
1744         queue = array->queue + idx;
1745         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1746
1747         return next;
1748 }
1749
1750 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1751 {
1752         struct sched_rt_entity *rt_se;
1753         struct rt_rq *rt_rq  = &rq->rt;
1754
1755         do {
1756                 rt_se = pick_next_rt_entity(rq, rt_rq);
1757                 BUG_ON(!rt_se);
1758                 rt_rq = group_rt_rq(rt_se);
1759         } while (rt_rq);
1760
1761         return rt_task_of(rt_se);
1762 }
1763
1764 static struct task_struct *pick_task_rt(struct rq *rq)
1765 {
1766         struct task_struct *p;
1767
1768         if (!sched_rt_runnable(rq))
1769                 return NULL;
1770
1771         p = _pick_next_task_rt(rq);
1772
1773         return p;
1774 }
1775
1776 static struct task_struct *pick_next_task_rt(struct rq *rq)
1777 {
1778         struct task_struct *p = pick_task_rt(rq);
1779
1780         if (p)
1781                 set_next_task_rt(rq, p, true);
1782
1783         return p;
1784 }
1785
1786 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1787 {
1788         struct sched_rt_entity *rt_se = &p->rt;
1789         struct rt_rq *rt_rq = &rq->rt;
1790
1791         if (on_rt_rq(&p->rt))
1792                 update_stats_wait_start_rt(rt_rq, rt_se);
1793
1794         update_curr_rt(rq);
1795
1796         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1797
1798         /*
1799          * The previous task needs to be made eligible for pushing
1800          * if it is still active
1801          */
1802         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1803                 enqueue_pushable_task(rq, p);
1804 }
1805
1806 #ifdef CONFIG_SMP
1807
1808 /* Only try algorithms three times */
1809 #define RT_MAX_TRIES 3
1810
1811 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1812 {
1813         if (!task_running(rq, p) &&
1814             cpumask_test_cpu(cpu, &p->cpus_mask))
1815                 return 1;
1816
1817         return 0;
1818 }
1819
1820 /*
1821  * Return the highest pushable rq's task, which is suitable to be executed
1822  * on the CPU, NULL otherwise
1823  */
1824 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1825 {
1826         struct plist_head *head = &rq->rt.pushable_tasks;
1827         struct task_struct *p;
1828
1829         if (!has_pushable_tasks(rq))
1830                 return NULL;
1831
1832         plist_for_each_entry(p, head, pushable_tasks) {
1833                 if (pick_rt_task(rq, p, cpu))
1834                         return p;
1835         }
1836
1837         return NULL;
1838 }
1839
1840 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1841
1842 static int find_lowest_rq(struct task_struct *task)
1843 {
1844         struct sched_domain *sd;
1845         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1846         int this_cpu = smp_processor_id();
1847         int cpu      = task_cpu(task);
1848         int ret;
1849
1850         /* Make sure the mask is initialized first */
1851         if (unlikely(!lowest_mask))
1852                 return -1;
1853
1854         if (task->nr_cpus_allowed == 1)
1855                 return -1; /* No other targets possible */
1856
1857         /*
1858          * If we're on asym system ensure we consider the different capacities
1859          * of the CPUs when searching for the lowest_mask.
1860          */
1861         if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1862
1863                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1864                                           task, lowest_mask,
1865                                           rt_task_fits_capacity);
1866         } else {
1867
1868                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1869                                   task, lowest_mask);
1870         }
1871
1872         if (!ret)
1873                 return -1; /* No targets found */
1874
1875         /*
1876          * At this point we have built a mask of CPUs representing the
1877          * lowest priority tasks in the system.  Now we want to elect
1878          * the best one based on our affinity and topology.
1879          *
1880          * We prioritize the last CPU that the task executed on since
1881          * it is most likely cache-hot in that location.
1882          */
1883         if (cpumask_test_cpu(cpu, lowest_mask))
1884                 return cpu;
1885
1886         /*
1887          * Otherwise, we consult the sched_domains span maps to figure
1888          * out which CPU is logically closest to our hot cache data.
1889          */
1890         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1891                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1892
1893         rcu_read_lock();
1894         for_each_domain(cpu, sd) {
1895                 if (sd->flags & SD_WAKE_AFFINE) {
1896                         int best_cpu;
1897
1898                         /*
1899                          * "this_cpu" is cheaper to preempt than a
1900                          * remote processor.
1901                          */
1902                         if (this_cpu != -1 &&
1903                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1904                                 rcu_read_unlock();
1905                                 return this_cpu;
1906                         }
1907
1908                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1909                                                               sched_domain_span(sd));
1910                         if (best_cpu < nr_cpu_ids) {
1911                                 rcu_read_unlock();
1912                                 return best_cpu;
1913                         }
1914                 }
1915         }
1916         rcu_read_unlock();
1917
1918         /*
1919          * And finally, if there were no matches within the domains
1920          * just give the caller *something* to work with from the compatible
1921          * locations.
