1 // SPDX-License-Identifier: GPL-2.0
3 * Pressure stall information for CPU, memory and IO
5 * Copyright (c) 2018 Facebook, Inc.
6 * Author: Johannes Weiner <hannes@cmpxchg.org>
8 * Polling support by Suren Baghdasaryan <surenb@google.com>
9 * Copyright (c) 2018 Google, Inc.
11 * When CPU, memory and IO are contended, tasks experience delays that
12 * reduce throughput and introduce latencies into the workload. Memory
13 * and IO contention, in addition, can cause a full loss of forward
14 * progress in which the CPU goes idle.
16 * This code aggregates individual task delays into resource pressure
17 * metrics that indicate problems with both workload health and
18 * resource utilization.
22 * The time in which a task can execute on a CPU is our baseline for
23 * productivity. Pressure expresses the amount of time in which this
24 * potential cannot be realized due to resource contention.
26 * This concept of productivity has two components: the workload and
27 * the CPU. To measure the impact of pressure on both, we define two
28 * contention states for a resource: SOME and FULL.
30 * In the SOME state of a given resource, one or more tasks are
31 * delayed on that resource. This affects the workload's ability to
32 * perform work, but the CPU may still be executing other tasks.
34 * In the FULL state of a given resource, all non-idle tasks are
35 * delayed on that resource such that nobody is advancing and the CPU
36 * goes idle. This leaves both workload and CPU unproductive.
38 * SOME = nr_delayed_tasks != 0
39 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
41 * What it means for a task to be productive is defined differently
42 * for each resource. For IO, productive means a running task. For
43 * memory, productive means a running task that isn't a reclaimer. For
44 * CPU, productive means an oncpu task.
46 * Naturally, the FULL state doesn't exist for the CPU resource at the
47 * system level, but exist at the cgroup level. At the cgroup level,
48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU
49 * resource which is being used by others outside of the cgroup or
50 * throttled by the cgroup cpu.max configuration.
52 * The percentage of wallclock time spent in those compound stall
53 * states gives pressure numbers between 0 and 100 for each resource,
54 * where the SOME percentage indicates workload slowdowns and the FULL
55 * percentage indicates reduced CPU utilization:
57 * %SOME = time(SOME) / period
58 * %FULL = time(FULL) / period
62 * The more tasks and available CPUs there are, the more work can be
63 * performed concurrently. This means that the potential that can go
64 * unrealized due to resource contention *also* scales with non-idle
67 * Consider a scenario where 257 number crunching tasks are trying to
68 * run concurrently on 256 CPUs. If we simply aggregated the task
69 * states, we would have to conclude a CPU SOME pressure number of
70 * 100%, since *somebody* is waiting on a runqueue at all
71 * times. However, that is clearly not the amount of contention the
72 * workload is experiencing: only one out of 256 possible execution
73 * threads will be contended at any given time, or about 0.4%.
75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
76 * given time *one* of the tasks is delayed due to a lack of memory.
77 * Again, looking purely at the task state would yield a memory FULL
78 * pressure number of 0%, since *somebody* is always making forward
79 * progress. But again this wouldn't capture the amount of execution
80 * potential lost, which is 1 out of 4 CPUs, or 25%.
82 * To calculate wasted potential (pressure) with multiple processors,
83 * we have to base our calculation on the number of non-idle tasks in
84 * conjunction with the number of available CPUs, which is the number
85 * of potential execution threads. SOME becomes then the proportion of
86 * delayed tasks to possible threads, and FULL is the share of possible
87 * threads that are unproductive due to delays:
89 * threads = min(nr_nonidle_tasks, nr_cpus)
90 * SOME = min(nr_delayed_tasks / threads, 1)
91 * FULL = (threads - min(nr_productive_tasks, threads)) / threads
93 * For the 257 number crunchers on 256 CPUs, this yields:
95 * threads = min(257, 256)
96 * SOME = min(1 / 256, 1) = 0.4%
97 * FULL = (256 - min(256, 256)) / 256 = 0%
99 * For the 1 out of 4 memory-delayed tasks, this yields:
101 * threads = min(4, 4)
102 * SOME = min(1 / 4, 1) = 25%
103 * FULL = (4 - min(3, 4)) / 4 = 25%
105 * [ Substitute nr_cpus with 1, and you can see that it's a natural
106 * extension of the single-CPU model. ]
110 * To assess the precise time spent in each such state, we would have
111 * to freeze the system on task changes and start/stop the state
112 * clocks accordingly. Obviously that doesn't scale in practice.
114 * Because the scheduler aims to distribute the compute load evenly
115 * among the available CPUs, we can track task state locally to each
116 * CPU and, at much lower frequency, extrapolate the global state for
117 * the cumulative stall times and the running averages.
119 * For each runqueue, we track:
121 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
122 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
123 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
125 * and then periodically aggregate:
127 * tNONIDLE = sum(tNONIDLE[i])
129 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
130 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
132 * %SOME = tSOME / period
133 * %FULL = tFULL / period
135 * This gives us an approximation of pressure that is practical
136 * cost-wise, yet way more sensitive and accurate than periodic
137 * sampling of the aggregate task states would be.