1922          */
1923         if (this_cpu != -1)
1924                 return this_cpu;
1925
1926         cpu = cpumask_any_distribute(lowest_mask);
1927         if (cpu < nr_cpu_ids)
1928                 return cpu;
1929
1930         return -1;
1931 }
1932
1933 /* Will lock the rq it finds */
1934 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1935 {
1936         struct rq *lowest_rq = NULL;
1937         int tries;
1938         int cpu;
1939
1940         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1941                 cpu = find_lowest_rq(task);
1942
1943                 if ((cpu == -1) || (cpu == rq->cpu))
1944                         break;
1945
1946                 lowest_rq = cpu_rq(cpu);
1947
1948                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1949                         /*
1950                          * Target rq has tasks of equal or higher priority,
1951                          * retrying does not release any lock and is unlikely
1952                          * to yield a different result.
1953                          */
1954                         lowest_rq = NULL;
1955                         break;
1956                 }
1957
1958                 /* if the prio of this runqueue changed, try again */
1959                 if (double_lock_balance(rq, lowest_rq)) {
1960                         /*
1961                          * We had to unlock the run queue. In
1962                          * the mean time, task could have
1963                          * migrated already or had its affinity changed.
1964                          * Also make sure that it wasn't scheduled on its rq.
1965                          */
1966                         if (unlikely(task_rq(task) != rq ||
1967                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1968                                      task_running(rq, task) ||
1969                                      !rt_task(task) ||
1970                                      !task_on_rq_queued(task))) {
1971
1972                                 double_unlock_balance(rq, lowest_rq);
1973                                 lowest_rq = NULL;
1974                                 break;
1975                         }
1976                 }
1977
1978                 /* If this rq is still suitable use it. */
1979                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1980                         break;
1981
1982                 /* try again */
1983                 double_unlock_balance(rq, lowest_rq);
1984                 lowest_rq = NULL;
1985         }
1986
1987         return lowest_rq;
1988 }
1989
1990 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1991 {
1992         struct task_struct *p;
1993
1994         if (!has_pushable_tasks(rq))
1995                 return NULL;
1996
1997         p = plist_first_entry(&rq->rt.pushable_tasks,
1998                               struct task_struct, pushable_tasks);
1999
2000         BUG_ON(rq->cpu != task_cpu(p));
2001         BUG_ON(task_current(rq, p));
2002         BUG_ON(p->nr_cpus_allowed <= 1);
2003
2004         BUG_ON(!task_on_rq_queued(p));
2005         BUG_ON(!rt_task(p));
2006
2007         return p;
2008 }
2009
2010 /*
2011  * If the current CPU has more than one RT task, see if the non
2012  * running task can migrate over to a CPU that is running a task
2013  * of lesser priority.
2014  */
2015 static int push_rt_task(struct rq *rq, bool pull)
2016 {
2017         struct task_struct *next_task;
2018         struct rq *lowest_rq;
2019         int ret = 0;
2020
2021         if (!rq->rt.overloaded)
2022                 return 0;
2023
2024         next_task = pick_next_pushable_task(rq);
2025         if (!next_task)
2026                 return 0;
2027
2028 retry:
2029         /*
2030          * It's possible that the next_task slipped in of
2031          * higher priority than current. If that's the case
2032          * just reschedule current.
2033          */
2034         if (unlikely(next_task->prio < rq->curr->prio)) {
2035                 resched_curr(rq);
2036                 return 0;
2037         }
2038
2039         if (is_migration_disabled(next_task)) {
2040                 struct task_struct *push_task = NULL;
2041                 int cpu;
2042
2043                 if (!pull || rq->push_busy)
2044                         return 0;
2045
2046                 /*
2047                  * Invoking find_lowest_rq() on anything but an RT task doesn't
2048                  * make sense. Per the above priority check, curr has to
2049                  * be of higher priority than next_task, so no need to
2050                  * reschedule when bailing out.
2051                  *
2052                  * Note that the stoppers are masqueraded as SCHED_FIFO
2053                  * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2054                  */
2055                 if (rq->curr->sched_class != &rt_sched_class)
2056                         return 0;
2057
2058                 cpu = find_lowest_rq(rq->curr);
2059                 if (cpu == -1 || cpu == rq->cpu)
2060                         return 0;
2061
2062                 /*
2063                  * Given we found a CPU with lower priority than @next_task,
2064                  * therefore it should be running. However we cannot migrate it
2065                  * to this other CPU, instead attempt to push the current
2066                  * running task on this CPU away.