140 static int psi_bug __read_mostly;
142 DEFINE_STATIC_KEY_FALSE(psi_disabled);
143 static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
145 #ifdef CONFIG_PSI_DEFAULT_DISABLED
146 static bool psi_enable;
148 static bool psi_enable = true;
150 static int __init setup_psi(char *str)
152 return kstrtobool(str, &psi_enable) == 0;
154 __setup("psi=", setup_psi);
156 /* Running averages - we need to be higher-res than loadavg */
157 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
158 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
159 #define EXP_60s 1981 /* 1/exp(2s/60s) */
160 #define EXP_300s 2034 /* 1/exp(2s/300s) */
162 /* PSI trigger definitions */
163 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */
164 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */
166 /* Sampling frequency in nanoseconds */
167 static u64 psi_period __read_mostly;
169 /* System-level pressure and stall tracking */
170 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
171 struct psi_group psi_system = {
172 .pcpu = &system_group_pcpu,
175 static void psi_avgs_work(struct work_struct *work);
177 static void poll_timer_fn(struct timer_list *t);
179 static void group_init(struct psi_group *group)
183 group->enabled = true;
184 for_each_possible_cpu(cpu)
185 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
186 group->avg_last_update = sched_clock();
187 group->avg_next_update = group->avg_last_update + psi_period;
188 mutex_init(&group->avgs_lock);
190 /* Init avg trigger-related members */
191 INIT_LIST_HEAD(&group->avg_triggers);
192 memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
193 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
195 /* Init rtpoll trigger-related members */
196 atomic_set(&group->rtpoll_scheduled, 0);
197 mutex_init(&group->rtpoll_trigger_lock);
198 INIT_LIST_HEAD(&group->rtpoll_triggers);
199 group->rtpoll_min_period = U32_MAX;
200 group->rtpoll_next_update = ULLONG_MAX;
201 init_waitqueue_head(&group->rtpoll_wait);
202 timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
203 rcu_assign_pointer(group->rtpoll_task, NULL);
206 void __init psi_init(void)
209 static_branch_enable(&psi_disabled);
210 static_branch_disable(&psi_cgroups_enabled);
214 if (!cgroup_psi_enabled())
215 static_branch_disable(&psi_cgroups_enabled);
217 psi_period = jiffies_to_nsecs(PSI_FREQ);
218 group_init(&psi_system);
221 static bool test_state(unsigned int *tasks, enum psi_states state, bool oncpu)
225 return unlikely(tasks[NR_IOWAIT]);
227 return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
229 return unlikely(tasks[NR_MEMSTALL]);
231 return unlikely(tasks[NR_MEMSTALL] &&
232 tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]);
234 return unlikely(tasks[NR_RUNNING] > oncpu);
236 return unlikely(tasks[NR_RUNNING] && !oncpu);
238 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
245 static void get_recent_times(struct psi_group *group, int cpu,
246 enum psi_aggregators aggregator, u32 *times,
247 u32 *pchanged_states)
249 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
250 int current_cpu = raw_smp_processor_id();
251 unsigned int tasks[NR_PSI_TASK_COUNTS];
252 u64 now, state_start;
257 *pchanged_states = 0;
259 /* Snapshot a coherent view of the CPU state */
261 seq = read_seqcount_begin(&groupc->seq);
262 now = cpu_clock(cpu);
263 memcpy(times, groupc->times, sizeof(groupc->times));
264 state_mask = groupc->state_mask;
265 state_start = groupc->state_start;
266 if (cpu == current_cpu)
267 memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
268 } while (read_seqcount_retry(&groupc->seq, seq));
270 /* Calculate state time deltas against the previous snapshot */
271 for (s = 0; s < NR_PSI_STATES; s++) {
274 * In addition to already concluded states, we also
275 * incorporate currently active states on the CPU,
276 * since states may last for many sampling periods.
278 * This way we keep our delta sampling buckets small
279 * (u32) and our reported pressure close to what's
280 * actually happening.
282 if (state_mask & (1 << s))
283 times[s] += now - state_start;
285 delta = times[s] - groupc->times_prev[aggregator][s];
286 groupc->times_prev[aggregator][s] = times[s];
290 *pchanged_states |= (1 << s);
294 * When collect_percpu_times() from the avgs_work, we don't want to
295 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running
296 * this avgs_work is never IDLE, cause avgs_work can't be shut off.
297 * So for the current CPU, we need to re-arm avgs_work only when
298 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
299 * we can just check PSI_NONIDLE delta.
301 if (current_work() == &group->avgs_work.work) {
304 if (cpu == current_cpu)
305 reschedule = tasks[NR_RUNNING] +
307 tasks[NR_MEMSTALL] > 1;
309 reschedule = *pchanged_states & (1 << PSI_NONIDLE);
312 *pchanged_states |= PSI_STATE_RESCHEDULE;
316 static void calc_avgs(unsigned long avg[3], int missed_periods,
317 u64 time, u64 period)
321 /* Fill in zeroes for periods of no activity */
322 if (missed_periods) {
323 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
324 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
325 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
328 /* Sample the most recent active period */
329 pct = div_u64(time * 100, period);
331 avg[0] = calc_load(avg[0], EXP_10s, pct);
332 avg[1] = calc_load(avg[1], EXP_60s, pct);
333 avg[2] = calc_load(avg[2], EXP_300s, pct);
336 static void collect_percpu_times(struct psi_group *group,
337 enum psi_aggregators aggregator,
338 u32 *pchanged_states)
340 u64 deltas[NR_PSI_STATES - 1] = { 0, };
341 unsigned long nonidle_total = 0;
342 u32 changed_states = 0;
347 * Collect the per-cpu time buckets and average them into a
348 * single time sample that is normalized to wallclock time.
350 * For averaging, each CPU is weighted by its non-idle time in
351 * the sampling period. This eliminates artifacts from uneven
352 * loading, or even entirely idle CPUs.
354 for_each_possible_cpu(cpu) {
355 u32 times[NR_PSI_STATES];
357 u32 cpu_changed_states;
359 get_recent_times(group, cpu, aggregator, times,
360 &cpu_changed_states);
361 changed_states |= cpu_changed_states;
363 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
364 nonidle_total += nonidle;
366 for (s = 0; s < PSI_NONIDLE; s++)
367 deltas[s] += (u64)times[s] * nonidle;
371 * Integrate the sample into the running statistics that are
372 * reported to userspace: the cumulative stall times and the
375 * Pressure percentages are sampled at PSI_FREQ. We might be
376 * called more often when the user polls more frequently than
377 * that; we might be called less often when there is no task
378 * activity, thus no data, and clock ticks are sporadic. The
379 * below handles both.
383 for (s = 0; s < NR_PSI_STATES - 1; s++)
384 group->total[aggregator][s] +=
385 div_u64(deltas[s], max(nonidle_total, 1UL));
388 *pchanged_states = changed_states;
391 /* Trigger tracking window manipulations */
392 static void window_reset(struct psi_window *win, u64 now, u64 value,
395 win->start_time = now;
396 win->start_value = value;
397 win->prev_growth = prev_growth;
401 * PSI growth tracking window update and growth calculation routine.
403 * This approximates a sliding tracking window by interpolating
404 * partially elapsed windows using historical growth data from the
405 * previous intervals. This minimizes memory requirements (by not storing
406 * all the intermediate values in the previous window) and simplifies
407 * the calculations. It works well because PSI signal changes only in
408 * positive direction and over relatively small window sizes the growth
409 * is close to linear.
411 static u64 window_update(struct psi_window *win, u64 now, u64 value)
416 elapsed = now - win->start_time;
417 growth = value - win->start_value;
419 * After each tracking window passes win->start_value and
420 * win->start_time get reset and win->prev_growth stores
421 * the average per-window growth of the previous window.
422 * win->prev_growth is then used to interpolate additional
423 * growth from the previous window assuming it was linear.
425 if (elapsed > win->size)
426 window_reset(win, now, value, growth);
430 remaining = win->size - elapsed;
431 growth += div64_u64(win->prev_growth * remaining, win->size);
437 static void update_triggers(struct psi_group *group, u64 now,
438 enum psi_aggregators aggregator)
440 struct psi_trigger *t;
441 u64 *total = group->total[aggregator];
442 struct list_head *triggers;
443 u64 *aggregator_total;
445 if (aggregator == PSI_AVGS) {
446 triggers = &group->avg_triggers;
447 aggregator_total = group->avg_total;
449 triggers = &group->rtpoll_triggers;
450 aggregator_total = group->rtpoll_total;
454 * On subsequent updates, calculate growth deltas and let
455 * watchers know when their specified thresholds are exceeded.
457 list_for_each_entry(t, triggers, node) {
461 new_stall = aggregator_total[t->state] != total[t->state];
463 /* Check for stall activity or a previous threshold breach */
464 if (!new_stall && !t->pending_event)
467 * Check for new stall activity, as well as deferred
468 * events that occurred in the last window after the
469 * trigger had already fired (we want to ratelimit
470 * events without dropping any).
473 /* Calculate growth since last update */
474 growth = window_update(&t->win, now, total[t->state]);
475 if (!t->pending_event) {
476 if (growth < t->threshold)
479 t->pending_event = true;
482 /* Limit event signaling to once per window */
483 if (now < t->last_event_time + t->win.size)
486 /* Generate an event */
487 if (cmpxchg(&t->event, 0, 1) == 0) {
489 kernfs_notify(t->of->kn);
491 wake_up_interruptible(&t->event_wait);
493 t->last_event_time = now;
494 /* Reset threshold breach flag once event got generated */
495 t->pending_event = false;
499 static u64 update_averages(struct psi_group *group, u64 now)
501 unsigned long missed_periods = 0;
507 expires = group->avg_next_update;
508 if (now - expires >= psi_period)
509 missed_periods = div_u64(now - expires, psi_period);
512 * The periodic clock tick can get delayed for various
513 * reasons, especially on loaded systems. To avoid clock
514 * drift, we schedule the clock in fixed psi_period intervals.
515 * But the deltas we sample out of the per-cpu buckets above
516 * are based on the actual time elapsing between clock ticks.
518 avg_next_update = expires + ((1 + missed_periods) * psi_period);
519 period = now - (group->avg_last_update + (missed_periods * psi_period));
520 group->avg_last_update = now;
522 for (s = 0; s < NR_PSI_STATES - 1; s++) {
525 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
527 * Due to the lockless sampling of the time buckets,
528 * recorded time deltas can slip into the next period,
529 * which under full pressure can result in samples in
530 * excess of the period length.
532 * We don't want to report non-sensical pressures in
533 * excess of 100%, nor do we want to drop such events
534 * on the floor. Instead we punt any overage into the
535 * future until pressure subsides. By doing this we
536 * don't underreport the occurring pressure curve, we
537 * just report it delayed by one period length.
539 * The error isn't cumulative. As soon as another
540 * delta slips from a period P to P+1, by definition
541 * it frees up its time T in P.
545 group->avg_total[s] += sample;
546 calc_avgs(group->avg[s], missed_periods, sample, period);
549 return avg_next_update;
552 static void psi_avgs_work(struct work_struct *work)
554 struct delayed_work *dwork;
555 struct psi_group *group;
559 dwork = to_delayed_work(work);
560 group = container_of(dwork, struct psi_group, avgs_work);
562 mutex_lock(&group->avgs_lock);
566 collect_percpu_times(group, PSI_AVGS, &changed_states);
568 * If there is task activity, periodically fold the per-cpu
569 * times and feed samples into the running averages. If things
570 * are idle and there is no data to process, stop the clock.