2067                  */
2068                 push_task = get_push_task(rq);
2069                 if (push_task) {
2070                         raw_spin_rq_unlock(rq);
2071                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2072                                             push_task, &rq->push_work);
2073                         raw_spin_rq_lock(rq);
2074                 }
2075
2076                 return 0;
2077         }
2078
2079         if (WARN_ON(next_task == rq->curr))
2080                 return 0;
2081
2082         /* We might release rq lock */
2083         get_task_struct(next_task);
2084
2085         /* find_lock_lowest_rq locks the rq if found */
2086         lowest_rq = find_lock_lowest_rq(next_task, rq);
2087         if (!lowest_rq) {
2088                 struct task_struct *task;
2089                 /*
2090                  * find_lock_lowest_rq releases rq->lock
2091                  * so it is possible that next_task has migrated.
2092                  *
2093                  * We need to make sure that the task is still on the same
2094                  * run-queue and is also still the next task eligible for
2095                  * pushing.
2096                  */
2097                 task = pick_next_pushable_task(rq);
2098                 if (task == next_task) {
2099                         /*
2100                          * The task hasn't migrated, and is still the next
2101                          * eligible task, but we failed to find a run-queue
2102                          * to push it to.  Do not retry in this case, since
2103                          * other CPUs will pull from us when ready.
2104                          */
2105                         goto out;
2106                 }
2107
2108                 if (!task)
2109                         /* No more tasks, just exit */
2110                         goto out;
2111
2112                 /*
2113                  * Something has shifted, try again.
2114                  */
2115                 put_task_struct(next_task);
2116                 next_task = task;
2117                 goto retry;
2118         }
2119
2120         deactivate_task(rq, next_task, 0);
2121         set_task_cpu(next_task, lowest_rq->cpu);
2122         activate_task(lowest_rq, next_task, 0);
2123         resched_curr(lowest_rq);
2124         ret = 1;
2125
2126         double_unlock_balance(rq, lowest_rq);
2127 out:
2128         put_task_struct(next_task);
2129
2130         return ret;
2131 }
2132
2133 static void push_rt_tasks(struct rq *rq)
2134 {
2135         /* push_rt_task will return true if it moved an RT */
2136         while (push_rt_task(rq, false))
2137                 ;
2138 }
2139
2140 #ifdef HAVE_RT_PUSH_IPI
2141
2142 /*
2143  * When a high priority task schedules out from a CPU and a lower priority
2144  * task is scheduled in, a check is made to see if there's any RT tasks
2145  * on other CPUs that are waiting to run because a higher priority RT task
2146  * is currently running on its CPU. In this case, the CPU with multiple RT
2147  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2148  * up that may be able to run one of its non-running queued RT tasks.
2149  *
2150  * All CPUs with overloaded RT tasks need to be notified as there is currently
2151  * no way to know which of these CPUs have the highest priority task waiting
2152  * to run. Instead of trying to take a spinlock on each of these CPUs,
2153  * which has shown to cause large latency when done on machines with many
2154  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2155  * RT tasks waiting to run.
2156  *
2157  * Just sending an IPI to each of the CPUs is also an issue, as on large
2158  * count CPU machines, this can cause an IPI storm on a CPU, especially
2159  * if its the only CPU with multiple RT tasks queued, and a large number
2160  * of CPUs scheduling a lower priority task at the same time.
2161  *
2162  * Each root domain has its own irq work function that can iterate over
2163  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2164  * task must be checked if there's one or many CPUs that are lowering
2165  * their priority, there's a single irq work iterator that will try to
2166  * push off RT tasks that are waiting to run.
2167  *
2168  * When a CPU schedules a lower priority task, it will kick off the
2169  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2170  * As it only takes the first CPU that schedules a lower priority task
2171  * to start the process, the rto_start variable is incremented and if
2172  * the atomic result is one, then that CPU will try to take the rto_lock.
2173  * This prevents high contention on the lock as the process handles all
2174  * CPUs scheduling lower priority tasks.
2175  *
2176  * All CPUs that are scheduling a lower priority task will increment the
2177  * rt_loop_next variable. This will make sure that the irq work iterator
2178  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2179  * priority task, even if the iterator is in the middle of a scan. Incrementing
2180  * the rt_loop_next will cause the iterator to perform another scan.
2181  *
2182  */
2183 static int rto_next_cpu(struct root_domain *rd)
2184 {
2185         int next;
2186         int cpu;
2187
2188         /*
2189          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2190          * rt_next_cpu() will simply return the first CPU found in
2191          * the rto_mask.
2192          *
2193          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2194          * will return the next CPU found in the rto_mask.
2195          *
2196          * If there are no more CPUs left in the rto_mask, then a check is made
2197          * against rto_loop and rto_loop_next. rto_loop is only updated with
2198          * the rto_lock held, but any CPU may increment the rto_loop_next
2199          * without any locking.