571 * Once restarted, we'll catch up the running averages in one
572 * go - see calc_avgs() and missed_periods.
574 if (now >= group->avg_next_update) {
575 update_triggers(group, now, PSI_AVGS);
576 group->avg_next_update = update_averages(group, now);
579 if (changed_states & PSI_STATE_RESCHEDULE) {
580 schedule_delayed_work(dwork, nsecs_to_jiffies(
581 group->avg_next_update - now) + 1);
584 mutex_unlock(&group->avgs_lock);
587 static void init_rtpoll_triggers(struct psi_group *group, u64 now)
589 struct psi_trigger *t;
591 list_for_each_entry(t, &group->rtpoll_triggers, node)
592 window_reset(&t->win, now,
593 group->total[PSI_POLL][t->state], 0);
594 memcpy(group->rtpoll_total, group->total[PSI_POLL],
595 sizeof(group->rtpoll_total));
596 group->rtpoll_next_update = now + group->rtpoll_min_period;
599 /* Schedule rtpolling if it's not already scheduled or forced. */
600 static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
603 struct task_struct *task;
606 * atomic_xchg should be called even when !force to provide a
607 * full memory barrier (see the comment inside psi_rtpoll_work).
609 if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
614 task = rcu_dereference(group->rtpoll_task);
616 * kworker might be NULL in case psi_trigger_destroy races with
617 * psi_task_change (hotpath) which can't use locks
620 mod_timer(&group->rtpoll_timer, jiffies + delay);
622 atomic_set(&group->rtpoll_scheduled, 0);
627 static void psi_rtpoll_work(struct psi_group *group)
629 bool force_reschedule = false;
633 mutex_lock(&group->rtpoll_trigger_lock);
637 if (now > group->rtpoll_until) {
639 * We are either about to start or might stop rtpolling if no
640 * state change was recorded. Resetting rtpoll_scheduled leaves
641 * a small window for psi_group_change to sneak in and schedule
642 * an immediate rtpoll_work before we get to rescheduling. One
643 * potential extra wakeup at the end of the rtpolling window
644 * should be negligible and rtpoll_next_update still keeps
645 * updates correctly on schedule.
647 atomic_set(&group->rtpoll_scheduled, 0);
649 * A task change can race with the rtpoll worker that is supposed to
650 * report on it. To avoid missing events, ensure ordering between
651 * rtpoll_scheduled and the task state accesses, such that if the
652 * rtpoll worker misses the state update, the task change is
653 * guaranteed to reschedule the rtpoll worker:
656 * atomic_set(rtpoll_scheduled, 0)
662 * if atomic_xchg(rtpoll_scheduled, 1) == 0:
663 * schedule rtpoll worker
665 * The atomic_xchg() implies a full barrier.
669 /* The rtpolling window is not over, keep rescheduling */
670 force_reschedule = true;
674 collect_percpu_times(group, PSI_POLL, &changed_states);
676 if (changed_states & group->rtpoll_states) {
677 /* Initialize trigger windows when entering rtpolling mode */
678 if (now > group->rtpoll_until)
679 init_rtpoll_triggers(group, now);
682 * Keep the monitor active for at least the duration of the
683 * minimum tracking window as long as monitor states are
686 group->rtpoll_until = now +
687 group->rtpoll_min_period * UPDATES_PER_WINDOW;
690 if (now > group->rtpoll_until) {
691 group->rtpoll_next_update = ULLONG_MAX;
695 if (now >= group->rtpoll_next_update) {
696 if (changed_states & group->rtpoll_states) {
697 update_triggers(group, now, PSI_POLL);
698 memcpy(group->rtpoll_total, group->total[PSI_POLL],
699 sizeof(group->rtpoll_total));
701 group->rtpoll_next_update = now + group->rtpoll_min_period;
704 psi_schedule_rtpoll_work(group,
705 nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
709 mutex_unlock(&group->rtpoll_trigger_lock);
712 static int psi_rtpoll_worker(void *data)
714 struct psi_group *group = (struct psi_group *)data;
716 sched_set_fifo_low(current);
719 wait_event_interruptible(group->rtpoll_wait,
720 atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
721 kthread_should_stop());
722 if (kthread_should_stop())
725 psi_rtpoll_work(group);
730 static void poll_timer_fn(struct timer_list *t)
732 struct psi_group *group = from_timer(group, t, rtpoll_timer);
734 atomic_set(&group->rtpoll_wakeup, 1);
735 wake_up_interruptible(&group->rtpoll_wait);
738 static void record_times(struct psi_group_cpu *groupc, u64 now)
742 delta = now - groupc->state_start;
743 groupc->state_start = now;
745 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
746 groupc->times[PSI_IO_SOME] += delta;
747 if (groupc->state_mask & (1 << PSI_IO_FULL))
748 groupc->times[PSI_IO_FULL] += delta;
751 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
752 groupc->times[PSI_MEM_SOME] += delta;
753 if (groupc->state_mask & (1 << PSI_MEM_FULL))
754 groupc->times[PSI_MEM_FULL] += delta;
757 if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
758 groupc->times[PSI_CPU_SOME] += delta;
759 if (groupc->state_mask & (1 << PSI_CPU_FULL))
760 groupc->times[PSI_CPU_FULL] += delta;
763 if (groupc->state_mask & (1 << PSI_NONIDLE))
764 groupc->times[PSI_NONIDLE] += delta;
767 static void psi_group_change(struct psi_group *group, int cpu,
768 unsigned int clear, unsigned int set, u64 now,
771 struct psi_group_cpu *groupc;
776 groupc = per_cpu_ptr(group->pcpu, cpu);
779 * First we update the task counts according to the state
780 * change requested through the @clear and @set bits.