2200          */
2201         for (;;) {
2202
2203                 /* When rto_cpu is -1 this acts like cpumask_first() */
2204                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2205
2206                 rd->rto_cpu = cpu;
2207
2208                 if (cpu < nr_cpu_ids)
2209                         return cpu;
2210
2211                 rd->rto_cpu = -1;
2212
2213                 /*
2214                  * ACQUIRE ensures we see the @rto_mask changes
2215                  * made prior to the @next value observed.
2216                  *
2217                  * Matches WMB in rt_set_overload().
2218                  */
2219                 next = atomic_read_acquire(&rd->rto_loop_next);
2220
2221                 if (rd->rto_loop == next)
2222                         break;
2223
2224                 rd->rto_loop = next;
2225         }
2226
2227         return -1;
2228 }
2229
2230 static inline bool rto_start_trylock(atomic_t *v)
2231 {
2232         return !atomic_cmpxchg_acquire(v, 0, 1);
2233 }
2234
2235 static inline void rto_start_unlock(atomic_t *v)
2236 {
2237         atomic_set_release(v, 0);
2238 }
2239
2240 static void tell_cpu_to_push(struct rq *rq)
2241 {
2242         int cpu = -1;
2243
2244         /* Keep the loop going if the IPI is currently active */
2245         atomic_inc(&rq->rd->rto_loop_next);
2246
2247         /* Only one CPU can initiate a loop at a time */
2248         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2249                 return;
2250
2251         raw_spin_lock(&rq->rd->rto_lock);
2252
2253         /*
2254          * The rto_cpu is updated under the lock, if it has a valid CPU
2255          * then the IPI is still running and will continue due to the
2256          * update to loop_next, and nothing needs to be done here.
2257          * Otherwise it is finishing up and an ipi needs to be sent.
2258          */
2259         if (rq->rd->rto_cpu < 0)
2260                 cpu = rto_next_cpu(rq->rd);
2261
2262         raw_spin_unlock(&rq->rd->rto_lock);
2263
2264         rto_start_unlock(&rq->rd->rto_loop_start);
2265
2266         if (cpu >= 0) {
2267                 /* Make sure the rd does not get freed while pushing */
2268                 sched_get_rd(rq->rd);
2269                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2270         }
2271 }
2272
2273 /* Called from hardirq context */
2274 void rto_push_irq_work_func(struct irq_work *work)
2275 {
2276         struct root_domain *rd =
2277                 container_of(work, struct root_domain, rto_push_work);
2278         struct rq *rq;
2279         int cpu;
2280
2281         rq = this_rq();
2282
2283         /*
2284          * We do not need to grab the lock to check for has_pushable_tasks.
2285          * When it gets updated, a check is made if a push is possible.
2286          */
2287         if (has_pushable_tasks(rq)) {
2288                 raw_spin_rq_lock(rq);
2289                 while (push_rt_task(rq, true))
2290                         ;
2291                 raw_spin_rq_unlock(rq);
2292         }
2293
2294         raw_spin_lock(&rd->rto_lock);
2295
2296         /* Pass the IPI to the next rt overloaded queue */
2297         cpu = rto_next_cpu(rd);
2298
2299         raw_spin_unlock(&rd->rto_lock);
2300
2301         if (cpu < 0) {
2302                 sched_put_rd(rd);
2303                 return;
2304         }
2305
2306         /* Try the next RT overloaded CPU */
2307         irq_work_queue_on(&rd->rto_push_work, cpu);
2308 }
2309 #endif /* HAVE_RT_PUSH_IPI */
2310
2311 static void pull_rt_task(struct rq *this_rq)
2312 {
2313         int this_cpu = this_rq->cpu, cpu;
2314         bool resched = false;
2315         struct task_struct *p, *push_task;
2316         struct rq *src_rq;
2317         int rt_overload_count = rt_overloaded(this_rq);
2318
2319         if (likely(!rt_overload_count))
2320                 return;
2321
2322         /*
2323          * Match the barrier from rt_set_overloaded; this guarantees that if we
2324          * see overloaded we must also see the rto_mask bit.
2325          */
2326         smp_rmb();
2327
2328         /* If we are the only overloaded CPU do nothing */
2329         if (rt_overload_count == 1 &&
2330             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2331                 return;
2332
2333 #ifdef HAVE_RT_PUSH_IPI
2334         if (sched_feat(RT_PUSH_IPI)) {
2335                 tell_cpu_to_push(this_rq);
2336                 return;
2337         }
2338 #endif
2339
2340         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2341                 if (this_cpu == cpu)
2342                         continue;
2343
2344                 src_rq = cpu_rq(cpu);
2345
2346                 /*
2347                  * Don't bother taking the src_rq->lock if the next highest
2348                  * task is known to be lower-priority than our current task.
2349                  * This may look racy, but if this value is about to go
2350                  * logically higher, the src_rq will push this task away.
2351                  * And if its going logically lower, we do not care
2352                  */
2353                 if (src_rq->rt.highest_prio.next >=
2354                     this_rq->rt.highest_prio.curr)
2355                         continue;
2356
2357                 /*
2358                  * We can potentially drop this_rq's lock in
2359                  * double_lock_balance, and another CPU could
2360                  * alter this_rq
2361                  */
2362                 push_task = NULL;
2363                 double_lock_balance(this_rq, src_rq);
2364
2365                 /*
2366                  * We can pull only a task, which is pushable
2367                  * on its rq, and no others.
2368                  */
2369                 p = pick_highest_pushable_task(src_rq, this_cpu);
2370
2371                 /*
2372                  * Do we have an RT task that preempts
2373                  * the to-be-scheduled task?
2374                  */
2375                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2376                         WARN_ON(p == src_rq->curr);
2377                         WARN_ON(!task_on_rq_queued(p));
2378
2379                         /*
2380                          * There's a chance that p is higher in priority
2381                          * than what's currently running on its CPU.
2382                          * This is just that p is waking up and hasn't
2383                          * had a chance to schedule. We only pull
2384                          * p if it is lower in priority than the
2385                          * current task on the run queue
2386                          */
2387                         if (p->prio < src_rq->curr->prio)
2388                                 goto skip;
2389
2390                         if (is_migration_disabled(p)) {
2391                                 push_task = get_push_task(src_rq);
2392                         } else {
2393                                 deactivate_task(src_rq, p, 0);
2394                                 set_task_cpu(p, this_cpu);
2395                                 activate_task(this_rq, p, 0);
2396                                 resched = true;
2397                         }
2398                         /*
2399                          * We continue with the search, just in
2400                          * case there's an even higher prio task
2401                          * in another runqueue. (low likelihood
2402                          * but possible)
2403                          */
2404                 }
2405 skip:
2406                 double_unlock_balance(this_rq, src_rq);
2407
2408                 if (push_task) {
2409                         raw_spin_rq_unlock(this_rq);
2410                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2411                                             push_task, &src_rq->push_work);
2412                         raw_spin_rq_lock(this_rq);
2413                 }
2414         }
2415
2416         if (resched)
2417                 resched_curr(this_rq);
2418 }
2419
2420 /*
2421  * If we are not running and we are not going to reschedule soon, we should
2422  * try to push tasks away now
2423  */
2424 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2425 {
2426         bool need_to_push = !task_running(rq, p) &&
2427                             !test_tsk_need_resched(rq->curr) &&
2428                             p->nr_cpus_allowed > 1 &&
2429                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2430                             (rq->curr->nr_cpus_allowed < 2 ||
2431                              rq->curr->prio <= p->prio);
2432
2433         if (need_to_push)
2434                 push_rt_tasks(rq);
2435 }
2436
2437 /* Assumes rq->lock is held */
2438 static void rq_online_rt(struct rq *rq)
2439 {
2440         if (rq->rt.overloaded)
2441                 rt_set_overload(rq);
2442
2443         __enable_runtime(rq);
2444
2445         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2446 }
2447
2448 /* Assumes rq->lock is held */
2449 static void rq_offline_rt(struct rq *rq)
2450 {
2451         if (rq->rt.overloaded)
2452                 rt_clear_overload(rq);
2453
2454         __disable_runtime(rq);
2455
2456         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2457 }
2458
2459 /*
2460  * When switch from the rt queue, we bring ourselves to a position
2461  * that we might want to pull RT tasks from other runqueues.
2462  */
2463 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2464 {
2465         /*
2466          * If there are other RT tasks then we will reschedule
2467          * and the scheduling of the other RT tasks will handle
2468          * the balancing. But if we are the last RT task
2469          * we may need to handle the pulling of RT tasks
2470          * now.
2471          */
2472         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2473                 return;
2474
2475         rt_queue_pull_task(rq);
2476 }
2477
2478 void __init init_sched_rt_class(void)
2479 {
2480         unsigned int i;
2481
2482         for_each_possible_cpu(i) {
2483                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2484                                         GFP_KERNEL, cpu_to_node(i));
2485         }
2486 }
2487 #endif /* CONFIG_SMP */
2488
2489 /*
2490  * When switching a task to RT, we may overload the runqueue
2491  * with RT tasks. In this case we try to push them off to
2492  * other runqueues.
2493  */
2494 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2495 {
2496         /*
2497          * If we are running, update the avg_rt tracking, as the running time
2498          * will now on be accounted into the latter.
2499          */
2500         if (task_current(rq, p)) {
2501                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2502                 return;
2503         }
2504
2505         /*
2506          * If we are not running we may need to preempt the current
2507          * running task. If that current running task is also an RT task
2508          * then see if we can move to another run queue.