782 * Then if the cgroup PSI stats accounting enabled, we
783 * assess the aggregate resource states this CPU's tasks
784 * have been in since the last change, and account any
785 * SOME and FULL time these may have resulted in.
787 write_seqcount_begin(&groupc->seq);
790 * Start with TSK_ONCPU, which doesn't have a corresponding
791 * task count - it's just a boolean flag directly encoded in
792 * the state mask. Clear, set, or carry the current state if
793 * no changes are requested.
795 if (unlikely(clear & TSK_ONCPU)) {
798 } else if (unlikely(set & TSK_ONCPU)) {
799 state_mask = PSI_ONCPU;
802 state_mask = groupc->state_mask & PSI_ONCPU;
806 * The rest of the state mask is calculated based on the task
807 * counts. Update those first, then construct the mask.
809 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
812 if (groupc->tasks[t]) {
814 } else if (!psi_bug) {
815 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
816 cpu, t, groupc->tasks[0],
817 groupc->tasks[1], groupc->tasks[2],
818 groupc->tasks[3], clear, set);
823 for (t = 0; set; set &= ~(1 << t), t++)
827 if (!group->enabled) {
829 * On the first group change after disabling PSI, conclude
830 * the current state and flush its time. This is unlikely
831 * to matter to the user, but aggregation (get_recent_times)
832 * may have already incorporated the live state into times_prev;
833 * avoid a delta sample underflow when PSI is later re-enabled.
835 if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
836 record_times(groupc, now);
838 groupc->state_mask = state_mask;
840 write_seqcount_end(&groupc->seq);
844 for (s = 0; s < NR_PSI_STATES; s++) {
845 if (test_state(groupc->tasks, s, state_mask & PSI_ONCPU))
846 state_mask |= (1 << s);
850 * Since we care about lost potential, a memstall is FULL
851 * when there are no other working tasks, but also when
852 * the CPU is actively reclaiming and nothing productive
853 * could run even if it were runnable. So when the current
854 * task in a cgroup is in_memstall, the corresponding groupc
855 * on that cpu is in PSI_MEM_FULL state.
857 if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
858 state_mask |= (1 << PSI_MEM_FULL);
860 record_times(groupc, now);
862 groupc->state_mask = state_mask;
864 write_seqcount_end(&groupc->seq);
866 if (state_mask & group->rtpoll_states)
867 psi_schedule_rtpoll_work(group, 1, false);
869 if (wake_clock && !delayed_work_pending(&group->avgs_work))
870 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
873 static inline struct psi_group *task_psi_group(struct task_struct *task)
875 #ifdef CONFIG_CGROUPS
876 if (static_branch_likely(&psi_cgroups_enabled))
877 return cgroup_psi(task_dfl_cgroup(task));
882 static void psi_flags_change(struct task_struct *task, int clear, int set)
884 if (((task->psi_flags & set) ||
885 (task->psi_flags & clear) != clear) &&
887 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
888 task->pid, task->comm, task_cpu(task),
889 task->psi_flags, clear, set);
893 task->psi_flags &= ~clear;
894 task->psi_flags |= set;
897 void psi_task_change(struct task_struct *task, int clear, int set)
899 int cpu = task_cpu(task);
900 struct psi_group *group;
906 psi_flags_change(task, clear, set);
908 now = cpu_clock(cpu);
910 group = task_psi_group(task);
912 psi_group_change(group, cpu, clear, set, now, true);
913 } while ((group = group->parent));
916 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
919 struct psi_group *group, *common = NULL;
920 int cpu = task_cpu(prev);
921 u64 now = cpu_clock(cpu);
924 psi_flags_change(next, 0, TSK_ONCPU);
926 * Set TSK_ONCPU on @next's cgroups. If @next shares any
927 * ancestors with @prev, those will already have @prev's
928 * TSK_ONCPU bit set, and we can stop the iteration there.
930 group = task_psi_group(next);
932 if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
938 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
939 } while ((group = group->parent));
943 int clear = TSK_ONCPU, set = 0;
944 bool wake_clock = true;
947 * When we're going to sleep, psi_dequeue() lets us
948 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
949 * TSK_IOWAIT here, where we can combine it with
950 * TSK_ONCPU and save walking common ancestors twice.
953 clear |= TSK_RUNNING;
954 if (prev->in_memstall)
955 clear |= TSK_MEMSTALL_RUNNING;
960 * Periodic aggregation shuts off if there is a period of no
961 * task changes, so we wake it back up if necessary. However,
962 * don't do this if the task change is the aggregation worker
963 * itself going to sleep, or we'll ping-pong forever.
965 if (unlikely((prev->flags & PF_WQ_WORKER) &&
966 wq_worker_last_func(prev) == psi_avgs_work))
970 psi_flags_change(prev, clear, set);
972 group = task_psi_group(prev);
976 psi_group_change(group, cpu, clear, set, now, wake_clock);
977 } while ((group = group->parent));
980 * TSK_ONCPU is handled up to the common ancestor. If there are
981 * any other differences between the two tasks (e.g. prev goes
982 * to sleep, or only one task is memstall), finish propagating
983 * those differences all the way up to the root.
985 if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
987 for (; group; group = group->parent)
988 psi_group_change(group, cpu, clear, set, now, wake_clock);
993 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
994 void psi_account_irqtime(struct task_struct *task, u32 delta)
996 int cpu = task_cpu(task);
997 struct psi_group *group;
998 struct psi_group_cpu *groupc;
1001 if (static_branch_likely(&psi_disabled))
1007 now = cpu_clock(cpu);
1009 group = task_psi_group(task);
1011 if (!group->enabled)
1014 groupc = per_cpu_ptr(group->pcpu, cpu);
1016 write_seqcount_begin(&groupc->seq);
1018 record_times(groupc, now);
1019 groupc->times[PSI_IRQ_FULL] += delta;
1021 write_seqcount_end(&groupc->seq);
1023 if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
1024 psi_schedule_rtpoll_work(group, 1, false);
1025 } while ((group = group->parent));
1030 * psi_memstall_enter - mark the beginning of a memory stall section
1031 * @flags: flags to handle nested sections
1033 * Marks the calling task as being stalled due to a lack of memory,
1034 * such as waiting for a refault or performing reclaim.
1036 void psi_memstall_enter(unsigned long *flags)
1041 if (static_branch_likely(&psi_disabled))
1044 *flags = current->in_memstall;
1048 * in_memstall setting & accounting needs to be atomic wrt
1049 * changes to the task's scheduling state, otherwise we can
1050 * race with CPU migration.
1052 rq = this_rq_lock_irq(&rf);
1054 current->in_memstall = 1;
1055 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
1057 rq_unlock_irq(rq, &rf);
1059 EXPORT_SYMBOL_GPL(psi_memstall_enter);
1062 * psi_memstall_leave - mark the end of an memory stall section
1063 * @flags: flags to handle nested memdelay sections
1065 * Marks the calling task as no longer stalled due to lack of memory.
1067 void psi_memstall_leave(unsigned long *flags)
1072 if (static_branch_likely(&psi_disabled))
1078 * in_memstall clearing & accounting needs to be atomic wrt
1079 * changes to the task's scheduling state, otherwise we could
1080 * race with CPU migration.
1082 rq = this_rq_lock_irq(&rf);
1084 current->in_memstall = 0;
1085 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
1087 rq_unlock_irq(rq, &rf);
1089 EXPORT_SYMBOL_GPL(psi_memstall_leave);
1091 #ifdef CONFIG_CGROUPS
1092 int psi_cgroup_alloc(struct cgroup *cgroup)
1094 if (!static_branch_likely(&psi_cgroups_enabled))
1097 cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
1101 cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
1102 if (!cgroup->psi->pcpu) {
1106 group_init(cgroup->psi);
1107 cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
1111 void psi_cgroup_free(struct cgroup *cgroup)
1113 if (!static_branch_likely(&psi_cgroups_enabled))
1116 cancel_delayed_work_sync(&cgroup->psi->avgs_work);
1117 free_percpu(cgroup->psi->pcpu);
1118 /* All triggers must be removed by now */
1119 WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
1124 * cgroup_move_task - move task to a different cgroup
1126 * @to: the target css_set
1128 * Move task to a new cgroup and safely migrate its associated stall
1129 * state between the different groups.
1131 * This function acquires the task's rq lock to lock out concurrent
1132 * changes to the task's scheduling state and - in case the task is
1133 * running - concurrent changes to its stall state.
1135 void cgroup_move_task(struct task_struct *task, struct css_set *to)
1137 unsigned int task_flags;
1141 if (!static_branch_likely(&psi_cgroups_enabled)) {
1143 * Lame to do this here, but the scheduler cannot be locked
1144 * from the outside, so we move cgroups from inside sched/.
1146 rcu_assign_pointer(task->cgroups, to);
1150 rq = task_rq_lock(task, &rf);
1153 * We may race with schedule() dropping the rq lock between
1154 * deactivating prev and switching to next. Because the psi
1155 * updates from the deactivation are deferred to the switch
1156 * callback to save cgroup tree updates, the task's scheduling
1157 * state here is not coherent with its psi state:
1159 * schedule() cgroup_move_task()
1163 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1167 * psi_task_change() // old cgroup
1168 * task->cgroups = to
1169 * psi_task_change() // new cgroup
1172 * psi_sched_switch() // does deferred updates in new cgroup
1174 * Don't rely on the scheduling state. Use psi_flags instead.
1176 task_flags = task->psi_flags;
1179 psi_task_change(task, task_flags, 0);
1181 /* See comment above */
1182 rcu_assign_pointer(task->cgroups, to);
1185 psi_task_change(task, 0, task_flags);
1187 task_rq_unlock(rq, task, &rf);
1190 void psi_cgroup_restart(struct psi_group *group)
1195 * After we disable psi_group->enabled, we don't actually
1196 * stop percpu tasks accounting in each psi_group_cpu,
1197 * instead only stop test_state() loop, record_times()
1198 * and averaging worker, see psi_group_change() for details.
1200 * When disable cgroup PSI, this function has nothing to sync
1201 * since cgroup pressure files are hidden and percpu psi_group_cpu
1202 * would see !psi_group->enabled and only do task accounting.
1204 * When re-enable cgroup PSI, this function use psi_group_change()
1205 * to get correct state mask from test_state() loop on tasks[],
1206 * and restart groupc->state_start from now, use .clear = .set = 0
1207 * here since no task status really changed.