2509          */
2510         if (task_on_rq_queued(p)) {
2511 #ifdef CONFIG_SMP
2512                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2513                         rt_queue_push_tasks(rq);
2514 #endif /* CONFIG_SMP */
2515                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2516                         resched_curr(rq);
2517         }
2518 }
2519
2520 /*
2521  * Priority of the task has changed. This may cause
2522  * us to initiate a push or pull.
2523  */
2524 static void
2525 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2526 {
2527         if (!task_on_rq_queued(p))
2528                 return;
2529
2530         if (task_current(rq, p)) {
2531 #ifdef CONFIG_SMP
2532                 /*
2533                  * If our priority decreases while running, we
2534                  * may need to pull tasks to this runqueue.
2535                  */
2536                 if (oldprio < p->prio)
2537                         rt_queue_pull_task(rq);
2538
2539                 /*
2540                  * If there's a higher priority task waiting to run
2541                  * then reschedule.
2542                  */
2543                 if (p->prio > rq->rt.highest_prio.curr)
2544                         resched_curr(rq);
2545 #else
2546                 /* For UP simply resched on drop of prio */
2547                 if (oldprio < p->prio)
2548                         resched_curr(rq);
2549 #endif /* CONFIG_SMP */
2550         } else {
2551                 /*
2552                  * This task is not running, but if it is
2553                  * greater than the current running task
2554                  * then reschedule.
2555                  */
2556                 if (p->prio < rq->curr->prio)
2557                         resched_curr(rq);
2558         }
2559 }
2560
2561 #ifdef CONFIG_POSIX_TIMERS
2562 static void watchdog(struct rq *rq, struct task_struct *p)
2563 {
2564         unsigned long soft, hard;
2565
2566         /* max may change after cur was read, this will be fixed next tick */
2567         soft = task_rlimit(p, RLIMIT_RTTIME);
2568         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2569
2570         if (soft != RLIM_INFINITY) {
2571                 unsigned long next;
2572
2573                 if (p->rt.watchdog_stamp != jiffies) {
2574                         p->rt.timeout++;
2575                         p->rt.watchdog_stamp = jiffies;
2576                 }
2577
2578                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2579                 if (p->rt.timeout > next) {
2580                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2581                                                     p->se.sum_exec_runtime);
2582                 }
2583         }
2584 }
2585 #else
2586 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2587 #endif
2588
2589 /*
2590  * scheduler tick hitting a task of our scheduling class.
2591  *
2592  * NOTE: This function can be called remotely by the tick offload that
2593  * goes along full dynticks. Therefore no local assumption can be made
2594  * and everything must be accessed through the @rq and @curr passed in
2595  * parameters.
2596  */
2597 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2598 {
2599         struct sched_rt_entity *rt_se = &p->rt;
2600
2601         update_curr_rt(rq);
2602         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2603
2604         watchdog(rq, p);
2605
2606         /*
2607          * RR tasks need a special form of timeslice management.
2608          * FIFO tasks have no timeslices.
2609          */
2610         if (p->policy != SCHED_RR)
2611                 return;
2612
2613         if (--p->rt.time_slice)
2614                 return;
2615
2616         p->rt.time_slice = sched_rr_timeslice;
2617
2618         /*
2619          * Requeue to the end of queue if we (and all of our ancestors) are not
2620          * the only element on the queue
2621          */
2622         for_each_sched_rt_entity(rt_se) {
2623                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2624                         requeue_task_rt(rq, p, 0);
2625                         resched_curr(rq);
2626                         return;
2627                 }
2628         }
2629 }
2630
2631 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2632 {
2633         /*
2634          * Time slice is 0 for SCHED_FIFO tasks
2635          */
2636         if (task->policy == SCHED_RR)
2637                 return sched_rr_timeslice;
2638         else
2639                 return 0;
2640 }
2641
2642 DEFINE_SCHED_CLASS(rt) = {
2643
2644         .enqueue_task           = enqueue_task_rt,
2645         .dequeue_task           = dequeue_task_rt,
2646         .yield_task             = yield_task_rt,
2647
2648         .check_preempt_curr     = check_preempt_curr_rt,
2649
2650         .pick_next_task         = pick_next_task_rt,
2651         .put_prev_task          = put_prev_task_rt,
2652         .set_next_task          = set_next_task_rt,
2653
2654 #ifdef CONFIG_SMP
2655         .balance                = balance_rt,
2656         .pick_task              = pick_task_rt,
2657         .select_task_rq         = select_task_rq_rt,
2658         .set_cpus_allowed       = set_cpus_allowed_common,
2659         .rq_online              = rq_online_rt,
2660         .rq_offline             = rq_offline_rt,
2661         .task_woken             = task_woken_rt,
2662         .switched_from          = switched_from_rt,
2663         .find_lock_rq           = find_lock_lowest_rq,
2664 #endif
2665
2666         .task_tick              = task_tick_rt,
2667
2668         .get_rr_interval        = get_rr_interval_rt,
2669
2670         .prio_changed           = prio_changed_rt,
2671         .switched_to            = switched_to_rt,
2672
2673         .update_curr            = update_curr_rt,
2674
2675 #ifdef CONFIG_UCLAMP_TASK
2676         .uclamp_enabled         = 1,
2677 #endif
2678 };
2679
2680 #ifdef CONFIG_RT_GROUP_SCHED
2681 /*
2682  * Ensure that the real time constraints are schedulable.