1209 if (!group->enabled)
1212 for_each_possible_cpu(cpu) {
1213 struct rq *rq = cpu_rq(cpu);
1217 rq_lock_irq(rq, &rf);
1218 now = cpu_clock(cpu);
1219 psi_group_change(group, cpu, 0, 0, now, true);
1220 rq_unlock_irq(rq, &rf);
1223 #endif /* CONFIG_CGROUPS */
1225 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1227 bool only_full = false;
1231 if (static_branch_likely(&psi_disabled))
1234 /* Update averages before reporting them */
1235 mutex_lock(&group->avgs_lock);
1236 now = sched_clock();
1237 collect_percpu_times(group, PSI_AVGS, NULL);
1238 if (now >= group->avg_next_update)
1239 group->avg_next_update = update_averages(group, now);
1240 mutex_unlock(&group->avgs_lock);
1242 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1243 only_full = res == PSI_IRQ;
1246 for (full = 0; full < 2 - only_full; full++) {
1247 unsigned long avg[3] = { 0, };
1251 /* CPU FULL is undefined at the system level */
1252 if (!(group == &psi_system && res == PSI_CPU && full)) {
1253 for (w = 0; w < 3; w++)
1254 avg[w] = group->avg[res * 2 + full][w];
1255 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1259 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1260 full || only_full ? "full" : "some",
1261 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1262 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1263 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1270 struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf,
1271 enum psi_res res, struct file *file,
1272 struct kernfs_open_file *of)
1274 struct psi_trigger *t;
1275 enum psi_states state;
1280 if (static_branch_likely(&psi_disabled))
1281 return ERR_PTR(-EOPNOTSUPP);
1284 * Checking the privilege here on file->f_cred implies that a privileged user
1285 * could open the file and delegate the write to an unprivileged one.
1287 privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE);
1289 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1290 state = PSI_IO_SOME + res * 2;
1291 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1292 state = PSI_IO_FULL + res * 2;
1294 return ERR_PTR(-EINVAL);
1296 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1297 if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
1298 return ERR_PTR(-EINVAL);
1301 if (state >= PSI_NONIDLE)
1302 return ERR_PTR(-EINVAL);
1304 if (window_us == 0 || window_us > WINDOW_MAX_US)
1305 return ERR_PTR(-EINVAL);
1308 * Unprivileged users can only use 2s windows so that averages aggregation
1309 * work is used, and no RT threads need to be spawned.
1311 if (!privileged && window_us % 2000000)
1312 return ERR_PTR(-EINVAL);
1314 /* Check threshold */
1315 if (threshold_us == 0 || threshold_us > window_us)
1316 return ERR_PTR(-EINVAL);
1318 t = kmalloc(sizeof(*t), GFP_KERNEL);
1320 return ERR_PTR(-ENOMEM);
1324 t->threshold = threshold_us * NSEC_PER_USEC;
1325 t->win.size = window_us * NSEC_PER_USEC;
1326 window_reset(&t->win, sched_clock(),
1327 group->total[PSI_POLL][t->state], 0);
1330 t->last_event_time = 0;
1333 init_waitqueue_head(&t->event_wait);
1334 t->pending_event = false;
1335 t->aggregator = privileged ? PSI_POLL : PSI_AVGS;
1338 mutex_lock(&group->rtpoll_trigger_lock);
1340 if (!rcu_access_pointer(group->rtpoll_task)) {
1341 struct task_struct *task;
1343 task = kthread_create(psi_rtpoll_worker, group, "psimon");
1346 mutex_unlock(&group->rtpoll_trigger_lock);
1347 return ERR_CAST(task);
1349 atomic_set(&group->rtpoll_wakeup, 0);
1350 wake_up_process(task);
1351 rcu_assign_pointer(group->rtpoll_task, task);
1354 list_add(&t->node, &group->rtpoll_triggers);
1355 group->rtpoll_min_period = min(group->rtpoll_min_period,
1356 div_u64(t->win.size, UPDATES_PER_WINDOW));
1357 group->rtpoll_nr_triggers[t->state]++;
1358 group->rtpoll_states |= (1 << t->state);
1360 mutex_unlock(&group->rtpoll_trigger_lock);
1362 mutex_lock(&group->avgs_lock);
1364 list_add(&t->node, &group->avg_triggers);
1365 group->avg_nr_triggers[t->state]++;
1367 mutex_unlock(&group->avgs_lock);
1372 void psi_trigger_destroy(struct psi_trigger *t)
1374 struct psi_group *group;
1375 struct task_struct *task_to_destroy = NULL;
1378 * We do not check psi_disabled since it might have been disabled after
1379 * the trigger got created.
1386 * Wakeup waiters to stop polling and clear the queue to prevent it from
1387 * being accessed later. Can happen if cgroup is deleted from under a
1391 kernfs_notify(t->of->kn);
1393 wake_up_interruptible(&t->event_wait);
1395 if (t->aggregator == PSI_AVGS) {
1396 mutex_lock(&group->avgs_lock);
1397 if (!list_empty(&t->node)) {
1399 group->avg_nr_triggers[t->state]--;
1401 mutex_unlock(&group->avgs_lock);
1403 mutex_lock(&group->rtpoll_trigger_lock);
1404 if (!list_empty(&t->node)) {
1405 struct psi_trigger *tmp;
1406 u64 period = ULLONG_MAX;
1409 group->rtpoll_nr_triggers[t->state]--;
1410 if (!group->rtpoll_nr_triggers[t->state])
1411 group->rtpoll_states &= ~(1 << t->state);
1413 * Reset min update period for the remaining triggers
1414 * iff the destroying trigger had the min window size.
1416 if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) {
1417 list_for_each_entry(tmp, &group->rtpoll_triggers, node)
1418 period = min(period, div_u64(tmp->win.size,
1419 UPDATES_PER_WINDOW));
1420 group->rtpoll_min_period = period;
1422 /* Destroy rtpoll_task when the last trigger is destroyed */
1423 if (group->rtpoll_states == 0) {
1424 group->rtpoll_until = 0;
1425 task_to_destroy = rcu_dereference_protected(
1427 lockdep_is_held(&group->rtpoll_trigger_lock));
1428 rcu_assign_pointer(group->rtpoll_task, NULL);
1429 del_timer(&group->rtpoll_timer);
1432 mutex_unlock(&group->rtpoll_trigger_lock);
1436 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side
1437 * critical section before destroying the trigger and optionally the
1442 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
1443 * a deadlock while waiting for psi_rtpoll_work to acquire
1444 * rtpoll_trigger_lock
1446 if (task_to_destroy) {
1448 * After the RCU grace period has expired, the worker
1449 * can no longer be found through group->rtpoll_task.