2683  */
2684 static DEFINE_MUTEX(rt_constraints_mutex);
2685
2686 static inline int tg_has_rt_tasks(struct task_group *tg)
2687 {
2688         struct task_struct *task;
2689         struct css_task_iter it;
2690         int ret = 0;
2691
2692         /*
2693          * Autogroups do not have RT tasks; see autogroup_create().
2694          */
2695         if (task_group_is_autogroup(tg))
2696                 return 0;
2697
2698         css_task_iter_start(&tg->css, 0, &it);
2699         while (!ret && (task = css_task_iter_next(&it)))
2700                 ret |= rt_task(task);
2701         css_task_iter_end(&it);
2702
2703         return ret;
2704 }
2705
2706 struct rt_schedulable_data {
2707         struct task_group *tg;
2708         u64 rt_period;
2709         u64 rt_runtime;
2710 };
2711
2712 static int tg_rt_schedulable(struct task_group *tg, void *data)
2713 {
2714         struct rt_schedulable_data *d = data;
2715         struct task_group *child;
2716         unsigned long total, sum = 0;
2717         u64 period, runtime;
2718
2719         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2720         runtime = tg->rt_bandwidth.rt_runtime;
2721
2722         if (tg == d->tg) {
2723                 period = d->rt_period;
2724                 runtime = d->rt_runtime;
2725         }
2726
2727         /*
2728          * Cannot have more runtime than the period.
2729          */
2730         if (runtime > period && runtime != RUNTIME_INF)
2731                 return -EINVAL;
2732
2733         /*
2734          * Ensure we don't starve existing RT tasks if runtime turns zero.
2735          */
2736         if (rt_bandwidth_enabled() && !runtime &&
2737             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2738                 return -EBUSY;
2739
2740         total = to_ratio(period, runtime);
2741
2742         /*
2743          * Nobody can have more than the global setting allows.
2744          */
2745         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2746                 return -EINVAL;
2747
2748         /*
2749          * The sum of our children's runtime should not exceed our own.
2750          */
2751         list_for_each_entry_rcu(child, &tg->children, siblings) {
2752                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2753                 runtime = child->rt_bandwidth.rt_runtime;
2754
2755                 if (child == d->tg) {
2756                         period = d->rt_period;
2757                         runtime = d->rt_runtime;
2758                 }
2759
2760                 sum += to_ratio(period, runtime);
2761         }
2762
2763         if (sum > total)
2764                 return -EINVAL;
2765
2766         return 0;
2767 }
2768
2769 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2770 {
2771         int ret;
2772
2773         struct rt_schedulable_data data = {
2774                 .tg = tg,
2775                 .rt_period = period,
2776                 .rt_runtime = runtime,
2777         };
2778
2779         rcu_read_lock();
2780         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2781         rcu_read_unlock();
2782
2783         return ret;
2784 }
2785
2786 static int tg_set_rt_bandwidth(struct task_group *tg,
2787                 u64 rt_period, u64 rt_runtime)
2788 {
2789         int i, err = 0;
2790
2791         /*
2792          * Disallowing the root group RT runtime is BAD, it would disallow the
2793          * kernel creating (and or operating) RT threads.
2794          */
2795         if (tg == &root_task_group && rt_runtime == 0)
2796                 return -EINVAL;
2797
2798         /* No period doesn't make any sense. */
2799         if (rt_period == 0)
2800                 return -EINVAL;
2801
2802         /*
2803          * Bound quota to defend quota against overflow during bandwidth shift.
2804          */
2805         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2806                 return -EINVAL;
2807
2808         mutex_lock(&rt_constraints_mutex);
2809         err = __rt_schedulable(tg, rt_period, rt_runtime);
2810         if (err)
2811                 goto unlock;
2812
2813         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2814         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2815         tg->rt_bandwidth.rt_runtime = rt_runtime;
2816
2817         for_each_possible_cpu(i) {
2818                 struct rt_rq *rt_rq = tg->rt_rq[i];
2819
2820                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2821                 rt_rq->rt_runtime = rt_runtime;
2822                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2823         }
2824         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2825 unlock:
2826         mutex_unlock(&rt_constraints_mutex);
2827
2828         return err;
2829 }
2830
2831 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2832 {
2833         u64 rt_runtime, rt_period;
2834
2835         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2836         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2837         if (rt_runtime_us < 0)
2838                 rt_runtime = RUNTIME_INF;
2839         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2840                 return -EINVAL;
2841
2842         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2843 }
2844
2845 long sched_group_rt_runtime(struct task_group *tg)
2846 {
2847         u64 rt_runtime_us;
2848
2849         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2850                 return -1;
2851
2852         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2853         do_div(rt_runtime_us, NSEC_PER_USEC);
2854         return rt_runtime_us;
2855 }
2856
2857 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2858 {
2859         u64 rt_runtime, rt_period;
2860
2861         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2862                 return -EINVAL;
2863
2864         rt_period = rt_period_us * NSEC_PER_USEC;
2865         rt_runtime = tg->rt_bandwidth.rt_runtime;
2866
2867         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2868 }
2869
2870 long sched_group_rt_period(struct task_group *tg)
2871 {
2872         u64 rt_period_us;
2873
2874         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2875         do_div(rt_period_us, NSEC_PER_USEC);
2876         return rt_period_us;
2877 }
2878
2879 static int sched_rt_global_constraints(void)
2880 {
2881         int ret = 0;
2882
2883         mutex_lock(&rt_constraints_mutex);
2884         ret = __rt_schedulable(NULL, 0, 0);
2885         mutex_unlock(&rt_constraints_mutex);
2886
2887         return ret;
2888 }
2889
2890 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2891 {
2892         /* Don't accept realtime tasks when there is no way for them to run */
2893         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2894                 return 0;
2895
2896         return 1;
2897 }
2898
2899 #else /* !CONFIG_RT_GROUP_SCHED */
2900 static int sched_rt_global_constraints(void)
2901 {
2902         unsigned long flags;
2903         int i;
2904
2905         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2906         for_each_possible_cpu(i) {
2907                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2908
2909                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2910                 rt_rq->rt_runtime = global_rt_runtime();
2911                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2912         }
2913         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2914
2915         return 0;
2916 }
2917 #endif /* CONFIG_RT_GROUP_SCHED */
2918
2919 static int sched_rt_global_validate(void)
2920 {
2921         if (sysctl_sched_rt_period <= 0)
2922                 return -EINVAL;
2923
2924         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2925                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2926                  ((u64)sysctl_sched_rt_runtime *
2927                         NSEC_PER_USEC > max_rt_runtime)))
2928                 return -EINVAL;
2929
2930         return 0;
2931 }
2932
2933 static void sched_rt_do_global(void)
2934 {
2935         unsigned long flags;
2936
2937         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2938         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2939         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2940         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2941 }
2942
2943 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2944                 size_t *lenp, loff_t *ppos)
2945 {
2946         int old_period, old_runtime;
2947         static DEFINE_MUTEX(mutex);
2948         int ret;
2949
2950         mutex_lock(&mutex);
2951         old_period = sysctl_sched_rt_period;
2952         old_runtime = sysctl_sched_rt_runtime;
2953
2954         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2955
2956         if (!ret && write) {
2957                 ret = sched_rt_global_validate();
2958                 if (ret)
2959                         goto undo;
2960
2961                 ret = sched_dl_global_validate();
2962                 if (ret)
2963                         goto undo;
2964
2965                 ret = sched_rt_global_constraints();
2966                 if (ret)
2967                         goto undo;
2968
2969                 sched_rt_do_global();
2970                 sched_dl_do_global();
2971         }
2972         if (0) {
2973 undo:
2974                 sysctl_sched_rt_period = old_period;
2975                 sysctl_sched_rt_runtime = old_runtime;
2976         }
2977         mutex_unlock(&mutex);
2978
2979         return ret;
2980 }
2981
2982 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2983                 size_t *lenp, loff_t *ppos)
2984 {
2985         int ret;
2986         static DEFINE_MUTEX(mutex);
2987
2988         mutex_lock(&mutex);
2989         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2990         /*
2991          * Make sure that internally we keep jiffies.
2992          * Also, writing zero resets the timeslice to default:
2993          */
2994         if (!ret && write) {
2995                 sched_rr_timeslice =
2996                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2997                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2998         }
2999         mutex_unlock(&mutex);
3000
3001         return ret;
3002 }
3003
3004 #ifdef CONFIG_SCHED_DEBUG
3005 void print_rt_stats(struct seq_file *m, int cpu)
3006 {
3007         rt_rq_iter_t iter;
3008         struct rt_rq *rt_rq;
3009
3010         rcu_read_lock();
3011         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3012                 print_rt_rq(m, cpu, rt_rq);
3013         rcu_read_unlock();
3014 }
3015 #endif /* CONFIG_SCHED_DEBUG */