1451 kthread_stop(task_to_destroy);
1452 atomic_set(&group->rtpoll_scheduled, 0);
1457 __poll_t psi_trigger_poll(void **trigger_ptr,
1458 struct file *file, poll_table *wait)
1460 __poll_t ret = DEFAULT_POLLMASK;
1461 struct psi_trigger *t;
1463 if (static_branch_likely(&psi_disabled))
1464 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1466 t = smp_load_acquire(trigger_ptr);
1468 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1471 kernfs_generic_poll(t->of, wait);
1473 poll_wait(file, &t->event_wait, wait);
1475 if (cmpxchg(&t->event, 1, 0) == 1)
1481 #ifdef CONFIG_PROC_FS
1482 static int psi_io_show(struct seq_file *m, void *v)
1484 return psi_show(m, &psi_system, PSI_IO);
1487 static int psi_memory_show(struct seq_file *m, void *v)
1489 return psi_show(m, &psi_system, PSI_MEM);
1492 static int psi_cpu_show(struct seq_file *m, void *v)
1494 return psi_show(m, &psi_system, PSI_CPU);
1497 static int psi_io_open(struct inode *inode, struct file *file)
1499 return single_open(file, psi_io_show, NULL);
1502 static int psi_memory_open(struct inode *inode, struct file *file)
1504 return single_open(file, psi_memory_show, NULL);
1507 static int psi_cpu_open(struct inode *inode, struct file *file)
1509 return single_open(file, psi_cpu_show, NULL);
1512 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1513 size_t nbytes, enum psi_res res)
1517 struct seq_file *seq;
1518 struct psi_trigger *new;
1520 if (static_branch_likely(&psi_disabled))
1526 buf_size = min(nbytes, sizeof(buf));
1527 if (copy_from_user(buf, user_buf, buf_size))
1530 buf[buf_size - 1] = '\0';
1532 seq = file->private_data;
1534 /* Take seq->lock to protect seq->private from concurrent writes */
1535 mutex_lock(&seq->lock);
1537 /* Allow only one trigger per file descriptor */
1539 mutex_unlock(&seq->lock);
1543 new = psi_trigger_create(&psi_system, buf, res, file, NULL);
1545 mutex_unlock(&seq->lock);
1546 return PTR_ERR(new);
1549 smp_store_release(&seq->private, new);
1550 mutex_unlock(&seq->lock);
1555 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1556 size_t nbytes, loff_t *ppos)
1558 return psi_write(file, user_buf, nbytes, PSI_IO);
1561 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1562 size_t nbytes, loff_t *ppos)
1564 return psi_write(file, user_buf, nbytes, PSI_MEM);
1567 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1568 size_t nbytes, loff_t *ppos)
1570 return psi_write(file, user_buf, nbytes, PSI_CPU);
1573 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1575 struct seq_file *seq = file->private_data;
1577 return psi_trigger_poll(&seq->private, file, wait);
1580 static int psi_fop_release(struct inode *inode, struct file *file)
1582 struct seq_file *seq = file->private_data;
1584 psi_trigger_destroy(seq->private);
1585 return single_release(inode, file);
1588 static const struct proc_ops psi_io_proc_ops = {
1589 .proc_open = psi_io_open,
1590 .proc_read = seq_read,
1591 .proc_lseek = seq_lseek,
1592 .proc_write = psi_io_write,
1593 .proc_poll = psi_fop_poll,
1594 .proc_release = psi_fop_release,
1597 static const struct proc_ops psi_memory_proc_ops = {
1598 .proc_open = psi_memory_open,
1599 .proc_read = seq_read,
1600 .proc_lseek = seq_lseek,
1601 .proc_write = psi_memory_write,
1602 .proc_poll = psi_fop_poll,
1603 .proc_release = psi_fop_release,
1606 static const struct proc_ops psi_cpu_proc_ops = {
1607 .proc_open = psi_cpu_open,
1608 .proc_read = seq_read,
1609 .proc_lseek = seq_lseek,
1610 .proc_write = psi_cpu_write,
1611 .proc_poll = psi_fop_poll,
1612 .proc_release = psi_fop_release,
1615 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1616 static int psi_irq_show(struct seq_file *m, void *v)
1618 return psi_show(m, &psi_system, PSI_IRQ);
1621 static int psi_irq_open(struct inode *inode, struct file *file)
1623 return single_open(file, psi_irq_show, NULL);
1626 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
1627 size_t nbytes, loff_t *ppos)
1629 return psi_write(file, user_buf, nbytes, PSI_IRQ);
1632 static const struct proc_ops psi_irq_proc_ops = {
1633 .proc_open = psi_irq_open,
1634 .proc_read = seq_read,
1635 .proc_lseek = seq_lseek,
1636 .proc_write = psi_irq_write,
1637 .proc_poll = psi_fop_poll,
1638 .proc_release = psi_fop_release,
1642 static int __init psi_proc_init(void)
1645 proc_mkdir("pressure", NULL);
1646 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1647 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1648 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1649 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1650 proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
1655 module_init(psi_proc_init);
1657 #endif /* CONFIG_PROC_FS */